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We present an open-source software package, HADOKEN (High-level Algorithms to Design, Optimize, 
and Keep Electrons in Nanowires), for predicting electron confinement/localization effects in nanowires 
with various geometries, arbitrary number of concentric shell layers, doping densities, and external 
boundary conditions. The HADOKEN code is written in the MATLAB programming environment to aid 
in its readability and general accessibility to both users and practitioners. We provide several examples 
and outputs on a variety of different nanowire geometries, boundary conditions, and doping densities to 
demonstrate the capabilities of the HADOKEN software package. As such, the use of this predictive and 
versatile tool by both experimentalists and theorists could lead to further advances in both understanding 
and tailoring electron confinement effects in these nanosystems.

Program summary
Program Title: HADOKEN
CPC Library link to program files: https://doi .org /10 .17632 /jyzk4gfytx .1
Licensing provisions: GNU General Public License 3
Programming language: MATLAB
Nature of problem: HADOKEN utilizes iterative finite element methods to solve coupled Schrödinger and 
Poisson equations for heterostructure core–shell nanowires with arbitrary cross-sectional geometries. The 
user-friendly program outputs graphical results of electronic energies, densities, wavefunctions, and band 
profiles for various user-supplied input parameters.
Solution method: iterative solution of coupled Schrödinger and Poisson equations using finite element 
methods and sparse matrix linear algebra.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND 
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Semiconductor nanowires (NWs) continue to garner significant interest in various applications ranging from next-generation elec-
tronics to nanoscale probes for biological systems [1–4]. With cross-sectional dimensions tailorable to a few nanometers, these systems 
allow quantum confinement effects to emerge as electrons become quantized into discrete energy levels [5–7]. In particular, core–shell 
nanowires give rise to additional quantum effects since mobile two-dimensional electron gases (2DEGs) can form at the semiconductor–
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Fig. 1. Schematics of the (a) hexagonal and (c) triangular GaN/AlGaN core–shell NWs considered in this work. (b) Valence band (VB) and conduction band (CB) alignment at 
the core–shell interface. The �Ec = 0.5 eV discontinuity between the conduction bands of each material establishes a two-dimensional quantum well in the cross-sectional 
plane of the NW. (d) Two possible crystallographic orientations of the triangular heterostructure: the (0001) Ga-face and (0001̄) N-face orientations. Each orientation has 
one polar interface with a charge density of σ = ±0.0156 C/m2 and two semi-polar interfaces with a charge density of σ/2 = ∓0.0078 C/m2.

semiconductor heterojunction interface [8–13]. To fully harness the electronic properties of these systems, a wide range of material 
properties (such as doping density, bandgap alignment, geometry, and structural composition) may be altered to achieve spontaneous 
electron gas formation [14–16]. While the resulting parameter space is immense, theory and predictive modeling provide a guided path 
for determining which combination of material properties/parameters best optimizes performance in these novel nanosystems.

This work presents an open-source software package, HADOKEN (High-level Algorithms to Design, Optimize, and Keep Electrons in 
Nanowires), for predicting the formation of electron gases in core–shell nanowires with arbitrary geometries/shell layers, doping densities, 
and external boundary conditions. The code utilizes a self-consistent numerical implementation that solves coupled Schrödinger and 
Poisson equations to obtain wavefunctions, electron densities, and band-bending diagrams [17,18]. HADOKEN is written in the MATLAB 
programming environment to aid in its readability and general accessibility to both users and practitioners. Since open-source Schrödinger–
Poisson codes for arbitrary core–shell geometries and boundary conditions are not readily accessible, our publicly available HADOKEN code 
provides a user-friendly program for researchers by reducing the time commitment of writing these complex algorithms from scratch. To 
demonstrate its utility, we extensively document and provide several examples of different nanowire configurations that can be handled 
by the HADOKEN software package.

This paper is structured as follows: Section 2 introduces the physical systems considered in our calculations and the governing equa-
tions that are solved numerically. Section 3 provides additional implementation details for each of the algorithms used in HADOKEN. 
Section 4 presents typical results for a variety of nanowire geometries, configurations, and boundary conditions. The outputs for each 
computed system are also analyzed and given a physical justification. Section 5 then concludes with a summary and future perspective on 
various potential applications of the HADOKEN program.

2. Theory and methodology

Fig. 1 depicts the NW examples considered in this work, which have either hexagonal or triangular cross-sections (the latter has 
two different crystallographic orientations). While Fig. 1 depicts a single GaN/AlGaN core–shell configuration for simplicity, HADOKEN 
can calculate electronic properties for core–multishell NWs with arbitrary cross-sections, numbers of concentric layers, and material 
compositions as well. We feature the hexagonal and triangular NW cross-sections in this work since these geometries/orientations have 
been experimentally observed and synthesized [11,19–25]. For the single core–shell configuration depicted in Fig. 1, each NW is composed 
of an Al0.3Ga0.7N shell with uniform thickness, t , encompassing a GaN core of side length c (from simple geometry, the shell side length, s, 
is related to t and c via the expressions s = 2t/

√
3 + c and s = 2

√
3t + c for hexagonal and triangular cross-sections, respectively). For the 

hexagonal NW, the axis is aligned in the [0001]-direction, and the cross-section is bounded by {101̄0} planes. For each of the triangular 
NWs, the axis is aligned in the [112̄0]-direction, and the cross-section is bounded by two equivalent (1̄101̄) and (1̄101) planes, and a 
(0001) plane. As shown in Fig. 1d, the triangular NWs have two possible orientations of the (0001) plane—either in the [0001̄]- or [0001]-
direction—which correspond to physically distinct configurations. In the scientific literature, the former is referred to as an N-terminated 
face and the latter a Ga-terminated face.

The electronic parameters of the GaN core and Al0.3Ga0.7N shell are taken to be representative of their respective bulk system in 
the absence of defects, which has been verified experimentally [26]. Specifically, the bandgap, electron affinity, isotropic effective mass, 
and dielectric constant used in this work for AlxGa1−xN are given by Eg(x) = [3.42 + 2.86x − x(1 − x)] eV, χ = [5.88 − 0.7Eg(x)] eV, 
m∗(x) = (0.20 − 0.12x)m0, and ε(x) = 9.28 − 0.61x, respectively [27]. The specific values for GaN (x = 0) and Al0.3Ga0.7N (x = 0.3) give 
rise to a Type I straddling gap heterojunction with a conduction band discontinuity �Ec = 0.5 eV, as shown in Fig. 1b.
2



C. Chevalier and B.M. Wong Computer Physics Communications 274 (2022) 108299
In GaN/AlGaN heterostructures, a spatially-dependent polarization, P(r), arises from two sources: (1) the spontaneous polarization, Ps, 
due to the difference in electronegativities between GaN/AlGaN that leads to the formation of molecular dipole fields [28], and (2) the 
piezoelectric polarization, Pp, due to the lattice mismatch at the epitaxially grown GaN/AlGaN interface that induces strain during thermal 
expansion. In both cases, a non-zero charge density emerges at the GaN/AlGaN interface due to the discontinuity in P = Ps + Pp. For 
GaN/AlGaN crystalline systems, the spontaneous polarization can be written as Ps = Psẑ, where ẑ denotes a unit vector in the [0001]-
direction. From classical electrostatics, it follows that the interfacial charge due to spontaneous polarization at the GaN/AlxGa1−xN interface 
is given by σs = −∇ · P = (P GaN

s − P AlxGa1−xN
s ) cosφ, where φ is the interfacial angle with respect to the [0001]-direction (a typographical 

error in the expression for σs occurs in Ref. [29]). Due to this angular dependence with respect to the crystallographic axes, the interfaces 
in the hexagonal cross-section are all nonpolar, whereas the triangular cross-section has one polar and two semi-polar faces, as shown 
in Fig. 1d. Using Vegard’s law, the spontaneous polarization for AlxGa1−xN satisfies P AlxGa1−xN

s = (1 − x)P GaN
s + xP AlN

s , where P GaN
s =

−0.029 C/m2 and P AlN
s = −0.081 C/m2 [30,31]. The specific values used for Al0.3Ga0.7N (x = 0.3) give |σs| = 0.0156 C/m2 for the polar 

interface (i.e., φ = 0), where a positive/negative interfacial charge occurs in the Ga-/N-face orientation, respectively. Conversely, the charge 
density on the two semi-polar interfaces at φ = 2π/3 and φ = 4π/3 yields |σs/2| = 0.0078 C/m2, where the positive/negative interfacial 
charge occurs on the N-/Ga-face orientation, respectively.

The change in the piezoelectric polarization Pp at the core–shell interface is given by −�Pp = σp = εx′x′ e31 cos θ + εy′ y′ {e31 cos3 θ +
[(e33 − e15)/2] sin θ sin 2θ} + εz′z′ {[(e31 + e15)/2] sin θ sin 2θ + e33 cos3 θ} + εy′z′ [(e31 − e33) cos θ sin 2θ + e15 sin θ cos 2θ], [32] where the 
primed variables denote transformed coordinates in (x′, y′, z′) space, θ = φ + π , and the piezoelectric tensor components ei j are taken 
from Ref. [31]. Strain forces in the core and shell resulting from lattice mismatch have been calculated in three dimensions using several 
methods. For instance, the atomistic valence force-field model [33] has been applied to hexagonal core–shell GaN/AlN NW systems [21]
and continuum elasticity theory to cylindrical core–shell NW Si/Ge geometries [34]. Each of these prior studies indicates the interfacial 
strain discontinuity is similar to that of a thin film, and strain gradients within the shell are less significant than those near the interface. 
As such, we neglect volumetric contributions to the piezoelectric polarization of the shell and focus exclusively on the interfacial com-
ponent derived from planar film expressions [27] for each orientation considered in this work. Prior studies have also indicated that the 
relatively low strain in these structures allows us to safely disregard its influence on effective masses and bandgaps [35].

To calculate electronic properties at these nanoscale (but larger than atomistic) length scales, we commence with the Schrödinger equa-
tion in the effective mass approximation:[

− h̄2

2
∇ · 1

m∗(r)
∇ + V T (r)

]
	n(r) = En	n(r), (1)

where h̄ is Planck’s constant, m∗(r) the spatially-dependent electron effective mass, 	n(r) the envelope wavefunction for state n, and En

its energy. As described in Chapter 6 of Ref. [36], the envelope wavefunction represents the slowly varying part of the total wavefunction 
in the presence of the periodic arrangement of atoms. The function V T (r) = V CB(r) + V (r) + V xc(r) is the sum of the conduction band edge 
profile V CB(r), the electrostatic potential energy V (r), and the electron–electron exchange–correlation potential V xc(r), which we choose 
to be the local density approximation (LDA) [37]. For single core–shell NW geometries, V CB(r) takes the following form for hexagonal 
cross-sections obeying a charge-neutrality constraint:

V hex
CB (x, y) =

{
0, y ≤

√
3

2 c & y ≤ −√
3(x − c) & y ≥ √

3(x − c) & y ≥ −
√

3
2 c & y ≥ −√

3(x + c) & y ≤ √
3(x + c);

�Ec, otherwise.
(2)

For hexagonal cross-sections constrained with an externally-pinned Fermi level, V CB(r) takes the following form for hexagonal cross-
sections:

V hex
CB (x, y) =

{
−�Ec, y ≤

√
3

2 c & y ≤ −√
3(x − c) & y ≥ √

3(x − c) & y ≥ −
√

3
2 c & y ≥ −√

3(x + c) & y ≤ √
3(x + c);

0, otherwise,
(3)

and the following form for triangular cross-sections:

V tri
CB(x, y) =

{
−�Ec, y ≥ −

√
3

6 c & y ≤ √
3x +

√
3

3 c & y ≤ −√
3x +

√
3

3 c;

0, otherwise,
(4)

where we have chosen a coordinate system such that the z-axis passes through the geometric center of NW cross-section area, the core 
side length, c, is depicted in Figs. 1a and 1c, and �Ec = 0.50 eV is the Al0.3Ga0.7N conduction band edge discontinuity depicted in Fig. 1b. 
For core-multishell NW geometries examined in this work, each separate region is described with a V CB(r) expression having the same 
functional form as Eqs. (2) or (3). As discussed further in Section 3, it is important to note that the HADOKEN code sets the zero of energy 
at the minimum of the conduction band edge for NWs obeying a charge-neutrality constraint. In contrast, the zero of energy is set at the 
outer shell edge for NWs constrained with an externally-pinned Fermi level.

For computational convenience, the Schrödinger equation in the HADOKEN code is converted to a dimensionless form using the fol-
lowing reduced variables: x̃ = x/
0, ỹ = y/
0, z̃ = z/
0, and E = εC , where 
0 is a characteristic length scale, C = h̄2/2m0


2
0, and m0 is 

the electron rest mass. Within the HADOKEN code, 
0 is set to 10 nm, which correspondingly sets the energy scaling factor C to be 0.381 
meV. Assuming translational invariance along the z-axis, the envelope wavefunction in Eq. (1) can be factored as 	n(r) = eikzψn(x, y)/

√
L, 

where L is a normalization factor along the length of the NW, and k is the wavevector along the NW axis. Expressing 	n(r) in terms of 
reduced variables requires some care, since the HADOKEN code numerically calculates the wavefunctions ψn(x̃, ỹ) and normalizes them 
over the NW cross-section in the reduced coordinates x̃ and ỹ. Quantum mechanics requires 

∫∫
dx dy |ψn(x, y)|2 = 1 in the unscaled coordi-

nates; however, the HADOKEN code uses the normalization convention 
∫∫

dx̃ d ỹ |ψn(x̃, ỹ)|2 = 1 in reduced coordinates (the normalization 
3
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constant is calculated as one of the outputs in normalize_and_sqrt_m_triangular.m). To satisfy both of these constraints we 
must define ψn(x, y) = ψn(x̃, ỹ)/
0. Therefore, in terms of the reduced coordinates, the envelope wavefunction in Eq. (1) becomes

	n(r) = 1


0
√

L
eik
0 z̃ψn(x̃, ỹ), (5)

where |ψn(x̃, ỹ)|2 is dimensionless and its integral over x̃ and ỹ is normalized to unity.
Substituting Eq. (5) into Eq. (1) and restricting our study to only electronic properties at the Gamma point (i.e., k = 0) gives the 

following reduced, two-dimensional Schrödinger equation:[
− ∂

∂ x̃

m0

m∗(x̃, ỹ)

∂

∂ x̃
− ∂

∂ ỹ

m0

m∗(x̃, ỹ)

∂

∂ ỹ
+ V T (x̃, ỹ)

C

]
ψn(x̃, ỹ) = εnψn(x̃, ỹ), (6)

where m∗(x̃, ỹ) and V T (x̃, ỹ) are only functions of x̃ and ỹ due to the translational invariance along the z-axis. In the HADOKEN code, 
m∗(x̃, ỹ) is computed using the heaviside_core_schrod.m routine which is subsequently used as input as the “c” coefficient in the 
MATLAB PDE Toolbox pdeeig command. In addition, the HADOKEN code uses Dirichlet boundary conditions for Eq. (6) where ψn(x̃, ỹ) is 
set to zero at the outer shell boundary to prevent any electron leakage outside the NW. The electrostatic potential energy, V (x̃, ỹ), satisfies 
Poisson’s equation, which, in cgs units, is given by:[

∂

∂ x̃
ε(x̃, ỹ)

∂

∂ x̃
+ ∂

∂ ỹ
ε(x̃, ỹ)

∂

∂ ỹ

]
V (x̃, ỹ) = 4π
2

0|e|
[
ρD(x̃, ỹ) + ρe(x̃, ỹ) + ∇ · P

]
= S D(x̃, ỹ) + Se(x̃, ỹ) + 4π
2

0|e|∇ · P,

(7)

where e is the charge of an electron, ε(x̃, ỹ) is the spatially-dependent static dielectric constant, ρD (x̃, ỹ) is the charge density arising from 
the presence of ionized donors, ρe(x̃, ỹ) is the electron density, P (= Ps + Pp) is the total polarization source term discussed previously 
(which is only relevant for the Ga-face or N-face triangular nanowires), and S D (x̃, ỹ) and Se(x̃, ỹ) are defined as source terms due to the 
ionized donors and electron density, respectively. In the HADOKEN code, ε∗(x̃, ỹ) is computed using the heaviside_core_poiss.m
routine which is subsequently used as input for the “c” coefficient in the MATLAB PDE Toolbox assempde command. It is important 
to note that ∇ in Eq. (7) is the two-dimensional gradient operator (= [∂/∂x, ∂/∂ y]) in regular (not reduced) variables. The S D(x̃, ỹ) and 
Se(x̃, ỹ) source terms in Eq. (7) are discussed separately below, and the ∇ · P term is discussed in greater detail in Section 4.2. Finally, the 
HADOKEN code can utilize either Dirichlet or Neumann boundary conditions for Eq. (7) where either V (x̃, ỹ) or its derivative, respectively, 
are set to zero at the outer shell boundary.

For computational convenience, both S D (x̃, ỹ) and Se(x̃, ỹ) are expressed in terms of electron and donor number densities, ne and nD , 
within the HADOKEN code as

S D(x̃, ỹ) = 4π
2
0|e|2nD(x̃, ỹ)�

[
V T (x̃, ỹ) − E F

]
, (8)

and

Se(x̃, ỹ) = −4π
2
0|e|2ne(x̃, ỹ). (9)

The Heaviside step-function, �, determines the depletion region, which is the cross-sectional area of the NW where donor ionization can 
take place. Discussed further at the end of this section, the depletion region denotes areas of the NW where the donor electrons have 
energies larger than the Fermi energy, E F , for ionization to occur (cf. Chapter 6 of Ref. [36]). Within HADOKEN, the number density, nD , 
is scaled by a typical carrier density of nD,18 = 1018 cm−3, allowing us to concisely express the source term, S D , in units of eV in the
n_D_func.m m-file to give:

S D(x̃, ỹ) = (1.80951 eV)

[
nD(x̃, ỹ)

nD,18

]
�

[
V T (x̃, ỹ) − E F

]
. (10)

Similarly, the source term due the electron density can be written as

Se(x̃, ỹ) = −(1.80951 eV)
3
0ne(x̃, ỹ). (11)

The electron number density, ne , at temperature T is obtained by summing over the total number of occupied states:

ne(x̃, ỹ) = 2
∑
n,nz

|	n(x, y, z)|2 f (E, E F , T ), (12)

where the factor of 2 on the right side accounts for the spin degeneracy of each energy level. The sum in Eq. (12) extends over the 
quantum numbers n and nz , which correspond to quantization across the NW cross-section and axis, respectively. The Fermi distribution, 
f (E, E F , T ) in Eq. (12), is given by

f (E, E F , T ) =
{

1
e(E−E F )/kB T +1

, for T 	= 0 K;

�(E F − E), for T = 0 K;
(13)

where kB is Boltzmann’s constant. As described further below, we only consider the T = 0 K case, since the resulting integrals over 
�(E F − E) have a closed-form, analytic solution that can be efficiently computed over numerous self-consistent iterations within the 
HADOKEN code.
4
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The electrons have a continuous energy spectrum for motion along the NW axis, allowing the sum over nz to be rewritten as a 
continuous integral. Accordingly, Eq. (5) can be substituted into Eq. (12) to give

ne(x̃, ỹ) = 2


2
0L

∑
n

|ψn(x̃, ỹ)|2
∫

dnz f (E, E F , T ). (14)

Using the relation kz = 2πnz/L, Eq. (14) may be converted to a momentum-space integral over kz:

ne(x̃, ỹ) = 1

π
2
0

∑
n

|ψn(x̃, ỹ)|2
∫

dkz f (E, E F , T ). (15)

Considering only the T = 0 K case in the Fermi distribution with the relations E = Ez + En , Ez = h̄2k2
z/2m∗(x̃, ỹ), and dkz =√

m∗(x̃, ỹ)/2h̄2 Ez dEz (the second expression assumes that the effective mass can be closely approximated as a scalar and factored 
through the spatial derivatives appearing in Schrödinger’s equation) gives

ne(x̃, ỹ) = 1

π
2
0

∑
n

|ψn(x̃, ỹ)|2
∞∫

0

dEz

√
m∗(x̃, ỹ)

2h̄2 Ez
�(E f − Ez − En). (16)

Due to the Heaviside function, �(E f − Ez − En), the integral in Eq. (16) is only nonzero when Ez < E F − En , which gives

ne(x̃, ỹ) = 1

π
2
0

∑
n

|ψn(x̃, ỹ)|2
E F −En∫

0

dEz

√
m∗(x̃, ỹ)

2h̄2 Ez

= 1

π
2
0

∑
n

|ψn(x̃, ỹ)|2
√

2m∗(x̃, ỹ)(E F −En)

h̄2

= 1

π
3
0

∑
n

|ψn(x̃, ỹ)|2
√

m∗(x̃, ỹ)(εF −εn)
m0

,

(17)

where we have used the reduced variable E = εC in the last step. Substituting Eq. (17) into Eq. (11) allows us to concisely express the 
source term, Se , in units of eV in the n_e_func.m m-file to give:

Se(x̃, ỹ) = −1.80951 eV

π

∑
n

|ψn(x̃, ỹ)|2
√

m∗(x̃, ỹ)(εF −εn)
m0

. (18)

Within the HADOKEN code, the π−1
√

m∗(x̃, ỹ)/m0 “prefactor” term is calculated in n_e_prefactor.m, the summation 
∑

n |ψn(x̃, ỹ)|2 ×√
εF − εn is computed in psi_sqrt_eps_summation.m, and n_e_func.m utilizes the output of the previous two m-files to ulti-

mately calculate Se as input to the Poisson equation.
Thus far, neither the Fermi level nor the NW depletion region has been specified in our computational description. To more concretely 

describe these concepts, we first describe the Fermi level and depletion region for the (0001) Ga-face triangular core–shell nanowire 
depicted in Fig. 2. Due to surface states in these systems (discussed further in Section 4.2), the Fermi level is pinned 1.65 eV below the 
conduction band edge, as shown in Fig. 2a [38]. The corresponding NW depletion region, colored purple in Fig. 2b, contains the positively-
charged (ionized) donors that provide carriers in the NW (i.e., the purple-colored regions contribute a positive-valued dopant density, 
nD ).

For NWs without a Fermi-pinning constraint, HADOKEN can use a charge neutrality condition (discussed further in Section 3) in 
combination with the solution of the depletion region to calculate εF . The charge neutrality condition requires the total number of 
positive and negative charges over the entire NW to balance:∫∫

dx̃ d ỹ nD(x̃, ỹ) =
∫∫

dx̃ d ỹ ne(x̃, ỹ), (19)

where nD and ne are described in Eqs. (8) and (17). Since ne is a function of εF (see Eq. (17)) and nD is a function of the depletion region, 
the Fermi energy is calculated by solving Eq. (19) using a standard root-finding procedure in the HADOKEN m-files charge_neutral.m
and find_epsilon_F.m The normalize_and_sqrt_m_triangular.m routine calculates 

∫∫
dx̃ d ỹ |ψn(x̃, ỹ)|2√m∗(x̃, ỹ)/m0 for 

each of the n wavefunctions, which is needed as input to find_epsilon_F.m. The depletion region itself is calculated/stored in the 
variable heaviside_n_D within the HADOKEN code. Specifically, the geometric regions of the NW that satisfy V T (x̃, ỹ) ≥ E F become 
ionized and contribute a positive-valued dopant density, nD , that is taken into account in the charge neutrality condition of Eq. (19). The 
procedure for satisfying charge neutrality is carried out during each iterative cycle until self-consistency in the total potential, V T (x̃, ỹ), is 
reached (described further in the following section).

3. Additional numerical and implementation details

The HADOKEN source code is distributed as a collection of MATLAB m-files in the following four separate, self-descriptive folders:
5
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Fig. 2. (a) Band-bending and Fermi level for a (0001) Ga-face triangular core–shell nanowire, and (b) corresponding cross-section of the NW showing the depletion region 
colored in purple. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

hexagonal_charge_neutral_coreshell
hexagonal_fermi_pinning_coreshell
triangular_Ga_face_coreshell
triangular_N_face_coreshell

The most computationally intensive portions in these m-files utilize the MATLAB Partial Differential Equation Toolbox [39] to calculate self-
consistent electronic wavefunctions, energies, densities, and band-bending diagrams for hexagonal and triangular core–shell nanowires. The 
flowchart depicted in Fig. 3 summarizes the overall algorithmic processes within HADOKEN, which are described in extensive detail in the 
following paragraphs. The set_input_parameters.m and set_doping_density.m routines allow the user to input parameters 
specifying the desired core/shell side lengths, conduction band edge energies, effective masses, dielectric constants, mesh resolution, and 
doping density function, respectively. These quantities are then used by the main_scf_dirichlet.m and main_scf_neumann.m
routines, which initiate the HADOKEN code with either Dirichlet or Neumann boundary conditions for V (x̃, ỹ). As sample input, the ma-
terial parameters for GaN and Al0.3Ga0.7N have been provided in set_input_parameters.m in the global variables vector_of_V0,
vector_of_masses, and vector_of_eps, which represent the conduction band discontinuities, effective masses, and dielectric con-
stants of each of the nanowire regions, respectively. Researchers interested in other material compositions can simply replace these 
numerical values in the set_input_parameters.m file to enable self-consistent simulations for other materials.

3.1. Finite element mesh generation

With the global variable vector_of_side_lengths properly defined in the set_input_parameters.m routine, the
mesh_coreshell.m m-file generates a Delaunay-triangulated grid of points that discretizes the NW cross-sectional geometry using 
the built-in initmesh MATLAB function [40]. Specifically, the initmesh function utilizes a decomposed geometry matrix, g [41], 
and outputs the matrices p, e, and t for point, edge, and triangular mesh data (p and e are stored as global variables that are used 
by several other routines in HADOKEN). For simplicity, the same mesh grid is used for both the Schrödinger and Poisson equations. 
The average side length of the individual triangles forming this finite element mesh is computed and stored in the global variables
avg_side_length_schrod and avg_side_length_poiss, which are used by several of the other MATLAB m-files. Fig. 4 shows 
representative hexagonal/triangular cross-sectional geometries and finite element grids that are automatically plotted by the built-in
pdemesh MATLAB function in HADOKEN. It is also important to note that researchers interested in different NW cross-sections can con-
struct a customized geometry matrix, g (see Ref. [41] for further details), which can use the same iteration scheme (discussed further 
below) in the HADOKEN code for their own self-consistent calculations.

3.2. Initial guess for the potential

With the material parameters and mesh data properly defined/computed, HADOKEN initializes the self-consistent procedure by pro-
viding a zeroth-order guess for the total potential, V T (x̃, ỹ). For hexagonal geometries not containing polarization source terms, this guess 
potential is provided by the V_conduction_band.m m-file, which contains only the bare conduction band edge profile, V hex

CB (x̃, ỹ), 
given by Eqs. (2) or (3). As mentioned previously in Section 2, V_conduction_band.m sets the zero of the potential energy at the 
minimum of the conduction band edge for NWs obeying a charge-neutrality constraint. For NWs constrained with an externally-pinned 
Fermi level, the zero of energy is set at the outer shell edge. Since V hex

CB (x̃, ỹ) is defined piecewise in the core/shell regions, the general-
purpose heaviside_core_schrod.m m-file—which returns a value of 1 for inputted (x̃, ỹ) pairs that lie within the core region of the 
nanowire and 0 otherwise—is used to construct an appropriately scaled conduction band edge profile in V_conduction_band.m.
6
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Fig. 3. Algorithmic flowchart of the HADOKEN code for nanowires obeying a charge-neutrality constraint. For nanowires constrained with an externally-pinned Fermi level, 
the charge-neutrality decision block is bypassed, and the Poisson equation is solved immediately after the wavefunctions are calculated.

Fig. 4. Representative finite element meshes automatically generated by HADOKEN for (a) hexagonal and (b) triangular core–shell NWs. The pink lines delineate the core 
region of each geometry.

For both of the Ga- and N-face triangular geometries that contain spontaneous and piezoelectric polarization source terms, the 
guess potential is obtained by numerically solving the dimensionless Poisson equation in Eq. (7) without the Se(x̃, ỹ) source term. 
In addition, the S D(x̃, ỹ) source term in Eq. (7) is approximated as a constant for this first iteration of the Poisson equation to ob-
tain the guess potential. As discussed in Section 2, the spontaneous polarization source term yields a charge density at each of the 
three GaN/AlGaN interfaces for the triangular cross-section. From classical electrostatics, this interfacial charge density is formally rep-
resented by a Dirac delta function at each of the three interfaces. For example, the charge density at the polar interface for the 
Ga-face orientation is given by σs = (0.0156 C/m2) δ( ỹ + c

√
3/6) within the domain −c/2 ≤ x̃ ≤ c/2, where c is the core side length. 

This delta function charge distribution is implemented in the rho_semipolar_inside.m m-file as a Gaussian function of the form 
ρ(x̃, ỹ) = σs exp [−( ỹ + c

√
3/6)2/a2]/a

√
π within the domain −c/2 ≤ x̃ ≤ c/2, where a is twice the average side length of the triangular 

finite element mesh (i.e., a = 2 · avg_side_length_poiss). This charge density is then stored in the variable rho_bottom_inside. 
While the numerical scheme for incorporating the charge density at the polar interface is relatively straightforward, implementing the 
surface charge for the semi-polar interfaces requires additional care since the Delaunay triangulation procedure does not create a symmet-
ric grid. To this end, a rotation matrix is used in rho_semipolar_inside.m to first rotate the (x̃, ỹ) coordinates of the finite element 
grid by 120◦ counterclockwise so that one semi-polar interface now lies along the horizontal line ỹ = −c

√
3/6. A Gaussian having the 

same functional form as the one described previously (except with σs replaced with −σs/2) is then applied at the ỹ = −c
√

3/6 line 
7
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within the domain −c/2 ≤ x̃ ≤ c/2. The charge density is stored in the appropriate (x̃, ỹ) locations within the variable rho_left_in-
side. The same procedure is repeated for the other semi-polar interface (except with a 120◦ clockwise rotation) and the charge density 
is stored in the variable rho_right_inside. The three charge densities are finally added together and returned as an output variable 
by rho_semipolar_inside.m.

The piezoelectric polarization source term is implemented in a manner similar to the spontaneous polarization—a Gaussian function 
is used to approximate the interfacial charge density and rotation matrices are used to place the charge density at each of the three 
GaN/AlGaN interfaces. The only difference is that the charge density due to the piezoelectric polarization is given by the analytic expression 
for σp discussed in Section 2. The analytic expression and charge density at each of the three GaN/AlGaN interfaces is computed by the
piezo_analytic.m and rho_strain_analytic.m m-files, respectively.

With the source terms properly computed, the dimensionless Poisson equation can now be solved for the guess potential for the 
Ga- and N-face triangular geometries. Specifically, the S D(x̃, ỹ) and ∇ · P source terms are used as input for the “f” coefficient in the 
MATLAB PDE Toolbox assempde function [42]. Since the dielectric constant has a spatial dependence in the Poisson equation, the heav-
iside_core_poiss.m m-file (which returns a value of 1 for inputted (x̃, ỹ) values that lie within the core region of the nanowire and 
0 otherwise) is used to construct an appropriately scaled ε∗(x̃, ỹ) term, which is used as the “c” coefficient in the assempde solver. 
Finally, a boundary condition matrix, b, which enforces Dirichlet or Neumann boundary conditions for V (x̃, ỹ) at the outer shell boundary, 
is used as input to assempde. Researchers interested in applying different boundary conditions can simply modify the boundary con-
dition matrix, b, to suit their specific needs (see Ref. [43] for the MATLAB documentation on modifying this variable). The electrostatic 
potential energy, V (x̃, ỹ), is then computed and stored in the global variable V_poisson.

3.3. Initial Schrödinger equation

With the initial guess for the potential calculated, HADOKEN computes initial wavefunctions and energies from the Schrödinger equa-
tion (Eq. (6)) using the Arnoldi algorithm [44] within the MATLAB PDE Toolbox pdeeig function [45]. For both charge neutral and 
Fermi-pinned hexagonal geometries, the output of the previously discussed V_conduction_band.m is used as input for the “a” co-
efficient in pdeeig. For both the Ga- and N-face triangular geometries, the “a” coefficient uses the output of the V_total_piezo.m
m-file, which calculates the sum of V_poisson (containing the spontaneous and piezoelectric polarization contributions) and the con-
duction band edge profile, V tri

CB(x, y), given by Eq. (4). Since the effective mass has a spatial dependence in the Schrödinger equation, the
heaviside_core_schrod.m m-file (which has a similar functionality as the heaviside_core_poiss.m m-file discussed above) 
is used to construct an appropriately scaled m0/m∗(x̃, ỹ) term, which is used as the “c” coefficient in the pdeeig PDE solver. A two-
element vector, r, containing the range of eigenvalues to compute is also used by the pdeeig command: for hexagonal cross-sections 
obeying a charge-neutrality constraint, r is initially set to [0, C]; however, for NWs with a Fermi-pinning constraint, the lower limit of
r is initially set to the minimum of the electrostatic potential energy, and the upper limit is set to C or 10C above the previous lower 
limit for Ferm-pinned hexagonal or triangular geometries, respectively. A boundary condition matrix, b, [43] which sets the wavefunctions 
to zero at the outer shell edge, is used as input to pdeeig. Finally, at least two wavefunctions and their associated energy levels are 
computed by incrementally changing the lower and upper limit of the r vector in subsequent function calls to pdeeig. The normal-
ize_and_sqrt_m_triangular.m m-file calculates the normalization constant and 

∫∫
dx̃ d ỹ |ψn(x̃, ỹ)|2√m∗(x̃, ỹ)/m0 for each of the n

wavefunctions (the latter expression is used evaluate ne(x̃, ỹ) in Eq. (17)).

3.4. Calculation of the Fermi level and boundary conditions

With the first two normalized wavefunctions and energies computed from the previous step, the HADOKEN code can now proceed to 
calculate the Fermi level, εF . For both the Ga- and N-face triangular geometries, the AlGaN/vacuum interface contains a high density of 
surface states that counterbalance the large spontaneous polarization charge generated at the interface [38]. This results in the Fermi level 
being pinned in the AlGaN bandgap near −1.65 eV, which sets the upper limit of the r vector in subsequent function calls to pdeeig. 
For other user-defined geometries with a Fermi-pinning constraint, the Fermi level is specified by the user in the set_input_parame-
ters.m routine.

For NWs obeying a charge-neutrality constraint, Eq. (19) is used to calculate εF . The find_epsilon_F.m m-file uses the last energy 
level previously calculated by pdeeig as an initial guess to the built-in MATLAB root-finding fzero function. The fzero command 
solves the charge neutrality condition in charge_neutral.m, which calculates the difference between the integrated electron density 
(Eq. (17)) and the integrated depletion region (cf. Fig. 2b). If the εF value predicted by find_epsilon_F.m is higher than the last energy 
level previously calculated by pdeeig, the lower and upper limit of the r vector is incrementally changed and inputted to pdeeig until 
all the required wavefunctions/energies are obtained and Eq. (19) is satisfied.

3.5. Initial Poisson equation and self-consistent iteration

With the wavefunctions and Fermi level computed, the summation 
∑

n |ψn(x̃, ỹ)|2√εF − εn is computed by the psi_sqrt_eps_sum-
mation.m m-file and stored in the global variable psi_sqrt_eps_sum (which is used by the n_e_func.m m-file to compute Se in 
Eq. (18)). It is worth mentioning that n_e_func.m utilizes the griddata_NaN.m and symmetrize_coordinates.m m-files to 
symmetrize the spatial electron density for the triangular and hexagonal geometries based on their respective two- and six-fold symme-
tries. The depletion region (cf. Fig. 2b) is computed and stored in the global variable heaviside_n_D, which contains a vector having 
elements of 1 for (x̃, ỹ) values where V T (x̃, ỹ) ≥ E F and 0 otherwise. For hexagonal geometries that do not contain polarization effects, 
the S D(x̃, ỹ) and Se(x̃, ỹ) source terms are computed in the n_D_func.m and n_e_func.m m-files, respectively, and their sum is used 
as input for the “f” coefficient in assempde to solve the dimensionless Poisson equation. For both of the Ga- and N-face triangular ge-
ometries, the sum of n_D_func.m, n_e_func.m, as well as the polarization source terms computed in rho_semipolar_inside.m
and rho_strain_analytic.m are used as input for the “f” coefficient in assempde. The inputs for the “c” coefficient and boundary 
condition matrix, b, in assempde were discussed in Section 3.2.
8
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With the initial potential computed by assempde, HADOKEN reinserts a fraction of the total potential (which includes an additional 
exchange–correlation term calculated by the V_xc.m and V_total_with_xc.m m-files) into a new Schrödinger equation to initialize 
the self-consistent procedure. To complete one cycle of the iteration scheme shown in Fig. 3, HADOKEN uses a 0.01 fraction of the po-
tential for both the charge-neutral and Fermi-pinned hexagonal geometries, and a 0.05 fraction of the potential for triangular geometries. 
This cyclic process of simultaneously solving the Schrödinger and Poisson equations is continued until both are self-consistent, which 
we define as the situation where the average energy difference over all nodes of the electrostatic potential between successive itera-
tions is less than 0.01 eV. To maintain a stable self-consistent feedback loop, the HADOKEN code uses an under-relaxation technique 
set by the variable damping_factor, which is initially equal to 0.03 for hexagonal geometries and 0.05 for triangular geometries. 
As such, the inputted potential for the next iteration, V_poisson, is calculated as V_poisson=V_poisson_old+damping_fac-
tor*(V_poisson-V_poisson_old), where V_poisson_old is the potential just computed. When the potential is nearly converged, 
defined to be the average energy difference of the potential being less than 0.01C , the damping_factor variable is slowly increased to 
a maximum of 0.07 to further accelerate convergence. Once self-consistency is reached, the band-bending diagram, total electron density, 
and all occupied wavefunctions are output to the screen. Additionally, all variables used by HADOKEN are saved to a binary .mat file for 
further post-processing by the user.

4. Numerical examples and results

In the following subsections, we discuss typical calculations on a variety of nanowire geometries, configurations, and boundary condi-
tions that can be performed with HADOKEN. Note that the parameters used as input to set_input_parameters.m are consistent with 
the reduced coordinates and scaling relations discussed in Section 2. Specifically, the first input variable, vector_of_side_lengths, 
contains the side lengths of each interface expressed in units of 10 nm. The second input variable, vector_of_V0, contains the band 
edge energies in units of eV. The third input vector, vector_of_masses, contains the effective mass of each nanowire region in units 
of m0, and the fourth input vector their static dielectrics. If a Fermi-pinning constraint is being enforced, the fifth input parameter, ep-
silon_F, specifies the Fermi-level pinning in units of eV; otherwise, the last input required by set_input_parameters.m is the 
number of triangles used to discretize the NW cross-section in the finite element procedure. The doping density function used in the
set_doping_density.m routine can accept any functional form and must be in units of 1018 cm−3. For instance, a user wanting to in-
corporate a doping density function that specifies which layers of the heterostructure are doped can use heaviside_core_schrod.m
(see Section 3) as input to set_doping_density.m.

4.1. Hexagonal cross-section

We first consider self-consistent Schrödinger–Poisson calculations for nonpolar core–shell NWs with hexagonal cross-sections. As shown 
in Fig. 1a, the spontaneous polarization contribution vanishes because the polarization axis is in the axial direction. The piezoelectric 
polarization also drops out—the strain components εxz and εyz are both zero since the displacements are uniform in the axial direction. 
It follows that all interfaces in the hexagonal NW are nonpolar, indicating that electron gas formation in these systems results exclusively 
from the conduction band edge discontinuity in V CB(x̃, ỹ) and variations in the electrostatic potential, V (x̃, ỹ). Previous work by us and 
others have shown that electron gas formation is insensitive to local exchange–correlation effects in V xc(x̃, ỹ) [46,47].

The wavefunctions, band-bending diagram, and total electron densities shown in Fig. 5 are outputted by the main_scf_neumann.m
routine when the following parameters are used in the set_input_parameters.m and set_doping_density.m m-files, respec-
tively:

In set_input_parameters.m:

vector_of_side_lengths=[4.5 3];
vector_of_V0=[0.5 0.0];
vector_of_masses=[0.2-0.12*0.3 0.2];
vector_of_eps=[9.28-0.61*0.3 9.28];
number_of_triangles=50000;

In set_doping_density.m:

n_D=0.2;

These input parameters correspond to a hexagonal NW with shell side length s = 45 nm, core side length c = 30 nm, and n-type doping 
density nD = 0.2 ×1018 cm−3. For all results depicted in this and the following sections, 50,000 triangular elements were used to accurately 
capture the oscillating and highly localized wavefunctions at the core–shell interfaces.

It is worth noting that the spatial electron density shown in Figs. 5a and 5c is qualitatively different than the spatially uniform elec-
tron gas profile typically observed in macroscopic bulk/slab heterojunctions. Indeed, Fig. 5c shows the unique formation of six degenerate 
quasi-one-dimensional electron gases at vertices of the core–shell interface, which strongly resembles the lowest energy electron wave-
function. Specifically, the E1 wavefunction corresponds to a highly localized charge distribution near the corners of the core–shell interface. 
As shown in Fig. 5a, a few of the wavefunctions are doubly degenerate (i.e., E2/E3, E4/E5, E8/E9, and E10/E11), which arises from the 
irreducible representations of the D6h symmetry group (similar to that observed in benzene molecules). Furthermore, the other higher 
energy wavefunctions are also localized near the core–shell interface, such that their sum (cf. Eq. (17)) gives rise to a total electron distri-
bution concentrated at the NW heterojunction’s six corners. Note that HADOKEN can be used to explore other user-defined parameters; 
various combinations of core/shell sizes and doping densities can result in qualitatively distinct electron density profiles. Self-consistent 
calculations with low nD values, for example, tend to give relatively flat band-bending diagrams and a 2DEG localized in the core’s center
(not shown in Fig. 5), rather than near the corners. Conversely, localization near the NW corners generally requires high values of nD , 
particularly for small core sizes.

To provide a more complex example of the various boundary conditions and geometries that HADOKEN can handle, Fig. 6 depicts the 
self-consistent band-bending diagram and electron density for a core–multishell nanowire with a fixed Fermi level and more intricate 
doping density function.
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-

Fig. 5. Calculated (a) wavefunctions, (b) band-bending diagram along the dashed line of the inset, and (c) charge distribution for a hexagonal cross section having a 30-nm 
core side length and 45-nm shell side length with a doping density of 0.2 × 1018 cm−3. The energies depicted in (a) are measured relative to the minimum of the conduction 
band, and the roman numerals in panel (b) indicate AlGaN (I) or GaN (II) regions along the y-axis.

Fig. 6. (a) Band-bending diagram, (b) 3D charge distribution, and (c) 2D cross-sectional charge distribution for a core-multishell nanowire with a fixed Fermi level (E F =
−0.2 eV) and doping density of nD (x̃, ̃y) = 5 exp [−0.1(x̃2 + ỹ2)] cm−3. The roman numerals in panel (a) delineate regions of AlGaN (I) from GaN (II) along the y-axis.

The wavefunctions, band-bending diagram, and total electron densities shown in Fig. 6 are outputted by running the main_scf_dirich
let command at the MATLAB prompt when the following input parameters are used in set_input_parameters.m and set_dop-
ing_density.m m-files, respectively:
10



C. Chevalier and B.M. Wong Computer Physics Communications 274 (2022) 108299
Fig. 7. Calculated (a) wavefunctions, (b) band-bending diagram along the dashed line of the inset, and (c) charge distribution for a (0001) Ga-face triangular core–shell 
nanowire having a 40-nm core side length and 70-nm shell side length with a doping density of 4.0 × 1018 cm−3. The energies depicted in (a) are measured relative to the 
conduction band evaluated at the shell edge, and the roman numerals in panel (b) indicate AlGaN (I) or GaN (II) regions along the y-axis.

In set_input_parameters.m:

vector_of_side_lengths=[6.5 5 3.5 2];
vector_of_V0=[0.5 0.0 0.5 0.0];
vector_of_masses=[0.2-0.12*0.3 0.2 0.2-0.12*0.3 0.2];
vector_of_eps=[9.28-0.61*0.3 9.28 9.28-0.61*0.3 9.28];
epsilon_F=-0.2;
number_of_triangles=50000;

In set_doping_density.m:

n_D=5*exp(-0.1*(x.^2+y.^2));

These input parameters correspond to a hexagonal nanowire with an n-type doping density of the form nD (x̃, ỹ) = 5 exp [−0.1(x̃2 + ỹ2)]
cm−3, a fixed Fermi level of −0.2 eV, an inner core/shell length of 20 nm/35 nm, and an outer core/shell length of 50 nm/65 nm. As shown 
in Figs. 6b and 6c, the self-consistent total electron density in this core–multishell NW exhibits a much more complex structure. A total of 
twelve quasi-one-dimensional electron gases are visible, with the first six located at the inner quantum well’s vertices and the other six 
at the outer quantum well’s vertices. Moreover, a sheet-like distribution forms at each of the GaN/AlGaN interfaces of the outer quantum 
well.

4.2. Triangular cross-sections

Unlike the hexagonal cross-sections, core–shell NWs with triangular cross-sections possess both spontaneous and piezoelectric polar-
izations corresponding to the two orientations depicted in Fig. 1d. The first case we discuss is the (0001) Ga-face triangular core–shell NW. 
Running the main_scf_dirichlet command at the MATLAB prompt in the triangular_Ga_face_coreshell folder will output 
the wavefunctions and total electron densities shown in Fig. 7. The input parameters to set_input_parameters.m and set_dop-
ing_density.m correspond to a triangular NW with n-type doping nD = 4 × 1018 cm−3 and core and shell side lengths of c = 40 nm
and s = 70 nm, respectively.

For the Ga-face configuration, the spontaneous polarization induces a large positive surface charge at the (0001) interface and smaller 
negative surface charges at the (1̄101̄) and (1̄101) planes. This combination effectively attracts free electrons at the (0001) interface, 
causing a 2DEG to accumulate at that GaN/AlGaN heterojunction, as shown in Fig. 7c. Notice that the Ga-face triangular NW possesses a 
11
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Fig. 8. Calculated (a) wavefunctions, (b) band-bending diagram along the dashed line of the inset, and (c) charge distribution for a (0001̄) N-face triangular core–shell 
nanowire having a 60-nm core side length and 110-nm shell side length with a doping density of 5.5 × 1018 cm−3. The energies depicted in (a) are measured relative to the 
conduction band evaluated at the shell edge, and the roman numerals in panel (b) indicate AlGaN (I) or GaN (II) regions along the y-axis.

lower symmetry than the hexagonal NW discussed previously, and degenerate wavefunction pairs are not observed in this configuration. 
Instead, the lowest energy wavefunctions resemble one-dimensional particle-in-a-box-like patterns, with vertical nodal planes emerging 
as the energy of each wavefunction increases. At some critical energy (in this case, E9 = −1.6749 eV), a horizontal nodal plane emerges, 
and the wavefunctions start to delocalize into other regions of the NW (see also E11). Most notably, the sum of these wavefunctions via 
Eq. (17) gives rise to a sheet-like distribution of charge that is symmetric about the x = 0 plane. We have used HADOKEN to explore other 
combinations of core/shell sizes and doping densities and found that a localized peak (rather than a delocalized sheet-like distribution) 
is obtained for small core sizes. For higher doping densities and larger core sizes, a sheet-like distribution emerges since the energy 
difference between occupied levels decreases for these scenarios, resulting in a semi-classical electron distribution resembling what is 
found in planar heterojunctions.

The situation is materially different for the N-face orientation. Running the main_scf_dirichlet command at the MATLAB prompt 
in the triangular_N_face_coreshell folder will output the wavefunctions and total electron densities shown in Fig. 8 when the 
following input parameters are used in set_input_parameters.m and set_doping_density.m m-files, respectively:

In set_input_parameters.m:

vector_of_side_lengths=[11 6];
vector_of_V0=[0.5 0.0];
vector_of_masses=[0.2-0.12*0.3 0.2];
vector_of_eps=[9.28-0.61*0.3 9.28];
epsilon_F=-1.65;
number_of_triangles=50000;

In set_doping_density.m:

n_D=5.5;

The input parameters to the set_input_parameters.m and set_doping_density.m routines correspond to a triangular NW 
having an n-type doping of nD = 5.5 × 1018 cm−3 and core and shell side lengths of c = 60 nm and s = 110 nm, respectively.
12



C. Chevalier and B.M. Wong Computer Physics Communications 274 (2022) 108299
For the N-face configuration, the polarization results in a large negative surface charge to accumulate at the (0001̄) interface and 
smaller positive surface charges along both semipolar interfaces. Consequently, donor electrons in the NW are repelled from the N-
face but attracted to the adjacent positively-charged surfaces. The system reaches an electrostatic equilibrium by creating a localized 
electron gas near the vertex opposite to the negatively-charged (0001̄) interface. It is also worth noting that a few of the lowest-energy 
wavefunctions shown in Fig. 8a are doubly (or almost doubly) degenerate. Specifically, the wavefunctions corresponding to E2 and E3
are nearly degenerate and resemble a geometric reflection of each other about the x = 0 plane. The wavefunctions corresponding to E4
and E5 are also nearly degenerate, with the former having two horizontal nodal planes and the latter having one horizontal nodal plane 
and one vertical nodal plane at x = 0. Similarly, the wavefunctions corresponding to E6 and E7 are almost nearly degenerate, with the 
former having three horizontal nodal planes and the latter having two horizontal nodal planes and one vertical nodal plane at x = 0. 
As the energy of the individual wavefunctions increases, the charge distribution expands further down each semipolar face, leading to a 
total electron density that is primarily localized at the vertex of the triangular NW. Additional calculations with the HADOKEN code (not 
shown in Fig. 8) have shown that small core sizes tend to favor quantum 1DEGs, since the magnitude of the electron density at the vertex 
decreases (and starts to extend symmetrically along the two semipolar faces) as the core size increases.

5. Conclusions

In this contribution, we have provided and extensively documented an open-source software code for predicting two-dimensional 
electron gas formation in heterostructure core–shell nanowires. The algorithms in the HADOKEN software utilize a robust finite element 
procedure that solves coupled Schrödinger and Poisson equations self-consistently for a variety of geometries, doping densities, and ex-
ternal boundary conditions. Most importantly, the HADOKEN software can be downloaded from the Computer Physics Communications 
International Computer Program Library to investigate material composition effects, bandgap alignment, doping density, and cross-sectional 
size on Fermi gas formation in a variety of nanowire configurations. In addition, the user-friendly MATLAB code serves as a starting point 
for researchers that may need minor modifications of the well-documented source code to simulate other materials and geometries beyond 
those discussed in this work.

Looking forward, we anticipate that the HADOKEN software package could be used in a variety of other applications that require elec-
tronic structure calculations of these unique structures. For example, since our calculations demonstrate that electron gases at nanoscale 
core–shell interfaces differ significantly from their bulk counterparts, we anticipate that other observables such as electron transport [48]
or optical properties [49] in these systems would also exhibit unique behavior. As such, the wavefunctions and total electron densities 
computed by the HADOKEN code can serve as a starting point to initialize the computation of these dynamical properties. Similarly, 
the self-consistent algorithms in the HADOKEN code can also be further parallelized or modified to include other many-body effects 
(such as nonlocal exchange–correlation effects [46,50]) that may have a significant influence on electron localization effects observed in 
these systems. The open-source HADOKEN software code enables a path forward to explore these other properties as well as provides an 
easy-to-use, predictive tool to understand and modulate electron confinement effects in these unique nanosystems.
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