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A B S T R A C T   

The Ghost Fluid Method (GFM) and its derivatives represent powerful techniques in the numerical simulation of 
compressible, multi-medium flows, but are nonetheless afflicted by so-called overheating errors at and near 
material interfaces. These errors take the form of local overshoots and undershoots, and cause the numerical 
solution to deviate from the exact solution. Overheating errors are commonly addressed by an isobaric fix (or an 
isentropic fix), where the values at the cells next to the fluid interface are corrected to reduce the numerical 
diffusion stemming from overheating. These approaches however, do not completely remove overheating, and 
numerical inaccuracies persist near the interface. In this article, we propose a new version of the GFM called the 
Efficient Ghost Fluid Method (EGFM) capable of completely eliminating overheating errors, leading to highly 
accurate solutions near the interface. The EGFM approach has been implemented in IMPACT, a multi-medium, 
shock physics code, and has been validated against a wide range of 1D and 2D test cases, including problems with 
surface tension. These include single- as well as multi-medium shock tube problems, various shock-interface 
interactions, and shock-driven instabilities.   

1. Introduction 

The Ghost Fluid Method (GFM) was originally proposed by Fedkiw 
et al. [1] to model contact discontinuities in inviscid, compressible, 
multi-material flows. The GFM is based on applying physically accurate 
interfacial boundary conditions at the material interface between 
different fluids, where such boundary conditions are implemented 
through the definition of ghost fluids in the computational domain. In 
[2], the authors show that the Rankine–Hugoniot jump conditions, i.e. 
flux conservation, when applied across the interface, yield interfacial 
conditions that ensure the continuity of pressure and normal velocity. In 
[1], the authors define the ghost fluids based on the interfacial flux 
conservation discussed above. In a two-fluid system with Fluids A and B, 
they proposed using the pressure and velocity of Fluid B (Fluid A) for 
Ghost Fluid A (Ghost Fluid B), while the density of Ghost Fluid A (Ghost 
Fluid B) is obtained directly from Fluid A (Fluid B) through constant 
extrapolation. 

Often, the GFM is coupled [1–3] with the level set (LS) approach [4], 
where the LS functions are used to track the location of the interface. 
This approach results in a sharp representation of the interface, which is a 
central feature of the GFM, when compared with other interface 

approaches including the VOF method [5], mass fraction methods [6], 
and gamma-based models [6,7], all of which diffuse the interface over 
multiple cells, giving rise to ‘numerical mixing’ between the two fluids. 
This property of the GFM makes it suitable for simulations of 
multi-material problems involving interfacial phenomena such as 
problems with interfacial instabilities, surface tension effects, and 
evaporation. 

Using multi-medium Riemann solvers at the interface to couple fluids 
governed by different equations of state (EOS) has been shown to result 
in high-quality numerical solutions at and near the interface, e.g. see 
[8–10]. To extend this idea to the GFM framework, Liu et al. [11] pro
posed a modified GFM (MGFM), where approximate Riemann solvers 
were used to obtain more accurate values for the ghost cells with lower 
conservation errors (see also [12–14] for a discussion of the applications 
of the MGFM, and [15] for a description of the accuracy and conserva
tion errors associated with different GFMs). Liu et al. [16] further 
developed the MGFM idea to simulate compressible fluids coupled to 
deformable structures in the presence of cavitation in fluids. Further
more, Hu and Khoo [17] proposed a numerical method called I-GFM, 
where the ghost values were obtained by real and ghost interactions (see 
[18] for the application of the I-GFM in the primary breakup of a liquid 
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jet, and [19] for a proposed modification to the I-GFM). Wang et al. [13] 
proposed a real GFM (RGFM) approach to extend the capabilities of the 
MGFM, and suggested a novel algorithm for the advection of the LS 
function. More recently, Xu et al. [20] proposed the practical GFM 
(PGFM) for compressible multi-medium flows. 

Although it leads to a sharp interface, the numerical solution from 
the GFM can exhibit overheating errors [21], which have been observed 
in the solutions of Riemann problems and in shock interactions with 
material interfaces. It has been shown [20] that overheating results from 
numerical inaccuracies that stem from applying single-medium numer
ical schemes to the fluid pairs (Fluid A + Ghost Fluid A) and (Fluid B +
Ghost Fluid B). Since these schemes are naturally associated with 
diffusion, they give rise to overheating. In this paper, we first briefly 
review the approaches to addressing overheating in the GFM in the 
literature. We then propose a new scheme, the Efficient Ghost Fluid 
Method (EGFM) to completely eliminate this numerical artifact for both 
1D and multi-dimensional flow problems. In 1D EGFM, overheating is 
removed for any mesh size, while in 2D the errors diminish with 
increasing mesh resolution. 

This paper is organized as follows: In §2, the equations required for 
modeling compressible multi-medium flows are discussed, while the 
numerical methods to solve such equations are explained in §3. Section 4 
summarizes the previous algorithms for isentropic fixing and discusses 
the EGFM as a highly accurate method to remove overheating from fluid 
interfaces, while in §5, the EGFM is applied to shock-interface interac
tion simulations. In §6, the EGFM is extended to 2D problems. The EGFM 
is validated in §7 using a wide array of 1D test problems, such as single- 
and multi-medium shock tubes, various shock-interface interactions, as 
well as standard 2D simulations, such as problems with radial symmetry, 
the Richtmyer–Meshkov [22,23] (RM) instability, and shock-air cavity 
interaction (for more validation problems, see [24]). Finally, some 
conclusions are drawn in §8. 

2. Governing equations 

Compressible, inviscid flows are modeled by the Euler equations of 
gas dynamics, which take the form: 

∂U
∂t

+
∂F(U)

∂x
+

∂G(U)

∂y
= 0 (1)  

where U is the vector of conserved variables 

U =

⎡

⎢
⎢
⎣

ρ
ρu
ρv
ρE

⎤

⎥
⎥
⎦, (2)  

while F(U) and G(U) are the flux vectors in the x and y directions, 
respectively: 

F(U) =

⎡

⎢
⎢
⎣

ρu
ρu2 + p

ρuv
u(ρE + p)

⎤

⎥
⎥
⎦, G(U) =

⎡

⎢
⎢
⎣

ρv
ρuv

ρv2 + p
v(ρE + p)

⎤

⎥
⎥
⎦ (3)  

In the above equations, ρ is the density, u and v are the velocities in the x 
and y directions, respectively, p is the pressure, and E is the total energy 
per unit mass defined by E = e + (u2 + v2)/2. The internal energy per 
unit mass e is related to other thermodynamic variables using the EOS. 
Here, we use the stiff gas EOS: 

ρe =
p + γp∞

γ − 1
(4)  

where γ is the ratio of specific heats, and p∞ is the pressure constant. 
For compressible multi-medium flows, the LS equation is also used to 

track the interface: 

∂ϕ
∂t

+ V→.∇ϕ = 0, (5)  

where ϕ is the LS function, and V→ is the velocity vector defined by V→ =

(u,v). Note that in general, Eq. (5) must be coupled to Eq. (1) to model 
multi-medium flows, so that the EOS is also a function of the LS function, 
i.e. γ = γ(ϕ) and p∞ = p∞(ϕ) in Eq. (4). For an example of such a rela
tion, see [7,25]. However, the GFM decouples Eqs. (1) and (5) by 
appropriately applying the interfacial boundary conditions on each 
medium through the definition of ghost fluids, and as a result, Eq. (5) 
can be solved independently. 

Moreover, the LS function, which is initialized as a signed distance 
function, must be reinitialized frequently during the simulation using 
the equation: 

∂ϕ
∂τ + S(ϕ0)(|∇ϕ| − 1) = 0. (6)  

Eq. (6) is solved iteratively over τ, a fictitious time, while S is the sign 
function, and ϕ0 represents the LS function before reinitialization. 
Solving Eq. (6) to steady state also ensures the normal vectors to the 
interface (N̂ = ∇ϕ/|∇ϕ|) as well as the interface curvature (κ = ∇.N̂) 
are computed accurately [2]. In particular, κ is required for surface 
tension calculations, since the pressure jump imposed by surface tension 
at the interface is given by [p] = σκ [3], where σ is the surface tension of 
the liquid. 

3. Numerical methods 

In this section, we describe the numerical methods used in IMPACT; 
a compressible, multi-medium shock physics code to solve Eqs. (1), (5), 
and (6). We have used IMPACT to verify the accuracy of the proposed 
EGFM approach by simulating a wide range of 1D and 2D test problems. 
To begin, the physical domain is discretized into a rectangular mesh 
with Δx = Δy to obtain uniform cells for the finite volume formulation. 
For Eq. (1), the unsplit version [26] of the Godunov scheme is used as 
follows: 

Un+1
i,j = Un

i,j +
Δt
Δx

⎡

⎢
⎣Fi− 1

2,j
− Fi+1

2,j

⎤

⎥
⎦ +

Δt
Δy

⎡

⎢
⎣Gi,j− 1

2
− Gi,j+1

2

⎤

⎥
⎦ (7)  

where for instance Un
i,j is the cell average of the vector of conserved 

variables in Eq. (2) for cell (i, j) at time t = tn, Fi− 1
2,j 

is the flux vector in 

Eq. (3) for intercell 
(

i − 1
2, j

)

, Gi,j− 1
2 

is the flux vector in Eq. (3) for 

intercell 
(

i, j − 1
2

)

, and Δt is the time step size obtained from the CFL 

condition. Numerical fluxes Fi∓1
2,j 

and Gi,j∓1
2 
are computed by defining 1D 

Riemann problems at the intercells 
(

i ∓ 1
2, j

)

and 
(

i, j ∓ 1
2

)

in the x and y 

directions, respectively. In this work, the fluxes are calculated using the 
Roe Riemann solver [27]. In order to achieve high-order accuracy in 
solving Eq. (7), the fifth-order WENO reconstruction [28,29] is also 
applied to cell averages Un

i,j in a direction-by-direction fashion [30] 
before the Roe solver is applied. 

Note that Eq. (7) is solved for each medium separately. Thus, after 
Ghost Fluid A and Ghost Fluid B have been defined, Eq. (7) is applied to 
the fluid pairs (Fluid A + Ghost Fluid A) and (Fluid B + Ghost Fluid B) 
independently to obtain the solution at the next time-step. In the next 
section, the EGFM is introduced to apply the interfacial boundary con
ditions accurately to resolve multi-medium shock tubes and shock- 
interface interactions. 

To solve Eq. (5), we use the extended interface velocity to advect the 
LS function. To obtain such a velocity field, the interface velocity is first 

P. Bigdelou et al.                                                                                                                                                                                                                                



Computers and Fluids 233 (2022) 105250

3

obtained by solving multi-medium Riemann problems (MMRPs) in the 
normal direction to the interface (N̂). The interface velocity is then 
extrapolated to both sides of the interface using the constant extrapo
lation equation 

∂I
∂τ + N̂ . ∇I = 0, (8)  

which is solved over fictitious time τ to steady state. In Eq. (8), I can 
represent the normal velocity VN or any other variable to be extrapo
lated. Once the extended velocity field has been obtained, Eq. (5) is 
solved by first writing 

∂ϕ
∂t

+
VNϕx̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ϕx
2 + ϕy

2
√ ϕx +

VNϕy
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ϕx
2 + ϕy

2
√ ϕy = 0, (9)  

and then using the Godunov scheme as proposed by Osher and Fedkiw 
[2]. Note that Eq. (9) is solved in a band of cells using the Fast Local LS 
Method of Peng et al. [31] in which the extended velocity field is 
modified as c(ϕ)VN, where c(ϕ) is the correction coefficient. For 1D 
problems in this paper, however, the extended velocity using the 
approach of Wang et al. [13] is employed, which guarantees the signed 
distance function is maintained, so that the reinitialization is no longer 
required. For 2D problems, the LS function is reinitialized by solving Eq. 
(6) to steady-state using the methods in [32], which yield second-order 
accuracy and ensure the interface does not move during the reinitiali
zation. Finally, time discretization in IMPACT is handled using a 
third-order TVD-RK method [33], where Eqs. (7) and (9) are solved 
simultaneously from time-step n to n + 1, and then ϕn+1 is reinitialized 
using Eq. (6) (see [1] for details). 

4. Methods to address overheating and the Efficient Ghost Fluid 
Method 

To address overheating, Fedkiw et al. [1] proposed extrapolating the 
entropy rather than the density, since the entropy field is less susceptible 
to overheating errors [21]. In addition, the authors suggested an isen
tropic fix, where for an interface located between cells ‘i’ and ‘i + 1,’ the 
entropy of cell ‘i − 1′ is used to “fix” the entropy of cell ‘i’ and to populate 
the ghost cells (see [1] for details). 

Overheating can be viewed as stemming from excessive entropy 
generation [1,21], from spurious sources at or near the interface. A 
successful treatment for overheating should accommodate entropy 
generation in the computational domain to correctly capture the waves 
and converge to the weak solution, while removing overheating from 
the interface. As we will see in the rest of this section and in §7, the 
EGFM not only leads to the proper solution for rarefactions and shock 
waves in the domain, but also eliminates overheating and yields highly 
accurate solutions near the interface free of excessive and spurious en
tropy generation 

In versions of the GFM [11,13,20] which rely on the solution to 
MMRPs at the interface, it has been shown that using the cell values from 
‘i − 1′ and ‘i + 2′ as initial conditions for the MMRP resulted in an 
improvement in reducing overheating (when compared with the choice 
of using data from ‘i’ and ‘i + 1′). In the MGFM [11] approach, the en
tropy values of the real cells next to the interface were fixed by the so
lution to the MMRP, which showed further improvement in reducing the 
overheating error. In the RGFM [13] approach, real cells next to the 
interface were corrected for density, velocity, and pressure values, 
rather than for entropy, as seen in Fig. 1 (based on Fig. 4 from Xu and Liu 
[15]). This resulted in more accurate imposition of boundary conditions 
at the interface, and in an improved behavior in shock impedance 
matching problems [11] by reducing the amplitude of the erroneous 
numerical wavelets reflecting off the interface. 

As an alternative to the approach outlined in [1], the isentropic fix 
can also be implemented using more sophisticated methods such as 

those outlined in the PGFM [20] approach where the isentropic relation 
is applied between a reference cell (with density ρr and pressure pr) 
located far from the interface and the cell next to the interface. By 
comparing the pressures, either isentropic or shock relations are used for 
the density [20] 

ρk= {

ρr

(
pk + p∞A

pr + p∞A

) 1
γA
, pk ≤ pr (rarefaction)

ρr

[
(γA − 1)(pr + p∞A) + (γA + 1)(pk + p∞A)

(γA − 1)(pk + p∞A) + (γA + 1)(pr + p∞A)

]

, pk > pr (shock)

(10)  

where k denotes the points where the density fix is to be applied (see 
[20] for details). 

Unfortunately, the above methods, while reducing overheating er
rors, do not completely eliminate them. Since overheating stems from 
numerical inaccuracies associated with single-medium solvers, coupling 
an isentropic fix with such solvers will still result in diffusion (albeit to a 
smaller extent) near the interface. We show the efficient approach to 
eliminating overheating is that the isentropic fix (or any similar nu
merical remedy) must be applied after the solution from the single- 
medium solver has been obtained. This idea is similar to Cocchi and 
Saurel [10], where in the front-tracking context, the numerical solution 
is corrected using a predictor-corrector step and interpolations between 
the values of the cells next to the interface. We now describe an alter
native approach, the EGFM, to completely remove overheating from 
fluid interfaces. 

4.1. The EGFM approach 

First, we recall that in the GFM framework, compressible multi- 
medium flows are treated by splitting the two-fluid Riemann problem 
RP(UL,UR) into two single-fluid Riemann problems RP(UL,U∗L) and 
RP(U∗R,UR) (see [15] for details), where U∗L and U∗R are obtained from 
the solution to the two-fluid Riemann problem RP(UL,UR). Considering 
RP(UL,UR) in Fig. 2(a), note that in the immediate aftermath of the 
removal of the ‘diaphragm’ between Fluids A and B, two new values (U∗L 
and U∗R) emerge in the solution, on the left and right sides of the 
interface, respectively. The fluids then interact with these new values, i. 
e. in Fluid A, UL and U∗L form a leftward rarefaction wave, and in Fluid 
B, U∗R and UR form a rightward shock wave. The jump between Fluids A 
and B, however, moves by the linearly degenerate field which is the 
interface velocity. The above process occurs in the same manner in Fig. 2 
(b)–(c); U∗L in Fig. 2(b) interacts with UL to form a rarefaction wave, 
while U∗R in Fig. 2(c) interacts with UR to form a shock wave. Fig. 2 
demonstrates both the initial condition and the global solution at t = t1. 
Also note that in Fig. 2(b)–(c), the solutions in the real parts of the do
mains are of interest, since they determine the eventual solution to the 
original problem in Fig. 2(a) (see [20] for various possible solutions in 
the ghost regions). 

Based on the previous discussion, we now describe the EGFM 
approach to address overheating errors. In Fig. 3(a), the Riemann 
problem RP(UL,U∗L) is solved numerically over one time-step Δt using a 

Fig. 1. The isentropic fix and population of the ghost cells in the RGFM. 
Figure is modified from Fig. 4 in [15]. 
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single-medium solver with EOSA. Note that this changes the value of 
some cells near the initial interface marked by red symbols, which 
indicate the solution affected by numerical diffusion from applying the 
single-medium solver. We then apply the following corrections at cell ‘k’ 
in two steps (we have indicated the values obtained from the single- 
medium solver (red) and the corrected values (green) using the sub
scripts ‘s’ and ‘c’ respectively). 

Step (1): The value of the cell next to the new interface (at t = Δt) is 
changed to U∗L, which is the exact solution immediately following the 
removal of the diaphragm: 

− Δx < ϕ(Δt)
k ≤ 0→Uc = U∗L, (11)  

where ϕ(Δt)
k is the LS function at cell ‘k’ at t = Δt. 

Step (2): Similar to the PGFM [20] approach, in the case of a left 
rarefaction the isentropic relation is then applied between the cell next 
to the new interface and the cells away from it (within a computational 
stencil) to obtain the corrected values. Note that in this second step, the 
isentropic relation is applied not only to densities (as in [20]), but also to 
cell velocities, as follows: 

− nΔx < ϕ(Δt)
k ≤ − Δx→{

ρc = ρ∗L

(
ps + p∞A

p∗L + p∞A

) 1
γA
,

uc = u∗ +
2

γA − 1
(a∗L − as),

(12)  

where as =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
γA(ps + p∞A)/ρs

√
is the speed of sound, and n is the number 

of cells to be corrected, which can be chosen to coincide with the 
computational stencil used for the LS calculation. Similarly, for a left 
shock, the following relations are applied in step (2): 

− nΔx < ϕ(Δt)
k ≤ − Δx→{

ρc = ρ∗L

[
(γA − 1)(p∗L + p∞A) + (γA + 1)(ps + p∞A)

(γA − 1)(ps + p∞A) + (γA + 1)(p∗L + p∞A)

]

,

uc = u∗ − as

(
ρs

ρ∗L
− 1

) ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
γA + 1

2γA

p∗L + p∞A

ps + p∞A
+

γA − 1
2γA

√

,

(13)  

We found that applying just the density fix in Eqs. (12),(13) (as sug
gested in [20]) was insufficient in addressing overheating, without the 
accompanying velocity fix. The above steps are depicted with the labels 
(1) and (2) in Fig. 3(a). The corresponding fix applied to Fluid B is shown 
in Fig. 3(b), where the Riemann problem RP(U∗R,UR) is solved numer
ically for one timestep with EOSB. Once again, the red symbols are 
associated with numerical inaccuracies, and the correction (shown in 
Fig. 3(b) as red → green) is applied in two steps, which mirror Eqs. (11)– 
(13) for Fluid B. The complete set of equations for Fluids A and B are 
summarized in Table 1. 

In 1D, the wave types that determine the specific corrections to be 
applied are identified using pressure as the criterion. Thus, for Fluid A if 
ps ≥ p∗L, then Eq. (12) is used to apply the correction, otherwise Eq. (13) 
is employed. Similarly, for Fluid B if p∗R ≤ ps, then Eq. (15) is applied, 
while Eq. (16) is used for a right shock. Note that in 1D, pressure is 
sufficient as a criterion to determine the wave types, but in 2D the 
presence of curvature effects will lead to pressure variations, requiring a 

Fig. 2. (a) Two-fluid Riemann problem RP(UL,UR) with EOSA and EOSB. (b) 
Single-fluid Riemann problem RP(UL,U∗L) for Fluid A (EOSA). (c) Single-fluid 
Riemann problem RP(U∗R,UR) for Fluid B (EOSB). The initial condition is 
shown in black, while the solution at t = t1 is shown in red. The initial location 
of the interface is x = x0 (black dashed line), while the interface location at t =
t1 is x = x1 (red dashed line). 

Fig. 3. The EGFM-V1 implementation for (a) Fluid A and (b) Fluid B. The initial 
location of the interface is depicted by the black dashed line (x = x0), and the 
interface location at t = Δt is demonstrated by the red dashed line. The initial 
condition is shown in black, while the solution at t = Δt is shown in red. The 
numerical corrections are carried out in two steps labeled by (1) and (2), and 
the corrected values are shown in green. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of 
this article.) 

P. Bigdelou et al.                                                                                                                                                                                                                                



Computers and Fluids 233 (2022) 105250

5

modified approach. In §6, we propose using the Riemann invariant 
(p +p∞)/ργ as a criterion for wave identification in multidimensions, 
since it is compatible with both liquids and gases. 

The modifications to the numerical solution using the analytical re
lations discussed above form the basis of the EGFM approach. We term 
this algorithm EGFM Version 1 (EGFM-V1) in the rest of this article. In 
Eqs. (12), (13), (15), and (16), we have used p∗L and p∗R for the inter
facial pressures, to allow for the general case when surface tension is 
present. In the absence of surface tension, we use p∗ = p∗L = p∗R. 

In the EGFM approach described above, the MMRP between Fluids A 
and B needs to be solved only once. In other words, assuming the 
interface is initially located between cells i and i + 1, the MMRP RP(Ui,

Ui+1) is solved to obtain U∗L and U∗R (ρ∗L, ρ∗R, u∗, p∗L, p∗R), while the 
exact multi-medium Riemann solver subroutine or function is not called 
for the rest of the simulation. As a result, we use the label ‘Efficient’ for 
this version of the GFM. Based on the computed values of U∗L and U∗R, 
the numerical corrections discussed are applied to advance the solution 
over one sub-step of a multi-step time integration method using the 
following EGFM-V1 algorithm:  

(i) Use U∗L to define Ghost Fluid A at cells i + 1, i + 2, i + 3, etc.  
(ii) Use U∗R to define Ghost Fluid B at cells i, i − 1, i − 2, etc.  

(iii) Apply an appropriate reconstruction, e.g. WENO to (Fluid A +

Ghost Fluid A) and (Fluid B + Ghost Fluid B) separately.  
(iv) Find fluxes and advance the solution for (Fluid A + Ghost Fluid A) 

and (Fluid B + Ghost Fluid B) separately over a sub-step of a 
multi-step time integration method such as TVD-RK.  

(v) Using u∗, advance the LS function over the same sub-step.  
(vi) Fix the value of the cell next to the new interface and located in 

Fluid A to U∗L, and the value of the cell next to the new interface 
and located in Fluid B to U∗R.  

(vii) Apply either the isentropic or the shock relation between the cells 
next to the new interface, and the cells further from it to fix 
densities and velocities.  

(viii) Form the actual solution domain based on the fixed solutions to 
Fluid A and Fluid B. 

Note that the novelty of our approach lies in steps (vi) and (vii). 
A few observations are in order:  

1 While step (1) of the fix in Fig. 3 is implemented for only a single 
point, step (2) may be applied to one or more points. We recommend 
using the same stencil width, used for the computation of the LS 
method on each side of the interface (5 points in our simulations 
[31]).  

2 Fig. 3 shows the numerical fixes applied in conjunction with a simple 
forward Euler method for time discretization. For multi-step ap
proaches such as the TVD-RK method, the corrections must be 
implemented over each sub-step, i.e. the LS function is first advanced 
over the sub-step, followed by application of the corrections using 
the above protocol.  

3 The EGFM can be coupled with approximate Riemann solvers (ARS), 
for materials with uncertainties in the EOS that do not permit an 
exact solution to the Riemann problem. Consider the approximate 
solution to RP(UL,UR) obtained from an ARS and given by (UaL, UaR). 
Since UaL and UaR are different from U∗L and U∗R, an overheating 
error is introduced in step (1) of the fix in Fig. 3, the magnitude of 
which will depend on the accuracy of the approximate solver. In §7, 
we evaluate the extent of overheating errors when the EGFM is 
coupled to a linearized Riemann Solver (LRS), and find that while 
overheating errors are not eliminated, they are still significantly 
reduced.  

4 If the Riemann problem shown in Fig. 2 involves a shock wave, i.e. 
EOSA = EOSB and UL and UR are the post- and pre-shock values of the 
shock, respectively, the above method cannot remove the numerical 
inaccuracies and will result in a diffuse shock. Consequently, the Ta
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above implementation must be modified to be compatible with 
problems involving shock waves (including single shock and shock- 
interface interactions). This is described in the next section.  

5 In Fig. 3, assigning U∗L and U∗R in step (1) to the cells next to the new 
interface may lead to slight displacements of the left and right waves 
from their actual positions. To avoid this, we propose the EGFM 
Version 2 (EGFM-V2), where step (1) in Fig. 3 is skipped, and the 
isentropic and shock relations are applied directly between the 
interfacial values (U∗L and U∗R) and the cells on the left ( − nΔx 
< ϕ(Δt)

k ≤ 0) and right (0 < ϕ(Δt)
k ≤ nΔx) sides of the new interface. 

Note that approaches such as the RGFM [13] algorithm or the pro
posed GFM algorithm in [34] correct the real cell values next to the 
interface for density, velocity, and pressure, as shown in Fig. 1. How
ever, this can slightly displace the rarefaction and shock waves in the 
numerical solution, even though the real cell correction is implemented 
before applying the single-medium solvers (we will also see in 2D results 
that such a correction can lead to unphysical wiggles and spurious os
cillations at the interface). The EGFM-V1 can suffer from the same 
displacement error, with the difference that the real cells are corrected 
in step (1) after the solution from single-medium solvers has been ob
tained. The EGFM-V2, however, corrects this drawback and leads to the 
formation of rarefaction and shock waves at their correct positions. In 
§7, the EGFM-V1, EGFM-V2, RGFM, and the original GFM [1] (OGFM) 
are compared to highlight this wave placement issue. 

5. Application of the Efficient Ghost Fluid Method to shock- 
interface interactions 

A framework for applying the EGFM to shock-interface interactions 
in 1D is presented in this section (note that a similar implementation in 
multi-dimensions will require the definition and tracking of a second 
level set field, which is beyond the scope of this article and therefore was 
not included in the current work). Consider the problem configuration in 
Fig. 4, in which a shock is located at xS0 and a material interface is at x0. 
To implement the EGFM for shock-interface problems, care must be 
taken to ensure the incident shock remains sharp as it impinges on the 
interface. Initially sharp shock fronts that have diffused numerically in 
time are not compatible with the EGFM approach, since such shock 
waves already contain numerical errors. In the following, we discuss an 
implementation of the EGFM in which the shock is maintained as a sharp 
front. 

In Fig. 4, the initial boundary between US and UL, i.e. post- and pre- 
shock states, moves to the right with shock speed given by the Ranki
ne–Hugoniot jump conditions: 

S =
ρSuS − ρLuL

ρS − ρL
(17)  

The diffuse shock is fixed by first computing the location of the shock 
according to xS1 = xS0 + SΔt, where Δt is obtained from the CFL con
dition. If a cell center is located behind (in front of) xS1, its value is 
changed to the post-shock US (pre-shock UL) value. Our numerical 
simulations show that fixing only two cells on either side of the shock is 
sufficient to completely remove diffusion. The explained fix holds for 
shocks traveling in the negative x-direction as well. As before, for a 
multi-step time integration method such as TVD-RK, the shock location 
xS is first found in each sub-step using multi-step equations, and the 
shock fix is then applied using the above approach. 

We thus propose computing sharp shock-interface interactions using 
the following approach; if xS1 < x0 − 0.5Δx, the above shock treatment 
must be applied. However, if x0 − 0.5Δx ≤ xS1 (the shock has reached 
the interface), only the two cells behind the shock are fixed, followed by 
applying the EGFM (either V1 or V2) for the rest of the simulation. Note 
that for this condition, the EGFM handles RP(US, UR). For shock- 
interface interactions with a leftward shock impacting the interface 
from the right, the procedure is changed by comparing xS1 with x0 +

0.5Δx, while the EGFM solves RP(UL,US). 

6. Extension of the Efficient Ghost Fluid Method to 2D problems 

In this section, we present an extension of the EGFM to 2D problems. 
For these problems, exact solutions to the MMRPs are not available, and 
a widely used [11,13,15,20,34] technique to circumvent this issue is to 
construct 1D MMRPs in the normal direction to the interface using local 
density, normal velocity (VN), and pressure on the “left” and “right” sides 
of the interface. In other words, at the scale of the cell dimensions (~ 
Δx), the interface is treated as having negligible curvature. Such an 
approximation is justified when an adequate mesh resolution is 
employed, and/or when the interface is devoid of highly curved regions 
(κΔx≪1). 

We use the same approach to extend the EGFM to 2D, but note that 
unlike the 1D case, such an extension is approximate at cells further 
away from the interface, and may allow some overheating to persist, 
ultimately vanishing for κΔx≪1. The specific approach of Sambasivan 
and Udaykumar [34] (hereafter referred as RGFM2 in this paper) is used 
and modified here. In this approach, 1D MMRPs are constructed using 
normal vectors and bilinear interpolations, as shown by Fig. 5 (based on 
Fig. 1 from [35]). In this figure, point P is located next to the interface, N̂ 

Fig. 4. Shock-interface interaction problem with the fix described in §5. The 
initial locations of the shock and the interface are x = xS0 and x = x0, 
respectively. The shock location at t = Δt is x = xS1 (red dashed line). The 
initial condition is shown in black, while the solution at t = Δt is shown in red. 
The numerical corrections are applied to the cells around x = xS1, and the 
corrected values are shown in green. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 5. Construction of an MMRP at the interface using the normal vector and 
bilinear interpolation. Point P is located next to the interface, point I is on the 
interface, while points A and B are 1.5Δx away from the interface. Figure is 
modified from Fig. 1 in [35]. 
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is the normal vector at P, point I is on the interface (ϕ = 0), and points A 
and B are located in Fluids A and B, respectively, each at a normal dis
tance of 1.5Δx from the interface. The procedure to find the locations of 
these points, and to form the 1D MMRP between points A and B are 
described in [34]. Note that we take Fluid A (Fluid B) to be the “left” 
(“right”) fluid where ϕ ≤ 0 (ϕ > 0). 

In [34], the authors apply the correction to the real fluid using the 
RGFM [13] approach by replacing the values at point P by the solution 
to the 1D MMRP in the interface normal direction. However, we observe 
in our simulations that in 2D, such a correction can lead to unphysical 
wiggles and spurious oscillations at the interface. Moreover, as 
mentioned in the last observation in §4, this can misplace the waves in 
the domain. Once such a correction has been applied to all the real cells 
next to the interface, a one-sided extrapolation is implemented to 
populate the ghost values [13,34]. We use the same extrapolation 
method here to populate the ghost cells, but in contrast to RGFM [13] 
and RGFM2 [34], the real cell correction is not applied, since the EGFM 
does not fix the real fluid until after the numerical solution from 
single-medium solvers has been obtained. The procedure to implement 
the EGFM in 2D is shown in Fig. 6. 

In Fig. 6, the interface between Fluids A and B at t = 0 has been 
labeled ϕ(0) = 0. For the EGFM implementation, U∗L and U∗R must be 
available to the cells whose values are to be corrected. Similar to the 1D 
situation, these cells are located next to the new interface at t = Δt 
(labeled ϕ(Δt) = 0) in Fig. 6. Since the direction of interface movement is 
not known a priori, U∗L and U∗R must be made available to cells on both 
sides of the interface. In practice, this is achieved by extrapolating in the 
direction opposite to that used for obtaining the ghost fluids. If a multi- 
step time integration method such as TVD-RK is used, the new location 
of the interface is first determined for each sub-step, before the correc
tions can be applied. 

Eqs. (11)–(16) apply 1D relations to 2D problems without consid
eration of the effect of the interface curvature, and can lead to errors at 
cells located further away from the interface. To mitigate this issue, we 
implement the EGFM only at the cells next to the new interface, i.e. for 
EGFM-V1, step (2) is skipped; while for EGFM-V2, the isentropic and 
shock relations are applied to cells satisfying |ϕ(Δt)

i,j | ≤ Δx. If the EGFM is 
to be applied to cells located further away from the interface, the 1D 
MMRPs must take into account the interface curvature effects by 
including the following geometric source terms 

S = κ

⎡

⎢
⎢
⎣

ρVN

ρV2
N + p

VN(ρE + p)

⎤

⎥
⎥
⎦, (18)  

where κ is the interface local curvature defined as ∇.N̂ (see [26] for 
similar source terms used in 1D representation of 2D problems with 
radial symmetry). Combining Eq. (18) with the 1D MMRP results in 
modified isentropic and shock relations that accurately capture the 

interface curvature effects in the entire domain, and will lead to a more 
accurate implementation of the EGFM in multi-dimensions. However, 
since we are primarily concerned with applications where the 
near-interface flow field is of the most significance (such as flows with 
surface tension), this treatment is deferred to a later publication, while 
noting the errors that stem from this approximation vanish for κΔx≪1. 

Finally, we propose the following criterion to distinguish between 
isentropic or shock relations in multi-dimensions. In contrast to the 1D 
situation, the pressure field in 2D flows cannot be used for this purpose, 
since it can vary behind the shock wave depending on the shock cur
vature (or the pressure behind a rarefaction wave may increase after its 
formation). In this article, we suggest using the Riemann invariant 
(p +p∞)/ργ as a criterion, since it is compatible with both liquids and 
gases in Eq. (4). Note that (p +p∞)/ργ remains unchanged in a rarefac
tion or smooth regions of the flow, while increasing after the passage of a 
shock wave. Note that for gases p∞ = 0, and the equation for entropy 
constancy in the smooth regions of the flow is recovered. Therefore, for 
the cells in Fluid A in Fig. 6, if (p(Δt)

i,j + p∞A)/[ρ(Δt)
i,j ]

γA
≥ (p∗L + p∞A)/ργA

∗L, 

then Eq. (12) is applied to fix ρ(Δt)
i,j and V(Δt)

Ni,j , while V(Δt)
Ti,j remains un

changed. Otherwise, Eq. (13) is used. Similarly, for the cells in Fluid B, if 
(p∗R + p∞B)/ργB

∗R ≤ (p(Δt)
i,j + p∞B)/[ρ(Δt)

i,j ]
γB , then Eq. (15) is employed, 

otherwise Eq. (16) is applied. As before, for a multi-step time integration 
method such as TVD-RK, the new location of the interface is first found 
for each sub-step, before the corrections can be applied. 

7. Results and discussion 

7.1. 1D test problems 

In this section, we report numerical solutions from different 1D 
problems using the OGFM, RGFM, EGFM-V1, and EGFM-V2 algorithms, 
and analyze the results to evaluate the performance of the EGFM in 
comparison to the other methods. Results from the shock impedance 
matching problem are presented first, since it has been widely used in 
assessing the performance of variations of the GFM, including the MGFM 
[11], RGFM [13], and PGFM [20]. 

The numerical results from IMPACT are compared with exact solu
tions for density, velocity, pressure, entropy, and temperature (or in
ternal energy) for each case. For all the test cases reported in this section, 
a domain size of unity was used. To evaluate the performance of the 
EGFM in capturing the waves, we report the L1 norm of error in density 
computed for rarefaction waves as L1 =

∑N
i=1|ρ(xi) − ρi|/N, where ρ(xi)

and ρi are the exact and numerical densities at cell ‘i’. We calculate the 
L1 norm on [xa,xb], where xa and xb are located on the left and right sides 
of a rarefaction wave respectively, and report the order of convergence 
for each scheme. 

7.1.1. Shock impedance matching problem [11,13, 20] 
In this multi-medium shock tube problem, the solution comprises a 

shockwave to the right of the original discontinuity, while no wave is 
present to the left. Validation efforts of previous GFM algorithms [11,13, 
20] have plotted dimensionless density, velocity, and pressure to eval
uate the numerical results. In addition to these quantities, we also plot 
entropy defined as s = s0 + ln(p /ργ) [26] where the constant s0 is arbi
trarily chosen to be unity. The domain is filled with two different gases 
(γL = 1.667 and γR = 1.2) with a discontinuity at x0 = 0.2, and the 
following initial condition 

WL = (ρL, uL, pL) = (3.174819866, 9.434397965, 100),

WR = (ρR, uR, pR) = (1, 0, 1).

The solution obtained at t = 0.06 for a mesh of 80 cells and CFL = 0.3 
[30] is shown in Fig. 7. 

As seen in Fig. 7, the EGFM completely eliminates the unphysical 

Fig. 6. The EGFM implementation in 2D; the interface has been labeled ϕ(0) =

0 and ϕ(Δt) = 0 at t = 0 and t = Δt, respectively. The cell values next to the new 
interface (ϕ(Δt) = 0) are corrected to address overheating. 
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Fig. 7. The numerical solutions from the OGFM, RGFM, EGFM-V1, and EGFM-V2 compared to the exact solution for (a) density, (b) velocity, (c) pressure, and (d) 
entropy for problem 7.1.1. The plots indicate the EGFM removes overheating and the spurious numerical reflections, while the OGFM and RGFM exhibit errors. 

Fig. 8. The numerical solutions of Problem 7.1.2 by the OGFM, RGFM, EGFM-V1, and EGFM-V2 compared to the exact solution for (a) density, (b) velocity, (c) 
pressure, and (d) entropy. Both EGFM versions remove overheating and the erroneous feature on the rarefaction corner. 
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reflecting wave to the left of the interface. Note that the OGFM and 
RGFM solutions contain numerical errors and spurious reflections, since 
they apply approximate boundary conditions at the interface. The EGFM 
solution however, exactly matches the analytical values, since it applies 
the exact interfacial boundary conditions. In earlier efforts to simulate 
this problem, including the MGFM [11], RGFM [13], and PGFM [20] 
approaches, the erroneous reflections observed in Fig. 7 were not 
completely removed, but mitigated in some instances. 

The insets in Fig. 7 also show the solution detail across the interface 
for the density and entropy profiles, and demonstrate the results from 
the EGFM are in excellent agreement with the analytical solution, while 
the OGFM and RGFM exhibit some overheating. In Fig. 7(a) and (d), the 
interface location computed using the RGFM is displaced one mesh cell 
away from the exact location. Note that although the RGFM (as well as 
the MGFM [11], PGFM [20], and RGFM2 [34]) is based on obtaining 
multi-medium Riemann solutions at the interface, the MMRP defined at 
the interface is based on the cell values that could already be contami
nated with overheating. The EGFM, however, fixes the cell values next to 
the interface, and applies the correct interfacial boundary conditions for 
each time step/sub-step. These issues are exacerbated for problems 
containing strong shocks (high pressure ratios), and are illustrated in the 
subsequent problems. 

7.1.2. Shock tube with strong pressure jump [26] 
In this non-dimensional shock tube problem, the initial condition 

contains a strong pressure jump with a pressure ratio 10,000:1. The 
computational domain is filled with air (γ = 1.4) with the initial 
discontinuity located at the center (x0 = 0.5). The complete initial 
condition data is given by 

WL = (ρL, uL, pL) = (1, 0, 0.01),

WR = (ρR, uR, pR) = (1, 0, 100).

The solution thus consists of a left shock and a right rarefaction, and is 
shown for t = 0.035 in Fig. 8 where a mesh of 80 cells with CFL = 0.3 
was utilized in the simulations. In this figure, the OGFM and RGFM 
exhibit some errors near the rarefaction corner (see [11] and [15] where 
similar behavior has been reported for these versions of the GFM). For 
the contact discontinuity, these approaches give rise to overshoots and 
undershoots and miscalculate the location of the wave by a couple of 
cells. As discussed in Problem 7.1.1, this behavior results from the ap
proximations in capturing the interfacial boundary conditions. In the 
OGFM implementation, as pointed out in [1], the conservation of mass, 
momentum, and energy is relaxed at the contact discontinuity, which 
can give rise to inaccurate prediction of the location of the wave. This 
leads to incorrect values for the interface location (see [11] for 
example), particularly for problems with strong shocks. In contrast, 
when the EGFM approach is applied, highly accurate numerical solu
tions are obtained, overheating and the erroneous feature on the rare
faction corner are completely eliminated, and the contact wave location 
is properly calculated. 

For computing the error in density, we choose xa = 0.6 and xb = 0.95 
for the right rarefaction wave. Table 2 shows the L1 norm of error along 
with the order of convergence for the four versions of the GFM, where 

the results from the EGFM-V2 and OGFM have the lowest and largest 
errors respectively, while the error from the RGFM and the EGFM-V1 are 
comparable. As explained in observation 6 in §4.1, assigning interfacial 
values U∗L and U∗R directly to the cells next to the interface causes this 
error in the RGFM and the EGFM-V1 results, while the EGFM-V2 re
solves this issue efficiently, leading to the minimum error in capturing 
the wave location. However, it is seen that the order of convergence for 
all methods is near unity, except for that from the OGFM, where the 
convergence rate is 0.84 for the finest mesh. 

7.1.3. Multi-component shock tube problem with strong pressure jump [36] 
This is an MMRP where a diaphragm separates two gases (γL = 1.6 

and γR = 1.4) in the domain. The initial discontinuity is located at the 
center (x0 = 0.5) of the shock tube and separates regions with a pressure 
ratio of 2500:1. The initial data is summarized as 

WL = (ρL, uL, pL) = (1, 0, 500),

WR = (ρR, uR, pR) = (1, 0, 0.2).

The solution [36] includes a left rarefaction and a right shock as shown 
for t = 0.01 in Fig. 9 with 80 cells used in the computational domain 
with CFL = 0.3. However, to obtain the results using the OGFM, the CFL 
value must be reduced to ≤ 0.04, indicating the approach is not ideal for 
this MMRP. Moreover, it is seen that the OGFM captures the interface 
three cells away from its actual position (see the discussion of Problem 
7.1.2 for the details of such behavior) and exhibits large errors near the 
rarefaction corner and the interface in the temperature profile. The 
RGFM, in contrast, captures the interface at the correct location with 
smaller overheating errors. Fig. 9 shows that the results from the EGFM 
are of higher accuracy, and overheating has been eliminated in both 
versions; the erroneous feature near the rarefaction corner has been 
removed and the wave locations are more accurate. This is seen in 
Table 3, where the error from the EGFM-V2 is minimum, while the 
OGFM creates the highest error in the rarefaction location (xa = 0.15 
and xb = 0.45). As observed for Problem 7.1.2, the error from the RGFM 
and the EGFM-V1 are similar, with the latter being slightly more accu
rate. Despite the error magnitude, it is seen that the order of conver
gence is near unity for all versions. 

7.1.4. Strong shock impacting on a gas-water interface (heavy → light) [7] 
In this non-dimensional example, the domain is occupied by air (γL =

1.4) and water (γR = 4 and p∞R = 1), where the two materials are 
separated by an interface at x0 = 0.5. A left-traveling shock of strength 
MS = 1.95 is initialized at xS0 = 0.6 in the water region of the shock tube 
and traverses the interface. The complete initial data for this problem is 

WL = (ρL, uL, pL) = (1, 0, 1),

WR = (ρR, uR, pR) = (5, 0, 1),

WS = (ρS, uS, pS) = (7.093, − 0.7288, 10),

where WS represents the post-shock state. Since this is a heavy-to-light 
case, a rarefaction is reflected back into the water, while a shock is 
transmitted into the air. Fig. 10 shows the analytical solution, as well as 

Table 2 
The L1 norm of error in density for the right rarefaction wave in Problem 7.1.2. The error is minimum for the EGFM-V2, while the order of convergence is similar for the 
MMRP-based GFMs.  

No. of cells OGFM RGFM EGFM-V1 EGFM-V2 
L1 Order L1 Order L1 Order L1 Order 

80 0.0195  0.0177  0.0141  0.0068  
128 0.0148 0.5868 0.0117 0.8808 0.0090 0.9552 0.0043 0.9751 
200 0.0109 0.6853 0.0079 0.8800 0.0058 0.9845 0.0028 0.9613 
320 0.0080 0.6581 0.0051 0.9311 0.0037 0.9564 0.0017 1.0617 
500 0.0055 0.8396 0.0034 0.9085 0.0024 0.9699 0.0011 0.9754  
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a comparison between the OGFM, RGFM, and EGFM approaches at t =

0.2. All the simulations shown in Fig. 10 were performed with a mesh of 
128 cells and CFL = 0.2. Note that in Fig. 10(d), the plot indicates the 
temperature of the air for x ∈ [0, 0.305) and the internal energy of the 
water for x ∈ (0.305,1]. 

The introduction of the initial shock wave as a perfectly sharp 
discontinuity in the water leads to the formation of two spikes in the 
solution propagating throughout the domain in time. However, these 
features (located at x ∼ 0.4 and x ∼ 0.95 at the end of the simulation) 
are removed by the shock treatment in the EGFM approach (§5) as seen 
in the insets in Fig. 10(c)–(d). In addition, the EGFM eliminates over
heating near the interface, as shown in detail in Fig. 10(a) and (d). 
Finally, the L1 norm of error in density is computed for the right rare
faction for xa = 0.55 and xb = 0.83. As seen in Table 4, and unlike the 
previous cases, the OGFM has lower errors compared to the RGFM and 
EGFM-V1. However, the EGFM-V2 has the least error among all ver
sions, indicating that this particular algorithm is highly accurate in 
capturing the waves in shock-interface interactions. 

7.1.5. Strong shock impacting on a gas-gas interface (heavy → light) [11] 
In this problem, we investigate the performance of the EGFM in 

removing overheating, when used in conjunction with an ARS or in the 

presence of numerically diffuse shocks. For brevity, only the density 
results are shown, while similar trends were observed in the temperature 
and entropy plots. The computational domain contains left (γL =

1.6667) and right (γR = 1.4) gases separated by an interface located at 
x0 = 0.2. A right-travelling shock initially positioned at xS0 = 0.05, 
divides the left gas into pre- and post-shock regions. The initial condi
tions for the problem are given by 

WS = (ρS, uS, pS) = (3.86, 8.56, 100),

WL = (ρL, uL, pL) = (1, 0, 1),

WR = (ρR, uR, pR) = (0.1, 0, 1).

Fig. 11 compares the exact solution at t = 0.05 with the numerical 
solutions obtained using 100 cells with CFL = 0.3 from six different 
approaches: (1) EGFM-V1 with shock treatment (§5), (2) EGFM-V1 with 
a diffuse shock (DS EGFM-V1), (3) the 2D version of the EGFM-V1 (2D 
EGFM-V1) (§6), (4) EGFM-V1 coupled with linearized Riemann solver 
[37] (LRS) (EGFM-V1 LRS), (5) the RGFM, and (6) the OGFM. Fig. 11 
indicates that approximate versions of the EGFM exhibit slight over
heating errors near the interface. Note that in approaches (2) and (3), 
the shock is allowed to diffuse before impacting the interface. Fig. 11 

Fig. 9. The numerical solutions of Problem 7.1.3 by the OGFM, RGFM, EGFM-V1, and EGFM-V2 compared to the exact solution for (a) density, (b) velocity, (c) 
pressure, and (d) temperature. The EGFM-V1 and EGFM-V2 completely remove overheating and capture the waves more accurately. 

Table 3 
The L1 norm of error in density for the left rarefaction wave in Problem 7.1.3. The OGFM and the EGFM-V2 have the highest and the lowest errors, respectively. The 
order of convergence is unity for all versions.  

No. of cells OGFM RGFM EGFM-V1 EGFM-V2 
L1 Order L1 Order L1 Order L1 Order 

80 0.0448  0.0197  0.0155  0.0079  
128 0.0319 0.7226 0.0127 0.9341 0.0096 1.0193 0.0048 1.0601 
200 0.0224 0.7922 0.0086 0.8735 0.0063 0.9438 0.0031 0.9797 
320 0.0146 0.9107 0.0056 0.9128 0.0040 0.9665 0.0020 0.9325 
500 0.0095 0.9629 0.0037 0.9286 0.0025 1.0531 0.0013 0.9653  
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shows the EGFM-V1 is in very good agreement with the exact solution. 
The corresponding 2D implementation was computed without a sharp 
representation of the shock in the current work, which leads to slight 
deviations from the exact solution. Similarly, when the EGFM is 
computed with a diffuse shock representation (DS EGFM-V1) or using 
the LRS (EGFM-V1 LRS), slight overheating errors are observed as seen 
in Fig. 11. However, these approximate implementations of the EGFM 
still significantly outperform the RGFM and OGFM near the interface. 
The RMS error from the different implementations were computed over 
20 cells (10 cells on each side of interface) and determined to be 
0.01186, 0.01752, 0.03423, 0.06167, and 0.28590 for DS EGFM-V1, 2D 
EGFM-V1, EGFM-V1 LRS, RGFM, and OGFM, respectively. In addition, 
all MMRP-based versions of the GFM capture the interface at the correct 
location, while the interface from the OGFM is one cell away. Finally, 
note that in the approaches where the initial shock is allowed to diffuse, 
a spurious numerical oscillation is observed at x ∼ 1.7. 

7.2. 2D test problems 

In this section, we use the EGFM 2D algorithm described in §6 in the 
simulation of the following test problems; Sod problem with radial 

Fig. 10. The numerical solutions of Problem 7.1.4 by the OGFM, RGFM, EGFM-V1, and EGFM-V2 compared to the exact solution for (a) density, (b) velocity, (c) 
pressure, and (d) temperature/internal energy. The shock treatment in §5 removes the erroneous features at x ∼ 0.4 and x ∼ 0.95. The EGFM versions eliminate 
overheating in the density, temperature, and internal energy profiles. 

Table 4 
The L1 norm of error in density for the right rarefaction wave in Problem 7.1.4. The EGFM-V2 has the lowest error in capturing the wave in the water. The order of 
convergence is near unity for all versions in this shock-interface interaction problem.  

No. of cells OGFM RGFM EGFM-V1 EGFM-V2 
L1 Order L1 Order L1 Order L1 Order 

80 0.0441  0.0908  0.0470  0.0368  
128 0.0273 1.0204 0.0587 0.9281 0.0323 0.7980 0.0260 0.7391 
200 0.0197 0.7311 0.0439 0.6510 0.0245 0.6193 0.0193 0.6677 
320 0.0123 1.0022 0.0273 1.0107 0.0157 0.9468 0.0118 1.0468 
500 0.0079 0.9920 0.0175 0.9964 0.0100 1.0107 0.0075 1.0155  

Fig. 11. Density profile from problem 7.1.5 obtained from EGFM-V1, EGFM-V1 
with diffuse shock (DS EGFM-V1), 2D version of the EGFM-V1 (2D EGFM-V1), 
EGFM-V1 with linearized Riemann solver (EGFM-V1 LRS), RGFM, and OGFM. 
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symmetry, shock-air cavity interaction, and RM instability with and 
without surface tension. For problems involving shock-interface inter
action, we will only present the results from the EGFM-V1. Our simu
lations show that this version results in more accurate solutions near the 
interface in such problems. 

7.2.1. Sod problem with radial symmetry [26] 
In this problem, the computational domain is a square of size [0,2] ×

[0, 2] in the xy plane containing a region of low pressure (ρ = 0.125 and p 
= 0.1) air (γ = 1.4) surrounding a circular bubble containing high- 
pressure (ρ = 1 and p = 1) air with a radius of 0.4 and centered at 
(1,1). The simulation was run to a final time of t = 0.25 using a mesh of 
100 × 100 cells and CFL = 0.3. Fig. 12 shows the 1D density and 
pressure profiles along y = 1 and 1 ≤ r ≤ 2 obtained using different 
MMRP-based GFM versions. All three methods are consistent with the 
exact solution [26], which predicts an inward-propagating rarefaction 
and an outward-traveling shock wave. Near the contact wave, similar 
overheating errors are observed in the simulations employing RGFM2 
and EGFM-V1, while the EGFM-V2 mitigates these errors and results in a 
more accurate solution. Furthermore, both the EGFM-V1 and RGFM2 
place the rarefaction and the shock waves ahead of their actual loca
tions, while the EGFM-V2 computes the correct locations of the waves. 
Similar to the 1D cases, we compute the L1 norm of error in density for 
the rarefaction on [ra, rb] where ra = 1 and rb = 1.5, to compare the 
performance of each version in capturing the wave, as seen in Table 5. 
The errors from the EGFM-V1 and RGFM2 are similar, while the 
EGFM-V2 approach reports much lower values of the L1 error. However, 
it is seen from Table 5 that the order of convergence approaches unity 
for all three versions. 

Table 6 is a comparison of the total simulation time for both versions 
of the EGFM and the RGFM2 approach. Similar to other GFM ap
proaches, the EGFM is only computed for cells within the computational 
stencil straddling the interface. For a material interface that is resolved 
by N points in a simulation, all the GFM-based approaches will require 

O(N) operations, with slight variations in computational effort that 
appear to be resolution-dependent in Table 6 (at the highest resolution 
investigated, the EGFM approaches were less than ~ 10% more expen
sive than RGFM2). The comparison in Table 6 was based on maintaining 
the same CFL numbers across all methods. Since the EGFM has been 
shown to be a more accurate and stable method (see Fig. 13), the slight 
increase in computational effort can be offset by performing simulations 
at an appropriately lower resolution and by choosing larger CFL 
numbers. 

In Fig. 13, the interface (ϕ = 0) from the three methods is plotted at 
the end of the simulation. In this figure, numerical oscillations and 
small-amplitude wiggles are observed in RGFM2, specifically near the 
horizontal and vertical poles. As discussed in [26], these oscillations are 
due to the “staircase” representation of the initial discontinuity at the 
beginning of the simulation. In contrast, the EGFM versions mitigate 
these errors at the contact wave; in particular, the EGFM-V1 reduces the 
amplitude of the oscillations, while the EGFM-V2 completely removes 
the wiggles, resulting in a smooth interface with a perfectly radial shape. 
The observed higher accuracy in capturing the waves (Table 5) and in
terfaces (Fig. 13) demonstrates the effectiveness of the EGFM approach, 
while highlighting the importance of applying the isentropic fix after the 
solution from the single-medium solvers are obtained. 

In Fig. 14, the numerical solutions for density are plotted for three 
different mesh sizes for RGFM2 and EGFM-V2: 100 × 100, 200 × 200, 
and 320 × 320 cells. For both methods, overheating errors improve with 
resolution, but persistent overheating is observed for RGFM2 even at the 
highest resolution. In contrast, for EGFM-V2 the errors from over
heating → 0 rapidly with decreasing mesh width (a slight trough seen in 
the EGFM solution at resolution of 200 cells is attributed to not applying 
the correction to the cells further away from the interface). In the cur
rent implementation of EGFM in multi-dimensions, this issue can be 
remedied by refining the mesh selectively in regions with locally large 
curvature such as kinks, pinch-off points etc. A multi-dimensional 
implementation of the EGFM that is exact in cells further from the 
interface will include the source terms in Eq. (18), and will be discussed 
in a future publication. 

Fig. 12. (a) Density and (b) pressure profiles for the radial Sod problem along y = 1 and 1 ≤ r ≤ 2 using the RGFM2, EGFM-V1, and EGFM-V2. The EGFM-V2 reduces 
overheating errors near the radial contact discontinuity and captures the waves at their correct locations. 

Table 5 
The L1 norm of error in density for the inward rarefaction wave in Problem 7.2.1. 
The error is computed on r ∈ [1,1.5] between the center of the domain (1, 1) and 
(1.5,1). The EGFM-V2 has the lowest error in capturing the wave. The order of 
convergence is near unity for all versions in this radial problem.  

No. of 
cells 

CFL 
No.  
[30] 

RGFM2 EGFM-V1 EGFM-V2 
L1 Order L1 Order L1 Order 

32 0.5 0.1525  0.1411  0.0495  
50 0.4 0.0892 1.2017 0.0922 0.9534 0.0257 1.4687 
100 0.3 0.0395 1.1752 0.0413 1.1586 0.0124 1.0514 
200 0.2 0.0234 0.7553 0.0240 0.7831 0.0068 0.8667 
320 0.2 0.0162 0.7824 0.0161 0.8494 0.0044 0.9262  

Table 6 
Simulation time (CPU time in seconds) for different versions of the GFM.  

No. of cells CFL No. [30] RGFM2 EGFM-V1 EGFM-V2 

32 0.5 4.12 4.12 4.12 
50 0.4 8.33 8.35 8.35 
100 0.3 44.95 45.37 45.39 
200 0.2 302.19 310.41 310.98 
320 0.2 983.41 1060.12 1065.12  
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7.2.2. Strong shock-air cavity interaction (heavy → light) [38] 
This demanding problem has been investigated in previous studies 

[20,38–44], and used here to demonstrate the performance of the EGFM 
for shock-interface interactions with large density ratios. The problem 
consists of a square domain of dimensions [0,2] × [0,2] mm2 filled with 
water (γw = 4.4 and p∞w = 6 × 108 Pa) surrounding a circular cavity of 
diameter 1 mm centered at (1 mm, 1 mm) and filled with air (γa = 1.4). 
A right-traveling shock wave of strength MS = 1.43, and initially located 
at xS0 = 0.4 mm, divides the water region into post-shocked and 
pre-shocked states, and approaches the air cavity from the left. The 
initial conditions of the problem with the post- and pre- suffixes for the 
water are as follows: 

Ww,post = (ρ, u, v,P)w,post

=
(
1233.4 kg

/
m3, 439.8 m

/
s, 0, 1.02 × 109 Pa

)
,

Ww,pre = (ρ, u, v,P)w,pre =
(
1000 kg

/
m3, 0, 0, 105 Pa

)
,

Wa = (ρ, u, v,P)a =
(
1 kg

/
m3, 0, 0, 105 Pa

)
.

This is a challenging problem since the initial density ratio at the 
interface is large (1000:1), while the pressure behind the shock is in GPa. 
In this problem, we employ AMR with three levels of refinement with the 
finest mesh size corresponding to 1/256 mm (CFL = 0.4), while the 
simulation is run to a final time of t = 731.85 ns. The left and right 
boundaries are outflow surfaces to avoid any reflections back into the 

Fig. 13. The contact wave location (ϕ = 0) from (a) the RGFM2, (b) the EGFM-V1, and (c) the EGFM-V2. Numerical errors at the interface are observed due to the 
“staircase” effect associated with the representation of the initial discontinuity at the beginning of the simulation. The EGFM-V1 reduces the amplitude of the 
numerical oscillations, while the EGFM-V2 results in a smooth radial contact wave free of the numerical wiggles. 

Fig. 14. Plots of density near the contact discontinuity in the radial Sod problem for RGFM2 (left) and EGFM-V2 (right) approaches. The overheating errors persist in 
the RGFM2 solution, while vanishing in the limit of κΔx→0 for EGFM-V2. 
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domain, while the top and bottom boundaries are periodic. In order to 
quantitatively compare our results with those from [42,43], we use the 
time scale tc = t − t0, where t0 = 38.72 ns is the time it takes the shock 
wave to reach the cavity. 

The density plots of the flow field are seen in Fig. 15 for different tc, 
and demonstrate key features of the flow and the interface evolution in 
time. Since this is a heavy-to-light case, upon the shock-interface 
interaction (Fig. 15(a)), the initial shock wave is refracted to a re
flected rarefaction wave into the water and a transmitted shock wave 

into air. Figs. 15(c)–(d) illustrate the formation and development of a 
water jet into the air cavity, where the air is highly compressed as the jet 
evolves to the right. Fig. 15(e) corresponds to the time when the left and 
right surfaces of the air cavity meet, and a strong blast wave is initiated, 
and a “water hammer” effect [20] is observed. As the high-speed water 
jet impacts the stationary surface of the air cavity, the subsequent 
splitting of the initial interface is accurately captured by the numerical 
method. Eventually, the blast wave creates a high-density, high-pressure 
region at the tip of the water jet, which propagates radially in all di
rections, as seen in Fig. 15(f). Thus, Fig. 15 demonstrates the ability of 
the EGFM approach to handle strong shock interactions in problems 
with large density differences. 

In Table 7, the first stage time, the jet speed at impact, and the water 
hammer pressure are compared with the results from a previously 
studied front tracking method [43], and recently studied grid-aligned 
GFM [42]. The first stage time is measured using tc and is defined as 
the time interval between the first shock-cavity interaction, and when 
the two horizontal poles of the cavity meet. Table 7 indicates there is 
close agreement between the three different approaches, and further 
validates the EGFM capabilities to simulate flows with highly stiff ma
terials under high-speeds and high-pressure conditions. 

7.2.3. Richtmyer–Meshkov instability (light → heavy) 
The single-mode RM [22,23] instability is investigated in this sec

tion. The problem setup is as shown in Fig. 16, and involves a rectan
gular domain of dimensions Lx × Ly with an interface represented by x =

x0 + h−
0 cos(2πy /λ), where x0 is the location of the unperturbed inter

face, h−
0 is the amplitude of the perturbation before shock impact, and λ 

is the perturbation wavelength. 
The problem statement is summarized in Fig. 16, which shows the 

simulation domain occupied by Fluids A and B, where Fluid A supports a 
planar shock wave traveling toward the interface with speed S. The 
density contrast between the two fluids is characterized by the pre-shock 
Atwood number A− = (ρB − ρA)/(ρB + ρA), where A− > 0 indicates a 
light-to-heavy interaction. The amplitude of the perturbation has been 
scaled by the wavenumber to define the nondimensional parameter kh−

0 , 
where k = 2π/λ is the perturbation wavenumber. The shock Mach 
number is defined as MS = S/aA, where aA is the speed of sound in Fluid 
A in its unshocked state. 

The simulations were performed with air and SF6 as the two fluids 
separated by the initial interface, and labeled as Fluid A (γA = 1.4) and 
Fluid B (γB = 1.093), respectively. We use ρA = 0.5 kg/m3 and ρB =

2.5 kg/m3 corresponding to A− = 2
3. The initial interface perturbation is 

characterized by the pre-shock amplitude h−
0 = 0.056 m, and a pertur

bation wavelength λ = 1 m, so that kh−
0 = 0.35. A planar shock with 

MS = 1.2 was initialized at xS0 = 0.4 m, while the interface was posi
tioned at x0 = 0.5 m. The initial condition for the problem is detailed 
below, with the post- and pre-suffixes indicating post-shocked and pre- 

Fig. 15. Evolution of the interface in the water-air shock-cavity interaction 
problem for tc = (a) 136.54 ns, (b) 373.51 ns, (c) 554.89 ns, (d) 638.71 ns, (e) 
675.65 ns, and (f) 693.13 ns. The initial cavity has been shown by the red solid 
line in all plots. Figs. 15(a),(b) show the formation and propagation of the 
waves resulting from the interaction, while Figs. 15(c),(d) demonstrate the 
evolution of the water jet. Fig. 15(e) indicates the formation of the blast wave 
and the “water hammer” effect, and Fig. 15(f) illustrates the propagation of the 
blast wave along with the interface division into two smaller interfaces. (For 
interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 

Table 7 
A comparison between the results from the simulation and those from previous 
studies shows a close agreement between the three different approaches.  

Parameter Hawker and 
Ventikos [43] 

Bempedelis and 
Ventikos [42] 

EGFM- 
V1 

First stage time (ns)  675 680 669 
Jet speed at impact (m 
/s)  

2278 2131 2110 

Water hammer 
pressure (Gpa)  

3.00 3.48 3.14  

Fig. 16. Problem setup for the RM instability simulation. The domain size is 
Lx × Ly, and the interface between Fluids A and B is defined as a single-mode 
perturbation represented by a cosine wave of wavelength λ = Ly. The dashed 
line shows the unperturbed interface. The right-traveling shock of speed S is 
initially located at xS0 and impacts the perturbed interface between the fluids. 
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shocked states respectively: 

WA,post = (ρ, u, v,P)A,post =
(
0.67 kg

/
m3, 161.68 m

/
s, 0, 1.5 × 105 Pa

)
,

WA,pre = (ρ, u, v,P)A,pre =
(
0.5 kg

/
m3, 0, 0, 105 Pa

)
,

WB = (ρ, u, v,P)B =
(
2.5 kg

/
m3, 0, 0, 105 Pa

)
.

The simulation domain had dimensions of Lx = 10 m and Ly = 1 m. 
AMR with three levels of refinement was used, with the finest mesh 
corresponding to a resolution of 1/256 m. The simulations were per
formed with CFL = 0.6, and to a final time of t = 0.078 s. The left and 
right boundaries were treated as outflow surfaces to allow for the egress 
of waves without acoustic feedback into the domain, while the top and 
bottom boundaries were defined using periodic boundary conditions. 

Upon passage of the shock through the interface, the interface is 
accelerated to a velocity Δv and compressed to a post-shock amplitude 
h+

0 with a compression factor χ = h+
0 /h−

0 . Under the influence of the 
deposited baroclinic vorticity, the perturbation amplitude grows in time 
with a growth rate VRM = dh/dt. In Table 8, we compare the results from 
the EGFM-V1 with predictions from the Rankine–Hugoniot relations 
applied to the RM situation [45,46], and with analytical models for the 
RM linear growth rate [22,23]. Table 8 shows excellent agreement be
tween model predictions and measured quantities from simulations 
using the EGFM-V1 during the linear stage of RM instability growth. 

In Fig. 17, we plot two sets of numerical Schlieren images at different 
nondimensional times kV0t, where V0 is the initial growth rate that ac
counts for finite-amplitude effects and is given by V0 = VRM 

/[1 +(kh−
0 /3)

4/3
] [47]. Fig. 17(a) shows the interface during its linear 

evolution, while figures (b)–(d) show the interface growth during the 
nonlinear stages (kV0t >

∼
1). Since this is a light-to-heavy case, the inci

dent shock upon impinging on the interface is refracted into a shock 
reflected back through air, and a transmitted shock into SF6. Fig. 17(a) 
shows the interface after passage of the shock, maintaining its sinusoi
dally symmetric shape about the unperturbed interface, shown as the 
dashed line. However, at late times (kV0t >

∼
1), higher harmonics [47] are 

dominant leading to the appearance of distinct spike and bubble 
structures. 

A branched simulation in which the interface was shocked a second 
time, by a shock reflected from the domain boundary was performed. 
We plot Schlieren images of the interface for this problem in Fig. 17(e)– 
(h). Since this second shock-interface interaction is a slow/fast inter
action, the interface undergoes a reversal in sign, where former bubble 
structures have now formed spikes and vice versa. Furthermore, since 
the interface was already nonlinear at the time of reshock, significant 
baroclinic vorticity is deposited during this interaction, leading to the 
complex features seen in Fig. 17(g),(h). At late times (kV0t = 10), slight 
asymmetry in the flow structures is observed, similar to previous studies 
of RM instabilities [47]. 

The growth in time of the bubble and spike amplitudes (hbu and hsp in 
Fig. 17(a)–(d)) are shown in Fig. 18(a), where they have been 

normalized by the post-shock initial amplitude h+
0 . Consistent with the 

large density ratio used in the simulations, spikes and bubbles exhibit 
asymmetric growth, with the spike outpacing the bubble growth 
[48–53]. The amplitudes are compared with predictions from the 
nonlinear model of Dimonte and Ramaprabhu [47] (D&R), where the 
bubble and spike growth rates Vbu (dhbu/dt) and Vsp (dhsp/dt) are pre
dicted as: 

Vbu/sp = V0
1 + (1 ∓ |A+|)kV0t

1 + Cbu/spkV0t + (1 ∓ |A+|)Fbu/sp(kV0t)2, (19)  

and the coefficients F and C are, respectively defined as: 

Fbu/sp = 1 ± |A+|, (20)  

Cbu/sp =
4.5 ± |A+| + (2 ∓ |A+|)

⃒
⃒kh+

0

⃒
⃒

4
. (21)  

Eq. (19) has been numerically integrated to obtain the model curves in 
Fig. 18(a). The simulation results are in excellent agreement with the 
model for spike and bubble amplitudes throughout their evolution. In 
Fig. 18(b), we also compare the growth rates from Eq. (19) with the 
corresponding bubble and spike growth rates from the EGFM-V1. From 
this figure, spike and bubble velocities from EGFM-V1 are in very good 
agreement with the nonlinear model of Dimonte and Ramaprabhu [47]. 

7.2.4. Richtmyer–Meshkov instability under the effect of surface tension 
The problem configuration follows Problem 7.2.3, but with surface 

tension effects included at the interface (for additional validation 
problems with surface tension, see [24]). Surface tension, as explained 
in §2, is handled numerically using Δp = σκ directly in the 
multi-medium Riemann solver at the interface. In this section, the effect 
of surface tension on the linear growth of RM instability is described 
using the results from IMPACT simulations. In the linear regime, surface 
tension stabilizes RM instability as predicted by the model of Mikaelian 
[54], and results in an oscillatory behavior of the interface about its 
mean (unperturbed) position. 

The analytical model by Mikaelian [54] applies to a single-mode RM 
instability, and predicts the time dependence of the amplitude of a 
perturbed interface with imposed surface >tension: 

h(t)
h+

0
= cosωt +

ΔvkA+

ω sinωt . (22)  

In Eq. (19), ω is the angular frequency of surface tension-driven oscil
lations and given by 

ω =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
k3σ

ρ+
A + ρ+

B

√

, (23)  

where ρ+
A and ρ+

B are the post-shock values of densities on either side of 
the interface (see Fig. 16). From Eq. (22), the maximum perturbation 
amplitude [54] is obtained as: 

hmax = h+
0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 +

(
kA+Δv

ω

)2
√

. (24)  

Using Eqs. (23),(24), we estimate a lower limit for the surface tension to 
ensure khmax ≤ 1 in our simulations, so that perturbation amplitudes in 
the IMPACT simulations stayed within the linear regime, where the 
above model is applicable. Using ρ+

A = 0.737 kg/m3 and ρ+
B =

4.109 kg/m3 from Problem 7.2.3, and the post-shock values from 
Table 8, we estimate for the parameters of the problem, the RM insta
bility will remain in the linear regime for σ >

∼
σcrit = 400 N/m. Thus, for 

σ >
∼

σcrit, results from the IMPACT simulations can be compared with the 
model Eqs. (22)–(24). 

The evolution of the interface for σ = 400 N/m is shown in Fig. 19, 

Table 8 
A comparison of the results from theoretical models of the linear growth of RM 
instability with results from the simulations.  

Quantity Parameter Theory EGFM- 
V1 

Interface velocity Δv (m /s) 106.58 ([45, 
46]) 

107.01 

Post-shock Atwood number A+ 0.696 ([45, 
46]) 

0.696 

Post-shock interface 
perturbation amplitude 

h+
0 (m) 0.0464 ( 

[23]) 
0.0465 

Amplitude compression ratio χ  0.832 ([23]) 0.834 
Initial (linear) perturbation 

growth rate 
dh/dt ≡ VRM (m /s) 21.605 ( 

[22]) 
21.753  
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and exhibits an oscillatory behavior in contrast to Problem 7.2.3. The 
corresponding amplitude evolution is shown in Fig. 20. Following an 
initial compression of the pre-shock amplitude h−

0 to h+
0 visible in Fig. 20 

at kV0t ∼ 0, an oscillatory behavior is established. As seen in this 
figure, increasing σ results in oscillations with lower peak amplitudes 
but with higher frequencies, as predicted by Eqs. (23), (24). The values 
of σ in this figure have been chosen such that the interface undergoes at 
least 1, 3, and 5 full cycles in the oscillations for 0 ≤ kV0t ≤ 10. Note 
that the slight attenuation in the maximum amplitude is attributed to 
numerical diffusion (see [39,55] for a similar behavior in simulations 
involving surface tension). Finally, we compare the periods of oscilla
tions and maximum amplitudes from our simulations with those pre
dicted by the model of Mikaelian [54] over a wide range of surface 
tension coefficients in Fig. 21. In this figure, we see that there is excellent 

agreement between the simulation results and the analytical model for 
both the time period of oscillations and the peak amplitudes. In Fig. 21 
(b), hmax from IMPACT is slightly lower than the model, due to numerical 
diffusion from the finite mesh. The overall excellent agreement between 
the simulations and the model shows the EGFM approach is successful in 
capturing surface tension effects for multi-material problems. 

8. Conclusions 

In this paper, a new version of the GFM termed the Efficient Ghost 
Fluid Method (EGFM) has been proposed, and is capable of completely 
eliminating overheating errors from fluid interfaces in compressible 
multi-medium flows. Previous efforts aimed at containing overheating 
errors (such as the isentropic fix), did not completely eliminate the 

Fig. 17. Schlieren images of the interface evolution in the RM instability problem. Left column: the growth of spike and bubble (the dashed line indicates unper
turbed interface) for kV0t = (a) 0.1, (b) 2.0, (c) 5.0, (d) 10.0. Right column: the reshock problem for kV0t = (e) 1.0, (f) 2.0, (g) 5.0, and (h) 10.0. 

Fig. 18. (a) Time evolution of spike and bubble amplitudes from the EGFM-V1. (b) Time evolution of spike and bubble growth rates. Results from the EGFM-V1 are 
compared with the nonlinear model of Dimonte and Ramaprabhu [47]. The spike and bubble amplitudes and growth rates are in excellent agreement with the model. 
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numerical artifact, although the errors were mitigated to some extent. 
Through detailed numerical simulations of several test problems, we 
have demonstrated that the proposed approach is successful at elimi
nating overheating. 

The EGFM was implemented in IMPACT, a shock physics code 
developed for the simulation of compressible multi-medium flows, and 
validated by simulating several standard and demanding 1D problems. 
These include single- and multi-medium Riemann problems, shock 
impedance matching problems, and shock-interface interactions. When 
compared with the OGFM and RGFM approaches, the EGFM simulations 
demonstrated highly accurate results, where overheating and spurious 
numerical reflections were completely eliminated in all the cases 
examined. 

The EGFM was extended to 2D flows, and validated against different 
standard test problems involving interfaces between multiple media. For 
standard 2D test cases, such as problems with radial symmetry, the 
EGFM solution consistently reduced interfacial oscillations and 
unphysical, asymmetrical features resulting from solving such problems 
on Cartesian meshes. The EGFM was also evaluated in the simulation of 
a strong shock-interface interaction case with a density ratio of 1000:1, 
and successfully applied the correct boundary conditions at the inter
face, while capturing all details of the flow features following the shock- 
interface interaction. For shock-driven instabilities, the EGFM accu
rately computed interfacial perturbation growth rates associated with 
the RM instability in both the linear and nonlinear stages in excellent 
agreement with a recently proposed nonlinear model [47]. Furthermore, 
the capability of the EGFM to accurately apply the interfacial boundary 
conditions associated with surface tension was demonstrated. From our 
parametric study of the RM instability under the influence of surface 
tension, we find there is excellent agreement between the simulation 
results and the analytical model of Mikaelian [54]. 

In multidimensions, the current implementation of EGFM involves 
correcting the values at the cells next to the interface. Note that the 
EGFM algorithm applied on a wider stencil involving cells further from 
the interface requires the computation of additional source terms (Eq. 
(18)) that account for the effect of curvature. Since the primary focus of 
this paper is the solution in the immediate vicinity of the interface (such 
as flows with surface tension), the performance of EGFM at cells further 
away, and the improvement through the implementation of the 
curvature-dependent source terms will be addressed in a future inves
tigation. Nevertheless, we have carefully characterized the accuracy of 
EGFM for 2D problems, and find the slight overheating errors observed, 
vanish for κΔx≪1, in contrast to other widely used approaches that were 
evaluated in this work. Thus, in regions where the local curvature is 
unusually large relative to the mesh employed, the performance of the 

Fig. 19. The interface location at t = (a) 0.0115 s, (b) 0.0229 s, (c) 0.0342 s, 
(d) 0.0458 s, and (e) 0.0571 s from the RM simulations evolving under the 
effect of surface tension with σ = 400 N/m. The chosen times approximately 
correspond to (a) T/4, (b) T/2, (c) 3T/4, (d) T, and (e) 5T /4, where T is the 
period of oscillations from Eq. (23). 

Fig. 20. Time evolution of the perturbation amplitude corresponding to 
different values of surface tension. Higher σ leads to higher frequencies, yet 
limits the peak amplitudes, in agreement with the model Eqs. (23),(24). 

Fig. 21. (a) Period of oscillations and (b) peak amplitude from the RM simulations with different values of the surface tension. The solid black line has a slope of 
unity and indicates perfect agreement between the IMPACT simulations and the analytical model of Mikaelian [54]. Greater values of σ lead to faster oscillations with 
lower peak amplitudes. 
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EGFM will become approximate away from the interface. It is note
worthy that in spite of the approximate implementation, the quality of 
the 2D solutions were improved as observed in the form of lower 
overheating errors, removal of oscillations, and precise placement of 
waves. Another scenario in which the EGFM will be approximate (for 
both 1D and 2D), is when it is extended to flows governed by equations 
of state for which the MMRP does not have exact solutions. For such 
MMRPs involving more general EOS relations, we expect the EGFM to 
still reduce overheating errors, while not completely eliminating them. 
A more generalized framework capable of accommodating approximate 
Riemann solvers will be the focus of future studies. 
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