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ARTICLE INFO ABSTRACT

Keywords: The Ghost Fluid Method (GFM) and its derivatives represent powerful techniques in the numerical simulation of
Ghost Fluid Method (GFM) compressible, multi-medium flows, but are nonetheless afflicted by so-called overheating errors at and near
Overheating material interfaces. These errors take the form of local overshoots and undershoots, and cause the numerical

Multi-medium Riemann problem
Compressible multi-medium flows
Isentropic fix

Surface tension

solution to deviate from the exact solution. Overheating errors are commonly addressed by an isobaric fix (or an
isentropic fix), where the values at the cells next to the fluid interface are corrected to reduce the numerical
diffusion stemming from overheating. These approaches however, do not completely remove overheating, and
numerical inaccuracies persist near the interface. In this article, we propose a new version of the GFM called the
Efficient Ghost Fluid Method (EGFM) capable of completely eliminating overheating errors, leading to highly
accurate solutions near the interface. The EGFM approach has been implemented in IMPACT, a multi-medium,
shock physics code, and has been validated against a wide range of 1D and 2D test cases, including problems with
surface tension. These include single- as well as multi-medium shock tube problems, various shock-interface

interactions, and shock-driven instabilities.

1. Introduction

The Ghost Fluid Method (GFM) was originally proposed by Fedkiw
et al. [1] to model contact discontinuities in inviscid, compressible,
multi-material flows. The GFM is based on applying physically accurate
interfacial boundary conditions at the material interface between
different fluids, where such boundary conditions are implemented
through the definition of ghost fluids in the computational domain. In
[2], the authors show that the Rankine-Hugoniot jump conditions, i.e.
flux conservation, when applied across the interface, yield interfacial
conditions that ensure the continuity of pressure and normal velocity. In
[1]1, the authors define the ghost fluids based on the interfacial flux
conservation discussed above. In a two-fluid system with Fluids A and B,
they proposed using the pressure and velocity of Fluid B (Fluid A) for
Ghost Fluid A (Ghost Fluid B), while the density of Ghost Fluid A (Ghost
Fluid B) is obtained directly from Fluid A (Fluid B) through constant
extrapolation.

Often, the GFM is coupled [1-3] with the level set (LS) approach [4],
where the LS functions are used to track the location of the interface.
This approach results in a sharp representation of the interface, which is a
central feature of the GFM, when compared with other interface
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approaches including the VOF method [5], mass fraction methods [6],
and gamma-based models [6,7], all of which diffuse the interface over
multiple cells, giving rise to ‘numerical mixing’ between the two fluids.
This property of the GFM makes it suitable for simulations of
multi-material problems involving interfacial phenomena such as
problems with interfacial instabilities, surface tension effects, and
evaporation.

Using multi-medium Riemann solvers at the interface to couple fluids
governed by different equations of state (EOS) has been shown to result
in high-quality numerical solutions at and near the interface, e.g. see
[8-10]. To extend this idea to the GFM framework, Liu et al. [11] pro-
posed a modified GFM (MGFM), where approximate Riemann solvers
were used to obtain more accurate values for the ghost cells with lower
conservation errors (see also [12-14] for a discussion of the applications
of the MGFM, and [15] for a description of the accuracy and conserva-
tion errors associated with different GFMs). Liu et al. [16] further
developed the MGFM idea to simulate compressible fluids coupled to
deformable structures in the presence of cavitation in fluids. Further-
more, Hu and Khoo [17] proposed a numerical method called I-GFM,
where the ghost values were obtained by real and ghost interactions (see
[18] for the application of the I-GFM in the primary breakup of a liquid
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jet, and [19] for a proposed modification to the I-GFM). Wang et al. [13]
proposed a real GFM (RGFM) approach to extend the capabilities of the
MGFV, and suggested a novel algorithm for the advection of the LS
function. More recently, Xu et al. [20] proposed the practical GFM
(PGFM) for compressible multi-medium flows.

Although it leads to a sharp interface, the numerical solution from
the GFM can exhibit overheating errors [21], which have been observed
in the solutions of Riemann problems and in shock interactions with
material interfaces. It has been shown [20] that overheating results from
numerical inaccuracies that stem from applying single-medium numer-
ical schemes to the fluid pairs (Fluid A + Ghost Fluid A) and (Fluid B +
Ghost Fluid B). Since these schemes are naturally associated with
diffusion, they give rise to overheating. In this paper, we first briefly
review the approaches to addressing overheating in the GFM in the
literature. We then propose a new scheme, the Efficient Ghost Fluid
Method (EGFM) to completely eliminate this numerical artifact for both
1D and multi-dimensional flow problems. In 1D EGFM, overheating is
removed for any mesh size, while in 2D the errors diminish with
increasing mesh resolution.

This paper is organized as follows: In §2, the equations required for
modeling compressible multi-medium flows are discussed, while the
numerical methods to solve such equations are explained in §3. Section 4
summarizes the previous algorithms for isentropic fixing and discusses
the EGFM as a highly accurate method to remove overheating from fluid
interfaces, while in §5, the EGFM is applied to shock-interface interac-
tion simulations. In §6, the EGFM is extended to 2D problems. The EGFM
is validated in §7 using a wide array of 1D test problems, such as single-
and multi-medium shock tubes, various shock-interface interactions, as
well as standard 2D simulations, such as problems with radial symmetry,
the Richtmyer-Meshkov [22,23] (RM) instability, and shock-air cavity
interaction (for more validation problems, see [24]). Finally, some
conclusions are drawn in §8.

2. Governing equations
Compressible, inviscid flows are modeled by the Euler equations of

gas dynamics, which take the form:

oU OF(U) oG(U)
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where U is the vector of conserved variables

p
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while F(U) and G(U) are the flux vectors in the x and y directions,
respectively:
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In the above equations, p is the density, u and v are the velocities in the x
and y directions, respectively, p is the pressure, and E is the total energy
per unit mass defined by E = e+ (u? + v?)/2. The internal energy per
unit mass e is related to other thermodynamic variables using the EOS.
Here, we use the stiff gas EOS:

_P+1Ps

— &)
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where y is the ratio of specific heats, and p, is the pressure constant.
For compressible multi-medium flows, the LS equation is also used to
track the interface:
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where ¢ is the LS function, and V is the velocity vector defined by V=
(u,v). Note that in general, Eq. (5) must be coupled to Eq. (1) to model
multi-medium flows, so that the EOS is also a function of the LS function,
i.e. y =y(¢) and pes = po(¢p) in Eq. (4). For an example of such a rela-
tion, see [7,25]. However, the GFM decouples Egs. (1) and (5) by
appropriately applying the interfacial boundary conditions on each
medium through the definition of ghost fluids, and as a result, Eq. (5)
can be solved independently.

Moreover, the LS function, which is initialized as a signed distance
function, must be reinitialized frequently during the simulation using
the equation:

X S 191~ 1) = 0. ®
Eq. (6) is solved iteratively over 7, a fictitious time, while S is the sign
function, and ¢, represents the LS function before reinitialization.
Solving Eq. (6) to steady state also ensures the normal vectors to the

interface (KI = V¢/|V¢|) as well as the interface curvature (x = V.KI)
are computed accurately [2]. In particular, « is required for surface
tension calculations, since the pressure jump imposed by surface tension
at the interface is given by [p] = ox [3], where ¢ is the surface tension of
the liquid.

3. Numerical methods

In this section, we describe the numerical methods used in IMPACT;
a compressible, multi-medium shock physics code to solve Egs. (1), (5),
and (6). We have used IMPACT to verify the accuracy of the proposed
EGFM approach by simulating a wide range of 1D and 2D test problems.
To begin, the physical domain is discretized into a rectangular mesh
with Ax = Ay to obtain uniform cells for the finite volume formulation.
For Eq. (1), the unsplit version [26] of the Godunov scheme is used as
follows:

At At
m+1 __ n
U,-’;r 7Ui,f+5 Fi_%‘/fFH%J +Iy Gi.j—%iGi,/‘Jr% (2]

where for instance U7, is the cell average of the vector of conserved

variables in Eq. (2) for cell (i,j) at time t = ¢", F;_1; is the flux vector in

11 is the flux vector in Eq. (3) for

Eq. (3) for intercell (i — %,j), G

intercell (i, j— %), and At is the time step size obtained from the CFL

condition. Numerical fluxes Fy; ; and Gy

are computed by defining 1D

Riemann problems at the intercells <i Fi j) and (i, JjF %) inthexandy

directions, respectively. In this work, the fluxes are calculated using the
Roe Riemann solver [27]. In order to achieve high-order accuracy in
solving Eq. (7), the fifth-order WENO reconstruction [28,29] is also
applied to cell averages Uj; in a direction-by-direction fashion [30]
before the Roe solver is applied.

Note that Eq. (7) is solved for each medium separately. Thus, after
Ghost Fluid A and Ghost Fluid B have been defined, Eq. (7) is applied to
the fluid pairs (Fluid A + Ghost Fluid A) and (Fluid B + Ghost Fluid B)
independently to obtain the solution at the next time-step. In the next
section, the EGFM is introduced to apply the interfacial boundary con-
ditions accurately to resolve multi-medium shock tubes and shock-
interface interactions.

To solve Eq. (5), we use the extended interface velocity to advect the
LS function. To obtain such a velocity field, the interface velocity is first
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obtained by solving multi-medium Riemann problems (MMRPs) in the

normal direction to the interface (N). The interface velocity is then
extrapolated to both sides of the interface using the constant extrapo-
lation equation

o

—4+N.VI=0, )
or

which is solved over fictitious time 7 to steady state. In Eq. (8), I can
represent the normal velocity Vy or any other variable to be extrapo-
lated. Once the extended velocity field has been obtained, Eq. (5) is
solved by first writing

Vv,
60745 + VN¢x '/T‘l'x + N¢) ¢y — 0’ (9)
Ceie el e)

and then using the Godunov scheme as proposed by Osher and Fedkiw
[2]. Note that Eq. (9) is solved in a band of cells using the Fast Local LS
Method of Peng et al. [31] in which the extended velocity field is
modified as c(¢)Vy, where c(¢) is the correction coefficient. For 1D
problems in this paper, however, the extended velocity using the
approach of Wang et al. [13] is employed, which guarantees the signed
distance function is maintained, so that the reinitialization is no longer
required. For 2D problems, the LS function is reinitialized by solving Eq.
(6) to steady-state using the methods in [32], which yield second-order
accuracy and ensure the interface does not move during the reinitiali-
zation. Finally, time discretization in IMPACT is handled using a
third-order TVD-RK method [33], where Egs. (7) and (9) are solved
simultaneously from time-step n to n+ 1, and then ¢™**
using Eq. (6) (see [1] for details).

is reinitialized

4. Methods to address overheating and the Efficient Ghost Fluid
Method

To address overheating, Fedkiw et al. [1] proposed extrapolating the
entropy rather than the density, since the entropy field is less susceptible
to overheating errors [21]. In addition, the authors suggested an isen-
tropic fix, where for an interface located between cells ‘i’ and ‘i + 1,” the
entropy of cell ‘i — 1’ is used to “fix” the entropy of cell ‘i’ and to populate
the ghost cells (see [1] for details).

Overheating can be viewed as stemming from excessive entropy
generation [1,21], from spurious sources at or near the interface. A
successful treatment for overheating should accommodate entropy
generation in the computational domain to correctly capture the waves
and converge to the weak solution, while removing overheating from
the interface. As we will see in the rest of this section and in §7, the
EGFM not only leads to the proper solution for rarefactions and shock
waves in the domain, but also eliminates overheating and yields highly
accurate solutions near the interface free of excessive and spurious en-
tropy generation

In versions of the GFM [11,13,20] which rely on the solution to
MMRPs at the interface, it has been shown that using the cell values from
‘1— 1" and ‘i+ 2’ as initial conditions for the MMRP resulted in an
improvement in reducing overheating (when compared with the choice
of using data from 7 and i+ 1’). In the MGFM [11] approach, the en-
tropy values of the real cells next to the interface were fixed by the so-
lution to the MMRP, which showed further improvement in reducing the
overheating error. In the RGFM [13] approach, real cells next to the
interface were corrected for density, velocity, and pressure values,
rather than for entropy, as seen in Fig. 1 (based on Fig. 4 from Xu and Liu
[15]). This resulted in more accurate imposition of boundary conditions
at the interface, and in an improved behavior in shock impedance
matching problems [11] by reducing the amplitude of the erroneous
numerical wavelets reflecting off the interface.

As an alternative to the approach outlined in [1], the isentropic fix
can also be implemented using more sophisticated methods such as
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Fig. 1. The isentropic fix and population of the ghost cells in the RGFM.
Figure is modified from Fig. 4 in [15].

those outlined in the PGFM [20] approach where the isentropic relation
is applied between a reference cell (with density p, and pressure p,)
located far from the interface and the cell next to the interface. By
comparing the pressures, either isentropic or shock relations are used for
the density [20]

1

YA

P, ¢M> , Pk < p, (rarefaction)
r +pooA

p |:(7A - 1)(pr +pooA) + (yA + 1)(pk +pooA)
"L(ra = D®r + Poor) + (ra + D)(Pr + Pooa)

=1 (10)

, px > pr (shock)

where k denotes the points where the density fix is to be applied (see
[20] for details).

Unfortunately, the above methods, while reducing overheating er-
rors, do not completely eliminate them. Since overheating stems from
numerical inaccuracies associated with single-medium solvers, coupling
an isentropic fix with such solvers will still result in diffusion (albeit to a
smaller extent) near the interface. We show the efficient approach to
eliminating overheating is that the isentropic fix (or any similar nu-
merical remedy) must be applied after the solution from the single-
medium solver has been obtained. This idea is similar to Cocchi and
Saurel [10], where in the front-tracking context, the numerical solution
is corrected using a predictor-corrector step and interpolations between
the values of the cells next to the interface. We now describe an alter-
native approach, the EGFM, to completely remove overheating from
fluid interfaces.

4.1. The EGFM approach

First, we recall that in the GFM framework, compressible multi-
medium flows are treated by splitting the two-fluid Riemann problem
RP(U.,Ug) into two single-fluid Riemann problems RP(U.,U,,) and
RP(U.g, Ug) (see [15] for details), where U,;, and U, are obtained from
the solution to the two-fluid Riemann problem RP(Uy, Ug). Considering
RP(U., Ug) in Fig. 2(a), note that in the immediate aftermath of the
removal of the ‘diaphragm’ between Fluids A and B, two new values (U,
and U,gr) emerge in the solution, on the left and right sides of the
interface, respectively. The fluids then interact with these new values, i.
e. in Fluid A, Uy and U,; form a leftward rarefaction wave, and in Fluid
B, U.g and Ug form a rightward shock wave. The jump between Fluids A
and B, however, moves by the linearly degenerate field which is the
interface velocity. The above process occurs in the same manner in Fig. 2
(b)-(c); U,y in Fig. 2(b) interacts with Uy to form a rarefaction wave,
while U.g in Fig. 2(c) interacts with Ug to form a shock wave. Fig. 2
demonstrates both the initial condition and the global solution att =t;.
Also note that in Fig. 2(b)-(c), the solutions in the real parts of the do-
mains are of interest, since they determine the eventual solution to the
original problem in Fig. 2(a) (see [20] for various possible solutions in
the ghost regions).

Based on the previous discussion, we now describe the EGFM
approach to address overheating errors. In Fig. 3(a), the Riemann
problem RP(Uy, U,y) is solved numerically over one time-step At using a
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Fig. 2. (a) Two-fluid Riemann problem RP(U,, Ug) with EOS, and EOSg. (b)
Single-fluid Riemann problem RP(Uy,U.;) for Fluid A (EOS,). (c) Single-fluid
Riemann problem RP(U,g,Ug) for Fluid B (EOSg). The initial condition is
shown in black, while the solution at t = t; is shown in red. The initial location
of the interface is x = x¢ (black dashed line), while the interface location at t =
t; is x = x; (red dashed line).

single-medium solver with EOSa. Note that this changes the value of
some cells near the initial interface marked by red symbols, which
indicate the solution affected by numerical diffusion from applying the
single-medium solver. We then apply the following corrections at cell ‘k’
in two steps (we have indicated the values obtained from the single-
medium solver (red) and the corrected values (green) using the sub-
scripts ‘s’ and ‘c’ respectively).

Step (1): The value of the cell next to the new interface (at t = At) is
changed to U,;, which is the exact solution immediately following the
removal of the diaphragm:

—Ax < ¢ <0-U, = Uy, @an

where (/),(ft) is the LS function at cell ‘k” at t = At.

Step (2): Similar to the PGFM [20] approach, in the case of a left
rarefaction the isentropic relation is then applied between the cell next
to the new interface and the cells away from it (within a computational
stencil) to obtain the corrected values. Note that in this second step, the
isentropic relation is applied not only to densities (as in [20]), but also to
cell velocities, as follows:
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|

Fig. 3. The EGFM-V1 implementation for (a) Fluid A and (b) Fluid B. The initial
location of the interface is depicted by the black dashed line (x = x¢), and the
interface location at t = At is demonstrated by the red dashed line. The initial
condition is shown in black, while the solution at t = At is shown in red. The
numerical corrections are carried out in two steps labeled by (1) and (2), and
the corrected values are shown in green. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of
this article.)

1
Ds T Poor \"
Pe=Psr (%)
CnAx < ¢]((Ar)g —Ax—{ P+L T PooA a12)
e =ty (@ — ay),

where a; = /7, (Ds + Pwa)/ps is the speed of sound, and n is the number
of cells to be corrected, which can be chosen to coincide with the
computational stencil used for the LS calculation. Similarly, for a left
shock, the following relations are applied in step (2):

(yA - 1)(p*L +pooA) + (}/A + 1)(17: +pcoA)
(74 = D@5 +Poor) + (74 + D)(Per, +Poor)])’

Pe= /’*L{

—nAx < (/),((A')S —Ax—{

p
uF:u*fasQ—sf
L

We found that applying just the density fix in Eqgs. (12),(13) (as sug-
gested in [20]) was insufficient in addressing overheating, without the
accompanying velocity fix. The above steps are depicted with the labels
(1) and (2) in Fig. 3(a). The corresponding fix applied to Fluid B is shown
in Fig. 3(b), where the Riemann problem RP(U.g, Ug) is solved numer-
ically for one timestep with EOSp. Once again, the red symbols are
associated with numerical inaccuracies, and the correction (shown in
Fig. 3(b) asred — green) is applied in two steps, which mirror Egs. (11)-
(13) for Fluid B. The complete set of equations for Fluids A and B are
summarized in Table 1.

In 1D, the wave types that determine the specific corrections to be
applied are identified using pressure as the criterion. Thus, for Fluid A if
Ds > P, then Eq. (12) is used to apply the correction, otherwise Eq. (13)
is employed. Similarly, for Fluid B if p.g < ps, then Eq. (15) is applied,
while Eq. (16) is used for a right shock. Note that in 1D, pressure is
sufficient as a criterion to determine the wave types, but in 2D the
presence of curvature effects will lead to pressure variations, requiring a

1) Ya+ 1P+ P 74— 1
+ 9
2y, Ps+Poa 2y,

13
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Table 1

Summary of corrections applied to the cell values for Fluids A and B in the EGFM algorithm.

U, (11)

U, =

) <0

(
k

Step 1: — Ax < ¢,
Step 2: — nAx < ¢,

Fluid A

left rarefaction (ps > p..)

9 < — Ax

(
k

left shock (ps < p.1)

ra—1
274

Ps + P

215

7a T 1P +Poon

)

)}’B7

(a5 — a.r),

Ls
DL,

Ps

uczuxgas(/

U. = U (14)

9 < Ax

(A
k

Step 1: 0 < ¢,

Fluid B

right rarefaction (p.g < ps)

9 < nAx

(
k

Step 2: Ax < ¢

(15)

s + Poos
R T DooB

G

vp— 1

U, = u, +

right shock (p.r > ps)

(r5 = D)0k +Poc) + (75 + 1) (Ps + Pcs)
(r5 — 1)(ps + Peoos) + (75 + 1) (Pak + Poos)
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¢

(16)

2y
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+
(s + Pooi)

27y

78 + 1 (P + Poos)

)y

Ps
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modified approach. In §6, we propose using the Riemann invariant
(p+P)/p" as a criterion for wave identification in multidimensions,
since it is compatible with both liquids and gases.

The modifications to the numerical solution using the analytical re-
lations discussed above form the basis of the EGFM approach. We term
this algorithm EGFM Version 1 (EGFM-V1) in the rest of this article. In
Egs. (12), (13), (15), and (16), we have used p.; and p.g for the inter-
facial pressures, to allow for the general case when surface tension is
present. In the absence of surface tension, we use p. = p., = psr-

In the EGFM approach described above, the MMRP between Fluids A
and B needs to be solved only once. In other words, assuming the
interface is initially located between cells i and i+ 1, the MMRP RP(Uj;,
Ui;1) is solved to obtain U,; and U.g (p,;, p.g> Us> Dip> P<r), While the
exact multi-medium Riemann solver subroutine or function is not called
for the rest of the simulation. As a result, we use the label ‘Efficient’ for
this version of the GFM. Based on the computed values of U,; and U,g,
the numerical corrections discussed are applied to advance the solution
over one sub-step of a multi-step time integration method using the
following EGFM-V1 algorithm:

(i) Use U,; to define Ghost Fluid A at cellsi+ 1,i+ 2, i+ 3, etc.

(ii) Use U,y to define Ghost Fluid B at cellsi,i— 1, i— 2, etc.

(iii) Apply an appropriate reconstruction, e.g. WENO to (Fluid A +
Ghost Fluid A) and (Fluid B + Ghost Fluid B) separately.

(iv) Find fluxes and advance the solution for (Fluid A + Ghost Fluid A)
and (Fluid B + Ghost Fluid B) separately over a sub-step of a
multi-step time integration method such as TVD-RK.

(v) Using u,, advance the LS function over the same sub-step.

(vi) Fix the value of the cell next to the new interface and located in
Fluid A to U,;, and the value of the cell next to the new interface
and located in Fluid B to U,z.

(vii) Apply either the isentropic or the shock relation between the cells
next to the new interface, and the cells further from it to fix
densities and velocities.

(viii) Form the actual solution domain based on the fixed solutions to
Fluid A and Fluid B.

Note that the novelty of our approach lies in steps (vi) and (vii).
A few observations are in order:

—

While step (1) of the fix in Fig. 3 is implemented for only a single

point, step (2) may be applied to one or more points. We recommend

using the same stencil width, used for the computation of the LS
method on each side of the interface (5 points in our simulations

[31]).

2 Fig. 3 shows the numerical fixes applied in conjunction with a simple
forward Euler method for time discretization. For multi-step ap-
proaches such as the TVD-RK method, the corrections must be
implemented over each sub-step, i.e. the LS function is first advanced
over the sub-step, followed by application of the corrections using
the above protocol.

3 The EGFM can be coupled with approximate Riemann solvers (ARS),
for materials with uncertainties in the EOS that do not permit an
exact solution to the Riemann problem. Consider the approximate
solution to RP(Uy, Ug) obtained from an ARS and given by (Uq, Uar).
Since Uy, and Ugg are different from U, and U.g, an overheating
error is introduced in step (1) of the fix in Fig. 3, the magnitude of
which will depend on the accuracy of the approximate solver. In §7,
we evaluate the extent of overheating errors when the EGFM is
coupled to a linearized Riemann Solver (LRS), and find that while
overheating errors are not eliminated, they are still significantly
reduced.

4 If the Riemann problem shown in Fig. 2 involves a shock wave, i.e.

EOS, = EOSg and U;, and Uy, are the post- and pre-shock values of the

shock, respectively, the above method cannot remove the numerical

inaccuracies and will result in a diffuse shock. Consequently, the
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above implementation must be modified to be compatible with
problems involving shock waves (including single shock and shock-
interface interactions). This is described in the next section.

5 InFig. 3, assigning U,;, and U,z in step (1) to the cells next to the new
interface may lead to slight displacements of the left and right waves
from their actual positions. To avoid this, we propose the EGFM
Version 2 (EGFM-V2), where step (1) in Fig. 3 is skipped, and the
isentropic and shock relations are applied directly between the
interfacial values (U,; and U,g) and the cells on the left (— nAx

< q’),(f[) < 0) and right (0 < q’);f[) < nAx) sides of the new interface.

Note that approaches such as the RGFM [13] algorithm or the pro-
posed GFM algorithm in [34] correct the real cell values next to the
interface for density, velocity, and pressure, as shown in Fig. 1. How-
ever, this can slightly displace the rarefaction and shock waves in the
numerical solution, even though the real cell correction is implemented
before applying the single-medium solvers (we will also see in 2D results
that such a correction can lead to unphysical wiggles and spurious os-
cillations at the interface). The EGFM-V1 can suffer from the same
displacement error, with the difference that the real cells are corrected
in step (1) after the solution from single-medium solvers has been ob-
tained. The EGFM-V2, however, corrects this drawback and leads to the
formation of rarefaction and shock waves at their correct positions. In
87, the EGFM-V1, EGFM-V2, RGFM, and the original GFM [1] (OGFM)
are compared to highlight this wave placement issue.

5. Application of the Efficient Ghost Fluid Method to shock-
interface interactions

A framework for applying the EGFM to shock-interface interactions
in 1D is presented in this section (note that a similar implementation in
multi-dimensions will require the definition and tracking of a second
level set field, which is beyond the scope of this article and therefore was
not included in the current work). Consider the problem configuration in
Fig. 4, in which a shock is located at x5y and a material interface is at xp.
To implement the EGFM for shock-interface problems, care must be
taken to ensure the incident shock remains sharp as it impinges on the
interface. Initially sharp shock fronts that have diffused numerically in
time are not compatible with the EGFM approach, since such shock
waves already contain numerical errors. In the following, we discuss an
implementation of the EGFM in which the shock is maintained as a sharp
front.

In Fig. 4, the initial boundary between Us and Uy, i.e. post- and pre-
shock states, moves to the right with shock speed given by the Ranki-
ne-Hugoniot jump conditions:

EOS, EOS, EOS, EOS,
Uy Ug Uy U,
- | | =0 |53 I | 0
-O"(.)' ° | | t=At -O":'I I | t=At
| | I |
® Ul | Ul
| | | |
| | I |
| | Ug | | Ug
| Foro— I Foro—

XsoXs1 %o XsoXs1  Xp

Fig. 4. Shock-interface interaction problem with the fix described in §5. The
initial locations of the shock and the interface are x = xsp and x = Xo,
respectively. The shock location at t = At is x = xs; (red dashed line). The
initial condition is shown in black, while the solution at t = At is shown in red.
The numerical corrections are applied to the cells around x = xg;, and the
corrected values are shown in green. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of
this article.)
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The diffuse shock is fixed by first computing the location of the shock
according to xs1 = Xso + SAt, where At is obtained from the CFL con-
dition. If a cell center is located behind (in front of) xs;, its value is
changed to the post-shock Us (pre-shock Up) value. Our numerical
simulations show that fixing only two cells on either side of the shock is
sufficient to completely remove diffusion. The explained fix holds for
shocks traveling in the negative x-direction as well. As before, for a
multi-step time integration method such as TVD-RK, the shock location
xs is first found in each sub-step using multi-step equations, and the
shock fix is then applied using the above approach.

We thus propose computing sharp shock-interface interactions using
the following approach; if xs1 < xo — 0.5Ax, the above shock treatment
must be applied. However, if xo — 0.5Ax < xs; (the shock has reached
the interface), only the two cells behind the shock are fixed, followed by
applying the EGFM (either V1 or V2) for the rest of the simulation. Note
that for this condition, the EGFM handles RP(Us, Ug). For shock-
interface interactions with a leftward shock impacting the interface
from the right, the procedure is changed by comparing xs; with xo +
0.5Ax, while the EGFM solves RP(Uy, Us).

6. Extension of the Efficient Ghost Fluid Method to 2D problems

In this section, we present an extension of the EGFM to 2D problems.
For these problems, exact solutions to the MMRPs are not available, and
a widely used [11,13,15,20,34] technique to circumvent this issue is to
construct 1D MMRPs in the normal direction to the interface using local
density, normal velocity (Vy), and pressure on the “left” and “right” sides
of the interface. In other words, at the scale of the cell dimensions (~
Ax), the interface is treated as having negligible curvature. Such an
approximation is justified when an adequate mesh resolution is
employed, and/or when the interface is devoid of highly curved regions
(kAx<1).

We use the same approach to extend the EGFM to 2D, but note that
unlike the 1D case, such an extension is approximate at cells further
away from the interface, and may allow some overheating to persist,
ultimately vanishing for kAx<1. The specific approach of Sambasivan
and Udaykumar [34] (hereafter referred as RGFM2 in this paper) is used
and modified here. In this approach, 1D MMRPs are constructed using
normal vectors and bilinear interpolations, as shown by Fig. 5 (based on

Fig. 1 from [35]). In this figure, point P is located next to the interface, N

o o o o o o
o e °Q [ o o
Ae —
o o I/ o o
P
N
o o o @ o) o
AN
o
B
o o o [} o] o
o /: o o o o

Fig. 5. Construction of an MMRP at the interface using the normal vector and
bilinear interpolation. Point P is located next to the interface, point I is on the
interface, while points A and B are 1.5Ax away from the interface. Figure is
modified from Fig. 1 in [35].
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is the normal vector at P, point I is on the interface (¢ = 0), and points A
and B are located in Fluids A and B, respectively, each at a normal dis-
tance of 1.5Ax from the interface. The procedure to find the locations of
these points, and to form the 1D MMRP between points A and B are
described in [34]. Note that we take Fluid A (Fluid B) to be the “left”
(“right”) fluid where ¢ < 0 (¢ > 0).

In [34], the authors apply the correction to the real fluid using the
RGFM [13] approach by replacing the values at point P by the solution
to the 1D MMRP in the interface normal direction. However, we observe
in our simulations that in 2D, such a correction can lead to unphysical
wiggles and spurious oscillations at the interface. Moreover, as
mentioned in the last observation in §4, this can misplace the waves in
the domain. Once such a correction has been applied to all the real cells
next to the interface, a one-sided extrapolation is implemented to
populate the ghost values [13,34]. We use the same extrapolation
method here to populate the ghost cells, but in contrast to RGFM [13]
and RGFM2 [34], the real cell correction is not applied, since the EGFM
does not fix the real fluid until after the numerical solution from
single-medium solvers has been obtained. The procedure to implement
the EGFM in 2D is shown in Fig. 6.

In Fig. 6, the interface between Fluids A and B at t = 0 has been
labeled ¢(0) = 0. For the EGFM implementation, U,; and U.g must be
available to the cells whose values are to be corrected. Similar to the 1D
situation, these cells are located next to the new interface at t = At
(labeled $(*Y = 0) in Fig. 6. Since the direction of interface movement is
not known a priori, U,;, and U,z must be made available to cells on both
sides of the interface. In practice, this is achieved by extrapolating in the
direction opposite to that used for obtaining the ghost fluids. If a multi-
step time integration method such as TVD-RK is used, the new location
of the interface is first determined for each sub-step, before the correc-
tions can be applied.

Egs. (11)-(16) apply 1D relations to 2D problems without consid-
eration of the effect of the interface curvature, and can lead to errors at
cells located further away from the interface. To mitigate this issue, we
implement the EGFM only at the cells next to the new interface, i.e. for
EGFM-V1, step (2) is skipped; while for EGFM-V2, the isentropic and

shock relations are applied to cells satisfying \qﬁgf‘)\ < Ax. If the EGFM is

to be applied to cells located further away from the interface, the 1D
MMRPs must take into account the interface curvature effects by
including the following geometric source terms

PV
pVi+p |, as)
Vn(pE +p)

S =k

where « is the interface local curvature defined as V.N (see [26] for
similar source terms used in 1D representation of 2D problems with
radial symmetry). Combining Eq. (18) with the 1D MMRP results in
modified isentropic and shock relations that accurately capture the

‘ . ¢(0) =0
FluidA | © | |
ol o | o | s X. A
N /
SRR 2 $@0 = o
. /K\g/ - | -FluidB

Fig. 6. The EGFM implementation in 2D; the interface has been labeled ¢ =
Oand ¢!V = 0att =0andt = At, respectively. The cell values next to the new
interface (¢(A:) = 0) are corrected to address overheating.
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interface curvature effects in the entire domain, and will lead to a more
accurate implementation of the EGFM in multi-dimensions. However,
since we are primarily concerned with applications where the
near-interface flow field is of the most significance (such as flows with
surface tension), this treatment is deferred to a later publication, while
noting the errors that stem from this approximation vanish for kAx<1.

Finally, we propose the following criterion to distinguish between
isentropic or shock relations in multi-dimensions. In contrast to the 1D
situation, the pressure field in 2D flows cannot be used for this purpose,
since it can vary behind the shock wave depending on the shock cur-
vature (or the pressure behind a rarefaction wave may increase after its
formation). In this article, we suggest using the Riemann invariant
(p+DP)/p! as a criterion, since it is compatible with both liquids and
gases in Eq. (4). Note that (p +p.)/p" remains unchanged in a rarefac-
tion or smooth regions of the flow, while increasing after the passage of a
shock wave. Note that for gases p,, = 0, and the equation for entropy
constancy in the smooth regions of the flow is recovered. Therefore, for

the cells in Fluid A in Fig. 6, if (02 + peea) /031" > (Pt + Peon) /04,

then Eq. (12) is applied to fix plgft) and VI(VAi;)’ while V;?;) remains un-

changed. Otherwise, Eq. (13) is used. Similarly, for the cells in Fluid B, if
(p«r + PooB) /Pl < (pgft) + PooB)/ [PE_?[)]VB, then Eq. (15) is employed,
otherwise Eq. (16) is applied. As before, for a multi-step time integration
method such as TVD-RK, the new location of the interface is first found
for each sub-step, before the corrections can be applied.

7. Results and discussion
7.1. 1D test problems

In this section, we report numerical solutions from different 1D
problems using the OGFM, RGFM, EGFM-V1, and EGFM-V2 algorithms,
and analyze the results to evaluate the performance of the EGFM in
comparison to the other methods. Results from the shock impedance
matching problem are presented first, since it has been widely used in
assessing the performance of variations of the GFM, including the MGFM
[11], RGFM [13], and PGFM [20].

The numerical results from IMPACT are compared with exact solu-
tions for density, velocity, pressure, entropy, and temperature (or in-
ternal energy) for each case. For all the test cases reported in this section,
a domain size of unity was used. To evaluate the performance of the
EGFM in capturing the waves, we report the L; norm of error in density
computed for rarefaction waves as Ly = Sr | [p(x;) — p;|/N, where p(x;)
and p; are the exact and numerical densities at cell i’. We calculate the
L; norm on [x4,Xp], where x, and x; are located on the left and right sides
of a rarefaction wave respectively, and report the order of convergence
for each scheme.

7.1.1. Shock impedance matching problem [11,13, 20]

In this multi-medium shock tube problem, the solution comprises a
shockwave to the right of the original discontinuity, while no wave is
present to the left. Validation efforts of previous GFM algorithms [11,13,
20] have plotted dimensionless density, velocity, and pressure to eval-
uate the numerical results. In addition to these quantities, we also plot
entropy defined as s = so + In(p /p’) [26] where the constant s, is arbi-
trarily chosen to be unity. The domain is filled with two different gases
(7, = 1.667 and yz = 1.2) with a discontinuity at x, = 0.2, and the
following initial condition

W, = (p,,uz, pr) = (3.174819866,9.434397965, 100),
Wi = (pg,ur,px) = (1,0, 1).

The solution obtained at t = 0.06 for a mesh of 80 cells and CFL = 0.3
[30] is shown in Fig. 7.
As seen in Fig. 7, the EGFM completely eliminates the unphysical
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Fig. 7. The numerical solutions from the OGFM, RGFM, EGFM-V1, and EGFM-V2 compared to the exact solution for (a) density, (b) velocity, (c) pressure, and (d)
entropy for problem 7.1.1. The plots indicate the EGFM removes overheating and the spurious numerical reflections, while the OGFM and RGFM exhibit errors.

Fig. 8. The numerical solutions of Problem 7.1.2 by the OGFM, RGFM, EGFM-V1, and EGFM-V2 compared to the exact solution for (a) density, (b) velocity, (c)
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pressure, and (d) entropy. Both EGFM versions remove overheating and the erroneous feature on the rarefaction corner.
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reflecting wave to the left of the interface. Note that the OGFM and
RGFM solutions contain numerical errors and spurious reflections, since
they apply approximate boundary conditions at the interface. The EGFM
solution however, exactly matches the analytical values, since it applies
the exact interfacial boundary conditions. In earlier efforts to simulate
this problem, including the MGFM [11], RGFM [13], and PGFM [20]
approaches, the erroneous reflections observed in Fig. 7 were not
completely removed, but mitigated in some instances.

The insets in Fig. 7 also show the solution detail across the interface
for the density and entropy profiles, and demonstrate the results from
the EGFM are in excellent agreement with the analytical solution, while
the OGFM and RGFM exhibit some overheating. In Fig. 7(a) and (d), the
interface location computed using the RGFM is displaced one mesh cell
away from the exact location. Note that although the RGFM (as well as
the MGFM [11], PGFM [20], and RGFM2 [34]) is based on obtaining
multi-medium Riemann solutions at the interface, the MMRP defined at
the interface is based on the cell values that could already be contami-
nated with overheating. The EGFM, however, fixes the cell values next to
the interface, and applies the correct interfacial boundary conditions for
each time step/sub-step. These issues are exacerbated for problems
containing strong shocks (high pressure ratios), and are illustrated in the
subsequent problems.

7.1.2. Shock tube with strong pressure jump [26]

In this non-dimensional shock tube problem, the initial condition
contains a strong pressure jump with a pressure ratio 10,000:1. The
computational domain is filled with air (y = 1.4) with the initial
discontinuity located at the center (xo = 0.5). The complete initial
condition data is given by

Wi = (py,ur,pi) = (1,0,0.01),
Wi = (g, iz, pr) = (1,0, 100).

The solution thus consists of a left shock and a right rarefaction, and is
shown for t = 0.035 in Fig. 8 where a mesh of 80 cells with CFL = 0.3
was utilized in the simulations. In this figure, the OGFM and RGFM
exhibit some errors near the rarefaction corner (see [11] and [15] where
similar behavior has been reported for these versions of the GFM). For
the contact discontinuity, these approaches give rise to overshoots and
undershoots and miscalculate the location of the wave by a couple of
cells. As discussed in Problem 7.1.1, this behavior results from the ap-
proximations in capturing the interfacial boundary conditions. In the
OGFM implementation, as pointed out in [1], the conservation of mass,
momentum, and energy is relaxed at the contact discontinuity, which
can give rise to inaccurate prediction of the location of the wave. This
leads to incorrect values for the interface location (see [11] for
example), particularly for problems with strong shocks. In contrast,
when the EGFM approach is applied, highly accurate numerical solu-
tions are obtained, overheating and the erroneous feature on the rare-
faction corner are completely eliminated, and the contact wave location
is properly calculated.

For computing the error in density, we choose x, = 0.6 and x;, = 0.95
for the right rarefaction wave. Table 2 shows the L; norm of error along
with the order of convergence for the four versions of the GFM, where

Table 2
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the results from the EGFM-V2 and OGFM have the lowest and largest
errors respectively, while the error from the RGFM and the EGFM-V1 are
comparable. As explained in observation 6 in §4.1, assigning interfacial
values U,;, and U,g directly to the cells next to the interface causes this
error in the RGFM and the EGFM-V1 results, while the EGFM-V2 re-
solves this issue efficiently, leading to the minimum error in capturing
the wave location. However, it is seen that the order of convergence for
all methods is near unity, except for that from the OGFM, where the
convergence rate is 0.84 for the finest mesh.

7.1.3. Multi-component shock tube problem with strong pressure jump [36]

This is an MMRP where a diaphragm separates two gases (y; = 1.6
and yz = 1.4) in the domain. The initial discontinuity is located at the
center (xo = 0.5) of the shock tube and separates regions with a pressure
ratio of 2500:1. The initial data is summarized as

Wi = (py,ue, pr) = (1,0,500),
Wi = (pg, ur, pr) = (1,0,0.2).

The solution [36] includes a left rarefaction and a right shock as shown
for t = 0.01 in Fig. 9 with 80 cells used in the computational domain
with CFL = 0.3. However, to obtain the results using the OGFM, the CFL
value must be reduced to < 0.04, indicating the approach is not ideal for
this MMRP. Moreover, it is seen that the OGFM captures the interface
three cells away from its actual position (see the discussion of Problem
7.1.2 for the details of such behavior) and exhibits large errors near the
rarefaction corner and the interface in the temperature profile. The
RGFM, in contrast, captures the interface at the correct location with
smaller overheating errors. Fig. 9 shows that the results from the EGFM
are of higher accuracy, and overheating has been eliminated in both
versions; the erroneous feature near the rarefaction corner has been
removed and the wave locations are more accurate. This is seen in
Table 3, where the error from the EGFM-V2 is minimum, while the
OGFM creates the highest error in the rarefaction location (xq = 0.15
and x, = 0.45). As observed for Problem 7.1.2, the error from the RGFM
and the EGFM-V1 are similar, with the latter being slightly more accu-
rate. Despite the error magnitude, it is seen that the order of conver-
gence is near unity for all versions.

7.1.4. Strong shock impacting on a gas-water interface (heavy — light) [7]

In this non-dimensional example, the domain is occupied by air (y; =
1.4) and water (yg =4 and p.r = 1), where the two materials are
separated by an interface at xo = 0.5. A left-traveling shock of strength
Mg = 1.95is initialized at xso = 0.6 in the water region of the shock tube
and traverses the interface. The complete initial data for this problem is

W = (p,u,pr) = (1,0,1),
Wik = (pg, ur, pr) = (5,0, 1),
W = (py, us, ps) = (7.093, —0.7288, 10),

where Ws represents the post-shock state. Since this is a heavy-to-light
case, a rarefaction is reflected back into the water, while a shock is
transmitted into the air. Fig. 10 shows the analytical solution, as well as

The L; norm of error in density for the right rarefaction wave in Problem 7.1.2. The error is minimum for the EGFM-V2, while the order of convergence is similar for the

MMRP-based GFMs.

No. of cells OGFM RGFM EGFM-V1 EGFM-V2

Ly Order L1 Order Ly Order Ly Order
80 0.0195 0.0177 0.0141 0.0068
128 0.0148 0.5868 0.0117 0.8808 0.0090 0.9552 0.0043 0.9751
200 0.0109 0.6853 0.0079 0.8800 0.0058 0.9845 0.0028 0.9613
320 0.0080 0.6581 0.0051 0.9311 0.0037 0.9564 0.0017 1.0617
500 0.0055 0.8396 0.0034 0.9085 0.0024 0.9699 0.0011 0.9754
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Fig. 9. The numerical solutions of Problem 7.1.3 by the OGFM, RGFM, EGFM-V1, and EGFM-V2 compared to the exact solution for (a) density, (b) velocity, (c)
pressure, and (d) temperature. The EGFM-V1 and EGFM-V2 completely remove overheating and capture the waves more accurately.

Table 3

The L; norm of error in density for the left rarefaction wave in Problem 7.1.3. The OGFM and the EGFM-V2 have the highest and the lowest errors, respectively. The

order of convergence is unity for all versions.

No. of cells OGFM RGFM EGFM-V1 EGFM-V2

L, Order L, Order L, Order L, Order
80 0.0448 0.0197 0.0155 0.0079
128 0.0319 0.7226 0.0127 0.9341 0.0096 1.0193 0.0048 1.0601
200 0.0224 0.7922 0.0086 0.8735 0.0063 0.9438 0.0031 0.9797
320 0.0146 0.9107 0.0056 0.9128 0.0040 0.9665 0.0020 0.9325
500 0.0095 0.9629 0.0037 0.9286 0.0025 1.0531 0.0013 0.9653

a comparison between the OGFM, RGFM, and EGFM approaches at t =
0.2. All the simulations shown in Fig. 10 were performed with a mesh of
128 cells and CFL = 0.2. Note that in Fig. 10(d), the plot indicates the
temperature of the air for x € [0,0.305) and the internal energy of the
water for x € (0.305,1].

The introduction of the initial shock wave as a perfectly sharp
discontinuity in the water leads to the formation of two spikes in the
solution propagating throughout the domain in time. However, these
features (located at x ~ 0.4 and x ~ 0.95 at the end of the simulation)
are removed by the shock treatment in the EGFM approach (§5) as seen
in the insets in Fig. 10(c)-(d). In addition, the EGFM eliminates over-
heating near the interface, as shown in detail in Fig. 10(a) and (d).
Finally, the L; norm of error in density is computed for the right rare-
faction for x, = 0.55 and x;, = 0.83. As seen in Table 4, and unlike the
previous cases, the OGFM has lower errors compared to the RGFM and
EGFM-V1. However, the EGFM-V2 has the least error among all ver-
sions, indicating that this particular algorithm is highly accurate in
capturing the waves in shock-interface interactions.

7.1.5. Strong shock impacting on a gas-gas interface (heavy — light) [11]
In this problem, we investigate the performance of the EGFM in
removing overheating, when used in conjunction with an ARS or in the

10

presence of numerically diffuse shocks. For brevity, only the density
results are shown, while similar trends were observed in the temperature
and entropy plots. The computational domain contains left (y, =
1.6667) and right (y; = 1.4) gases separated by an interface located at
Xo = 0.2. A right-travelling shock initially positioned at xso = 0.05,
divides the left gas into pre- and post-shock regions. The initial condi-
tions for the problem are given by

Ws = (ps7uSrpS) = (3867 8.56, 100);
Wi = (pp,ur,pr) = (1,0, 1),

Wk = (pg, tr, pr) = (0.1,0,1).

Fig. 11 compares the exact solution at t = 0.05 with the numerical
solutions obtained using 100 cells with CFL = 0.3 from six different
approaches: (1) EGFM-V1 with shock treatment (§5), (2) EGFM-V1 with
a diffuse shock (DS EGFM-V1), (3) the 2D version of the EGFM-V1 (2D
EGFM-V1) (§6), (4) EGFM-V1 coupled with linearized Riemann solver
[37] (LRS) (EGFM-V1 LRS), (5) the RGFM, and (6) the OGFM. Fig. 11
indicates that approximate versions of the EGFM exhibit slight over-
heating errors near the interface. Note that in approaches (2) and (3),
the shock is allowed to diffuse before impacting the interface. Fig. 11
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Fig. 10. The numerical solutions of Problem 7.1.4 by the OGFM, RGFM, EGFM-V1, and EGFM-V2 compared to the exact solution for (a) density, (b) velocity, (c)
pressure, and (d) temperature/internal energy. The shock treatment in §5 removes the erroneous features at x ~ 0.4 and x ~ 0.95. The EGFM versions eliminate

overheating in the density, temperature, and internal energy profiles.

Table 4

The L; norm of error in density for the right rarefaction wave in Problem 7.1.4. The EGFM-V2 has the lowest error in capturing the wave in the water. The order of
convergence is near unity for all versions in this shock-interface interaction problem.

No. of cells OGFM RGFM EGFM-V1 EGFM-V2
L Order L Order Ly Order Ly Order
80 0.0441 0.0908 0.0470 0.0368
128 0.0273 1.0204 0.0587 0.9281 0.0323 0.7980 0.0260 0.7391
200 0.0197 0.7311 0.0439 0.6510 0.0245 0.6193 0.0193 0.6677
320 0.0123 1.0022 0.0273 1.0107 0.0157 0.9468 0.0118 1.0468
500 0.0079 0.9920 0.0175 0.9964 0.0100 1.0107 0.0075 1.0155
shows the EGFM-V1 is in very good agreement with the exact solution.
4 ——— — The corresponding 2D implementation was computed without a sharp
35F . Eeemvi ‘ representation of the shock in the current work, which leads to slight
= 2D EGFM-V1 deviations from the exact solution. Similarly, when the EGFM is
3t . Romm . © Tl oo, | computed with a diffuse shock representation (DS EGFM-V1) or using
25k ocrm RS S L the LRS (EGFM-V1 LRS), slight overheating errors are observed as seen
27 \.* 4 in Fig. 11. However, these approximate implementations of the EGFM
g 2L ‘ still significantly outperform the RGFM and OGFM near the interface.
8 ‘ l The RMS error from the different implementations were computed over
15F 1 s 20 cells (10 cells on each side of interface) and determined to be
1k 77“"—'—"-"?-"—’“'— 1 0.01186, 0.01752, 0.03423, 0.06167, and 0.28590 for DS EGFM-V1, 2D
EGFM-V1, EGFM-V1 LRS, RGFM, and OGFM, respectively. In addition,
05F ’ all MMRP-based versions of the GFM capture the interface at the correct
location, while the interface from the OGFM is one cell away. Finally,
0 0 0' 2 0' 2 0' 6 note that in the approaches where the initial shock is allowed to diffuse,

Fig. 11. Density profile from problem 7.1.5 obtained from EGFM-V1, EGFM-V1
with diffuse shock (DS EGFM-V1), 2D version of the EGFM-V1 (2D EGFM-V1),
EGFM-V1 with linearized Riemann solver (EGFM-V1 LRS), RGFM, and OGFM.
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a spurious numerical oscillation is observed at x ~ 1.7.

7.2. 2D test problems

In this section, we use the EGFM 2D algorithm described in §6 in the
simulation of the following test problems; Sod problem with radial
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Fig. 12. (a) Density and (b) pressure profiles for the radial Sod problem alongy = 1 and 1 < r < 2 using the RGFM2, EGFM-V1, and EGFM-V2. The EGFM-V2 reduces
overheating errors near the radial contact discontinuity and captures the waves at their correct locations.

symmetry, shock-air cavity interaction, and RM instability with and
without surface tension. For problems involving shock-interface inter-
action, we will only present the results from the EGFM-V1. Our simu-
lations show that this version results in more accurate solutions near the
interface in such problems.

7.2.1. Sod problem with radial symmetry [26]

In this problem, the computational domain is a square of size [0, 2] x
[0, 2] in the xy plane containing a region of low pressure (p = 0.125 and p
= 0.1) air (y = 1.4) surrounding a circular bubble containing high-
pressure (p =1 and p = 1) air with a radius of 0.4 and centered at
(1,1). The simulation was run to a final time of t = 0.25 using a mesh of
100 x 100 cells and CFL = 0.3. Fig. 12 shows the 1D density and
pressure profiles along y =1 and 1 <r <2 obtained using different
MMRP-based GFM versions. All three methods are consistent with the
exact solution [26], which predicts an inward-propagating rarefaction
and an outward-traveling shock wave. Near the contact wave, similar
overheating errors are observed in the simulations employing RGFM2
and EGFM-V1, while the EGFM-V2 mitigates these errors and results in a
more accurate solution. Furthermore, both the EGFM-V1 and RGFM2
place the rarefaction and the shock waves ahead of their actual loca-
tions, while the EGFM-V2 computes the correct locations of the waves.
Similar to the 1D cases, we compute the L; norm of error in density for
the rarefaction on [ry,r,] where r, =1 and r, = 1.5, to compare the
performance of each version in capturing the wave, as seen in Table 5.
The errors from the EGFM-V1 and RGFM2 are similar, while the
EGFM-V2 approach reports much lower values of the L; error. However,
it is seen from Table 5 that the order of convergence approaches unity
for all three versions.

Table 6 is a comparison of the total simulation time for both versions
of the EGFM and the RGFM2 approach. Similar to other GFM ap-
proaches, the EGFM is only computed for cells within the computational
stencil straddling the interface. For a material interface that is resolved
by N points in a simulation, all the GFM-based approaches will require

Table 5

The L; norm of error in density for the inward rarefaction wave in Problem 7.2.1.
The error is computed onr € [1,1.5] between the center of the domain (1, 1) and
(1.5,1). The EGFM-V2 has the lowest error in capturing the wave. The order of
convergence is near unity for all versions in this radial problem.

No. of CFL RGFM2 EGFM-V1 EGFM-V2

cells No. Ly Order Ly Order Ly Order
[30]

32 0.5 0.1525 0.1411 0.0495

50 0.4 0.0892 1.2017 0.0922 0.9534 0.0257 1.4687

100 0.3 0.0395 1.1752  0.0413 1.1586 0.0124  1.0514

200 0.2 0.0234 0.7553 0.0240 0.7831  0.0068  0.8667

320 0.2 0.0162 0.7824 0.0161 0.8494 0.0044  0.9262
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Table 6

Simulation time (CPU time in seconds) for different versions of the GFM.
No. of cells CFL No. [30] RGFM2 EGFM-V1 EGFM-V2
32 0.5 4.12 4.12 4.12
50 0.4 8.33 8.35 8.35
100 0.3 44.95 45.37 45.39
200 0.2 302.19 310.41 310.98
320 0.2 983.41 1060.12 1065.12

O(N) operations, with slight variations in computational effort that
appear to be resolution-dependent in Table 6 (at the highest resolution
investigated, the EGFM approaches were less than ~ 10% more expen-
sive than RGFM2). The comparison in Table 6 was based on maintaining
the same CFL numbers across all methods. Since the EGFM has been
shown to be a more accurate and stable method (see Fig. 13), the slight
increase in computational effort can be offset by performing simulations
at an appropriately lower resolution and by choosing larger CFL
numbers.

In Fig. 13, the interface (¢ = 0) from the three methods is plotted at
the end of the simulation. In this figure, numerical oscillations and
small-amplitude wiggles are observed in RGFM2, specifically near the
horizontal and vertical poles. As discussed in [26], these oscillations are
due to the “staircase” representation of the initial discontinuity at the
beginning of the simulation. In contrast, the EGFM versions mitigate
these errors at the contact wave; in particular, the EGFM-V1 reduces the
amplitude of the oscillations, while the EGFM-V2 completely removes
the wiggles, resulting in a smooth interface with a perfectly radial shape.
The observed higher accuracy in capturing the waves (Table 5) and in-
terfaces (Fig. 13) demonstrates the effectiveness of the EGFM approach,
while highlighting the importance of applying the isentropic fix after the
solution from the single-medium solvers are obtained.

In Fig. 14, the numerical solutions for density are plotted for three
different mesh sizes for RGFM2 and EGFM-V2: 100 x 100, 200 x 200,
and 320 x 320 cells. For both methods, overheating errors improve with
resolution, but persistent overheating is observed for RGFM2 even at the
highest resolution. In contrast, for EGFM-V2 the errors from over-
heating — 0 rapidly with decreasing mesh width (a slight trough seen in
the EGFM solution at resolution of 200 cells is attributed to not applying
the correction to the cells further away from the interface). In the cur-
rent implementation of EGFM in multi-dimensions, this issue can be
remedied by refining the mesh selectively in regions with locally large
curvature such as kinks, pinch-off points etc. A multi-dimensional
implementation of the EGFM that is exact in cells further from the
interface will include the source terms in Eq. (18), and will be discussed
in a future publication.
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Fig. 13. The contact wave location (¢ = 0) from (a) the RGFM2, (b) the EGFM-V1, and (c) the EGFM-V2. Numerical errors at the interface are observed due to the
“staircase” effect associated with the representation of the initial discontinuity at the beginning of the simulation. The EGFM-V1 reduces the amplitude of the
numerical oscillations, while the EGFM-V2 results in a smooth radial contact wave free of the numerical wiggles.
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Fig. 14. Plots of density near the contact discontinuity in the radial Sod problem for RGFM2 (left) and EGFM-V2 (right) approaches. The overheating errors persist in

the RGFM2 solution, while vanishing in the limit of xAx—0 for EGFM-V2.

7.2.2. Strong shock-air cavity interaction (heavy — light) [38]

This demanding problem has been investigated in previous studies
[20,38-44], and used here to demonstrate the performance of the EGFM
for shock-interface interactions with large density ratios. The problem
consists of a square domain of dimensions [0, 2] x [0,2] mm? filled with
water (7,, = 4.4 and po,y =6 x 10® Pa) surrounding a circular cavity of
diameter 1 mm centered at (1 mm, 1 mm) and filled with air (y, =1.4).
A right-traveling shock wave of strength Mg = 1.43, and initially located
at Xgso 0.4 mm, divides the water region into post-shocked and
pre-shocked states, and approaches the air cavity from the left. The
initial conditions of the problem with the post- and pre- suffixes for the
water are as follows:

13

WWvPOSl = (:07 u, ViP)w.po.u
= (12334 kg /m’, 439.8 m /s, 0, 1.02 x 10° Pa),

Wopre = (p,u,v,P),, ., = (1000 kg /m*, 0, 0, 10° Pa),

W, = (p,u,v,P), = (1kg /m’, 0, 0, 10° Pa).

This is a challenging problem since the initial density ratio at the
interface is large (1000:1), while the pressure behind the shock is in GPa.
In this problem, we employ AMR with three levels of refinement with the
finest mesh size corresponding to 1/256 mm (CFL = 0.4), while the
simulation is run to a final time of t = 731.85 ns. The left and right
boundaries are outflow surfaces to avoid any reflections back into the
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Fig. 15. Evolution of the interface in the water-air shock-cavity interaction
problem for t, = (a) 136.54 ns, (b) 373.51 ns, (c) 554.89 ns, (d) 638.71 ns, (e)
675.65 ns, and (f) 693.13 ns. The initial cavity has been shown by the red solid
line in all plots. Figs. 15(a),(b) show the formation and propagation of the
waves resulting from the interaction, while Figs. 15(c),(d) demonstrate the
evolution of the water jet. Fig. 15(e) indicates the formation of the blast wave
and the “water hammer” effect, and Fig. 15(f) illustrates the propagation of the
blast wave along with the interface division into two smaller interfaces. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

domain, while the top and bottom boundaries are periodic. In order to
quantitatively compare our results with those from [42,43], we use the
time scale t, = t — ty, where to = 38.72 ns is the time it takes the shock
wave to reach the cavity.

The density plots of the flow field are seen in Fig. 15 for different ¢,
and demonstrate key features of the flow and the interface evolution in
time. Since this is a heavy-to-light case, upon the shock-interface
interaction (Fig. 15(a)), the initial shock wave is refracted to a re-
flected rarefaction wave into the water and a transmitted shock wave

Table 7
A comparison between the results from the simulation and those from previous
studies shows a close agreement between the three different approaches.

Parameter Hawker and Bempedelis and EGFM-
Ventikos [43] Ventikos [42] A28
First stage time (ns) 675 680 669
Jet speed atimpact (m 2278 2131 2110
/9)
Water hammer 3.00 3.48 3.14

pressure (Gpa)
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into air. Figs. 15(c)—(d) illustrate the formation and development of a
water jet into the air cavity, where the air is highly compressed as the jet
evolves to the right. Fig. 15(e) corresponds to the time when the left and
right surfaces of the air cavity meet, and a strong blast wave is initiated,
and a “water hammer” effect [20] is observed. As the high-speed water
jet impacts the stationary surface of the air cavity, the subsequent
splitting of the initial interface is accurately captured by the numerical
method. Eventually, the blast wave creates a high-density, high-pressure
region at the tip of the water jet, which propagates radially in all di-
rections, as seen in Fig. 15(f). Thus, Fig. 15 demonstrates the ability of
the EGFM approach to handle strong shock interactions in problems
with large density differences.

In Table 7, the first stage time, the jet speed at impact, and the water
hammer pressure are compared with the results from a previously
studied front tracking method [43], and recently studied grid-aligned
GFM [42]. The first stage time is measured using t. and is defined as
the time interval between the first shock-cavity interaction, and when
the two horizontal poles of the cavity meet. Table 7 indicates there is
close agreement between the three different approaches, and further
validates the EGFM capabilities to simulate flows with highly stiff ma-
terials under high-speeds and high-pressure conditions.

7.2.3. Richtmyer—-Meshkov instability (light — heavy)

The single-mode RM [22,23] instability is investigated in this sec-
tion. The problem setup is as shown in Fig. 16, and involves a rectan-
gular domain of dimensions L, x L, with an interface represented by x =
Xo + hgcos(2zy /1), where xq is the location of the unperturbed inter-
face, hy is the amplitude of the perturbation before shock impact, and 1
is the perturbation wavelength.

The problem statement is summarized in Fig. 16, which shows the
simulation domain occupied by Fluids A and B, where Fluid A supports a
planar shock wave traveling toward the interface with speed S. The
density contrast between the two fluids is characterized by the pre-shock
Atwood number A~ = (pg — pa)/(pg + pa), Where A~ > 0 indicates a
light-to-heavy interaction. The amplitude of the perturbation has been
scaled by the wavenumber to define the nondimensional parameter khy,
where k =2z/4 is the perturbation wavenumber. The shock Mach
number is defined as Mg = S/as, where a, is the speed of sound in Fluid
A in its unshocked state.

The simulations were performed with air and SF¢ as the two fluids
separated by the initial interface, and labeled as Fluid A (y, = 1.4) and
Fluid B (y5 = 1.093), respectively. We use p, = 0.5 kg/m® and pp =
2.5 kg/m® corresponding to A~ = Z. The initial interface perturbation is
characterized by the pre-shock amplitude h; = 0.056 m, and a pertur-
bation wavelength 4 = 1 m, so that khy = 0.35. A planar shock with
Mg = 1.2 was initialized at xgo = 0.4 m, while the interface was posi-
tioned at xo = 0.5 m. The initial condition for the problem is detailed
below, with the post- and pre-suffixes indicating post-shocked and pre-

y . 2my
= xo + hy cos——

/x A

)

Pa
Fluid A

)
-]
~

Fluid B

—

Xso

Fig. 16. Problem setup for the RM instability simulation. The domain size is
Ly x Ly, and the interface between Fluids A and B is defined as a single-mode
perturbation represented by a cosine wave of wavelength 2 = L,. The dashed
line shows the unperturbed interface. The right-traveling shock of speed S is
initially located at xso and impacts the perturbed interface between the fluids.
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shocked states respectively:

Wapost = (04, V, P)s po = (0.67 kg /m’, 161.68 m /5, 0, 1.5 x 10° Pa),

Wapre = (0,14,v,P),,,, = (0.5 kg /m’*, 0, 0, 10° Pa),

W = (p,u,v,P)y = (25kg /o, 0, 0, 10° Pa).

The simulation domain had dimensions of Ly =10 mand L, =1 m.
AMR with three levels of refinement was used, with the finest mesh
corresponding to a resolution of 1/256 m. The simulations were per-
formed with CFL = 0.6, and to a final time of t = 0.078 s. The left and
right boundaries were treated as outflow surfaces to allow for the egress
of waves without acoustic feedback into the domain, while the top and
bottom boundaries were defined using periodic boundary conditions.

Upon passage of the shock through the interface, the interface is
accelerated to a velocity Ay and compressed to a post-shock amplitude
h§ with a compression factor y = h{ /h;. Under the influence of the
deposited baroclinic vorticity, the perturbation amplitude grows in time
with a growth rate Vgzy = dh/dt. In Table 8, we compare the results from
the EGFM-V1 with predictions from the Rankine-Hugoniot relations
applied to the RM situation [45,46], and with analytical models for the
RM linear growth rate [22,23]. Table 8 shows excellent agreement be-
tween model predictions and measured quantities from simulations
using the EGFM-V1 during the linear stage of RM instability growth.

In Fig. 17, we plot two sets of numerical Schlieren images at different
nondimensional times kVyt, where V; is the initial growth rate that ac-
counts for finite-amplitude effects and is given by Vy = Vry
/11 +(khy /3)% %] [47]. Fig. 17(a) shows the interface during its linear
evolution, while figures (b)-(d) show the interface growth during the
nonlinear stages (kVot=1). Since this is a light-to-heavy case, the inci-
dent shock upon impinging on the interface is refracted into a shock
reflected back through air, and a transmitted shock into SFe. Fig. 17(a)
shows the interface after passage of the shock, maintaining its sinusoi-
dally symmetric shape about the unperturbed interface, shown as the
dashed line. However, at late times (kVpt=1), higher harmonics [47] are
dominant leading to the appearance of distinct spike and bubble
structures.

A branched simulation in which the interface was shocked a second
time, by a shock reflected from the domain boundary was performed.
We plot Schlieren images of the interface for this problem in Fig. 17(e)-
(h). Since this second shock-interface interaction is a slow/fast inter-
action, the interface undergoes a reversal in sign, where former bubble
structures have now formed spikes and vice versa. Furthermore, since
the interface was already nonlinear at the time of reshock, significant
baroclinic vorticity is deposited during this interaction, leading to the
complex features seen in Fig. 17(g),(h). At late times (kVot = 10), slight
asymmetry in the flow structures is observed, similar to previous studies
of RM instabilities [47].

The growth in time of the bubble and spike amplitudes (hy, and hg, in
Fig. 17(a)-(d)) are shown in Fig. 18(a), where they have been

Table 8
A comparison of the results from theoretical models of the linear growth of RM
instability with results from the simulations.

Quantity Parameter Theory EGFM-
V1
Interface velocity Av (m/s) 106.58 ([45, 107.01
46])
Post-shock Atwood number AT 0.696 ([45, 0.696
461)
Post-shock interface hg (m) 0.0464 ( 0.0465
perturbation amplitude [23])
Amplitude compression ratio ¥y 0.832 ([23]) 0.834
Initial (linear) perturbation dh/dt = Vgy (m/s)  21.605 ( 21.753
growth rate [221)
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normalized by the post-shock initial amplitude h}. Consistent with the
large density ratio used in the simulations, spikes and bubbles exhibit
asymmetric growth, with the spike outpacing the bubble growth
[48-53]. The amplitudes are compared with predictions from the
nonlinear model of Dimonte and Ramaprabhu [47] (D&R), where the
bubble and spike growth rates V4, (dhy,/dt) and Vg, (dhg,/dt) are pre-
dicted as:

1+ (1 F AT DkVor

Vbu/s} =W ) 19)
T Gk Vot + (1 F [AF])Fiy (kVot)*
and the coefficients F and C are, respectively defined as:
Fiuyp = 11147, (20)
45+ |AT| + (2 F |AT]) |khy
Gy IEW L QA DIk o

4

Eq. (19) has been numerically integrated to obtain the model curves in
Fig. 18(a). The simulation results are in excellent agreement with the
model for spike and bubble amplitudes throughout their evolution. In
Fig. 18(b), we also compare the growth rates from Eq. (19) with the
corresponding bubble and spike growth rates from the EGFM-V1. From
this figure, spike and bubble velocities from EGFM-V1 are in very good
agreement with the nonlinear model of Dimonte and Ramaprabhu [47].

7.2.4. Richtmyer—Meshkov instability under the effect of surface tension

The problem configuration follows Problem 7.2.3, but with surface
tension effects included at the interface (for additional validation
problems with surface tension, see [24]). Surface tension, as explained
in §2, is handled numerically using Ap =okx directly in the
multi-medium Riemann solver at the interface. In this section, the effect
of surface tension on the linear growth of RM instability is described
using the results from IMPACT simulations. In the linear regime, surface
tension stabilizes RM instability as predicted by the model of Mikaelian
[54], and results in an oscillatory behavior of the interface about its
mean (unperturbed) position.

The analytical model by Mikaelian [54] applies to a single-mode RM
instability, and predicts the time dependence of the amplitude of a
perturbed interface with imposed surface >tension:

16 AvKA*
w

—Z = coswt + sinot . (22)

F
h()

In Eq. (19), w is the angular frequency of surface tension-driven oscil-
lations and given by

- — ko
Pi + P

where p; and pj; are the post-shock values of densities on either side of
the interface (see Fig. 16). From Eq. (22), the maximum perturbation
amplitude [54] is obtained as:

23)

2
kA*Av) . (24)

e

Ppa = hg A [ 1+ ( p
Using Egs. (23),(24), we estimate a lower limit for the surface tension to
ensure khmq, < 1 in our simulations, so that perturbation amplitudes in
the IMPACT simulations stayed within the linear regime, where the
above model is applicable. Using pj = 0.737 kg/m® and pj =
4109 kg/m® from Problem 7.2.3, and the post-shock values from
Table 8, we estimate for the parameters of the problem, the RM insta-
bility will remain in the linear regime for 626y = 400 N/m. Thus, for
020, results from the IMPACT simulations can be compared with the
model Egs. (22)-(24).

The evolution of the interface for 6 = 400 N/m is shown in Fig. 19,
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and exhibits an oscillatory behavior in contrast to Problem 7.2.3. The
corresponding amplitude evolution is shown in Fig. 20. Following an
initial compression of the pre-shock amplitude hy to h{ visible in Fig. 20
at kVot ~ 0, an oscillatory behavior is established. As seen in this
figure, increasing o results in oscillations with lower peak amplitudes
but with higher frequencies, as predicted by Egs. (23), (24). The values
of ¢ in this figure have been chosen such that the interface undergoes at
least 1, 3, and 5 full cycles in the oscillations for 0 < kVpt < 10. Note
that the slight attenuation in the maximum amplitude is attributed to
numerical diffusion (see [39,55] for a similar behavior in simulations
involving surface tension). Finally, we compare the periods of oscilla-
tions and maximum amplitudes from our simulations with those pre-
dicted by the model of Mikaelian [54] over a wide range of surface
tension coefficients in Fig. 21. In this figure, we see that there is excellent
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agreement between the simulation results and the analytical model for
both the time period of oscillations and the peak amplitudes. In Fig. 21
(b), hmax from IMPACT is slightly lower than the model, due to numerical
diffusion from the finite mesh. The overall excellent agreement between
the simulations and the model shows the EGFM approach is successful in
capturing surface tension effects for multi-material problems.

8. Conclusions

In this paper, a new version of the GFM termed the Efficient Ghost
Fluid Method (EGFM) has been proposed, and is capable of completely
eliminating overheating errors from fluid interfaces in compressible
multi-medium flows. Previous efforts aimed at containing overheating
errors (such as the isentropic fix), did not completely eliminate the
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Fig. 19. The interface location at t = (a) 0.0115 s, (b) 0.0229 s, (c) 0.0342 s,
(d) 0.0458 s, and (e) 0.0571 s from the RM simulations evolving under the
effect of surface tension with ¢ = 400 N/m. The chosen times approximately
correspond to (a) T/4, (b) T/2, (c) 3T/4, (d) T, and (e) 5T /4, where T is the
period of oscillations from Eq. (23).
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Fig. 20. Time evolution of the perturbation amplitude corresponding to
different values of surface tension. Higher ¢ leads to higher frequencies, yet
limits the peak amplitudes, in agreement with the model Egs. (23),(24).
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numerical artifact, although the errors were mitigated to some extent.
Through detailed numerical simulations of several test problems, we
have demonstrated that the proposed approach is successful at elimi-
nating overheating.

The EGFM was implemented in IMPACT, a shock physics code
developed for the simulation of compressible multi-medium flows, and
validated by simulating several standard and demanding 1D problems.
These include single- and multi-medium Riemann problems, shock
impedance matching problems, and shock-interface interactions. When
compared with the OGFM and RGFM approaches, the EGFM simulations
demonstrated highly accurate results, where overheating and spurious
numerical reflections were completely eliminated in all the cases
examined.

The EGFM was extended to 2D flows, and validated against different
standard test problems involving interfaces between multiple media. For
standard 2D test cases, such as problems with radial symmetry, the
EGFM solution consistently reduced interfacial oscillations and
unphysical, asymmetrical features resulting from solving such problems
on Cartesian meshes. The EGFM was also evaluated in the simulation of
a strong shock-interface interaction case with a density ratio of 1000:1,
and successfully applied the correct boundary conditions at the inter-
face, while capturing all details of the flow features following the shock-
interface interaction. For shock-driven instabilities, the EGFM accu-
rately computed interfacial perturbation growth rates associated with
the RM instability in both the linear and nonlinear stages in excellent
agreement with a recently proposed nonlinear model [47]. Furthermore,
the capability of the EGFM to accurately apply the interfacial boundary
conditions associated with surface tension was demonstrated. From our
parametric study of the RM instability under the influence of surface
tension, we find there is excellent agreement between the simulation
results and the analytical model of Mikaelian [54].

In multidimensions, the current implementation of EGFM involves
correcting the values at the cells next to the interface. Note that the
EGFM algorithm applied on a wider stencil involving cells further from
the interface requires the computation of additional source terms (Eq.
(18)) that account for the effect of curvature. Since the primary focus of
this paper is the solution in the immediate vicinity of the interface (such
as flows with surface tension), the performance of EGFM at cells further
away, and the improvement through the implementation of the
curvature-dependent source terms will be addressed in a future inves-
tigation. Nevertheless, we have carefully characterized the accuracy of
EGFM for 2D problems, and find the slight overheating errors observed,
vanish for kAx<1, in contrast to other widely used approaches that were
evaluated in this work. Thus, in regions where the local curvature is
unusually large relative to the mesh employed, the performance of the
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Fig. 21. (a) Period of oscillations and (b) peak amplitude from the RM simulations with different values of the surface tension. The solid black line has a slope of
unity and indicates perfect agreement between the IMPACT simulations and the analytical model of Mikaelian [54]. Greater values of ¢ lead to faster oscillations with

lower peak amplitudes.

17



P. Bigdelou et al.

EGFM will become approximate away from the interface. It is note-
worthy that in spite of the approximate implementation, the quality of
the 2D solutions were improved as observed in the form of lower
overheating errors, removal of oscillations, and precise placement of
waves. Another scenario in which the EGFM will be approximate (for
both 1D and 2D), is when it is extended to flows governed by equations
of state for which the MMRP does not have exact solutions. For such
MMRPs involving more general EOS relations, we expect the EGFM to
still reduce overheating errors, while not completely eliminating them.
A more generalized framework capable of accommodating approximate
Riemann solvers will be the focus of future studies.
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