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Abstract

We extend the concept of generalized NURBS (GNURBS), recently introduced by the authors for parametric curves, to 

bivariate parametric surfaces. These generalizations are obtained via either explicit or implicit decoupling of the weights 

along different physical coordinates. This decoupling allows for treating the weights as additional degrees of freedom in a 

wider range of applications compared to classic NURBS surfaces, providing additional flexibility and increased control. 

This proposed concept effectively improves the capability of NURBS and alleviates its deficiencies in certain applications. 

In particular, we will demonstrate that GNURBS can be effectively used for improved approximation of certain class of 

surfaces such as helicoids, revolved surfaces and minimal surfaces. It will also be established that these proposed generali-

zations can be exactly transformed to equivalent, but higher order, classic NURBS surfaces, ensuring a strong theoretical 

foundation. Finally, a comprehensive MATLAB toolbox, GNURBS3D-Lab, has been developed and introduced in order to 

better demonstrate the behavior and properties of GNURBS surfaces compared to classic NURBS.

Keywords GNURBS · Bivariate surfaces · Directional weights · Non-isoparametric

1 Introduction

Non-Uniform Rational B-Splines (NURBS) were first intro-

duced in 1975 by Versprille [1] via rational extension of 

B-splines. The primary motivation for introducing NURBS 

was to represent conical shapes precisely. This is the critical 

advantage of NURBS over other polynomial-based classes 

of splines, and one of the main reasons for its prevalence. 

Due to this crucial ability, NURBS are still the prevalent 

technology for curve and surface modelling in Computer-

Aided Design/Computer-Aided Manufacturing (CAD/

CAM), and an integral part of most existing CAD/CAM 

commercial software.

The applications of this rational form, however, is not lim-

ited to precise representation of conics. Other applications 

of NURBS can also be found in CAD where the weights 

have been employed as additional degrees of freedom for 

improved flexibility. A thorough review of these applica-

tions has been reported by the authors in [2]. Moreover, in 

addition to CAD/CAM, NURBS have also been extensively 

used in many other areas of applications such as isogeomet-

ric analysis (IGA) [3], NURBS-augmented finite element 

analysis [4], shape optimization [5, 6], topology optimiza-

tion [7, 8], material modeling [9, 10], reverse engineering 

[11], G-code generation [12] etc.

Despite being a powerful tool in engineering design, 

NURBS have multiple shortcomings which restricts its 

capability in certain applications [13]. A thorough review 

of the advantages and limitations of NURBS is provided in 

[13]. A major shortcoming of NURBS which has received 

significant attention is their inability to allow for local refine-

ment. Due to the rigid tensor-product structure of NURBS, 

knot-insertion is a global operation and cannot be performed 

locally. This was soon known as a fundamental limitation 

of NURBS, since local knot-insertion is critical in many 

applications and is considered a common and efficient way 

for achieving desirable accuracy in approximating sharp 

features [14] or scattered data of highly varying density 

[15]. For instance, Leal et al. [14] mention that “Despite 

the advantages of fitting with NURBS, it is still necessary 

to improve the representation of sharp features like high 

curvatures, edges and corners with this fitting method”.

In order to remove this fundamental limitation, vari-

ous generalizations of NURBS have been proposed so far. 

The concept of hierarchical B-spline constructions which 
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considers multilevel B-spline extensions where the tensor-

product structure is preserved at any level was originally 

proposed by Forsey and Bartels in 1988 [16]. The appli-

cation of hierarchical splines for adaptive scattered data 

fitting has recently been investigated by Bracco et al. [15]. 

To efficiently deal with non-trivial data configurations, 

they describe the local solutions in terms of (variable-

degree) polynomial approximations according not only to 

the number of data points locally available, but also to the 

smallest singular value of the local collocation matrices. 

These local approximations are subsequently combined 

without the need of additional computations with the con-

struction of hierarchical quasi-interpolants described in 

terms of truncated hierarchical B-splines.

Generalized Hierarchical NURBS (H-NURBS) were 

introduced in 2008 by Chen et al. [17] by extending the 

idea of hierarchical B-splines to NURBS. Another pop-

ular technology are T-splines [18, 19] which constitute 

a superset of NURBS, and provide the local refinement 

properties by allowing for unstructured-ness. Recent 

variations of T-splines which are mainly devised for the 

application in IGA include analysis-suitable unstructured 

T-splines [20, 21] and Truncated T-splines [22]. Other 

variations of splines and subdivision surfaces, such as 

Tuned Hybrid Non-Uniform Subdivision Surfaces [23], 

Blended B-Spline as well as Truncated Hierarchical Tricu-

bic C0 Spline Constructions on Unstructured Quadrilateral 

or Hexahedral Meshes [24, 25] have also been recently 

developed and successfully implemented in IGA. Most 

recent class of splines which removes the limitations of 

T-splines are Unstructured-splines (U-splines) that have 

been developed by Thomas [26].

In addition to the above technologies, an alternative strat-

egy for addressing the same issue has also been adopted by 

some researchers. The basic idea of these studies is to pre-

serve the tensor-product structure of NURBS, and instead 

include the weights of control points as additional degrees 

of freedom. This idea has also shown promising results for 

the approximation of scattered data of highly varying local 

density [27] as well as for the representation of sharp geo-

metric features [14]. For instance, Leal et al. [14] present a 

new method for improving NURBS surface sharp feature 

representation that first subdivides the fitting data in clus-

ters, by using Self Organizing Map (SOM), also known as 

Kohonen network; then, in each cluster, they use an evolu-

tionary strategy to obtain the optimal weights of the NURBS 

such that the fitting error is minimized and the representation 

of sharp features is improved. While including the weights 

as additional degrees of freedom in data approximation with 

NURBS usually results in non-linear algorithms, Ma [11, 

28] proposes a two-step linear algorithm which yields the 

optimal coordinates of control points as well as their optimal 

weights by solving two separate linear systems of equations.

As discussed in [2], in spite of being an effective tech-

nique for improving the performance of NURBS, there is 

a wide range of applications where treating the weights as 

extra design variables is either impossible or can be prob-

lematic. For instance, Dimas and Briassoulis [13] point out 

that a bad choice of weights in approximation can lead to 

poor curve/surface parameterization. Piegl [29] states that 

“improper application of the weights can result in a very 

bad parameterization, which can destroy subsequent sur-

face constructions”. Further, there are many applications 

where treating the weights as additional design variables is 

essentially impossible. These limitations inspired introduc-

ing the concept of Generalized NURBS (GNURBS) which 

is thoroughly discussed for parametric curves in [2] by the 

authors. Further, the extension of this mathematical model 

was introduced in [30] as a means for improved solution of 

boundary value problems using the isogeometric analysis 

method.

The focus of this paper is to comprehensively study vari-

ous types of GNURBS surfaces, investigate their theoretical 

properties, and explore their applications in the context of 

CAGD. In particular, we will investigate a common applica-

tion of these generalizations for improved surface approxi-

mation. It will be shown that, despite simply being disguised 

forms of classic NURBS, these generalizations provide sig-

nificantly better approximation abilities compared to classic 

NURBS.

The remainder of this paper is organized as follows: 

in Sects. 2 and 3, we introduce different generalizations 

of NURBS, and develop their theoretical properties. We 

explore the application of GNURBS for improved approxi-

mation of surfaces in Sect. 4 where least-square approxi-

mation algorithms are developed. A series of numerical 

examples are presented in Sect. 5 where the performance 

of GNURBS compared to NURBS for the approximation of 

different class of surfaces is studied. Further potential areas 

of applications and extensions of GNURBS are discussed 

in Sect. 6. An interactive MATLAB toolbox for GNURBS 

surfaces is introduced in Sect. 7, and finally conclusions are 

drawn in Sect. 8.

2  Generalized NURBS surfaces: 
non‑isoparametric form via explicit 
decoupling of the weights

We recall that the equation of a NURBS surface is defined 

in the following parametric form [29]

(1)� (�, �) =

n1
∑

i=0

n2
∑

j=0

R
p,q

ij
(�, �)�ij

a ≤ � ≤ b

c ≤ � ≤ d
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where �ij =

[

xij, yij, zij

]T
 is a set of (n

1
+ 1) × (n

2
+ 1) control 

points and R
p,q

ij
(�, �) are the corresponding rational basis 

functions associated with (i, j)th control point defined as

where wij are the weights associated with control points, and 

N
p,q

ij
(�, �) = Ni,p(�)Nj,q(�) are bivariate B-spline basis func-

tions. Ni,p(�) and Nj,q(�) are the univariate B-spline basis 

functions of degree p and q defined on sets of non-decreas-

i n g  r e a l  n u m b e r s  � = {�0, �1, ..., �
n1+p

} a n d 

H = {�0, �1, ..., �
n2+q

} , respectively, called knot vectors.

According to Eq. (1), NURBS surfaces are isoparamet-

ric representations where all the physical coordinates are 

constructed by linear combination of the same set of scalar 

basis functions in parametric space. This is the case for all 

the other popular CAGD representations such as different 

types of splines; and ensures critical properties such as affine 

invariance and convex hull which are of interest in geometric 

modelling [2].

We extend here the concept of Generalized Non-Uniform 

Rational B-Splines (GNURBS) [2] to surfaces by modifying 

Eq. (1) as follows

where ⊙ denotes Hadamard (entry-wise) product of two vec-

tor variables, �ij(�, �) =

[

Rx
ij
(�, �), R

y

ij
(�, �), Rz

ij
(�, �)

]T

 is 

now a vector set of basis functions, and a1, a2, b1 and b2 are 

real numbers. Note that superscripts p, q have been omitted 

for brevity. Denoting an arbitrary coordinate in physical 

space by d ∈ {x, y, z} , the corresponding basis function in 

direction d can be written as

In the above equation, 
(

wx
ij
, w

y

ij
, wz

ij

)

 represent the set of 

coordinate-dependent weights associated with (i, j)th control 

point. Comparison of the above equation with that of classic 

NURBS in Eq. (1) shows that the main difference of the 

proposed generalized form is assigning independent weights 

to different physical coordinates of control points. As can be 

seen, the above leads to a non-isoparametric representation. 

This representation demonstrates different geometric proper-

ties compared to NURBS which are discussed in detail in 

the following section.

(2)R
p,q

ij
(�, n) =

N
p,q

ij
(�, n)wij

∑n1

k=0

∑n2

l=0
N

p,q

kl
(�, n)wkl

(3)� (𝜉, 𝜂) =

n1
∑

i=0

n2
∑

j=0

�
p,q

ij
(𝜉, 𝜂)⊙ �ij

a1 ≤ 𝜉 ≤ a2

b1 ≤ 𝜂 ≤ b2

(4)Rd
ij
(�, �) =

N
p,q

ij
(�, �)wd

ij
∑n1

k=0

∑n2

l=0
N

p,q

kl
(�, �)wd

kl

.

2.1  Theory and properties

It can be shown that due to coordinate-dependence of basis 

functions, a GNURBS surface (in its original form) need 

not satisfy properties such as strong convex hull and affine 

invariance. We demonstrate here that most of the theoretical 

properties which were discussed for GNURBS curves in [2] 

can be extended for GNURBS surfaces.

2.1.1  Local modification effect1

Similar to NURBS, one can show that, in GNURBS, if a 

control point �ij is moved, or if any of the weights 

wd
ij
(d = x, y, z) is changed, it affects the surface shape only 

over the rectangle [�i, �i+p+1) × [�j, �j+q+1) . However, unlike 

NURBS, changing the weights will only affect the parame-

terization of the surface along the corresponding physical 

coordinate d , while the surface parameterization in the other 

directions will be preserved. This is, in fact, the key differ-

ence between GNURBS and NURBS which provides addi-

t i o n a l  f l ex i b i l i t y.  I n  p a r t i c u l a r ,  a s s u m i n g 

(�, �) ∈ [�i, �i+p+1) × [�j, �j+q+1) ,  i f  w
d

i
 i s  increased 

(decreased), the surface will move closer to (farther from) 

�ij . Further, for a fixed (�, �) , a point on �(�, �) moves along 

a straight line along d towards �ij as a weight wd
ij
 is modified. 

This can be directly concluded from Eq. (3) and the proper-

ties of classic NURBS.

For better insight, we provide here a graphical represen-

tation of how this property differs in GNURBS compared 

to NURBS. For this purpose, we first generate a B-spline 

surface with linear in-plane parameterization using a net of 

7 × 7 control points and quadratic basis functions in both 

parametric directions constructed over the knot vectors 

� = H = {0, 0, 0, 0.2, 0.4, 0.6, 0.8, 1, 1, 1} . The employed net 

of control points is illustrated in Fig. 1. As the figure shows, 

the heights of all control points are set to zero except for z
44

 

which is raised to 1.

The B-spline surface obtained by using this control net 

is depicted in Fig. 2.

Next, we increase w
44

 to 4 and plot the resulting NURBS 

surface in the physical space in Fig. 3.

Finally, using Eq. (3), we construct a GNURBS surface 

by only setting wz

44
 to 4, and maintaining all other weights 

at 1. The resulting surface is shown in Fig. 4.

Note that the depicted GNURBS surface in Fig. 4 is 

obtained by using two different sets of basis functions. The 

in-plane coordinates are obtained using the B-spline basis 

functions, while the out of plane coordinate is constructed 

using rational basis functions.

1 This property has already been studied in [30].
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Comparing Figs. 3, 4, one can clearly observe that modi-

fying a weight in classic NURBS alters the parameterization 

of the surface in all physical directions, while in the case of 

GNURBS, the parameterization of the surface only changes 

in the direction of the varied directional weight (z-direction 

in Fig. 4). It will be seen later that this property is critical 

for treating the weights as additional degrees of freedom in 

certain applications.

2.1.2  Axis‑aligned bounding box (AABB):

Every GNURBS knot-element lies within the axis-aligned 

bounding box of its corresponding control points. That is, 

if (�, �) ∈
[

�i, �i+1

)

×
[

�j, �j+1

)

 , then �(�, �) lies within the 

bounding box of the control points �
kl

 , i − p ≤ k ≤ i and 

j − q ≤ l ≤ j.

Note that Eq. (3) can be easily re-written in the follow-

ing form:

(5)

⎧
⎪⎨⎪⎩

x(�, �)

y(�, �)

z(�, �)

⎫⎪⎬⎪⎭
=

n1�
i=0

n2�
j=0

Rx

ij
(�, �)

⎧
⎪⎨⎪⎩

xij

0

0

⎫
⎪⎬⎪⎭

+

n1�
i=0

n2�
j=0

Ry

ij
(�, �)

⎧
⎪⎨⎪⎩

0

yij

0

⎫⎪⎬⎪⎭
+

n1�
i=0

n2�
j=0

Rz

ij
(�, �)

⎧
⎪⎨⎪⎩

0

0

zij

⎫⎪⎬⎪⎭

Fig. 1  Employed control net for construction of different NURBS 

surfaces

Fig. 2  The B-spline surface in physical space

Fig. 3  The NURBS surface with w44 = 4 in physical space

Fig. 4  The GNURBS surface with wz
44 = 4 in physical space
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Accordingly, Eq. (5) could be written as

where �
x
(�, �) , �

y
(�, �) and �

z
(�, �) are simply classic 

NURBS surfaces. From a geometric standpoint, each of 

these surfaces is the projection of the original non-isopara-

metric surface onto the corresponding physical axes.

The following figure shows a graphical representation of 

the above equations for a quadratic × cubic GNURBS surface 

constructed over the knot vectors � = {0, 0, 0, 1∕3, 2∕3, 1, 1, 1} 

and H = {0, 0, 0, 0, 1∕3, 2∕3, 1, 1, 1, 1} . Random weights in 

z-direction have been assigned to the control points and the 

control points are plotted proportional to these weights in 

size for better insight.

Since each of these projected surfaces is a classic NURBS 

surface, they satisfy the convex hull property. Therefore, the 

middle knot-element of the surface which is marked in 

Fig. 5, must lie within the convex hulls of its corresponding 

control points on all three projected surfaces. That is, if 

(�, �) ∈
[

1∕3, 2∕3

)

×
[

1∕3, 2∕3

)

 , then �
x
(�, �) lies within the 

convex hull of the control points 
(

x
kl

, 0, 0
)

 , 1 ≤ k ≤ 3 and 

1 ≤ l ≤ 4 which is the space between the two planes parallel 

to yz-plane. Similarly, �
y
(�, �) lies within the convex hull of 

the control points 
(

0, ykl, 0
)

 , 1 ≤ k ≤ 3 and 1 ≤ l ≤ 4 which 

is the area between the two planes parallel to xz-plane, and 

�
z
(�, �) lies within the convex hull of the control points 

(6)

�(�, �) = �x(�, �) + �y(�, �) + �z(�, �) ,

{

a1 ≤ � ≤ a2

b1 ≤ � ≤ b2

(

0, 0, zkl

)

 , 1 ≤ k ≤ 3 and 1 ≤ l ≤ 4 which is the area between 

the two planes parallel to xy-plane. Consequently, �(�, �) is 

contained in the intersection of these six planes, which is the 

highlighted box area shown in Fig. 5, referred to as the axis-

aligned bounding box of �
kl

 , 1 ≤ k ≤ 3 and 1 ≤ l ≤ 4 . It is 

obvious that this property is less strict than the strong con-

vex-hull property of classic NURBS surfaces.

2.2  Special case with partial decoupling 
of the weights

A more practical variation of GNURBS, which will be the 

emphasis for the rest of this paper, is obtained by partial 

decoupling of the weights. In particular, for 3D surfaces, 

one can use the same set of in-plane weights along x and y 

directions, denoted by wxy , and a different set of out-of-plane 

weights in z direction wz . Accordingly, Eq. (3) could be re-

written in the following expanded form

where

Observe that owing to this decoupling of the in-plane and 

out-of-plane weights, unlike in classic NURBS, one can now 

freely manipulate the weights along z direction, for instance, 

without perturbing the geometry or parameterization of the 

underlying planer surface in x–y plane.

2.3  Equivalence with NURBS

Despite losing some properties of NURBS which might be 

of interest in certain applications, we recall here a theorem 

[30] which establishes that GNURBS are nothing but dis-

guised forms of higher-order classic NURBS. Therefore, all 

the properties of NURBS can be recovered through a suit-

able transformation and a strong theoretical foundation will 

be ensured. We express the theorem here for the special case 

with partial decoupling of the weights in above section, but 

it could be easily extended to the generic form in Eq. (3).

Theorem 1 A 3D GNURBS surface of degree (p, q) with 

partially decoupled set of weights (wxy
, w

z) , can be exactly 

transformed into a higher order NURBS surface of degree 

(2p, 2q) in the following form:

(7)

⎧
⎪⎨⎪⎩

x(�, �)

y(�, �)

z(�, �)

⎫
⎪⎬⎪⎭
=

n1∑
i=0

n2∑
j=0

⎧
⎪⎨⎪⎩

R
xy

ij
(�, �)xij

R
xy

ij
(�, �)yij

Rz

ij
(�, �) zij

⎫
⎪⎬⎪⎭

a1 ≤ � ≤ a2

b1 ≤ � ≤ b2

(8)R
xy

ij
(�, �) =

N
p,q

ij
(�, �)w

xy

ij
∑n1

k=0

∑n2

l=0
N

p,q

kl
(�, �)w

xy

kl

Fig. 5  Geometric representation of the bounding box property for a 

GNURBS surface
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where

in which (Xij, Yij, Zij, Wij) are the coordinates and weights of 

the (n̂
1
+ 1) × (n̂

2
+ 1) control points of the equivalent higher 

order NURBS surface. The proof of this theorem has been 

provided in [30].

As discussed in [30], in the special case of Rational 

Bézier (R-Bézier) surfaces, the following straightforward 

analytical expressions can be obtained for the coefficients 

of the equivalent higher order R-Bézier surface:

where �n
ij
=

⎛
⎜
⎜
⎝

n

j

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

n

i − j

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

2n

i

⎞
⎟
⎟
⎠

.Figure 6a shows an example of a 

degree (2, 3)th GNURBS surface with random directional 

weights assigned in z-direction. Its equivalent higher order 

NURBS surface obtained using the above theorem is 

depicted in Fig. 6b. Note that the size of control points in 

these figures are plotted proportional to their weights for 

better insight.

3  Generalized NURBS surfaces: 
isoparametric form via implicit 
decoupling of the weights

It is interesting to note that the equivalent higher order 

NURBS representation in Eq. (9) itself provides another 

variation of NURBS which can be directly employed as 

(9)

⎧
⎪⎨⎪⎩

x(𝜉, 𝜂)

y(𝜉, 𝜂)

z(𝜉, 𝜂)

⎫
⎪⎬⎪⎭
=

n̂1�
i=0

n̂2�
i=0

�R
2p,2q

ij
(𝜉, 𝜂)

⎧
⎪⎨⎪⎩

Xi

Yi

Zi

⎫
⎪⎬⎪⎭

(10)
�R

2p,2q

ij
(𝜉, 𝜂) =

N
2p,2q

ij
(𝜉, 𝜂)Wij

n̂1
∑

k=0

n̂2
∑

l=0

N
2p,2q

kl
(𝜉, 𝜂)Wkl

(11)

Wij =

min(p,i)
∑

k=max(0,i−p)

min(q,j)
∑

l=max(0,j−q)

�
p

ik
�

q

jl
w

xy

i−k,j−l
wz

kl

Xij =
1

Wij

min(p,i)
∑

k=max(0,i−p)

min(q,j)
∑

l=max(0,j−q)

�
p

ik
�

q

jl
w

xy

kl
xklw

z

i−k,j−l

Yij =
1

Wij

min(p,i)
∑

k=max(0,i−p)

min(q,j)
∑

l=max(0,j−q)

�
p

ik
�

q

jl
w

xy

kl
yklw

z

i−k,j−l

Zij =
1

Wij

min(p,i)
∑

k=max(0,i−p)

min(q,j)
∑

l=max(0,j−q)

�
p

ik
�

q

jl
w

xy

i−k,j−l
zklw

z

kl

another alternative to NURBS with better flexibility in many 

applications.

In order to clarify how this equation provides additional 

flexibility than classic NURBS, we first derive a more generic 

form of this equation via an alternative approach using an 

extension of order elevation technique. In this case, we limit 

our study to rational Bézier surfaces for simplicity.

3.1  Theory and formulation

Assume a 2D R-Bézier surface of degree (p, q) is given as 

follows

Fig. 6  a A degree (2, 3)th GNURBS surface with random weights 

assigned in z-direction, and b its equivalent (isoparametric) NURBS 

surface of degree (4,6)
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(12)

{

x(�, �)

y(�, �)

}

=

p
∑

i=0

q
∑

j=0

B
p,q

ij
(�, �)w

xy

ij

wxy(�, �)

{

xij

yij

}

where B
p,q

ij
(�, �) = Bi,p(�)Bj,q(�) are bivariate Bézier basis 

functions of degree (p, q) . In order to elevate the degree of 

this surface by (r, s), we can simply multiply both numerator 

and denominator of this equation by any arbitrary expression 

in the following form

Recalling Theorem 1, we can obtain the higher order 

R-Bézier surface with (r, s) degree elevations as

where

in which p̂ = p + r, q̂ = q + s and 
(

Xij, Yij, Wij

)

 can be 

obtained using the following relations

where �
�,�

ij
=

⎛
⎜
⎜
⎝

�

j

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

�

i − j

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

� + �

i

⎞
⎟
⎟
⎠

.

Observe that this procedure can be seen as a natural 

extension of the classic order elevation techniques in the 

literature [31, 32]. In fact, one can simply recover the com-

mon order elevation algorithm by assigning wz

ij
= 1, ∀(i, j) 

in Eq. (13). We will refer to this procedure as generalized 

order elevation hereafter. Now assume we intend to add 

another dimension to the degree-elevated representation in 

Eq. (14) in an isoparametric manner. For this purpose, we 

extend this equation as

(13)wz(�, �) =

r
∑

i=0

s
∑

j=0

B
r,s

ij
(�, �)wz

ij

(14)

{

x(𝜉, 𝜂)

y(𝜉, 𝜂)

}

=

p̂
∑

i=0

q̂
∑

j=0

�R
p̂,q̂

ij

{

Xij

Yij

}

(15)
�R

p̂,q̂

ij
(𝜉, 𝜂) =

B
p̂,q̂

ij
(𝜉, 𝜂)Wij

p̂
∑

k=0

q̂
∑

l=0

B
p̂,q̂

kl
(𝜉, 𝜂)Wkl

(16)

Wij =

min(p,i)
∑

k=max(0,i−r)

min(q,j)
∑

l=max(0,j−s)

�
p,r

ik
�

q,s

jl
w

xy

kl
wz

i−k,j−l

Xij =
1

Wij

min(p,i)
∑

k=max(0,i−r)

min(q,j)
∑

l=max(0,j−s)

�
p,r

ik
�

q,s

jl
w

xy

kl
xklw

z

i−k,j−l

Yij =
1

Wij

min(p,i)
∑

k=max(0,i−r)

min(q,j)
∑

l=max(0,j−s)

�
p,r

ik
�

q,s

jl
w

xy

kl
yklw

z

i−k,j−l

(17)

⎧⎪⎨⎪⎩

x(𝜉, 𝜂)

y(𝜉, 𝜂)

z(𝜉, 𝜂)

⎫
⎪⎬⎪⎭
=

p̂�
i=0

q̂�
j=0

�R
p̂,q̂

ij
(𝜉, 𝜂)

⎧
⎪⎨⎪⎩

Xij

Yij

Zij

⎫
⎪⎬⎪⎭

Fig. 7  Configuration of the quarter annulus

Fig. 8  Exact representation of the quarter annulus with normal 

parameterization using a (p, q) = (2, 1) rational Bézier surface
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It is interesting to notice that, although Eq. (17) apparently 

seems to be a classic R-Bézier surface, it provides additional 

flexibility. Observe that in the above procedure,wz

ij
 are arbi-

trary variables which can be freely chosen without perturb-

ing the geometry or parameterization of the underlying sur-

face in x–y plane. For better insight, we perform degree 

elevation on a circular annulus using the above procedure 

with different selections of wz

ij
 and discuss how it differs 

from classic degree elevation technique.

For this purpose, we generate a 3D (p̂, q̂) = (3, 2) 

isoparametric GR-Bézier surface by performing the above 

degree-elevation processes with (r, s) = (1, 1) on an ini-

tial quarter annulus, shown in Fig. 7, which is modelled 

by a (p, q) = (2, 1) R-Bézier surface as depicted in Fig. 8 

and specifying the heights of control points of the degree-

elevated surface as shown in Table 1.

The obtained results for classic order elevation, that is, 

assuming unit values for all isoparametric control weights 

as in the following equation:

are shown in Fig. 9.

Moreover, the obtained results for generalized order 

elevation by assuming the following values for isopara-

metric control weights:

are depicted in Fig. 10.

As can be clearly seen in these figures, in both cases, 

the in-plane representation of the annular ring as well as 

its parameterization has remained unchanged. However, 

the out of plane deformation of the annular ring in the two 

cases are not identical.

While this variation of NURBS, which will be referred 

to as isoparametric GNURBS hereafter, similarly provides 

the same important possibility of treating the out of plane 

weights as additional degrees of freedom, it provides dif-

ferent advantages elaborated in the following section.

The above algorithm can also be extended to NURBS 

in a straightforward manner using a similar three step 

(18)

[

w
z

11
w

z

12

w
z

21
w

z

22

]

=

[

1.0 1.0

1.0 1.0

]

(19)

[

w
z

11
w

z

12

w
z

21
w

z

22

]

=

[

3.0 1.0

1.0 0.5

] algorithm elaborated above. That is, Eq. (17) also holds 

true for NURBS:

with the rational basis functions defined as

The proposed generalizations of NURBS in Eqs. (7) and 

(20) can effectively improve the performance of NURBS 

in a wide area of applications. Exploring all these appli-

cations, however, is beyond the scope of this study. We 

(20)

⎧⎪⎨⎪⎩

x(𝜉, 𝜂)

y(𝜉, 𝜂)

z(𝜉, 𝜂)

⎫⎪⎬⎪⎭
=

n̂1�
i=0

n̂2�
j=0

�R
p̂,q̂

ij
(𝜉, 𝜂)

⎧
⎪⎨⎪⎩

Xij

Yij

Zij

⎫
⎪⎬⎪⎭

(21)
�R

p̂,q̂

ij
(𝜉, 𝜂) =

N
p̂,q̂

ij
(𝜉, 𝜂)Wij

n̂1
∑

k=0

n̂2
∑

l=0

N
p̂,q̂

kl
(𝜉, 𝜂)Wkl

Table 1  Assigned heights 

(zij) to the control points of 

the resulting degree-elevated 

isoparametric GR-Bézier 

surface

i = 0 i = 1 i = 2 i = 3

j = 0 0 1 1 0

j = 1 0 1 1 0

j = 2 0 1 1 0

Fig. 9  Classic degree-elevated R-Bézier representation of the quarter 

annulus with control variables of Table 1: a top view, b 3D view
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limit our study here to a few classic examples in geomet-

ric modelling, that is the approximation of certain class 

of surfaces such as helical, revolved or minimal surfaces 

using GNURBS; and concisely point out some of their 

potential broader areas of applications. Finally, hereafter, 

we will persistently refer to Eq. (7) as the first generali-

zation of NURBS or non-isoparametric GNURBS, while 

we will refer to Eq. (20) as the second generalization of 

NURBS or isoparametric GNURBS.

3.2  Analogy with non‑isoparametric GNURBS

As discussed earlier, the primary motivation for introducing 

GNURBS is to provide the possibility of treating the weights 

as additional degrees of freedom in a wider range of applica-

tions than classic NURBS. While both proposed variations 

allow for this additional flexibility, they differ in various 

aspects making them suitable for different applications.

A major difference is regarding the physical meaning of 

the control weights in the two variations. In the first vari-

ation, the geometric effect of manipulating the directional 

weights on the behavior of the surface is tangible; hence, 

making it suitable for free-form geometric modelling with 

additional flexibility than classic NURBS. On the other 

hand, due to the loss of the local support of control weights 

in the isoparametric form, the physical effect of manipulat-

ing these directional weights can be unpredictable, making 

the second variation impractical for geometric modelling.

Despite losing this merit, unlike the first variation, the 

isoparametric form allows for introducing customized 

rationality for approximation, i.e., the number of unknown 

coefficients to be considered as design variables in the 

denominator can be controlled. This property can help bet-

ter control the approximation process.

Finally, if affine invariance and other properties of 

NURBS are of interest, the result of approximation using 

the second (isoparametric) variation directly lies in the 

NURBS space; hence, satisfying all the properties of 

NURBS, without the need for any additional post-process-

ing. However, in the case of the first (non-isoparametric) 

variation, an additional transformation step as discussed 

in Theorem 1 is required for recovering the properties of 

NURBS.

4  Least‑square surface approximation using 
NURBS versus GNURBS

In this section, we demonstrate that the proposed gener-

alizations of NURBS are able to provide superior approxi-

mation for certain class of surfaces compared to classic 

NURBS. We assume here that a planar geometry with 

precise representation using NURBS, such as the annular 

ring in Fig. 8, is given as:

Next, we assume that an analytical height function 

z(�, �) is given and needs to be approximated with mini-

mal error over the given planar surface. The problem 

can be posed as a least square approximation problem 

which leads to optimal accuracy in L2-norm. Consider-

ing 
{(

�
s
, �

s

)

→

(

x
s
, y

s
, z

s

)

∶ s ∈ S
}

 as a set of n
c
 chosen 

collocation points, the error function f  to be minimized 

is defined as

(22)�
xy
(�, �) =

{

x(�, �)

y(�, �)

}

,
0 ≤ � ≤ 1

0 ≤ � ≤ 1

(23)

f =
1

2

∑

s∈S⊖

‖
‖ẑ(𝜉s, 𝜂s) − zs

‖‖
2
=

1

2

∑

s∈S⊖

‖‖
‖‖‖

∑

L∈L s

RL(𝜉s, 𝜂s)zL − zs

‖‖
‖‖‖

2

Fig. 10  Generalized degree-elevated R-Bézier representation of the 

quarter annulus with control variables of Table 1: a top view, b 3D 

view
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where ẑ(𝜉, 𝜂) is the approximated NURBS function, L s is 

the set of indices of non-zero basis functions at 
(

�
s
, �

s

)

 , 

z
s
= z(�

s
, �

s
) , and zL are the unknown control variables. 

For simplicity, the global index L is used for numbering 

which is defined as L = j(n
1
+ 1) + i + 1 for the basis (i, j) . 

In the following, we provide the detailed formulation of 

this problem using NURBS as well as its different proposed 

generalizations.

4.1  Linear least‑square approximation using NURBS

In the case of NURBS, the only unknowns to consider are 

control variables zL . Taking the partial derivatives of f  with 

respect to the unknowns zL , and setting them to zero yields

where n
T
=

(

n
1
+ 1

)

×

(

n
2
+ 1

)

 denotes the total number of 

control points. Eq. (25) could be written in the matrix form

which represents a classic linear least square problem and 

can be easily solved for the n
T
 unknowns � =

{

z1, ..., znT

}

 by 

proper choice of collocation points.

4.2  Non‑linear least‑square approximation using 
non‑isoparametric GNURBS

In order to improve the accuracy of the above discussed 

NURBS-based approximation, we develop a non-linear 

least-square minimization algorithm using 1st GNURBS. 

Invoking the non-isoparametric GNURBS surface with par-

tial decoupling of the weights in Sect. 2.2, we can treat the 

out of plane weights wz

L
 as extra design variables without 

perturbing the geometry or parameterization of the underly-

ing precise planar surface �
xy
(�, �) . We may refer to these 

variables as control weights hereafter.

The objective function to be minimized could still be 

written as (23). However, the vector of design variables now 

changes to �� =
{

z1, ..., znT
, w

z

1
, ..., wz

nT

}

 . Moreover, the fol-

lowing bounding constraints on control weights are often 

desired to be satisfied for numerical stability.

(24)
�f

�zk

= 0, k = 1, ..., nT

(25)

∑

s∈S

∑

L∈L s

Rk(�s, �s)RL(�s, �s)zL =
∑

s∈S

zsRk(�s, �s), k = 1, ..., nT

(26)
�
s∈S

⎛⎜⎜⎝

R1(�s, �s)R1(�s, �s) ⋯ R1(�s, �s)RnT
(�s, �s)

⋮ ⋱ ⋮

RnT
(�s, �s)R1(�s, �s) ⋯ RnT

(�s, �s)RnT
(�s, �s)

⎞
⎟⎟⎠

⎛
⎜⎜⎝

z1

⋮

znT

⎞
⎟⎟⎠
=
�
s∈S

zs

⎛⎜⎜⎝

R1(�s, �s)

⋮

RnT
(�s, �s)

⎞⎟⎟⎠

Equation (23) with the new vector of design variables �′ 

establishes a non-linear least-square optimization problem 

which could be solved using different existing algorithms. 

Some of these algorithms, such as Levenberg–Marquardt, 

do not allow for the imposition of bounding constraints on 

design variables. In this case, one can easily apply an expo-

nential transformation to control weights to ensure their pos-

itivity without the imposition of bounding constraints as in 

[27]. We will use here the trust-region-reflective algorithm 

which is available in MATLAB and allows for the imposi-

tion of bounding constraints on design variables.

In order to solve the established problem, the Jacobian 

matrix is required. The Jacobian matrix � is composed of 

two parts

where �
z
 contains the partial derivatives of f  with respect 

to zk , while �
w
 includes the partial derivatives of f  with 

respect to wz

k
 . Differentiating with respect to zk , �z

 will be 

easily derived as

The other component of the Jacobian matrix can be 

obtained as

In order to evaluate the partial derivatives with respect 

to weight design variables, we rewrite ẑ(𝜉, 𝜂) as

where Z(�, �) and W(�, �) are

(27)w
z

k
> 0, k = 1, ..., nT

(28)� = [�
z
�

w
]

(29)�z =

⎡
⎢
⎢
⎢
⎢
⎣

R1(�1, �1) R2(�1, �1) ⋯ RnT
(�1, �1)

R1(�2, �2) R2(�2, �2) ⋯ RnT
(�2, �2)

⋮ ⋮ ⋱ ⋮

R1(�nc
, �nc

) R2(�nc
, �nc

) ⋯ RnT
(�nc

, �nc
)

⎤
⎥
⎥
⎥
⎥
⎦

(30)Jw =

⎡
⎢
⎢
⎢
⎢
⎣

𝜕ẑ(𝜉1,𝜂1)
𝜕w

z

1

⋯
𝜕ẑ(𝜉1,𝜂1)
𝜕w

z
nT

⋮ ⋱ ⋮

𝜕ẑ(𝜉nc
,𝜂nc

)
𝜕w

z

1

⋯
𝜕ẑ(𝜉nc

,𝜂nc
)

𝜕w
z
nT

⎤
⎥
⎥
⎥
⎥
⎦

(31)ẑ(𝜉, 𝜂) =
Z(𝜉, 𝜂)

W(𝜉, 𝜂)

(32)Z(�, �) =

nT
∑

L=1

NL(�, �)wz

L
zL
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Using these definitions, we can obtain

Having the analytical Jacobian matrix components in 

Eqs. (29) and (30), we can now solve the established non-

linear least-square optimization problem efficiently. We 

impose the initial conditions by setting all the control vari-

ables to zero and all the control weights to 1, i.e.

4.3  Non‑linear least‑square approximation using 
isoparametric GNURBS

Since the derivation of analytical Jacobian matrix with this 

generalization becomes complicated in case of having inter-

nal knots, we limit our derivation here to GR-Bézier. Invok-

ing the isoparametric GR-Bézier representation in Eq. (17), 

we can again establish the approximation problem as a non-

linear least square problem with the objective function 

defined in Eq. (23) but with the new set of design variables 

��� =

{

Z1, ..., ZnT
, w

z

1
, ..., wz

nd

}

 where n
d
= (r + 1) × (s + 1) 

is the total number of isoparametric control weights, and 

nT = (p̂ + 1) × (q̂ + 1) is the total number of control points. 

The Jacobian matrix � can again be divided into two com-

ponents where �
z
 contains the partial derivatives of f  with 

respect to Z
k
 , while �

w
 includes the partial derivatives of f  

with respect to wz

l
 . Differentiating with respect to Z

k
 , �

z
 will 

be easily derived as

Also, �
w
 can be obtained as

(33)W(�, �) =

nT
∑

L=1

NL(�, �)wz

L

(34)
𝜕ẑ(𝜉, 𝜂)

𝜕w
z

k

=
Nk(𝜉, 𝜂)

W(𝜉, 𝜂)

[

zk − ẑ(𝜉, 𝜂)
]

, k = 1, ..., nT

(35)�
�

0 =

⎧
⎪
⎨
⎪
⎩

0, 0, ..., 0
⏟⏞⏟⏞⏟

n
T

, 1, 1, ..., 1
⏟⏞⏟⏞⏟

n
T

⎫
⎪
⎬
⎪
⎭

(36)�z =

⎡
⎢
⎢
⎢
⎢
⎣

R̂1(�1, �1) R̂2(�1, �1) ⋯ R̂nT
(�1, �1)

R̂1(�2, �2) R̂2(�2, �2) ⋯ R̂nT
(�2, �2)

⋮ ⋮ ⋱ ⋮

R̂1(�nc
, �nc

) R̂2(�nc
, �nc

) ⋯ R̂nT
(�nc

, �nc
)

⎤
⎥
⎥
⎥
⎥
⎦

In order to evaluate the partial derivatives of ẑ(𝜉) with 

respect to isoparametric control weights wz

l
 , we rewrite ẑ(𝜉) 

as

where Z(�) and W(�) are

With these definitions, we can obtain the required deriva-

tives as

The derivatives in above equation can be evaluated using 

the following expressions

where

in which

�
p,r

i,i−m
=

⎛
⎜
⎜
⎝

p

i − m

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

r
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⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

p + r

i

⎞
⎟
⎟
⎠

 , �
q,s

j,j−n
=

⎛
⎜
⎜
⎝

q

j − n

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

s

n

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

q + s

j

⎞
⎟
⎟
⎠

.

Similar to previous case, we specify the initial conditions 

as follows

(37)�w =

⎡
⎢
⎢
⎢
⎢
⎣

𝜕ẑ(𝜉1,𝜂1)
𝜕w

z

1

⋯
𝜕ẑ(𝜉1,𝜂1)
𝜕w

z
nd

⋮ ⋱ ⋮

𝜕ẑ(𝜉nc
,𝜂nc
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𝜕w

z

1

⋯
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𝜕w
z
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⎤
⎥
⎥
⎥
⎥
⎦

(38)ẑ(𝜉) =
Z(𝜉)

W(𝜉)

(39)Z(�) =

n
T

∑

L=1

B
L
(�, �)W

L
Z

L

(40)W(�) =

n
T

∑

L=1

B
L
(�, �)W

L

(41)

𝜕ẑ(𝜉, 𝜂)

𝜕w
z
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=
1
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𝜕w
z

l

− ẑ(𝜉, 𝜂)
𝜕W(𝜉, 𝜂)

𝜕w
z

l

]

, l = 1, ..., nd

(42)
�Z(�, �)

�w
z

l

=

nT
∑

L=1

BL(�, �)
�WL

�w
z

l

ZL

(43)
�W(�, �)

�w
z

l

=

nT
∑

L=1

BL(�, �)
�WL

�w
z

l

(44)
�WL

�wz

l

=
�Wij

�wz
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=

{

�
p,r

i,i−m
�

q,s

j,j−n
w

xy

i−m,j−n
, if (i − p) ≤ m ≤ i & (j − q) ≤ n ≤ j

0 otherwise
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As previously discussed, by changing wz

l
 during the 

optimization process, the in-plane coordinates of control 

points also vary at each iteration. However, since the in-

plane geometry and parameterization are always fixed, one 

may only re-evaluate and update these coordinates after the 

termination of the optimization process according to the 

obtained optimal set of isoparametric basis functions. It is 

important to note that this algorithm yields the combination 

of optimal weights and the corresponding arrangement of 

control points which result in the best approximation for a 

given in-plane parameterization. To our knowledge, no such 

investigation has been reported in the literature thus far.

5  Numerical examples

In this section, we present a few numerical examples of 

approximating various types of surfaces using the proposed 

generalizations of NURBS and compare the obtained results 

(45)�
��

0 =

⎧
⎪
⎨
⎪
⎩

0, 0, ..., 0
⏟⏞⏟⏞⏟

n
T

, 1, 1, ..., 1
⏟⏞⏟⏞⏟

n
d

⎫
⎪
⎬
⎪
⎭

with those of classic NURBS. In all cases, the relative L2-

norm of error is calculated using the following relation

where all integrations are calculated using Gaussian 

quadrature.

5.1  Test case 1: helicoid modelling

As the first numerical example, we consider the approxima-

tion of a partial helical surface with the following equation:

which is depicted in Fig. 11. As observed, the in-plane 

parameterization of this surface is a quarter annulus with 

the configuration already shown in Fig. 7. Since this is a 

geometric modelling problem where preserving the proper-

ties of NURBS are of interest, it is an ideal candidate for 

employing isoparametric GNURBS. Accordingly, follow-

ing the procedure discussed above in Sect. 4.3, we try to 

approximate the given height function in Eq. (47) and com-

pare the obtained results with classic NURBS. The obtained 

results for different degrees of basis functions are presented 

in Table 2.

According to this table, by including larger numbers 

of control weights, better improvement of accuracy is 

achieved. This reveals superior approximation of rational 

functions especially when higher degrees of basis functions 

are employed, at the expense of increased computational 

time. It is clear that the proposed method offers a trade-off 

between the and computational cost. This trade-off depends 

on multiple factors including the employed degrees of basis 

functions, number of control points and control weights as 

well as the nature of the target height function, which need 

to be considered when the computational cost is of con-

cern. According to this table, the increase in computational 

(46)error =

(

∫
Ω
(ẑ(𝜉, 𝜂) − z(𝜉, 𝜂))2dΩ

)
1∕2

∫
Ω

z(𝜉, 𝜂)dΩ

(47)

�(�, �) = ((� + 1) cos(�), (� + 1) sin(�), �),
0 ≤ � ≤ �∕2
0 ≤ � ≤ 1

Table 2  Error of approximating 

the height function of helical 

surface in Eq. (47) using 

R-Bézier versus isoparametric 

GR-Bézier in relative L2-norm

Surface type (r, s) Degree (p̂, q̂)

= (p + r, q + s)

No. of con-

trol variables

No. of con-

trol weights

Error Error ratio Time (s)

R-Bézier (0, 0) (2, 1) 6 0 2.68E-2 1.0 0.25

2nd GR-Bézier 0 2.68E-2 0.45

R-Bézier (1, 1) (3, 2) 12 0 1.28E-4 1.0 0.27

2nd GR-Bézier 4 1.28E-4 0.52

R-Bézier (2, 2) (4, 3) 20 0 1.28E-4 109.4 0.28

2nd GR-Bézier 9 1.17E-6 7.55

R-Bézier (3, 3) (5, 4) 30 0 2.22E-6 180.5 0.31

2nd GR-Bézier 16 1.23E-8 12.54

Fig. 11  The helical surface in Eq. (47)
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cost raises by including more control weights. However, it 

is important to notice that GNURBS always yields higher 

accuracy by making use of the same number of control 

points. The results, however, show no improvement in accu-

racy for the first level of degree elevation, i.e. (r, s) = (1, 1) . 

This implies that the optimal values of control weights for 

this particular level of degree elevation are unity. In other 

words, classic order elevation results in optimal accuracy 

for the approximation of helical height function using this 

particular degree of basis functions.

5.2  Test case 2: Scherk minimal surface

As the second numerical experiment, we consider the con-

struction of a minimal surface model referred to as Scherk 

minimal surface over a square domain. This example has 

been addressed by Pan et al. [33] using isogeometric analy-

sis of minimal surfaces based on extended loop subdivision 

scheme. The equation of this minimal surface is given as

(48)�(�, �) =

(

�, �, ln

(

cos(�)

cos(�)

))

,
−1.5 ≤ � ≤ 1.5

−1.5 ≤ � ≤ 1.5

which is depicted in Fig. 12.

As the figure shows, the surface features steep gradients 

near the boundaries. In this example, for simplicity, we use 

non-isoparametric GNURBS and compare its approximation 

properties with classic NURBS. The obtained results using 

various employed degrees of basis functions are shown in 

Table 3.

As observed, the accuracy of approximation using 

1st GNURBS in all cases is better than that of classic 

NURBS. Further, the improvement in accuracy almost 

always increases when larger degrees of basis functions 

are used. According to Table 2, the only exception is in 

the bi-cubic case. This could be justified considering the 

fact that, besides the degree of basis functions, the num-

ber of control points and control weights, the accuracy 

of approximation also depends on additional factors such 

as the behavior of the height function, in particular. Fur-

ther, as previously observed in Table 2, there was a similar 

exception for the previous test case when elevating the 

degree from (2, 1) to (3, 2). Finally, a similar trend in 

the computational times is observed when the number of 

employed control weights is increased.

Fig. 12  Scherk minimal surface

Table 3  Error of approximating 

the Scherk minimal surface in 

Eq. (48) using NURBS versus 

1st GNURBS in relative L2-

norm

Surface type Degree (p, q) No. of control 

variables

No. of control 

weights

Error Error ratio Time (s)

NURBS (2, 2) 25 0 1.52E-1 18.76 0.32

1st GNURBS 25 8.11E-3 4.52

NURBS (3, 3) 36 0 9.40E-2 18.42 0.39

1st GNURBS 36 5.10E-3 1.98

NURBS (4, 4) 49 0 5.02E-2 142.21 0.40

1st GNURBS 49 3.53E-4 16.50

NURBS (5, 5) 64 0 3.59E-2 262.04 0.43

1st GNURBS 64 1.37E-4 27.30
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Fig. 13  Convergence rate of quadratic NURBS versus GNURBS for 

the approximation of Scherk minimal surface
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Finally, for the case of quadratic basis functions, we 

also perform a convergence study where we persistently 

refine the knot sequence and compare the obtained accu-

racy of NURBS versus GNURBS. The obtained results are 

plotted in Fig. 13. As the figure shows, the convergence 

rate of GNURBS is more than one order faster than classic 

NURBS, resulting in substantial improvement of accuracy 

especially when larger numbers of control points are used.

5.3  Test case 3: surface of revolution

As the final numerical study, we consider the problem of 

the approximation of a surface of revolution defined using 

Eq., which is depicted in Fig. 14.

(49)

�(�, �) =

(

(� + 1) cos(�), (� + 1) sin(�), e
�2
)

,
0 ≤ � ≤ 2�

0 ≤ � ≤ 1

As observed, the surface has an exponential behavior 

along the radial direction. In this example, we demonstrate 

how employing the second proposed variation of NURBS 

could be useful for improved approximation of these type of 

surfaces using the same number of control points. For sim-

plicity, we only consider modelling a quarter of the surface, 

i.e. (0 ≤ � ≤ �∕4) . Similar to the first numerical example, we 

start with the initial model of degree (p, q) = (2, 1) in Fig. 8. 

Since the height function here only varies along the radial 

direction, we only elevate the degree along this direction 

(�) and compare the obtained approximation results using 

Bézier (classic order elevation) with those of isoparametric 

GR-Bézier (optimal order elevation). The obtained results 

for (r, s) = (0, 0) up to (r, s) = (0, 3) are presented in Table 4.

According to this table, the accuracy of approximation 

by using isoparametric GR-Bézier is significantly higher 

than that of classic Bézier, especially when higher order 

elevations are applied. However, as can be seen, similar 

to previous test cases there is an exception in the case of 

(r, s) = (0, 2) which could be due to certain behavior of the 

assumed height function. These results clearly show the 

superiority of rational functions for the approximation of 

this class of surfaces.

Finally, the corresponding arrangements of control points 

for cases 3 to 8 are represented in Fig. 15. As observed, the 

arrangements of control points in all cases only differ along 

the radial direction. This was expected to be the case, since 

in this example, order elevation has only been performed 

along the radial direction.

6  Extensions and further applications

While, in this paper, we limited our study to applying the 

proposed generalizations to NURBS, due to fundamental 

similarities between different variations of splines, similar 

Fig. 14  The surface of revolution in Eq. (49)

Table 4  Error of approximating the height function of the surface of revolution in Eq. (49) using R-Bézier versus isoparametric GR-Bézier in 

relative L2-norm

Case no. Surface type (r, s) Degree (p̂, q̂)

= (p + r, q + s)

No. of control 

variables

No. of control 

weights

Error Error ratio Time (s)

1. R-Bézier (0, 0) (2, 1) 6 0 0.20E0 1.0 0.24

2. 2nd GR-Bézier 0 0.20E0 0.39

3. R-Bézier (0, 1) (2, 2) 12 0 3.42E-2 45.25 0.27

4. 2nd GR-Bézier 4 7.55E-4 0.55

5. R-Bézier (0, 2) (2, 3) 20 0 7.10E-3 43.58 0.28

6. 2nd GR-Bézier 9 1.63E-4 1.34

7. R-Bézier (0, 3) (2, 4) 30 0 1.12E-3 1.26E4 0.28

8. 2nd GR-Bézier 16 8.90E-8 12.41
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Fig. 15  The resulting control net for the approximation of the surface of revolution in Eq. (49): a Case 3, b Case 4, c Case 5, d Case 6, e Case 7, 

and f Case 8
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generalizations seem plausible to other rational forms of 

splines such as T-spline surfaces, Tri-angular Bézier sur-

faces etc.

In addition to the discussed applications of GNURBS in 

CAGD, other applications of NURBS in this area can be 

found where employing the weights as additional design 

Fig. 16  Snapshots of different windows of GNURBS3D-Lab: a Main window, b 3D surface plot window, c in-plane equivalent NURBS win-

dow, and d 3D equivalent NURBS window



Engineering with Computers 

1 3

variables for better flexibility can be problematic or some-

times impossible. For instance, GNURBS may also help 

circumventing the difficulties of considering the weights 

as degrees of freedom in general surface fitting problems 

with arbitrary parameterization. As previously studied in 

[13, 29], employing the weights as additional degrees of 

freedom in data approximation can deteriorate the surface 

parameterization, and lead to undesirable results, espe-

cially when approximating rapidly varying data. On the 

other hand, employing GNURBS, by including the control 

weights as design variables, one can create a good surface 

parameterization and preserve it during fitting without 

imposing any restrictions on the magnitude of variations 

of the weights.

Furthermore, NURBS have been extensively used in other 

disciplines such as computational mechanics for the optimi-

zation of different fields of interest over a given computa-

tional domain. Considering these studies, we can find out 

that in this class of applications, the parameterization of the 

design domain needs to remain fixed throughout the opti-

mization process; see [8, 34–41], for instance. Hence, they 

are only able to treat the out-of-plane coordinates of control 

points as design variables, as the variation of weights alters 

the underlying parameterization which is disallowed. How-

ever, owing to the proposed GNURBS representations with 

decoupled weights, one can now treat the control weights as 

additional design variables while setting up the optimization 

problem and still preserve the underlying geometry as well 

as its parameterization. As elaborated in this research, this 

can lead to significant improvement in the obtained accuracy 

in both cases of smooth as well as rapidly varying fields. 

Exploring some of these applications is the subject of our 

future studies.

7  MATLAB toolbox: GNURBS3D‑Lab

In order to facilitate understanding the behavior of GNURBS 

surfaces and the additional abilities they serve, a compre-

hensive and fully interactive MATLAB toolbox, named 

GNURBS3D-Lab, has been developed. This toolbox is devel-

oped via the extension of GNURBS Lab, a similar inter-

active MATLAB toolbox already developed for GNURBS 

curves [2]. Snapshots of different available windows in 

GNURBS3D-Lab are shown in Fig. 16, which demonstrate 

the environment of the toolbox and numerous features that 

the software provides.

The figure shows an example of designing a 3D surface 

with an in-plane shape of a quarter annulus and a free-form 

out of plane shape using GR-Bézier. As demonstrated in 

Fig. 16, the toolbox is enabled to evaluate the equivalent 

higher-order rational Bézier representations with the 

designed surface in 2D and 3D interactively. Employing the 

provided wide range of tools shown in Fig. 16a, one can eas-

ily manipulate any defining parameter of the surface, includ-

ing the locations of control points, or a variety of weight 

components, and observe the changes interactively in all four 

windows shown in Fig. 16, simultaneously.

The open-source toolbox is available at http:// www. ersl. 

wisc. edu/ softw are/ GNURB S3D- Lab. zip. Detailed instructions 

for using this toolbox are also provided in an additional docu-

ment GNURBS3D_Manual.pdf accessible via the same link.

8  Conclusion

We introduced two generalizations of NURBS surfaces, 

referred to as GNURBS, by decoupling of the weights 

associated with the control points along different physi-

cal coordinates. These generalizations were obtained via 

either explicit or implicit decoupling of the weights lead-

ing to non-isoparametric and isoparametric representations, 

respectively. As demonstrated, both these variations improve 

the flexibility of NURBS and circumvent its deficiencies by 

providing the possibility of treating the weights as additional 

design variables in special applications. It was proved that 

these representations are only variations of classic NURBS 

and do not constitute a new superset of NURBS. Superior 

approximation abilities of these variations for both smooth 

and rapidly varying functions were shown via simple exam-

ples in surface modelling. It was shown that GNURBS can 

be effectively used for improved construction of various 

types of surfaces such as helicoids, minimal surfaces as 

well as surfaces of revolution using the same number of 

control points. A comprehensive MATLAB toolbox, named 

GNURBS3D-Lab, was developed and introduced to better 

demonstrate the behavior of different types of GNURBS sur-

faces in a fully interactive manner. In summary, GNURBS 

were shown to serve as a new effective technology in surface 

modelling with superior accuracy while merely being dis-

guised forms of classic NURBS.

Acknowledgements The authors would like to thank the support of 

National Science Foundation through grant CMMI-1661597. Prof. 

Suresh also serves as a consulting Chief Scientific Officer for SciArt, 

Corp.

References

 1. Versprille KJ (1975) Computer-aided design applications of the 

rational B-spline approximation form, PhD Thesis, Syracuse 

University

http://www.ersl.wisc.edu/software/GNURBS3D-Lab.zip
http://www.ersl.wisc.edu/software/GNURBS3D-Lab.zip


 Engineering with Computers

1 3

 2. Taheri AH, Abolghasemi S, Suresh K (2019) Generalizations of 

non-uniform rational B-splines via decoupling of the weights: 

theory, software and applications. Eng Comput 36:1831–1848. 

https:// doi. org/ 10. 1007/ s00366- 019- 00799-w

 3. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analy-

sis: CAD, finite elements, NURBS, exact geometry and mesh 

refinement. Comput Methods Appl Mech Eng 194:4135–4195. 

https:// doi. org/ 10. 1016/j. cma. 2004. 10. 008

 4. Mishra BP, Barik M (2019) NURBS-augmented finite element 

method for stability analysis of arbitrary thin plates. Eng Comput 

35:351–362. https:// doi. org/ 10. 1007/ s00366- 018- 0603-9

 5. Qian X (2010) Full analytical sensitivities in NURBS based 

isogeometric shape optimization. Comput Methods Appl Mech 

Eng 199:2059–2071. https:// doi. org/ 10. 1016/j. cma. 2010. 03. 005

 6. Takahashi T, Yamamoto T, Shimba Y et al (2019) A framework of 

shape optimisation based on the isogeometric boundary element 

method toward designing thin-silicon photovoltaic devices. Eng 

Comput 35:423–449. https:// doi. org/ 10. 1007/ s00366- 018- 0606-6

 7. Lieu QX, Lee J (2017) A multi-resolution approach for multi-

material topology optimization based on isogeometric analysis. 

Comput Methods Appl Mech Eng 323:272–302. https:// doi. org/ 

10. 1016/j. cma. 2017. 05. 009

 8. Taheri AH, Suresh K (2017) An isogeometric approach to topol-

ogy optimization of multi-material and functionally graded struc-

tures. Int J Numer Methods Eng 109:668–696. https:// doi. org/ 10. 

1002/ nme. 5303

 9. Coelho M, Roehl D, Bletzinger K-U (2016) Material model based 

on response surfaces of NURBS applied to isotropic and ortho-

tropic materials. In: Muñoz-Rojas PA (ed) Computational mod-

eling, optimization and manufacturing simulation of advanced 

engineering materials. Springer International Publishing, Cham-

bridge, pp 353–373

 10. Coelho M, Roehl D, Bletzinger KU (2017) Material model based 

on NURBS response surfaces. Appl Math Model 51:574–586. 

https:// doi. org/ 10. 1016/j. apm. 2017. 06. 038

 11. Ma W, Kruth J-P (1998) NURBS curve and surface fitting for 

reverse engineering. Int J Adv Manuf Technol 14:918–927. 

https:// doi. org/ 10. 1007/ BF011 79082

 12. Kanna SA, Tovar A, Wou JS, El-Mounayri H (2014) Optimized 

NURBS based G-code part program for high-speed CNC machin-

ing. In: ASME 2014 international design engineering technical 

conferences and computers and information in engineering con-

ference, American Society of Mechanical Engineers, New York, 

USA. https:// doi. org/ 10. 1115/ DETC2 014- 34884

 13. Dimas E, Briassoulis D (1999) 3D geometric modelling based on 

NURBS: a review. Adv Eng Softw 30:741–751

 14. Leal NE, Ortega Lobo O, Branch JW (2007) Improving NURBS 

surface sharp feature representation. Int J Comput Intell Res 

3:131–138. https:// doi. org/ 10. 5019/j. ijcir. 2007. 97

 15. Bracco C, Giannelli C, Sestini A (2017) Adaptive scattered data 

fitting by extension of local approximations to hierarchical splines. 

Comput Aided Geom Des 52–53:90–105. https:// doi. org/ 10. 

1016/j. cagd. 2017. 03. 008

 16. Forsey DR, Barrels RH (1988) Hierarchical B-spline refinement. 

In: SIGGRAPH ’88: Proceedings of the 15th annual conference 

on computer graphics and interactive techniques. pp 205–212. 

https:// doi. org/ 10. 1145/ 54852. 378512

 17. Chen W, Cai Y, Zheng J (2008) Generalized hierarchical NURBS 

for interactive shape modification. In: VRCAI ’08 Proceedings 

of the 7th ACM SIGGRAPH international conference on virtual-

reality continuum and its applications in industry. pp 1–4. https:// 

doi. org/ 10. 1145/ 14778 62. 14778 94

 18. Sederberg TW, Cardon DL, Finnigan GT, North NS, Zheng J, 

Lyche T (2004) T-spline simplification and local refinement. ACM 

Trans Graph 23:276–283

 19. Sederberg TN, Zhengs JM, Bakenov A, Nasri A (2003) T-splines 

and T-NURCCSs. ACM Trans Graph 22:477–484

 20. Wei X, Li X, Qian K et al (2021) Analysis-suitable unstructured 

T-splines: multiple extraordinary points per face. arXiv: 2103. 

05726

 21. Casquero H, Wei X, Toshniwal D et al (2020) Seamless integra-

tion of design and Kirchhoff-Love shell analysis using analysis-

suitable unstructured T-splines. Comput Methods Appl Mech Eng 

360:112765. https:// doi. org/ 10. 1016/j. cma. 2019. 112765

 22. Wei X, Zhang Y, Liu L, Hughes TJR (2017) Truncated T-splines: 

fundamentals and methods. Comput Methods Appl Mech Eng 

316:349–372. https:// doi. org/ 10. 1016/j. cma. 2016. 07. 020

 23. Wei X, Li X, Zhang YJ, Hughes TJR (2021) Tuned hybrid nonu-

niform subdivision surfaces with optimal convergence rates. Int 

J Numer Methods Eng 122:2117–2144. https:// doi. org/ 10. 1002/ 

nme. 6608

 24. Wei X, Zhang YJ, Toshniwal D et al (2018) Blended B-spline 

construction on unstructured quadrilateral and hexahedral meshes 

with optimal convergence rates in isogeometric analysis. Comput 

Methods Appl Mech Eng 341:609–639. https:// doi. org/ 10. 1016/j. 

cma. 2018. 07. 013

 25. Wei X, Zhang YJ, Hughes TJR (2017) Truncated hierarchi-

cal tricubic C0 spline construction on unstructured hexahedral 

meshes for isogeometric analysis applications. Comput Math Appl 

74:2203–2220. https:// doi. org/ 10. 1016/j. camwa. 2017. 07. 043

 26. Thomas D (2019) U-splines: splines over unstructured meshes. 

Brigham Young University, Provo

 27. Carlson N (2009) NURBS surface fitting with gauss-newton. 

Lulea University of Technology, Lulea

 28. Ma W (1994) NURBS-based computer aided design modelling 

from measured points of physical models. Catholic University of 

Leuven, Belgium

 29. Piegl L (1991) On NURBS: a Survey. IEEE Comput Graph Appl 

11:55–71

 30. Taheri AH, Suresh K (2020) Adaptive w-refinement: a new para-

digm in isogeometric analysis. Comput Methods Appl Mech Eng. 

https:// doi. org/ 10. 1016/j. cma. 2020. 113180

 31. Farin G (2001) Curves and surfaces for CAGD A practical guide, 

5th edn. Morgan Kaufmann, Burlington

 32. Piegl L, Tiller W (1995) The NURBS book, 1st edn. Springer-

Verlag, Berlin Heidelberg

 33. Pan Q, Chen C, Xu G (2017) Isogeometric finite element approxi-

mation of minimal surfaces based on extended loop subdivision. 

J Comput Phys 343:324–339. https:// doi. org/ 10. 1016/j. jcp. 2017. 

04. 030

 34. Qian X (2013) Topology optimization in B-spline space. Comput 

Methods Appl Mech Eng 265:15–35. https:// doi. org/ 10. 1016/j. 

cma. 2013. 06. 001

 35. Hassani B, Khanzadi M, Tavakkoli SM (2012) An isogeometrical 

approach to structural topology optimization by optimality crite-

ria. Struct Multidiscip Optim 45:223–233. https:// doi. org/ 10. 1007/ 

s00158- 011- 0680-5

 36. Wang Y, Benson DJ (2016) Isogeometric analysis for parameter-

ized LSM-based structural topology optimization. Comput Mech 

57:19–35. https:// doi. org/ 10. 1007/ s00466- 015- 1219-1

 37. Dedè L, Borden MMJ, Hughes TJRT (2012) Isogeometric anal-

ysis for topology optimization with a phase field model. Arch 

Comput Methods Eng 19:427–465. https:// doi. org/ 10. 1007/ 

s11831- 012- 9075-z

 38. Nagy AP, Abdalla MM, Gürdal Z (2010) Isogeometric sizing and 

shape optimisation of beam structures. Comput Methods Appl 

Mech Eng 199:1216–1230. https:// doi. org/ 10. 1016/j. cma. 2009. 

12. 010

 39. Liu H, Yang D, Wang X et al (2019) Smooth size design for 

the natural frequencies of curved Timoshenko beams using 

https://doi.org/10.1007/s00366-019-00799-w
https://doi.org/10.1016/j.cma.2004.10.008
https://doi.org/10.1007/s00366-018-0603-9
https://doi.org/10.1016/j.cma.2010.03.005
https://doi.org/10.1007/s00366-018-0606-6
https://doi.org/10.1016/j.cma.2017.05.009
https://doi.org/10.1016/j.cma.2017.05.009
https://doi.org/10.1002/nme.5303
https://doi.org/10.1002/nme.5303
https://doi.org/10.1016/j.apm.2017.06.038
https://doi.org/10.1007/BF01179082
https://doi.org/10.1115/DETC2014-34884
https://doi.org/10.5019/j.ijcir.2007.97
https://doi.org/10.1016/j.cagd.2017.03.008
https://doi.org/10.1016/j.cagd.2017.03.008
https://doi.org/10.1145/54852.378512
https://doi.org/10.1145/1477862.1477894
https://doi.org/10.1145/1477862.1477894
http://arxiv.org/abs/2103.05726
http://arxiv.org/abs/2103.05726
https://doi.org/10.1016/j.cma.2019.112765
https://doi.org/10.1016/j.cma.2016.07.020
https://doi.org/10.1002/nme.6608
https://doi.org/10.1002/nme.6608
https://doi.org/10.1016/j.cma.2018.07.013
https://doi.org/10.1016/j.cma.2018.07.013
https://doi.org/10.1016/j.camwa.2017.07.043
https://doi.org/10.1016/j.cma.2020.113180
https://doi.org/10.1016/j.jcp.2017.04.030
https://doi.org/10.1016/j.jcp.2017.04.030
https://doi.org/10.1016/j.cma.2013.06.001
https://doi.org/10.1016/j.cma.2013.06.001
https://doi.org/10.1007/s00158-011-0680-5
https://doi.org/10.1007/s00158-011-0680-5
https://doi.org/10.1007/s00466-015-1219-1
https://doi.org/10.1007/s11831-012-9075-z
https://doi.org/10.1007/s11831-012-9075-z
https://doi.org/10.1016/j.cma.2009.12.010
https://doi.org/10.1016/j.cma.2009.12.010


Engineering with Computers 

1 3

isogeometric analysis. Struct Multidiscip Optim 59:1143–1162. 

https:// doi. org/ 10. 1007/ s00158- 018- 2119-8

 40. Lieu QX, Lee J (2017) Modeling and optimization of functionally 

graded plates under thermo-mechanical load using isogeometric 

analysis and adaptive hybrid evolutionary firefly algorithm. Com-

pos Struct 179:89–106. https:// doi. org/ 10. 1016/j. comps truct. 2017. 

07. 016

 41. Taheri AH, Hassani B, Moghaddam NZ (2014) Thermo-elastic 

optimization of material distribution of functionally graded struc-

tures by an isogeometrical approach. Int J Solids Struct 51:416–

429. https:// doi. org/ 10. 1016/j. ijsol str. 2013. 10. 014

Publisher’s Note Springer Nature remains neutral with regard to 

jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/s00158-018-2119-8
https://doi.org/10.1016/j.compstruct.2017.07.016
https://doi.org/10.1016/j.compstruct.2017.07.016
https://doi.org/10.1016/j.ijsolstr.2013.10.014

	Surface approximations using generalized NURBS
	Abstract
	1 Introduction
	2 Generalized NURBS surfaces: non-isoparametric form via explicit decoupling of the weights
	2.1 Theory and properties
	2.1.1 Local modification effect1
	2.1.2 Axis-aligned bounding box (AABB):

	2.2 Special case with partial decoupling of the weights
	2.3 Equivalence with NURBS

	3 Generalized NURBS surfaces: isoparametric form via implicit decoupling of the weights
	3.1 Theory and formulation
	3.2 Analogy with non-isoparametric GNURBS

	4 Least-square surface approximation using NURBS versus GNURBS
	4.1 Linear least-square approximation using NURBS
	4.2 Non-linear least-square approximation using non-isoparametric GNURBS
	4.3 Non-linear least-square approximation using isoparametric GNURBS

	5 Numerical examples
	5.1 Test case 1: helicoid modelling
	5.2 Test case 2: Scherk minimal surface
	5.3 Test case 3: surface of revolution

	6 Extensions and further applications
	7 MATLAB toolbox: GNURBS3D-Lab
	8 Conclusion
	Acknowledgements 
	References


