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Abstract

We extend the concept of generalized NURBS (GNURBS), recently introduced by the authors for parametric curves, to
bivariate parametric surfaces. These generalizations are obtained via either explicit or implicit decoupling of the weights
along different physical coordinates. This decoupling allows for treating the weights as additional degrees of freedom in a
wider range of applications compared to classic NURBS surfaces, providing additional flexibility and increased control.
This proposed concept effectively improves the capability of NURBS and alleviates its deficiencies in certain applications.
In particular, we will demonstrate that GNURBS can be effectively used for improved approximation of certain class of
surfaces such as helicoids, revolved surfaces and minimal surfaces. It will also be established that these proposed generali-
zations can be exactly transformed to equivalent, but higher order, classic NURBS surfaces, ensuring a strong theoretical
foundation. Finally, a comprehensive MATLAB toolbox, GNURBS3D-Lab, has been developed and introduced in order to

better demonstrate the behavior and properties of GNURBS surfaces compared to classic NURBS.

Keywords GNURBS - Bivariate surfaces - Directional weights - Non-isoparametric

1 Introduction

Non-Uniform Rational B-Splines (NURBS) were first intro-
duced in 1975 by Versprille [1] via rational extension of
B-splines. The primary motivation for introducing NURBS
was to represent conical shapes precisely. This is the critical
advantage of NURBS over other polynomial-based classes
of splines, and one of the main reasons for its prevalence.
Due to this crucial ability, NURBS are still the prevalent
technology for curve and surface modelling in Computer-
Aided Design/Computer-Aided Manufacturing (CAD/
CAM), and an integral part of most existing CAD/CAM
commercial software.

The applications of this rational form, however, is not lim-
ited to precise representation of conics. Other applications
of NURBS can also be found in CAD where the weights
have been employed as additional degrees of freedom for
improved flexibility. A thorough review of these applica-
tions has been reported by the authors in [2]. Moreover, in
addition to CAD/CAM, NURBS have also been extensively
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used in many other areas of applications such as isogeomet-
ric analysis (IGA) [3], NURBS-augmented finite element
analysis [4], shape optimization [5, 6], topology optimiza-
tion [7, 8], material modeling [9, 10], reverse engineering
[11], G-code generation [12] etc.

Despite being a powerful tool in engineering design,
NURBS have multiple shortcomings which restricts its
capability in certain applications [13]. A thorough review
of the advantages and limitations of NURBS is provided in
[13]. A major shortcoming of NURBS which has received
significant attention is their inability to allow for local refine-
ment. Due to the rigid tensor-product structure of NURBS,
knot-insertion is a global operation and cannot be performed
locally. This was soon known as a fundamental limitation
of NURBS, since local knot-insertion is critical in many
applications and is considered a common and efficient way
for achieving desirable accuracy in approximating sharp
features [14] or scattered data of highly varying density
[15]. For instance, Leal et al. [14] mention that “Despite
the advantages of fitting with NURBS, it is still necessary
to improve the representation of sharp features like high
curvatures, edges and corners with this fitting method”.

In order to remove this fundamental limitation, vari-
ous generalizations of NURBS have been proposed so far.
The concept of hierarchical B-spline constructions which
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considers multilevel B-spline extensions where the tensor-
product structure is preserved at any level was originally
proposed by Forsey and Bartels in 1988 [16]. The appli-
cation of hierarchical splines for adaptive scattered data
fitting has recently been investigated by Bracco et al. [15].
To efficiently deal with non-trivial data configurations,
they describe the local solutions in terms of (variable-
degree) polynomial approximations according not only to
the number of data points locally available, but also to the
smallest singular value of the local collocation matrices.
These local approximations are subsequently combined
without the need of additional computations with the con-
struction of hierarchical quasi-interpolants described in
terms of truncated hierarchical B-splines.

Generalized Hierarchical NURBS (H-NURBS) were
introduced in 2008 by Chen et al. [17] by extending the
idea of hierarchical B-splines to NURBS. Another pop-
ular technology are T-splines [18, 19] which constitute
a superset of NURBS, and provide the local refinement
properties by allowing for unstructured-ness. Recent
variations of T-splines which are mainly devised for the
application in IGA include analysis-suitable unstructured
T-splines [20, 21] and Truncated T-splines [22]. Other
variations of splines and subdivision surfaces, such as
Tuned Hybrid Non-Uniform Subdivision Surfaces [23],
Blended B-Spline as well as Truncated Hierarchical Tricu-
bic €Y Spline Constructions on Unstructured Quadrilateral
or Hexahedral Meshes [24, 25] have also been recently
developed and successfully implemented in IGA. Most
recent class of splines which removes the limitations of
T-splines are Unstructured-splines (U-splines) that have
been developed by Thomas [26].

In addition to the above technologies, an alternative strat-
egy for addressing the same issue has also been adopted by
some researchers. The basic idea of these studies is to pre-
serve the tensor-product structure of NURBS, and instead
include the weights of control points as additional degrees
of freedom. This idea has also shown promising results for
the approximation of scattered data of highly varying local
density [27] as well as for the representation of sharp geo-
metric features [14]. For instance, Leal et al. [14] present a
new method for improving NURBS surface sharp feature
representation that first subdivides the fitting data in clus-
ters, by using Self Organizing Map (SOM), also known as
Kohonen network; then, in each cluster, they use an evolu-
tionary strategy to obtain the optimal weights of the NURBS
such that the fitting error is minimized and the representation
of sharp features is improved. While including the weights
as additional degrees of freedom in data approximation with
NURBS usually results in non-linear algorithms, Ma [11,
28] proposes a two-step linear algorithm which yields the
optimal coordinates of control points as well as their optimal
weights by solving two separate linear systems of equations.
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As discussed in [2], in spite of being an effective tech-
nique for improving the performance of NURBS, there is
a wide range of applications where treating the weights as
extra design variables is either impossible or can be prob-
lematic. For instance, Dimas and Briassoulis [13] point out
that a bad choice of weights in approximation can lead to
poor curve/surface parameterization. Piegl [29] states that
“improper application of the weights can result in a very
bad parameterization, which can destroy subsequent sur-
face constructions”. Further, there are many applications
where treating the weights as additional design variables is
essentially impossible. These limitations inspired introduc-
ing the concept of Generalized NURBS (GNURBS) which
is thoroughly discussed for parametric curves in [2] by the
authors. Further, the extension of this mathematical model
was introduced in [30] as a means for improved solution of
boundary value problems using the isogeometric analysis
method.

The focus of this paper is to comprehensively study vari-
ous types of GNURBS surfaces, investigate their theoretical
properties, and explore their applications in the context of
CAGD. In particular, we will investigate a common applica-
tion of these generalizations for improved surface approxi-
mation. It will be shown that, despite simply being disguised
forms of classic NURBS, these generalizations provide sig-
nificantly better approximation abilities compared to classic
NURBS.

The remainder of this paper is organized as follows:
in Sects. 2 and 3, we introduce different generalizations
of NURBS, and develop their theoretical properties. We
explore the application of GNURBS for improved approxi-
mation of surfaces in Sect. 4 where least-square approxi-
mation algorithms are developed. A series of numerical
examples are presented in Sect. 5 where the performance
of GNURBS compared to NURBS for the approximation of
different class of surfaces is studied. Further potential areas
of applications and extensions of GNURBS are discussed
in Sect. 6. An interactive MATLAB toolbox for GNURBS
surfaces is introduced in Sect. 7, and finally conclusions are
drawn in Sect. 8.

2 Generalized NURBS surfaces:
non-isoparametric form via explicit
decoupling of the weights

We recall that the equation of a NURBS surface is defined
in the following parametric form [29]

nyn, . <¢ <b
S =3 R RGP, c<r<d M
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where P; = [xy YVijs Zi/‘] "is aset of (n; + 1) X (n, + 1) control
points and RZ.’q(.f, n) are the corresponding rational basis

functions associated with (i, /)" control point defined as

P-q

n ny D.q
k=0 L=i]=0 Nkl (57 n)Wk]
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where w;; are the weights associated with control points, and
lej’.’q(f, n) = N, ()N, ,(n) are bivariate B-spline basis func-
tions. N;,(§) and N, ,(n) are the univariate B-spline basis
functions of degree p and g defined on sets of non-decreas-
ing real numbers &E={§,¢, ... ¢, ,,} and
H = {ny, ny, ..., 1,44} respectively, called knot vectors.

According to Eq. (1), NURBS surfaces are isoparamet-
ric representations where all the physical coordinates are
constructed by linear combination of the same set of scalar
basis functions in parametric space. This is the case for all
the other popular CAGD representations such as different
types of splines; and ensures critical properties such as affine
invariance and convex hull which are of interest in geometric
modelling [2].

We extend here the concept of Generalized Non-Uniform
Rational B-Splines (GNURBS) [2] to surfaces by modifying
Eq. (1) as follows

ny n, <§<a
S n) = R¢EmoP, 1=°=%
&.n) Eog) i (&m) OP b, <1 <b, (3)

where O denotes Hadamard (entry-wise) product of two vec-

T
tor variables, Ry (£, ) = [R;;.(g, m. RiEn). K, n)] is
now a vector set of basis functions, and a,, a,, b, and b, are
real numbers. Note that superscripts p, g have been omitted
for brevity. Denoting an arbitrary coordinate in physical
space by d € {x,y,z}, the corresponding basis function in
direction d can be written as

P.q d

RiE. ) N (6 mw;;
i’ n n (& d’
ko 2im0 Vg (6 WY,

“

/]

coordinate-dependent weights associated with (i, /)™ control
point. Comparison of the above equation with that of classic
NURBS in Eq. (1) shows that the main difference of the
proposed generalized form is assigning independent weights
to different physical coordinates of control points. As can be
seen, the above leads to a non-isoparametric representation.
This representation demonstrates different geometric proper-
ties compared to NURBS which are discussed in detail in
the following section.

In the above equation, <w" w, wfj) represent the set of

2.1 Theory and properties

It can be shown that due to coordinate-dependence of basis
functions, a GNURBS surface (in its original form) need
not satisfy properties such as strong convex hull and affine
invariance. We demonstrate here that most of the theoretical
properties which were discussed for GNURBS curves in [2]
can be extended for GNURBS surfaces.

2.1.1 Local modification effect’

Similar to NURBS, one can show that, in GNURBS, if a
control point P; is moved, or if any of the weights
wﬁ(d = x,Y,z) is changed, it affects the surface shape only
over the rectangle [&;, &; +p 1) X [11]», Hitgt1 ). However, unlike
NURBS, changing the weights will only affect the parame-
terization of the surface along the corresponding physical
coordinate d, while the surface parameterization in the other
directions will be preserved. This is, in fact, the key differ-
ence between GNURBS and NURBS which provides addi-
tional flexibility. In particular, assuming
& n) €[, &) X MMy gr) - if w? is increased
(decreased), the surface will move closer to (farther from)
P;. Further, for a fixed (¢, #), a point on S(&, ) moves along
a straight line along d towards P;; as a weight wz is modified.
This can be directly concluded from Eq. (3) and the proper-
ties of classic NURBS.

For better insight, we provide here a graphical represen-
tation of how this property differs in GNURBS compared
to NURBS. For this purpose, we first generate a B-spline
surface with linear in-plane parameterization using a net of
7 x 7 control points and quadratic basis functions in both
parametric directions constructed over the knot vectors
E=H=1{0,0,0,0.2,0.4,0.6,0.8, 1, 1, 1}. The employed net
of control points is illustrated in Fig. 1. As the figure shows,
the heights of all control points are set to zero except for z,4
which is raised to 1.

The B-spline surface obtained by using this control net
is depicted in Fig. 2.

Next, we increase w,, to 4 and plot the resulting NURBS
surface in the physical space in Fig. 3.

Finally, using Eq. (3), we construct a GNURBS surface
by only setting w;, to 4, and maintaining all other weights
at 1. The resulting surface is shown in Fig. 4.

Note that the depicted GNURBS surface in Fig. 4 is
obtained by using two different sets of basis functions. The
in-plane coordinates are obtained using the B-spline basis
functions, while the out of plane coordinate is constructed
using rational basis functions.

! This property has already been studied in [30].
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Fig.1 Employed control net for construction of different NURBS
surfaces

y(€m)

Fig.2 The B-spline surface in physical space

Comparing Figs. 3, 4, one can clearly observe that modi-
fying a weight in classic NURBS alters the parameterization
of the surface in all physical directions, while in the case of
GNURBS, the parameterization of the surface only changes
in the direction of the varied directional weight (z-direction
in Fig. 4). It will be seen later that this property is critical
for treating the weights as additional degrees of freedom in
certain applications.

T’
TR
i

Fig.3 The NURBS surface with w,,=4 in physical space

Fig.4 The GNURBS surface with w®, =4 in physical space

2.1.2 Axis-aligned bounding box (AABB):

Every GNURBS knot-element lies within the axis-aligned
bounding box of its corresponding control points. That is,
if (¢.n) € [£.&41) X [, m;11)- then S(&,7) lies within the
bounding box of the control points P,;, i —p < k < i and
J—q=<1l<].

Note that Eq. (3) can be easily re-written in the follow-
ing form:

) 1 0 2 0
yemb=Y Y REm 0r+ 3 Y RED vy b+ D Y R En] 0 ©)
2em| O of =00 of =~ %
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X(&m)

Fig.5 Geometric representation of the bounding box property for a
GNURBS surface

Accordingly, Eq. (5) could be written as

a <&<a,
by<n<b,
(6)
where S.(&,n), S,(&,n) and S (&, n) are simply classic
NURBS surfaces. From a geometric standpoint, each of
these surfaces is the projection of the original non-isopara-
metric surface onto the corresponding physical axes.

The following figure shows a graphical representation of
the above equations for a quadratic X cubic GNURBS surface
constructed over the knot vectors E = {0,0,0, 14,2/4,1,1, 1}
and H={0,0,0,0,!4,24,1,1,1,1}. Random weights in
z-direction have been assigned to the control points and the
control points are plotted proportional to these weights in
size for better insight.

Since each of these projected surfaces is a classic NURBS
surface, they satisfy the convex hull property. Therefore, the
middle knot-element of the surface which is marked in
Fig. 5, must lie within the convex hulls of its corresponding
control points on all three projected surfaces. That is, if
En) € T1/3, 2/3) x [1/3, 2/33, then S, (&, 1) lies within the
convex hull of the control points (x,;,0,0),1 <k <3 and
1 <1 < 4 which is the space between the two planes parallel
to yz-plane. Similarly, S, (¢, n) lies within the convex hull of
the control points (0, Vi 0), 1 <k<3andl1 <[ <4 which
is the area between the two planes parallel to xz-plane, and
S.(&,n) lies within the convex hull of the control points

S(E.m =S.(&m +8S,(&m+S.(En), {

(O, 0, zkl), 1 <k <3andl <[ <4 which is the area between
the two planes parallel to xy-plane. Consequently, S(&, ) is
contained in the intersection of these six planes, which is the
highlighted box area shown in Fig. 5, referred to as the axis-
aligned bounding box of P;, 1 <k <3and1 </<4.1Itis
obvious that this property is less strict than the strong con-
vex-hull property of classic NURBS surfaces.

2.2 Special case with partial decoupling
of the weights

A more practical variation of GNURBS, which will be the
emphasis for the rest of this paper, is obtained by partial
decoupling of the weights. In particular, for 3D surfaces,
one can use the same set of in-plane weights along x and y
directions, denoted by w*, and a different set of out-of-plane
weights in z direction w*. Accordingly, Eq. (3) could be re-
written in the following expanded form

(&, 1) - R (& mx; ...
YEm p= X X1 R Emy; Zl > ¢ < ‘blz o
z2(&,n) i=0j=0 | 1 Sn<b,

where

NZAE mw

RYEm = o — 8
! io Zico N € mwiy ®

Observe that owing to this decoupling of the in-plane and
out-of-plane weights, unlike in classic NURBS, one can now
freely manipulate the weights along z direction, for instance,
without perturbing the geometry or parameterization of the
underlying planer surface in x—y plane.

2.3 Equivalence with NURBS

Despite losing some properties of NURBS which might be
of interest in certain applications, we recall here a theorem
[30] which establishes that GNURBS are nothing but dis-
guised forms of higher-order classic NURBS. Therefore, all
the properties of NURBS can be recovered through a suit-
able transformation and a strong theoretical foundation will
be ensured. We express the theorem here for the special case
with partial decoupling of the weights in above section, but
it could be easily extended to the generic form in Eq. (3).

Theorem 1 A 3D GNURBS surface of degree (p,q) with
partially decoupled set of weights (WY, w%), can be exactly
transformed into a higher order NURBS surface of degree
(2p, 2q) in the following form:
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xE@m|  a
yemp =Y Y RME, r/) Y )
Z(f, 71) i=0 i=0 Zl

where

N2HE mW,

RyMem = ——
S ¥ N W,

k=0 1=0

10)

in which (X i U, Z,], ,-J-) are the coordinates and weights of
the (i, + 1) X (1, + 1) control points of the equivalent higher
order NURBS surface. The proof of this theorem has been

provided in [30].

As discussed in [30], in the special case of Rational
Bézier (R-Bézier) surfaces, the following straightforward
analytical expressions can be obtained for the coefficients
of the equivalent higher order R-Bézier surface:

min(p,i) min(qj)
— P 14 ’0’ W
VVij - Z Z j'lk j'jl i—kj—l kl
k=max(0,i—p) [=max(0j—q)
1 min(p,i) min(qj)
g P 19, X
X = W Z i A WX g
i k=max(0, i—p) l=max(0j—q)
1 min(p,i) min(gj) ( 11 )
_ P
¥y W, Z Z iy }”JIW A ikl
i k=max(0,i—p) [=max(0,j—q)
1 min(p,i) min(g.j)
_ P 14
Z; W Za )”,l ik j— LWy
i k=max(0,i—p) I=max(0,j—q)
n n
o ihi-i)
where /ll.j = Z—.Flgure 6a shows an example of a
n

degree (2, 3)" GNURBS surface with random directional
weights assigned in z-direction. Its equivalent higher order
NURBS surface obtained using the above theorem is
depicted in Fig. 6b. Note that the size of control points in
these figures are plotted proportional to their weights for
better insight.

3 Generalized NURBS surfaces:
isoparametric form via implicit
decoupling of the weights

It is interesting to note that the equivalent higher order

NURBS representation in Eq. (9) itself provides another
variation of NURBS which can be directly employed as

@ Springer

X(€.1) % 9 y(&n)

(b)

Fig.6 a A degree (2, 3)th GNURBS surface with random weights
assigned in z-direction, and b its equivalent (isoparametric) NURBS
surface of degree (4,6)

another alternative to NURBS with better flexibility in many
applications.

In order to clarify how this equation provides additional
flexibility than classic NURBS, we first derive a more generic
form of this equation via an alternative approach using an
extension of order elevation technique. In this case, we limit
our study to rational Bézier surfaces for simplicity.

3.1 Theory and formulation

Assume a 2D R-Bézier surface of degree (p, g) is given as
follows
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Fig.7 Configuration of the quarter annulus

y(&:n)

Fig.8 Exact representation of the quarter annulus with normal
parameterization using a (p, g) =(2, 1) rational Bézier surface

WEm\ | b G BIEnw [ x
= To(E 12
{y(é,n)} ; Zz wIEm |, (12)

where ij’q(é‘, n) = B ,(£)B; () are bivariate Bézier basis
functions of degree (p, g). In order to elevate the degree of
this surface by (r, 5), we can simply multiply both numerator
and denominator of this equation by any arbitrary expression
in the following form

r

wiEm = ), ) B E mw (13)

i=0 j=0

Recalling Theorem 1, we can obtain the higher order
R-Bézier surface with (7, s) degree elevations as

XEM\ | s | X
- R Y 14
{y(é,n)} ;]‘:0 ! { Yij} o

where
D
- B mW,
Ren=—— as)
Y X BEMWy
k=0 =0
in which p=p+r,g=q+s and (X;,Y;,W;) can be
obtained using the following relations
min(p,i) min(q.j)
Wi= X Y AW
k=max(0,i—r) I=max(0j—s)
1 min(p,i) min(q.j)
Xy=gr 2 X AWML, (6
i k=max(0,i—r) I=max(0,j—s)
1 min(p,i) min(q.j)
Yy = w. A A W Wi_ g
i k=max(0,i—r) I=max(0,j—s)
N P
where /lg.’ﬂ = %
o+

i

Observe that this procedure can be seen as a natural
extension of the classic order elevation techniques in the
literature [31, 32]. In fact, one can simply recover the com-
mon order elevation algorithm by assigning wfj =1, V(@,))
in Eq. (13). We will refer to this procedure as generalized
order elevation hereafter. Now assume we intend to add
another dimension to the degree-elevated representation in
Eq. (14) in an isoparametric manner. For this purpose, we
extend this equation as

x(&,n) i Xij
Emy =Y, Y RAE Y ¥, a7
aemf T z,

q
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Table 1 Assigned heights i=0 i=1 i=2 i=3
(z;) to the control points of

Fhe resulting degree-,elfevated j=0 0 1 1 0
isoparametric GR-Bézier j=1 0 1 1 0
surface

j=2 0 1 1 0

It is interesting to notice that, although Eq. (17) apparently
seems to be a classic R-Bézier surface, it provides additional
flexibility. Observe that in the above procedure,wfj are arbi-
trary variables which can be freely chosen without perturb-
ing the geometry or parameterization of the underlying sur-
face in x—y plane. For better insight, we perform degree
elevation on a circular annulus using the above procedure
with different selections of wfj and discuss how it differs
from classic degree elevation technique.

For this purpose, we generate a 3D (p,g) = (3,2)
isoparametric GR-Bézier surface by performing the above
degree-elevation processes with (r,s) = (1,1) on an ini-
tial quarter annulus, shown in Fig. 7, which is modelled
by a (p,q) = (2, 1) R-Bézier surface as depicted in Fig. 8
and specifying the heights of control points of the degree-
elevated surface as shown in Table 1.

The obtained results for classic order elevation, that is,
assuming unit values for all isoparametric control weights
as in the following equation:

[wz11 wiz] _ [1.0 1.0] (18)
Wi W, 1.0 1.0
are shown in Fig. 9.

Moreover, the obtained results for generalized order

elevation by assuming the following values for isopara-
metric control weights:

[wzn Wzn] _ [3.0 1.0] 19)
Wi, W5, 1.0 0.5
are depicted in Fig. 10.

As can be clearly seen in these figures, in both cases,
the in-plane representation of the annular ring as well as
its parameterization has remained unchanged. However,
the out of plane deformation of the annular ring in the two
cases are not identical.

While this variation of NURBS, which will be referred
to as isoparametric GNURBS hereafter, similarly provides
the same important possibility of treating the out of plane
weights as additional degrees of freedom, it provides dif-
ferent advantages elaborated in the following section.

The above algorithm can also be extended to NURBS
in a straightforward manner using a similar three step

@ Springer

(b)

Fig.9 Classic degree-elevated R-Bézier representation of the quarter
annulus with control variables of Table 1: a top view, b 3D view

algorithm elaborated above. That is, Eq. (17) also holds
true for NURBS:

x(&,m) o Xij
emy =Y, Y RAEmy v, 20)
w&m| = Z,

)

with the rational basis functions defined as

R n) =

/)

D.q
NPAE W

oy (20
Z 2 Nfl’q(f, mWy
k=0 1=0

The proposed generalizations of NURBS in Egs. (7) and
(20) can effectively improve the performance of NURBS
in a wide area of applications. Exploring all these appli-
cations, however, is beyond the scope of this study. We
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2(&m)

y(&n) ¢ 9 x(En)

(b)

Fig. 10 Generalized degree-elevated R-Bézier representation of the
quarter annulus with control variables of Table 1: a top view, b 3D
view

limit our study here to a few classic examples in geomet-
ric modelling, that is the approximation of certain class
of surfaces such as helical, revolved or minimal surfaces
using GNURBS; and concisely point out some of their
potential broader areas of applications. Finally, hereafter,
we will persistently refer to Eq. (7) as the first generali-
zation of NURBS or non-isoparametric GNURBS, while
we will refer to Eq. (20) as the second generalization of
NURBS or isoparametric GNURBS.

3.2 Analogy with non-isoparametric GNURBS

As discussed earlier, the primary motivation for introducing
GNURBS is to provide the possibility of treating the weights
as additional degrees of freedom in a wider range of applica-
tions than classic NURBS. While both proposed variations
allow for this additional flexibility, they differ in various
aspects making them suitable for different applications.

A major difference is regarding the physical meaning of
the control weights in the two variations. In the first vari-
ation, the geometric effect of manipulating the directional
weights on the behavior of the surface is tangible; hence,
making it suitable for free-form geometric modelling with
additional flexibility than classic NURBS. On the other
hand, due to the loss of the local support of control weights
in the isoparametric form, the physical effect of manipulat-
ing these directional weights can be unpredictable, making
the second variation impractical for geometric modelling.

Despite losing this merit, unlike the first variation, the
isoparametric form allows for introducing customized
rationality for approximation, i.e., the number of unknown
coefficients to be considered as design variables in the
denominator can be controlled. This property can help bet-
ter control the approximation process.

Finally, if affine invariance and other properties of
NURBS are of interest, the result of approximation using
the second (isoparametric) variation directly lies in the
NURBS space; hence, satisfying all the properties of
NURBS, without the need for any additional post-process-
ing. However, in the case of the first (non-isoparametric)
variation, an additional transformation step as discussed
in Theorem 1 is required for recovering the properties of
NURBS.

4 Least-square surface approximation using
NURBS versus GNURBS

In this section, we demonstrate that the proposed gener-
alizations of NURBS are able to provide superior approxi-
mation for certain class of surfaces compared to classic
NURBS. We assume here that a planar geometry with
precise representation using NURBS, such as the annular
ring in Fig. 8, is given as:

S, (€)= {x@’ ”)},
Y& m)

Next, we assume that an analytical height function
z(&,n) is given and needs to be approximated with mini-
mal error over the given planar surface. The problem
can be posed as a least square approximation problem
which leads to optimal accuracy in L?*-norm. Consider-
ing {(&,.7n,) = (x,.7,.2,) : s €S} as a set of n, chosen
collocation points, the error function f to be minimized
is defined as

f= % > acon) -5 =% 2

SESO SESO

0<ex<l

0<n<l1 (22)

2

Z RL(gs’ ns)ZL - Zs
LeLs
(23)
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where 2(&, ) is the approximated NURBS function, £° is
the set of indices of non-zero basis functions at (&, 7,),
z, = 2(&,. 1), and z; are the unknown control variables.
For simplicity, the global index L is used for numbering
which is defined as L = j(n; + 1) + i + 1 for the basis (i, ).
In the following, we provide the detailed formulation of
this problem using NURBS as well as its different proposed
generalizations.

4.1 Linear least-square approximation using NURBS

In the case of NURBS, the only unknowns to consider are
control variables z; . Taking the partial derivatives of f with
respect to the unknowns z;, and setting them to zero yields

i:

0, k=1l,.un
9z, r @)

3 Y RCnIREn)z = Y ERE ). k=L ny
seS LeLs sES
(25)

where n; = (n; + 1) X (n, + 1) denotes the total number of
control points. Eq. (25) could be written in the matrix form

wi>0, k=1,.,np 27)
Equation (23) with the new vector of design variables A’
establishes a non-linear least-square optimization problem
which could be solved using different existing algorithms.
Some of these algorithms, such as Levenberg—Marquardt,
do not allow for the imposition of bounding constraints on
design variables. In this case, one can easily apply an expo-
nential transformation to control weights to ensure their pos-
itivity without the imposition of bounding constraints as in
[27]. We will use here the trust-region-reflective algorithm
which is available in MATLAB and allows for the imposi-
tion of bounding constraints on design variables.

In order to solve the established problem, the Jacobian
matrix is required. The Jacobian matrix J is composed of
two parts

J=10.171,] (28)

where J, contains the partial derivatives of f with respect
to z;, while J,, includes the partial derivatives of f with
respect to w;. Differentiating with respect to z;, J, will be
easily derived as

R (& moR (Eyom) -+ R(E )R, Enn) | 2 R (&, my)
: : N ES : (26)
&SR, € n)R ) - R, Eun)R, Ean) Nz, | & R, Euny)
which represents a classic linear least square problem and
R, (&, R, (&, -~ R, (&,
can be easily solved for the n; unknowns A = {zl, - znr}by RIE? Zli RZE? Zli R TE? 21;
proper choice of collocation points. J=| " :2’ ¥ :2’ 2 " :2’ 2 (29)

4.2 Non-linear least-square approximation using
non-isoparametric GNURBS

In order to improve the accuracy of the above discussed
NURBS-based approximation, we develop a non-linear
least-square minimization algorithm using 1st GNURBS.
Invoking the non-isoparametric GNURBS surface with par-
tial decoupling of the weights in Sect. 2.2, we can treat the
out of plane weights w; as extra design variables without
perturbing the geometry or parameterization of the underly-
ing precise planar surface S (&, #). We may refer to these
variables as control weights hereafter.

The objective function to be minimized could still be
written as (23). However, the vector of design variables now

changesto A = 1{ zy, ..., 2, , W, oy WO Moreover, the fol-
1 np’

ny |°
lowing bounding constraints on control weights are often
desired to be satisfied for numerical stability.

@ Springer
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The other component of the Jacobian matrix can be
obtained as

02(51"71) 02(51,171)
owj 0w;§T
J, = P (30)
0 M) 0 M)
ow; oWy

In order to evaluate the partial derivatives with respect
to weight design variables, we rewrite Z(&, ) as

. _ 2

2 m = WE. (€2))

where Z(&,n) and W(E, ) are

2Em =Y N(Enwiz, 32)
L=1
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ny

WE N = Y N(Emw; (33)
=1
Using these definitions, we can obtain
9z, n) _ N(&,m) .
= —2E |, k=1,..,
owi WEn) o = 2@ " (34

Having the analytical Jacobian matrix components in
Egs. (29) and (30), we can now solve the established non-
linear least-square optimization problem efficiently. We
impose the initial conditions by setting all the control vari-
ables to zero and all the control weights to 1, i.e.

.0, 1,11 (35)

4.3 Non-linear least-square approximation using
isoparametric GNURBS

Since the derivation of analytical Jacobian matrix with this
generalization becomes complicated in case of having inter-
nal knots, we limit our derivation here to GR-Bézier. Invok-
ing the isoparametric GR-Bézier representation in Eq. (17),
we can again establish the approximation problem as a non-
linear least square problem with the objective function
defined in Eq. (23) but with the new set of design variables
7»”={Z, }Wherend=(r+l)><(s+1)
is the total number of 1soparametric control weights, and
np = (p + 1) X (g + 1) is the total number of control points.
The Jacobian matrix J can again be divided into two com-
ponents where J, contains the partial derivatives of f with
respect to Z,, while J,, includes the partial derivatives of f
with respect to wy. Differentiating with respect to Z, J, will

Z w L, We
ng

g

proaqs Xy
aVVL _ anJ — { A’u mﬂj,/ nwi—mJ—n’

z Z
ow oWy,

] 0 otherwise

172(51-’71) 02(517’71)
ow; owy,
J, = P 37)
&) . O M)
ow' ow;,

1 nd

In order to evaluate the partial derivatives of Z(&) with
respect to isoparametric control weights wy, we rewrite 2(§)
as

Z($)

=35 (38)

where Z(&) and W(&) are

2©) =) BuEmMW, 7, (39)
L=1

WE) = Y BLEmW, (40)
L=1

With these definitions, we can obtain the required deriva-
tives as

SOPINAL(SY); _
oW (7)) Py I=1,..,n,
(41)

The derivatives in above equation can be evaluated using
the following expressions

a1 [aZ(e:,m
owi T OWE

ifi—-p)<m<i&(-—q)<n<j

9Z(&,n)

o 2 B, (&, n) z 42)
) Z . )
where

(44)

be easily derived as

Ri@m) R@n) - R, &)
R, (

J = ﬁl(fzz,ﬂz) ﬁz({z»’?z) Ry, ‘:iz’ﬂz) (36)
I/él (én(.’ nnﬂ) ﬁZ(in(.’ nnL,) ﬁnr (éng’ ’1,,(_)

Also, J,, can be obtained as

in which
p r q s
P i—m||m as j—njn
b W (g4s)
i J

Similar to previous case, we specify the initial conditions
as follows

@ Springer
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z(&m)

Fig. 11 The helical surface in Eq. (47)

2, =140,0,..,0,1,1,...,1 435)
— ) N——
nr ny

As previously discussed, by changing w; during the
optimization process, the in-plane coordinates of control
points also vary at each iteration. However, since the in-
plane geometry and parameterization are always fixed, one
may only re-evaluate and update these coordinates after the
termination of the optimization process according to the
obtained optimal set of isoparametric basis functions. It is
important to note that this algorithm yields the combination
of optimal weights and the corresponding arrangement of
control points which result in the best approximation for a
given in-plane parameterization. To our knowledge, no such
investigation has been reported in the literature thus far.

5 Numerical examples

In this section, we present a few numerical examples of
approximating various types of surfaces using the proposed
generalizations of NURBS and compare the obtained results

with those of classic NURBS. In all cases, the relative L*-
norm of error is calculated using the following relation

1
(Jo GEm) = 2. m)*d) 2 (46)
Jo 2. mde2

€rror =

where all integrations are calculated using Gaussian
quadrature.

5.1 Test case 1: helicoid modelling

As the first numerical example, we consider the approxima-
tion of a partial helical surface with the following equation:

0<&<Th
0<n<l

47
which is depicted in Fig. 11. As observed, the in-plane
parameterization of this surface is a quarter annulus with
the configuration already shown in Fig. 7. Since this is a
geometric modelling problem where preserving the proper-
ties of NURBS are of interest, it is an ideal candidate for
employing isoparametric GNURBS. Accordingly, follow-
ing the procedure discussed above in Sect. 4.3, we try to
approximate the given height function in Eq. (47) and com-
pare the obtained results with classic NURBS. The obtained
results for different degrees of basis functions are presented
in Table 2.

According to this table, by including larger numbers
of control weights, better improvement of accuracy is
achieved. This reveals superior approximation of rational
functions especially when higher degrees of basis functions
are employed, at the expense of increased computational
time. It is clear that the proposed method offers a trade-off
between the and computational cost. This trade-off depends
on multiple factors including the employed degrees of basis
functions, number of control points and control weights as
well as the nature of the target height function, which need
to be considered when the computational cost is of con-
cern. According to this table, the increase in computational

S(&.m) = ((n + 1) cos(&), (1 + 1)sin(£), &),

Table 2 Error of approximating

: . . Surface type (r,s)  Degree (p,q) No. of con-  No. of con-  Error Error ratio  Time (s)

the helg,ht function Of, helical =(@+r,q+s) trol variables trol weights

surface in Eq. (47) using

R-Bézier versus isoparametric R-Bézier 0,00 @1 6 0 2.68E2 1.0 0.25

GR-Bézier in relative L*-norm 2nd GR-Bézier 0 2 68E-2 045
R-Bézier 1,1 3,2 12 0 1.28E-4 1.0 0.27
2nd GR-Bézier 4 1.28E-4 0.52
R-Bézier 2,2) &3) 20 0 1.28E-4 109.4 0.28
2nd GR-Bézier 9 1.17E-6 7.55
R-Bézier 3,3) (5.4 30 0 2.22E-6 180.5 0.31
2nd GR-Bézier 16 1.23E-8 12.54

@ Springer



Engineering with Computers

Z(&n)

i
o
\\\\‘“

T
\\\‘{\\\‘
\\\\;\‘{\m\\“\‘\m\\‘“
A \{\\\‘\\“\\\\\ ““\\\\
‘ﬁ\\‘\\&i\‘i\‘mi\‘f\‘i\‘i\\\\\\\«\\\\\

il

y(&n) =

Fig. 12 Scherk minimal surface

cost raises by including more control weights. However, it
is important to notice that GNURBS always yields higher
accuracy by making use of the same number of control
points. The results, however, show no improvement in accu-
racy for the first level of degree elevation, i.e. (7, s) = (1, 1).
This implies that the optimal values of control weights for
this particular level of degree elevation are unity. In other
words, classic order elevation results in optimal accuracy
for the approximation of helical height function using this
particular degree of basis functions.

5.2 Test case 2: Scherk minimal surface

As the second numerical experiment, we consider the con-
struction of a minimal surface model referred to as Scherk
minimal surface over a square domain. This example has
been addressed by Pan et al. [33] using isogeometric analy-
sis of minimal surfaces based on extended loop subdivision
scheme. The equation of this minimal surface is given as

100 [ [
——a—— NURBS
—a—— GNURBS
£ 10" h—
3 N
ﬁ T~
o~
~ T~~~
S 10—2 [~ ~
8
=
(5]
o 3
2 10
s
o)
[=2
10" I
-5
10 5 10 15 200 25 30
sqrt(# of dof)

Fig. 13 Convergence rate of quadratic NURBS versus GNURBS for
the approximation of Scherk minimal surface
which is depicted in Fig. 12.

As the figure shows, the surface features steep gradients
near the boundaries. In this example, for simplicity, we use
non-isoparametric GNURBS and compare its approximation
properties with classic NURBS. The obtained results using
various employed degrees of basis functions are shown in
Table 3.

As observed, the accuracy of approximation using
Ist GNURBS in all cases is better than that of classic
NURBS. Further, the improvement in accuracy almost
always increases when larger degrees of basis functions
are used. According to Table 2, the only exception is in
the bi-cubic case. This could be justified considering the
fact that, besides the degree of basis functions, the num-
ber of control points and control weights, the accuracy
of approximation also depends on additional factors such
as the behavior of the height function, in particular. Fur-
ther, as previously observed in Table 2, there was a similar
exception for the previous test case when elevating the

cos(n) -15<&<15 degree from (2, 1) to (3, 2). Finally, a similar trend in
S, m = <§’ 7, In <COS(§) ) > -15<n<15 (43) the computational times is observed when the number of
employed control weights is increased.
Table 3 Erro'r (?f approximaFing Surface type Degree (p, q) No. of control  No. of control Error Error ratio Time (s)
the Scherk mlnlmal surface in variables weights
Eq. (48) using NURBS versus
1st GNURBS in relative L*- NURBS 2,2) 25 0 1.52E-1  18.76 0.32
norm 1st GNURBS 25 8.11E-3 452
NURBS 3, 3) 36 0 9.40E-2 18.42 0.39
1st GNURBS 36 5.10E-3 1.98
NURBS 4,4) 49 0 5.02E-2 142.21 0.40
1st GNURBS 49 3.53E-4 16.50
NURBS (5,5) 64 0 3.59E-2 262.04 0.43
1st GNURBS 64 1.37E-4 27.30
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Fig. 14 The surface of revolution in Eq. (49)

Finally, for the case of quadratic basis functions, we
also perform a convergence study where we persistently
refine the knot sequence and compare the obtained accu-
racy of NURBS versus GNURBS. The obtained results are
plotted in Fig. 13. As the figure shows, the convergence
rate of GNURBS is more than one order faster than classic
NURBS, resulting in substantial improvement of accuracy
especially when larger numbers of control points are used.

5.3 Test case 3: surface of revolution

As the final numerical study, we consider the problem of
the approximation of a surface of revolution defined using
Eq., which is depicted in Fig. 14.

0<éL2z
0<n<l1
(49)

S&n = (tr+ Deos(@, (r+ Dsin@), e ),

As observed, the surface has an exponential behavior
along the radial direction. In this example, we demonstrate
how employing the second proposed variation of NURBS
could be useful for improved approximation of these type of
surfaces using the same number of control points. For sim-
plicity, we only consider modelling a quarter of the surface,
ie. (0 < & < /4). Similar to the first numerical example, we
start with the initial model of degree (p, ¢) = (2, 1) in Fig. 8.
Since the height function here only varies along the radial
direction, we only elevate the degree along this direction
(1) and compare the obtained approximation results using
Bézier (classic order elevation) with those of isoparametric
GR-Bézier (optimal order elevation). The obtained results
for (r, s) = (0,0) up to (r, s) = (0, 3) are presented in Table 4.

According to this table, the accuracy of approximation
by using isoparametric GR-Bézier is significantly higher
than that of classic Bézier, especially when higher order
elevations are applied. However, as can be seen, similar
to previous test cases there is an exception in the case of
(r,s) = (0,2) which could be due to certain behavior of the
assumed height function. These results clearly show the
superiority of rational functions for the approximation of
this class of surfaces.

Finally, the corresponding arrangements of control points
for cases 3 to 8 are represented in Fig. 15. As observed, the
arrangements of control points in all cases only differ along
the radial direction. This was expected to be the case, since
in this example, order elevation has only been performed
along the radial direction.

6 Extensions and further applications

While, in this paper, we limited our study to applying the
proposed generalizations to NURBS, due to fundamental
similarities between different variations of splines, similar

Table 4 Error of approximating the height function of the surface of revolution in Eq. (49) using R-Bézier versus isoparametric GR-Bézier in

relative L>-norm

Case no. Surface type (r,s) Degree (p, §) No. of control ~ No. of control  Error Error ratio Time (s)
=(Pp+r,qg+s) variables weights
1. R-Bézier 0,0) 2,1 6 0 0.20E0 1.0 0.24
2. 2nd GR-Bézier 0 0.20E0 0.39
3. R-Bézier 0, 1) 2,2) 12 0 3.42E-2 45.25 0.27
4. 2nd GR-Bézier 4 7.55E-4 0.55
5. R-Bézier 0, 2) 2,3) 20 0 7.10E-3 43.58 0.28
6. 2nd GR-Bézier 9 1.63E-4 1.34
7. R-Bézier 0, 3) 2,4 30 0 1.12E-3 1.26E4 0.28
8. 2nd GR-Bézier 16 8.90E-8 12.41
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Fig. 15 The resulting control net for the approximation of the surface of revolution in Eq. (49): a Case 3, b Case 4, ¢ Case 5, d Case 6, e Case 7,

and f Case 8
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Fig. 16 Snapshots of different windows of GNURBS3D-Lab: a Main window, b 3D surface plot window, ¢ in-plane equivalent NURBS win-

dow, and d 3D equivalent NURBS window

generalizations seem plausible to other rational forms of
splines such as T-spline surfaces, Tri-angular Bézier sur-

faces etc.
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In addition to the discussed applications of GNURBS in
CAGD, other applications of NURBS in this area can be
found where employing the weights as additional design
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variables for better flexibility can be problematic or some-
times impossible. For instance, GNURBS may also help
circumventing the difficulties of considering the weights
as degrees of freedom in general surface fitting problems
with arbitrary parameterization. As previously studied in
[13, 29], employing the weights as additional degrees of
freedom in data approximation can deteriorate the surface
parameterization, and lead to undesirable results, espe-
cially when approximating rapidly varying data. On the
other hand, employing GNURBS, by including the control
weights as design variables, one can create a good surface
parameterization and preserve it during fitting without
imposing any restrictions on the magnitude of variations
of the weights.

Furthermore, NURBS have been extensively used in other
disciplines such as computational mechanics for the optimi-
zation of different fields of interest over a given computa-
tional domain. Considering these studies, we can find out
that in this class of applications, the parameterization of the
design domain needs to remain fixed throughout the opti-
mization process; see [8, 34—41], for instance. Hence, they
are only able to treat the out-of-plane coordinates of control
points as design variables, as the variation of weights alters
the underlying parameterization which is disallowed. How-
ever, owing to the proposed GNURBS representations with
decoupled weights, one can now treat the control weights as
additional design variables while setting up the optimization
problem and still preserve the underlying geometry as well
as its parameterization. As elaborated in this research, this
can lead to significant improvement in the obtained accuracy
in both cases of smooth as well as rapidly varying fields.
Exploring some of these applications is the subject of our
future studies.

7 MATLAB toolbox: GNURBS3D-Lab

In order to facilitate understanding the behavior of GNURBS
surfaces and the additional abilities they serve, a compre-
hensive and fully interactive MATLAB toolbox, named
GNURBS3D-Lab, has been developed. This toolbox is devel-
oped via the extension of GNURBS Lab, a similar inter-
active MATLAB toolbox already developed for GNURBS
curves [2]. Snapshots of different available windows in
GNURBS3D-Lab are shown in Fig. 16, which demonstrate
the environment of the toolbox and numerous features that
the software provides.

The figure shows an example of designing a 3D surface
with an in-plane shape of a quarter annulus and a free-form
out of plane shape using GR-Bézier. As demonstrated in
Fig. 16, the toolbox is enabled to evaluate the equivalent

higher-order rational Bézier representations with the
designed surface in 2D and 3D interactively. Employing the
provided wide range of tools shown in Fig. 16a, one can eas-
ily manipulate any defining parameter of the surface, includ-
ing the locations of control points, or a variety of weight
components, and observe the changes interactively in all four
windows shown in Fig. 16, simultaneously.

The open-source toolbox is available at http://www.ersl.
wisc.edu/software/GNURBS3D-Lab.zip. Detailed instructions
for using this toolbox are also provided in an additional docu-
ment GNURBS3D_Manual.pdf accessible via the same link.

8 Conclusion

We introduced two generalizations of NURBS surfaces,
referred to as GNURBS, by decoupling of the weights
associated with the control points along different physi-
cal coordinates. These generalizations were obtained via
either explicit or implicit decoupling of the weights lead-
ing to non-isoparametric and isoparametric representations,
respectively. As demonstrated, both these variations improve
the flexibility of NURBS and circumvent its deficiencies by
providing the possibility of treating the weights as additional
design variables in special applications. It was proved that
these representations are only variations of classic NURBS
and do not constitute a new superset of NURBS. Superior
approximation abilities of these variations for both smooth
and rapidly varying functions were shown via simple exam-
ples in surface modelling. It was shown that GNURBS can
be effectively used for improved construction of various
types of surfaces such as helicoids, minimal surfaces as
well as surfaces of revolution using the same number of
control points. A comprehensive MATLAB toolbox, named
GNURBS3D-Lab, was developed and introduced to better
demonstrate the behavior of different types of GNURBS sur-
faces in a fully interactive manner. In summary, GNURBS
were shown to serve as a new effective technology in surface
modelling with superior accuracy while merely being dis-
guised forms of classic NURBS.
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