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Abstract
Intensive computational and theoretical work has led to the development of multiple mathematical models for bursting in 
respiratory neurons in the pre-Bötzinger Complex (pre-BötC) of the mammalian brainstem. Nonetheless, these previous 
models have not captured the pre-inspiratory ramping aspects of these neurons’ activity patterns, in which relatively slow 
tonic spiking gradually progresses to faster spiking and a full-blown burst, with a corresponding gradual development of an 
underlying plateau potential. In this work, we show that the incorporation of the dynamics of the extracellular potassium ion 
concentration into an existing model for pre-BötC neuron bursting, along with some parameter adjustments, suffices to induce 
this ramping behavior. Using fast-slow decomposition, we show that this activity can be considered as a form of parabolic 
bursting, but with burst termination at a homoclinic bifurcation rather than as a SNIC bifurcation. We also investigate the 
parameter-dependence of these solutions and show that the proposed model yields a greater dynamic range of burst frequen-
cies, durations, and duty cycles than those produced by other models in the literature.

Keywords  Neuronal dynamics · Fast-slow dynamics · Pre-Bötzinger Complex · Ion concentration dynamics · Persistent 
sodium current

1  Introduction

Since the original discovery of respiratory activity in neu-
rons within the pre-Bötzinger Complex (pre-BötC) of the 
mammalian brainstem (Smith et al., 1991), many experi-
mental and computational efforts have focused on charac-
terizing the activity patterns of these neurons. Experiments 
have shown that, when synaptically isolated, a subset of 
pre-BötC inspiratory neurons generate temporally clustered 

action potentials known as bursts (Johnson et al., 1994). 
These neurons are often referred to as intrinsic bursters or 
pacemaker neurons. Intrinsic bursting in some pre-BötC 
neurons has been shown to depend on a persistent sodium 
current (Butera et al., 1999; Del Negro et al., 2002, 2005; 
Koizumi & Smith, 2008), while others require a nonspecific 
cation, or CAN, current (Thoby-Brisson & Ramirez, 2001; 
Peña et al., 2004), and combinations of these ion flows can 
produce various distinctive burst patterns including some 
that may arise under special conditions such as early in 
development (Jasinski et al., 2013; Chevalier et al., 2016; 
Wang & Rubin, 2020) or during sighs (Jasinski et al., 2013; 
Toporikova et al., 2015; Wang et al., 2017).

Functional respiratory rhythms under normoxic condi-
tions consist of three activity phases, commonly known as 
inspiration, post-inspiration, and late expiration, the latter 
two of which together comprise expiration. During respira-
tory rhythms recorded in various experimental preparations, a 
subpopulation of glutamatergic pre-BötC neurons, sometimes 
known as type-1 pre-BötC neurons (Rekling & Feldman, 1998; 
Gray et al., 1999) engages in what is known as pre-inspiratory 
(pre-I) activity. These neurons remain silent throughout much 
of post-inspiration and late expiration, but they begin to acti-
vate toward the end of the expiration. Their activity ramps in 
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intensity, with a gradual increase in the spike rate and in the 
voltage to which membrane potential repolarizes between 
spikes as expiration gives way to inspiration, and culminates 
in bursting that continues throughout inspiration; indeed, this 
pre-I activity pattern is thought to play an important role in 
initiating the expiration-to-inspiration transition (Richter, 1996; 
Ezure et al., 2003; Rubin et al., 2009; Lindsey et al., 2012). 
While the gradual intensification of pre-I activity likely involves 
network mechanisms including positive feedback induced by 
the recruitment of additional neurons, experiments have shown 
that even individual burst-capable pre-BötC neurons can gener-
ate ramping activity patterns, in which tonic spiking eventually 
intensifies and transitions to bursting, under pharmacological 
blockade of glutamatergic neurotransmission (Thoby-Brisson 
& Ramirez, 2001; Peña et al., 2004).

Despite the significant work done previously to model 
pre-BötC neuronal activity, current spiking models do not 
capture the ramping activity observed in individual pre-
BötC neurons. Moreover, experiments show that the burst-
ing capability of pre-BötC neurons and networks depends 
on the extracellular ion concentrations to which they are 
exposed. Slices of 250-350 �m thickness prepared from the 
pre-BötC are nonrhythmic at physiological [K+]ext , but some 
individual pre-BötC neurons do burst in these conditions 
(Del Negro et al., 2001; Tryba et al., 2003), especially if 
depolarized by a tonic input (Smith et al., 1991), and phar-
macological blockade of GABAA and glycinergic inhibition 
also allows pre-BötC neurons to burst in these conditions 
(Tryba et al., 2003). In contrast to these results, modeling 
that explains how different extracellular potassium concen-
trations can produce corresponding forms of pre-BötC activ-
ity has led to the conclusion that individual pre-BötC neu-
rons should not be able to burst at physiologically relevant 
extracellular potassium concentrations (Bacak et al., 2016b). 
In this paper, we revisit these issues, producing and analyz-
ing what is to our knowledge the first Hodgkin-Huxley (HH) 
style model for ramping bursts of pre-BötC neurons in the 
absence of rhythmic drive and inhibitory inputs. Importantly, 
our model does not require tuning outside of physiological 
parameter ranges in order to produce bursting dynamics.

Many of the previous models that inspired this work were also 
posed in the HH framework. While neuronal spikes each last just 
a few milliseconds, inspiratory bursts are much longer events, 
lasting up to multiple seconds under some experimental condi-
tions (Gray et al., 1999; Thoby-Brisson & Ramirez, 2001; Peña 
et al., 2004). Despite the presence of ionic pumps and glial cells 
that regulate intra- and extracellular ion concentrations, respec-
tively, spiking that continues over such prolonged periods can 
lead to significant changes in the ion concentrations that impact 
neurons (Fröhlich et al., 2008; Barreto & Cressman, 2011; Kueh 
et al., 2016). Given this ionic dynamics and the knowledge that 
pre-BötC respiratory neuron activity patterns strongly depend on 
extracellular potassium concentration, we hypothesized that the 

dynamics of potassium ions could be central to the emergence of 
ramping activity in individual pre-BötC neurons. The key inno-
vation in our work relative to past pre-BötC neuron models is that 
we have augmented the HH modeling framework with this ionic 
dynamics. In this paper, we show that combining these compo-
nents yields a neuronal model that successfully produces ramp-
ing dynamics. Applying fast-slow decomposition and associated 
bifurcation analysis, we explain the mechanisms underlying this 
activity pattern, which we find represents a form of parabolic 
bursting. Furthermore, we use direct simulations to explore the 
robustness and tunability of the bursting dynamics in our model, 
and we perform additional analysis to elucidate how transitions 
between bursting and other forms of activity occur as certain 
model parameters are varied.

2 � Model

2.1 � Voltage dynamics

We consider a model that depicts the spiking behavior of an 
isolated neuron in the pre-BötC. It is formulated similarly 
to other HH-style models (Hodgkin & Huxley, 1952) and 
depends on a persistent sodium current to trigger bursting 
(Butera et al., 1999). Our model is based heavily on a model 
presented by Bacak et al. (2016b), augmented with some cru-
cial modifications.

In this model, the membrane potential (V) is governed by 
the current balance equation:

The membrane currents in (1) include: the fast sodium cur-
rent INa , the persistent sodium current INaP , the delayed rec-
tifier potassium current IK , the leakage current IL , and the 
synaptic current ISyn . These membrane currents are drawn 
from previous work of Butera et al. (1999) and Bacak et al. 
(2016b), and are represented as follows:

Note that we model a single neuron, and ISyn is a tonic syn-
aptic current with time-independent conductance, ḡSyn , rep-
resenting a steady level of drive from other sources, such as 

(1)C ⋅

dV

dt
= −

(
INa + INaP + IK + IL + ISyn

)
.

(2)INa = ḡNa ⋅ (mNa)
3
⋅ hNa ⋅ (V − ENa),

(3)INaP = ḡNaP ⋅ mNaP ⋅ hNaP ⋅ (V − ENa),

(4)IK = ḡK ⋅ n4 ⋅ (V − EK),

(5)IL = ḡL ⋅ (V − EL),

(6)ISyn = ḡSyn ⋅ (V − ESyn).



Journal of Computational Neuroscience	

1 3

brainstem feedback pathways. This form of synaptic current 
is appropriate for this study, since we are interested in rhyth-
micity that can emerge due to intrinsic neuronal dynamics, 
without contributions from time-varying inputs.

2.2 � Sodium and potassium currents

The currents INa , INaP , and IK are given as products of 
maximal conductances, gating variables, and restor-
ing potentials. Each of the sodium gating variables 
x ∈ {mNa, hNa,mNaP, hNaP} satisfies the equation

where

The parameter values used for these equations, with corre-
sponding sources and rationales, are all presented in Appen-
dix 1.

The potassium current only has activation gates, repre-
sented by the variable n, which also satisfies Eq. (7). For 
n∞(V) and �n(V) , we use the formulation

where �1(V) and �2(V) are the following voltage-dependent 
functions, taken from Bacak et al. (2016b) and Huguenard 
and McCormick (1992):

The constants nA , nB , nAV
 , nBV

 , nAk
 , and nBk

 are discussed in 
Appendix 1.

The reversal potential for potassium ions, denoted EK , is 
viewed as a function of the dynamic variable [K+]out , and 
modeled through the Nernst equation approximated at body 
temperature,

Note that [K+]in is taken to be a constant value. The justifica-
tion for this approximation is discussed in Sect. 2.3. Internal 
and external sodium ion concentration, and thus also the 
sodium reversal potential ENa , are taken as constants in this 
model as in the previous literature (Bacak et al., 2016b), 
with values listed in Appendix 1.

(7)�x(V) ⋅
dx

dt
= x∞(V) − x,

x∞(V) =
[
1 + exp

(
(Vx − V)∕kx

)]−1
,

𝜏x(V) = 𝜏x∕
[
cosh

(
(V − V𝜏x

)∕k𝜏x

)]
.

n∞(V) =
�1(V)

�1(V) + �2(V)
, �n(V) =

1

�1(V) + �2(V)
,

�1(V) =
nA ⋅ (nAV

+ V)

1 − exp
(
−(nAV

+ V)∕nAk

) ,

�2(V) = nB ⋅ exp
(
−(nBV

+ V)∕nBk

)
.

(8)EK = 26.7 ⋅ log
[K+]out

[K+]in
.

2.3 � Ion regulation and dynamics

The crucial difference between our model and the model pre-
sented in Bacak et al. (2016b) is the inclusion of dynamics 
in the concentration of extracellular potassium ions, denoted 
[K+]out.

Experimental data has long indicated that neuronal activity 
causes fluctuations in [K+]out , with increases on the order of 
1.0 mM, which can nearly double the [K+]out local to a neu-
ron, during active periods (Baylor & Nicholls, 1969; Amzica 
et al., 2002) and increases of up to 10 mM within pathological 
states such as seizures (Raimondo et al., 2015).

Experimental manipulations that increase the extracellu-
lar potassium concentration are commonly performed in in 
vitro studies to increase neural excitability and induce burst-
ing behavior. A typical approach is to bathe slices of neuronal 
tissue in highly concentrated K+ solution. The variations of 
[K+]out due to neural activity and effects of ion pumps, glia, 
and diffusion (Clausen et al., 2017; Kofuji & Newman, 2004; 
Beckner, 2020), however, imply that this bath concentration 
is not equivalent to what we present as the [K+]out variable. 
Throughout this paper, [K+]out represents the approximate 
localized concentration of K+ in the vicinity of an individual 
neuron, while kbath represents the concentration of potassium 
in the bathing solution, toward which [K+]out would naturally 
evolve over time in the absence of neuronal activity and glial 
effects. This diffusion of the dynamic [K+]out variable towards 
kbath is modeled as a molar current of the form discussed in 
Barreto and Cressman (2011):

where �diff  represents the corresponding time constant. To 
simulate reasonable physiological conditions, kbath was set 
to 4 mM (Barreto & Cressman, 2011).

Glial cells also play an active role in decreasing the con-
centration of K+ external to neurons (Newman & Reichen-
bach, 1996). The effects of the glia on this concentration are 
also modeled as molar currents in the style of Barreto and 
Cressman (2011), with maximal rate Ḡ , half-activation potas-
sium concentration K̄ , and steepness factor zk as follows:

Note that neither diffusion nor glial cells move ions across 
the neuronal membrane, and thus the currents Ĩdiff , Ĩglia do 
not appear in the voltage equation.

Finally, increases in [K+]out are driven by the action 
potentials of the neuron. The potassium current IK derives 
from the movement of potassium ions across the neural 
membrane. The resulting changes in potassium concentra-
tion are therefore proportional to IK . The proportionality 

(9)Ĩdiff =
1

𝜏diff
([K+]out − kbath),

(10)Ĩglia =
Ḡ

1 + ezk⋅(K̄−[K
+]out)

.
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factor is the product of two constants. One of these terms, 
� , represents the ratio of the time-derivative of the internal 
ion concentration to the corresponding membrane current 
and is derived in Appendix 2. The constant � represents the 
ratio of the internal neuron volume to the localized external 
volume, which determines the reversal potential across the 
neural membrane. Thus, changes in external concentration 
must be proportional to a factor of �� and we model the 
dynamics of localized external potassium concentration as

We note that previous computational models of ion dynam-
ics have set � = 7 (Barreto & Cressman, 2011). This value 
can be derived from experimental measurements suggest-
ing that the proportion of total tissue volume that composes 
extracellular space (ECS) is around 13% . However, studies 
have found this proportion to range from as low as 4% to a 
maximum of 24% in conditions of hypoxia or anoxia (Som-
jen, 2004; Nicholson & Syková, 1998). We used � = 14.555 
in our simulations as we found that that value resulted in 
a good match to experimental voltage traces (e.g., Fig. 2). 
Our model produces qualitatively similar dynamics over a 
wide range of � values as long as �diff  is increased and/or Ḡ 
is decreased correspondingly.

Also, it is important to note that in this model, [K+]in is 
approximated as being a constant value, despite the fact that 
K+ ions inside the neuron flow through the neural membrane 
via the IK current and increase [K+]out . The change in exter-
nal K+ concentration, which is under 2 mM per burst in this 
model, would only correlate to a decrease of 0.137 mM in 
internal K+ concentration. This is negligible on the scale of 
bursting behavior of an individual neuron, as it constitutes 
only a small fraction of the initial [K+]in value of 150 mM. 
This approximation was also used in a previous neuronal 
bursting model with dynamic ion concentrations, based on 
the argument that changes in [K+]in are more strongly cor-
related to fluctuations in internal sodium ion concentration 
than to changes in [K+]out (Barreto & Cressman, 2011).

2.4 � The full model

In summary, we arrive at a 7-dimensional model of a neu-
ron, which depicts bursting behavior by connecting the 
dynamics of membrane potential, sodium and potassium 
gating and reversal potentials, and ion concentrations. The 
formulations of these dynamics are based on a combination 
of previous models of bursting behavior (Butera et al., 1999; 
Bacak et al., 2016b; Barreto & Cressman, 2011). The dif-
ferential equations in this system are Eqs. (1), (7), and (11); 

(11)
d[K+]out

dt
= 𝛾𝛽IK − Ĩdiff − Ĩglia.

note that in fact we have 5 equations of the form (7), one for 
each of mNa , hNa , mNaP , hNaP , and n.

2.5 � Data analysis and definitions

2.5.1 � Ramping bursts

A major aspect of this work is the consideration of ramping 
bursts, which have not been well captured by other single-
neuron conductance-based models. We define ramping 
bursts as activity patterns with alternating silent and active 
phases, in which each active phase begins with relatively low 
frequency tonic spikes, the baseline voltage and the spike 
frequency gradually rise, forming the ramp, and eventually 
the dynamics transitions into a period of full-blown high 
frequency spiking riding on top of a depolarized voltage 
plateau. The model can produce ramping bursts in two types 
of parameter regimes: those for which the model with fixed 
[K+]out also has a bursting capability (if [K+]out is fixed in a 
suitable range) and those for which the model cannot burst 
for any fixed level of [K+]out . In the former case, we spe-
cifically define a ramping burst as a burst where the exter-
nal potassium ion concentration [K+]out after the first three 
spikes is less than the [K+]out required to induce bursting 
behavior for the model with the same conductance param-
eters, but with a fixed external potassium ion concentration.

2.5.2 � Fast and slow variables

Our analysis will be based on the premise that [K+]out and 
hNaP are the slowest variables in our model. Various meth-
ods including nondimensionalization can be used to identify 
timescales associated with variables in biological models. 
In our model, such analysis is unnecessary because most 
of the model equations are of the form (7), with an explicit 
voltage-dependent timescale term �x(V) . It is easy to check 
directly that �hNaP(V) is at least 10 times larger than all of the 
other timescale terms for each V in the range occurring in 
our simulations. Moreover, direct simulation shows that the 
rate of change of [K+]out is also slow relative to the rates of 
change of these other terms and voltage (e.g., see Fig. 2). At 
a more analytical level, we note that the key term controlling 
the magnitude of the rate of change of [K+]out is IK , which 
includes the quantity n4 . In theory, n4 could become as large 
as 1, which would increase the magnitude of IK and speed up 
the change of [K+]out . In our simulations, however, n remains 
below a maximum of around 0.5. With this constraint, the 
quantity |d[K+]out∕dt|∕(ΔK) , where ΔK denotes the range 
of values over which [K+]out varies (Diekman et al., 2017), 
stays small relative to comparable quantities for voltage and 
the gating variables other than hNaP.
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3 � Periodic behaviors in the model

3.1 � Activity patterns

To match experimental data, a pre-BötC neuron model 
must demonstrate a range of activity patterns across dif-
ferent conditions. Previous modeling work showed how 
different neuronal behaviors occur at different fixed values 
of the external potassium concentration, and our model 
reproduces this result in Fig. 1. Specifically, at sufficiently 
negative EK , the neuron remains in a tonic spiking state, 
characterized by rhythmic spiking at a fixed frequency 
(Fig. 1A). As EK is increased, bursting dynamics, with 
periods of quiescence alternating with periods of high-
frequency spiking riding a depolarized voltage plateau, 
emerges (Fig. 1B). With even higher EK , however, after 
release from the original resting potential, the neuron 
spikes but cannot fully repolarize and return to a rest-
ing state and instead, it again enters a tonic spiking state 
but with reduced repolarization and a higher frequency 
(Fig. 1C). Finally, when EK is high enough, the neuron 
enters depolarization block with an elevated membrane 
potential and no spike generation (Fig. 1D). The agree-
ment of these simulations with previous work is not sur-
prising: When internal and external K+ concentrations are 
fixed, our model is extremely similar to the model pre-
sented in Bacak et al. (2016b), differing only in the values 

of a few model parameters, which affect quantitative but 
not qualitative aspects of the dynamics in this frozen-
potassium setting.

Previous work has noted that fixing [K+]out , which is 
directly related to EK by (8), at values sufficiently elevated 
above physiological levels is enough to induce bursting 
in a pre-BötC neuron model lacking ion concentration 
dynamics (Bacak et al., 2016b). Furthermore, modeling 
of other brain areas revealed a wide array of bursting 
behaviors when K+ and Na+ concentrations were allowed 
to vary dynamically (Barreto & Cressman, 2011; Erhardt 
et al., 2020). In this work, we combine the insights offered 
by these earlier investigations to model pre-BötC dynam-
ics featuring ramping activity culminating in a burst 
without imposed elevation of extracellular potassium 
concentration.

Indeed, with dynamic extracellular potassium levels, 
our model produces distinctive ramping bursts as shown in 
Fig. 2, matching a pattern seen experimentally in pre-BötC 
neurons; the slow spiking on a gradually increasing voltage 
plateau at the start of each burst active phase is referred to 
in the literature as “pre-inspiratory activity”. These bursts 
include periods of quiescence, during which [K+]out remains 
on the low end of physiologically observed levels, corre-
sponding to low values of EK , by Eq. (8). Numerical simula-
tions show that EK slowly increases during this phase until 
spiking emerges. As in other HH-type models, each spike 

Fig. 1   Model pre-BötC neuron 
activity depends on the potas-
sium reversal potential, EK , 
which relates to the local exter-
nal potassium concentration 
via Eq. (8). (A) [K+]out = 4.0 
mM, EK = −96.8 mV: low rate 
tonic spiking. (B) [K+]out = 6.0 
mM, EK = −85.9 mV: burst-
ing. (C) [K+]out = 8.0 mM, 
EK = −78.3 mV: transient 
followed by high rate tonic 
spiking. (D) [K+]out = 10.0 
mM, EK = −72.3 : depolariza-
tion block
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involves dynamics of the sodium and potassium currents, 
INa and IK , respectively. The ion flows associated with these 
currents gradually increase [K+]out . Although glia and dif-
fusion also contribute to changes in external K+ concentra-
tions, the strengths of these repolarization currents depend 
on [K+]out as depicted in Eqs. (9) and (10). Moreover, at low 
concentrations, we find that the glia are almost inactive and 
diffusion is too weak to bring [K+]out back to equilibrium. 
A positive feedback loop results, with neuronal spiking 
causing [K+]out to increase and increases in [K+]out driving 
intensification of spiking, such that [K+]out rises substan-
tially above baseline values. Our simulations show that this 
rise in [K+]out is cut off by the rise in the strength of diffu-
sion and glial currents as in Eqs. (9) and (10). The overall 
increase of EK is enough to trigger bursting behavior in the 
neural cell, however, and this bursting continues until some 
time after [K+]out saturates. Furthermore, as demonstrated 
experimentally (Del Negro et al., 2001) and discussed near 
the end of Sect. 3.2, the spiking frequency increases with 
[K+]out . Thus, the increasing [K+]out during the build-up 
of a burst also provides a mechanism for a ramping effect, 
where the spiking frequency gradually increases from an 
initial slow tonic spiking until a burst is established. The 
exact geometry of the burst pattern depends on various 
parameters, including maximal conductance strengths. For 
example, with a reduction in ḡNaP, ḡL , and ḡSyn the bursting 
pattern changes to feature a more gradual increase in spike 
frequency and a less pronounced drop in spike amplitude 
during the burst (Fig. 2B). As noted in Sect. 2.4, this second 

parameter set corresponds to a regime in which the model 
can never burst with [K+]out fixed. This distinction will also 
show up in the analysis in the coming sections.

3.2 � Fast‑slow decomposition analysis

Neuronal bursting results from dynamics occurring across 
two or more distinct timescales. Voltage spikes occur on 
a fast timescale. Transitions between the spiking state and 
quiescent state within the bursting regime, as well as the 
gradual oscillation of [K+]out over the course of a burst, 
depend on slow timescale dynamics. In our model, a posi-
tive feedback loop between the slow subsystem and the fast 
subsystem causes a buildup in external K+ concentration 
and a gradual increase in spike frequency during the active 
phase of a burst. The resulting variation in EK values affects 
the timing of the transition from the active spiking state to 
the quiescent state within each burst.

A fast-slow decomposition is a standard mathemati-
cal approach to elucidate the details of multiple timescale 
dynamics in bursting (Bertram & Rubin, 2017). We begin 
a fast-slow decomposition by noting that hNaP and [K+]out 
evolve significantly more slowly that the other variables in 
the model. Hence, the full model can be considered as hav-
ing 5 fast variables (V ,mNa, hNa, n,mNaP) , comprising a fast 
subsystem, and 2 slow variables hNaP and [K+]out , constitut-
ing a slow subsystem.

A standard approach when a model features multiple 
slow variables, which we follow, is to pick one of these as a 

Fig. 2   Typical bursting trajec-
tories of our pre-inspiratory 
pre-BötC neuron model. (A) 
Time course and external 
potassium concentration for 
ḡNaP = 5.0 nS, ḡL = 2.50 nS, 
ḡSyn = 0.365 nS. (B) Time 
course and external potassium 
concentration for ḡNaP = 4.5 nS, 
ḡL = 2.40 nS, ḡSyn = 0.360 nS. 
(C) Physiologically recorded 
ramping behavior, adapted with 
publisher’s permission from 
Fig. 4 in Gray et al. (1999). (D) 
Monotonic relationship between 
external potassium ion concen-
tration and potassium reversal 
potential, with range from (A, 
B) indicated in red
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primary bifurcation parameter and compute bifurcation dia-
grams for the fast subsystem with respect to this parameter, 
while the other slow variables are held frozen at some fixed 
values. This process can then be repeated for various values 
of these other slow variables, which are typically selected 
based on the paths they follow when the full system evolves.

Previous analysis of respiratory neuron models with 
fixed EK showed the utility of hNaP as a bifurcation param-
eter (Butera et al., 1999; Bacak et al., 2016b), so we make 
hNaP our initial primary bifurcation parameter as well, and 
we use XPPAUT (Ermentrout, 2002) to consider how the 
dynamics of the fast subsystem varies with hNaP . We repeat 
this analysis for several values of [K+]out (and hence of EK ). 
Note that we refer to the fast subsystem together with hNaP 
as the neuronal system.

Let us start with the parameter set corresponding to 
Fig. 2A. Consider first [K+]out = 4.5 mM (Fig. 3A). The fast 
subsystem bifurcation diagram with respect to hNaP includes 
an S-shaped curve of equilibria, known as the critical man-
ifold S , including two stable segments (red solid), one a 
hyperpolarized branch corresponding to quiescence and the 
other a depolarized segment corresponding to depolariza-
tion block. The lower stable branch ends in a saddle-node 
bifurcation that we call the lower knee of S , with h = hLK

NaP
 , 

while the upper segment destabilizes at even larger hNaP 
at a supercritical Andronov-Hopf (AH) bifurcation, with 
h = hAH

NaP
 . These bifurcation values do depend on [K+]out , 

but we suppress this dependence in our notation. The fam-
ily of stable periodic orbits, P , born in the AH bifurcation 
continues for decreasing hNaP until terminating in a SNIC 
bifurcation at the lower knee. When the neuronal system, 
consisting of the fast subsystem along with the slow hNaP 
dynamics, is simulated with [K+]out , and thus EK , still fro-
zen, the system exhibits periodic tonic spiking in which hNaP 
hovers near a particular value and the voltage of the cell 
oscillates along the associated part of the periodic orbit fam-
ily in the bifurcation diagram. Past work has shown that this 
tonic spiking results when the weak leftward drift in hNaP 
during the part of each oscillation when the trajectory lies 
above the hNaP-nullcline (dashed orange) in (hNaP,V)-space 
exactly balances the weak rightward drift when the trajec-
tory is below the hNaP-nullcline (Bacak et al., 2016b).

When [K+]out is fixed at the larger value of 5.3 mM, the fast 
subsystem bifurcation diagram remains similar but the termina-
tion of the periodic orbit family decouples from the saddle-node 
bifurcation; that is, the termination now occurs at a homoclinic 
bifurcation, with h = hHC

NaP
 , instead of at a SNIC. The shift in 

the periodic orbit family due to the selection of a new EK value 
also changes its relation to the position of the hNaP-nullcline 
and its shape. As a result, the trajectory of the neuronal system 
drifts in the direction of lower hNaP as spiking occurs until it 
reaches the hNaP value of the homoclinic bifurcation and returns 
to the silent, non-spiking phase. Thus, this system produces 

Fig. 3   Both spiking and burst-
ing states can be realized with 
fixed K+ concentration (cf. 
Bacak et al., 2016b). Solid red 
(dashed black) curves: stable 
(unstable) segments of the criti-
cal manifold; solid purple circle: 
Andronov-Hopf (AH) bifurca-
tion point; green curve: periodic 
orbit family P ; blue curve: orbit 
of the neuronal system starting 
from a jump up to the active 
phase; dashed orange curve: 
hNaP nullcline. (A) [K+]out = 4.5 
mM, EK = −93.6 mV: spiking 
oscillation near SNIC (light 
blue) where P terminates. (B) 
[K+]out = 5.3 mM, EK = −89.3 
mV: bursting. (C) [K+]out = 6.0 
mM, EK = −85.9 mV: bursting 
with an altered waveform. (D) 
[K+]out = 6.7 mM, EK = −83.0 
mV: tonic spiking (note the 
absence of a jump down in the 
orbit from P to the lower stable 
branch of S ; also see main text)
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square-wave bursting, also known as fold-homoclinic bursting 
(Izhikevich, 2007) (Fig. 3B).

As we consider progressively larger (less hyperpo-
larized) values of [K+]out, we find that P , hAH

NaP
 , and hHC

NaP
 

all move to smaller hNaP values. Moreover, the curve of 
maximal voltages along the periodic orbit family con-
tinues to change shape, becoming monotone decreasing 
in hNaP instead of non-monotonic as previously. When 
[K+]out = 6.0 mM, for example, the neuronal system con-
tinues to produce bursting dynamics, but with bursts of 
longer duration and more spikes per burst than previously 
(Fig. 3C). As hAH

NaP
 becomes closer to hSN

NaP
 , the initial spikes 

within each burst have a large amplitude but subsequent 
spikes are smaller, as the orbit converges down to small-
amplitude fast subsystem periodic orbits near the AH 
point; as time continues to evolve, spikes become larger 
again, as the bursting orbit travels toward the homoclinic, 
where the fast subsystem periodics have larger amplitude. 
This decreasing-increasing trend in spike amplitudes 
becomes more pronounced as [K+]out increases and hAH

NaP
 

moves to successively smaller hNaP.
Finally, at a [K+]out value above a certain threshold, the 

neuronal system no longer produces bursting behavior. 
For example, for [K+]out = 6.7 mM, the AH point now lies 
to the left of the saddle-node point. Hence, if we start a 
trajectory in the silent phase, then after hNaP grows and 
reaches the SN point to initiate spiking, the initial decline 
in spike amplitude is particularly pronounced, as the tra-
jectory initially converges toward the depolarized branch 
of fast subsystem equilibria (Fig.  3D). Furthermore, 
thanks to the more extreme leftward position of the peri-
odic orbit family, the spikes that occur at low hNaP spend 
significant time below the hNaP-nullcline in the (hNaP,V) 
plane, allowing the corresponding rightward drift in hNaP 
to balance the leftward drift that occurs when voltage is 
more depolarized. Thus, the trajectory becomes pinned 
and oscillates along a particular fast subsystem periodic 
orbit indefinitely, as it did for [K+]out = 4 mM, and the 
neuron remains in a tonic spiking state.

Next, consider the parameter set with ḡSyn = 0.360 nS, 
ḡNaP = 4.5 nS, and ḡL = 2.4 nS. This reduction in ḡL is 
analogous to increasing the excitability of the neuron, as 
discussed in more detail in Sect. 4. In Fig. 2B, the burst-
ing waveform resulting from this parameter set is demon-
strated. However, if [K+]out is set to be constant, bifurca-
tion analysis with respect to hNaP shows that the neuronal 
system is unable to achieve a bursting state at any fixed 
ion concentration, but rather maintains tonic spiking. In 
this case, with dynamic [K+]out , the gradual rise of [K+]out 
essentially drags the trajectory of the neuron along the 
family of stable limit cycles in the direction of lower hNaP . 
As these states correspond to higher spiking frequencies, 
the dynamics of [K+]out provides a mechanism for an active 

phase geometry that features a gradual increase in spiking 
frequency. Thus, we have shown that even a neuron that 
can never burst on its own with fixed [K+]out can nonethe-
less become intrinsically bursting when [K+]out dynamics 
are taken into account.

In Appendix 3, we consider in more detail the changes in 
stable periodic behavior that occur with EK as a bifurcation 
parameter.

3.3 � Dynamics in (V, hNaP, EK) phase space

Next, we incorporate the dynamics of EK back into the pic-
ture. Because there are two slow variables, (hNaP, [K+]out) , 
we can follow bifurcations of the fast subsystem in the two-
parameter (hNaP, [K+]out) space. Projecting full model tra-
jectories onto this space reveals which bifurcation crossings 
occur during bursting dynamics, which is crucial for com-
paring these bursts to known bursting types in the literature 
(e.g., Izhikevich, 2007). In fact, we find a better visualiza-
tion if we replace [K+]out by EK , a monotone increasing func-
tion of [K+]out as depicted in Fig. 2D. Hence, we consider 
the trajectory of the full model system projected into the 
(hNaP,EK) plane (Fig. 4, blue curves), where it progresses 
in a counterclockwise fashion. First focus on the parameter 
set from Fig. 2A; see Fig. 4A. Starting from the quiescent 
state (the leftmost intersection of the blue neuronal trajec-
tory and the lower purple line), hNaP increases until the tra-
jectory crosses the lower fold of S , the fast subsystem critical 
manifold (Fig. 4A, black line), which also corresponds to a 
the termination of the fast subsystem periodic orbit family 
(Fig. 4A, green curve). If EK were frozen, then this crossing 
would result in tonic spiking. Instead, EK increases as spiking 
continues. Eventually EK crosses the value where the neu-
ronal dynamics supports bursting (Fig. 4A, lower purple line). 
Interestingly, we see that very close to this EK , the periodic 
orbit termination curve diverges from the fold line, confirming 
that the switch from spiking to bursting in the EK-frozen sys-
tem corresponds to a switch from termination of the periodic 
family in a SNIC bifurcation to termination in a homoclinic 
bifurcation. As EK continues to increase, the trajectory moves 
away from the homoclinic curve and towards the AH curve 
(Fig. 4A, red line with dots). Oscillation amplitude shrinks 
to zero at an AH bifurcation. Correspondingly, the approach 
of the trajectory towards the AH curve yields the decrease 
in spike height seen in Fig. 2A (see also Fig. 9), represent-
ing a less extreme form of the amplitude modulation in the 
burst patterns arising with EK fixed between −96 and −90 
mV (Fig. 3) and in bursting associated with the CAN cur-
rent in past work (Rubin et al., 2009; Dunmyre et al., 2011; 
Wang & Rubin, 2016, 2020). Eventually, EK peaks and then 
decays slightly due to Iglia and Idiff  , and the decrease in hNaP 
pulls the trajectory back across the periodic orbit termination 
curve, terminating the active phase of the burst. A similar 
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picture results from the parameter set from Fig. 2B, as shown 
in Fig. 4B. There is no purple line here, because the fast sub-
system cannot burst for fixed EK , but a qualitatively identical 
transition from a SNIC to a homoclinic bifurcation occurs.

Putting everything together, we see that the full model 
system with dynamic EK engages in a form of parabolic 
bursting (Ermentrout & Kopell, 1986; Rinzel, 1987). Para-
bolic bursting was originally identified as a form of burst-
ing in which the evolution of two slow variables switches 
the fast subsystem back and forth across a SNIC curve 
twice per cycle, yielding an alternation between a quies-
cent regime corresponding to each inter-burst interval and 
a spiking regime corresponding to the active phase of each 
burst. This form of bursting was dubbed parabolic in refer-
ence to the parabolic shape of the curve depicting spike 
frequency versus time within each burst, resulting from 
the low frequency spiking associated with passage near a 
SNIC bifurcation. In our case, the use of projection shows 
that the initial slow spiking at the start of the burst active 
phase corresponds to the slow tonic spiking seen with very 
hyperpolarized EK (Fig. 1A), which emerges as the trajec-
tory evolves near the fast subsystem SNIC bifurcation curve 
when EK is low. Interestingly, the transition from a SNIC to 
a homoclinic bifurcation curve here differs from classical 
parabolic bursting and accounts for the spike acceleration 
within the burst and the lack of the significant slowing at 
the end of the burst typically seen (Fig. 2), consistent with 
other recent work emphasizing the quantitative variability 

that can occur within individual bursting classes (Rubin 
et al., 2018). Appendix 4 provides one more perspective 
that confirms the nature of the bursting dynamics, namely 
a visualization of the bursting trajectory in the 

(
EK ,V , hNaP

)
 

phase space.
To summarize this whole section, our model utilizes per-

sistent sodium currents (Butera et al., 1999) and dynamic 
ion concentrations (Barreto & Cressman, 2011) to recreate 
the ramping pre-inspiratory / inspiratory behavior seen in 
bursting pre-BötC neurons. Our model is built from a model 
proposed in previous work (Bacak et al., 2016b), with the 
addition of dynamic ion concentrations and neuronal regula-
tors (Barreto & Cressman, 2011). The process of bursting 
in our model can be understood to be a form of parabolic 
bursting based on two-dimensional projections, fast-slow 
decomposition and computation of bifurcation curves, and 
can be visualized fully by graphing in the 

(
EK ,V , hNaP

)
 phase 

space. Ramping of spike frequency at burst onset depends 
on the passage of the bursting trajectory near a curve of 
SNIC bifurcations that terminates a family of fast subsystem 
periodic orbits and its subsequent departure from this curve, 
which prevents a symmetric spike deceleration at the end 
of each burst. This burst mechanism does not require there 
to be a fixed value of EK at which the remaining equations 
produce bursting (Figs. 2B, Fig. 4B). The change in spike 
heights during the burst depends on how the trajectory trav-
els relative to the AH bifurcation curve that gives rise to the 
periodic orbits.

Fig. 4   Projection of the 
full system bursting trajec-
tory (blue) to the 

(
EK , hNaP

)
 

plane for parameters from 
(A) Fig. 2A ( ̄gNaP = 5.0 nS, 
ḡL = 2.5 nS, ḡSyn = 0.365 nS) 
and (B) Fig. 1B ( ̄gNaP = 4.5 nS, 
ḡL = 2.4 nS, ḡSyn = 0.360 nS). 
Black dashed lines: fast sub-
system fold points; solid-dotted 
red: fast subsystem AH points; 
green: fast subsystem periodic 
orbit termination curve; purple 
dashed: transitions from spiking 
to bursting (lower) and burst-
ing to spiking (upper) as EK is 
increased; blue: projected model 
trajectories
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4 � Robustness of model dynamics

4.1 � Robustness in maximal conductance 
parameters

A critical question for any model in which the details of an 
activity pattern are important is robustness to variation in 
parameters. Experimental results have confirmed that the pres-
ence of persistent sodium 

(
INaP

)
 and leakage 

(
IL
)
 currents are 

essential to pacemaker activity in pre-BötC neurons (Del Negro 
et al., 2002; Koizumi et al., 2010). Thus, we mapped the behav-
ior of the model in the 

(
ḡL, ḡNaP

)
 parameter space to measure 

the robustness of bursting within the neuron under variation of 
these parameters (Fig. 5A). While bursting behavior could be 
achieved over a wide range of physiologically relevant parame-
ter values, ramping bursts were restricted to a smaller parameter 
set. Furthermore, we also measured bursting frequency within 
the bursting parameter region (Fig. 5B), demonstrating how 
the properties of the model bursting patterns are modulated by 
these maximal conductance levels.

The parameters that induced bursting behavior were also 
strongly affected by the synaptic input into the neuron. In 
this model, this tonic input is represented by the current ISyn . 
The effects of altering synaptic input through variation of 
ḡSyn on the bursting region within the 

(
ḡL, ḡNaP

)
 parameter 

space are depicted in Fig. 6. The overall shape of these burst-
ing regions is consistent with previous studies (Del Negro 
et al., 2002; Purvis et al., 2007), which indicate that pace-
maker properties are tied to the ḡNaP∕ḡL ratio. Consistent 
with this observation, the upper and lower boundaries of 
the bursting region for our model are approximately linear 
within the 

(
ḡL, ḡNaP

)
 parameter space.

4.2 � Inter‑model robustness comparison

To further analyze the effectiveness of the model introduced 
in this work, its robustness was compared to two exist-
ing models of bursting in pre-BötC neurons. Specifically, 
we examined two facets of robustness: (1) robustness in 
parameters, i.e., the ability of the model to maintain burst-
ing behavior over a wide range of physiologically observed 
parameter values, and (2) robustness in behavior modulation, 
i.e., the ability of the model to demonstrate realistic varia-
tion in properties of its activity pattern (including bursting 

Fig. 5   Bursting within the 
(
ḡL, ḡNaP

)
 parameter space. (A) The gray 

region depicts the set of parameters for which bursting occurs. Within 
this region, a smaller set of parameters (blue), associated with rela-
tively low ḡL values, correspond to ramping bursts. Parameter sets with 

lower ḡL than in the bursting region correspond to tonic spiking behav-
ior, while higher ḡL leads to quiescence. (B) The burst frequencies for 
parameter values within the bursting region are indicated by the gradi-
ent bar, with more yellow regions corresponding to greater frequencies

Fig. 6   Bursting behavior can occur over a wide range of ḡNaP and ḡL 
values. The bursting region in this parameter space depends on ḡSyn . 
The black region shows the bursting region with the default value 
ḡSyn = 0.365 nS. The blue and red regions show where bursting 
occurs for lowered ( ̄gSyn = 0.300 nS) and elevated ( ̄gSyn = 0.430 nS) 
maximal conductances, respectively
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frequency, duration, and duty cycle) as parameter values are 
varied.

First, the new model was compared to the model formu-
lated by Bacak et al. (2016b); structurally, the two models 
differ only in the fact that our model includes the dynam-
ics of the external potassium ion concentration. Thus, this 
comparison demonstrates how the introduction of a dynamic 
ion concentration, which allows for ramping bursts to occur, 
affects overall robustness. Next, the new model was com-
pared to the model introduced in Butera et al. (1999), which 
has been incorporated into multiple subsequent computa-
tional studies. In the original paper, bursting was induced 
by increasing EL , which increased activation in the neuron. 
To maintain consistency with the general literature, how-
ever, we keep EL fixed and gradually decrease ḡL to increase 
activation, and we examine robustness within the 

(
ḡL, ḡNaP

)
 

parameter space.
The variation of burst properties (frequency, duration, 

and duty cycle) under changes in ḡL is depicted for all three 
models in Fig. 7. For each model, this variation was tested 
for reduced, default, and elevated ḡNaP values. To adjust 

for differences between the models, maximal conductance 
values were normalized with respect to membrane capaci-
tance. Both our new model and the model from Bacak 
et al.  (2016b) utilize a membrane capacitance of 36 pF, 
while the model from Butera et al. (1999) utilizes a capaci-
tance of 21 pF. Thus, while the default ḡNaP value in the 
proposed model is 5.0 nS, assuming constant conductance/
capacitance density, the default ḡNaP value in the model in 
Butera et al. (1999) would be 2.92 nS.

The first thing to note from this analysis is that compared 
to the model in Bacak et al. (2016b), the new model exhib-
its bursting behavior over an almost identical set of ḡL val-
ues for the fixed ḡNaP values tested (Fig. 7A,B). Thus, the 
introduction of a dynamic ion concentration did not alter 
the robustness of bursting with respect to the 

(
ḡL, ḡNaP

)
 

parameter space. The inclusion of a dynamic ion concen-
tration significantly increased the set of frequency values 
attainable through variation of ḡL , however. While the model 
presented in Bacak et al. (2016b) could not reach bursting 
frequencies above 0.4 Hz, our dynamic potassium model 
attained bursting frequencies up to 0.6 Hz. It is important to 
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Fig. 7   The effects of ḡL and ḡNaP on the quantitative characteristics 
of bursting dynamics compared across different models. The left (A, 
D, G), central (B, E, H), and right columns (C, F, I) represent the 
Bacak et al.  (2016b) model, the model introduced in this paper, and 
the Butera et al. (1999) model, respectively. The top row (A, B, C), 
central row (D, E, F), and bottom row G, H, I show modulation of 
frequency, burst duration, and burst duty cycle. In all panels: blue, 
black, and red curves correlate to experiments with reduced, default, 

and elevated ḡNaP values. In (A, B, D, E, G, H) these are 4.5, 5.0, 
and 6.0 nS. In C, F, I these are 2.625, 2.917, and 3.500 nS. The leak-
age reversals (EL) for the Bacak et al. (2016b), proposed, and Butera 
et  al. (  1999) models were fixed accordingly at −64 , −68 , and −62 
mV. It should be noted that higher bursting frequencies in the Butera 
et al. (1999) model could be reached by increasing EL , but this strays 
further from the experimental value of −68 ± 3.4 mV (Koizumi 
et al., 2010)
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note that, as depicted in Fig. 5, the higher frequency bursts 
correspond very closely with the newly attainable ramping 
state. Moreover, the previous model (Bacak et al., 2016b) 
maintained an essentially constant burst duration under vari-
ation of both ḡL and ḡNaP , whereas our model could achieve 
substantially longer bursts at the low end of the bursting 
range of ḡL (Fig. 7D,E). It can be concluded that compared 
to the static ion concentration model in Bacak et al. (2016b), 
our proposed model allows for greater modulation of burst-
ing properties through the inclusion of the ramping state, 
without any significant cost to robustness with respect to 
maximal conductance parameters.

Compared to the model proposed in Butera et al. (1999), 
the new model had decreased robustness of bursting with 
respect to ḡL∕C density, as depicted in Fig. 7B,C. Despite 
the decrease in this measure of robustness, the new model 
achieves an increased range of burst frequencies compared 
to the model proposed in Butera et al. (1999), as shown in 
Fig. 7B,C. Higher frequency bursts were attainable in the 
model from Butera et al. (1999), but only with a shift away 
from physiologically relevant parameters. Our model also 
achieved a wider range of burst durations than could be pro-
duced by the earlier model (Butera et al., 1999) (Fig. 7E, 
F); specifically, our model allowed for shorter bursts at high 
ḡNaP . Consistent with previous experimental results (Koizumi 
et al., 2010), the bursting frequency decreased linearly with 
an increase in ḡL for all models.

The quality that stood out most about the newly intro-
duced model was the significant increase in the range of pos-
sible duty cycles when compared to other models, as shown 
in Fig. 7G,H,I. The spiking region could be set to account for 
an extremely low or extremely high percentage of each burst 
cycle duration spent in the active phase, based on variation 
of ḡL , for all levels of ḡNaP . This flexibility was not possible 
in the alternative models. Our model produced bursts with 
large duty cycles in the ramping regime, with relatively low 
ḡL , with relatively longer, lower frequency bursts for smaller 
ḡNaP and shorter, faster bursts for larger ḡNaP . Neither of 
the other models could achieve this duty cycle. Our model 
produced shorter duty cycles for larger ḡL , again for all ḡNaP , 
due to a decrease in burst frequency without much change in 
burst duration, similar to the other models.

5 � Discussion

In this study, we present a model developed from previous 
conductance-based neuron models that exhibit bursting 
behavior dependent on a persistent sodium current (Butera 
et al., 1999; Bacak et al., 2016b). Our model replicates the 
observed frequency ramping behavior of pre-BötC neurons, 
through the inclusion of external potassium ion 

(
[K+]out

)
 

dynamics. Previous studies have indicated the relationship 

between fixed levels of [K+]out and burst frequency and dura-
tion (Del Negro et al., 2001). The incorporation of [K+]out 
dynamics as an additional slow component of the model 
induced a modulation of spike frequency throughout the 
spiking regime, resulting in a robust parabolic bursting 
behavior.

The dynamics of the model was analyzed through a 
three-dimensional extension of the traditional fast-slow 
decomposition. Steady-state behavior was plotted in the (
V , hNaP

)
-phase space for various fixed values of [K+]out , 

and hence of EK as computed via Eq. (8). The curves of 
saddle-node and AH bifurcations and the families of peri-
odic orbits originating from the AH points were mapped 
with respect to EK . These quantities were then projected onto 
the 

(
EK ,V , hNaP

)
-phase space, depicting the geometry that 

ultimately dictates bursting dynamics. While this approach 
does not capture certain transitional solution patterns that 
involve subtle interactions of multiple slow variables or 
mixing of time scales (Vo et al., 2014; Teka et al., 2012; 
Wang & Rubin, 2016, 2020; Wang et al., 2017; Bertram & 
Rubin, 2017), it turned out to be an effective way to explain 
the activity patterns in our simulations. Specifically, tracking 
the trajectory of the burst through this phase space revealed 
that oscillations in the 

(
V , hNaP

)
-phase space gradually drive 

the trajectory to higher values of EK ; subsequently, higher 
EK values correspond to higher frequency spiking, causing a 
positive feedback loop resulting in ramping bursts. Eventu-
ally, the EK level saturates due to the nonlinear dependence 
of processing of potassium ions by glia, at which point the 
slow inactivation of INaP can terminate the burst. Specifi-
cally, as hNaP decays, the fast subsystem periodic orbit family 
terminates in a homoclinic bifurcation and the voltage repo-
larizes, corresponding to a transition to the quiescent state 
of the burst cycle. Finally, the lack of spiking activity causes 
EK to decay back to a baseline level as the trajectory of the 
neuron travels back to the saddle-node bifurcation curve, 
where it re-enters the spiking regime of the burst. Hence, 
the dynamical system yields parabolic bursting behavior that 
terminates in a homoclinic bifurcation.

In classic parabolic bursting, burst initiation occurs when 
the trajectory induced by the dynamics of the slow subsys-
tem, which includes two or more slow variables, crosses a 
SNIC bifurcation curve for the fast subsystem. As fast spikes 
ensue, the trajectory of the averaged slow equations eventu-
ally progresses back across the SNIC curve, terminating the 
active phase of the burst. Thus, the spikes near both burst 
onset and burst termination are slower than those in the heart 
of the burst, resulting in a parabolic dependence of spike fre-
quency on spike number within the burst (Rinzel, 1987). This 
paper adds to the collection of past works that have included 
variations on this structure, including crossings of additional 
fast subsystem bifurcation curves during the active phase, 
which result in corresponding variability of burst profiles 
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(Rubin et  al.,  2009; Barreto & Cressman,  2011; Rubin 
et al., 2018). Specifically, due to the interplay of dynamic 
EK and INaP , the ramping bursts in our model terminate via a 
crossing of a homoclinic bifurcation curve for the fast subsys-
tem, rather than a SNIC, with little slowing of spiking at the 
end of the burst. In theory, a homoclinic crossing should also 
be associated with some spike slowing, but the quantitative 
details are system-specific (Rubin et al., 2018). Future work 
to extend this model to take into account dynamics of other 
ion concentrations, in addition to [K+] , may yield even more 
diverse burst profiles (cf. Barreto and Cressman, 2011). Spe-
cifically, in addition to Na+ dynamics, the dynamics of Cl− is 
an often-overlooked factor that could contribute to ramping 
bursts (Currin et al., 2020; Pace et al., 2007). Importantly, 
concentrations of ions that impact neuronal dynamics can be 
coupled through pumps that transport multiple ion types, so 
modeling the details of this dynamics in the context of neu-
ronal bursting represents an interesting challenge for future 
work.

Analysis of model robustness revealed multiple insights. 
The exact values of 

(
ḡNaP, ḡL

)
 where bursting occurs in 

this model differ from the experimental data presented in 
(Del Negro et al., 2002; Purvis et al., 2007) and include a 
narrower range of ḡL for each fixed ḡNaP . The difference rela-
tive to the modeling work in Purvis et al. (2007) makes sense 
as that study used the model of INaP-based bursting proposed 
in (Butera et al., 1999), which incorporates a different mem-
brane capacitance compared to our model. Moreover, the 
experiments for which kbath was reported were performed at 
elevated kbath (Del Negro et al., 2002), which would tend to 
expand the bursting region to larger ḡL . In comparison to 
previous models of pre-BötC neuron dynamics, the model 
proposed in this paper exhibits similar robustness with 
respect to variations in parameters, while offering a greater 
degree of modulation of burst geometry characteristics, such 
as frequency, duration, and duty cycle. One exception is that 
our model’s bursting behavior does not extend over the full 
range of ḡL∕C over which bursting occurs in the model by 
Butera et al. (1999). However, robustness of pre-BötC burst-
ing to ḡL∕C has not been experimentally tested. Experiments 
suggest that the ratio ḡNaP∕ḡL is what determines whether 
bursting occurs, rather than the maximal leakage conduct-
ance itself (Del Negro et al., 2001, 2002; Purvis et al., 2007) 
(cf. the nearly linear boundaries of the bursting regions in 
our Figs. 5 and 6). While our decision to treat EL as a con-
stant allowed us to compare our model directly to earlier ones 
where leak strength was used to explore model behavior, EL 
may in reality be nonlinearly modulated by ion dynamics 
(Koizumi & Smith, 2008; Huang et al., 2015). The robust-
ness of bursting that we found with respect to variations in ḡL 
supports the claim that the ramping dynamics that we have 
studied will persist with the inclusion of EL dependence on 
dynamic ion concentrations, but incorporating this effect in 

the model and tuning it appropriately is beyond the scope of 
the current study. Another future direction will be the inclu-
sion of additional membrane currents, such as IA, IKCa , the 
Ca2+-activated nonspecific cation (CAN) current, and the 
Na/K pump current, which have been shown to have a sig-
nificant effect on pre-BötC neuron and network dynamics in 
multiple past experimental and computational works (Hayes 
et al., 2008; Pace et al., 2007; Zavala-Tecuapetla et al., 2008; 
Krey et al., 2010; Jasinski et al., 2013; Koizumi et al., 2018; 
Picardo et al., 2019; Rubin et al., 2009; Dunmyre et al., 2011; 
Phillips et al., 2018, 2019).

The results of this study reveal a potential role of dynamic 
ion concentrations in producing and shaping ramping behav-
ior within neuronal bursting. Previous computational studies 
of pre-BötC neuron activity have ignored the dynamics of 
[K+]out , modeling it as a fixed parameter. This viewpoint has 
been utilized in experimental studies as well, where [K+]out 
has often been viewed as equivalent to the potassium con-
centration of the solution used to bathe slices of neural tissue 
during experimentation ( kbath ). Our study implies that the 
physiologically observed oscillations of [K+]out can have a 
significant impact on pre-BötC neuron dynamics; moreover, 
similar effects could emerge in prolonged bursting behavior 
of other neurons and should be incorporated in correspond-
ing models in future work. Rather than assuming that kbath 
= [K+]out , our model incorporates kbath as an environmental 
factor that can affect the dynamics of [K+]out via diffusion, 
following the framework of previous computational mod-
els that considered dynamic ion concentrations (Barreto & 
Cressman, 2011). The role of kbath is important because kbath 
can be modulated experimentally, providing a way for the 
mechanism proposed in this paper to be tested. If [K+]out 
governs ramping dynamics through the mechanism proposed 
in this paper, then it would be expected that increasing kbath 
would cause a much faster build-up of [K+]out , translating 
to a faster increase in spiking frequency throughout the 
burst and hence a steeper frequency ramp. Adjusting kbath 
to lie above some level would remove the ramping effect 
all together, as [K+]out buildup would primarily be driven 
by the excess influx of external potassium from the bathing 
solution, rather than the export of internal potassium dur-
ing spiking. Similarly, lowering kbath should correspond to 
slowing the rise in frequency over the course of the burst. 
Setting kbath below some threshold would cause the rate 
of removal of [K+]out via diffusion to increase enough to 
entirely prevent the [K+]out buildup needed to induce a burst-
ing state. It is our hope that future experiments will consider 
the effects of potassium concentration in the bathing solution 
on the dynamic ramping behavior of individual neurons, to 
test the mechanisms proposed in this paper. A complica-
tion, however, is that prolonged changes in kbath may induce 
other compensatory effects (Okada et al., 2005; Ransdell 
et al., 2012; He et al., 2020).
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Another important future research direction related to this 
work should involve an expansion of the scope of the model, 
specifically to analyze the effects of ion-dependent ramping 
on the generation and control of respiratory rhythms. The 
intrinsic dynamic mechanisms within individual neurons 
and synaptic network interactions work together to generate 
and modulate breathing rhythms (e.g., Molkov et al. (2017); 
Del Negro et al. (2018); Rubin and Smith (2019); Phillips and 
Rubin (2019); Phillips et al. (2019)), together with feedback 
pathways and other control signals that integrate breathing 
with other behaviors (as modeled, for example, in Ben-Tal 
and Smith (2008); Molkov et al. (2014); Diekman et al. 
(2017)). A specific first step to link these factors would be to 
construct a computational network of both pacemaker and 
non-pacemaker neurons in the pre-BötC and to model the 
effects of ramping behavior in pacemakers on the recruit-
ment of non-pacemakers, to advance our understanding of the 
generation and patterning of inspiratory neural bursts (Kam 
et al. 2013; Kallurkar et al., 2020). A potential approach 
to the network modeling problem would be to address the 
inherent limitations of using a system of ODEs in depict-
ing neuronal behavior. Spatial interactions, which can be 
an important factor in network dynamics, are not captured 
by ODE models. This is especially relevant for our model 
as it incorporates diffusion, a naturally spatially-dependent 
process, to differentiate between the equilibrium concentra-
tion of external potassium ( kbath ) and localized concentration 
of potassium near the neuronal membrane ( [K+]out ). Hence, 
one possible research direction would be the development 
of a network-based model that utilizes both ODEs and 
PDEs to depict the spiking behavior of individual neurons 
and spatially dependent processes governing ion dynamics, 
respectively. The development of the PDE component of the 
model would have to incorporate [K+]out as both a space- and 
time-dependent variable, which allows the spiking behavior 
of each neuron to affect the localized external ion concentra-
tions of its neighboring neuron and is subject to the boundary 
conditions imposed by the presence of the bathing solution 
(e.g., a Dirichlet boundary condition forcing [K+]out to take 
a value of kbath at the boundaries of a modeled brain slice).

To summarize, this paper presents a new model of neu-
ronal bursting in pacemaker neurons, which results in a fre-
quency ramp at bursting onset. This effect was demonstrated 
to be a manifestation of parabolic bursting dynamics that 
allows for a broad range of burst frequencies and duty cycles. 
The results of this study imply that oscillations in external 
potassium concentration can play a significant role in the 
ramping dynamics of pre-BötC neurons. This ion-dependent 
ramping mechanism should be tested in future experimental 
studies and incorporated in future models of networks of pre-
BötC neurons, and is likely relevant to prolonged bursting 
dynamics in other neurons and neuronal populations.

Appendix 1

Constants and parameters

The complete list of parameters used for this model is shown 
below. Certain parameters were fixed for all simulations, 
while others were varied for different tests. These instances 
will be noted.

Universal & Experimental Constants:

–	 Elementary Charge: q = 1.602 × 10−19 C.
–	 Avogadro Constant: NA = 6.022 × 1023 1

mol
.

–	 Unit Time Constant: � = 1000 ms
s

.
–	 Ratio of Volumes: � = 14.555 (modified from Barreto 

and Cressman (2011), � = 7).
–	 Membrane Capacitance: C = 36 pF (taken from Rybak 

et al. (2007)).

Derived Constants:

–	 Current Conversion Constant: � = 7.214 × 10−3 mM

s⋅pA
 

(derived in Appendix 2).

Maximal Conductances:

–	 ḡNa = 150 nS (taken from Jasinski et al. (2013)).
–	 ḡNaP = 5 nS (taken from Bacak et al. (2016b)). Varied as 

parameter in Sect. 4.
–	 ḡK = 160 nS (taken from Jasinski et al. (2013)).
–	 ḡL = 2.5 nS (taken from Jasinski et  al. (2013), 

ḡL ∈ [2, 3] ). Varied as parameter in Sect. 4.
–	 ḡSyn = 0.365 nS. (Introduced in this paper to represent 

constant synaptic drive, in contrast to model in Bacak 
et al. (2016b) where ḡSyn = 0 ). Varied as parameter in 
Sect. 4.

Ion Concentrations & Reversal Potentials:

–	 [Na+]out = 120 mM (taken from Jasinski et al. (2013)).
–	 [Na+]in = 15 mM (taken from Izhikevich (2007), 

[Na+]in ∈ [5, 15] mM).
–	 ENa = 26.7 ⋅ log

[Na+]out

[Na+]in
= 55.5 mV. (Consistent with 

Rybak et al. (2007), ENa = 55 mV).
–	 [K+]in = 160 mM (modified from Izhikevich (2007); 

Jasinski et al. (2013), [K+]in = 140 mM).
–	 EL = −68 mV (taken from Jasinski et al. (2013)).
–	 ESyn = −10 mV (taken from Jasinski et al. (2013)).

Parameters for Fast Sodium (INa) and Persistent Sodium 
( INaP):
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–	 VmNa
= −43.8 mV, kmNa

= 6 mV, V�mNa
= −43.8 mV, 

k�mNa
= 14 mV.

–	 VhNa
= −67.5 mV, khNa = −11.8mV  , V�hNa

= −67.5 mV, 
k�hNa

= −12.8 mV.
–	 VmNaP

= −47.1 mV, kmNaP
= 3.1 mV, V�mNaP

= −47.1 mV, 
k�mNaP

= 6.2 mV.
–	 VhNaP

= −60 mV, khNaP = −9 mV, V�hNaP
= −60 mV, 

k�hNaP
= 9 mV.

–	 𝜏mNa
= 0.25 mS,  𝜏hNa = 8.46  mS,  𝜏mNaP

= 1 mS, 
𝜏hNaP = 5000 mS.

–	 All of these parameters were taken directly from Bacak 
et al. (2016a), with the exception of khNa , which was 
altered from a value of −10.8 mV to the listed value of 
−11.8 mV.

Parameters for Delayed Rectifier Potassium Current (IK):

–	 nA = 0.01 1

mV
 , nAV

= 44 mV, nAk
= 5 mV, nB = 0.17 , 

nBV
= 49 mV, nBk

= 40 mV.
–	 All values taken from Bacak et al. (2016b).

Parameters for Diffusion of Extracellular Potassium 
([K+]out):

–	 kbath = 4 mM (taken from Barreto and Cressman 
(2011)).

–	 �diff = 750 mS (numerically equivalent to the formula-
tion in Barreto and Cressman (2011), which uses 
1

�diff
≡

�

�
 , where � = 1.333 Hz and � = 1000

mS

s
).

Parameters for Glia:

–	 Ḡ = 10
mM

s
 , K̄ = 5mM , zK = 6

1

mM
.

–	 These parameter values were altered from those in Barreto 
and Cressman (2011). In Barreto and Cressman (2011), the 
concentration of [K+]out remains far below the mid-point 
value of the sigmoidal function in Eq. (10). The parameters 
were adjusted such that the range of dynamic [K+]out was 
distributed over the midpoint of Eq. (10), ensuring that the 
nonlinear behavior of glial cells was represented.

Appendix 2 

Derivation of 
 

Our initial assumption is that the neuron is roughly spherical, 
or rather that the majority of the cell’s volume is contained in 
a sphere. From Barreto and Cressman (2011), the radius of 
the neuron is taken to be approximately r = 7.0 �m . Hence, 
the internal volume of the neuron can be approximated as 
Vin =

4

3
�r3 = 1.44 × 10−9 mL.

The internal concentration cin can be determined from the 
total number of ions N,  the internal volume Vin , and Avoga-
dro’s Constant NA:

Note that the ions we are measuring concentrations of 
are Na+ and K+ , both of which have a +1 charge. Letting 
q = 1.60 × 10−19 C, we can express the concentration in 
terms of total charge, Q:

Differentiating, we get:

By taking the ratio of this expression to the current, we can 
determine:

By the following dimensional analysis manipulation, we 
obtain:

Thus, we conclude:

Appendix 3

A closer look at transitions in behavior as EK 
is varied

As illustrated in Fig. 1, if the K+ concentration is held fixed, 
then shifting the EK value has a clear effect on the long-term 
periodic behavior of the model neuron. Each periodic behavior, 
whether tonic spiking or bursting, can be depicted as a stable 
limit cycle projected to the ( hNaP,V ) phase space. As shown in 
Fig. 3, with increases in EK , the stable oscillation switches from 
tonic spiking to bursting, and then, with additional increases, 
from bursting back to spiking. Which behavior arises depends 
on whether the periodic orbit family of the fast subsystem ter-
minates in a SNIC bifurcation or a homoclinic bifurcation and 
on where this termination lies relative to the hNaP nullcline.

cin = N ⋅

1

NA

⋅

1

Vin

.

cin =
N

VinNA

⋅

q

q
=

Q

qVinNA

.

dcin

dt
=

d

dt

(
Q

qVinNA

)
=

dQ

dt
⋅

1

qVinNA

= I ⋅
1

qVinNA

.

� ≡
1

qVinNA

= 7.2 × 103
mol

C ⋅mL
.

mol

C ⋅mL
⋅

(
103

mmol

mol
⋅ 103

mL

L
⋅

mM ⋅ L

mmol
⋅

C

A ⋅ s

⋅10−12
A

pA
⋅ 10−3

s

ms

)
= 10−9

mM

ms ⋅ pA
.

(12)� = 7.214 × 10−6
mM

ms
⋅

1

pA
.
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Here we construct a bifurcation diagram to present in 
more detail the changes in stable periodic behavior that 
occur with EK as a bifurcation parameter. More specifically, 
when the neuronal system exhibits bursting, each burst is 
composed of a finite number of action potentials, each asso-
ciated with an approximately constant V , hNaP . Therefore, for 
each fixed hNaP , we identify the corresponding periodic spik-
ing or bursting attractor and record the hNaP value at which 
each spike occurs within this attractor (Fig. 8).

In this bifurcation diagram, each dot denotes the value 
of hNaP at which an action potential occurs during 80 sec-
onds of simulated bursting behavior, for a corresponding 
fixed value of EK . For each EK , the spikes from the first 
55 seconds of neuron simulation are not shown, such that 
the diagram omits the transient state and only reflects 
the attractors of the system. For sufficiently low EK , the 
stable dynamics consists of periodic tonic spiking, char-
acterized by a single hNaP value for each EK in the dia-
gram. As EK increases, the transition from a tonic spiking 

state to a bursting state appears to arise through a cha-
otic period doubling mechanism (Fig. 8A,B), estimated 
numerically to occur just above EK = −91.2 mV.

The transition from bursting back to tonic spiking, 
depicted in Fig. 8A,C, is less clear cut. The spike branch 
at highest hNaP values seems to disappear instantly as EK 
increases. We expect that this change is related to the phe-
nomena shown in Figs. 1C, 3D. In the solution displayed 
in Fig. 1C, it appears that bursting is about to begin, but 
instead a plateau of depolarization block occurs. From 
Fig. 3D, we can appreciate that the AH point has moved 
to smaller hNaP than that of the fold point, such that the 
trajectory’s initial jump to the active phase does not 
yield a full spike. Only after hNaP drifts to lower values, 
below the AH point, can spiking ensue. With an addi-
tional increase in EK to just below −83.1 mV, most of the 
remaining spike branches disappear together, leaving only 
a cluster of values near hNaP = 0.155 . We also notice pock-
ets of variability in hNaP as EK varies between −83.4 and 

Fig. 8   Bifurcation diagram of attracting dynamics of the neuronal 
model with [K+]out (and hence EK ) used as the bifurcation parameter, 
varied in steps of 0.001 mV. (A) Bifurcation diagram over the entire 
bursting interval. Each blue dot represents an hNaP value on a single 

spike within the attractor for the corresponding EK . Insets show volt-
age and hNaP time courses at the fixed values of EK marked by the 
numbered vertical dashed lines on the diagram. (B-C) Zoomed views 
of different parts of the diagram in (A)
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−83.1 mV. Interestingly, inspection of the voltage trace 
suggests that periodic spiking begins at about EK = −82.6 
mV, above the value at which most of the collection of 
hNaP branches disappears.

Elucidating the details of this bifurcation is beyond 
the scope of our consideration of ramping bursts in the 
full model and remains for future inquiry, which would 
require more detailed simulations and analysis.

Appendix 4

1‑fast‑2‑slow Analysis

The dynamics of ramping bursts can be understood through 
a fast-slow decomposition analysis. The first step was the 
fast-slow decomposition analysis discussed in Sect. 3.2. As 
shown in Fig. 3, this analysis involved fixing [K+]out and 
determining the geometry that governs the model trajectory 
in the 

(
V , hNaP

)
-phase space. This analysis can naturally be 

extended into a three-dimensional fast-slow decomposition 
by including [K+]out , or equivalently EK , as a second slow 
variable. The various important geometric objects identi-
fied with fixed [K+]out values, namely critical manifolds, fast 
subsystem saddle-node and Andronov-Hopf (AH) bifurca-
tion points, and corresponding fast subsystem periodic orbits 
become higher dimensional surfaces and curves when pro-
jected to the 

(
V , hNaP,EK

)
-phase space. For instance, the 

individual AH points become an AH curve, and the periodic 

orbits initiated there form a smooth manifold originating 
from this curve. A visualization of this three-dimensional 
structure is illustrated in Fig. 9, along with the superimposed 
trajectory of a neuron with dynamic [K+]out exhibiting ramp-
ing bursts.

The period during which spiking occurs or active phase 
of the burst occurs where the trajectory oscillates between 
the prongs of the green periodic orbit manifold in Fig. 9. 
As discussed in Sect. 3.3, this oscillation drives build-up of 
[K+]out , moving the trajectory in the direction of increasing 
EK . This potassium ion build-up causes an increase in spik-
ing frequency within the burst, facilitating further external 
potassium accumulation through a positive feedback loop. 
This process continues until the trajectory reaches a point 
along the homoclinic curve where the periodic orbit family 
terminates and returns to the hyperpolarized stable com-
ponent of the critical manifold. This corresponds to the 
quiescent phase of the burst, where the trajectory remains 
until it reaches the saddle-node curve where it returns to  
the active phase. Additional insight arises from visualizing 
the local minima and maxima that occur throughout the 
active phase of the burst. In Fig. 10 these local extrema  
are connected into two curves. Clearly, the trajectory of the 
neuron travels along the family of periodic orbits during  
the burst, moving away from and back towards the homo-
clinic curve as time advances and EK increases. Further-
more, the neuron experiences a decline in spike amplitude 
when it pulls away from the edge of the periodic orbit  
family where it starts and terminates.

Fig. 9   The periodic trajectory 
of the ramping burst solution 
in (V , hNaP,EK)-space is color 
coded temporally, progressing 
in time from blue to yellow. 
Additionally, the two black 
arrows indicate the direction 
that the trajectory travels. The 
upper and lower blue surfaces 
represent stable components 
of the critical manifold; white/
blue surfaces between these are 
unstable components, which 
meet in a saddle-node curve at 
negative hNaP (not shown). Also 
shown are the AH curve (red) 
and the surfaces of maximal and 
minimal V along the family of 
periodic orbits originating at the 
AH curve (green)
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