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Abstract

Intensive computational and theoretical work has led to the development of multiple mathematical models for bursting in
respiratory neurons in the pre-Botzinger Complex (pre-BotC) of the mammalian brainstem. Nonetheless, these previous
models have not captured the pre-inspiratory ramping aspects of these neurons’ activity patterns, in which relatively slow
tonic spiking gradually progresses to faster spiking and a full-blown burst, with a corresponding gradual development of an
underlying plateau potential. In this work, we show that the incorporation of the dynamics of the extracellular potassium ion
concentration into an existing model for pre-B6tC neuron bursting, along with some parameter adjustments, suffices to induce
this ramping behavior. Using fast-slow decomposition, we show that this activity can be considered as a form of parabolic
bursting, but with burst termination at a homoclinic bifurcation rather than as a SNIC bifurcation. We also investigate the
parameter-dependence of these solutions and show that the proposed model yields a greater dynamic range of burst frequen-
cies, durations, and duty cycles than those produced by other models in the literature.

Keywords Neuronal dynamics - Fast-slow dynamics - Pre-Botzinger Complex - Ion concentration dynamics - Persistent
sodium current

1 Introduction

Since the original discovery of respiratory activity in neu-
rons within the pre-Botzinger Complex (pre-BotC) of the
mammalian brainstem (Smith et al., 1991), many experi-
mental and computational efforts have focused on charac-
terizing the activity patterns of these neurons. Experiments
have shown that, when synaptically isolated, a subset of
pre-BotC inspiratory neurons generate temporally clustered
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action potentials known as bursts (Johnson et al., 1994).
These neurons are often referred to as intrinsic bursters or
pacemaker neurons. Intrinsic bursting in some pre-BotC
neurons has been shown to depend on a persistent sodium
current (Butera et al., 1999; Del Negro et al., 2002, 2005;
Koizumi & Smith, 2008), while others require a nonspecific
cation, or CAN, current (Thoby-Brisson & Ramirez, 2001;
Peiia et al., 2004), and combinations of these ion flows can
produce various distinctive burst patterns including some
that may arise under special conditions such as early in
development (Jasinski et al., 2013; Chevalier et al., 2016;
Wang & Rubin, 2020) or during sighs (Jasinski et al., 2013;
Toporikova et al., 2015; Wang et al., 2017).

Functional respiratory rhythms under normoxic condi-
tions consist of three activity phases, commonly known as
inspiration, post-inspiration, and late expiration, the latter
two of which together comprise expiration. During respira-
tory rhythms recorded in various experimental preparations, a
subpopulation of glutamatergic pre-BotC neurons, sometimes
known as type-1 pre-BotC neurons (Rekling & Feldman, 1998;
Gray et al., 1999) engages in what is known as pre-inspiratory
(pre-D) activity. These neurons remain silent throughout much
of post-inspiration and late expiration, but they begin to acti-
vate toward the end of the expiration. Their activity ramps in
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intensity, with a gradual increase in the spike rate and in the
voltage to which membrane potential repolarizes between
spikes as expiration gives way to inspiration, and culminates
in bursting that continues throughout inspiration; indeed, this
pre-I activity pattern is thought to play an important role in
initiating the expiration-to-inspiration transition (Richter, 1996;
Ezure et al., 2003; Rubin et al., 2009; Lindsey et al., 2012).
While the gradual intensification of pre-I activity likely involves
network mechanisms including positive feedback induced by
the recruitment of additional neurons, experiments have shown
that even individual burst-capable pre-B6tC neurons can gener-
ate ramping activity patterns, in which tonic spiking eventually
intensifies and transitions to bursting, under pharmacological
blockade of glutamatergic neurotransmission (Thoby-Brisson
& Ramirez, 2001; Peiia et al., 2004).

Despite the significant work done previously to model
pre-BotC neuronal activity, current spiking models do not
capture the ramping activity observed in individual pre-
Bo6tC neurons. Moreover, experiments show that the burst-
ing capability of pre-BotC neurons and networks depends
on the extracellular ion concentrations to which they are
exposed. Slices of 250-350 ym thickness prepared from the
pre-BotC are nonrhythmic at physiological [K*],,,, but some
individual pre-Bo6tC neurons do burst in these conditions
(Del Negro et al., 2001; Tryba et al., 2003), especially if
depolarized by a tonic input (Smith et al., 1991), and phar-
macological blockade of GABA , and glycinergic inhibition
also allows pre-B6tC neurons to burst in these conditions
(Tryba et al., 2003). In contrast to these results, modeling
that explains how different extracellular potassium concen-
trations can produce corresponding forms of pre-Bo6tC activ-
ity has led to the conclusion that individual pre-B6tC neu-
rons should not be able to burst at physiologically relevant
extracellular potassium concentrations (Bacak et al., 2016b).
In this paper, we revisit these issues, producing and analyz-
ing what is to our knowledge the first Hodgkin-Huxley (HH)
style model for ramping bursts of pre-Bo6tC neurons in the
absence of rhythmic drive and inhibitory inputs. Importantly,
our model does not require tuning outside of physiological
parameter ranges in order to produce bursting dynamics.

Many of the previous models that inspired this work were also
posed in the HH framework. While neuronal spikes each last just
a few milliseconds, inspiratory bursts are much longer events,
lasting up to multiple seconds under some experimental condi-
tions (Gray et al., 1999; Thoby-Brisson & Ramirez, 2001; Pefia
et al., 2004). Despite the presence of ionic pumps and glial cells
that regulate intra- and extracellular ion concentrations, respec-
tively, spiking that continues over such prolonged periods can
lead to significant changes in the ion concentrations that impact
neurons (Frohlich et al., 2008; Barreto & Cressman, 2011; Kueh
et al., 2016). Given this ionic dynamics and the knowledge that
pre-BotC respiratory neuron activity patterns strongly depend on
extracellular potassium concentration, we hypothesized that the
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dynamics of potassium ions could be central to the emergence of
ramping activity in individual pre-B6tC neurons. The key inno-
vation in our work relative to past pre-B6tC neuron models is that
we have augmented the HH modeling framework with this ionic
dynamics. In this paper, we show that combining these compo-
nents yields a neuronal model that successfully produces ramp-
ing dynamics. Applying fast-slow decomposition and associated
bifurcation analysis, we explain the mechanisms underlying this
activity pattern, which we find represents a form of parabolic
bursting. Furthermore, we use direct simulations to explore the
robustness and tunability of the bursting dynamics in our model,
and we perform additional analysis to elucidate how transitions
between bursting and other forms of activity occur as certain
model parameters are varied.

2 Model
2.1 Voltage dynamics

We consider a model that depicts the spiking behavior of an
isolated neuron in the pre-BotC. It is formulated similarly
to other HH-style models (Hodgkin & Huxley, 1952) and
depends on a persistent sodium current to trigger bursting
(Butera et al., 1999). Our model is based heavily on a model
presented by Bacak et al. (2016b), augmented with some cru-
cial modifications.

In this model, the membrane potential (V) is governed by
the current balance equation:
C-‘il—‘t/=—(1Na+1NaP+1K+1L+ISyn). (1)
The membrane currents in (1) include: the fast sodium cur-
rent Iy, the persistent sodium current I, p, the delayed rec-
tifier potassium current /, the leakage current /;, and the
synaptic current /g,,. These membrane currents are drawn
from previous work of Butera et al. (1999) and Bacak et al.
(2016b), and are represented as follows:

Iy, = 8na - (my,)* - By, - (V = Ey), )
Inap = &Nap * nap * Mivap = (V = Eg), 3)
Iy = gx - n* - (V= Ey), “)
I, =3, -(V-Ep), Q)
gy = 8syn - (V — Egy). (6)

Note that we model a single neuron, and Iy, is a tonic syn-
aptic current with time-independent conductance, gg,,,, rep-
resenting a steady level of drive from other sources, such as
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brainstem feedback pathways. This form of synaptic current
is appropriate for this study, since we are interested in rhyth-
micity that can emerge due to intrinsic neuronal dynamics,
without contributions from time-varying inputs.

2.2 Sodium and potassium currents

The currents Iy,, Iy,p, and Iy are given as products of
maximal conductances, gating variables, and restor-
ing potentials. Each of the sodium gating variables
x € {myg, hyg, My,p, hy,p ) satisfies the equation

o) B ) -, ™
where

1o (V) = [L+exp ((V, = V)/k)] 7
(V) =7,/ [cosh ((V =V, )/k, )].

The parameter values used for these equations, with corre-
sponding sources and rationales, are all presented in Appen-
dix 1.

The potassium current only has activation gates, repre-
sented by the variable n, which also satisfies Eq. (7). For
ny (V) and 7,(V), we use the formulation

Kl(V) _ 1

ne(V)y= ——-—-—, 7,(V)= ————,
K (V) + Kk, (V) k1 (V) + k5 (V)

where k,(V) and «, (V) are the following voltage-dependent
functions, taken from Bacak et al. (2016b) and Huguenard
and McCormick (1992):

ny - (ny +V)
1 —exp (—(nAV + V)/nAk>

ky(V) = ng - exp (—(nBV + V)/an>.

K (V) =

k]

The constants ny, ng, ny , ng , ny, and ng are discussed in
Appendix 1.

The reversal potential for potassium ions, denoted Ey, is
viewed as a function of the dynamic variable [K*],,,, and
modeled through the Nernst equation approximated at body
temperature,

[K+]UMT

m

Note that [K*],, is taken to be a constant value. The justifica-
tion for this approximation is discussed in Sect. 2.3. Internal
and external sodium ion concentration, and thus also the
sodium reversal potential E,,, are taken as constants in this
model as in the previous literature (Bacak et al., 2016b),
with values listed in Appendix 1.

2.3 lonregulation and dynamics

The crucial difference between our model and the model pre-
sented in Bacak et al. (2016b) is the inclusion of dynamics
in the concentration of extracellular potassium ions, denoted
K

Experimental data has long indicated that neuronal activity
causes fluctuations in [K*],,,, with increases on the order of
1.0 mM, which can nearly double the [K*],,, local to a neu-
ron, during active periods (Baylor & Nicholls, 1969; Amzica
et al., 2002) and increases of up to 10 mM within pathological
states such as seizures (Raimondo et al., 2015).

Experimental manipulations that increase the extracellu-
lar potassium concentration are commonly performed in in
vitro studies to increase neural excitability and induce burst-
ing behavior. A typical approach is to bathe slices of neuronal
tissue in highly concentrated K* solution. The variations of
[K*],,, due to neural activity and effects of ion pumps, glia,
and diffusion (Clausen et al., 2017; Kofuji & Newman, 2004;
Beckner, 2020), however, imply that this bath concentration
is not equivalent to what we present as the [K*],,, variable.
Throughout this paper, [K*],,, represents the approximate
localized concentration of K™ in the vicinity of an individual
neuron, while &, represents the concentration of potassium
in the bathing solution, toward which [K*] ,, would naturally
evolve over time in the absence of neuronal activity and glial
effects. This diffusion of the dynamic [K*],,, variable towards
kpq 1s modeled as a molar current of the form discussed in
Barreto and Cressman (2011):

7@7 = L([KJr]om = Kpan)» ©)]
Taiff
where 7, represents the corresponding time constant. To
simulate reasonable physiological conditions, k,,, was set
to 4 mM (Barreto & Cressman, 2011).

Glial cells also play an active role in decreasing the con-
centration of K+ external to neurons (Newman & Reichen-
bach, 1996). The effects of the glia on this concentration are
also modeled as molar currents in the style of Barreto and
Cressman (2011), with maximal rate G, half-activation potas-
sium concentration K, and steepness factor z;, as follows:

5 G

l, = ———
glia 1 + e (K=[K*]p,) "

Note that neither diffusion nor glial cells move ions across
the neuronal membrane, and thus the currents 7dﬁ,7glia do
not appear in the voltage equation.

Finally, increases in [K*],, are driven by the action
potentials of the neuron. The potassium current I, derives
from the movement of potassium ions across the neural
membrane. The resulting changes in potassium concentra-
tion are therefore proportional to /. The proportionality
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factor is the product of two constants. One of these terms,
v, represents the ratio of the time-derivative of the internal
ion concentration to the corresponding membrane current
and is derived in Appendix 2. The constant f represents the
ratio of the internal neuron volume to the localized external
volume, which determines the reversal potential across the
neural membrane. Thus, changes in external concentration
must be proportional to a factor of yf and we model the
dynamics of localized external potassium concentration as
d[K™]

out

dr =yPlx — idiﬁf - ~glia- (an

We note that previous computational models of ion dynam-
ics have set f = 7 (Barreto & Cressman, 2011). This value
can be derived from experimental measurements suggest-
ing that the proportion of total tissue volume that composes
extracellular space (ECS) is around 13%. However, studies
have found this proportion to range from as low as 4% to a
maximum of 24% in conditions of hypoxia or anoxia (Som-
jen, 2004; Nicholson & Sykova, 1998). We used f = 14.555
in our simulations as we found that that value resulted in
a good match to experimental voltage traces (e.g., Fig. 2).
Our model produces qualitatively similar dynamics over a
wide range of f values as long as 7, is increased and/or G
is decreased correspondingly.

Also, it is important to note that in this model, [K*],, is
approximated as being a constant value, despite the fact that
K ions inside the neuron flow through the neural membrane
via the Iy current and increase [K*],,,. The change in exter-
nal K* concentration, which is under 2 mM per burst in this
model, would only correlate to a decrease of 0.137 mM in
internal K* concentration. This is negligible on the scale of
bursting behavior of an individual neuron, as it constitutes
only a small fraction of the initial [K*];, value of 150 mM.
This approximation was also used in a previous neuronal
bursting model with dynamic ion concentrations, based on
the argument that changes in [K*],, are more strongly cor-
related to fluctuations in internal sodium ion concentration
than to changes in [K*],,, (Barreto & Cressman, 2011).

2.4 The full model

In summary, we arrive at a 7-dimensional model of a neu-
ron, which depicts bursting behavior by connecting the
dynamics of membrane potential, sodium and potassium
gating and reversal potentials, and ion concentrations. The
formulations of these dynamics are based on a combination
of previous models of bursting behavior (Butera et al., 1999;
Bacak et al., 2016b; Barreto & Cressman, 2011). The dif-
ferential equations in this system are Egs. (1), (7), and (11);
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note that in fact we have 5 equations of the form (7), one for
each of my,, hy,, my,p, hy,p, and n.

2.5 Data analysis and definitions
2.5.1 Ramping bursts

A major aspect of this work is the consideration of ramping
bursts, which have not been well captured by other single-
neuron conductance-based models. We define ramping
bursts as activity patterns with alternating silent and active
phases, in which each active phase begins with relatively low
frequency tonic spikes, the baseline voltage and the spike
frequency gradually rise, forming the ramp, and eventually
the dynamics transitions into a period of full-blown high
frequency spiking riding on top of a depolarized voltage
plateau. The model can produce ramping bursts in two types
of parameter regimes: those for which the model with fixed
[K*],,, also has a bursting capability (if [K*],,, is fixed in a
suitable range) and those for which the model cannot burst
for any fixed level of [K*],,,. In the former case, we spe-
cifically define a ramping burst as a burst where the exter-
nal potassium ion concentration [K*],,, after the first three
spikes is less than the [K*],,, required to induce bursting
behavior for the model with the same conductance param-
eters, but with a fixed external potassium ion concentration.

2.5.2 Fast and slow variables

Our analysis will be based on the premise that [K*],,, and
hy,p are the slowest variables in our model. Various meth-
ods including nondimensionalization can be used to identify
timescales associated with variables in biological models.
In our model, such analysis is unnecessary because most
of the model equations are of the form (7), with an explicit
voltage-dependent timescale term 7,(V). It is easy to check
directly that ThNaP(V) is at least 10 times larger than all of the
other timescale terms for each V in the range occurring in
our simulations. Moreover, direct simulation shows that the
rate of change of [K*],,, is also slow relative to the rates of
change of these other terms and voltage (e.g., see Fig. 2). At
a more analytical level, we note that the key term controlling
the magnitude of the rate of change of [K*],,, is I, which
includes the quantity n*. In theory, n* could become as large
as 1, which would increase the magnitude of /; and speed up
the change of [K*],,,. In our simulations, however, n remains
below a maximum of around 0.5. With this constraint, the
quantity |d[K*],,,/dt|/(AK), where AK denotes the range
of values over which [K*],,, varies (Diekman et al., 2017),
stays small relative to comparable quantities for voltage and
the gating variables other than /.
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3 Periodic behaviors in the model
3.1 Activity patterns

To match experimental data, a pre-B6tC neuron model
must demonstrate a range of activity patterns across dif-
ferent conditions. Previous modeling work showed how
different neuronal behaviors occur at different fixed values
of the external potassium concentration, and our model
reproduces this result in Fig. 1. Specifically, at sufficiently
negative E,, the neuron remains in a tonic spiking state,
characterized by rhythmic spiking at a fixed frequency
(Fig. 1A). As Ej is increased, bursting dynamics, with
periods of quiescence alternating with periods of high-
frequency spiking riding a depolarized voltage plateau,
emerges (Fig. 1B). With even higher Ey, however, after
release from the original resting potential, the neuron
spikes but cannot fully repolarize and return to a rest-
ing state and instead, it again enters a tonic spiking state
but with reduced repolarization and a higher frequency
(Fig. 1C). Finally, when Ey is high enough, the neuron
enters depolarization block with an elevated membrane
potential and no spike generation (Fig. 1D). The agree-
ment of these simulations with previous work is not sur-
prising: When internal and external K* concentrations are
fixed, our model is extremely similar to the model pre-
sented in Bacak et al. (2016b), differing only in the values

Fig.1 Model pre-BotC neuron (A)
activity depends on the potas- -107

sium reversal potential, E,

which relates to the local exter- -20

nal potassium concentration
via Eq. (8). (A) [K*],,, = 4.0
mM, Ex = -96.8 mV: low rate
tonic spiking. (B) [K*],,, = 6.0
mM, Ex = —85.9 mV: burst-

of a few model parameters, which affect quantitative but
not qualitative aspects of the dynamics in this frozen-
potassium setting.

Previous work has noted that fixing [K*],,,, which is
directly related to Ey by (8), at values sufficiently elevated
above physiological levels is enough to induce bursting
in a pre-BotC neuron model lacking ion concentration
dynamics (Bacak et al., 2016b). Furthermore, modeling
of other brain areas revealed a wide array of bursting
behaviors when K and Na't concentrations were allowed
to vary dynamically (Barreto & Cressman, 2011; Erhardt
et al., 2020). In this work, we combine the insights offered
by these earlier investigations to model pre-BotC dynam-
ics featuring ramping activity culminating in a burst
without imposed elevation of extracellular potassium
concentration.

Indeed, with dynamic extracellular potassium levels,
our model produces distinctive ramping bursts as shown in
Fig. 2, matching a pattern seen experimentally in pre-BotC
neurons; the slow spiking on a gradually increasing voltage
plateau at the start of each burst active phase is referred to
in the literature as “pre-inspiratory activity”. These bursts
include periods of quiescence, during which [K*],,,, remains
on the low end of physiologically observed levels, corre-
sponding to low values of Ey, by Eq. (8). Numerical simula-
tions show that E slowly increases during this phase until
spiking emerges. As in other HH-type models, each spike

)]

ing. (C) [K*],,, = 8.0 mM, -50
Ey = -78.3mV: transient
followed by high rate tonic -60 1 . . . .
spiking. (D) [K*],,, = 10.0
mM, E = =72.3: (tiepolariza— 0 5 10 0 5 10
tion block
C D
10 ¢ (©) 0. (D)
-20
z 30
E . |
o)
> -40
o
> -50 1
-60 |
0 5 10 0 5 10
time (s) time (s)
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Fig.2 Typical bursting trajec- (A) (B)
tories of our pre-inspiratory -10 8 -10 8
pre-BotC neuron model. (A) 20 7 20 7
Time course and external — . — .
potassium concentration for Z .30 6 % Z .30 6 %
8nap =5.018, g; =2.50nS, Py — Py —
Zsn = 0.365nS. (B) Time g -40 5.8 g4 AU \ 5.3
course and external potassium S -50 N 4 X S 50 4 X
concentration for gy,p = 4.5nS, _)L _J U
g = 2.40nS, gSyn =0.360 nS. -60 3 -60 3
(C) Physiologically recorded
ramping behavior, adapted with 0 2 4 6 0 2 4 6
publisher’s permission from time (s) time (s)
Fig. 4 in Gray et al. (1999). (D)
Monotonic relationship between © 70 (D)
external potassium ion concen-
tration and potassium reversal Ii) mV -80
potential, with range from (A, ~
B) indicated in red S 2s S 90

o E

g w® -100

s

-110
M v
-120
time (s) 2 4 6 8
[K*],, (M)

involves dynamics of the sodium and potassium currents,
Iy, and I, respectively. The ion flows associated with these
currents gradually increase [K*],,,. Although glia and dif-
fusion also contribute to changes in external K* concentra-
tions, the strengths of these repolarization currents depend
on[K*],,, as depicted in Egs. (9) and (10). Moreover, at low
concentrations, we find that the glia are almost inactive and
diffusion is too weak to bring [K*],,, back to equilibrium.
A positive feedback loop results, with neuronal spiking
causing [K*],,, to increase and increases in [K*],,, driving
intensification of spiking, such that [K*],,, rises substan-
tially above baseline values. Our simulations show that this
rise in [K*],,, is cut off by the rise in the strength of diffu-
sion and glial currents as in Egs. (9) and (10). The overall
increase of Ey is enough to trigger bursting behavior in the
neural cell, however, and this bursting continues until some
time after [K*],,, saturates. Furthermore, as demonstrated
experimentally (Del Negro et al., 2001) and discussed near
the end of Sect. 3.2, the spiking frequency increases with
[K*],,,- Thus, the increasing [K*],,, during the build-up
of a burst also provides a mechanism for a ramping effect,
where the spiking frequency gradually increases from an
initial slow tonic spiking until a burst is established. The
exact geometry of the burst pattern depends on various
parameters, including maximal conductance strengths. For
example, with a reduction in gy,p, &,, and gs,,, the bursting
pattern changes to feature a more gradual increase in spike
frequency and a less pronounced drop in spike amplitude
during the burst (Fig. 2B). As noted in Sect. 2.4, this second

out
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parameter set corresponds to a regime in which the model
can never burst with [K*],,, fixed. This distinction will also
show up in the analysis in the coming sections.

3.2 Fast-slow decomposition analysis

Neuronal bursting results from dynamics occurring across
two or more distinct timescales. Voltage spikes occur on
a fast timescale. Transitions between the spiking state and
quiescent state within the bursting regime, as well as the
gradual oscillation of [K*],,, over the course of a burst,
depend on slow timescale dynamics. In our model, a posi-
tive feedback loop between the slow subsystem and the fast
subsystem causes a buildup in external K* concentration
and a gradual increase in spike frequency during the active
phase of a burst. The resulting variation in E values affects
the timing of the transition from the active spiking state to
the quiescent state within each burst.

A fast-slow decomposition is a standard mathemati-
cal approach to elucidate the details of multiple timescale
dynamics in bursting (Bertram & Rubin, 2017). We begin
a fast-slow decomposition by noting that %,,, and [K*],,,
evolve significantly more slowly that the other variables in
the model. Hence, the full model can be considered as hav-
ing 5 fast variables (V, my,, hy,, n, my,p), comprising a fast
subsystem, and 2 slow variables Ay, and [K*],,,, constitut-
ing a slow subsystem.

A standard approach when a model features multiple
slow variables, which we follow, is to pick one of these as a

out?
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primary bifurcation parameter and compute bifurcation dia-
grams for the fast subsystem with respect to this parameter,
while the other slow variables are held frozen at some fixed
values. This process can then be repeated for various values
of these other slow variables, which are typically selected
based on the paths they follow when the full system evolves.

Previous analysis of respiratory neuron models with
fixed E showed the utility of A, as a bifurcation param-
eter (Butera et al., 1999; Bacak et al., 2016b), so we make
hy,p our initial primary bifurcation parameter as well, and
we use XPPAUT (Ermentrout, 2002) to consider how the
dynamics of the fast subsystem varies with hy,,,. We repeat
this analysis for several values of [K*],,, (and hence of E).
Note that we refer to the fast subsystem together with hy,p
as the neuronal system.

Let us start with the parameter set corresponding to
Fig. 2A. Consider first[K*],,, = 4.5 mM (Fig. 3A). The fast
subsystem bifurcation diagram with respect to &, includes
an S-shaped curve of equilibria, known as the critical man-
ifold S, including two stable segments (red solid), one a
hyperpolarized branch corresponding to quiescence and the
other a depolarized segment corresponding to depolariza-
tion block. The lower stable branch ends in a saddle-node
bifurcation that we call the lower knee of S, with h = ALK,
while the upper segment destabilizes at even larger hy,p
at a supercritical Andronov-Hopf (AH) bifurcation, with

h = k.. These bifurcation values do depend on [K*],,,
Fig. 3 Both spiking and burst- (A)
ing states can be realized with -0

fixed K* concentration (cf.

Bacak et al., 2016b). Solid red 20 1

(dashed black) curves: stable
(unstable) segments of the criti-
cal manifold; solid purple circle:
Andronov-Hopf (AH) bifurca-
tion point; green curve: periodic
orbit family P; blue curve: orbit
of the neuronal system starting

Voltage (mV)
A
o

but we suppress this dependence in our notation. The fam-
ily of stable periodic orbits, P, born in the AH bifurcation
continues for decreasing h,,p until terminating in a SNIC
bifurcation at the lower knee. When the neuronal system,
consisting of the fast subsystem along with the slow &,,p
dynamics, is simulated with [K*],,,, and thus Eg, still fro-
zen, the system exhibits periodic tonic spiking in which /,,p
hovers near a particular value and the voltage of the cell
oscillates along the associated part of the periodic orbit fam-
ily in the bifurcation diagram. Past work has shown that this
tonic spiking results when the weak leftward drift in hy,p
during the part of each oscillation when the trajectory lies
above the Ay, p-nullcline (dashed orange) in (hy,p, V)-space
exactly balances the weak rightward drift when the trajec-
tory is below the A, p-nullcline (Bacak et al., 2016b).
When[K*],,, is fixed at the larger value of 5.3 mM, the fast
subsystem bifurcation diagram remains similar but the termina-
tion of the periodic orbit family decouples from the saddle-node
bifurcation; that is, the termination now occurs at a homoclinic
bifurcation, with & = h}fj’fp, instead of at a SNIC. The shift in
the periodic orbit family due to the selection of a new Ej, value
also changes its relation to the position of the /,,p-nullcline
and its shape. As a result, the trajectory of the neuronal system
drifts in the direction of lower h,p as spiking occurs until it
reaches the /1,p value of the homoclinic bifurcation and returns
to the silent, non-spiking phase. Thus, this system produces

(B)

from a jump up to the active -60 ) ‘ )
phase; dashed orange curve: ) )
hyp nullcline. (A) [K*+1,,, = 4.5 0.4 0 0.4 0.8 0.4 0 0.4 0.8
mM, Ex = —-93.6 mV: spiking
oscillation near SNIC (light 10 ¢ (© 10 (D)
blue) where P terminates. (B)
[K*]pw =53 mM, Ex = —89.3 20+ -20
mV: bursting. (C) [K*],,, = 6.0 <
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square-wave bursting, also known as fold-homoclinic bursting
(Izhikevich, 2007) (Fig. 3B).

As we consider progressively larger (less hyperpo-
larized) values of [K*],,,, we find that P, k4, and AJC,
all move to smaller h,,p values. Moreover, the curve of
maximal voltages along the periodic orbit family con-
tinues to change shape, becoming monotone decreasing
in hy,p instead of non-monotonic as previously. When
[K*],, = 6.0 mM, for example, the neuronal system con-
tinues to produce bursting dynamics, but with bursts of
longer duration and more spikes per burst than previously
(Fig. 3C). As 4! becomes closer to A3 ,, the initial spikes
within each burst have a large amplitude but subsequent
spikes are smaller, as the orbit converges down to small-
amplitude fast subsystem periodic orbits near the AH
point; as time continues to evolve, spikes become larger
again, as the bursting orbit travels toward the homoclinic,
where the fast subsystem periodics have larger amplitude.
This decreasing-increasing trend in spike amplitudes
becomes more pronounced as [K*] . increases and h?/fp
moves to successively smaller fy,p.

Finally, at a[K*], ,, value above a certain threshold, the
neuronal system no longer produces bursting behavior.
For example, for [K*],,, = 6.7 mM, the AH point now lies
to the left of the saddle-node point. Hence, if we start a
trajectory in the silent phase, then after hy,, grows and
reaches the SN point to initiate spiking, the initial decline
in spike amplitude is particularly pronounced, as the tra-
jectory initially converges toward the depolarized branch
of fast subsystem equilibria (Fig. 3D). Furthermore,
thanks to the more extreme leftward position of the peri-
odic orbit family, the spikes that occur at low A, spend
significant time below the hy,p-nullcline in the (hy,p, V)
plane, allowing the corresponding rightward drift in hy,p
to balance the leftward drift that occurs when voltage is
more depolarized. Thus, the trajectory becomes pinned
and oscillates along a particular fast subsystem periodic
orbit indefinitely, as it did for [K*],,, =4 mM, and the
neuron remains in a tonic spiking state.

Next, consider the parameter set with Zsyn = 0.360 nS,
8naep = 4.5 1S, and g; = 2.4 nS. This reduction in g; is
analogous to increasing the excitability of the neuron, as
discussed in more detail in Sect. 4. In Fig. 2B, the burst-
ing waveform resulting from this parameter set is demon-
strated. However, if [K*],,, is set to be constant, bifurca-
tion analysis with respect to h,,p shows that the neuronal
system is unable to achieve a bursting state at any fixed
ion concentration, but rather maintains tonic spiking. In
this case, with dynamic [K*],,,, the gradual rise of [K*] ,,
essentially drags the trajectory of the neuron along the
family of stable limit cycles in the direction of lower &y, p.
As these states correspond to higher spiking frequencies,
the dynamics of [K*],,, provides a mechanism for an active

out
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phase geometry that features a gradual increase in spiking
frequency. Thus, we have shown that even a neuron that
can never burst on its own with fixed [K*],,, can nonethe-
less become intrinsically bursting when [K*],,, dynamics
are taken into account.

In Appendix 3, we consider in more detail the changes in
stable periodic behavior that occur with Ej as a bifurcation
parameter.

out

3.3 Dynamicsin (V, hy,p, Ex) phase space

Next, we incorporate the dynamics of Ey back into the pic-
ture. Because there are two slow variables, (Ay,p, [KT1,,,)
we can follow bifurcations of the fast subsystem in the two-
parameter (hy,p, [K*],,) space. Projecting full model tra-
jectories onto this space reveals which bifurcation crossings
occur during bursting dynamics, which is crucial for com-
paring these bursts to known bursting types in the literature
(e.g., Izhikevich, 2007). In fact, we find a better visualiza-
tion if we replace [K*],,, by Ex, a monotone increasing func-
tion of [K*],,, as depicted in Fig. 2D. Hence, we consider
the trajectory of the full model system projected into the
(hyaps Ex) plane (Fig. 4, blue curves), where it progresses
in a counterclockwise fashion. First focus on the parameter
set from Fig. 2A; see Fig. 4A. Starting from the quiescent
state (the leftmost intersection of the blue neuronal trajec-
tory and the lower purple line), hy,p increases until the tra-
jectory crosses the lower fold of S, the fast subsystem critical
manifold (Fig. 4A, black line), which also corresponds to a
the termination of the fast subsystem periodic orbit family
(Fig. 4A, green curve). If E were frozen, then this crossing
would result in tonic spiking. Instead, E increases as spiking
continues. Eventually Ey crosses the value where the neu-
ronal dynamics supports bursting (Fig. 4A, lower purple line).
Interestingly, we see that very close to this Ey, the periodic
orbit termination curve diverges from the fold line, confirming
that the switch from spiking to bursting in the Eg-frozen sys-
tem corresponds to a switch from termination of the periodic
family in a SNIC bifurcation to termination in a homoclinic
bifurcation. As E continues to increase, the trajectory moves
away from the homoclinic curve and towards the AH curve
(Fig. 4A, red line with dots). Oscillation amplitude shrinks
to zero at an AH bifurcation. Correspondingly, the approach
of the trajectory towards the AH curve yields the decrease
in spike height seen in Fig. 2A (see also Fig. 9), represent-
ing a less extreme form of the amplitude modulation in the
burst patterns arising with E fixed between —96 and —90
mV (Fig. 3) and in bursting associated with the CAN cur-
rent in past work (Rubin et al., 2009; Dunmyre et al., 2011;
Wang & Rubin, 2016, 2020). Eventually, E peaks and then
decays slightly due to 1,,, and 17, and the decrease in fy,p
pulls the trajectory back across the periodic orbit termination
curve, terminating the active phase of the burst. A similar
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Fig.4 Projection of the (B)
full system bursting trajec- 821 '
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picture results from the parameter set from Fig. 2B, as shown
in Fig. 4B. There is no purple line here, because the fast sub-
system cannot burst for fixed E, but a qualitatively identical
transition from a SNIC to a homoclinic bifurcation occurs.
Putting everything together, we see that the full model
system with dynamic Ey engages in a form of parabolic
bursting (Ermentrout & Kopell, 1986; Rinzel, 1987). Para-
bolic bursting was originally identified as a form of burst-
ing in which the evolution of two slow variables switches
the fast subsystem back and forth across a SNIC curve
twice per cycle, yielding an alternation between a quies-
cent regime corresponding to each inter-burst interval and
a spiking regime corresponding to the active phase of each
burst. This form of bursting was dubbed parabolic in refer-
ence to the parabolic shape of the curve depicting spike
frequency versus time within each burst, resulting from
the low frequency spiking associated with passage near a
SNIC bifurcation. In our case, the use of projection shows
that the initial slow spiking at the start of the burst active
phase corresponds to the slow tonic spiking seen with very
hyperpolarized Ey (Fig. 1A), which emerges as the trajec-
tory evolves near the fast subsystem SNIC bifurcation curve
when Ey is low. Interestingly, the transition from a SNIC to
a homoclinic bifurcation curve here differs from classical
parabolic bursting and accounts for the spike acceleration
within the burst and the lack of the significant slowing at
the end of the burst typically seen (Fig. 2), consistent with
other recent work emphasizing the quantitative variability

that can occur within individual bursting classes (Rubin
et al., 2018). Appendix 4 provides one more perspective
that confirms the nature of the bursting dynamics, namely
a visualization of the bursting trajectory in the (Ex, V, hy,p)
phase space.

To summarize this whole section, our model utilizes per-
sistent sodium currents (Butera et al., 1999) and dynamic
ion concentrations (Barreto & Cressman, 2011) to recreate
the ramping pre-inspiratory / inspiratory behavior seen in
bursting pre-BotC neurons. Our model is built from a model
proposed in previous work (Bacak et al., 2016b), with the
addition of dynamic ion concentrations and neuronal regula-
tors (Barreto & Cressman, 2011). The process of bursting
in our model can be understood to be a form of parabolic
bursting based on two-dimensional projections, fast-slow
decomposition and computation of bifurcation curves, and
can be visualized fully by graphing in the (Ey, V, hy,p) phase
space. Ramping of spike frequency at burst onset depends
on the passage of the bursting trajectory near a curve of
SNIC bifurcations that terminates a family of fast subsystem
periodic orbits and its subsequent departure from this curve,
which prevents a symmetric spike deceleration at the end
of each burst. This burst mechanism does not require there
to be a fixed value of Ey at which the remaining equations
produce bursting (Figs. 2B, Fig. 4B). The change in spike
heights during the burst depends on how the trajectory trav-
els relative to the AH bifurcation curve that gives rise to the
periodic orbits.
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Fig.5 Bursting within the (gL,gNaP) parameter space. (A) The gray
region depicts the set of parameters for which bursting occurs. Within
this region, a smaller set of parameters (blue), associated with rela-
tively low g, values, correspond to ramping bursts. Parameter sets with

4 Robustness of model dynamics

4.1 Robustness in maximal conductance
parameters

A critical question for any model in which the details of an
activity pattern are important is robustness to variation in
parameters. Experimental results have confirmed that the pres-
ence of persistent sodium (1, ) and leakage (1, ) currents are
essential to pacemaker activity in pre-BotC neurons (Del Negro
et al., 2002; Koizumi et al., 2010). Thus, we mapped the behav-
ior of the model in the (gL, gNa,,) parameter space to measure
the robustness of bursting within the neuron under variation of
these parameters (Fig. 5A). While bursting behavior could be
achieved over a wide range of physiologically relevant parame-
ter values, ramping bursts were restricted to a smaller parameter
set. Furthermore, we also measured bursting frequency within
the bursting parameter region (Fig. 5B), demonstrating how
the properties of the model bursting patterns are modulated by
these maximal conductance levels.

The parameters that induced bursting behavior were also
strongly affected by the synaptic input into the neuron. In
this model, this tonic input is represented by the current /y,,.
The effects of altering synaptic input through variation of
&syn ON the bursting region within the (gL, gNaP) parameter
space are depicted in Fig. 6. The overall shape of these burst-
ing regions is consistent with previous studies (Del Negro
et al., 2002; Purvis et al., 2007), which indicate that pace-
maker properties are tied to the gy,p/g; ratio. Consistent
with this observation, the upper and lower boundaries of
the bursting region for our model are approximately linear
within the (g, 8y,p ) parameter space.
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lower g, than in the bursting region correspond to tonic spiking behav-
ior, while higher g, leads to quiescence. (B) The burst frequencies for
parameter values within the bursting region are indicated by the gradi-
ent bar, with more yellow regions corresponding to greater frequencies

4.2 Inter-model robustness comparison

To further analyze the effectiveness of the model introduced
in this work, its robustness was compared to two exist-
ing models of bursting in pre-B6tC neurons. Specifically,
we examined two facets of robustness: (1) robustness in
parameters, i.e., the ability of the model to maintain burst-
ing behavior over a wide range of physiologically observed
parameter values, and (2) robustness in behavior modulation,
i.e., the ability of the model to demonstrate realistic varia-
tion in properties of its activity pattern (including bursting

(nS)

JNaP

3 L 1 L I
2 24 2.8 3.2 3.6
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Fig.6 Bursting behavior can occur over a wide range of gy,» and g;
values. The bursting region in this parameter space depends on gg,,,.
The black region shows the bursting region with the default value
8syn = 0.365 nS. The blue and red regions show where bursting
occurs for lowered (g, = 0.300 nS) and elevated (g, = 0.430 nS)
maximal conductances, respectively
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frequency, duration, and duty cycle) as parameter values are
varied.

First, the new model was compared to the model formu-
lated by Bacak et al. (2016b); structurally, the two models
differ only in the fact that our model includes the dynam-
ics of the external potassium ion concentration. Thus, this
comparison demonstrates how the introduction of a dynamic
ion concentration, which allows for ramping bursts to occur,
affects overall robustness. Next, the new model was com-
pared to the model introduced in Butera et al. (1999), which
has been incorporated into multiple subsequent computa-
tional studies. In the original paper, bursting was induced
by increasing E;, which increased activation in the neuron.
To maintain consistency with the general literature, how-
ever, we keep E; fixed and gradually decrease g; to increase
activation, and we examine robustness within the (,, Zy.p)
parameter space.

The variation of burst properties (frequency, duration,
and duty cycle) under changes in g; is depicted for all three
models in Fig. 7. For each model, this variation was tested
for reduced, default, and elevated gy,p values. To adjust

for differences between the models, maximal conductance
values were normalized with respect to membrane capaci-
tance. Both our new model and the model from Bacak
et al. (2016b) utilize a membrane capacitance of 36 pF,
while the model from Butera et al. (1999) utilizes a capaci-
tance of 21 pF. Thus, while the default g, value in the
proposed model is 5.0 nS, assuming constant conductance/
capacitance density, the default g, value in the model in
Butera et al. (1999) would be 2.92 nS.

The first thing to note from this analysis is that compared
to the model in Bacak et al. (2016b), the new model exhib-
its bursting behavior over an almost identical set of g; val-
ues for the fixed gy,p values tested (Fig. 7A,B). Thus, the
introduction of a dynamic ion concentration did not alter
the robustness of bursting with respect to the (., Zyap)
parameter space. The inclusion of a dynamic ion concen-
tration significantly increased the set of frequency values
attainable through variation of g;, however. While the model
presented in Bacak et al. (2016b) could not reach bursting
frequencies above 0.4 Hz, our dynamic potassium model
attained bursting frequencies up to 0.6 Hz. It is important to
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Fig.7 The effects of g; and gy,p on the quantitative characteristics
of bursting dynamics compared across different models. The left (A,
D, G), central (B, E, H), and right columns (C, F, I) represent the
Bacak et al. (2016b) model, the model introduced in this paper, and
the Butera et al. (1999) model, respectively. The top row (A, B, C),
central row (D, E, F), and bottom row G, H, I show modulation of
frequency, burst duration, and burst duty cycle. In all panels: blue,
black, and red curves correlate to experiments with reduced, default,

and elevated g,,p values. In (A, B, D, E, G, H) these are 4.5, 5.0,
and 6.0 nS. In C, F, I these are 2.625, 2.917, and 3.500 nS. The leak-
age reversals (E;) for the Bacak et al. (2016b), proposed, and Butera
et al. ( 1999) models were fixed accordingly at —64, —68, and —62
mV. It should be noted that higher bursting frequencies in the Butera
et al. (1999) model could be reached by increasing E,, but this strays
further from the experimental value of —68 +3.4 mV (Koizumi
et al., 2010)
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note that, as depicted in Fig. 5, the higher frequency bursts
correspond very closely with the newly attainable ramping
state. Moreover, the previous model (Bacak et al., 2016b)
maintained an essentially constant burst duration under vari-
ation of both g; and gy,,p, whereas our model could achieve
substantially longer bursts at the low end of the bursting
range of g; (Fig. 7D,E). It can be concluded that compared
to the static ion concentration model in Bacak et al. (2016b),
our proposed model allows for greater modulation of burst-
ing properties through the inclusion of the ramping state,
without any significant cost to robustness with respect to
maximal conductance parameters.

Compared to the model proposed in Butera et al. (1999),
the new model had decreased robustness of bursting with
respect to g; /C density, as depicted in Fig. 7B,C. Despite
the decrease in this measure of robustness, the new model
achieves an increased range of burst frequencies compared
to the model proposed in Butera et al. (1999), as shown in
Fig. 7B,C. Higher frequency bursts were attainable in the
model from Butera et al. (1999), but only with a shift away
from physiologically relevant parameters. Our model also
achieved a wider range of burst durations than could be pro-
duced by the earlier model (Butera et al., 1999) (Fig. 7E,
F); specifically, our model allowed for shorter bursts at high
&nqp- Consistent with previous experimental results (Koizumi
et al., 2010), the bursting frequency decreased linearly with
an increase in g; for all models.

The quality that stood out most about the newly intro-
duced model was the significant increase in the range of pos-
sible duty cycles when compared to other models, as shown
in Fig. 7G,H,I. The spiking region could be set to account for
an extremely low or extremely high percentage of each burst
cycle duration spent in the active phase, based on variation
of g;, for all levels of gy,p. This flexibility was not possible
in the alternative models. Our model produced bursts with
large duty cycles in the ramping regime, with relatively low
g, with relatively longer, lower frequency bursts for smaller
8nqp and shorter, faster bursts for larger gy,p. Neither of
the other models could achieve this duty cycle. Our model
produced shorter duty cycles for larger g, , again for all gy,p,
due to a decrease in burst frequency without much change in
burst duration, similar to the other models.

5 Discussion

In this study, we present a model developed from previous
conductance-based neuron models that exhibit bursting
behavior dependent on a persistent sodium current (Butera
et al., 1999; Bacak et al., 2016b). Our model replicates the
observed frequency ramping behavior of pre-B6tC neurons,
through the inclusion of external potassium ion ([K*],,,)
dynamics. Previous studies have indicated the relationship
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between fixed levels of [K*],,,, and burst frequency and dura-
tion (Del Negro et al., 2001). The incorporation of [K*] ,,
dynamics as an additional slow component of the model
induced a modulation of spike frequency throughout the
spiking regime, resulting in a robust parabolic bursting
behavior.

The dynamics of the model was analyzed through a
three-dimensional extension of the traditional fast-slow
decomposition. Steady-state behavior was plotted in the
(V. hyap )-phase space for various fixed values of [K*],,,,
and hence of Ey as computed via Eq. (8). The curves of
saddle-node and AH bifurcations and the families of peri-
odic orbits originating from the AH points were mapped
with respect to E. These quantities were then projected onto
the (Eg, V. hy,p)-phase space, depicting the geometry that
ultimately dictates bursting dynamics. While this approach
does not capture certain transitional solution patterns that
involve subtle interactions of multiple slow variables or
mixing of time scales (Vo et al., 2014; Teka et al., 2012;
Wang & Rubin, 2016, 2020; Wang et al., 2017; Bertram &
Rubin, 2017), it turned out to be an effective way to explain
the activity patterns in our simulations. Specifically, tracking
the trajectory of the burst through this phase space revealed
that oscillations in the (V, hNaP)—phase space gradually drive
the trajectory to higher values of E; subsequently, higher
E values correspond to higher frequency spiking, causing a
positive feedback loop resulting in ramping bursts. Eventu-
ally, the E level saturates due to the nonlinear dependence
of processing of potassium ions by glia, at which point the
slow inactivation of I,p can terminate the burst. Specifi-
cally, as hy,p decays, the fast subsystem periodic orbit family
terminates in a homoclinic bifurcation and the voltage repo-
larizes, corresponding to a transition to the quiescent state
of the burst cycle. Finally, the lack of spiking activity causes
Ey to decay back to a baseline level as the trajectory of the
neuron travels back to the saddle-node bifurcation curve,
where it re-enters the spiking regime of the burst. Hence,
the dynamical system yields parabolic bursting behavior that
terminates in a homoclinic bifurcation.

In classic parabolic bursting, burst initiation occurs when
the trajectory induced by the dynamics of the slow subsys-
tem, which includes two or more slow variables, crosses a
SNIC bifurcation curve for the fast subsystem. As fast spikes
ensue, the trajectory of the averaged slow equations eventu-
ally progresses back across the SNIC curve, terminating the
active phase of the burst. Thus, the spikes near both burst
onset and burst termination are slower than those in the heart
of the burst, resulting in a parabolic dependence of spike fre-
quency on spike number within the burst (Rinzel, 1987). This
paper adds to the collection of past works that have included
variations on this structure, including crossings of additional
fast subsystem bifurcation curves during the active phase,
which result in corresponding variability of burst profiles
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(Rubin et al., 2009; Barreto & Cressman, 2011; Rubin
et al., 2018). Specifically, due to the interplay of dynamic
Ey and I,p, the ramping bursts in our model terminate via a
crossing of a homoclinic bifurcation curve for the fast subsys-
tem, rather than a SNIC, with little slowing of spiking at the
end of the burst. In theory, a homoclinic crossing should also
be associated with some spike slowing, but the quantitative
details are system-specific (Rubin et al., 2018). Future work
to extend this model to take into account dynamics of other
ion concentrations, in addition to [K*], may yield even more
diverse burst profiles (cf. Barreto and Cressman, 2011). Spe-
cifically, in addition to Na* dynamics, the dynamics of Cl~ is
an often-overlooked factor that could contribute to ramping
bursts (Currin et al., 2020; Pace et al., 2007). Importantly,
concentrations of ions that impact neuronal dynamics can be
coupled through pumps that transport multiple ion types, so
modeling the details of this dynamics in the context of neu-
ronal bursting represents an interesting challenge for future
work.

Analysis of model robustness revealed multiple insights.
The exact values of (gNaP,gL) where bursting occurs in
this model differ from the experimental data presented in
(Del Negro et al., 2002; Purvis et al., 2007) and include a
narrower range of g; for each fixed g,,p. The difference rela-
tive to the modeling work in Purvis et al. (2007) makes sense
as that study used the model of I,,-based bursting proposed
in (Butera et al., 1999), which incorporates a different mem-
brane capacitance compared to our model. Moreover, the
experiments for which k,,,,, was reported were performed at
elevated k,,,,;, (Del Negro et al., 2002), which would tend to
expand the bursting region to larger g,. In comparison to
previous models of pre-BotC neuron dynamics, the model
proposed in this paper exhibits similar robustness with
respect to variations in parameters, while offering a greater
degree of modulation of burst geometry characteristics, such
as frequency, duration, and duty cycle. One exception is that
our model’s bursting behavior does not extend over the full
range of g, /C over which bursting occurs in the model by
Butera et al. (1999). However, robustness of pre-BotC burst-
ing to g; /C has not been experimentally tested. Experiments
suggest that the ratio gy,p/g; is what determines whether
bursting occurs, rather than the maximal leakage conduct-
ance itself (Del Negro et al., 2001, 2002; Purvis et al., 2007)
(cf. the nearly linear boundaries of the bursting regions in
our Figs. 5 and 6). While our decision to treat E; as a con-
stant allowed us to compare our model directly to earlier ones
where leak strength was used to explore model behavior, E;
may in reality be nonlinearly modulated by ion dynamics
(Koizumi & Smith, 2008; Huang et al., 2015). The robust-
ness of bursting that we found with respect to variations in g,
supports the claim that the ramping dynamics that we have
studied will persist with the inclusion of E; dependence on
dynamic ion concentrations, but incorporating this effect in

the model and tuning it appropriately is beyond the scope of
the current study. Another future direction will be the inclu-
sion of additional membrane currents, such as I, I, the
Ca’*-activated nonspecific cation (CAN) current, and the
Na/K pump current, which have been shown to have a sig-
nificant effect on pre-Bo6tC neuron and network dynamics in
multiple past experimental and computational works (Hayes
et al., 2008; Pace et al., 2007; Zavala-Tecuapetla et al., 2008;
Krey et al., 2010; Jasinski et al., 2013; Koizumi et al., 2018;
Picardo et al., 2019; Rubin et al., 2009; Dunmyre et al., 2011;
Phillips et al., 2018, 2019).

The results of this study reveal a potential role of dynamic
ion concentrations in producing and shaping ramping behav-
ior within neuronal bursting. Previous computational studies
of pre-BotC neuron activity have ignored the dynamics of
[K*],,,» modeling it as a fixed parameter. This viewpoint has
been utilized in experimental studies as well, where [K*]
has often been viewed as equivalent to the potassium con-
centration of the solution used to bathe slices of neural tissue
during experimentation (k). Our study implies that the
physiologically observed oscillations of [K*],,, can have a
significant impact on pre-B6tC neuron dynamics; moreover,
similar effects could emerge in prolonged bursting behavior
of other neurons and should be incorporated in correspond-
ing models in future work. Rather than assuming that &,
=[K*],,,, our model incorporates k,,,, as an environmental
factor that can affect the dynamics of [K*],,, via diffusion,
following the framework of previous computational mod-
els that considered dynamic ion concentrations (Barreto &
Cressman, 2011). The role of k,,,,, is important because &,
can be modulated experimentally, providing a way for the
mechanism proposed in this paper to be tested. If [K*],,,
governs ramping dynamics through the mechanism proposed
in this paper, then it would be expected that increasing &,
would cause a much faster build-up of [K*],,,, translating
to a faster increase in spiking frequency throughout the
burst and hence a steeper frequency ramp. Adjusting &,
to lie above some level would remove the ramping effect
all together, as [K*],,, buildup would primarily be driven
by the excess influx of external potassium from the bathing
solution, rather than the export of internal potassium dur-
ing spiking. Similarly, lowering k,,,, should correspond to
slowing the rise in frequency over the course of the burst.
Setting k,,;, below some threshold would cause the rate
of removal of [K*],,, via diffusion to increase enough to
entirely prevent the [K*],,, buildup needed to induce a burst-
ing state. It is our hope that future experiments will consider
the effects of potassium concentration in the bathing solution
on the dynamic ramping behavior of individual neurons, to
test the mechanisms proposed in this paper. A complica-
tion, however, is that prolonged changes in k,,,;, may induce
other compensatory effects (Okada et al., 2005; Ransdell
et al., 2012; He et al., 2020).
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Another important future research direction related to this
work should involve an expansion of the scope of the model,
specifically to analyze the effects of ion-dependent ramping
on the generation and control of respiratory rhythms. The
intrinsic dynamic mechanisms within individual neurons
and synaptic network interactions work together to generate
and modulate breathing rhythms (e.g., Molkov et al. (2017);
Del Negro et al. (2018); Rubin and Smith (2019); Phillips and
Rubin (2019); Phillips et al. (2019)), together with feedback
pathways and other control signals that integrate breathing
with other behaviors (as modeled, for example, in Ben-Tal
and Smith (2008); Molkov et al. (2014); Diekman et al.
(2017)). A specific first step to link these factors would be to
construct a computational network of both pacemaker and
non-pacemaker neurons in the pre-BotC and to model the
effects of ramping behavior in pacemakers on the recruit-
ment of non-pacemakers, to advance our understanding of the
generation and patterning of inspiratory neural bursts (Kam
et al. 2013; Kallurkar et al., 2020). A potential approach
to the network modeling problem would be to address the
inherent limitations of using a system of ODEs in depict-
ing neuronal behavior. Spatial interactions, which can be
an important factor in network dynamics, are not captured
by ODE models. This is especially relevant for our model
as it incorporates diffusion, a naturally spatially-dependent
process, to differentiate between the equilibrium concentra-
tion of external potassium (k,,,,) and localized concentration
of potassium near the neuronal membrane ([K*],,,). Hence,
one possible research direction would be the development
of a network-based model that utilizes both ODEs and
PDEs to depict the spiking behavior of individual neurons
and spatially dependent processes governing ion dynamics,
respectively. The development of the PDE component of the
model would have to incorporate [K*],,, as both a space- and
time-dependent variable, which allows the spiking behavior
of each neuron to affect the localized external ion concentra-
tions of its neighboring neuron and is subject to the boundary
conditions imposed by the presence of the bathing solution
(e.g., a Dirichlet boundary condition forcing [K*],,, to take
a value of k,,, at the boundaries of a modeled brain slice).

To summarize, this paper presents a new model of neu-
ronal bursting in pacemaker neurons, which results in a fre-
quency ramp at bursting onset. This effect was demonstrated
to be a manifestation of parabolic bursting dynamics that
allows for a broad range of burst frequencies and duty cycles.
The results of this study imply that oscillations in external
potassium concentration can play a significant role in the
ramping dynamics of pre-BotC neurons. This ion-dependent
ramping mechanism should be tested in future experimental
studies and incorporated in future models of networks of pre-
BotC neurons, and is likely relevant to prolonged bursting
dynamics in other neurons and neuronal populations.
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Appendix 1
Constants and parameters

The complete list of parameters used for this model is shown
below. Certain parameters were fixed for all simulations,
while others were varied for different tests. These instances
will be noted.

Universal & Experimental Constants:

— Elementary Charge: g = 1.602 x 1071 C.

— Avogadro Constant: N, = 6.022 x 10?3 ﬁ

— Unit Time Constant: 7 = 1000 %

— Ratio of Volumes: f = 14.555 (modified from Barreto
and Cressman (2011), g = 7).

— Membrane Capacitance: C = 36 pF (taken from Rybak
et al. (2007)).

Derived Constants:

— Current Conversion Constant: y = 7.214 x 1073 mﬂi

(derived in Appendix 2).
Maximal Conductances:

— 8n. = 150 1S (taken from Jasinski et al. (2013)).

— Bwnap = 51S (taken from Bacak et al. (2016b)). Varied as
parameter in Sect. 4.

— 8x = 160nS (taken from Jasinski et al. (2013)).

— g, =25 nS (taken from Jasinski et al.
g, € [2,3]). Varied as parameter in Sect. 4.

— &y = 0.365 nS. (Introduced in this paper to represent
constant synaptic drive, in contrast to model in Bacak
et al. (2016b) where gy, = 0). Varied as parameter in
Sect. 4. )

(2013),

Ton Concentrations & Reversal Potentials:

— [Na*1,,, = 120 mM (taken from Jasinski et al. (2013)).

- [Na*],, =15 mM (taken from Izhikevich (2007),
[Na 1, € [5,15] mM)

- =267 log {r [N“ ]‘“" =55.5 mV. (Consistent with

Rybak et al. (2007) ENu =55mV).

— [K*],, = 160 mM (modified from Izhikevich (2007);
Jasinski et al. (2013), [K*],, = 140 mM).

— E; =-68mV (taken from Jasinski et al. (2013)).

- Egy, = —10mV (taken from Jasinski et al. (2013)).

Parameters for Fast Sodium (/,,) and Persistent Sodium
(Inap):
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- VmN =—-438 mV, kmN =6 mV, V. =-438 mV,
la a MNa
kT

= 14mV.
-
~ V,, =-61.5mV, k, =-118mV,V, =-615mV,
Na 'Na

Na

k, =-128mV.

Thya

~ V, =-471mV,k, =31mV,V, =-471mV,
NaP NaP myap
k, =62mV.
~ V,,,=—60 mV, k, =-9 mV, V, =-60 mV,
a a NaP
. =9mV.
hNap
- %, =025 mS, 7, =846 mS, 7, =1 mS,

Thp = 5000 mS.

— All of these parameters were taken directly from Bacak
et al. (2016a), with the exception of khM,’ which was
altered from a value of —10.8 mV to the listed value of
—11.8 mV.

Parameters for Delayed Rectifier Potassium Current (Ix):

- 1, =001 -, n, =44 mV, n, =5 mV, ny=0.17,
ng, =49 mV, ng =40 mV.
— All values taken from Bacak et al. (2016b).

Parameters for Diffusion of Extracellular Potassium
([K*] 00

— kyun =4 mM (taken from Barreto and Cressman
(2011)).

— Tgg =750 mS (numerically equivalent to the formula-
tion in Barreto and Cressman (2011), which uses

— = £, where ¢ = 1.333 Hz and 7 = 1000™).

Taifr

Parameters for Glia:

- G=10" K = 5mM, z = 6——.

— These pa;ameter values were altered from those in Barreto
and Cressman (2011). In Barreto and Cressman (2011), the
concentration of [K*],,,, remains far below the mid-point
value of the sigmoidal function in Eq. (10). The parameters
were adjusted such that the range of dynamic [K*],,, was
distributed over the midpoint of Eq. (10), ensuring that the
nonlinear behavior of glial cells was represented.

Appendix 2
Derivation of y

Our initial assumption is that the neuron is roughly spherical,
or rather that the majority of the cell’s volume is contained in
a sphere. From Barreto and Cressman (2011), the radius of
the neuron is taken to be approximately r = 7.0 yum. Hence,
the internal volume of the neuron can be approximated as

V,, =377 = 144 %10 mL.

The internal concentration c;, can be determined from the
total number of ions N, the internal volume V;,, and Avoga-
dro’s Constant N ,:

Note that the ions we are measuring concentrations of
are Na* and K*, both of which have a +1 charge. Letting
g =1.60x 107" C, we can express the concentration in
terms of total charge, Q:

N 4q__0

=V N, g qV.N,
intVa 4 qVinVa

Differentiating, we get:

dew_d( @ \_do 1 _,
dt dr\qV;,Ny dt qV,Ny qVinNs

By taking the ratio of this expression to the current, we can
determine:
1 mol

10° ——

=7.2x .
qV;,N4 C-mL

y =
By the following dimensional analysis manipulation, we
obtain:

3 mmol mL mM-L C

mol .<1 o3 mM-Lo b

C-mL mol L mmol A-s
10 12 A 10—3i> = 100_M
PA ms ms - pA
Thus, we conclude:
M 1

=7214x 10 225 .

4 ms DA (12)

Appendix 3

A closer look at transitions in behavior as E;
is varied

As illustrated in Fig. 1, if the K concentration is held fixed,
then shifting the Ej value has a clear effect on the long-term
periodic behavior of the model neuron. Each periodic behavior,
whether tonic spiking or bursting, can be depicted as a stable
limit cycle projected to the (h,p, V) phase space. As shown in
Fig. 3, with increases in E, the stable oscillation switches from
tonic spiking to bursting, and then, with additional increases,
from bursting back to spiking. Which behavior arises depends
on whether the periodic orbit family of the fast subsystem ter-
minates in a SNIC bifurcation or a homoclinic bifurcation and
on where this termination lies relative to the /1, nullcline.

@ Springer
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Here we construct a bifurcation diagram to present in
more detail the changes in stable periodic behavior that
occur with Ey as a bifurcation parameter. More specifically,
when the neuronal system exhibits bursting, each burst is
composed of a finite number of action potentials, each asso-
ciated with an approximately constant V, A, p. Therefore, for
each fixed h,,,p, we identify the corresponding periodic spik-
ing or bursting attractor and record the /i, value at which
each spike occurs within this attractor (Fig. 8).

In this bifurcation diagram, each dot denotes the value
of hy,p at which an action potential occurs during 80 sec-
onds of simulated bursting behavior, for a corresponding
fixed value of Ej. For each Ey, the spikes from the first
55 seconds of neuron simulation are not shown, such that
the diagram omits the transient state and only reflects
the attractors of the system. For sufficiently low Ej, the
stable dynamics consists of periodic tonic spiking, char-
acterized by a single hy,p value for each Ey in the dia-
gram. As Ey increases, the transition from a tonic spiking

state to a bursting state appears to arise through a cha-
otic period doubling mechanism (Fig. 8A,B), estimated
numerically to occur just above Ex = —91.2 mV.

The transition from bursting back to tonic spiking,
depicted in Fig. 8A,C, is less clear cut. The spike branch
at highest h,,p values seems to disappear instantly as E
increases. We expect that this change is related to the phe-
nomena shown in Figs. 1C, 3D. In the solution displayed
in Fig. 1C, it appears that bursting is about to begin, but
instead a plateau of depolarization block occurs. From
Fig. 3D, we can appreciate that the AH point has moved
to smaller hy,p than that of the fold point, such that the
trajectory’s initial jump to the active phase does not
yield a full spike. Only after Ay, p drifts to lower values,
below the AH point, can spiking ensue. With an addi-
tional increase in Ey to just below —83.1 mV, most of the
remaining spike branches disappear together, leaving only
a cluster of values near &, = 0.155. We also notice pock-
ets of variability in h,,p as Ex varies between —83.4 and

g
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Fig. 8 Bifurcation diagram of attracting dynamics of the neuronal
model with [K*],,, (and hence Ey) used as the bifurcation parameter,
varied in steps of 0.001 mV. (A) Bifurcation diagram over the entire
bursting interval. Each blue dot represents an /,,, value on a single
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spike within the attractor for the corresponding Ey. Insets show volt-
age and hy,p time courses at the fixed values of Ex marked by the
numbered vertical dashed lines on the diagram. (B-C) Zoomed views
of different parts of the diagram in (A)
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—83.1 mV. Interestingly, inspection of the voltage trace
suggests that periodic spiking begins at about £, = —82.6
mV, above the value at which most of the collection of
hy,p branches disappears.

Elucidating the details of this bifurcation is beyond
the scope of our consideration of ramping bursts in the
full model and remains for future inquiry, which would
require more detailed simulations and analysis.

Appendix 4
1-fast-2-slow Analysis

The dynamics of ramping bursts can be understood through
a fast-slow decomposition analysis. The first step was the
fast-slow decomposition analysis discussed in Sect. 3.2. As
shown in Fig. 3, this analysis involved fixing [K*],,, and
determining the geometry that governs the model trajectory
in the (V, hy,p )-phase space. This analysis can naturally be
extended into a three-dimensional fast-slow decomposition
by including [K*],,,, or equivalently Eg, as a second slow
variable. The various important geometric objects identi-
fied with fixed [K*],,, values, namely critical manifolds, fast
subsystem saddle-node and Andronov-Hopf (AH) bifurca-
tion points, and corresponding fast subsystem periodic orbits
become higher dimensional surfaces and curves when pro-
jected to the (V, hyaps EK)—phase space. For instance, the
individual AH points become an AH curve, and the periodic

Fig.9 The periodic trajectory -10
of the ramping burst solution
in (V, hy,p, Ex)-space is color -15
coded temporally, progressing 20
in time from blue to yellow.
Additionally, the two black -25
arrows indicate the direction
that the trajectory travels. The -30
upper and lower blue surfaces 35
represent stable components N
of the critical manifold; white/ £ 4
blue surfaces between these are =
unstable components, which -45
meet in a saddle-node curve at 50
negative /,p (not shown). Also
shown are the AH curve (red) -55
and the surfaces of maximal and
minimal V along the family of -60
periodic orbits originating at the 65
AH curve (green) 80 -~
-85
-95
Ec M) 400

0.1 0.2 0.3 0.4 0.5

orbits initiated there form a smooth manifold originating
from this curve. A visualization of this three-dimensional
structure is illustrated in Fig. 9, along with the superimposed
trajectory of a neuron with dynamic [K*],,, exhibiting ramp-
ing bursts.

The period during which spiking occurs or active phase
of the burst occurs where the trajectory oscillates between
the prongs of the green periodic orbit manifold in Fig. 9.
As discussed in Sect. 3.3, this oscillation drives build-up of
[K*],,,» moving the trajectory in the direction of increasing
Ey. This potassium ion build-up causes an increase in spik-
ing frequency within the burst, facilitating further external
potassium accumulation through a positive feedback loop.
This process continues until the trajectory reaches a point
along the homoclinic curve where the periodic orbit family
terminates and returns to the hyperpolarized stable com-
ponent of the critical manifold. This corresponds to the
quiescent phase of the burst, where the trajectory remains
until it reaches the saddle-node curve where it returns to
the active phase. Additional insight arises from visualizing
the local minima and maxima that occur throughout the
active phase of the burst. In Fig. 10 these local extrema
are connected into two curves. Clearly, the trajectory of the
neuron travels along the family of periodic orbits during
the burst, moving away from and back towards the homo-
clinic curve as time advances and Ey increases. Further-
more, the neuron experiences a decline in spike amplitude
when it pulls away from the edge of the periodic orbit
family where it starts and terminates.
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Fig. 10 Once again, the red
curve indicates fast subsys-
tem AH points and the green
manifold consists of extremal
voltages of periodic orbits

emanating from the AH curve. ~I
Superimposed on this manifold -15 —
are traces of minimum (lower, ]
orange) and maximum (upper,
red-orange) values of voltage -25 —
attained for each spike within
the burst, connected into smooth -30
curves S -35
£
> -40 —
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