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Putting the theory into ‘burstlet 
theory’ with a biophysical model of 
burstlets and bursts in the respiratory 
preBötzinger complex
Ryan S Phillips*, Jonathan E Rubin*

Department of Mathematics and Center for the Neural Basis of Cognition, University 
of Pittsburgh, Pittsburgh, United States

Abstract Inspiratory breathing rhythms arise from synchronized neuronal activity in a bilater-
ally distributed brainstem structure known as the preBötzinger complex (preBötC). In in vitro slice 
preparations containing the preBötC, extracellular potassium must be elevated above physiological 
levels (to 7–9 mM) to observe regular rhythmic respiratory motor output in the hypoglossal nerve to 
which the preBötC projects. Reexamination of how extracellular K+ affects preBötC neuronal activity 
has revealed that low-amplitude oscillations persist at physiological levels. These oscillatory events 
are subthreshold from the standpoint of transmission to motor output and are dubbed burstlets. 
Burstlets arise from synchronized neural activity in a rhythmogenic neuronal subpopulation within 
the preBötC that in some instances may fail to recruit the larger network events, or bursts, required 
to generate motor output. The fraction of subthreshold preBötC oscillatory events (burstlet frac-
tion) decreases sigmoidally with increasing extracellular potassium. These observations underlie 
the burstlet theory of respiratory rhythm generation. Experimental and computational studies have 
suggested that recruitment of the non-rhythmogenic component of the preBötC population requires 
intracellular Ca2+ dynamics and activation of a calcium-activated nonselective cationic current. In 
this computational study, we show how intracellular calcium dynamics driven by synaptically trig-
gered Ca2+ influx as well as Ca2+ release/uptake by the endoplasmic reticulum in conjunction with a 
calcium-activated nonselective cationic current can reproduce and offer an explanation for many of 
the key properties associated with the burstlet theory of respiratory rhythm generation. Altogether, 
our modeling work provides a mechanistic basis that can unify a wide range of experimental findings 
on rhythm generation and motor output recruitment in the preBötC.

Editor's evaluation
This article is of significant interest to readers in the field of neural control of breathing and for 
researchers interested in the generation of neuronal rhythms in general. The study assembles a 
sophisticated computational modeling approach to test long-standing theories and emerging views 
in neural control of breathing and more specifically on biophysical mechanisms of burstlet genera-
tion in the respiratory network (the preBötzinger complex network). This work is an important contri-
bution to a better understanding of the respiratory rhythm generation, will help validate (or not) 
running hypotheses and will guide future experiments.
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Introduction
The complex neurological rhythms produced by central pattern generators (CPGs) underlie numerous 
behaviors in healthy and pathological states. These activity patterns also serve as relatively experimen-
tally accessible instances of the broader class of rhythmic processes associated with brain function. As 
such, CPGs have been extensively studied using a combination of experimental and computational 
approaches. The inspiratory CPG located in the preBötzinger complex (preBötC) in the mammalian 
respiratory brainstem is perhaps one of the most intensively investigated CPGs. Despite decades 
of research, the mechanisms of rhythm and pattern generation within this circuit remain unresolved 
and highly controversial; however, it appears that the pieces may now be in place to resolve this 
controversy.

Much of the debate in contemporary research into the mechanisms of preBötC rhythm and pattern 
generation revolves around the roles of specific ion currents, such as ‍INaP‍ and ‍ICAN ‍ (Thoby-Brisson 
and Ramirez, 2001; Del Negro et  al., 2002a; Koizumi and Smith, 2008; Koizumi et  al., 2018; 
Picardo et al., 2019), and whether the observed rhythm is driven by an emergent network process 
(Rekling and Feldman, 1998; Del Negro et al., 2005; Del Negro et al., 2002b; Del Negro et al., 
2002b; Rubin et al., 2009; Sun et al., 2019; Ashhad and Feldman, 2020) and/or by intrinsically 
rhythmic or pacemaker neurons (Johnson et al., 1994; Koshiya and Smith, 1999; Peña et al., 2004). 
This debate is fueled by seemingly contradictory pharmacological blocking studies (Del Negro et al., 
2002a; Peña et al., 2004; Del Negro et al., 2005; Pace et al., 2007b; Koizumi and Smith, 2008) and 
by new experimental studies (Kam et al., 2013a; Feldman and Kam, 2015; Kallurkar et al., 2020; 
Sun et al., 2019; Ashhad and Feldman, 2020) that challenge existing conceptual and computational 
models about the generation of activity patterns in the preBötC and underlie the so-called burstlet 
theory of respiratory rhythm generation.

A simple but reasonable hypothesis would be that a group of dedicated preBötC neurons 
produces a rhythmic output that induces inspiratory movement of the diaphragm, with the strength 
of that output tuned by some combination of the intensity of firing of these neurons and the number 
of neurons that become active. The conceptual framework of burstlet theory posits a more compli-
cated two-stage view: first, inspiratory oscillations arise from an emergent, repetitive network 
process in a specific preBötC subpopulation dedicated to rhythm generation. These oscillations can 
continue independent of their downstream impact. Second, for inspiration to occur on a particular 
oscillation cycle, this initial activity must recruit a secondary pattern-generating subpopulation to 
magnify the oscillation into a full network burst capable of eliciting motor output. This hypothesis is 
supported by experimental preparations that compared local preBötC neuronal activity and motor 
output at the hypoglossal (XII) nerve in medullary slices. These studies found that in a low excit-
ability state (controlled by the bath K+ concentration, ‍Kbath‍), the preBötC generates a regular rhythm 
featuring a mixture of large and small amplitude network oscillations, dubbed bursts and burstlets, 
respectively, with only the bursts eliciting XII motor output (Kam et al., 2013a). Moreover, the frac-
tion of low-amplitude preBötC events (burstlet fraction) sigmoidally decreases with increasing ‍Kbath‍ 
and only a subset of preBötC neurons are active during burstlets (Kallurkar et al., 2020). Impor-
tantly, preBötC bursts can be blocked by application of cadmium (Cd2+), a calcium channel blocker, 
without affecting the ongoing burstlet rhythm (Kam et al., 2013a; Sun et al., 2019), supporting 
the idea that rhythm generation occurs in a distinct preBötC subpopulation from pattern gener-
ation and demonstrating that conversion of a burstlet into a burst is a Ca2+-dependent process. 
Finally, rhythm generation in the burstlet population is hypothesized to result from an emergent 
network percolation process. This last idea was developed to explain holographic photostimula-
tion experiments, which found that optically stimulating small subsets (4–9) of preBötC inspiratory 
neurons were sufficient to reliably evoke endogenous-like XII inspiratory bursts with delays aver-
aging ‍255 ± 45 ms‍ (Kam et al., 2013b). The small number of neurons required to evoke a network 
burst superficially seems to be at odds with reported sparse connectivities among preBötC neurons 
(Rekling et al., 2000), while models that can capture this effect via fast threshold modulation (Rubin 
and Terman, 2002) or the presentation of multiple stimulus pulses in a model of network bursting 
driven by synaptic dynamics (Guerrier et al., 2015) do not produce such extended delay durations. 
Additionally, these delays are on a similar timescale to the ramping pre-inspiratory neuronal activity 
that precedes network-wide inspiratory bursts, leading to the hypothesis that stimulation of this 
small set of preBötC neurons kicks off an endogenous neuronal percolation process underlying 
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rhythm generation, which could be initiated by the near-coincident spontaneous spiking of a small 
number of preBötC neurons.

The experimental underpinning of burstlet theory challenges current ideas about inspiratory rhythm 
and pattern generation. However, the proposed mechanisms of burst and burstlet generation remain 
hypothetical and, to date, there has not been a quantitative model that provides a unified, mecha-
nistic explanation for the key experimental observations or that validates the conceptual basis for this 
theory. Interestingly, key components of burstlet theory, namely, that inspiratory rhythm and pattern 
are separable processes and that large amplitude network-wide bursts depend on calcium-dependent 
mechanisms, are supported by recent experimental and computational studies. Specifically, Koizumi 
et al., 2018 and Picardo et al., 2019 showed that the amplitude (i.e., pattern) of preBötC and XII 
bursts is controlled, independently from the ongoing rhythm, by the transient receptor potential 
channel (TRPM4), a calcium-activated nonselective cation current (‍ICAN ‍). These findings are consis-
tent with burstlet theory as they demonstrate that rhythm and pattern are separable processes at 
the level of the preBötC. Moreover, these experimental observations are robustly reproduced by a 
recent computational modeling study (Phillips et al., 2019a), which shows that pattern generation 
can occur independently of rhythm generation. Consistent with burstlet theory, this model predicts 
that rhythm generation arises from a small subset of preBötC neurons, which in this model form a 
persistent sodium (‍INaP‍)-dependent rhythmogenic kernel, and that rhythmic synaptic drive from these 
neurons triggers postsynaptic calcium transients, ‍ICAN ‍ activation, and amplification of the inspiratory 
drive potential, which drives bursting in the rest of the network.

These recent results suggest that conversion of burstlets into bursts may be Ca2+ and ‍ICAN ‍ depen-
dent, occurring when synaptically triggered calcium transients in non-rhythmogenic preBötC neurons 
are intermittently large enough for ‍ICAN ‍ activation to occur and to yield recruitment of these neurons 
into the network oscillation. The biophysical mechanism responsible for periodic amplification of 
Ca2+ transients is not known, however. In this computational study, we put together and build upon 
these previous findings to show that periodic amplification of synaptically triggered ‍ICAN ‍ transients by 
calcium-induced calcium release (CICR) from intracellular stores provides a plausible mechanism that 
can produce the observed conversion of burstlets into bursts and can explain diverse experimental 
findings associated with this process. Altogether, our modeling work suggests a plausible mechanistic 
basis for the conceptual framework of burstlet theory and the experimental observations that this 
theory seeks to address.

Results
CICR periodically amplifies intracellular calcium transients
Our first aim in this work was to test whether CICR from endoplasmic reticulum (ER) stores could repet-
itively amplify synaptically triggered Ca2+ transients. To address this aim, we constructed a cellular 
model that includes the ER. The model features a Ca2+ pump, which extrudes Ca2+ from the intracel-
lular space, a sarcoendoplasmic reticulum calcium transport ATPase (SERCA) pump, which pumps Ca2+ 
from the intracellular space into the ER, and the Ca2+-activated inositol trisphosphate (IP3) receptor 
(Figure 1A). To simulate calcium transients synaptically generated from a rhythmogenic source (i.e., 
burstlets), we imposed a square wave Ca2+ current into the intracellular space with varied frequency 
and amplitude but fixed duration (250 ms) and monitored the resulting intracellular Ca2+ transients. 
Depending on parameter values used, we observed various combinations of low- and high-amplitude 
Ca2+ responses and characterized how the fraction of Ca2+ transients that have low amplitude depends 
on values selected within the 2D parameter space parameterized by Ca2+ pulse frequency and ampli-
tude. We found that the fraction of low-amplitude Ca2+ transients decreases as either or both of the 
Ca2+ pulse frequency and amplitude are increased (Figure 1B and example traces C1–C4).

Bursts and burstlets in a two-neuron preBötC network
Next, we tested whether the CICR mechanism (Figure 1) could drive intermittent recruitment in a recip-
rocally connected two-neuron network that includes one intrinsically rhythmic and one nonrhythmic 
neuron as a preliminary step towards considering the rhythm and pattern-generating subpopulations 
of the preBötC suggested by burstlet theory (Kam et al., 2013a; Cui et al., 2016; Kallurkar et al., 
2020; Ashhad and Feldman, 2020) and recent computational investigation (Phillips et al., 2019a). In 
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this network, neuron 1 is an ‍INaP‍-dependent intrinsically bursting neuron, with a burst frequency that 
is varied by injecting an applied current, ‍IAPP‍ (Figure 2A2–A3). The rhythmic bursting from neuron 1 
generates periodic postsynaptic currents (‍ISyn‍) in neuron 2, carried in part by Ca2+ ions, which are anal-
ogous to the square wave Ca2+ current in Figure 1. The amplitude of the postsynaptic Ca2+ transient 
is determined by the number of spikes per burst (Figure 2A4) and by the parameter ‍PSynCa‍, which 
determines the percentage of ‍ISyn‍ carried by Ca2+ ions (see ‘Materials and methods’ for a full descrip-
tion of these model components). Conversion of a burstlet (isolated neuron 1 burst) into a network 
burst (recruitment of neuron 2) is dependent on CICR (see Figure 2—figure supplement 1), which 
increases intracellular calcium above the threshold for ‍ICAN ‍ activation.

In the reciprocally connected network, we first quantified the dependence of the burstlet fraction, 
which was defined as the number of burstlets (neuron 1 bursts without recruitment of neuron 2) 
divided by the total number of burstlets and network bursts (bursts in neuron 1 with recruitment of 
neuron 2), on ‍IAPP‍ and ‍PSynCa‍. Increasing ‍IAPP‍ increases the burst frequency in neuron 1 and decreases 
the number of spikes per neuron 1 burst (Figure 2A3 and A4), consistent with past literature (Butera 
et al., 1999; Del Negro et al., 2001). These changes do not strongly impact the burstlet fraction until 

‍IAPP‍ grows enough, at which point the shorter, more rapid bursts of neuron 1 become less effective 
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Figure 1. A periodic input in the form of a calcium current drives intermittent calcium-induced calcium release (CICR) from endoplasmic reticulum (ER) 
stores. (A) Schematic diagram of the model setup showing square wave profile of Ca2+ current input into the intracellular space, uptake of Ca2+ into the 
ER by the sarcoendoplasmic reticulum calcium transport ATPase (SERCA) pump, Ca2+ release through the IP3 receptor, and extrusion of Ca2+ through 
a pump in the cell membrane. (B) Fraction of low-amplitude intracellular Ca2+ transients as a function of the Ca2+ pulse frequency and amplitude. 
Pulse duration was fixed at 250 ms. (C1–C4) Example traces showing several ratios of low- and high-amplitude Ca2+ transients and the dynamics of the 
ER stores Ca2+ concentration. Inset in C2 highlights the delay between pulse onset and CICR. The pulse amplitude and frequency for each trace are 
indicated in panel (B).

The online version of this article includes the following source data for figure 1:

Source data 1. Calcium-induced calcium release.

https://doi.org/10.7554/eLife.75713
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at recruiting neuron 2 and thus the burstlet fraction increases (Figure 2B2; note that increasing ‍IAPP‍ 
corresponds to a horizontal cut through the panel). In general, increasing ‍PSynCa‍ decreased the burstlet 
fraction (i.e., increased the frequency of neuron 2 recruitment) by causing a larger calcium influx with 
each neuron 1 burst (see Figure 2B2 and C1–C4).

The burst frequency in neuron 2 is determined by the burst frequency of neuron 1 and the burstlet 
fraction. These effects determine the impact of changes in ‍PSynCa‍ and ‍IAPP‍ on neuron 2 burst frequency 
(Figure 2B3). As ‍IAPP‍ increases, the rise in burstlet frequency implies that neuron 2 bursts in response 
to a smaller fraction of neuron 1 bursts, yet the rise in neuron 1 burst frequency means that these 
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Figure 2. Bursts and burstlets in a two-neuron preBötzinger complex (preBötC) network. (A1) Schematic diagram of the synaptically uncoupled network. 
The rhythm- and pattern-generating components of the network are represented by neurons 1 and 2, respectively. (A2) Example trace showing intrinsic 
bursting in neuron 1 and quiescence in neuron 2. (A3) Burst frequency and (A4) the number of spikes per burst in neuron 1 as a function of an applied 
current (‍IAPP‍). Neuron 2 remained quiescent within this range of ‍IAPP‍. (B1) Schematic diagram of the synaptically coupled network. (B2–B4) 2D plots 
characterizing the (B2) burstlet fraction, (B3) neuron 2 (burst) frequency, and (B4) neuron 2 spikes per burst (burst amplitude) as a function of ‍IAPP‍ and 

‍PSynCa‍. (C1–C4) Example traces for neurons 1 and 2 for various ‍IAPP‍ and ‍PSynCa‍ values indicated in (B2–B4). Notice the scale bar is 100s in C1 and 10s 
in (C2–C4). Inset in (C1) shows the burst shape not visible on the 100 s timescale. The model parameters used in these simulations are: (neurons 1 and 2) 

‍KBath = 8 mM‍, ‍gLeak = 3.35 nS‍, ‍W12 = W21 = 0.006 nS‍; (neuron 1) ‍gNaP = 3.33 nS‍, ‍gCAN = 0.0 nS‍, (neuron 2) ‍gNaP = 1.5 nS‍, ‍gCAN = 1.5 nS‍.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Burstlets and bursts in a two-neuron network.

Figure supplement 1. Without calcium-induced calcium release (CICR), the two-neuron network fails to generate bursts (recruitment of neuron 2).

https://doi.org/10.7554/eLife.75713
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bursts occur faster. These two effects can balance to yield a relatively constant neuron 2 frequency, 
although the balance is imperfect and frequency does eventually increase. Increases in ‍PSynCa‍ more 
straightforwardly lead to increases in neuron 2 burst frequency as the burstlet fraction drops.

Finally, the number of spikes per burst in neuron 2 is not strongly affected by changes in ‍IAPP‍ and 

‍PSynCa‍ (Figure 2B4), suggesting an all-or-none nature of recruitment of bursting in neuron 2. Interest-
ingly, the period between network bursts (i.e., time between neuron 2 recruitment events) can be on 
the order of hundreds of seconds (e.g., Figure 2C1). This delay is consistent with some of the longer 
timescales shown in experiments characterizing bursts and burstlets (Kallurkar et al., 2020).

CICR supports bustlets and bursts in a data-constrained preBötC 
network model
Next, we tested whether the CICR mechanism presented in Figures  1 and 2 could underlie the 
conversion of burstlets into bursts in a larger preBötC model network including rhythm- and pattern-
generating subpopulations (see ‘Data analysis and definitions’ section for details on how these are 
distinguished in the network setting) and whether this network could capture the ‍Kbath‍-dependent 
changes in the burstlet fraction characterized in Kallurkar et al., 2020. ‍Kbath‍ sets the extracellular K+ 
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Figure 3. Intrinsic cellular and network dynamics depend on the bath potassium concentration. (A) Schematic diagram of an isolated model 
preBötzinger complex (preBötC) neuron showing the simulated ion channels involved in AP generation, excitability, and burst generation, as well as 
indication of currents directly affected by changing the bath potassium concentration (‍Kbath‍). (B) Dependence of potassium (‍EK ‍) and leak (‍ELeak‍) 
reversal potentials on ‍Kbath‍. Black dots indicate experimentally measured values for ‍EK ‍ and ‍ELeak‍ from Koizumi and Smith, 2008. (C) Dependence of 
intrinsic cellular dynamics on ‍Kbath‍, ‍gLeak‍, and ‍gNaP‍. Black curve represents the relationship between ‍KBath‍ and ‍gLeak‍ used in the full preBötC network. 
(D) Schematic diagram of size and connectivity probabilities of the rhythm- and pattern-generating populations within the preBötC model. (E) 2D 
plot between ‍gNaP‍ and ‍gLeak‍ showing the location of the intrinsic bursting regime for varied concentrations of ‍KBath‍. The distributions of neuronal 
conductances in the rhythm- and the pattern-generating populations are indicated by the blue dots and red squares, respectively.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Bath potassium concentration dependence of cellular and network dynamics.

Figure supplement 1. Dependence of intrinsic cellular dynamics and the number of spikes per burst on ‍Kbath‍ and ‍gLeak‍.

https://doi.org/10.7554/eLife.75713
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concentration, which in turn determines the driving force for any ionic currents that flux K+. In preBötC 
neurons, these currents include the fast K+ current, which is involved in action potential generation, 
and the K+-dominated leak conductance, which primarily affects excitability (Figure 3A). In our simu-
lations, we modeled the potassium (‍EK ‍) and leak (‍ELeak‍) reversal potentials as functions of ‍Kbath‍ using 
the Nernst and Goldman–Hodgkin–Katz equations. The resulting curves were tuned to match existing 
data from Koizumi and Smith, 2008, as shown in Figure 3B. In our simulations, we found that intrinsic 
bursting is extremely sensitive to changes in ‍Kbath‍. However, with increasing ‍Kbath‍, intrinsic bursting 
could be maintained over a wide range of K+ concentrations when accompanied by increases in ‍gLeak‍ 
(Figure 3C). Additionally, the number of spikes per burst in the bursting regime increases with ‍Kbath‍ 
(Figure 3—figure supplement 1). This ‍Kbath‍-dependence of ‍gLeak‍ is consistent with experimental data 
showing that neuronal input resistance decreases with increasing ‍Kbath‍ (Okada et al., 2005).

To construct a model preBötC network, we linked rhythm- and pattern-generating subpopula-
tions via excitatory synaptic connections within and between the two populations (Figure 3D). We 
distinguished the two populations by endowing them with distinct distributions of persistent sodium 
current conductance (‍gNaP‍), as documented experimentally (Del Negro et al., 2002a; Koizumi and 
Smith, 2008). In both populations, we maintained the dependence of ‍gLeak‍ on ‍Kbath‍ (see Figure 3C 
and E).

For the full preBötC network model, we first characterized the impact of changes in ‍Kbath‍ on 
network behavior without calcium dynamics by setting ‍PSynCa = 0‍. This network condition is analogous 
to in vitro preparations where all Ca2+ currents are blocked by Cd2+ and the preBötC can only generate 
burstlets (Kam et al., 2013a; Sun et al., 2019). Not surprisingly, with calcium dynamics blocked, we 
found that the network can only generate small amplitude network oscillations (burstlets) that first 
emerge at approximately ‍Kbath = 5 mM‍ (Figure  4A). Moreover, under these conditions, increasing 

‍Kbath‍ results in an increase in the burstlet frequency and amplitude (Figure 4B and C), which is consis-
tent with experimental observations (Kallurkar et al., 2020).

In the full network with calcium dynamics (‍PSynCa > 0‍), burstlets generated by the rhythmogenic 
subpopulation will trigger postsynaptic calcium transients in the pattern-generating subpopulation. 
Therefore, in this set of simulations the burstlet activity of the rhythm generating population plays an 
analogous role to the square wave Ca2+ current in Figure 1 and to bursts of the intrinsically rhythmic 
neuron in Figure 2. Hence, we characterized the burstlet fraction, burst frequency, and burst ampli-
tude – with a burst defined as an event in which a burstlet from the rhythm generating population 
recruits a burst in the pattern-generating population – in the full preBötC model network as a function 
of ‍Kbath‍ and ‍PSynCa‍ (Figure 4D–F). In this case, the frequency of the postsynaptic Ca2+ oscillation is 
controlled by ‍Kbath‍ (Figure 4B). However, because ‍Kbath‍ also affects burstlet amplitude (Figure 4C), 
the postsynaptic Ca2+ amplitude is determined by both ‍Kbath‍ and ‍PSynCa‍. If ‍Kbath‍ is held fixed, then 
modulating ‍PSynCa‍ will only affect the amplitude of the postsynaptic Ca2+ transient since burstlet 
amplitude will not be impacted. The effects of selectively changing the postsynaptic Ca2+ amplitude 
on the full network can thus be extracted by considering a vertical slice through Figure 4E–F. Note 
that in the simulations that we show here burstlet generation arises from a mechanism based on ‍INaP‍; 
however, we obtain similar network results if we impose burstlet activity on the burstlet subpopulation 
and maintain the coupling between populations and Ca2+ dynamics for burst recruitment (Figure 4—
figure supplement 1).

We found that increasing ‍PSynCa‍ or ‍Kbath‍ generally decreases the burstlet fraction, increases burst 
frequency, and slightly increases the burst amplitude (Figure 4D–F and G1–G). The decrease in the 
burstlet fraction with increasing ‍Kbath‍ or ‍PSynCa‍ is caused by the increase in the burstlet amplitude 
(Figure 4C) or in Ca2+ influx with each burstlet, respectively, both of which increase the Ca2+ transient 
in the pattern-generating subpopulation. The increase in burst frequency with increases in ‍Kbath‍ or 

‍PSynCa‍ is due to the decreased burstlet fraction (i.e., the burstlet to burst transitions occur on a greater 
proportion of cycles) and, in the case of ‍Kbath‍, by an increase in the burstlet frequency (Figure 4B). 
The slight increase in burst amplitude with increasing ‍Kbath‍ is largely due to the increase in the burstlet 
amplitude (Figure 4C). Figure 4H highlights the relative shape of burstlets and bursts as well as the 
delay between burstlet generation and recruitment of the pattern-generating population and simu-
lated hypoglossal output, which agrees qualitatively with experimental observations (Kallurkar et al., 
2020). Experimentally, it is likely that postsynaptic Ca2+ transients will increase with increasing ‍Kbath‍ 
due to the change in the resting ‍Vm‍ in nonrhythmic preBötC neurons (Tryba et al., 2003) relative to 

https://doi.org/10.7554/eLife.75713
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Figure 4. Burstlets and bursts in a 400-neuron preBötzinger complex (preBötC) network model with and without calcium dynamics. (A) Rhythmogenic 
output of the simulated network without calcium dynamics (‍PSynCa = 0‍) as a function of ‍KBath‍. These oscillations are considered burstlets as they are 
incapable of recruiting the pattern-generating population without calcium dynamics. (B) Frequency and (C) amplitude of the burstlet oscillations as a 
function of ‍Kbath‍. (D–F) 2D plots characterizing the (D) burstlet fraction, (E) the burst frequency, and (F) the burst amplitude as a function of ‍Kbath‍ and 

Figure 4 continued on next page

https://doi.org/10.7554/eLife.75713
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the voltage-gated activation dynamics of postsynaptic calcium channels (Elsen and Ramirez, 1998); 
see ‘Discussion’ for a full analysis of this point. Interestingly, in our simulations, increasing ‍PSynCa‍ (i.e., 
the amplitude of the postsynaptic calcium transients) with ‍Kbath‍ (Figure 4 traces G1–G4) generated 

‍Kbath‍-dependent changes in the burstlet fraction that are consistent with experimental observations 
(Kallurkar et al., 2020; see Figure 4I).

Note that our model includes synaptic connections from pattern-generating neurons back to 
rhythm-generating neurons. These connections prolong activity of rhythmic neurons in bursts, relative 
to burstlets, which in turn yields a longer pause before the next event (e.g., Figure 4G1). This effect 
can constrain event frequencies somewhat in the fully coupled network relative to the feedforward 
case (e.g., frequencies in Figure 4B exceed those in Figure 4E for comparable ‍Kbath‍ levels).

Calcium and ‍ICAN‍ block have distinct effects on the burstlet fraction
Next, we further characterized the calcium dependence of the burstlet to burst transition in our 
model by simulating calcium blockade or ‍ICAN ‍ blockade by a progressive reduction of ‍PSynCa‍ or ‍gCAN ‍, 
respectively. We found that complete block of synaptically triggered Ca2+ transients or ‍ICAN ‍ block 
eliminates bursting without affecting the underlying burstlet rhythm (Figure 5A and B). Interestingly, 
progressive blockades of each of these two mechanisms have distinct effects on the burstlet frac-
tion: blocking postsynaptic Ca2+ transients increases the burstlet fraction by increasing the number of 
burstlets required to trigger a network burst, whereas ‍ICAN ‍ block only slightly increases the burstlet 
fraction (Figure 5C). In both cases, however, progressive blockade smoothly decreases the ampli-
tude of network bursts (Figure  5D). The decrease in amplitude in the case of ‍ICAN ‍ block is due 
to derecruitment of neurons from the pattern-forming subpopulation and a decrease in the firing 
rate of the neurons that remain active, whereas in the case of Ca2+ block the decrease in amplitude 
results primarily from derecruitment (Figure 5E and F). These simulations provide mechanism-specific 
predictions that can be experimentally tested.

Dose-dependent effects of opioids on the burstlet fraction
Recent experimental results by Baertsch et al., 2021 showed that opioid application locally within the 
preBötC decreases burst frequency but also increases the burstlet fraction. In the preBötC, opioids 
affect neuronal dynamics by binding to the μ-opioid receptor (μOR). The exact number of preBötC 
neurons expressing μOR is unclear; however, the number appears to be small, with estimates ranging 
from 8% to 50% (Bachmutsky et al., 2020; Baertsch et al., 2021; Kallurkar et al., 2021). Addition-
ally, μOR is likely to be selectively expressed on neurons involved in rhythm generation, given that 
opioid application in the preBötC primarily impacts burst frequency rather than amplitude (Sun et al., 
2019; Baertsch et  al., 2021). Importantly, within the preBötC, opioids ultimately impact network 
dynamics through two distinct mechanisms: (1) hyperpolarization, presumably via activation of a 
G protein-gated inwardly rectifying potassium leak (GIRK) current (Kubo et al., 1993; Gray et al., 
1999; Montandon et al., 2016), and (2) decreased excitatory synaptic transmission, presumably via 
decreased presynaptic release (Ballanyi et al., 2009; Wei and Ramirez, 2019; Baertsch et al., 2021).

Taking these considerations into account, we tested if our model could explain the experimental 
observations. Specifically, we simulated opioids as having a direct impact only on the neurons within 
the rhythmogenic population and their synaptic outputs (Figure 6A). To understand how preBötC 
network dynamics are impacted by the two mechanisms through which opioids have been shown to 
act, we ran separate simulations featuring either activation of GIRK channels or block of the synaptic 
output from the rhythmogenic subpopulation (Figure  6B–F). We found that both GIRK activation 

‍PSynCa‍ (note that the ‍PSynCa‍ range shown does not start at 0). (G1–G4) Example traces illustrating a range of possible burstlet fractions generated by 
the network. Burstlets are indicated by asterisks. (H) Overlay of the average population voltage during bursts and burstlets. The hypoglossal output is 
calculated by passing the mean population amplitude through a sigmoid function ‍f = −60.5 + 60/[1 + e−(x+45)/2.5]‍. (I) Burstlet fraction as a function of 

‍Kbath‍ for the four example traces indicated in panels (G1–G4). Figure 4I has been adapted from Figure 1B from Kallurkar et al., 2020.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Burstlets and Bursts in a larger network.

Figure supplement 1. Burstlets and bursts in a 400-neuron preBötzinger complex (preBötC) network model with an imposed burstlet rhythm.

Figure 4 continued

https://doi.org/10.7554/eLife.75713
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Figure 5. Effect of Ca2+ and CAN current blockade on burstlets and bursts. Network traces showing the effect of (A) calcium current blockade (‍PSynCa‍ 
reduction) and (B) CAN current blockade (‍gCAN ‍ reduction) on the period and amplitude of bursts. Effects of calcium or ‍ICAN ‍ blockade on (C) the 
burstlet fraction, (D) the amplitude of bursts and (E) the number of recruited and (F) peak firing rate of recruited neurons in pattern-generating 
subpopulation during network bursts as a function of the blockade percentage.

Figure 5 continued on next page
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and synaptic block reduced the burst frequency (Figure 6D) and slightly increased burst amplitude 
(Figure 6E). The decreased frequency with synaptic block comes from an increase in the burstlet frac-
tion, whereas GIRK activation kept the burstlet fraction constant while reducing the burstlet frequency 
(Figure 6F). Finally, combining these effects, we observed that simultaneously increasing the GIRK 
channel conductance and blocking the synaptic output of μOR-expressing neurons in our simulations 
generates slowing of the burst frequency and an increase in the burstlet fraction consistent with in 
vitro experimental data (Figure 6D–G).

Simultaneous stimulation of subsets of preBötC neurons elicits network 
bursts with long delays
Simultaneous stimulation of 4–9 preBötC neurons in in vitro slice preparations has been shown to 
be sufficient to elicit network bursts with similar patterns to those generated endogenously (Kam 
et al., 2013b). These elicited bursts occur with delays of several hundred milliseconds relative to the 
stimulation time, which is longer than would be expected from existing models. Interestingly, in the 
current model, due to the dynamics of CICR, there is a natural delay between the onset of burstlets 
and the recruitment of the follower population that underlies the transition to a burst. Therefore, we 
investigated whether our model could match and explain the observations seen in Kam et al., 2013b.

In our model, we first calibrated our stimulation to induce a pattern of spiking that is comparable to 
the patterns generated in Kam et al., 2013b (10–15 spikes with decrementing frequency, Figure 7A). 
We found that stimulation of 3–9 randomly selected neurons could elicit network bursts with delays 
on the order of hundreds of milliseconds (Figure 7B and C). Next, we characterized (1) the probability 
of eliciting a burst, (2) the delay in the onset of elicited bursts, and (3) the variability in delay, each as a 
function of the time of stimulation relative to the end of an endogenous burst (i.e., a burst that occurs 
without stimulation) and of the number of neurons stimulated (Figure 7D–F). In general, we found 
that increasing the number of stimulated neurons increases the probability of eliciting a burst and 
decreases the delay between stimulation and burst onset. Moreover, the probability of eliciting a burst 
increases and the delay decreases as the time after an endogenous burst increases (Figure 7G and H). 
Additionally, with its baseline parameter tuning, our model had a refractory period of approximately 
1 s following an endogenous burst during which stimulation could not evoke a burst (Figure 7). The 
refractory period in our model is longer than measured experimentally (500 ms) (Kam et al., 2013b).

To determine the mechanisms involved in the refractoriness, we plotted the time courses of key 
slow variables in the model, namely, persistent sodium inactivation ‍hNaP‍, ER calcium (‍[Ca]ER‍), and 
synaptic depression ‍D‍, over one burst cycle in the absence of stimulation (see Figure  7—figure 
supplement 1). We found that the recovery from synaptic depression and the deinactivation of ‍hNaP‍ 
were the two slow processes with time courses that aligned with the loss of refractoriness. Thus, in 
our model, it appears that these two factors are crucial to the probability that a stimulus will elicit a 
sustained response, while calcium-related effects predominantly relate to the recruitment process by 
which such a response develops into a burst.

To conclude our investigation, we examined how changes in the connection probability within 
the pattern-forming population (‍PPP‍) affect the refractory period, probability, and delay of evoked 
bursts following simultaneous stimulation of 3–9 randomly selected neurons in the preBötC popula-
tion. We focused on the pattern-forming population because it comprises 75% of the preBötC popu-
lation, and, therefore, neurons from this population are most likely to be stimulated and the synaptic 
projections from these neurons are most likely to impact the properties of evoked bursts. To avoid a 
confound that would arise if increased connection probability led to overall stronger synaptic input, 
we adjusted ‍WPP‍ to compensate for changes in ‍PPP‍ and keep the network synaptic strength, defined 
as ‍S = NP · PPP · WPP‍, at a constant value.

With this scaling, we found that decreasing/increasing ‍PPP‍ decreased/increased the refractory 
period (Figure 8A–C) by impacting the probability of eliciting a burst in the period immediately after 
an endogenous burst (Figure 8D and E). More specifically, the change in the probability of evoking 

The online version of this article includes the following source data for figure 5:

Source data 1. Simulated calcium or CAN current blockade.

Figure 5 continued
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Figure 6 continued on next page
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a burst, with decreased/increased ‍PPP‍, is indicated by a leftward/rightward shift in the probability vs. 
stimulation time curves relative to a control level of ‍PPP‍ (‍PPP = 2%‍) (see Figure 8D and E). That is, 
relatively small connection probabilities with large connection strengths lead to network dynamics 
with a shorter refractory period when stimulation cannot elicit a burst and a higher probability that a 
stimulation at a fixed time since the last burst will evoke a new burst.

It may seem surprising that networks with smaller connection probabilities exhibit a faster emer-
gence of bursting despite their larger connection weights since intuitively, with lower connection 
probabilities, fewer neurons could be recruited by each action potential, resulting in longer, more 
time-consuming activation pathways. A key point, however, is that when connection weights are 
larger, fewer temporally overlapping inputs are needed to recruit each inactive neuron. For example, 
suppose that we fix ‍NP‍ and ‍WPP‍, and we take ‍PPP‍ to scale as ‍1/NP‍. The minimal number of inputs 
from active neurons needed to activate an inactive neuron depends on the synaptic weight, ‍WPP‍. 
Let ‍r‍ denote this number for the specific value of ‍WPP‍ that we have selected. We can approximate 
the expected number of neurons receiving ‍r‍ or more inputs from ‍A‍ active neurons by computing the 
expected number receiving exactly ‍r‍ inputs, which we denote as ‍[Ir]‍, where the brackets indicate 
an expectation or average. For a network with a random connectivity profile, this expected value is 
computed from the binomial formula as

	﻿‍

[Ir] =


 A

r


(

1
NP

)r (
1 − 1

NP

)A−r
.
‍�

Suppose that next we consider another network in which we double ‍PPP‍ and halve ‍WPP‍, thus 
keeping their product constant. For this smaller ‍WPP‍, more inputs will be needed to activate an inac-
tive neuron. Specifically, assume that now at least ‍2r‍ inputs are needed for activation. The expected 
number of neurons receiving ‍2r‍ inputs, ‍[I2r]‍, is given by

	﻿‍

[I2r] =


 A

2r




(
2

NP

)2r (
1 − 2

NP

)A−2r
.
‍�

An elementary calculation shows that ‍[I2r] < [Ir]‍ for relevant parameter values (such as ‍NP = 300‍ 
and small ‍r‍ as indicated by the stimulation experiments). Thus, increasing ‍PPP‍ and proportionally 
scaling down ‍WPP‍ reduces the chance of successful recruitment of inactive neurons by active neurons.

Interestingly, our simulations suggest that the connection probability in the pattern-generating 
population must be between 1% and 2% to match the approximately 500 ms refractory period 
measured experimentally (Kam et  al., 2013b; Figure  8F). Surprisingly, the mean and distribution 
of delays from stimulation to burst for all successfully elicited bursts are not strongly affected by 
changes in ‍PPP‍ (Figure 8F). For a given stimulation time and number of neurons stimulated, however, 
decreasing ‍PPP‍ decreases the delay of elicited bursts (Figure 8G). Finally, because the neurons in the 
pattern-generating population appear to play a dominant role in determining if stimulation will elicit 
a network burst, we characterized how the number of pattern-generating neurons stimulated, out of 
a total set of nine stimulated neurons, affects the probability of eliciting a network burst as a function 
of stimulation time (Figure 8H). These simulations were carried out under a baseline condition of 

‍PPP = 2%‍. In general, we found that stimulating a relatively larger proportion of pattern-generating 
neurons increased the probability of eliciting a network burst for all times after the approximately 1 

in ‍gGIRK ‍ and synaptic block on network output. Burstlets are indicated by blue asterisks. The parameters for each case are as follows: (BL) ‍gGIRK = 0.0 nS‍, 

‍γµOR = 0.0‍; (1) ‍gGIRK = 0.031034 nS‍, ‍γµOR = 0.81034‍; (2) ‍gGIRK = 0.093103 nS‍, ‍γµOR = 0.7069‍; (3) ‍gGIRK = 0.14483 nS‍, ‍γµOR = 0.68966‍; (4) ‍gGIRK = 0.19655 nS‍, 

‍γµOR = 0.58621‍. Comparison of experimental data and the effects of progressive increases in ‍gGIRK ‍ and synaptic block on the (H) frequency and 
(I) amplitude of bursts as well as (J) the burstlet fractions for the traces shown in (G). Figure 6H and J have been adapted from Figure 3C and E from 
Baertsch et al., 2021. The effects of DAMGO on burst amplitude were not quantified in Baertsch et al., 2021.

The online version of this article includes the following source data for figure 6:

Source data 1. Effects of simulated opioids on burstlets and bursts.

Figure 6 continued
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Figure 7. Evoked population bursts by simulated holographic stimulation of 3–9 preBötzinger complex (preBötC) neurons. (A) Raster plot of neuronal 
spiking triggered by simulated holographic stimulation of six preBötC neurons shortly after an endogenous burst and resulting failure to evoke a 
network burst. Black line represents the integrated population activity. Scale bar indicates 20 spikes/s/N. Bottom panel shows the spiking activity 
triggered in individual neurons by the simulated holographic stimulation. Panel duration is 1 s. (B) Example simulation where stimulation of nine preBötC 
neurons evokes a network burst. Gray curve indicates timing of the next network burst if the network was not stimulated. (Bottom panel) Expanded view 
of the percolation process that is triggered by holographic stimulation on a successful trial. Panel duration is 1.75 s. (C) Example traces showing the 
delay between the stimulation time and the evoked bursts as a function of the number of neurons stimulated for the (top) integrated preBötC spiking 
and (bottom) simulated hypoglossal activity. (D–F) Characterization of (D) the probability of evoking a burst, (E) the mean delay of evoked bursts, and 
(F) the standard deviation of the delay as a function of the time after an endogenous burst and the number of neurons stimulated. (G) Probability and 
(H) delay as a function of the stimulation time for stimulation of three, six, or nine neurons. Error bars in (H) indicate SD. (I) Histogram of evoked and 
endogenous bursts relative to the time of stimulation (‍t = 0 s)‍ for all successful trials in all simulations; notice a 1 s refractory period.

The online version of this article includes the following source data and figure supplement(s) for figure 7:

Source data 1. Simulated holographic stimulation.

Figure supplement 1. Dynamics of ‍INaP‍ inactivation (‍hNaP‍), endoplasmic reticulum (ER) calcium concentration (‍[Ca]ER‍), and synaptic depression and 
recovery (‍D‍) as a function of time relative to the inspiratory cycle.

https://doi.org/10.7554/eLife.75713
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Figure 8. Refractory period and delay of evoked bursts following simulated holographic stimulation depend on the follower network connectivity. 
(A–C) Histogram of evoked and endogenous bursts relative to the time of stimulation (‍t = 0 s)‍ for all successful trials where three, six, and nine neurons 
were stimulated and for different connection probabilities (but fixed total network synaptic strength; i.e., ‍NP · PPP · WPP = constant‍) in the follower 
population: (A) ‍PPP = 1%‍; (B) ‍PPP = 2%‍; and (C) ‍PPP = 4%‍. (D, E) Effect of (D) decreasing (‍2% → 1%‍) and (E) increasing (‍2% → 4%‍) the connection 

Figure 8 continued on next page
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s refractory period, as indicated by the positive slope in Figure 8H. Additionally, eliciting a network 
burst does not require stimulation of rhythmogenic neurons.

Discussion
Recent experiments have revealed a decoupling of respiratory rhythm generation and output 
patterning in the preBötC, which has given rise to the conceptual framework of burstlet theory. To 
date, however, this theory lacks the quantitative basis, grounded in underlying biophysical mecha-
nisms, needed for its objective evaluation. To address this critical gap, in this computational study we 
developed a data-constrained biophysical model of the preBötC that generates burstlets and bursts 
as proposed by burstlet theory, with a range of features that match experimental observations. To 
summarize, we first show that CICR from intracellular stores is a natural mechanism to periodically 
amplify postsynaptic calcium transients needed for ‍ICAN ‍ activation and recruitment of pattern-forming 
neurons into network bursts (Figure 1). Next, we demonstrate that in a two-neuron network CICR can 
convert baseline rhythmic activity into a mixture of bursts and burstlets, where the burstlet fraction 
depends largely on the magnitude of postsynaptic calcium transients (Figure 2). In a larger preBötC 
network containing rhythm- and pattern-forming subpopulations with experimentally constrained 
intrinsic properties, population sizes, and synaptic connectivity probabilities (Figure 3), similar but 
more realistic activity patterns arise (Figure 4). Moreover, we show that this model can match a wide 
range of the key experimental underpinnings of burstlet theory: dependence of the burstlet fraction 
on extracellular potassium concentration (Figure 4I), the Ca2+ dependence of the burstlet-to-burst 
transition (Figure 5), the effects of opioids on burst frequency and burstlet fraction (Figure 6), and the 
long delay and refractory period of bursts evoked by holographic photostimulation of small subsets 
of preBötC neurons (Figures 7 and 8).

Insights into the mechanisms of burst (pattern) and burstlet (rhythm) 
generation within the inspiratory preBötC
Burstlet theory to date has largely been an empirical description of the observed features of bursts 
and burstlets. One idea that has been suggested is that rhythm generation is driven by a stochastic 
percolation process in which tonic spiking across the rhythm-generating population gradually synchro-
nizes during the inter-burst-interval to generate the burstlet rhythm. Subsequently, a burst (i.e., motor 
output) only occurs if the burstlet is of sufficient magnitude, resulting from sufficient synchrony, to 
trigger all-or-none recruitment of the pattern-forming subpopulation (Kam et al., 2013a; Kam et al., 
2013b; Feldman and Kam, 2015; Cui et al., 2016; Kallurkar et al., 2020; Ashhad and Feldman, 
2020). This theory, however, does not identify or propose specific biophysical mechanisms capable of 
generating a quantitative explanation of the underlying cellular and network-level dynamics, fails to 
capture the Ca2+ dependence of the burst-to-burstlet transition, and cannot explain how extracellular 
potassium concentration impacts the burstlet fraction. Our simulations support an alternative view 
of the recruitment process associated with this transition that builds directly from previous computa-
tional studies (Jasinski et al., 2013; Phillips et al., 2019a; Phillips and Rubin, 2019b; Phillips et al., 
2021), which robustly reproduce a wide array of experimental observations. Specifically, in this study 
we show that amplification of postsynaptic calcium transients in the pattern-generating subpopulation 
(triggered by burstlets) provides a natural mechanism capable of explaining the Ca2+ dependence of 
the burstlet-to-burst transition.

Importantly, our model yields the result, and hence the prediction, that the burstlet fraction is deter-
mined by the probability that a burstlet will trigger CICR in the pattern-forming subpopulation. In the 

probability in the follower population, ‍PPP‍. (F) Refractory period and delay from stimulation to burst as functions of the connection probability for the 
simulations shown in (A–E), still with ‍NP · PPP · WPP = constant‍. Error bars indicate SD. Notice that the refractory period increases with increasing 
connection probability. (G) Effect of ‍PPP‍ on the delay to evoked bursts. (H) Probability of evoking a burst as a function of time of stimulation delivery 
(colorbar) and the number out of nine stimulated neurons that are follower neurons for the baseline case of 2% connection probability.

The online version of this article includes the following source data for figure 8:

Source data 1. Refractory period of evoked bursts following holographic stimulation.

Figure 8 continued
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model, this probability is determined by the magnitude of postsynaptic calcium transients as well as 
the activation dynamics of the IP3 receptor and the SERCA pump. Therefore, to explain the decrease 
in the burstlet fraction with increasing extracellular ‍Kbath‍, the magnitude of the burstlet-triggered 
postsynaptic calcium transients must increase with ‍Kbath‍. Some of this rise can result directly from the 
increase in burstlet amplitude with increasing ‍Kbath‍ (see Kallurkar et al., 2020 and Figure 4C). To fully 
match the experimentally observed relationship between ‍Kbath‍ and the burstlet fraction (Figure 4J), 
we also explicitly increased the parameter ‍PSynCa‍, which sets the proportion of the postsynaptic 
calcium current carried by Ca2+. Thus, our model predicts that the magnitude of postsynaptic Ca2+ 
transients triggered by EPSPs should increase as ‍Kbath‍ is elevated.

This same prediction arises from considering the voltage-dependent properties of Ca2+ channels 
characterized in preBötC neurons and the changes in the membrane potential of non-rhythmogenic 
(i.e., pattern-forming) neurons as a function of ‍Kbath‍. Specifically, it is likely that voltage-gated calcium 
channels are involved in generating the postsynaptic Ca2+ transients as dendritic Ca2+ transients have 
been shown to precede inspiratory bursts and to be sensitive to Cd2+, a calcium channel blocker 
(Del Negro et al., 2011). Consistent with this idea, Cd2+-sensitive Ca2+ channels in preBötC neurons 
appear to be primarily localized in distal dendritic compartments (Phillips et al., 2018). Voltage-gated 
calcium channels in the preBötC start to activate at approximately ‍−65 mV‍(Elsen and Ramirez, 1998), 
and importantly, the mean somatic resting membrane potential of non-rhythmogenic preBötC neurons 
increases from ‍−67.034 mV‍ to ‍−61.78 mV‍ when extracellular potassium concentration is elevated from 
‍3 mM‍ to ‍8 mM‍ (Tryba et al., 2003). Moreover, at ‍Kbath = 9 mM‍, EPSPs in the preBötC are on the order 
of 2–5 mV (Kottick and Del Negro, 2015; Morgado-Valle et al., 2015; Baertsch et al., 2021) and 
the amplitude of EPSCs has been shown to decrease as ‍Kbath‍ is lowered (Okada et al., 2005). Putting 
together these data on resting membrane potential, EPSP sizes, and voltage-dependent activation of 
Ca2+ channels, we deduce that when ‍Kbath = 3 mM‍, the magnitude of EPSPs may not reach voltages 
sufficient for significant activation of voltage-gated Ca2+ channels. As ‍Kbath‍ is increased, however, both 
EPSC magnitudes and the membrane potential of pattern-forming neurons increase. Therefore, with 
increased ‍Kbath‍, the prediction is that EPSCs will result in greater activation of voltage-gated Ca2+ 
channels and increased postsynaptic calcium transients. This effect is captured in the model by an 
increase in the parameter ‍PSynCa‍, which determines the percentage of the postsynaptic current carried 
by Ca2+ ions, with ‍Kbath‍.

The idea that dendritic postsynaptic Ca2+ transients and ‍ICAN ‍ activation play a critical role in regu-
lating the pattern of preBötC dynamics is well supported by experimental and computational studies. 
Specifically, the dendritic Ca2+ transients that precede inspiratory bursts (Del Negro et al., 2011) have 
been shown to travel in a wave to the soma, where they activate TRPM4 currents (‍ICAN ‍) (Mironov, 
2008). Moreover, the rhythmic depolarization of otherwise non-rhythmogenic neurons (inspiratory 
drive potential) depends on ‍ICAN ‍ (Pace et  al., 2007a), while the inspiratory drive potential is not 
dependent on Ca2+ transients driven by voltage-gated calcium channels expressed in the soma 
(Morgado-Valle et  al., 2008). Finally, pharmacological blockade of TRPM4 channels, thought to 
represent the molecular correlates of ‍ICAN ‍, reduces the amplitude of preBötC motor output without 
impacting the rhythm (Koizumi et  al., 2018; Picardo et  al., 2019). These experimental findings 
were incorporated into and robustly reproduced in a recent computational model (Phillips et  al., 
2019a) and are reproduced here (see Figure 5B and D). Consistent with these findings, this previous 
model suggests that rhythm generation arises from a small subset of preBötC neurons, which form 
an ‍INaP‍-dependent rhythmogenic kernel (i.e., burstlet rhythm generator), and that rhythmic synaptic 
drive from these neurons triggers postsynaptic calcium transients, ‍ICAN ‍ activation, and amplification 
of the inspiratory drive potential, which spurs bursting in the rest of the network. This study builds on 
this previous model by explicitly defining rhythm- and pattern-generating neuronal subpopulations 
(see Figure 3) and incorporating the mechanisms required for CICR and intermittent amplification of 
postsynaptic calcium transients.

CICR mediated by the SERCA pump and the IP3 receptor has long been suspected to be involved 
in the dynamics of preBötC rhythm and/or pattern generation (Pace et al., 2007a; Crowder et al., 
2007; Mironov, 2008; Toporikova et al., 2015) and has been explored in individual neurons and 
network models of the preBötC (Toporikova and Butera, 2011; Jasinski et al., 2013; Rubin et al., 
2009; Wang and Rubin, 2020). Experimental studies have not clearly established the role of CICR 
from ER stores in respiratory circuits, however. For example, Mironov, 2008 showed that application 
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of 1 µM thapsigargin, a SERCA pump inhibitor, abolished rhythmic activity and blocked calcium tran-
sients that travel in a wave from the dendrites to the soma. In a separate study, however, block of 
the SERCA pump by bath application of thapsigargin (2–20 µM) or cyclopiazonic acid (CPA) (30–50 
µM) did not significantly affect the amplitude or frequency of hypoglossal motor output in in vitro 
slice preparations containing the preBötC (Beltran-Parrazal et al., 2012). The explanation for these 
seemingly contradictory experimental results is unclear, especially since effects of SERCA pump 
block could be complicated, and will need to be investigated by future studies. It is possible that 
the role of CICR may be dynamically regulated depending on the state of the preBötC network. For 
example, the calcium concentration at which the IP3 receptor is activated is dynamically regulated 
by IP3 (Kaftan et al., 1997), and therefore, activity- or neuromodulatory-dependent changes in the 
cytoplasmic Ca2+ and/or IP3 concentration may impact ER Ca2+ uptake and release dynamics. Store-
operated Ca2+ dynamics are also affected by the transient receptor potential canonical 3 (TRPC3) 
channels (Salido et al., 2009), which are expressed in the preBötC, and manipulation of TRPC3 has 
been shown to impact burst amplitude and regularity (Tryba et al., 2003; Koizumi et al., 2018) as 
would be predicted by this model. It is also possible that calcium release is mediated by the ryanodine 
receptor, an additional calcium-activated channel located in the ER membrane (Lanner et al., 2010), 
since bath application of CPA (100 µM) and ryanodine (10 µM) removed large-amplitude oscillations 
in recordings of preBötC population activity (Toporikova et al., 2015).

Finally, we note that while various markers can be used to define distinct subpopulations of neurons 
within the preBötC, our model cannot determine which of these ensembles are responsible for rhythm 
and pattern generation. Past experiments have examined the impact of optogenetic inhibition, 
applied at various intensities to subpopulations associated with specific markers, on the frequency 
of inspiratory neural activity, but this activity was measured by motor output, not within the preBötC 
itself (Tan et al., 2008; Cui et al., 2016; Koizumi et al., 2016). According to burstlet theory and our 
model, slowed output rhythmicity could derive from inhibition of rhythm-generating neurons, due to 
a reduced frequency of burstlets, and from inhibition of pattern-generating neurons, due to a reduced 
success rate of burst recruitment. Thus, measurements within the preBötC will be needed in order 
to assess the mapping between subpopulations of preBötC neurons and roles in burstlet and burst 
production.

Additional comparisons to experimental results
In our model (Figure 4), a burstlet rhythm first emerges at a ‍Kbath‍ of approximately 5 mM, whereas 
in the experiments of Kallurkar et al., 2020, the burstlet rhythm continues even down to 3 mM. To 
explain this discrepancy, we note that our model assumes that the extracellular potassium concen-
tration throughout the network is equal to ‍Kbath‍. Respiratory circuits appear to have some buffering 
capacity, however, such that for ‍Kbath‍ concentrations below approximately 5 mM the extracellular K+ 
concentration remains elevated above ‍Kbath‍ (Okada et al., 2005). The ‍Kbath‍ range over which our 
model generates a rhythm would extend to that seen experimentally if extracellular K+ buffering were 
accounted for. This buffering effect can also explain why the burstlet fraction remains constant in 
experimental studies when ‍Kbath‍ is lowered from 5 mM to 3 mM (Kallurkar et al., 2020). Our model 
also does not incorporate short-term extracellular potassium dynamics that depend on ‍Kbath‍ and may 
impact the ramping shape of burstlet onset (Abdulla et al., 2021). Importantly, over the range of ‍Kbath‍ 
values relevant both to experiments and our model, we find clear agreement on the dependence of 
burstlet fraction on ‍Kbath‍ (Figure 4I).

Although our model incorporates various key biological features, it does not include some of the 
biophysical mechanisms that are known to shape preBötC patterned output or that are hypothesized to 
contribute to the properties described by burstlet theory. For example, the M-current associated with 
KCNQ potassium channels has been shown to impact burst duration by contributing to burst termi-
nation (Revill et al., 2021). Additionally, intrinsic conductances associated with a hyperpolarization-
activated mixed cation current (‍Ih‍) and a transient potassium current (‍IA‍) are hypothesized to be 
selectively expressed in the pattern- and rhythm-generating preBötC subpopulations (Picardo et al., 
2013; Phillips et al., 2018). Thus, our model predicts that while these currents may impact quantita-
tive properties of burstlets and bursts, they are not critical for the presence of burstlets and their trans-
formation into bursts. The current model also does not include a population of inhibitory preBötC 
neurons. Inhibition is involved in regulating burst amplitude (Baertsch et al., 2018), but it does not 
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have a clear role in burst or burstlet generation, and therefore inhibition was omitted from this work. 
More globally, it is crucial to recognize that areas outside of the preBötC impact dynamics within the 
preBötC. These effects, which remain to be fully elucidated, may range from ongoing modulation of 
the level of excitability of preBötC neurons to timed signaling that contributes to preBötC rhythmicity 
and patterning (e.g., Mulkey et al., 2004; Dutschmann and Dick, 2012; Phillips et al., 2012; Smith 
et al., 2013; Dhingra et al., 2019; Richter et al., 2019; Liu et al., 2022). For example, transection 
studies suggest that pontine regions may make crucial contributions to respiratory circuit excitability 
and respiratory pattern formation (Jones and Dutschmann, 2016; Smith et al., 2007). Finally, the 
data on which this study was based comes from a variety of settings, including in vitro and other 
reduced preparations, and additional factors no doubt complicate the generation and control of respi-
ratory outputs in vivo. Indeed, although experimental results suggest that manipulations to enhance 
preBötC excitability in slice preparations do not appear to significantly impact the mechanisms of 
preBötC rhythmicity or the generation of bursts and burstlets, additional investigation of how higher 
brainstem centers impact preBötC inspiratory rhythm and pattern generation is an important direction 
for future studies.

Importantly, our model does robustly reproduce all of the range of key experimental observations 
underlying burstlet theory. Not surprisingly, block of calcium transients or ‍ICAN ‍ in our model eliminates 
bursts without affecting the underlying rhythm (Figure 5), which is consistent with experimental obser-
vations (Kam et al., 2013b; Sun et al., 2019). Interestingly, our model also provides the experimen-
tally testable predictions that blocking calcium transients will increase the burstlet fraction while ‍ICAN ‍ 
block will have no effect on this fraction, whereas both perturbations will smoothly reduce burst ampli-
tude. The calcium-dependent mechanisms that we include in our model pattern-generating popu-
lation have some common features with a previous model that suggested the possible existence of 
two distinct preBötC neuronal populations responsible for eupneic burst and sigh generation, respec-
tively, which also included excitatory synaptic transmission from the former to the latter (Toporikova 
et al., 2015). In the eupnea-sigh model, however, the population responsible for low-frequency, high-
amplitude sighs was capable of rhythmic burst generation even without synaptic drive, in contrast to 
the pattern-generation population as tuned in our model. Also, in contrast to the results on bursts 
considered in our study, sigh frequency in the earlier model did not vary with extracellular potassium 
concentration and sigh generation required a hyperpolarization-activated inward current, ‍Ih‍.

We also considered the effects of opioids in the context of burstlets and bursts, a topic that has not 
been extensively studied. It is well established that opioids slow the preBötC rhythm in in vitro slice 
preparations; however, the limited results presented to date on effects of opioids on the burstlet frac-
tion are inconsistent. Specifically, Sun et al., 2019 found that application of the μOR agonist DAMGO 
at 10 nM and 30 nM progressively decreased the preBötC network frequency but had no impact on 
the burstlet fraction before the network rhythm was eventually abolished at approximately 100 nM. 
Similarly, Baertsch et al., 2021 found that DAMGO decreased the preBötC network frequency in a 
dose-dependent fashion; however, in these experiments the network was less sensitive to DAMGO, 
maintaining rhythmicity up to approximately 300 nM, and the burstlet fraction increased with increasing 
DAMGO concentration. The inconsistent effects of DAMGO on the burstlet fraction across these two 
studies can be explained by our simulations based on the different sensitivities of these two prepa-
rations to DAMGO and the two distinct mechanisms of action of DAMGO on neurons that express 
μOR – decreases in excitability and decreases in synaptic output of neurons – identified by Baertsch 
et al., 2021. In our simulations, we show that the decreased excitability resulting from activation of 
a GIRK channel only impacts frequency, whereas decreasing the synaptic output of μOR-expressing 
neurons results in an increase in the burstlet fraction and a decrease in burst frequency (Figure 6). In 
experiments, suppression of synaptic output does not appear to occur until DAMGO concentrations 
are above approximately 50 nM(Baertsch et al., 2021). Therefore, it is not surprising that DAMGO 
application did not strongly impact the burstlet fraction before the rhythm was ultimately abolished in 
Sun et al., 2019 due to the higher DAMGO sensitivity of that particular experimental preparation, as 
indicated by the lower dose needed for rhythm cessation.

Mixed-mode oscillations
Mixed-mode oscillations, in which intrinsic dynamics of a nonlinear system naturally lead to alterna-
tions between small- and large-amplitude oscillations (Del Negro et al., 2002c; Bertram and Rubin, 
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2017), are a mechanism that has been previously proposed to underlie bursts and burstlets under the 
assumption of differences in intrinsic oscillation frequencies across preBötC neurons (Bacak et al., 
2016). This mechanism was not needed to explain the generation of bursts and burstlets in the current 
model, however. Moreover, systems with mixed-mode oscillations can show a wide range of oscilla-
tion amplitudes under small changes in conditions and mixed-mode oscillations only emerge in the 
preBötC when ‍Kbath‍ is elevated above 9 mM (Del Negro et al., 2002c). These properties are not 
consistent with the burst and burstlet amplitudes or ‍Kbath‍-dependent changes in the burstlet fraction 
seen experimentally (Kallurkar et al., 2020) and in our model.

Holographic photostimulation, percolation, and rhythm generation
Experimental data supporting burstlet theory has shown that burstlets are the rhythmogenic event in 
the preBötC. However, although burstlet theory is sometimes referenced as a theory of respiratory 
rhythm generation, the actual mechanisms of burstlet rhythm generation remain unclear. One idea 
that has been suggested is that rhythm generation is driven by a stochastic percolation process in 
which tonic spiking across the rhythm-generating population gradually synchronizes during the inter-
burst-interval to generate the burstlet rhythm (Ashhad and Feldman, 2020; Slepukhin et al., 2020). 
In this framework, a burst (i.e., motor output) only occurs if the burstlet is of sufficient magnitude, 
resulting from sufficient synchrony, to trigger all-or-none recruitment of the pattern-forming subpop-
ulation (Kam et al., 2013a; Kam et al., 2013b; Feldman and Kam, 2015; Kallurkar et al., 2020; 
Ashhad and Feldman, 2020; Slepukhin et al., 2020).

The idea that burstlets are the rhythmogenic event within the preBötC is supported by the observa-
tion that block of voltage-gated Ca2+ channels by Cd2+ eliminates bursts without affecting the under-
lying burstlet rhythm (Kam et al., 2013a; Sun et al., 2019). However, the rhythmogenic mechanism 
based on percolation is speculative and comes from two experimental observations. The first is that 
the duration and slope (i.e., shape) of the burstlet onset are statistically indistinguishable from the 
ramping pre-inspiratory activity that immediately precedes inspiratory bursts (Kallurkar et al., 2020). 
We note, however, that this shape of pre-inspiratory activity can arise through intrinsic mechanisms at 
the individual neuron level (Abdulla et al., 2021). The second observation evoked in support of the 
percolation idea is that holographic photostimulation of small subsets (4–9) of preBötC neurons can 
elicit bursts with delays lasting hundreds of milliseconds (Kam et al., 2013b). These delays are longer 
than could be explained with existing preBötC models and have approximately the same duration 
as the pre-inspiratory activity and burstlet onset hypothesized to underlie the rhythm. According to 
the percolation hypothesis of burstlet rhythm generation, these long delays result from the specific 
topological architecture of the preBötC, recently proposed to be a heavy-tailed synaptic weight distri-
bution in the rhythmogenic preBötC subpopulation (Slepukhin et al., 2020).

Interestingly, the model presented here naturally captures the long delays characterized by Kam 
et al., 2013b, and stimulation of small subsets of neurons triggers a growth in population activity 
in the lead up to a burst that could be described as percolation (Figure 7B). Our model does not 
require a special synaptic weight distribution to generate the long delays, however. Indeed, our model 
suggests that the long delays between simulation and burst generation are due in large part to the 
dynamics of the pattern-forming population, as probabilistically these neurons are the most likely 
to be stimulated and they appear to play a dominant role in setting the timing of the elicited burst 
response (Figure 8H). Moreover, the dynamics of this population is strongly impacted by the CICR 
mechanism proposed here, which is required for burst generation. Interestingly, to match the 500 ms 
refractory period following an endogenous burst during which holographic stimulation cannot elicit a 
burst, our model predicts that the connection probability in the pattern-generating preBötC subpopu-
lation must be between 1% and 2% (Figure 8A and B), which is consistent with available experimental 
data (Ashhad and Feldman, 2020). Experiments applying global, presumably weaker stimulation to 
the preBötC yield longer (~2 s) refractory periods after endogenous bursts (Baertsch et al., 2018; 
Kottick and Del Negro, 2015), and our model can also produce similar refractory periods in analo-
gous conditions.

Thus, taken together, previous modeling and our work offer two alternative, seemingly viable 
hypotheses about the source of the delay between holographic stimulation and burst onset, each 
related to a proposed mechanism for burstlet and burst generation. Yet additional arguments call into 
question aspects of the percolation idea. If the burstlet rhythm is driven by a stochastic percolation 
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process, then the period and amplitude of burstlets should be stochastic, irregular, and broadly distrib-
uted. Moreover, in the proposed framework of burstlet theory, the pattern of bursts and burstlets for 
a given burstlet fraction would also be stochastic since the burstlet-to-burst transition is thought to be 
an all-or-none process that depends on the generation of a burstlet of sufficient magnitude. Example 
traces illustrating a mixture of bursts and burstlets typically show a pattern of multiple burstlets 
followed by a burst that appears to regularly repeat (Kam et al., 2013b; Sun et al., 2019; Kallurkar 
et al., 2020) and hypoglossal output timing has also been found to exhibit high regularity Kam et al., 
2013b, however, suggesting that the burstlet-to-burst transition is not dependent on the synchrony 
and hence magnitudes of individual burstlets but rather on a slow process that gradually evolves over 
multiple burstlets. The regularity and patterns of burstlets and bursts that arise from such a process in 
our model match well with those observed experimentally.

We note that the burstlet-to-burst transition mechanism proposed here, based on CICR from ER 
stores, depends on rhythmic inputs from the rhythm-generating to the pattern-generation popula-
tion; however, it is independent of the mechanism of rhythm generation. In our simulations, rhythm 
generation depends on the slowly inactivating persistent sodium current (‍INaP‍). The role of ‍INaP‍ in 
preBötC inspiratory rhythm generation is a contentious topic within the field, largely due to the incon-
sistent effects of ‍INaP‍ block. We chose to use ‍INaP‍ as the rhythmogenic mechanism in the burstlet 
population for a number of reasons: (1) consideration of the pharmacological mechanism of action 
and nonuniform effects of drug penetration can explain the seemingly contradictory experimental 
findings relating to ‍INaP‍ (Phillips and Rubin, 2019b), (2) ‍INaP‍-dependent rhythm generation is a well-
established and understood idea (Butera et al., 1999), (3) recent computational work on which the 
current model is based suggests that rhythm generation occurs in a small, ‍INaP‍-dependent rhyth-
mogenic kernel that is analogous to the burstlet population (Phillips et al., 2019a), and predictions 
from this model that depend on the specific proposed roles of ‍INaP‍ and ‍ICAN ‍ in rhythm and pattern 
formation have been experimentally confirmed in a recent study (Phillips et al., 2021). It is important 
to note, however, that the findings about burstlets and bursts presented in this work would have been 
obtained if the burstlet rhythm was imposed (Figure 4—figure supplement 1) or if burstlets were 
generated by some other means, such as by the percolation mechanism proposed by burstlet theory.

Summary of model predictions
The model presented here is itself a prediction; that is, this work predicts that a CICR-mediated mech-
anism is critical to the transition of burstlets into bursts. At a more specific level, our model makes 
the following predictions: (1) the magnitude of postsynaptic calcium transients triggered by EPSCs 
in preBötC neurons will increase with K+ (see Figure 4 and related text); (2) network-level burstlets 
and bursts will persist if currents involved in regulating burst shape, such as ‍Ih‍ and ‍IA‍, are blocked 
(see earlier discussion); (3) blocking postsynaptic Ca2+ transients will increase the burstlet fraction and 
decrease the burst amplitude before network bursts are eventually abolished (see Figure 5); (4) ‍ICAN ‍ 
block will not change the burstlet fraction and will decrease burstlet amplitudes (see Figure 5); (5) 
the synaptic connection probability within the pattern-generating population in the preBötC is low 
(1–2%, see Figure 8); and (6) selective holographic stimulation of pattern-generating neurons should 
be more effective than stimulation of rhythm-generating neurons at triggering network bursts (see 
Figure 8). This could be tested by selectively stimulating Dbx1 preBötC neurons that express Sst 
(pattern forming) or that do not express Sst (rhythmogenic).

Conclusions
This study has developed the first model-based description of the biophysical mechanism underlying 
the generation of bursts and burstlets in the inspiratory preBötC. As suggested by burstlet theory and 
other previous studies, rhythm and pattern generation in this work are represented by two distinct 
preBötC subpopulations. A key feature of our model is that generation of network bursts (i.e., motor 
output) requires amplification of postsynaptic Ca2+ transients by CICR in order to activate ‍ICAN ‍ and 
drive bursting in the rest of the network. Moreover, the burstlet fraction depends on rate of Ca2+ 
buildup in intracellular stores, which is impacted by ‍Kbath‍-dependent modulation of preBötC excit-
ability. These ideas complement other recent findings on preBötC rhythm generation (Phillips et al., 
2019a; Phillips and Rubin, 2019b; Phillips et al., 2021), together offering a unified explanation for a 
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large body of experimental findings on preBötC inspiratory activity that form a theoretical foundation 
on which future developments can build.

Materials and methods
Neuron model
Model preBötC neurons include a single compartment and incorporate Hodgkin–Huxley-style conduc-
tances adapted from previously described models (Jasinski et al., 2013; Phillips et al., 2019a; Phil-
lips and Rubin, 2019b) and/or experimental data as detailed below. The membrane potential of each 
neuron is governed by the following differential equation:

	﻿‍ C dV
dt = −INa − IK − INaP − ICa − ICAN − ILeak − ISyn − IGIRK − IHolo + IAPP,‍� (1)

where ‍C = 36 pF‍ is the membrane capacitance and each ‍Ii‍ represents a current, with i denoting the 
current’s type. The currents include the action potential generating Na+ and delayed rectifying K+ 
currents (‍INa‍ and ‍IK ‍), persistent Na+ current (‍INaP‍), voltage-gated Ca2+ current (‍ICa‍), Ca2+-activated 
nonselective cation (CAN) current (‍ICAN ‍), K+-dominated leak current (‍ILeak‍), synaptic current (‍ISyn‍), 
μ-opioid receptor-activated G protein-coupled inwardly rectifying K+ leak current (‍IGIRK ‍) (Kubo et al., 
1993), and a holographic photostimulation current (‍IHolo‍). ‍IAPP‍ denotes an applied current injected 
from an electrode. The currents are defined as follows:

	﻿‍ INa = gNa · m3
Na · hNa · (V − ENa)‍� (2)

	﻿‍ IK = gK · m4
K · (V − EK)‍� (3)

Table 1. Ionic channel parameters.
Channel Parameters

‍INa‍ ‍gNa = 150 nS‍ ‍ENa = 26.54 · ln(Naout/Nain)‍ ‍Nain = 15 mM‍ ‍Naout = 120 mM‍

‍m1/2 = −43.8 mV‍ ‍km = 6.0 mV‍ ‍τ
m
max = 0.25 ms‍ ‍τ

m
1/2 = −43.8 mV‍ ‍km

τ = 14.0 mV‍

‍h1/2 = −67.5 mV‍ ‍kh = −11.8 mV‍ ‍τ
h
max = 8.46 ms‍ ‍τ

h
1/2 = −67.5 mV‍ ‍kh

τ = 12.8 mV‍

‍IK ‍ ‍gK = 220 nS‍ ‍EK = 26.54 · ln(Kbath/Kin)‍ ‍Kin = 125‍ ‍KBath = VAR‍

‍Aα = 0.011‍ ‍Bα = 44.0 mV‍ ‍kα = 5.0 mV‍

‍Aβ = 0.17‍ ‍Bβ = 49.0 mV‍ ‍kβ = 40.0 mV‍

‍INaP‍ ‍gNaP = N(µ,σ)‍, see Table 2

‍m1/2 = −47.1 mV‍ ‍km = 3.1 mV‍ ‍τ
m
max = 1.0 ms‍ ‍τ

m
1/2 = −47.1 mV‍ ‍km

τ = 6.2 mV‍

‍h1/2 = −60.0 mV‍ ‍kh = −9.0 mV‍ ‍τ
h
max = 5000 ms‍ ‍τ

h
1/2 = −60.0 mV‍ ‍kh

τ = 9.0 mV‍

‍ICa‍ ‍gCa = 0.0065 pS‍ ‍ECa = 13.27 · ln(Caout/Cain)‍ ‍Caout = 4.0 mM‍

‍m1/2 = −27.5 mV‍ ‍km = 5.7 mV‍ ‍τm = 0.5 ms‍

‍h1/2 = −52.4 mV‍ ‍kh = −5.2 mV‍ ‍τh = 18.0 ms‍

‍ICAN ‍ ‍gCAN = N(µ,σ)‍, see Table 2 ‍ECAN = 0.0 mV‍ ‍Ca1/2 = 0.00074 mM‍ ‍n = 0.97‍

‍ILeak ‍ ‍gLeak = N(µ,σ)‍, see Table 2 ‍ELeak = −26.54 ∗ ln[(PNa ∗ Nain + PK ∗ Kin)/(PNa ∗ Naout + PK ∗ Kbath)]‍

‍PNa = 1‍ ‍PK = 42‍

‍ISyn‍ ‍gSyn = VAR‍, see Equation 25 ‍ESyn = 0.0 mV‍ ‍τSyn = 5.0 ms‍

‍IGIRK ‍ ‍gGIRK = 0 − 0.3 nS‍ ‍EGIRK = EK ‍

‍IHolo‍ ‍gHolo = 50 nS‍ ‍τHolo = 100 ms‍ ‍EHolo = ESyn‍

https://doi.org/10.7554/eLife.75713
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	﻿‍ INaP = gNaP · mNaP · hNaP · (V − ENa)‍� (4)

	﻿‍ ICa = gCa · mCa · hCa · (V − ECa)‍� (5)

	﻿‍ ICAN = gCAN · mCAN · (V − ECAN)‍� (6)

	﻿‍ ILeak = gLeak · (V − ELeak)‍� (7)

	﻿‍ ISyn = gSyn · (V − ESyn)‍� (8)

	﻿‍ IGIRK = gGIRK · (V − EK)‍� (9)

	﻿‍ IHolo = gHolo · (V − EHolo)‍� (10)

where gi is the maximum conductance, ‍Ei‍ is the reversal potential, and mi and hi are gating variables 
for channel activation and inactivation for each current ‍Ii‍. The glutamatergic synaptic conductance 

‍gSyn‍ is dynamic and is defined below. The values used for the gi and ‍Ei‍ are mostly shown in Table 1 , 
with a few conductances selected from distributions as indicated in Table 2.

Activation (mi) and inactivation (hi) of voltage-dependent channels are described by the following 
differential equation:

	﻿‍ τX(V) · dX
dt = X∞(V) − X; X ∈ {m, h}‍� (11)

where ‍X∞‍ represents steady-state activation/inactivation and ‍τX‍ is a time constant. For ‍INa‍, ‍INaP‍, and 

‍ICa‍, the functions ‍X∞‍ and ‍τX‍ take the forms

	﻿‍ X∞(V) = 1/(1 + exp(−(V − X1/2)/kX)),‍� (12)

	﻿‍ τX(V) = τX
max/ cosh((V − τX

1/2)/kX
τ ).‍� (13)

The values of the parameters (‍X1/2‍, ‍kX‍, ‍τ
X
max‍, ‍τ

X
1/2‍, and ‍kX

τ ‍) corresponding to ‍INa‍, ‍INaP‍ and ‍ICa‍ are 
given in Table 1.

For the voltage-gated potassium channel, the steady-state activation ‍mK
∞(V)‍ and time constant 

‍τ
K
m (V)‍ are given by the expressions

	﻿‍ mK
∞(V) = α∞(V)/(α∞(V) + β∞(V)),‍� (14)

	﻿‍ τK
m (V) = 1/(α∞(V) + β∞(V))‍� (15)

where

	﻿‍ α∞(V) = Aα · (V + Bα)/(1 − exp(−(V + Bα)/kα)),‍� (16)

	﻿‍ β∞(V) = Aβ · exp(−(V + Bβ)/kβ).‍� (17)

The values for the constants ‍Aα‍, ‍Aβ‍, ‍Bα‍, ‍Bβ‍, ‍kα‍, and ‍kβ‍ are also given in Table 1.

‍ICAN ‍ activation depends on the ‍Ca2+‍ concentration in the cytoplasm (‍[Ca]Cyto‍) and is given by

	﻿‍ mCAN = 1/(1 + (Ca1/2/[Ca]Cyto)n).‍� (18)

The parameters ‍Ca1/2‍ and ‍n‍ represent the half-activation Ca2+ concentration and the Hill coefficient, 
respectively, and are included in Table 1.

The dynamics of ‍[Ca]Cyto‍ is determined in part by the balance of Ca2+ efflux toward a baseline 
concentration via the Ca2+ pump and Ca2+ influx through voltage-dependent activation of ‍ICa‍ and 
synaptically triggered Ca2+ transients, with a percentage (‍PSynCa‍) of the synaptic current (‍ISyn‍) carried 
by Ca2+ ions. Additionally, the model includes an intracellular compartment that represents the ER, 

Table 2. Distributed channel conductances.

Type

‍gNaP (nS)‍ ‍gLeak (nS)‍ ‍gCAN (nS)‍

μ σ μ σ μ σ

Rhythm 3.33 0.75 ‍exp((KBath − 3.425)/4.05)‍ ‍0.05 · µleak ‍ 0.0 0.0

Pattern 1.5 0.25 ‍exp((KBath − 3.425)/4.05)‍ ‍0.025 · µleak ‍ 2.0 1.0

https://doi.org/10.7554/eLife.75713
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which impacts ‍[Ca]Cyto‍. The ER removes Ca2+ from the cytoplasm via a sarcoplasmic/endoplasmic retic-
ulum Ca2+- ATPase (SERCA) pump, which transports Ca2+ from the cytoplasm into the ER (‍JSERCA‍) and 
releases Ca2+ into the cytoplasm via calcium-dependent activation of the inositol triphosphate (IP3) 
receptor (‍JIP3‍). Therefore, the dynamics of ‍[Ca]Cyto‍ is described by the following differential equation:

	﻿‍
d[Ca]Cyto

dt = αCa · (ICa + PSynCa · ISyn) + αER · (JIP3 − JSERCA) − ([Ca]Cyto−Camin)
τpump

,‍� (19)

where ‍αCa = 2.5 · 10−5 mM/fC‍ is a conversion factor relating current to rate of change of ‍[Ca]Cyto‍, 

‍τpump = 500 ms‍ is the time constant for the Ca2+ pump, ‍Camin = 5.0 · 10−6 mM‍ is a minimal baseline 
calcium concentration, and ‍αER = 2.5 · 10−5‍ is the ratio of free to bound Ca2+ in the ER.

The flux of Ca2+ from the ER to the cytoplasm through the IP3 receptor is modeled as

	﻿‍
JIP3 =

(
ERleak + GIP3 ·

(
[Ca]Cyto

[Ca]Cyto+Ka
· [IP3]i·l

[IP3]i+Kl

)3)
· ([Ca]ER − [Ca]Cyto),

‍�
(20)

where ‍ERleak = 0.1/ms‍ represents the leak constant from the ER stores, ‍GIP3 = 77, 500/ms‍ represents the 
permeability of the IP3 channel, ‍Ka = 1.0 · 10−4 mM‍ and ‍Kl = 1.0 · 10−3 mM‍ are dissociation constants, 
and ‍[IP3]i = 1.5 · 10−3 mM‍ is the cytoplasm IP3 concentration. Finally, the Ca2+-dependent IP3 gating 
variable, ‍l‍, and the Ca2+ concentration in the ER, ‍[Ca]ER‍, are determined by the following equations:

	﻿‍
dl
dt = A · (Kd − l · ([Ca]Cyto + Kd));‍� (21)

	﻿‍ [Ca]ER = ([Ca]total − [Ca]Cyto)/σCa,‍� (22)

where ‍A = 0.1 mM/ms‍ is a conversion factor, ‍Kd = 0.2 · 10−3 mM‍ is the dissociation constant for IP3 
inactivation, ‍[Ca]total‍ is the total intracellular calcium concentration, and ‍σCa = 0.185‍ is the ratio of 
cytosolic to ER volume. The total intracellular calcium concentration is described as

	﻿‍
d[Ca]Total

dt = αCa · (ICa + PSynCa · ISyn) − (CaCyto−Camin)
τpump

.‍� (23)

Finally, removal of Ca2+ from the cytoplasm by the SERCA pump is modeled as

	﻿‍
JSERCA = GSERCA · [Ca]2

Cyto
K2

SERCA+[Ca]2
Cyto

,
‍�

(24)

where ‍GSERCA = 0.45 mM/ms‍ is the maximal flux through the SERCA pump, and ‍KSERCA = 7.5 · 10−5 mM‍ 
is a dissociation constant.

Nondimensionalization of similar models in past work (Wang and Rubin, 2017; Wang and Rubin, 
2020) has shown that ‍hNaP, l‍, and ‍[Ca]ER‍ are the slowest variables in the model and evolve on similar 
timescales, while ‍[Ca]Cyto‍ evolves on a faster timescale that is still significantly slower than that of the 
voltage dynamics and other current gating variables. Some subtleties arise in that different compo-
nents of the calcium dynamics evolve on different timescales and their influences depend on the levels 
of calcium present in various domains within the cell, but these subtleties are not considered in this 
article.

When we include multiple neurons in the network, we can index them with subscripts. The total 
synaptic conductance ‍(gSyn)i‍ of the ith target neuron is described by the following equation:

	﻿‍
(gSyn)i = gTonic +

∑
j̸=i;n

Wj,i · Dj · Cj,i · H(t − tj,n) · e−(t−tj,n)/τsyn ,
‍�

(25)

where ‍gTonic‍ is a fixed or tonic excitatory synaptic conductance (e.g., from respiratory control areas 
outside of the preBötC) that we assume impinges on all neurons, ‍Wj,i‍ represents the weight of the 
synaptic connection from neuron ‍j‍ to neuron i, ‍Dj‍ is a scaling factor for short-term synaptic depression 
in the presynaptic neuron ‍j‍ (described in more detail below), ‍Cj,i‍ is an element of the connectivity 
matrix (‍Cj,i = 1‍ if neuron ‍j‍ makes a synapse with neuron i and ‍Cj,i = 0‍ otherwise), ‍H(.)‍ is the Heaviside 
step function, and ‍t‍ denotes time. ‍τSyn‍ is an exponential synaptic decay constant, while ‍tj,n‍ is the time 
at which the nth action potential generated by neuron ‍j‍ reaches neuron i.

We included synaptic depression in our model because experiments have revealed that it contrib-
utes to termination of inspiratory activity in the preBötC (Kottick and Del Negro, 2015) and past 
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computational models have suggested that it might play an important role in preBötC network oscil-
lations (Rubin et al., 2009; Guerrier et al., 2015). Synaptic depression in the jth neuron (‍Dj‍) was simu-
lated using an established mean-field model of short-term synaptic dynamics (Abbott et al., 1997; 
Dayan and Abbott, 2001; Morrison et al., 2008) as follows:

	﻿‍
dDj
dt = D0−Dj

τD
− αD · Dj · δ(t − tj)‍� (26)

where the parameter ‍D0 = 1‍ sets the maximum value of ‍Dj‍, ‍τD = 1000 ms‍ sets the rate of recovery 
from synaptic depression, ‍αD = 0.2‍ sets the fractional depression of the synapse each time neuron ‍j‍ 
spikes, and ‍δ(.)‍ is the Kronecker delta function that equals 1 at the time of each spike in neuron ‍j‍ and 
0 otherwise. Parameters were chosen to qualitatively match data from Kottick and Del Negro, 2015. 
Note that with this choice of ‍τD‍ synaptic depression recovers on a timescale comparable to that of the 
other slowest variables in the model.

When we consider a two-neuron network (Figure 2), we take ‍W1,2 = W2,1 = 0.006‍ and ‍C1,2 = C2,1 = 1‍. 
For the full preBötC population model comprising rhythm- and pattern-generating subpopulations, 
the weights of excitatory conductances were uniformly distributed such that ‍Wj,i = U(0, WMax)‍ where 

‍WMax‍ is a constant associated with the source and target neurons’ populations; with each such pair, 
we also associated a connection probability and used this to randomly set the ‍Cj,i‍ values (see Table 3). 
Effects of opioids on synaptic transmission for source neurons in the rhythmogenic subpopulation 
(Figure 6) were simulated by scaling ‍Wj,i‍ with the parameter ‍γµOR‍, which ranged between 0 and 0.5 
and sets the percent synaptic block.

Network construction
The relative proportions of neurons assigned to the rhythm- and pattern-generating preBötC subpop-
ulations were chosen based on experimental data. For example, Kallurkar et al., 2020 found that 
‍20 ± 9%‍ of preBötC inspiratory neurons are active during burstlets at ‍KBath = 9 mM‍. Moreover, the 
rhythm- and pattern-generating neurons are hypothesized to be represented by the subsets of Dbx1-
positive preBötC neurons that are somatostatin-negative (‍SST−‍) and -positive (‍SST+‍), respectively (Cui 
et al., 2016; Ashhad and Feldman, 2020). Somatostatin-positive neurons are estimated to comprise 
72.6% of the ‍Dbx1+‍ preBötC population (Koizumi et  al., 2016). Therefore, our preBötC network 
was constructed such that the rhythm and pattern-forming subpopulations represent 25% and 75% 
of the ‍N = 400‍ neuron preBötC population (i.e., ‍NR = 100‍ and ‍NP = 300‍). The rhythm- and pattern-
generating neurons are distinguished by their ‍INaP‍, ‍ILeak‍, and ‍ICAN ‍ conductances. Also, we included 
the K+ leak current ‍IGIRK ‍ exclusively to the rhythm generating subpopulation, the activation of which 
we used as one representation of the effects of opioid application (Figure 6).

The synaptic connection probabilities within the rhythm- and pattern-generating neurons, 

‍PRR = 13%‍ and ‍PPP = 2%‍, were taken from previous experimental findings (Rekling et al., 2000 and 
Ashhad and Feldman, 2020, respectively). The connection probabilities between the rhythm- and 
pattern-generating populations are not known and in the model were set at ‍PRP = PPR = 30%‍ such 
that the total connection probability in the network is approximately 13% (Rekling et al., 2000).

Heterogeneity was introduced by normally distributing the parameters ‍gleak‍, ‍gNaP‍, and ‍gCAN ‍ as 
well as uniformly distributing the weights (‍Wj,i‍) of excitatory synaptic connections (see Table 2 and 
Table  3). Additionally, ‍gleak‍ was conditionally distributed with ‍gNaP‍ in order to achieve a bivariate 
normal distribution between these two conductances, as suggested by Del Negro et al., 2002a and 
Koizumi and Smith, 2008. In our simulations, this was achieved by first normally distributing ‍gNaP‍ 
in each neuron according to the values presented in Table 2. Then we used a property of bivariate 

Table 3. Maximal synaptic weights and connection probabilities between and within rhythm- and 
pattern-generating preBötC subpopulations (‍WMax, P‍).

Target

Rhythm Pattern

Source

Rhythm (0.15 nS, 0.13) (0.000175 nS, 0.3)

Pattern (0.25 nS, 0.3) (0.0063 nS, 0.02)

https://doi.org/10.7554/eLife.75713
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normal distribution, which says that the conditional distribution of ‍gleak‍ given ‍gNaP‍ is itself a normal 
distribution with mean (‍µ

∗
Leak‍) and standard deviation (‍σ

∗
Leak‍) described as follows:

	﻿‍ µ∗
Leak = µLeak + ρ · (σLeak/σNaP) · (gi

NaP − µNaP),‍� (27)

	﻿‍
σ∗

Leak =
√

(1 − ρ2) · σ2
Leak ‍� (28)

In these equations, ‍µLeak‍ and ‍µNaP‍ are the mean and ‍σLeak‍ and ‍σNaP‍ are the standard deviation of the 

‍gLeak‍ and ‍gNaP‍ distributions, while ‍ρ = 0.8‍ represents the correlation coefficient and ‍g
i
NaP‍ represents 

the persistent sodium current conductance for the ith neuron. All parameters are given in Table 2.

Activation dynamics of  ‍IHolo‍
Holographic stimulation was simulated by activating ‍IHolo‍ in small sets of randomly selected neurons 
across the preBötC population. Activation of this current was simulated by the following equation:

	﻿‍
dmHolo

dt = −mHolo
τHolo

+ δ(t − tstim)‍� (29)

where ‍mHolo‍ represents the channel activation and ranges between 0 and 1, ‍τHolo‍ represents the decay 
time constant, and ‍δ(.)‍ is the Kronecker delta function, which represents the instantaneous jump in 

‍mHolo‍ from 0 to 1 at the time of stimulation (‍tstim‍). Parameters were chosen such that the response in 
stimulated neurons matched those seen in Kam et al., 2013b. All parameters are given in Table 1.

Data analysis and definitions
Data generated from simulations was postprocessed in MATLAB (MathWorks, Inc). An action potential 
was defined to have occurred in a neuron when its membrane potential ‍Vm‍ increased through ‍−35 mV‍. 
Histograms of population activity were calculated as the number of action potentials per ‍20 ms‍ bin 
per neuron, with units of ‍APs/(s · neuron)‍. Network burst and burstlet amplitudes and frequencies were 
calculated by identifying the peaks and the inverse of the interpeak interval from the population histo-
grams. The thresholds used for burst and burstlet detection were ‍30 spk/s/N‍ and ‍2.5 spk/s/N‍, respec-
tively. For the simulated holographic stimulation simulations, the start of a network burst was defined 
as the time at which the integrated preBötC population activity increased through the threshold for 
burst detection, while the end of a network burst was defined as the time at which the integrated 
preBötC activity returned to exactly zero.

Integration methods
All simulations were performed locally on an 8-core Linux-based operating system or on compute 
nodes at the University of Pittsburgh’s Center for Research Computing. Simulation software was 
custom written in C++. Numerical integration was performed using the first-order Euler method with 
a fixed step-size (‍∆t‍) of ‍0.025 ms‍.
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