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Putting the theory into 'burstlet
theory’ with a biophysical model of
burstlets and bursts in the respiratory

preBotzinger complex
Ryan S Phillips*, Jonathan E Rubin*

Department of Mathematics and Center for the Neural Basis of Cognition, University
of Pittsburgh, Pittsburgh, United States

Abstract Inspiratory breathing rhythms arise from synchronized neuronal activity in a bilater-

ally distributed brainstem structure known as the preBétzinger complex (preBotC). In in vitro slice
preparations containing the preBotC, extracellular potassium must be elevated above physiological
levels (to 7-9 mM) to observe regular rhythmic respiratory motor output in the hypoglossal nerve to
which the preB6tC projects. Reexamination of how extracellular K* affects preBstC neuronal activity
has revealed that low-amplitude oscillations persist at physiological levels. These oscillatory events
are subthreshold from the standpoint of transmission to motor output and are dubbed burstlets.
Burstlets arise from synchronized neural activity in a rhythmogenic neuronal subpopulation within
the preBo&tC that in some instances may fail to recruit the larger network events, or bursts, required
to generate motor output. The fraction of subthreshold preBo6tC oscillatory events (burstlet frac-
tion) decreases sigmoidally with increasing extracellular potassium. These observations underlie

the burstlet theory of respiratory rhythm generation. Experimental and computational studies have
suggested that recruitment of the non-rhythmogenic component of the preBstC population requires
intracellular Ca?* dynamics and activation of a calcium-activated nonselective cationic current. In

this computational study, we show how intracellular calcium dynamics driven by synaptically trig-
gered Ca”" influx as well as Ca®* release/uptake by the endoplasmic reticulum in conjunction with a
calcium-activated nonselective cationic current can reproduce and offer an explanation for many of
the key properties associated with the burstlet theory of respiratory rhythm generation. Altogether,
our modeling work provides a mechanistic basis that can unify a wide range of experimental findings
on rhythm generation and motor output recruitment in the preBotC.

Editor's evaluation

This article is of significant interest to readers in the field of neural control of breathing and for
researchers interested in the generation of neuronal rhythms in general. The study assembles a
sophisticated computational modeling approach to test long-standing theories and emerging views
in neural control of breathing and more specifically on biophysical mechanisms of burstlet genera-
tion in the respiratory network (the preBétzinger complex network). This work is an important contri-
bution to a better understanding of the respiratory rhythm generation, will help validate (or not)
running hypotheses and will guide future experiments.
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Introduction

The complex neurological rhythms produced by central pattern generators (CPGs) underlie numerous
behaviors in healthy and pathological states. These activity patterns also serve as relatively experimen-
tally accessible instances of the broader class of rhythmic processes associated with brain function. As
such, CPGs have been extensively studied using a combination of experimental and computational
approaches. The inspiratory CPG located in the preBétzinger complex (preBotC) in the mammalian
respiratory brainstem is perhaps one of the most intensively investigated CPGs. Despite decades
of research, the mechanisms of rhythm and pattern generation within this circuit remain unresolved
and highly controversial; however, it appears that the pieces may now be in place to resolve this
controversy.

Much of the debate in contemporary research into the mechanisms of preB6tC rhythm and pattern
generation revolves around the roles of specific ion currents, such as Iy,p and Icay (Thoby-Brisson
and Ramirez, 2001; Del Negro et al., 2002a; Koizumi and Smith, 2008; Koizumi et al., 2018,
Picardo et al., 2019), and whether the observed rhythm is driven by an emergent network process
(Rekling and Feldman, 1998; Del Negro et al., 2005; Del Negro et al., 2002b; Del Negro et al.,
2002b; Rubin et al., 2009; Sun et al., 2019; Ashhad and Feldman, 2020) and/or by intrinsically
rhythmic or pacemaker neurons (Johnson et al., 1994; Koshiya and Smith, 1999, Pefia et al., 2004).
This debate is fueled by seemingly contradictory pharmacological blocking studies (Del Negro et al.,
2002a; Peiia et al., 2004; Del Negro et al., 2005; Pace et al., 2007b; Koizumi and Smith, 2008) and
by new experimental studies (Kam et al., 2013a; Feldman and Kam, 2015; Kallurkar et al., 2020;
Sun et al., 2019, Ashhad and Feldman, 2020) that challenge existing conceptual and computational
models about the generation of activity patterns in the preBétC and underlie the so-called burstlet
theory of respiratory rhythm generation.

A simple but reasonable hypothesis would be that a group of dedicated preB&tC neurons
produces a rhythmic output that induces inspiratory movement of the diaphragm, with the strength
of that output tuned by some combination of the intensity of firing of these neurons and the number
of neurons that become active. The conceptual framework of burstlet theory posits a more compli-
cated two-stage view: first, inspiratory oscillations arise from an emergent, repetitive network
process in a specific preB6tC subpopulation dedicated to rhythm generation. These oscillations can
continue independent of their downstream impact. Second, for inspiration to occur on a particular
oscillation cycle, this initial activity must recruit a secondary pattern-generating subpopulation to
magnify the oscillation into a full network burst capable of eliciting motor output. This hypothesis is
supported by experimental preparations that compared local preB6tC neuronal activity and motor
output at the hypoglossal (XIl) nerve in medullary slices. These studies found that in a low excit-
ability state (controlled by the bath K* concentration, Kp), the preBotC generates a regular rhythm
featuring a mixture of large and small amplitude network oscillations, dubbed bursts and burstlets,
respectively, with only the bursts eliciting XIl motor output (Kam et al., 2013a). Moreover, the frac-
tion of low-amplitude preBotC events (burstlet fraction) sigmoidally decreases with increasing Kpq
and only a subset of preBotC neurons are active during burstlets (Kallurkar et al., 2020). Impor-
tantly, preBotC bursts can be blocked by application of cadmium (Cd?*), a calcium channel blocker,
without affecting the ongoing burstlet rhythm (Kam et al., 2013a; Sun et al., 2019), supporting
the idea that rhythm generation occurs in a distinct preBotC subpopulation from pattern gener-
ation and demonstrating that conversion of a burstlet into a burst is a Ca®*-dependent process.
Finally, rhythm generation in the burstlet population is hypothesized to result from an emergent
network percolation process. This last idea was developed to explain holographic photostimula-
tion experiments, which found that optically stimulating small subsets (4-9) of preB&tC inspiratory
neurons were sufficient to reliably evoke endogenous-like Xl inspiratory bursts with delays aver-
aging 255 + 45ms (Kam et al., 2013b). The small number of neurons required to evoke a network
burst superficially seems to be at odds with reported sparse connectivities among preBotC neurons
(Rekling et al., 2000), while models that can capture this effect via fast threshold modulation (Rubin
and Terman, 2002) or the presentation of multiple stimulus pulses in a model of network bursting
driven by synaptic dynamics (Guerrier et al., 2015) do not produce such extended delay durations.
Additionally, these delays are on a similar timescale to the ramping pre-inspiratory neuronal activity
that precedes network-wide inspiratory bursts, leading to the hypothesis that stimulation of this
small set of preB6tC neurons kicks off an endogenous neuronal percolation process underlying
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rhythm generation, which could be initiated by the near-coincident spontaneous spiking of a small
number of preBotC neurons.

The experimental underpinning of burstlet theory challenges current ideas about inspiratory rhythm
and pattern generation. However, the proposed mechanisms of burst and burstlet generation remain
hypothetical and, to date, there has not been a quantitative model that provides a unified, mecha-
nistic explanation for the key experimental observations or that validates the conceptual basis for this
theory. Interestingly, key components of burstlet theory, namely, that inspiratory rhythm and pattern
are separable processes and that large amplitude network-wide bursts depend on calcium-dependent
mechanisms, are supported by recent experimental and computational studies. Specifically, Koizumi
et al., 2018 and Picardo et al., 2019 showed that the amplitude (i.e., pattern) of preBstC and Xll
bursts is controlled, independently from the ongoing rhythm, by the transient receptor potential
channel (TRPM4), a calcium-activated nonselective cation current (Icay). These findings are consis-
tent with burstlet theory as they demonstrate that rhythm and pattern are separable processes at
the level of the preBotC. Moreover, these experimental observations are robustly reproduced by a
recent computational modeling study (Phillips et al., 2019a), which shows that pattern generation
can occur independently of rhythm generation. Consistent with burstlet theory, this model predicts
that rhythm generation arises from a small subset of preB6tC neurons, which in this model form a
persistent sodium (Iy,p)-dependent rhythmogenic kernel, and that rhythmic synaptic drive from these
neurons triggers postsynaptic calcium transients, Icay activation, and amplification of the inspiratory
drive potential, which drives bursting in the rest of the network.

These recent results suggest that conversion of burstlets into bursts may be Ca®* and Ic4y depen-
dent, occurring when synaptically triggered calcium transients in non-rhythmogenic preB6tC neurons
are intermittently large enough for Icay activation to occur and to yield recruitment of these neurons
into the network oscillation. The biophysical mechanism responsible for periodic amplification of
Ca?* transients is not known, however. In this computational study, we put together and build upon
these previous findings to show that periodic amplification of synaptically triggered Icay transients by
calcium-induced calcium release (CICR) from intracellular stores provides a plausible mechanism that
can produce the observed conversion of burstlets into bursts and can explain diverse experimental
findings associated with this process. Altogether, our modeling work suggests a plausible mechanistic
basis for the conceptual framework of burstlet theory and the experimental observations that this
theory seeks to address.

Results

CICR periodically amplifies intracellular calcium transients

Ouir first aim in this work was to test whether CICR from endoplasmic reticulum (ER) stores could repet-
itively amplify synaptically triggered Ca?* transients. To address this aim, we constructed a cellular
model that includes the ER. The model features a Ca®* pump, which extrudes Ca®* from the intracel-
lular space, a sarcoendoplasmic reticulum calcium transport ATPase (SERCA) pump, which pumps Ca**
from the intracellular space into the ER, and the Ca®*-activated inositol trisphosphate (IP3) receptor
(Figure 1A). To simulate calcium transients synaptically generated from a rhythmogenic source (i.e.,
burstlets), we imposed a square wave Ca®" current into the intracellular space with varied frequency
and amplitude but fixed duration (250 ms) and monitored the resulting intracellular Ca** transients.
Depending on parameter values used, we observed various combinations of low- and high-amplitude
Ca? responses and characterized how the fraction of Ca?* transients that have low amplitude depends
on values selected within the 2D parameter space parameterized by Ca?" pulse frequency and ampli-
tude. We found that the fraction of low-amplitude Ca?* transients decreases as either or both of the
Ca** pulse frequency and amplitude are increased (Figure 1B and example traces C1-C4).

Bursts and burstlets in a two-neuron preB6tC network

Next, we tested whether the CICR mechanism (Figure 1) could drive intermittent recruitment in a recip-
rocally connected two-neuron network that includes one intrinsically rhythmic and one nonrhythmic
neuron as a preliminary step towards considering the rhythm and pattern-generating subpopulations
of the preB&tC suggested by burstlet theory (Kam et al., 2013a; Cui et al., 2016; Kallurkar et al.,
2020, Ashhad and Feldman, 2020) and recent computational investigation (Phillips et al., 2019a). In
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Figure 1. A periodic input in the form of a calcium current drives intermittent calcium-induced calcium release (CICR) from endoplasmic reticulum (ER)
stores. (A) Schematic diagram of the model setup showing square wave profile of Ca?* current input into the intracellular space, uptake of Ca®* into the
ER by the sarcoendoplasmic reticulum calcium transport ATPase (SERCA) pump, Ca?* release through the IP3 receptor, and extrusion of Ca*" through

a pump in the cell membrane. (B) Fraction of low-amplitude intracellular Ca?* transients as a function of the Ca®" pulse frequency and amplitude.

Pulse duration was fixed at 250 ms. (C1-C4) Example traces showing several ratios of low- and high-amplitude Ca?* transients and the dynamics of the
ER stores Ca?" concentration. Inset in C2 highlights the delay between pulse onset and CICR. The pulse amplitude and frequency for each trace are
indicated in panel (B).

The online version of this article includes the following source data for figure 1:

Source data 1. Calcium-induced calcium release.

this network, neuron 1 is an Iy,p-dependent intrinsically bursting neuron, with a burst frequency that
is varied by injecting an applied current, Iypp (Figure 2A2-A3). The rhythmic bursting from neuron 1
generates periodic postsynaptic currents (Igy,) in neuron 2, carried in part by Ca®* ions, which are anal-
ogous to the square wave Ca?* current in Figure 1. The amplitude of the postsynaptic Ca** transient
is determined by the number of spikes per burst (Figure 2A4) and by the parameter Pgy,cq, which
determines the percentage of Iy, carried by Ca?* ions (see ‘Materials and methods’ for a full descrip-
tion of these model components). Conversion of a burstlet (isolated neuron 1 burst) into a network
burst (recruitment of neuron 2) is dependent on CICR (see Figure 2—figure supplement 1), which
increases intracellular calcium above the threshold for Ic4y activation.

In the reciprocally connected network, we first quantified the dependence of the burstlet fraction,
which was defined as the number of burstlets (neuron 1 bursts without recruitment of neuron 2)
divided by the total number of burstlets and network bursts (bursts in neuron 1 with recruitment of
neuron 2), on Inpp and Pgyucq. Increasing Iypp increases the burst frequency in neuron 1 and decreases
the number of spikes per neuron 1 burst (Figure 2A3 and A4), consistent with past literature (Butera
et al., 1999, Del Negro et al., 2001). These changes do not strongly impact the burstlet fraction until
I4pp grows enough, at which point the shorter, more rapid bursts of neuron 1 become less effective
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Figure 2. Bursts and burstlets in a two-neuron preBétzinger complex (preBétC) network. (A1) Schematic diagram of the synaptically uncoupled network.
The rhythm- and pattern-generating components of the network are represented by neurons 1 and 2, respectively. (A2) Example trace showing intrinsic
bursting in neuron 1 and quiescence in neuron 2. (A3) Burst frequency and (A4) the number of spikes per burst in neuron 1 as a function of an applied
current (I4pp). Neuron 2 remained quiescent within this range of I4pp. (B1) Schematic diagram of the synaptically coupled network. (B2-B4) 2D plots
characterizing the (B2) burstlet fraction, (B3) neuron 2 (burst) frequency, and (B4) neuron 2 spikes per burst (burst amplitude) as a function of I4pp and
Pgynca. (C1-C4) Example traces for neurons 1 and 2 for various Iapp and Pgy,cq values indicated in (B2-B4). Notice the scale bar is 100s in C1 and 10s
in (C2-C4). Inset in (C1) shows the burst shape not visible on the 100 s timescale. The model parameters used in these simulations are: (neurons 1 and 2)
Kpan, = 8mM, grear = 3.351nS, Wiy = Wy = 0.006nS; (neuron 1) gnap = 3.331S, gcay = 0.0nS, (neuron 2) gnep = 1.5nS, geay = 1.5nS.

The online version of this article includes the following source data and figure supplement(s) for figure 2:
Source data 1. Burstlets and bursts in a two-neuron network.

Figure supplement 1. Without calcium-induced calcium release (CICR), the two-neuron network fails to generate bursts (recruitment of neuron 2).

at recruiting neuron 2 and thus the burstlet fraction increases (Figure 2B2; note that increasing Ipp
corresponds to a horizontal cut through the panel). In general, increasing Pgy,c, decreased the burstlet
fraction (i.e., increased the frequency of neuron 2 recruitment) by causing a larger calcium influx with
each neuron 1 burst (see Figure 2B2 and C1-C4).

The burst frequency in neuron 2 is determined by the burst frequency of neuron 1 and the burstlet
fraction. These effects determine the impact of changes in Pgyuc, and I4pp on neuron 2 burst frequency
(Figure 2B3). As I5pp increases, the rise in burstlet frequency implies that neuron 2 bursts in response
to a smaller fraction of neuron 1 bursts, yet the rise in neuron 1 burst frequency means that these
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bursts occur faster. These two effects can balance to yield a relatively constant neuron 2 frequency,
although the balance is imperfect and frequency does eventually increase. Increases in Pgy,c, more
straightforwardly lead to increases in neuron 2 burst frequency as the burstlet fraction drops.

Finally, the number of spikes per burst in neuron 2 is not strongly affected by changes in I4pp and
Psyncq (Figure 2B4), suggesting an all-or-none nature of recruitment of bursting in neuron 2. Interest-
ingly, the period between network bursts (i.e., time between neuron 2 recruitment events) can be on
the order of hundreds of seconds (e.g., Figure 2C1). This delay is consistent with some of the longer
timescales shown in experiments characterizing bursts and burstlets (Kallurkar et al., 2020).

CICR supports bustlets and bursts in a data-constrained preBétC
network model

Next, we tested whether the CICR mechanism presented in Figures 1 and 2 could underlie the
conversion of burstlets into bursts in a larger preB6tC model network including rhythm- and pattern-
generating subpopulations (see ‘Data analysis and definitions’ section for details on how these are
distinguished in the network setting) and whether this network could capture the Kj,;,-dependent
changes in the burstlet fraction characterized in Kallurkar et al., 2020. Kp,,, sets the extracellular K*
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Figure 3. Intrinsic cellular and network dynamics depend on the bath potassium concentration. (A) Schematic diagram of an isolated model
preBotzinger complex (preB6tC) neuron showing the simulated ion channels involved in AP generation, excitability, and burst generation, as well as
indication of currents directly affected by changing the bath potassium concentration (Kp4p). (B) Dependence of potassium (Ex) and leak (Epoqx)
reversal potentials on Kpqy. Black dots indicate experimentally measured values for Ex and Ef .4 from Koizumi and Smith, 2008. (C) Dependence of
intrinsic cellular dynamics on Kpuh, &Leak. and gnap- Black curve represents the relationship between Kpgs, and greqr used in the full preBotC network.
(D) Schematic diagram of size and connectivity probabilities of the rhythm- and pattern-generating populations within the preB&tC model. (E) 2D

plot between gnup and g1 .ax showing the location of the intrinsic bursting regime for varied concentrations of Kpy,. The distributions of neuronal
conductances in the rhythm- and the pattern-generating populations are indicated by the blue dots and red squares, respectively.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Bath potassium concentration dependence of cellular and network dynamics.

Figure supplement 1. Dependence of intrinsic cellular dynamics and the number of spikes per burst on Kpyy, and greak-
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concentration, which in turn determines the driving force for any ionic currents that flux K*. In preB&tC
neurons, these currents include the fast K* current, which is involved in action potential generation,
and the K*-dominated leak conductance, which primarily affects excitability (Figure 3A). In our simu-
lations, we modeled the potassium (Ek) and leak (Ej..) reversal potentials as functions of Ky, using
the Nernst and Goldman-Hodgkin—Katz equations. The resulting curves were tuned to match existing
data from Koizumi and Smith, 2008, as shown in Figure 3B. In our simulations, we found that intrinsic
bursting is extremely sensitive to changes in Kj,;,. However, with increasing Kpy,, intrinsic bursting
could be maintained over a wide range of K* concentrations when accompanied by increases in gy,
(Figure 3C). Additionally, the number of spikes per burst in the bursting regime increases with Kju;,
(Figure 3—figure supplement 1). This Kj,;-dependence of gy .. is consistent with experimental data
showing that neuronal input resistance decreases with increasing Ky, (Okada et al., 2005).

To construct a model preBotC network, we linked rhythm- and pattern-generating subpopula-
tions via excitatory synaptic connections within and between the two populations (Figure 3D). We
distinguished the two populations by endowing them with distinct distributions of persistent sodium
current conductance (gnqp), as documented experimentally (Del Negro et al., 2002a; Koizumi and
Smith, 2008). In both populations, we maintained the dependence of g; .. on Ky (see Figure 3C
and E).

For the full preBotC network model, we first characterized the impact of changes in Kj,;, on
network behavior without calcium dynamics by setting Ps,,c, = 0. This network condition is analogous
to in vitro preparations where all Ca®* currents are blocked by Cd?* and the preB&tC can only generate
burstlets (Kam et al., 2013a; Sun et al., 2019). Not surprisingly, with calcium dynamics blocked, we
found that the network can only generate small amplitude network oscillations (burstlets) that first
emerge at approximately Kp,;, =5mM (Figure 4A). Moreover, under these conditions, increasing
Kpam results in an increase in the burstlet frequency and amplitude (Figure 4B and C), which is consis-
tent with experimental observations (Kallurkar et al., 2020).

In the full network with calcium dynamics (Psy,c, > 0), burstlets generated by the rhythmogenic
subpopulation will trigger postsynaptic calcium transients in the pattern-generating subpopulation.
Therefore, in this set of simulations the burstlet activity of the rhythm generating population plays an
analogous role to the square wave Ca®* current in Figure 1 and to bursts of the intrinsically rhythmic
neuron in Figure 2. Hence, we characterized the burstlet fraction, burst frequency, and burst ampli-
tude — with a burst defined as an event in which a burstlet from the rhythm generating population
recruits a burst in the pattern-generating population — in the full preB6tC model network as a function
of Kpam and Psy,cq (Figure 4D-F). In this case, the frequency of the postsynaptic Ca®" oscillation is
controlled by K., (Figure 4B). However, because Kp,, also affects burstlet amplitude (Figure 4C),
the postsynaptic Ca®* amplitude is determined by both Kju, and Psyucq. If Kpan is held fixed, then
modulating Psy,c, will only affect the amplitude of the postsynaptic Ca®* transient since burstlet
amplitude will not be impacted. The effects of selectively changing the postsynaptic Ca** amplitude
on the full network can thus be extracted by considering a vertical slice through Figure 4E-F. Note
that in the simulations that we show here burstlet generation arises from a mechanism based on Iy,p;
however, we obtain similar network results if we impose burstlet activity on the burstlet subpopulation
and maintain the coupling between populations and Ca®* dynamics for burst recruitment (Figure 4—
figure supplement 1).

We found that increasing Psyuc, or Kpan generally decreases the burstlet fraction, increases burst
frequency, and slightly increases the burst amplitude (Figure 4D-F and G1-G). The decrease in the
burstlet fraction with increasing Kju; or Psyncq is caused by the increase in the burstlet amplitude
(Figure 4C) or in Ca?* influx with each burstlet, respectively, both of which increase the Ca?* transient
in the pattern-generating subpopulation. The increase in burst frequency with increases in Ky, or
Psynca is due to the decreased burstlet fraction (i.e., the burstlet to burst transitions occur on a greater
proportion of cycles) and, in the case of Kp.;, by an increase in the burstlet frequency (Figure 4B).
The slight increase in burst amplitude with increasing K., is largely due to the increase in the burstlet
amplitude (Figure 4C). Figure 4H highlights the relative shape of burstlets and bursts as well as the
delay between burstlet generation and recruitment of the pattern-generating population and simu-
lated hypoglossal output, which agrees qualitatively with experimental observations (Kallurkar et al.,
2020). Experimentally, it is likely that postsynaptic Ca?* transients will increase with increasing Kpu
due to the change in the resting Vi, in nonrhythmic preBotC neurons (Tryba et al., 2003) relative to
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Figure 4. Burstlets and bursts in a 400-neuron preBotzinger complex (preBétC) network model with and without calcium dynamics. (A) Rhythmogenic
output of the simulated network without calcium dynamics (Psyucqa = 0) as a function of Kpgy,. These oscillations are considered burstlets as they are
incapable of recruiting the pattern-generating population without calcium dynamics. (B) Frequency and (C) amplitude of the burstlet oscillations as a

function of Kpuy,. (D-F) 2D plots characterizing the (D) burstlet fraction, (E) the burst frequency, and (F) the burst amplitude as a function of Kpgy, and

Figure 4 continued on next page
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Figure 4 continued

Pgynca (note that the Pgyuc, range shown does not start at 0). (G1-G4) Example traces illustrating a range of possible burstlet fractions generated by
the network. Burstlets are indicated by asterisks. (H) Overlay of the average population voltage during bursts and burstlets. The hypoglossal output is
calculated by passing the mean population amplitude through a sigmoid function f= —60.5 + 60/[1 + e~ 0251 () Burstlet fraction as a function of
Kpam for the four example traces indicated in panels (G1-G4). Figure 41 has been adapted from Figure 1B from Kallurkar et al., 2020.

The online version of this article includes the following source data and figure supplement(s) for figure 4:
Source data 1. Burstlets and Bursts in a larger network.

Figure supplement 1. Burstlets and bursts in a 400-neuron preBétzinger complex (preB&tC) network model with an imposed burstlet rhythm.

the voltage-gated activation dynamics of postsynaptic calcium channels (Elsen and Ramirez, 1998);
see ‘Discussion” for a full analysis of this point. Interestingly, in our simulations, increasing Psyucq (i.e.,
the amplitude of the postsynaptic calcium transients) with K., (Figure 4 traces G1-G4) generated
Kpam-dependent changes in the burstlet fraction that are consistent with experimental observations
(Kallurkar et al., 2020; see Figure 4l).

Note that our model includes synaptic connections from pattern-generating neurons back to
rhythm-generating neurons. These connections prolong activity of rhythmic neurons in bursts, relative
to burstlets, which in turn yields a longer pause before the next event (e.g., Figure 4G1). This effect
can constrain event frequencies somewhat in the fully coupled network relative to the feedforward
case (e.g., frequencies in Figure 4B exceed those in Figure 4E for comparable K., levels).

Calcium and i,y block have distinct effects on the burstlet fraction

Next, we further characterized the calcium dependence of the burstlet to burst transition in our
model by simulating calcium blockade or Iy blockade by a progressive reduction of Psy,c, or gcan,
respectively. We found that complete block of synaptically triggered Ca?* transients or Icyy block
eliminates bursting without affecting the underlying burstlet rhythm (Figure 5A and B). Interestingly,
progressive blockades of each of these two mechanisms have distinct effects on the burstlet frac-
tion: blocking postsynaptic Ca** transients increases the burstlet fraction by increasing the number of
burstlets required to trigger a network burst, whereas Ic4y block only slightly increases the burstlet
fraction (Figure 5C). In both cases, however, progressive blockade smoothly decreases the ampli-
tude of network bursts (Figure 5D). The decrease in amplitude in the case of Icay block is due
to derecruitment of neurons from the pattern-forming subpopulation and a decrease in the firing
rate of the neurons that remain active, whereas in the case of Ca?* block the decrease in amplitude
results primarily from derecruitment (Figure 5E and F). These simulations provide mechanism-specific
predictions that can be experimentally tested.

Dose-dependent effects of opioids on the burstlet fraction
Recent experimental results by Baertsch et al., 2021 showed that opioid application locally within the
preBotC decreases burst frequency but also increases the burstlet fraction. In the preB6tC, opioids
affect neuronal dynamics by binding to the p-opioid receptor (UOR). The exact number of preB6tC
neurons expressing HOR is unclear; however, the number appears to be small, with estimates ranging
from 8% to 50% (Bachmutsky et al., 2020; Baertsch et al., 2021; Kallurkar et al., 2021). Addition-
ally, pOR is likely to be selectively expressed on neurons involved in rhythm generation, given that
opioid application in the preB6tC primarily impacts burst frequency rather than amplitude (Sun et al.,
2019, Baertsch et al., 2021). Importantly, within the preB&tC, opioids ultimately impact network
dynamics through two distinct mechanisms: (1) hyperpolarization, presumably via activation of a
G protein-gated inwardly rectifying potassium leak (GIRK) current (Kubo et al., 1993; Gray et al.,
1999, Montandon et al., 2016), and (2) decreased excitatory synaptic transmission, presumably via
decreased presynaptic release (Ballanyi et al., 2009; Wei and Ramirez, 2019, Baertsch et al., 2021).
Taking these considerations into account, we tested if our model could explain the experimental
observations. Specifically, we simulated opioids as having a direct impact only on the neurons within
the rhythmogenic population and their synaptic outputs (Figure 6A). To understand how preBotC
network dynamics are impacted by the two mechanisms through which opioids have been shown to
act, we ran separate simulations featuring either activation of GIRK channels or block of the synaptic
output from the rhythmogenic subpopulation (Figure 6B-F). We found that both GIRK activation
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Figure 5. Effect of Ca’* and CAN current blockade on burstlets and bursts. Network traces showing the effect of (A) calcium current blockade (Pgy,cqa
reduction) and (B) CAN current blockade (gcan reduction) on the period and amplitude of bursts. Effects of calcium or Icgn blockade on (C) the
burstlet fraction, (D) the amplitude of bursts and (E) the number of recruited and (F) peak firing rate of recruited neurons in pattern-generating
subpopulation during network bursts as a function of the blockade percentage.
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Figure 5 continued
The online version of this article includes the following source data for figure 5:

Source data 1. Simulated calcium or CAN current blockade.

and synaptic block reduced the burst frequency (Figure 6D) and slightly increased burst amplitude
(Figure 6E). The decreased frequency with synaptic block comes from an increase in the burstlet frac-
tion, whereas GIRK activation kept the burstlet fraction constant while reducing the burstlet frequency
(Figure 6F). Finally, combining these effects, we observed that simultaneously increasing the GIRK
channel conductance and blocking the synaptic output of pOR-expressing neurons in our simulations
generates slowing of the burst frequency and an increase in the burstlet fraction consistent with in
vitro experimental data (Figure 6D-G).

Simultaneous stimulation of subsets of preB6tC neurons elicits network
bursts with long delays

Simultaneous stimulation of 4-9 preB&tC neurons in in vitro slice preparations has been shown to
be sufficient to elicit network bursts with similar patterns to those generated endogenously (Kam
et al., 2013b). These elicited bursts occur with delays of several hundred milliseconds relative to the
stimulation time, which is longer than would be expected from existing models. Interestingly, in the
current model, due to the dynamics of CICR, there is a natural delay between the onset of burstlets
and the recruitment of the follower population that underlies the transition to a burst. Therefore, we
investigated whether our model could match and explain the observations seen in Kam et al., 2013b.

In our model, we first calibrated our stimulation to induce a pattern of spiking that is comparable to
the patterns generated in Kam et al., 2013b (10-15 spikes with decrementing frequency, Figure 7A).
We found that stimulation of 3-9 randomly selected neurons could elicit network bursts with delays
on the order of hundreds of milliseconds (Figure 7B and C). Next, we characterized (1) the probability
of eliciting a burst, (2) the delay in the onset of elicited bursts, and (3) the variability in delay, each as a
function of the time of stimulation relative to the end of an endogenous burst (i.e., a burst that occurs
without stimulation) and of the number of neurons stimulated (Figure 7D-F). In general, we found
that increasing the number of stimulated neurons increases the probability of eliciting a burst and
decreases the delay between stimulation and burst onset. Moreover, the probability of eliciting a burst
increases and the delay decreases as the time after an endogenous burst increases (Figure 7G and H).
Additionally, with its baseline parameter tuning, our model had a refractory period of approximately
1 s following an endogenous burst during which stimulation could not evoke a burst (Figure 7). The
refractory period in our model is longer than measured experimentally (500 ms) (Kam et al., 2013b).

To determine the mechanisms involved in the refractoriness, we plotted the time courses of key
slow variables in the model, namely, persistent sodium inactivation hy,p, ER calcium ([Calgg), and
synaptic depression D, over one burst cycle in the absence of stimulation (see Figure 7—figure
supplement 1). We found that the recovery from synaptic depression and the deinactivation of hy,p
were the two slow processes with time courses that aligned with the loss of refractoriness. Thus, in
our model, it appears that these two factors are crucial to the probability that a stimulus will elicit a
sustained response, while calcium-related effects predominantly relate to the recruitment process by
which such a response develops into a burst.

To conclude our investigation, we examined how changes in the connection probability within
the pattern-forming population (Ppp) affect the refractory period, probability, and delay of evoked
bursts following simultaneous stimulation of 3-9 randomly selected neurons in the preBétC popula-
tion. We focused on the pattern-forming population because it comprises 75% of the preB6tC popu-
lation, and, therefore, neurons from this population are most likely to be stimulated and the synaptic
projections from these neurons are most likely to impact the properties of evoked bursts. To avoid a
confound that would arise if increased connection probability led to overall stronger synaptic input,
we adjusted Wpp to compensate for changes in Ppp and keep the network synaptic strength, defined
as S = Np - Ppp - Wpp, at a constant value.

With this scaling, we found that decreasing/increasing Ppp decreased/increased the refractory
period (Figure 8A-C) by impacting the probability of eliciting a burst in the period immediately after
an endogenous burst (Figure 8D and E). More specifically, the change in the probability of evoking
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Figure 6. Simulated p-opioid receptor (WUOR) activation by local DAMGO application in the preBoétzinger complex (preBétC) and comparison with
experimental data. (A) Schematic preB&tC network diagram showing the location of pOR. Example traces showing the effect of progressive (from top
to bottom) (B) ggirx channel activation and (C) synaptic block on the network output. Quantification of ggrk activation or synaptic block by pOR on the
(D) burst frequency, (E) burst amplitude, and (F) burstlet fraction. Error bars indicate SD. (G) Example traces showing the effects of progressive increases

Figure 6 continued on next page
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in gairk and synaptic block on network output. Burstlets are indicated by blue asterisks. The parameters for each case are as follows: (BL) gz = 0.0nS,
YuOR = 0.0; (1) 8GIRK = 0.031034 nS, YuOR = 0.81034; (2) 8GIRK = 0.093103 nS, YuOR = 0.7069; (3) 8GIRK = 0.14483 nS, YuOR = 0.68966; (4) 8GIRK = 0.19655 HS,
Yuor = 0.58621. Comparison of experimental data and the effects of progressive increases in ggirx and synaptic block on the (H) frequency and

(I) amplitude of bursts as well as (J) the burstlet fractions for the traces shown in (G). Figure 6H and J have been adapted from Figure 3C and E from
Baertsch et al., 2021. The effects of DAMGO on burst amplitude were not quantified in Baertsch et al., 2021.

The online version of this article includes the following source data for figure 6:

Source data 1. Effects of simulated opioids on burstlets and bursts.

a burst, with decreased/increased Ppp, is indicated by a leftward/rightward shift in the probability vs.
stimulation time curves relative to a control level of Ppp (Ppp = 2%) (see Figure 8D and E). That is,
relatively small connection probabilities with large connection strengths lead to network dynamics
with a shorter refractory period when stimulation cannot elicit a burst and a higher probability that a
stimulation at a fixed time since the last burst will evoke a new burst.

It may seem surprising that networks with smaller connection probabilities exhibit a faster emer-
gence of bursting despite their larger connection weights since intuitively, with lower connection
probabilities, fewer neurons could be recruited by each action potential, resulting in longer, more
time-consuming activation pathways. A key point, however, is that when connection weights are
larger, fewer temporally overlapping inputs are needed to recruit each inactive neuron. For example,
suppose that we fix Np and Wpp, and we take Ppp to scale as 1/Np. The minimal number of inputs
from active neurons needed to activate an inactive neuron depends on the synaptic weight, Wpp.
Let r denote this number for the specific value of Wpp that we have selected. We can approximate
the expected number of neurons receiving r or more inputs from A active neurons by computing the
expected number receiving exactly r inputs, which we denote as [I;], where the brackets indicate
an expectation or average. For a network with a random connectivity profile, this expected value is
computed from the binomial formula as

= () 08"

Suppose that next we consider another network in which we double Ppp and halve Wpp, thus
keeping their product constant. For this smaller Wpp, more inputs will be needed to activate an inac-
tive neuron. Specifically, assume that now at least 2r inputs are needed for activation. The expected
number of neurons receiving 2r inputs, [I,], is given by

[I,] = A (N%))Zr (1 B N%))A—Zr.

An elementary calculation shows that [I,] < [I,] for relevant parameter values (such as Np =300
and small r as indicated by the stimulation experiments). Thus, increasing Ppp and proportionally
scaling down Wpp reduces the chance of successful recruitment of inactive neurons by active neurons.

Interestingly, our simulations suggest that the connection probability in the pattern-generating
population must be between 1% and 2% to match the approximately 500 ms refractory period
measured experimentally (Kam et al., 2013b; Figure 8F). Surprisingly, the mean and distribution
of delays from stimulation to burst for all successfully elicited bursts are not strongly affected by
changes in Ppp (Figure 8F). For a given stimulation time and number of neurons stimulated, however,
decreasing Ppp decreases the delay of elicited bursts (Figure 8G). Finally, because the neurons in the
pattern-generating population appear to play a dominant role in determining if stimulation will elicit
a network burst, we characterized how the number of pattern-generating neurons stimulated, out of
a total set of nine stimulated neurons, affects the probability of eliciting a network burst as a function
of stimulation time (Figure 8H). These simulations were carried out under a baseline condition of
Ppp =2%. In general, we found that stimulating a relatively larger proportion of pattern-generating
neurons increased the probability of eliciting a network burst for all times after the approximately 1

Phillips and Rubin. eLife 2022;11:e75713. DOI: https://doi.org/10.7554/eLife.75713 13 of 30


https://doi.org/10.7554/eLife.75713

Computational and Systems Biology | Neuroscience

C
| ~_occc00000 0 o o ¥ 500_ms
D 1 F 0.3
29 -
% 3 i L - §e) 02 >
-z /P & 6= 1 ¢& <2
] > - O > - )
EE°NE S 04818 a
5558 g S I 015
ERE 2 2 1%
n 3 0 - 0
1 2 _ 3 1 2 _ 3 0o 1 2 _ 3
Stimulation Time (s) Stimulation Time (s) Stimulation Time (s)
G H |
1, 15 15001 Eyoked
. 0.8 0.8 12504 ENndo. e
= “ - |
3 06] 2 061 g 1900
© ©
o) T o 7501
© 04 A 044 v Refractory
o 500+ Period
0.2+ 0.2+ 250 i
0 0 v r r 0
0 1 2 3 0 1 2 3 -3 -2 - 0 1
Stimulation Time (s) Stimulation Time (s) Time (s)

Figure 7. Evoked population bursts by simulated holographic stimulation of 3-9 preBoétzinger complex (preBstC) neurons. (A) Raster plot of neuronal
spiking triggered by simulated holographic stimulation of six preBotC neurons shortly after an endogenous burst and resulting failure to evoke a
network burst. Black line represents the integrated population activity. Scale bar indicates 20 spikes/s/N. Bottom panel shows the spiking activity
triggered in individual neurons by the simulated holographic stimulation. Panel duration is 1 s. (B) Example simulation where stimulation of nine preB&tC
neurons evokes a network burst. Gray curve indicates timing of the next network burst if the network was not stimulated. (Bottom panel) Expanded view
of the percolation process that is triggered by holographic stimulation on a successful trial. Panel duration is 1.75 s. (C) Example traces showing the
delay between the stimulation time and the evoked bursts as a function of the number of neurons stimulated for the (top) integrated preB&tC spiking
and (bottom) simulated hypoglossal activity. (D-F) Characterization of (D) the probability of evoking a burst, (E) the mean delay of evoked bursts, and
(F) the standard deviation of the delay as a function of the time after an endogenous burst and the number of neurons stimulated. (G) Probability and
(H) delay as a function of the stimulation time for stimulation of three, six, or nine neurons. Error bars in (H) indicate SD. (l) Histogram of evoked and
endogenous bursts relative to the time of stimulation (¢ = 0s) for all successful trials in all simulations; notice a 1 s refractory period.

The online version of this article includes the following source data and figure supplement(s) for figure 7:
Source data 1. Simulated holographic stimulation.

Figure supplement 1. Dynamics of Iy,p inactivation (hygp), endoplasmic reticulum (ER) calcium concentration ([Calgg), and synaptic depression and
recovery (D) as a function of time relative to the inspiratory cycle.
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Figure 8. Refractory period and delay of evoked bursts following simulated holographic stimulation depend on the follower network connectivity.
(A-C) Histogram of evoked and endogenous bursts relative to the time of stimulation (r = 0's) for all successful trials where three, six, and nine neurons
were stimulated and for different connection probabilities (but fixed total network synaptic strength; i.e., Np - Ppp - Wpp = constant) in the follower
population: (A) Ppp = 1%; (B) Ppp = 2%; and (C) Ppp = 4%. (D, E) Effect of (D) decreasing (2% — 1%) and (E) increasing (2% — 4%) the connection

Figure 8 continued on next page
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Figure 8 continued

probability in the follower population, Ppp. (F) Refractory period and delay from stimulation to burst as functions of the connection probability for the
simulations shown in (A=E), still with Np - Ppp - Wpp = constant. Error bars indicate SD. Notice that the refractory period increases with increasing
connection probability. (G) Effect of Ppp on the delay to evoked bursts. (H) Probability of evoking a burst as a function of time of stimulation delivery
(colorbar) and the number out of nine stimulated neurons that are follower neurons for the baseline case of 2% connection probability.

The online version of this article includes the following source data for figure 8:

Source data 1. Refractory period of evoked bursts following holographic stimulation.

s refractory period, as indicated by the positive slope in Figure 8H. Additionally, eliciting a network
burst does not require stimulation of rhythmogenic neurons.

Discussion

Recent experiments have revealed a decoupling of respiratory rhythm generation and output
patterning in the preB&tC, which has given rise to the conceptual framework of burstlet theory. To
date, however, this theory lacks the quantitative basis, grounded in underlying biophysical mecha-
nisms, needed for its objective evaluation. To address this critical gap, in this computational study we
developed a data-constrained biophysical model of the preBotC that generates burstlets and bursts
as proposed by burstlet theory, with a range of features that match experimental observations. To
summarize, we first show that CICR from intracellular stores is a natural mechanism to periodically
amplify postsynaptic calcium transients needed for Iy activation and recruitment of pattern-forming
neurons into network bursts (Figure 1). Next, we demonstrate that in a two-neuron network CICR can
convert baseline rhythmic activity into a mixture of bursts and burstlets, where the burstlet fraction
depends largely on the magnitude of postsynaptic calcium transients (Figure 2). In a larger preBotC
network containing rhythm- and pattern-forming subpopulations with experimentally constrained
intrinsic properties, population sizes, and synaptic connectivity probabilities (Figure 3), similar but
more realistic activity patterns arise (Figure 4). Moreover, we show that this model can match a wide
range of the key experimental underpinnings of burstlet theory: dependence of the burstlet fraction
on extracellular potassium concentration (Figure 4I), the Ca?* dependence of the burstlet-to-burst
transition (Figure 5), the effects of opioids on burst frequency and burstlet fraction (Figure 6), and the
long delay and refractory period of bursts evoked by holographic photostimulation of small subsets
of preB&tC neurons (Figures 7 and 8).

Insights into the mechanisms of burst (pattern) and burstlet (rhythm)
generation within the inspiratory preBétC
Burstlet theory to date has largely been an empirical description of the observed features of bursts
and burstlets. One idea that has been suggested is that rhythm generation is driven by a stochastic
percolation process in which tonic spiking across the rhythm-generating population gradually synchro-
nizes during the inter-burst-interval to generate the burstlet rhythm. Subsequently, a burst (i.e., motor
output) only occurs if the burstlet is of sufficient magnitude, resulting from sufficient synchrony, to
trigger all-or-none recruitment of the pattern-forming subpopulation (Kam et al., 2013a; Kam et al.,
2013b; Feldman and Kam, 2015; Cui et al., 2016; Kallurkar et al., 2020; Ashhad and Feldman,
2020). This theory, however, does not identify or propose specific biophysical mechanisms capable of
generating a quantitative explanation of the underlying cellular and network-level dynamics, fails to
capture the Ca?* dependence of the burst-to-burstlet transition, and cannot explain how extracellular
potassium concentration impacts the burstlet fraction. Our simulations support an alternative view
of the recruitment process associated with this transition that builds directly from previous computa-
tional studies (Jasinski et al., 2013; Phillips et al., 2019a; Phillips and Rubin, 2019b; Phillips et al.,
2021), which robustly reproduce a wide array of experimental observations. Specifically, in this study
we show that amplification of postsynaptic calcium transients in the pattern-generating subpopulation
(triggered by burstlets) provides a natural mechanism capable of explaining the Ca?* dependence of
the burstlet-to-burst transition.

Importantly, our model yields the result, and hence the prediction, that the burstlet fraction is deter-
mined by the probability that a burstlet will trigger CICR in the pattern-forming subpopulation. In the
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model, this probability is determined by the magnitude of postsynaptic calcium transients as well as
the activation dynamics of the IP3 receptor and the SERCA pump. Therefore, to explain the decrease
in the burstlet fraction with increasing extracellular K, the magnitude of the burstlet-triggered
postsynaptic calcium transients must increase with K. Some of this rise can result directly from the
increase in burstlet amplitude with increasing Ky, (see Kallurkar et al., 2020 and Figure 4C). To fully
match the experimentally observed relationship between K., and the burstlet fraction (Figure 4J),
we also explicitly increased the parameter Pgy,cq, Which sets the proportion of the postsynaptic
calcium current carried by Ca?*. Thus, our model predicts that the magnitude of postsynaptic Ca*
transients triggered by EPSPs should increase as K, is elevated.

This same prediction arises from considering the voltage-dependent properties of Ca®* channels
characterized in preBo6tC neurons and the changes in the membrane potential of non-rhythmogenic
(i.e., pattern-forming) neurons as a function of K. Specifically, it is likely that voltage-gated calcium
channels are involved in generating the postsynaptic Ca?* transients as dendritic Ca®* transients have
been shown to precede inspiratory bursts and to be sensitive to Cd®*, a calcium channel blocker
(Del Negro et al., 2011). Consistent with this idea, Cd**-sensitive Ca?* channels in preBtC neurons
appear to be primarily localized in distal dendritic compartments (Phillips et al., 2018). Voltage-gated
calcium channels in the preBotC start to activate at approximately —65 mV(Elsen and Ramirez, 1998),
and importantly, the mean somatic resting membrane potential of non-rhythmogenic preB&tC neurons
increases from —67.034 mV to —61.78 mV when extracellular potassium concentration is elevated from
3mM to 8 mM (Tryba et al., 2003). Moreover, at Kj,;, = 9 mM, EPSPs in the preBotC are on the order
of 2-5 mV (Kottick and Del Negro, 2015; Morgado-Valle et al., 2015; Baertsch et al., 2021) and
the amplitude of EPSCs has been shown to decrease as Kjq is lowered (Okada et al., 2005). Putting
together these data on resting membrane potential, EPSP sizes, and voltage-dependent activation of
Ca?* channels, we deduce that when K., = 3mM, the magnitude of EPSPs may not reach voltages
sufficient for significant activation of voltage-gated Ca** channels. As K}, is increased, however, both
EPSC magnitudes and the membrane potential of pattern-forming neurons increase. Therefore, with
increased Kpu, the prediction is that EPSCs will result in greater activation of voltage-gated Ca?*
channels and increased postsynaptic calcium transients. This effect is captured in the model by an
increase in the parameter Psy,c,, Which determines the percentage of the postsynaptic current carried
by Ca?* ions, with Kjuy,.

The idea that dendritic postsynaptic Ca?* transients and Icay activation play a critical role in regu-
lating the pattern of preB6tC dynamics is well supported by experimental and computational studies.
Specifically, the dendritic Ca?* transients that precede inspiratory bursts (Del Negro et al., 2011) have
been shown to travel in a wave to the soma, where they activate TRPM4 currents (Ican) (Mironoy,
2008). Moreover, the rhythmic depolarization of otherwise non-rhythmogenic neurons (inspiratory
drive potential) depends on Ic4y (Pace et al.,, 2007a), while the inspiratory drive potential is not
dependent on Ca?* transients driven by voltage-gated calcium channels expressed in the soma
(Morgado-Valle et al., 2008). Finally, pharmacological blockade of TRPM4 channels, thought to
represent the molecular correlates of Icay, reduces the amplitude of preBo6tC motor output without
impacting the rhythm (Koizumi et al., 2018; Picardo et al., 2019). These experimental findings
were incorporated into and robustly reproduced in a recent computational model (Phillips et al.,
2019a) and are reproduced here (see Figure 5B and D). Consistent with these findings, this previous
model suggests that rhythm generation arises from a small subset of preB&tC neurons, which form
an Iy,p-dependent rhythmogenic kernel (i.e., burstlet rhythm generator), and that rhythmic synaptic
drive from these neurons triggers postsynaptic calcium transients, Icqy activation, and amplification
of the inspiratory drive potential, which spurs bursting in the rest of the network. This study builds on
this previous model by explicitly defining rhythm- and pattern-generating neuronal subpopulations
(see Figure 3) and incorporating the mechanisms required for CICR and intermittent amplification of
postsynaptic calcium transients.

CICR mediated by the SERCA pump and the IP3 receptor has long been suspected to be involved
in the dynamics of preB&tC rhythm and/or pattern generation (Pace et al., 2007a; Crowder et al.,
2007; Mironov, 2008; Toporikova et al., 2015) and has been explored in individual neurons and
network models of the preBotC (Toporikova and Butera, 2011; Jasinski et al., 2013; Rubin et al.,
2009; Wang and Rubin, 2020). Experimental studies have not clearly established the role of CICR
from ER stores in respiratory circuits, however. For example, Mironov, 2008 showed that application
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of 1 uM thapsigargin, a SERCA pump inhibitor, abolished rhythmic activity and blocked calcium tran-
sients that travel in a wave from the dendrites to the soma. In a separate study, however, block of
the SERCA pump by bath application of thapsigargin (2-20 uM) or cyclopiazonic acid (CPA) (30-50
pM) did not significantly affect the amplitude or frequency of hypoglossal motor output in in vitro
slice preparations containing the preB&tC (Beltran-Parrazal et al., 2012). The explanation for these
seemingly contradictory experimental results is unclear, especially since effects of SERCA pump
block could be complicated, and will need to be investigated by future studies. It is possible that
the role of CICR may be dynamically regulated depending on the state of the preBotC network. For
example, the calcium concentration at which the IP3 receptor is activated is dynamically regulated
by IP3 (Kaftan et al., 1997), and therefore, activity- or neuromodulatory-dependent changes in the
cytoplasmic Ca?* and/or IP3 concentration may impact ER Ca?* uptake and release dynamics. Store-
operated Ca*" dynamics are also affected by the transient receptor potential canonical 3 (TRPC3)
channels (Salido et al., 2009), which are expressed in the preBétC, and manipulation of TRPC3 has
been shown to impact burst amplitude and regularity (Tryba et al., 2003; Koizumi et al., 2018) as
would be predicted by this model. It is also possible that calcium release is mediated by the ryanodine
receptor, an additional calcium-activated channel located in the ER membrane (Lanner et al., 2010),
since bath application of CPA (100 pM) and ryanodine (10 pM) removed large-amplitude oscillations
in recordings of preBotC population activity (Toporikova et al., 2015).

Finally, we note that while various markers can be used to define distinct subpopulations of neurons
within the preB&tC, our model cannot determine which of these ensembles are responsible for rhythm
and pattern generation. Past experiments have examined the impact of optogenetic inhibition,
applied at various intensities to subpopulations associated with specific markers, on the frequency
of inspiratory neural activity, but this activity was measured by motor output, not within the preBotC
itself (Tan et al., 2008; Cui et al., 2016; Koizumi et al., 2016). According to burstlet theory and our
model, slowed output rhythmicity could derive from inhibition of rhythm-generating neurons, due to
a reduced frequency of burstlets, and from inhibition of pattern-generating neurons, due to a reduced
success rate of burst recruitment. Thus, measurements within the preB6tC will be needed in order
to assess the mapping between subpopulations of preB&tC neurons and roles in burstlet and burst
production.

Additional comparisons to experimental results

In our model (Figure 4), a burstlet rhythm first emerges at a Kj,;, of approximately 5 mM, whereas
in the experiments of Kallurkar et al., 2020, the burstlet rhythm continues even down to 3 mM. To
explain this discrepancy, we note that our model assumes that the extracellular potassium concen-
tration throughout the network is equal to Kj,;,. Respiratory circuits appear to have some buffering
capacity, however, such that for K, concentrations below approximately 5 mM the extracellular K*
concentration remains elevated above Kj,; (Okada et al., 2005). The K,y range over which our
model generates a rhythm would extend to that seen experimentally if extracellular K* buffering were
accounted for. This buffering effect can also explain why the burstlet fraction remains constant in
experimental studies when K, is lowered from 5 mM to 3 mM (Kallurkar et al., 2020). Our model
also does not incorporate short-term extracellular potassium dynamics that depend on K}, and may
impact the ramping shape of burstlet onset (Abdulla et al., 2021). Importantly, over the range of Kp,
values relevant both to experiments and our model, we find clear agreement on the dependence of
burstlet fraction on Ky, (Figure 41).

Although our model incorporates various key biological features, it does not include some of the
biophysical mechanisms that are known to shape preBotC patterned output or that are hypothesized to
contribute to the properties described by burstlet theory. For example, the M-current associated with
KCNQ potassium channels has been shown to impact burst duration by contributing to burst termi-
nation (Revill et al., 2021). Additionally, intrinsic conductances associated with a hyperpolarization-
activated mixed cation current (/;) and a transient potassium current (I4) are hypothesized to be
selectively expressed in the pattern- and rhythm-generating preB6tC subpopulations (Picardo et al.,
2013, Phillips et al., 2018). Thus, our model predicts that while these currents may impact quantita-
tive properties of burstlets and bursts, they are not critical for the presence of burstlets and their trans-
formation into bursts. The current model also does not include a population of inhibitory preBotC
neurons. Inhibition is involved in regulating burst amplitude (Baertsch et al., 2018), but it does not
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have a clear role in burst or burstlet generation, and therefore inhibition was omitted from this work.
More globally, it is crucial to recognize that areas outside of the preB6tC impact dynamics within the
preBotC. These effects, which remain to be fully elucidated, may range from ongoing modulation of
the level of excitability of preBotC neurons to timed signaling that contributes to preBotC rhythmicity
and patterning (e.g., Mulkey et al., 2004; Dutschmann and Dick, 2012; Phillips et al., 2012, Smith
et al., 2013; Dhingra et al., 2019, Richter et al., 2019, Liu et al., 2022). For example, transection
studies suggest that pontine regions may make crucial contributions to respiratory circuit excitability
and respiratory pattern formation (Jones and Dutschmann, 2016; Smith et al., 2007). Finally, the
data on which this study was based comes from a variety of settings, including in vitro and other
reduced preparations, and additional factors no doubt complicate the generation and control of respi-
ratory outputs in vivo. Indeed, although experimental results suggest that manipulations to enhance
preBotC excitability in slice preparations do not appear to significantly impact the mechanisms of
preBo6tC rhythmicity or the generation of bursts and burstlets, additional investigation of how higher
brainstem centers impact preBotC inspiratory rhythm and pattern generation is an important direction
for future studies.

Importantly, our model does robustly reproduce all of the range of key experimental observations
underlying burstlet theory. Not surprisingly, block of calcium transients or I¢4y in our model eliminates
bursts without affecting the underlying rhythm (Figure 5), which is consistent with experimental obser-
vations (Kam et al., 2013b; Sun et al., 2019). Interestingly, our model also provides the experimen-
tally testable predictions that blocking calcium transients will increase the burstlet fraction while Iy
block will have no effect on this fraction, whereas both perturbations will smoothly reduce burst ampli-
tude. The calcium-dependent mechanisms that we include in our model pattern-generating popu-
lation have some common features with a previous model that suggested the possible existence of
two distinct preB&tC neuronal populations responsible for eupneic burst and sigh generation, respec-
tively, which also included excitatory synaptic transmission from the former to the latter (Toporikova
et al., 2015). In the eupnea-sigh model, however, the population responsible for low-frequency, high-
amplitude sighs was capable of rhythmic burst generation even without synaptic drive, in contrast to
the pattern-generation population as tuned in our model. Also, in contrast to the results on bursts
considered in our study, sigh frequency in the earlier model did not vary with extracellular potassium
concentration and sigh generation required a hyperpolarization-activated inward current, I,.

We also considered the effects of opioids in the context of burstlets and bursts, a topic that has not
been extensively studied. It is well established that opioids slow the preB6tC rhythm in in vitro slice
preparations; however, the limited results presented to date on effects of opioids on the burstlet frac-
tion are inconsistent. Specifically, Sun et al., 2019 found that application of the pOR agonist DAMGO
at 10 nM and 30 nM progressively decreased the preB&tC network frequency but had no impact on
the burstlet fraction before the network rhythm was eventually abolished at approximately 100 nM.
Similarly, Baertsch et al., 2021 found that DAMGO decreased the preB6tC network frequency in a
dose-dependent fashion; however, in these experiments the network was less sensitive to DAMGO,
maintaining rhythmicity up to approximately 300 nM, and the burstlet fraction increased with increasing
DAMGO concentration. The inconsistent effects of DAMGO on the burstlet fraction across these two
studies can be explained by our simulations based on the different sensitivities of these two prepa-
rations to DAMGO and the two distinct mechanisms of action of DAMGO on neurons that express
HOR - decreases in excitability and decreases in synaptic output of neurons - identified by Baertsch
et al., 2021. In our simulations, we show that the decreased excitability resulting from activation of
a GIRK channel only impacts frequency, whereas decreasing the synaptic output of uOR-expressing
neurons results in an increase in the burstlet fraction and a decrease in burst frequency (Figure 6). In
experiments, suppression of synaptic output does not appear to occur until DAMGO concentrations
are above approximately 50 nM(Baertsch et al., 2021). Therefore, it is not surprising that DAMGO
application did not strongly impact the burstlet fraction before the rhythm was ultimately abolished in
Sun et al., 2019 due to the higher DAMGO sensitivity of that particular experimental preparation, as
indicated by the lower dose needed for rhythm cessation.

Mixed-mode oscillations
Mixed-mode oscillations, in which intrinsic dynamics of a nonlinear system naturally lead to alterna-
tions between small- and large-amplitude oscillations (Del Negro et al., 2002¢; Bertram and Rubin,
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2017), are a mechanism that has been previously proposed to underlie bursts and burstlets under the
assumption of differences in intrinsic oscillation frequencies across preBotC neurons (Bacak et al.,
2016). This mechanism was not needed to explain the generation of bursts and burstlets in the current
model, however. Moreover, systems with mixed-mode oscillations can show a wide range of oscilla-
tion amplitudes under small changes in conditions and mixed-mode oscillations only emerge in the
preBotC when K, is elevated above 9 mM (Del Negro et al., 2002c). These properties are not
consistent with the burst and burstlet amplitudes or Kj,;,-dependent changes in the burstlet fraction
seen experimentally (Kallurkar et al., 2020) and in our model.

Holographic photostimulation, percolation, and rhythm generation
Experimental data supporting burstlet theory has shown that burstlets are the rhythmogenic event in
the preBo6tC. However, although burstlet theory is sometimes referenced as a theory of respiratory
rhythm generation, the actual mechanisms of burstlet rhythm generation remain unclear. One idea
that has been suggested is that rhythm generation is driven by a stochastic percolation process in
which tonic spiking across the rhythm-generating population gradually synchronizes during the inter-
burst-interval to generate the burstlet rhythm (Ashhad and Feldman, 2020; Slepulkhin et al., 2020).
In this framework, a burst (i.e., motor output) only occurs if the burstlet is of sufficient magnitude,
resulting from sufficient synchrony, to trigger all-or-none recruitment of the pattern-forming subpop-
ulation (Kam et al., 2013a; Kam et al., 2013b; Feldman and Kam, 2015; Kallurkar et al., 2020;
Ashhad and Feldman, 2020; Slepukhin et al., 2020).

The idea that burstlets are the rhythmogenic event within the preB&tC is supported by the observa-
tion that block of voltage-gated Ca®* channels by Cd®* eliminates bursts without affecting the under-
lying burstlet rhythm (Kam et al., 2013a; Sun et al., 2019). However, the rhythmogenic mechanism
based on percolation is speculative and comes from two experimental observations. The first is that
the duration and slope (i.e., shape) of the burstlet onset are statistically indistinguishable from the
ramping pre-inspiratory activity that immediately precedes inspiratory bursts (Kallurkar et al., 2020).
We note, however, that this shape of pre-inspiratory activity can arise through intrinsic mechanisms at
the individual neuron level (Abdulla et al., 2021). The second observation evoked in support of the
percolation idea is that holographic photostimulation of small subsets (4-9) of preBotC neurons can
elicit bursts with delays lasting hundreds of milliseconds (Kam et al., 2013b). These delays are longer
than could be explained with existing preBotC models and have approximately the same duration
as the pre-inspiratory activity and burstlet onset hypothesized to underlie the rhythm. According to
the percolation hypothesis of burstlet rhythm generation, these long delays result from the specific
topological architecture of the preB&tC, recently proposed to be a heavy-tailed synaptic weight distri-
bution in the rhythmogenic preB6tC subpopulation (Slepukhin et al., 2020).

Interestingly, the model presented here naturally captures the long delays characterized by Kam
et al., 2013b, and stimulation of small subsets of neurons triggers a growth in population activity
in the lead up to a burst that could be described as percolation (Figure 7B). Our model does not
require a special synaptic weight distribution to generate the long delays, however. Indeed, our model
suggests that the long delays between simulation and burst generation are due in large part to the
dynamics of the pattern-forming population, as probabilistically these neurons are the most likely
to be stimulated and they appear to play a dominant role in setting the timing of the elicited burst
response (Figure 8H). Moreover, the dynamics of this population is strongly impacted by the CICR
mechanism proposed here, which is required for burst generation. Interestingly, to match the 500 ms
refractory period following an endogenous burst during which holographic stimulation cannot elicit a
burst, our model predicts that the connection probability in the pattern-generating preBotC subpopu-
lation must be between 1% and 2% (Figure 8A and B), which is consistent with available experimental
data (Ashhad and Feldman, 2020). Experiments applying global, presumably weaker stimulation to
the preBotC yield longer (~2 s) refractory periods after endogenous bursts (Baertsch et al., 2018;
Kottick and Del Negro, 2015), and our model can also produce similar refractory periods in analo-
gous conditions.

Thus, taken together, previous modeling and our work offer two alternative, seemingly viable
hypotheses about the source of the delay between holographic stimulation and burst onset, each
related to a proposed mechanism for burstlet and burst generation. Yet additional arguments call into
question aspects of the percolation idea. If the burstlet rhythm is driven by a stochastic percolation
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process, then the period and amplitude of burstlets should be stochastic, irregular, and broadly distrib-
uted. Moreover, in the proposed framework of burstlet theory, the pattern of bursts and burstlets for
a given burstlet fraction would also be stochastic since the burstlet-to-burst transition is thought to be
an all-or-none process that depends on the generation of a burstlet of sufficient magnitude. Example
traces illustrating a mixture of bursts and burstlets typically show a pattern of multiple burstlets
followed by a burst that appears to regularly repeat (Kam et al., 2013b; Sun et al., 2019; Kallurkar
et al., 2020) and hypoglossal output timing has also been found to exhibit high regularity Kam et al.,
2013b, however, suggesting that the burstlet-to-burst transition is not dependent on the synchrony
and hence magnitudes of individual burstlets but rather on a slow process that gradually evolves over
multiple burstlets. The regularity and patterns of burstlets and bursts that arise from such a process in
our model match well with those observed experimentally.

We note that the burstlet-to-burst transition mechanism proposed here, based on CICR from ER
stores, depends on rhythmic inputs from the rhythm-generating to the pattern-generation popula-
tion; however, it is independent of the mechanism of rhythm generation. In our simulations, rhythm
generation depends on the slowly inactivating persistent sodium current (Iy,p). The role of Iy.p in
preBo6tC inspiratory rhythm generation is a contentious topic within the field, largely due to the incon-
sistent effects of Iy,p block. We chose to use Iy,p as the rhythmogenic mechanism in the burstlet
population for a number of reasons: (1) consideration of the pharmacological mechanism of action
and nonuniform effects of drug penetration can explain the seemingly contradictory experimental
findings relating to Iy.p (Phillips and Rubin, 2019b), (2) Iy,p-dependent rhythm generation is a well-
established and understood idea (Butera et al., 1999), (3) recent computational work on which the
current model is based suggests that rhythm generation occurs in a small, Iy,p-dependent rhyth-
mogenic kernel that is analogous to the burstlet population (Phillips et al., 2019a), and predictions
from this model that depend on the specific proposed roles of Iy,p and Icay in rhythm and pattern
formation have been experimentally confirmed in a recent study (Phillips et al., 2021). It is important
to note, however, that the findings about burstlets and bursts presented in this work would have been
obtained if the burstlet rhythm was imposed (Figure 4—figure supplement 1) or if burstlets were
generated by some other means, such as by the percolation mechanism proposed by burstlet theory.

Summary of model predictions

The model presented here is itself a prediction; that is, this work predicts that a CICR-mediated mech-
anism is critical to the transition of burstlets into bursts. At a more specific level, our model makes
the following predictions: (1) the magnitude of postsynaptic calcium transients triggered by EPSCs
in preB6tC neurons will increase with K* (see Figure 4 and related text); (2) network-level burstlets
and bursts will persist if currents involved in regulating burst shape, such as I, and 14, are blocked
(see earlier discussion); (3) blocking postsynaptic Ca®* transients will increase the burstlet fraction and
decrease the burst amplitude before network bursts are eventually abolished (see Figure 5); (4) Ican
block will not change the burstlet fraction and will decrease burstlet amplitudes (see Figure 5); (5)
the synaptic connection probability within the pattern-generating population in the preBotC is low
(1-2%, see Figure 8); and (6) selective holographic stimulation of pattern-generating neurons should
be more effective than stimulation of rhythm-generating neurons at triggering network bursts (see
Figure 8). This could be tested by selectively stimulating Dbx1 preB&tC neurons that express Sst
(pattern forming) or that do not express Sst (rhythmogenic).

Conclusions

This study has developed the first model-based description of the biophysical mechanism underlying
the generation of bursts and burstlets in the inspiratory preB6tC. As suggested by burstlet theory and
other previous studies, rhythm and pattern generation in this work are represented by two distinct
preBotC subpopulations. A key feature of our model is that generation of network bursts (i.e., motor
output) requires amplification of postsynaptic Ca®* transients by CICR in order to activate Icay and
drive bursting in the rest of the network. Moreover, the burstlet fraction depends on rate of Ca®*
buildup in intracellular stores, which is impacted by Kj,;,-dependent modulation of preBstC excit-
ability. These ideas complement other recent findings on preBo6tC rhythm generation (Phillips et al.,
2019a; Phillips and Rubin, 2019b; Phillips et al., 2021), together offering a unified explanation for a
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large body of experimental findings on preB&tC inspiratory activity that form a theoretical foundation
on which future developments can build.

Materials and methods

Neuron model

Model preB6tC neurons include a single compartment and incorporate Hodgkin—Huxley-style conduc-
tances adapted from previously described models (Jasinski et al., 2013; Phillips et al., 2019a; Phil-
lips and Rubin, 2019b) and/or experimental data as detailed below. The membrane potential of each
neuron is governed by the following differential equation:

C%/ = —INg — Ix — INap — Ica — IcaN — Ireak — Isyn — IGIRK — IHolo + 1aPPs (M

where C = 36pF is the membrane capacitance and each I; represents a current, with i denoting the
current’s type. The currents include the action potential generating Na* and delayed rectifying K*
currents (Iy, and Ig), persistent Na* current (Iy.p), voltage-gated Ca®* current (I¢,), Ca**-activated
nonselective cation (CAN) current (Icay), K*-dominated leak current (Iz.q), synaptic current (Isy,),
p-opioid receptor-activated G protein-coupled inwardly rectifying K* leak current (Igrk) (Kubo et al.,
1993), and a holographic photostimulation current (Ig,,). Iapp denotes an applied current injected
from an electrode. The currents are defined as follows:

INa = 8Na - Mg * hva - (V — Ena) 2)
Ix = gk - m - (V — Eg) 3)
Table 1. lonic channel parameters.
Channel Parameters
INg gna = 150nS Eng = 26.54 - In(Naout/Naiy,) Naj, = 15mM Naoyr = 120mM
myp = —43.8mV km = 6.0mV Mmoo =025ms 7 = —43.8mV K = 14.0mV
hiyp = —67.5mV ky=—11.8mV rh = 8.46ms iy = —67.5mV Kt =128mV
Ix gk =220nS Ex = 26.54 - In(Kpa/Kin) Kin = 125 Kpan = VAR
o =0.011 a =44.0mV a=50mV
Ag =0.17 Bg =49.0mV kg =40.0mV
Inap gNap = N(it, 0), see Table 2
myp = —47.1mV km =3.1mV Toax = 1.0ms T = —47.1mV K} =62mV
hijp = —60.0mV ky = —9.0mV Tiax = 5000 ms 1, = —60.0mV K =9.0mV
Iea gca = 0.0065pS Ecy = 13.27 - In(Cagul Caiy) Caour = 4.0mM
myp = —27.5mV km =5.7mV Tm = 0.5ms
hip = —52.4mV k= —52mV 7, = 18.0ms
Ican gcAN = N(, 0), see Table 2 Ecay = 0.0 mV Caip =0.00074mM  n=0.97
Treak 8Leak = N(i, 0), see Table 2. Eppq = —26.54 * In[(PNa * Nain + Pk * Kin)/(PNa * Naout + Pk * Kpan)]
Py, =1 Pg =42
Isyn 8syn = VAR, see Equation 25 Egy, = 0.0mV Tsyn = 5.0ms
Igirg gk =0 —0.3nS Ecirk = Ex
THoto &Holo = 50nS THolo = 100 ms EHolo = Esyn
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Table 2. Distributed channel conductances.

8Nap (0S) 8Leak (nS) gcan (nS)
Type H o H o H o
Rhythm 3.33 0.75 exp((Kpan — 3.425)/4.05) 0.05 - Lejeak 0.0 0.0
Pattern 15 0.25 exp(Kpan — 3.425)/4.05) 0.025 - pear 20 1.0

INap = gNaP * MNaP - ANap - (V — ENa) (4)
Ica = 8ca mca - hea - (V— Eca) (5)
Ican = gcan - mean - (V — Ecan) (6)

Ieak = 8Leak - (V — ELeak) 7)

Isyn = 8syn + (V — Egyn) (8)
IGirk = 8Girk - (V — Ek) 9
THo10 = 8Holo - (V — EHolo) (10)

where g; is the maximum conductance, E; is the reversal potential, and m; and h; are gating variables
for channel activation and inactivation for each current I;. The glutamatergic synaptic conductance
gsyn is dynamic and is defined below. The values used for the g; and E; are mostly shown in Table 1,
with a few conductances selected from distributions as indicated in Table 2.

Activation (m,) and inactivation (h) of voltage-dependent channels are described by the following
differential equation:

(V) % =Xoo(V) = X; X € {m,h} (1

where Xoo represents steady-state activation/inactivation and 7y is a time constant. For Iy,, In,p, and
Ic,, the functions Xoo and 7x take the forms

Xoo(V) = 1/(1 + exp(—=(V — X12)/kx)), (12)
7x(V) = 7ol cosh((V — 715 /). (13)

The values of the parameters (X2, kx, T, 752, and KX) corresponding to Ing, Ingp and I¢, are
given in Table 1.

For the voltage-gated potassium channel, the steady-state activation m&,(V) and time constant
Xy are given by the expressions

m8o(V) = croo (Voo (V) + Boo(V), (14)
T (V) = Ut (V) + Boo(V)) (15)
where
oo (V) =Aa - (V+ Ba)/(1 — exp(—(V + Ba)lka)), (16)
Boo(V) = Ag - exp(—(V + Bg)/kp). 17)

The values for the constants Aq, Ag, Ba, Bg, ka, and kg are also given in Table 1.
Icay activation depends on the Ca** concentration in the cytoplasm ([Calcys,) and is given by

meany = (1 + (Caip/[Calcyo)). (18)

The parameters Caj;; and n represent the half-activation Ca?* concentration and the Hill coefficient,
respectively, and are included in Table 1.

The dynamics of [Calcy, is determined in part by the balance of Ca?* efflux toward a baseline
concentration via the Ca** pump and Ca*" influx through voltage-dependent activation of Ic, and
synaptically triggered Ca®* transients, with a percentage (Psync,) of the synaptic current (Isy,) carried
by Ca®* ions. Additionally, the model includes an intracellular compartment that represents the ER,
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which impacts [Calcyso- The ER removes Ca?* from the cytoplasm via a sarcoplasmic/endoplasmic retic-
ulum Ca*- ATPase (SERCA) pump, which transports Ca®* from the cytoplasm into the ER (Jsgrca) and
releases Ca?* into the cytoplasm via calcium-dependent activation of the inositol triphosphate (IP3)
receptor (J;p3). Therefore, the dynamics of [Calcyy, is described by the following differential equation:

([Cd] Cyto — Cayin)

Tpump

d[Calcyro
dCle , (19)

= acy - Uca + Psynca * Isyn) + @R - (Jip3 — JsErca) —
where ac, =2.5- 107> mM/fC is a conversion factor relating current to rate of change of [Calcyr,
Toump = 500 ms is the time constant for the Ca®* pump, Camin = 5.0 - 107°mM is a minimal baseline
calcium concentration, and aggr = 2.5 - 1072 is the ratio of free to bound Ca?* in the ER.
The flux of Ca?* from the ER to the cytoplasm through the IP3 receptor is modeled as

3
Calcyo ;-
Jips = (Ekleak +Gip3 - ([C;]ZJ,‘;:KG : [}},’;ih,’(,) ) ~([Calgr — [Calcyo), (20)

where ER,,, = 0.1/ms represents the leak constant from the ER stores, G;p3 = 77, 500/ms represents the
permeability of the IP3 channel, K, = 1.0 - 10~*mM and K; = 1.0 - 10~° mM are dissociation constants,
and [IP3]; = 1.5 - 1072 mM is the cytoplasm IP3 concentration. Finally, the Ca**-dependent IP3 gating
variable, I, and the Ca** concentration in the ER, [Calgg, are determined by the following equations:

G =A-(Kg—1-(Calcyo + Ka)); @21
[Calgr = ([Caliprar — [Ca]Cyto)/UCaa (22)
where A = 0.1mM/ms is a conversion factor, K; = 0.2- 1073 mM is the dissociation constant for IP3

inactivation, [Cal;y. is the total intracellular calcium concentration, and o¢, = 0.185 is the ratio of
cytosolic to ER volume. The total intracellular calcium concentration is described as

(CaCytn —Camin)

d[CZ]ITuml =Qcq - (ICa + PSynCa . ISyn) - Tpump (23)
Finally, removal of Ca?* from the cytoplasm by the SERCA pump is modeled as
[Cal%,,
Iserca = Gserea - - T (24)

7
sercatlCalcy,

where Gggrea = 0.45 mM/ms is the maximal flux through the SERCA pump, and Kgggrea = 7.5 - 1075 mM
is a dissociation constant.

Nondimensionalization of similar models in past work (Wang and Rubin, 2017, Wang and Rubin,
2020) has shown that hygp, [, and [Calgg are the slowest variables in the model and evolve on similar
timescales, while [Calcy, evolves on a faster timescale that is still significantly slower than that of the
voltage dynamics and other current gating variables. Some subtleties arise in that different compo-
nents of the calcium dynamics evolve on different timescales and their influences depend on the levels
of calcium present in various domains within the cell, but these subtleties are not considered in this
article.

When we include multiple neurons in the network, we can index them with subscripts. The total
synaptic conductance (ggs,»); of the ith target neuron is described by the following equation:

(8Syn)i = &Tonic + Z Wii-Dj- G- Ht — tjn) - ei(titjﬁ)/v—syn’ (25)
J#in

where gronic is a fixed or tonic excitatory synaptic conductance (e.g., from respiratory control areas
outside of the preBo6tC) that we assume impinges on all neurons, W;; represents the weight of the
synaptic connection from neuron j to neuron i, D; is a scaling factor for short-term synaptic depression
in the presynaptic neuron j (described in more detail below), Cj; is an element of the connectivity
matrix (Cj; = 1 if neuron j makes a synapse with neuron i and Cj; = 0 otherwise), H(.) is the Heaviside
step function, and ¢ denotes time. gy, is an exponential synaptic decay constant, while #;,, is the time

at which the nth action potential generated by neuron j reaches neuron i.
We included synaptic depression in our model because experiments have revealed that it contrib-
utes to termination of inspiratory activity in the preB&tC (Kottick and Del Negro, 2015) and past
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Table 3. Maximal synaptic weights and connection probabilities between and within rhythm- and
pattern-generating preBotC subpopulations (Waay, P).

Target
Rhythm Pattern
Rhythm (0.15nS, 0.13) (0.000175nS, 0.3)
Source Pattern (0.25nS, 0.3) (0.0063 nS, 0.02)

computational models have suggested that it might play an important role in preBstC network oscil-
lations (Rubin et al., 2009; Guerrier et al., 2015). Synaptic depression in the jth neuron (D;) was simu-
lated using an established mean-field model of short-term synaptic dynamics (Abbott et al., 1997,
Dayan and Abbott, 2001; Morrison et al., 2008) as follows:

B =Pl ap Dy 6 1y) (26)

where the parameter D) = I sets the maximum value of D;, 7p = 1000 ms sets the rate of recovery
from synaptic depression, ap = 0.2 sets the fractional depression of the synapse each time neuron j
spikes, and 4(.) is the Kronecker delta function that equals 1 at the time of each spike in neuron j and
0 otherwise. Parameters were chosen to qualitatively match data from Kottick and Del Negro, 2015.
Note that with this choice of 7p synaptic depression recovers on a timescale comparable to that of the
other slowest variables in the model.

When we consider a two-neuron network (Figure 2), we take W) 5 = W,,; = 0.006and Cy, = Cp = 1.
For the full preBotC population model comprising rhythm- and pattern-generating subpopulations,
the weights of excitatory conductances were uniformly distributed such that W;; = U(0, Wy4y) where
Wwax is @ constant associated with the source and target neurons’ populations; with each such pair,
we also associated a connection probability and used this to randomly set the C;; values (see Table 3).
Effects of opioids on synaptic transmission for source neurons in the rhythmogenic subpopulation
(Figure 6) were simulated by scaling W;; with the parameter ~,0r, which ranged between 0 and 0.5
and sets the percent synaptic block.

Network construction

The relative proportions of neurons assigned to the rhythm- and pattern-generating preBstC subpop-
ulations were chosen based on experimental data. For example, Kallurkar et al., 2020 found that
20 4+ 9% of preBotC inspiratory neurons are active during burstlets at Kp,;, = 9mM. Moreover, the
rhythm- and pattern-generating neurons are hypothesized to be represented by the subsets of Dbx1-
positive preB&tC neurons that are somatostatin-negative (SST~) and -positive (SST), respectively (Cui
et al., 2016; Ashhad and Feldman, 2020). Somatostatin-positive neurons are estimated to comprise
72.6% of the Dbx1t preBotC population (Koizumi et al., 2016). Therefore, our preB&tC network
was constructed such that the rhythm and pattern-forming subpopulations represent 25% and 75%
of the N =400 neuron preB6tC population (i.e., Ng = 100 and Np = 300). The rhythm- and pattern-
generating neurons are distinguished by their Inyp, I1ear, and Icay conductances. Also, we included
the K* leak current Igri exclusively to the rhythm generating subpopulation, the activation of which
we used as one representation of the effects of opioid application (Figure 6).

The synaptic connection probabilities within the rhythm- and pattern-generating neurons,
Prr = 13% and Ppp = 2%, were taken from previous experimental findings (Rekling et al., 2000 and
Ashhad and Feldman, 2020, respectively). The connection probabilities between the rhythm- and
pattern-generating populations are not known and in the model were set at Prp = Ppg = 30% such
that the total connection probability in the network is approximately 13% (Rekling et al., 2000).

Heterogeneity was introduced by normally distributing the parameters gjar, gnvap, and gcan as
well as uniformly distributing the weights (W;;) of excitatory synaptic connections (see Table 2 and
Table 3). Additionally, g;..x was conditionally distributed with gy,p in order to achieve a bivariate
normal distribution between these two conductances, as suggested by Del Negro et al., 2002a and
Koizumi and Smith, 2008. In our simulations, this was achieved by first normally distributing gnap
in each neuron according to the values presented in Table 2. Then we used a property of bivariate
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normal distribution, which says that the conditional distribution of gj..x given gnup is itself a normal
distribution with mean (uj,,) and standard deviation (o7,,;) described as follows:

NZeak = ULeak + P - (OLeak!TNaP) (g5VaP — KUNaP)s (27)

Uzeak = \/ (1 - p2) : Ul2,eak (28)

In these equations, pieq and pngp are the mean and 0.4 and on,p are the standard deviation of the
8Leak @and gngp distributions, while p = 0.8 represents the correlation coefficient and gj,p represents
the persistent sodium current conductance for the ith neuron. All parameters are given in Table 2.

Activation dynamics of 1,
Holographic stimulation was simulated by activating Iy, in small sets of randomly selected neurons
across the preBotC population. Activation of this current was simulated by the following equation:

Dpe = —le 1 §(1 — ty1i) (29)
where mp,;, represents the channel activation and ranges between 0 and 1, 7, represents the decay
time constant, and 4(.) is the Kronecker delta function, which represents the instantaneous jump in
My, from 0 to 1 at the time of stimulation (¢y;,). Parameters were chosen such that the response in
stimulated neurons matched those seen in Kam et al., 2013b. All parameters are given in Table 1.

Data analysis and definitions

Data generated from simulations was postprocessed in MATLAB (MathWorks, Inc). An action potential
was defined to have occurred in a neuron when its membrane potential V,, increased through —35mV.
Histograms of population activity were calculated as the number of action potentials per 20ms bin
per neuron, with units of APs/(s - neuron). Network burst and burstlet amplitudes and frequencies were
calculated by identifying the peaks and the inverse of the interpeak interval from the population histo-
grams. The thresholds used for burst and burstlet detection were 30 spk/s/N and 2.5 spk/s/N, respec-
tively. For the simulated holographic stimulation simulations, the start of a network burst was defined
as the time at which the integrated preB&tC population activity increased through the threshold for
burst detection, while the end of a network burst was defined as the time at which the integrated
preBotC activity returned to exactly zero.

Integration methods

All simulations were performed locally on an 8-core Linux-based operating system or on compute
nodes at the University of Pittsburgh’s Center for Research Computing. Simulation software was
custom written in C++. Numerical integration was performed using the first-order Euler method with
a fixed step-size (At) of 0.025 ms.
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