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Activity Patterns of a Two-Timescale Neuronal Ring Model with
Voltage-Dependent, Piecewise Smooth Inhibitory Coupling*
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Abstract. We present an analysis of activity patterns in a neuronal network that consists of three mutually in-
hibitory neurons with voltage-sensitive piecewise smooth coupling. This network model is motivated
by the respiratory neuronal network in the mammalian brainstem and is able to exhibit various ac-
tivity patterns including bistability of relaxation oscillation solutions in which activation propagates
around the ring in opposite directions. One of the observed propagating solutions appears to be
contrary to the network architecture and is characterized by a sudden “turn-around” of trajectories
during fast transitions between quasi-stable states. Standard fast-slow analysis provides the set of
fast subsystem fixed points and transition surfaces parametrized by slow variables, but due to the
voltage-sensitive nature of the coupling it fails to describe the mechanism underlying the sudden
“turn-around” during fast jumps. By considering a linear, reduced form of the model system that
preserves the solution structure, we are able to perform a thorough analysis of the oscillations, which
reveals novel adaptive escape and adaptive release phase transition mechanisms. To determine where
the fast jumps actually go, we exploit the piecewise smooth nature of the coupling to consider a
sequence of fast subsystems defined in a piecewise way. Our analysis shows that there are three
possible scenarios during fast jumps, which may depend on both the fast dynamics and the slow dy-
namics. First, the fast dynamics may succeed to equilibrate at (or near) a critical manifold branch,
after which the slow dynamics relaxes to its own fixed point, pulling the slaved fast variables along
the critical manifold. Second, while the fast dynamics tries to equilibrate to a critical manifold, the
slow dynamics may push the fast system through a bifurcation, which forces a second fast jump
to a new critical manifold component, after which the slow relaxation follows. Third, the critical
manifold component expected to be attracting may be lost prior to fast subsystem equilibration or
may be inaccessible due to separatrix geometry, in which case the fast dynamics is forced to approach
a new critical manifold directly. In the second and third cases, we observe the sudden “turn-around”
during fast jumps.
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1. Introduction. Rhythmic activity patterns arise in various regions of the central nervous
system and have been implicated in a variety of critical and cognitive functions [52, 13, 6].
Some well-known examples of the former include neural signaling, generated by circuits known
as central pattern generators (CPGs), which underlies stereotyped, rhythmic behaviors such

*Received by the editors July 6, 2021; accepted for publication (in revised form) April 10, 2022; published
electronically July 28, 2022.
https://doi.org/10.1137/21M1431679
Funding: The work of the first author was partially supported by NSF HRD-1700199. The work of the second
author was partially supported by NSF award DMS-1951095.
TDepartment of Mathematics, North Carolina A&T State University, Greensboro, NC 27411 USA
(cpark@ncat.edu).
tDepartment of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260 USA (jonrubin@pitt.edu).

1952

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.


https://doi.org/10.1137/21M1431679
mailto:cpark@ncat.edu
mailto:jonrubin@pitt.edu

Downloaded 09/04/22 to 130.49.198.139 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

ACTIVITY OF A NEURONAL RING MODEL 1953

as respiration, digestion, and some forms of feeding and locomotion [20, 26, 25]. While there
is clear evidence that CPGs drive many such behaviors across a wide range of species, it is
unlikely that there is a one-to-one mapping between specialized CPG circuits and repetitive
behaviors. The concept of a multifunctional neuron pool has been introduced to describe a
neuronal circuit that, depending on the tonic or transient inputs that it receives and its initial
conditions, can produce more than one stable output pattern [5]. For example, on the simpler
end of the behavioral continuum, there is clear evidence that the same core respiratory CPG
can reconfigure its activity to produce multiple forms of respiratory output including forced
expiration and gasping, while in more complicated motor behaviors, the same neural circuit
may produce multiple different gait patterns [19] or even different forms of motor output such
as swimming and scratching [2, 21] or swimming and crawling [5].

To understand how CPGs and other rhythmic neural networks maintain functionality
across physiologic states and environmental and behavioral demands and potentially recon-
figure to produce different outputs, it is crucial to study the mechanisms underlying rhythm
generation and regulation within these circuits. Networks involving mutual inhibition among
individual neurons or neuronal populations comprise key components within a variety of CPGs
[33, 16, 15, 24] and have been extensively studied from experimental and computational per-
spectives due to the importance that they hold for biological function, the accessibility that
they afford for experimentalists, and the interesting dynamics that they exhibit. Previous
computational analysis of these circuits has proceeded along several lines of investigation.
Various works have combined numerical simulations and analytical study, often involving bi-
furcation analysis, to characterize how tuning of parameters including tonic input levels affects
the properties of specific rhythmic patterns, as well as deletions of certain phases within these
patterns [41, 35, 27, 51, 7]. Some past work has focused on how changes in synaptic coupling
strengths in a circuit with a fixed network architecture can result in specific output pattern
switches, such as the transition between swimming and scratching patterns [21, 45, 4, 31, 32].
On the methodological side, an analytical technique has been derived to compute a mapping
between regions in phase space and repeated activation patterns in mutually inhibitory cir-
cuits composed of planar neuronal models with fast-slow dynamics and has been illustrated in
a three-component representation of the respiratory CPG [39]. Indeed, many of these works
have exploited the multiple timescale structure of neuronal models, in which voltage and some
ion channel gating variables evolve at a much faster rate than other system components such
as some additional gating variables and ion concentrations, to conduct analysis based on a
fast-slow decomposition [34, 38, 3].

In the present computational and analytical study, we adopt a somewhat different per-
spective from these earlier analyses. We consider a simplified, three-component neuronal
circuit with all-to-all inhibitory coupling. As in some past works, we break the symmetry
in the synaptic weights in a way that would be expected to produce a bias in the activa-
tion order of the units in the circuit [18]. In this setting, we examine an unexpected variety
in solution features that emerges as the connection strengths within the network are varied
together, including a bistability of patterns with different activation orders that arise and
maintain stability over a surprisingly wide, overlapping range of parameter values. Although
our model neurons are typical fast-slow units, our analysis highlights some unexpected sub-
tlety in the interaction of the fast and slow dynamics. Our results could be interpreted as a
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warning against the use of simple three-unit inhibitory CPG models, with symmetry breaking
in synaptic weights used to impose directionality, to represent circuits known to produce a
specific activity pattern. On the other hand, our results could also be interpreted as evidence
in favor of the concept that a single neuronal circuit with reciprocal inhibition can serve as a
multifunctional neuron pool that produces multiple output patterns (see [5, 21, 31] and the
references therein) selected by a choice of initial activation signals.

The remainder of this paper is organized as follows. In section 2, we present the main
model that represents the starting point of this work, we illustrate the types of solutions
that we study, and we present associated bifurcation diagrams. In section 3, we analyze key
aspects of the dynamics in a pair of simplified linear models: first a two-cell network and next
a three-cell network. This analysis includes a variety of steps that lead to an understanding
of the interaction of fast and slow dynamic mechanisms that shape the model solutions that
emerge. After presenting this analysis, we consider how the insights that are derived apply
to the original model. Finally, in section 4, we conclude with a discussion that highlights six
lessons that are revealed by the analysis that we have performed.

2. Neuronal network model and dynamics.

2.1. Model formulation. We consider the activity patterns of a neuronal network com-
posed of three units each coupled to the other two by synaptic inhibition. All units are repre-
sented with a nonspiking model, variations of which have been adopted in past works for several
reasons: as analytically tractable models of neuronal dynamics (e.g., [30, 46, 43, 47, 22, 39]),
to represent CPG neurons that generate up and down states but do not actually spike [10], and
as a simplified representation of populations of neurons that switch synchronously between
silent quiescent phases and active spiking phases but with asynchronous spike generation
within the active phase [35, 28, 1, 37]. Although these multiple interpretations are possible,
we henceforth refer to each unit in the network as a neuron. For concreteness, we use a model
introduced in studying the generation of respiratory rhythms in the brainstem [35]; under
baseline conditions, respiration is a three-phase rhythm that is viewed as involving a mutually
inhibitory three-unit circuit [33, 40, 44, 29].

The dynamics of each neuron is described by two differential equations, one for voltage
(v;) and the other for adaptation (m;), for ¢ € {1,2,3}:

Ui = (—1api — Iui — Isynti — Isynki)/C,

(2.1)
mi = (—m; + Kapf(vi))/7ap,

where the adaptation current Iap; = gapm;(v; — vk), with maximal conductance gap and
reversal potential vk, and the leak current I1; = gr,(v; —vr,), with conductance gy, and reversal
potential vy,. Inhibitory and excitatory synaptic currents are given by

=3
ISanz' = gSan(Ui - USan) Z;=1,j;ﬁi bjif(vj)a

(2.2)
ISynEi = gSynE(vi_USynE)Diy
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Table 1

Parameter values for (2.1).
Parameter Value Parameter Value Parameter Value Parameter Value
C 20 pF JAD 10 nS VK -85 mV | gL 2.8 nS
UL -60 mV | gsynl 60 nS VSynl -75 mV | gsynE 10 nS
USynE 0mV Umin -50 mV | Umax -20 mV | 7ap 2000 ms
Kap 1 bo1 0.25 bs1 0.55 b12 0.55
bs2 0.25 b1s 0.25 bas 0.55 D1 0.6
Do 0.6 D3 0.6

where the bj; are weight parameters that scale the baseline inhibitory conductance gsyn1 and
similarly the D; scale the baseline excitatory conductance gsynr. In general, the D; allow for
the introduction of heterogeneity among the neurons; in this work, we keep them equal. In
(2.2), f(v) is a voltage-sensitive piecewise smooth function, which provides a more analytically
convenient approximation of a sigmoid function that allows synaptic output to grow with v
up to a saturation level:

0 if v< Umin
(23) f(v) = (U - Umin)/(vmax - Umin) it Vmin < v < Umax,
1 if o > Umax-

While Ig,,; denotes inhibitory inputs, Isy,,r represents a tonic synaptic excitation or drive
such as may arise in CPG systems to adjust overall excitability or to provide a form of feedback
signal.

Baseline model parameter values including coupling strengths are listed in Table 1. Note
that each neuron is coupled to the two others and that the coupling is asymmetric, in that
connections bj 41, from neuron j to neuron j + 1 (interpreted periodically) for each j €
{1,2,3}, are stronger than those from neuron j + 1 to neuron j.

2.2. Basic activity patterns. With these parameter values and coupling properties, the
neuronal network exhibits three types of activity patterns (Figure 1) depending on the in-
hibitory synaptic connection strength gsyni. When gsynr = 60, the network supports two
stable solutions, one that we call smooth oscillations (SOs) (Figure 1(A)) and another that we
name uphill relaxation oscillations (UROs) (Figure 1(B)). In addition to the substantial dif-
ference in their temporal voltage profiles, these two solutions show different orders of neuronal
activation. Here we note that SOs follow the order of activation that the network would ap-
pear naturally to prefer under the given network architecture (Table 1). For example, suppose
that neuron 1 is active. Parameter values in the model, particularly the coupling strengths,
are set so that only one neuron is active, or at or near its voltage peak, at a time. Because
neuron 1 is active and by > b3, neuron 2 is more inhibited than neuron 3. Thus, as we see
with SOs, once the voltage of neuron 1 peaks and decays, reducing the inhibition, neuron 3
has an advantage over neuron 2 and is able to activate next (Figure 1(A)). But this order is
reversed in UROs (Figure 1(B)).
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Figure 1. The network demonstrates three types of activity patterns, SOs, UROs, and DROs. These activity
patterns share the same set of parameters shown in Table 1 except gsyni. (A) SOs when gsynt = 60. (B) UROs
when gsyn1 = 60. (C) DROs when gsyn1 = 70. (D) UROs when gsyn1 = 70. (E) Temporal profile of transition
in DROs shown in (C). (F) Temporal profiles of transition in UROs shown in (D). In all subfigures, vi is in
red, vz in blue, and vs in black.

If we increase gsyn1 to 70, then we lose SOs in favor of another type of relaxation os-
cillation solution, which we call downhill relaxation oscillations (DROs). DROs follow the
same, natural-seeming order of activation as SOs (Figure 1(C)). Under the same set of pa-
rameters for which DROs occur, a URO pattern also arises (Figure 1(D)), with a frequency
much lower than that in Figure 1(B). In relaxation oscillations (either UROs or DROs), if a
neuron is active, then its corresponding adaptation increases, hence its voltage decreases over
time (equation (2.1)). Therefore, the amount of inhibition from the active neuron eventually
decreases, allowing the suppressed neurons to depolarize over time until a switch of which neu-
ron is active occurs. Figure 1(E) (1(F), resp.) shows a zoomed view of the temporal profiles of
the neuronal voltages during the transition in Figure 1(C) (1(D), resp.). In both cases, as the
voltage of neuron 2 comes down, both the voltages of neurons 1 and 3 rise but neuron 1 is less
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inhibited and correspondingly more depolarized. In DROs, the less-inhibited neuron 1 wins
the competition with neuron 3 and activates next. In UROs, however, during the transition,
the voltage of neuron 1 suddenly begins to decrease and neuron 3 wins. This sudden“turn-
around” during a phase transition was also observed in previous work and appears to be a
feature of the general model (2.1)—(2.2) [35] (“blip” in Figures 11, 12, and 13 in that paper).

2.3. Bifurcation diagrams. We numerically computed the bifurcation diagram for system
(2.1), (2.2) using XPPAUT [14] with the inhibitory coupling parameter gsynt as the bifurcation
parameter and with two different forms of the coupling function f (Figure 2). In panels (A)

A B)

v (mV) .

40— ‘ ‘ ‘ ‘
50 60 70 80 90 100

gSynl

S ~— TR
20 40 60 80 100 120 140 30 35 40 45 50
gSynl gSynl

Figure 2. Bifurcation diagram for the full model (2.1), (2.2). (A), (B) Full diagram and zoomed view
when the coupling function is given by (2.3). Thick (thin) curves are stable (unstable) solutions. Black: SOs.
Red: UROs. Blue: DROs. (C), (D) Full diagram and zoomed view for f(v) = 1/(1 4 exp(—(v + 30)/4)). HB:
Andronov-Hopf bifurcation. TR: torus bifurcation. PD: period doubling bifurcations. S: SOs. D: DROs. U:
UROs.
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and (C) of this diagram, the middle solid curve depicts the set of fixed points; the curve is
thick where the fixed points are stable and thin where they are unstable. In both cases, the
change of stability happens at an Andronov—Hopf bifurcation point (HB), from which a branch
of stable SOs (S) emanates. For the coupling function given in (2.3) as shown in panel (A)
and in a zoomed view in (B), we were unable to identify the bifurcation types at which the
SOs destabilize for gsyn1 just above 60. Separately, we were able to find and follow branches of
stable DROs (blue) and UROs (red) and to locate points where they destabilized; in particular,
we see that these solutions are bistable over a range of gsyn1 values. With a smooth version
of the coupling function, f(v) = 1/(1 + exp(—(v + 30)/4)), we generated a more complete
diagram that matches the piecewise smooth case qualitatively. As shown in panel (C) and in
a zoomed view in panel (D), in this case, the branch of stable SOs loses its stability at a torus
bifurcation point (TR), where unstable branches of periodic solutions emerge. The unstable
solutions become stable UROs (U, red) at a period doubling bifurcation (PD) and DROs
(D, blue) at another torus bifurcation (TR), respectively. The latter two stable branches of
relaxation oscillations terminate at PDs once gsyn1 becomes sufficiently large. These more
complete results suggest that similar bifurcation events induce changes in stability and give
rise to similar unstable solution branches when coupling function (2.3) is used; additional
evidence in support of this point will appear later in Figure 12.

To develop a better understanding of the bifurcation events underlying transitions related
to UROs, we apply fast-slow decomposition. As done in past work [35], we generated a
fast subsystem bifurcation diagram by treating the adaptation slow variables m; as fixed
parameters and studying fixed points of the three-dimensional system of v; equations from
(2.1)=(2.2). To do so, in XPPAUT, we integrate the full system over one full URO cycle
(approximately 3 seconds; see Figure 1(D)) to generate a matrix M of slow variable values
over the course of the cycle. A single auxiliary parameter, s, was introduced to parameterize
the rows of the matrix M and to serve as a bifurcation parameter; the progression of s from 0
to 1 corresponds to one full oscillation cycle. Although the URQO is associated with a specific
trajectory in (vi, m1,va, ma,vs, ms)-space, this method allows us to find all fixed points of
the fast (v1,v2,v3) equations present over the path taken in (mq,mg, m3). Figure 3 shows the
resulting bifurcation diagram for the v; equations in (s, vs)-space (black curves) along with
the projection of the solution of the whole system (red dots). There are five fixed points when
s = 0, the upper- and lowermost of which are stable (thicker black curves). As s increases,
fixed point branches arise and disappear in pairs, via saddle-node bifurcations, with three
stable branches present for much of the range of s.

Next, we consider the projection of the trajectory of the full system (red). At time 0,
corresponding to s = 0, vs is elevated, and as s increases from 0, the trajectory moves along the
upper branch of stable fixed points. A saddle-node bifurcation occurs around s = 0.25, where
two upper branches of fixed points merge together and disappear. Once this happens, the
voltage of neuron 2 stays nearby for a while and then drops sharply and converges to another
branch of stable fixed points at a lower vo value below vp,;,. As s increases further, the two
upper fixed point branches reappear through another saddle-node bifurcation. Subsequently,
the middle branch where the trajectory had settled is lost in its own saddle-node bifurcation.
Beyond this bifurcation point, there are two stable fixed point branches, one at elevated vo and
one at more hyperpolarized vy. The voltage of neuron 2 initially rises toward the upper branch
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-25

-65

Figure 3. Bifurcation diagram of the fast system associated with UROs projected onto (s, v2)-space. Black:
fized point curves for the (v1,v2,vs) equations (thick: stable; thin: unstable). Red: projection of the solution of
the full system (2.1), (2.2).

but for some reason, it turns around and settles on the lowest branch of stable fixed points in
(s,v9)-space. Last, this branch undergoes another saddle-node bifurcation and the voltage of
neuron 2 rises quickly to complete the cycle of the activity pattern shown in Figure 1(D).

From this analysis, we observe that saddle-node bifurcations of fast subsystem fixed points
are implicated in initiating the transitions between phases within a URO cycle. Standard fast-
slow analysis would provide transition surfaces where these bifurcations occur, as a function
of the slow variables. It is not clear, however, what factors determine whether UROs or DROs
arise for a given set of parameters and initial conditions and what causes the “turn-around” in
UROs. We next turn to a linear simplification of our model system on which we can perform
additional analysis. We shall see that to address some of these questions, we will need to
consider the fast subsystem together with the slow subsystem to determine the outcomes of
phase transitions.

3. Linear model. In standard fast-slow analysis, the starting point is to determine the
set of fixed points of the fast subsystem. Due to the voltage-sensitive coupling described in
(2.3), the voltage equations from system (2.1), (2.2) have only isolated fixed points, and these
depend on where each voltage variable lies relative to {v = vpin} and {v = vy }. Moreover,
we find that a complication arises due to the proximity of the voltage nullsurfaces in certain
regions of (v, vy, v3)-space, which can blur the distinction between fast and slow timescales.
We therefore turn to a simplified linear model setting in which we can perform analysis that
is useful for revealing what factors determine which solution types exist and are stable as well
as what mechanism causes the apparent turn-around during some phase transitions.

Although we cannot derive the linear model rigorously from the full model, we can provide
numerical and heuristic analytical justifications for this simplification. Numerically, it appears
to exhibit similar behavior to the full model; we shall see that the bifurcation analysis for the
three-cell version of this model, presented in Figure 12, agrees qualitatively with the full model
diagram (Figure 2) including the extra details that we were able to flesh out using a smooth
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coupling function (Figure 2(C), (D)). Analytically, we note that for the relaxation oscillations
on which we focus, each v; is approximately constant in each active and silent phase, and each
unit is usually in the silent phase while it is inhibited. Thus, the (v; — vgynr) term in Igynr
to leading order acts as a constant factor when the term f(v;) that it multiplies is nonzero.
For the product m;(v; — vi) in Iap;, (v; — vk) is approximated by a larger constant when
unit ¢ is active and by a smaller constant when it is silent. The larger constant reduces the
size to which m; must grow to induce a fixed negative feedback on v;. The smaller constant
allows adaptation to wear off even at larger m; values. Together, these effects compress the
range of m; over each oscillation, but they are not expected to cause a qualitative change
in dynamics. Finally, both v; and K4pf(v;) are monotone increasing functions, yielding
qualitatively similar m; dynamics across the two models.

For the linear analysis, we begin with a two-neuron network and focus on the three-neuron
network afterward. Although the two-neuron network cannot demonstrate all of the activity
patterns observed in the full model, its dynamics include some important features of the
relaxation oscillation dynamics in the full model and hence this initial analysis will help us to
understand the mechanisms involved.

3.1. Two-neuron network. Here we consider the following system:

(31) (% I—v—my gf(vj)a
mi = e(vi—ami),

where i € {1,2}, j = 3 — 4, and f(v) is the same function given in (2.3). We use g as a
bifurcation parameter and fix the other parameter values as a =2, I =6, ¢ = 0.01, vyin, = 0,
and Ymax = b throughout the remainder of this paper unless otherwise specified. To find
critical points of the full system (3.1), we need to solve the following system of equations:
{ I—vi—vifa—gf(va) = 0,

I—vy—vy/a—gf(vy) = 0.

We refer to the two curves defined by these equations as the v-nullclines, although the
general v;-nullcline is parameterized by m;, whereas here m; is fixed at v;/a. These curves
are symmetric about the identity line and are each composed of three linear parts with two
elbows, or points where the slope changes, since f(v) is a piecewise linear function (Figure
4). Figure 4 also shows the two elbows of the vi-nullcline, defined by the first equation in
(3.2), which are given by (a(l — g)/(a + 1), Umax) and (al/(a + 1), vmin) (red dots). Note
that the latter does not depend on g. With this elbow fixed, we may obtain one or three
fixed points of system (3.1) depending on ¢ (Figure 4). When the slope of the middle branch
of the vi-nullcline becomes —1, there are infinitely many fixed points. This happens when
g = Vmax(a + 1)/a = 7.5. In summary, there is only one fixed point in the system if g < 7.5
and there are three fixed points if g > 7.5.

Now, assume that there is a critical point (vq,v2) with v; = vy < vpin = 0. Figure 4
suggests that this type of critical point does not exist. Indeed, if v1 = v < vy = 0, we
obtain v; = al/(a + 1) from (3.2), which contradicts the assumption v; < vpyin = 0. Now,
consider a critical point (vi,vs) with v1 < vpin and vy € (Vmin, Vmax) OF V2 < Upin and
v1 € (Umin, Umax) as shown in Figure 4(A).

(3.2)
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Figure 4. v-nullclines for system (3.1) with m; = v;/a. The vi-nullcline appears in blue and the vs-
nullcline in black. Red dots denote elbows of the vi-nullcline, where it changes slope. Black dots are critical
points. (A) g=8, (B)g=17, (C) g=5.

Proposition 3.1. The system (3.1) has two stable critical points, (vi,v2), with either v <
Umin and v2 € (Vmin, Umax) 0T V2 < Umin and V1 € (Umin, Umax), Jfor g > 7.5.

Proof. Due to the symmetry of system (3.1), it is enough to find a stable critical point
(v1,v2) with v1 < Upin and vy € (Vmin, Vmax). Since f(v1) = 0 and f(v2) = (V2 — Vmin)/Vmax
under this assumption on v; and ve, equations (3.2) yield va = al/(a + 1) and we use this to
solve for vy, which yields vy = a(l —)/(a + 1) where

=g (a[/(a+ 1) —vmin) '

Umax — Umin

Now, we require v; < vy, for consistency and obtain the condition g > 7.5. To determine
the stability of this critical point, we linearize the system of equations (3.1) around this point
and find that this matrix has two repeated negative eigenvalues,

—(ae+1) £ +/(ae+1)2 —4(a+ 1)e
5 .

A=

Thus, the critical point is stable. |

Now consider a fixed point (v, v2) with both v1,v2 € (Umin, Vmax). Due to the symmetry
of the system (3.1), v;1 = vy and we have the following result regarding the existence and
stability of this fixed point.

Proposition 3.2. The system (3.1) has a critical point, (v1,v2), with v1 = v2 € (Vmin, Vmax)
for each g > 0. This critical point is stable only for g < vmax(1 + a€), which gives g < 5.1 for
our default parameter values.

Proof. Under the assumption that v1 = v2 € (Umin, Umax), We obtain v; = alvmax/(AUmax +
ag + Vmax) from the system (3.1), which is always less than vy for all positive g. Now, we
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linearize the system (3.1) around this point and obtain a Jacobian matrix with characteristic
polynomial

N¥+(Q+ac+OA+e(a+1+a@)}{N+(1+ac—G)A+ela+1—aG)} =0,

where G = g/Umax. From the first factor of this polynomial, we compute

N —(1+ae+G) £ /(1 +ae+G)? —4de(a+ 1+ aG)
12 = :
' 2

Obviously, A2 are either two negative reals or two complex numbers with negative real parts.
On the other hand, from the second factor of this polynomial, we obtain

N = —(1+ae—G) £ /(G +ae—1+2e)(G+ae —1—2\/e)
El 2 :

First, note that for vmax(l — ae — 2v/€) < g < Vmax(1 — ae + 2y/€) or 3.9 < g < 5.9, A3 4 are
complex eigenvalues. Second, the quantity 1+ae— G changes its sign from positive to negative
as g crosses Umax(l + ae) = 5.1. Thus, for 3.9 < g < 5.1, A\34 are two complex eigenvalues
with negative real parts; for 5.1 < g < 5.9, they are two complex eigenvalues with positive
real parts; and last, for g > 5.9, they are two positive real eigenvalues. |

Figure 5(A) shows a numerically computed bifurcation diagram for system (3.1), which
confirms our analysis. Note that by symmetry, we obtain the same diagram in (g,v;) and in
(g,v2), so we simply label the vertical axis with v. The middle branch in the diagram consists
of the set of fixed points with v1 = v2 € (Vmin, Umax)- For g < 5.1, it is stable and denoted by
a thick curve. At g = 5.1, when it loses stability (thin curve), stable relaxation oscillations
emerge and persist until g = 7.5. An example of the relaxation oscillation solution when g = 6
is shown in Figure 5(B). For g > 7.5, there are three fixed points, and the two asymmetric
ones are stable.

A) B)

6 /_ 6
4 ' 4
S, S
E . E:
" \ >
0
-2
5 5 7 9 2 50 100 150 200
g time (ms)

Figure 5. (A) Bifurcation diagram of system (3.1) with g as a bifurcation parameter. Stable (unstable)
fized points are denoted by thick (thin) black curves. Blue dots represent the maximum and minimum values of
v in relazation oscillations. (B) Activity patterns of system (3.1) when g = 6. vy is in red and va in blue.
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A) B) C)
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%0 2 a4 & %0 2 4 6 2 0 2 4 6
V4 V4 Vi1

Figure 6. Nullclines of v; with m; as parameter. In (A) and (C), the vi-nullcline is in blue and the
va-nullcline is in black. (A) g = 6, m1 = 1.5, and my = 1.4. (B) Transitions in the nature of the critical
points can only can happen on the thick lines, S1—Sa, where one of the v; is in the set {Vmin,Umaz}- (C) One
example of the v-nullclines at a transition that happens on the line segment Si.

Next, utilizing the fact that v; (i = 1,2) are fast variables and m; (i = 1,2) are slow
variables, we perform a fast-slow analysis to study relaxation-type oscillations in system (3.1)
for g > 5.1. We call the system of fast variables the fast subsystem and slow variables the slow
subsystem. The idea here is that we first treat m; (i = 1,2) as parameters to determine the
attractors of the fast subsystem and the transition curves in (mj, mg)-parameter space where
bifurcations occur for the fast subsystem. Second, we consider how, once the fast subsystem
has settled to an attractor, the dynamics of the slow subsystem, with m; (i = 1, 2) as dynamic
variables, can cause the attractor structure to change and potentially induce a fast jump to a
new attractor.

Note that the nullclines of the fast variables v; (i = 1,2) are given by

(3.3) vi =1 —m; — gf(vj),

where j = 3—1i. While there is only one fixed point in the whole system for g < 7.5 (Figure 4),
when we treat m; (i = 1,2) as parameters, the fast subsystem can have more than one fixed
point. Figure 6(A) shows one example with two stable fixed points and one unstable fixed
point of the fast subsystem when g =6 , m; = 1.5, and mo = 1.4.

As in the full model case (e.g., Figure 3), we find that the transitions between fast sub-
system attractors are triggered by saddle-node bifurcations. Due to the geometry of the
v;-nullclines, these bifurcations can arise only on the four line segments, S1—S4, shown in
Figure 6(B) (thick lines). In fact, as we shall show later, with the baseline set of parameters,
the bifurcation can happen only on S; and S.. First, we find the condition for the bifur-
cation to occur on the line segment S7. For this bifurcation, the elbow of the vs-nullcline,
(0,1 —mg), should lie on the line segment S; and, at the same time, on the middle branch of
the vi-nullcline, v = —gva/vmax + I — my (Figure 6(C)). Thus, given that vy, = 0, we see
that the following two conditions must hold:

Y1 I —vpax <mo<I and mp = g mg—l—I(l— g >
Umax Umax
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In other words, a fast subsystem saddle-node bifurcation transition occurs on the line segment
S1 when the slow variables satisfy ;. The conditions 3, define a curve in (mq, m2)-space,
which we call a transition curve. Similarly, we can find other transition curves, corresponding
to fast subsystem saddle-node bifurcations on the line segments So, S, and Sy as follows:

Yol —Umax <mp <I and my = = m1+I<1 g ),
VUmax Umax

Y3l — g — Vmax <mo <I—¢g and mlz—vg (I —mg—g)+ I — vmax,
max

Y4l —g—vpax <my <I—g and mgz—vg (I —mq—g)+ I — Umax-
max

Now we can treat m; (i = 1,2) as dynamic variables in the full model and describe how a
transition from the vi-on state (v1 > Vmaq) to the va-on state (va2 > vUpmas) happens (Figure 7).
Figure 7(A) shows time courses of v; (blue) and vs (black) and Figure 7(B) time courses
of my (blue) and ms (black). Some time points marked with dots in Figures 7(A)—(B) are
illustrated in the subsequent panels. Figure 7(C) shows the (v1,v2) fast phase plane with the
v;-nullclines and a projection of the attracting solution at a moment in time when v1 = Vs
with va < Vpin (red dot). Figure 7(H) shows the corresponding projected solution onto the
slow phase-plane (red dot, point C). In the v;-on state, m; increases and mqy decreases based
on (3.1). In the fast phase plane, this means that the v;-nullcline moves leftward and the
vg-nullcline moves upward. In the slow phase plane, on the other hand, the projected solution
moves to the lower right. Once it hits the transition curve X5 in the slow phase plane (Figure
7(H), point D), the stable fixed point is lost through a saddle-node bifurcation in the fast
phase plane (Figure 7(D)) and the projected trajectory moves to the other stable fixed point
and settles down there (Figures 7(E)—(G)), corresponding to the v-on state. During this
transition, the projected solution in the slow phase plane slowly turns around and moves to
the upper left. Now this process repeats in the vs-on state.

Figure 8 shows the slow phase plane with transition curves and the projected solution for
various g (from the left to the right, ¢ = 7,6, and 5.1). In all panels, ¥; (X2) is given by the
upper (lower) dashed black curve. When g = 5.1 (Figure 8(C)), X3 (lower solid black curve)
and X4 (upper solid black curve) appear from the lower left corner, while for the other g values,
no points in the (mq, mg)-plane satisfy the conditions for X3, 34. The red curves denote the
projections of attracting trajectories of the full system (3.1). As explained in the previous
paragraph, whenever the projected trajectory hits one of the transition curves, the stable
fixed point is lost through a saddle-node bifurcation and the trajectory quickly approaches
the other fixed point. As a result, the projected trajectory in (mj,mgy)-space turns around.
For large ¢, this turn-around happens shortly after the bifurcation. For small g, however, it
takes longer to turn around because the two v;-nullclines are close to each other in the fast
phase plane; this phenomenon of slowing just beyond a saddle-node bifurcation is sometimes
referred to as the effect of the ghost of the lost fixed points.

Finally, we show that for our current parameters, after an initial transient, fast subsystem
bifurcations can happen only on the line segments S; and Ss, corresponding to the slow
variables crossing through 31, X9 but not through 3, ¥4. Consider the partitioning of (v, v2)-
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Figure 7. (A)—(G): The transition from vi-on state to va-on state in the fast subsystem when g = 6. (A)
Time courses of vi (blue) and v2 (black). (B) Time courses of mi1 (blue) and ma (black). (A)—(B) Time points
marked with dots are illustrated in the subsequent panels, in order from earliest time to latest time. (C)—(QG)
Each panel shows the projection of full model trajectory (red) along with the v1 nullcline (blue) and v2 nullcline
(black). (H) The transition in the slow subsystem. When the projected solution hits one of the transition curves
(¥2), a saddle-node bifurcation occurs in the fast subsystem (e.g., panel (D)).
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Figure 8. Transition curves. From left to right, g = 7,6, and 5.1. In each figure, upper dashed black curve
denotes transition curve on the line segment S1 (21), lower dashed black curve on S2 (X2), lower solid black
curve on Ss (33), and upper solid black curve on Si (X4). Red curves in each figure denote projection of the
trajectories of the full model under corresponding g values.

space shown in Figure 6(B). We define the following six regions: P = {(vi,v2) : 0 < v; <
vmm,_vg_<_0},Q = {(v1,v2) : V1 > Vmaz,v2 < 0}, R = {(v1,v2) : v1 > Umaz, 0 < V2 < Vmaz}s
and P, (Q, R defined analogously but with the roles of v; and vy reversed (Figure 9(A)). Note
that region @ is bounded by two rays: « := {v1 = gz, v2 < 0} and 5 := {v1 > Vmaqe, v2 = 0}.
Similarly, @ is bounded by the two rays & := {vy = Vyaz, v1 < 0}, B := {v2 > Vpmaz, v1 = 0}.

Since the v;-nullclines are defined by (3.3), the region in which they intersect depends on
mi,mg. Indeed, we can partition (mp,ms)-space into corresponding regions with the same
names, such that the v;-nullclines intersect in region X in (v1, v2)-space if and only if (m, mg)
lie in region X in (m1, ma)-space (Figure 9(B)). Similarly, (3.3) and the definition of f yield
rays in (mj, mg)-space corresponding to those in (vy,vy)-space: « := {m; = I — vy, M2 >
I —g} and 3, @, 3 defined analogously. The kite bounded by %1, ¥, ¥3, ¥4 is partitioned into
seven regions by «, 3, @&, B; these regions also correspond to seven of the possible intersections
PNP,PNQ,...,RNR, although the two intersections PN R and RN P are empty and hence
not among these regions (Figure 9(C)). Trajectories that leave the kite from region P N Q
by passing through X9, for example, start in P and end up in Q. Finally, we note that the
line connecting the boundary point (my, ma) = (I — Vymaz, I — g) between Yo and X3 to the
boundary point (my,ma) = (I — g,1 — Vimas) between 31 and ¥4, which we will call £, has
slope —1 and takes the form ms = —mq + 21 — g — Vimaz-

From region P, trajectories pass through X, since ni; > 0 on «, my < 0in P, m; > 0 on
the part of ¥g with m; < I/(a+ 1), and there are no critical points of the (mj, ma) dynamics
in P. Moreover, from region @), trajectories pass into P or R. Thus, it suffices to consider the
fate of trajectories from R. In region R, the fixed point of the fast subsystem is given by

v = I—m _g(I_mZ _g)/vmaza

v9 = I —mg—g.
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Figure 9. Key transition curves and the regions they bound. (A) Partition of (vi,v2)-space. (B) Regions
P, Q, and R in (m1,m2)-space. (C) All siz regions in (m1,mz)-space.
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Hence, the slow subsystem is

m) = I_ml_g(l_mZ_g)/Umax_amly
(3.4)
mg = I —mg—g—ams.

From system (3.4), we can deduce two results about the vector field for sufficiently large g.
First, the vector field points from R into Q on the boundary 8 between the two regions,
where mo = I — g. Second, on Y3, we have my = v, — am; > 0 and an algebraic calculation
shows that the slope of the vector field, dms/dm1, exceeds the slope v,,/g of X3, such that
the vector field points into R from X3 as long as ¢ is sufficiently large. Indeed, expressing mo
as a function of m; on Y3 based on the definition of X3 reveals that the highest order term
in g in dmg/dm; along X3 is ag > 0, while v,,/g goes to 0 for large g. Hence, no trajectories
leave through 3. For smaller g, however, the vector field points out along at least part of Xs.
Trajectories that leave through X3 end up in R or Q; in the latter case, they next pass into
either R or P.

Given these properties, to achieve the desired result, since 1y > 0 in R and @Q, it suffices
to show that dmg/dm; > —1 in R as well as in the part of @) below the boundary line £
between the upper half of the kite bounded by X1, 39 and the lower half bounded by X3, ¥4;
this part of @ is specified by the condition

(3.5) mo < —mq + 21 — g — Upaz-

If these results hold, then dms/dm; < —1 will hold analogously in R. Together, these prop-
erties of the vector field will ensure that leaving the kite through Y3 (and similarly ¥4) can
be at most transient; over successive cycles, trajectories that do so will be forced closer to
and then across £, such that eventually either (1) a cycle occurs such that when v; is on,
the trajectory leaves the kite by reaching 9, or (2) a cycle occurs such that when vy is on,
the trajectory leaves the kite by reaching ;. In either case, all subsequent fast subsystem
bifurcations will occur when (m;j,mg) reach ¥ U o.

An algebraic calculation starting from (3.4) shows that dmsy/dmy > —1 in R if and only if

m2(g/vmaaz - (1 + CL)) >g— 21 + (I - g)g/vmaaz + ml(l + CL),

where g/Umar — (1 + a) is negative for our parameters. Based on the definition of R, in the
worst case, mg = I — g and mq = I — vyqs, such that this inequality is equivalent to the
condition a(g — I) > al — vyax(1 + a), or

(3.6) g > 2] — vy (l+a)/a.

The right-hand side of expression (3.6) is 4.5 for our parameter set, so the desired result holds
since we only consider g > 5. In @), we have

my = I—ml(l—{—a),

me = I—g—ma(l+a).
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The desired condition dmsg/dm; > —1 becomes
mi(l+a) <2l —g—ma(l+a).

In the relevant region, the worst case occurs when meo is as large as possible, which, based on
(3.5), is mg = —my + 2] — g — Upmae- Thus, it suffices to have vya, (1 +a) —a(2I — g) > 0, or
g > 21 — Upaz(1 4 a)/a. But this is exactly condition (3.6), which we have already confirmed
for our parameter set.

We illustrate this trajectory behavior in Figure 10. Figure 10(A) shows the typical tra-
jectory behavior for g sufficiently large. In this case, the vector field points into R from X3,
hence no trajectory leaves through ¥3. In Figure 10(B) (¢ = 6.2), the trajectory leaves R
through 33 and ends up in Q. In this case, the trajectory next passes into P and leaves P
through ;1. In Figure 10(C) (g = 5.5), the trajectory leaving R through X3 ends up in Q,
then passes into R and then leaves R through X,. After this, it passes from @ to P and
leaves through Y. Finally, in Figure 10(D) (¢ = 5.5, with a different initial condition from
the previous case), the trajectory in @ passes into R through 8 and then leaves R through

A) g=7 B) 9=6.2
L~ 5 L~

: 7
R

C) g=55 D) g=55

1.5 / 1.5 /

1
N N
€ 05 ]
0.5
0 /\
05 0 /
-0.5 0 0.5 1 1.5 -0.5 0 0.5 1 1.5
m1 m1

Figure 10. Projection of full linear model solution onto (m1, m2)-space. The kite bounded by X1, X2, X3, 24
s shown in the middle of each figure. Black thick line is X3 and blue thick line 4. Horizontal/vertical lines
are a, B, &, and B. Projection of full model solution is shown in red. (A) g =17, (B) g =6.2, (C) g =5.5, and
(D) g = 5.5 again, with a different initial condition than in (C).
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Y3. After this, it passes from @ into P and leaves through ¥;. In all cases, all subsequent
exits occur through ¥; and X9, as claimed.

Before closing this section, we summarize how we used fast-slow decomposition to analyze
periodic solutions of system (3.1). As in the standard fast-slow analysis, we considered slow
variables as parameters, identified critical points of the fast subsystem parameterized by these
slow variables, and then derived the bifurcation conditions for the fast subsystem in terms
of the slow variables. The trajectory of the full system quickly approaches a stable fixed
point of the fast subsystem and then stays near the fixed point. During the latter relaxation
time period, the slow variables evolve to approach their own fixed point, which depends on
the values of the fast variables at the fast subsystem fixed point. Once the trajectory of the
slow dynamics hits one of the transition surfaces, the fixed point of the fast subsystem is lost
and the trajectory of the whole system jumps to the neighborhood of another fixed point
of the fast subsystem. These steps comprise one half-cycle of the periodic solution. In the
two-neuron network, the mechanism underlying the periodic solution could thus be explained
clearly using fast-slow analysis. In a three-neuron network, however, we shall see that slow
dynamics continues to play a role even after the occurrence of a fast subsystem bifurcation
that might be expected to initiate a fast transition.

3.2. Three-neuron network. Now consider the following system that describes the dy-
namics of three neurons,

v = I —vi—mi—g(f(vig1) + grf(vit2)),
(3.7)

mi = e(vi—ami),

where i € {1,2,3} and indices are in cyclic order; for example, f(vq) := f(v1) and f(vs) :=
f(v2) in the governing equation of vs. The network architecture is circular, symmetric, and
mutually inhibitory. Here, g is again our main bifurcation parameter and we fix g, = 1.2
to introduce the difference in the strengths of inhibition between the two directions around
the ring (i.e., the “downhill” and “uphill” directions), as encoded in the differences in the
b;j values for different 7,7 in system (2.2). Other parameter values are the same as in the
two-neuron linear system.

3.2.1. Critical points and bifurcation diagram of the system. We begin by considering
existence and stability of critical points for system (3.7). Let (v1, v2, v3) be a critical point and
suppose that we obtain {x, y, z} after sorting the coordinates of this critical point in decreasing
order. Then, we say that this critical point is (+, I, —)-type if £ > Vmax, ¥ € (Umin, Umax), and

2z < vmin. Other types of critical points such as (I, —, —)-type are defined similarly. First,
consider (—, —, —)-type critical points. In this case, system (3.7) reduces to

v = I —wv—m,
(3.8)

Thi = e(vi—ami),

and we have v; = vy =v3 = I/(1+1/a) and m; = mg = m3 = I /(1 + a) due to symmetry.
But I/(1+ 1/a) > 0 contradicts the assumption that all v; < vy = 0, and hence system
(3.7) does not have any (—, —, —)-type critical points.
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Moving on, we establish the following result regarding the existence and stability of
(I, —, —)-type critical points.

Proposition 3.3. The system (3.7) has three stable (I, —, —)-type critical points for g > 7.5.

Proof. Without loss of generality, we consider a fixed point (v1,v2,v3) with v1 € (0, Umax)
and vg,v3 < 0. System (3.7) then becomes

v = I —v—mq,

(3.9 v = I —wvy—ma—gg-fv1),
v3 = I —wv3—m3—gf(v1),
m; = €(v; —am;),

and we obtain

(01, v, 03) = al al 1 aggr al 1 ag
DERT T \14+d 1+a Vmax(1+a))’ 1+a Vmax(1+a)) )’

From the assumption that v1 € (0, vmax) and vg, vz < 0, we find that

1
g > Umax <aj;) =T7.5.

To determine the stability of this critical point, we linearize the system of equations (3.7) and
obtain a 6 x 6 matrix, and by direct calculation we confirm that this matrix has two negative
eigenvalues, each of multiplicity three. |

Similarly, for the existence and stability of (I, I, —)-type critical points, we have the fol-
lowing result.

Proposition 3.4. The system (3.7) has three unstable (I,1,—)-type critical points for g >
7.5.

Proof. Without loss of generality, we consider a fixed point (vi,ve,v3) with vi,vy €
(0, Umax) and vz < 0. System (3.7) then becomes

01 = I —vi—my—gf(va),
v = I —vy—mg—gg f(v),
(3.10)
v3 = I —v3—m3—g(f(v1)+grf(va)),
m; = e(v; —am;).

From the first and second equations of (3.10), we have

(3.11) v\ I (a+1)/a— Gy
' v ~ (a+1)%/a? — GGy (a+1)/a— Go ’
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where G1 = ¢/(Vmax — Umin) and Gy = ¢,G1. Putting these two equations into the third
equation of (3.10), we obtain

1
a fr_ g

a+1 g
a+1 Vmax ((a +1)2/a2 — G1Go) {(1+gr) a Umax (1—|-g,2,) H .

(3.12) w3 =

Now, the condition v1 € (0, vyayx) yields

Umax @ + 1 Umax @ + 1 a-+1
3.13 — <g< —— or > VUmax———
( ) \/97 a g \/97 o g ma;
and the condition ve € (0, vmax) yields
(3.14) 7vmaxa+1 <vmaxa—|—1 or g>vmaxa+1

<g
Vir a gr a \V 3r
From the condition that vz < 0, we also have

(9r2 —gr+ 1) 92 — Umax(1+gr)(a+1)/ag + U]?nax(a + 1)2/(12

<0.
Vihax (@ +1)?/a? = g,6°)

Note that the numerator of this fraction is always positive because g2 — g, + 1 > 0 and

a+1)? a+1)\? a+1)\?
{’Umax(l—i—gr) . } —4(gz—gT+1)v§1ax< - ) =3 <vmaxa> (Qr—1)2<0'

Thus, the condition that v3 < 0 yields

Umax @ + 1 >Umaxa+1

(3.15) g<—\/g7 . g 7o

Combining (3.13), (3.14), and (3.15), we obtain g > vpax(a+1)/a = 7.5. Now, the linearization
of the system (3.7) around this fixed point is a 6 x 6 matrix and the characteristic polynomial
of this matrix is given by

{)\2 + (ae+ DA+ e(a+1)} {)\2 + (ae+1—+/GiGa)A+e(a+1— a\/Gng)}
X {)\2 + (ae+ 14+ /G1Go)\ +e(a+ 1+ a\/Gng)} = 0.

Here we consider the second factor of this characteristic polynomial. We note that ae + 1 —
vG1G2 < 0 and a + 1 — avG1G2 < 0 for g > 7.5. Thus, as a quadratic equation in A, the
second factor of this characteristic polynomial has a positive real root and the critical point
is unstable. |
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Next, consider any (4, —, —)-type critical point, say, a critical point (v1,ve, v3) with vy >
Umax and vg,vs < 0. From system (3.7), we obtain

al a(l —gg-) a(l—g)
a+1’ a+1 '’ a+1

(v1,v2,v3) = <

but since al/(a + 1) < vmax, this point does not satisfy the prescribed condition on vy,
so system (3.7) does not have a (4, —, —)-type critical point. Similar analysis also shows
that system (3.7) does not have a (+,1,—)-type critical point. For example, consider a
fixed point with v1 > vmax, v2 € (0, Vmax), and v3 < 0. From system (3.7), we have v; =
a/(a+ 1)(I — gva/Vmax) > VUmax, which yields I — (a + 1)vmax/a > gva/vmax. Note that the
left side of this inequality is negative while the right side is positive and thus it fails. In fact,
we can show that system (3.7) does not have critical points of any of the remaining types
except (I,1,I)-type. We establish the following result regarding the existence and stability of
(I,1,I)-type critical points.

Proposition 3.5. System (3.7) has an (I,1,I)-type critical point, which is stable for g <
gn1 ~ 4.56663. At g = gp1, a pair of complex conjugate eigenvalues cross the imaginary axis in
the positive direction and the critical point becomes unstable. At g = gpa ~ 5.07986, another
pair of complex conjugate eigenvalues also leave the negative real half-plane, and they return
at g = gpg =~ 6.16515.

Proof. Due to symmetry, system (3.7) has a critical point (v,v,v,v/a,v/a,v/a), where

I
— > 0.
T @t )/at g(l+ gr)/Vma

It is also easily shown that v < vpax for g > 0. To determine the stability of this critical point
we linearize system (3.7) and obtain a 6 x 6 matrix with characteristic polynomial given by

(AF +et+ GiA+ GQA)
W{(AT+ %+ (G1A)2 + (GoA)? — (AT 4+ )GhA — (AT + €)GaA — G1GaA2} = 0,

where A = ae+ A and I' =1 4+ A. From the first factor of this equation, we have
(3.16) (ae+AN)(1+X) + e+ (G1 4+ Ga)(ae+ X)) =0,

which yields

\ —(1+ae+G1+G2) £ /(1 +ae+ Gy + G2)? — de(a+ 1 + (G1 + G2)a)
12 = .
’ 2

The quantity inside the square root can be written as
(1+ae+ Gy +G2)? —dela+ 1+ (Gy + Ga)a) = (G + G2 + 1 — ae)® — 4e > 0.

Therefore, A1 2 are negative real numbers.
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Now, using the fact that I' = A — ae + 1 or AI' = A% + (1 — ae)A, the second factor of the
characteristic polynomial can be written as

0=(A?+(1—ae)A+e)?+ (G +G3A* — (A* + (1 — ae)A + €)(G1 + Go)A — G1GoA?

1 >3
= {A2 + (1 — ae)A +e— i(Gl + GQ)A} + 1 {(GQ — G1)A}2 .

Therefore,

1 3
A+ (1 - ae)A+ e~ S(Gr + Ga)A = j:i\g(Gg ~ @A
If welet ® = 1 —ae — (Gy + G2)/2 and ¥ = /3(Gy — G1)/2, then this equation becomes
A2+ ®A+e=4VA, and if we also let A = R+4I where R, I € R, then we obtain the following

system of equations:
{ R? - I? ft PR+ €= —VI,

2RI+ ®I =VYR.

Now, the first of these equations can be written as

(3.17) (R+®/2)% — (I —¥/2)* = (9/2)* — (¥/2)* —¢,

which is a hyperbola unless (®/2)? — (¥/2)? —e = 0. The second equation also can be written
as

TP /4

(3.18) I:‘I’/Q—mu

which is another hyperbola unless ® = 0. To find an explicit formula for R := Re()\) =
Re(A — ae) = R — ae, we let X = (R+ ®/2)%? > 0. Then, (3.17) and (3.18) give us

(P2/4)?

X —
X

= (2/2)° - (¥/2)* ~ e

Solving this equation for X and then expressing the result in terms of R, we have

(319) R= —ac— % " \/(<I>/2)2 —(U/2)2 — e+ \/((<I>/22)2 (/27— P+ (W94

The plus branch of (3.19) is negative when ® = W, is monotone increasing over the g
values where ® > V¥, and, for our parameter values, has a unique root at g = gp1 :~ 4.5666.
Meanwhile, we can calculate that the minus branch of (3.19) is also negative when ® = U as
well as in the limit as ¢ — oo, and substituting our parameter values into (3.19) shows that
it has roots at g = gpo :~ 5.0798, gp3 :~ 6.16515, as desired. [ ]

Before moving on, we illustrate these results numerically. Figure 11 shows two curves,
one defined by (3.17) (red) and one by (3.18) (blue), in the (Re()),Im())) or equivalently the
(R, I) plane when g = 4.5 (Figure 11(A)) and g = 4.6 (Figure 11(B)). When g = 4.5, there
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Figure 11. Solutions of (3.17) (red) and (3.18) (blue) in the (Re(A\),Im (X)) plane. (A), (B) Solution curves
and their intersections (black dots) for g = 4.5 (A) and 4.6 (B). (C) Real parts of complex eigenvalues (Re(\)
= R) as parameter g varies. At g ~ 4.5666, two eigenvalues cross the imaginary azis to have positive real part,
and at g = 5.0798, the remaining two eigenvalues also cross the imaginary azis. Note that at g = 49/11, ® = 0.

are two intersection points with negative Re(\) values, which means there are four complex
eigenvalues with negative real parts. As g increases, the vertical asymptote R = —ae — ®/2
of (3.18) moves rightward and so do the two intersection points. At g = gp1 :~ 4.5666, a
pair of complex conjugate eigenvalues cross the imaginary axis to have positive real parts
(Figure 11(C)). Thus, the critical point loses stability. Figure 11(B) shows that the upper
intersection point has already crossed the imaginary axis when g = 4.6. Figure 11(C) also
shows that the other intersection point, hence the other pair of complex conjugate eigenvalues,
also moves through the imaginary axis from the negative to the positive real half-plane at
g = gn2 '~ 5.0798 and returns back to the negative real half-plane at g = g3 :~ 6.16515.

Using XPPAUT, we computed a bifurcation diagram for system (3.7) with respect to pa-
rameter g, which shows that gp1, gn2, and g3 correspond to Andronov—Hopf (HB) bifurcation
points (Figure 12). The middle solid curve that cuts through the diagram horizontally consists
of (I,1,I)-type fixed points. The set of stable fixed points among them is denoted by a thick
curve and unstable fixed points by a thin curve. There are three HB bifurcation points at
9 = 9n1, 9n2, and gn,. As g passes through g1, the stable fixed points lose stability and a
branch of periodic orbits emerges; these start out unstable (green) but give way to a branch
of stable periodic orbits (blue) almost immediately, presubmably through a saddle-node of
periodic orbits bifurcation (Figure 12(A)). These stable periodic solutions are SOs. At an-
other HB point, g = gx2, a branch of unstable periodic orbits emanates, which terminates at
g = gn3. The minimum and maximum values of v; are denoted by green dots, which form a
closed curve surrounding part of the fixed point branch in the middle of Figure 12(A).

Now, as g increases, the stable branch of SOs gives rise to two unstable branches of periodic
orbits (red in Figure 12(B)) at a PD bifurcation point at g = gpa1 = 5.064. One of these
in turn gives rise to a new branch of stable periodic solutions at a second PD bifurcation at
9 = Gpd2 -~ 5.375 (also solid blue in Figure 12(A)—(B), labeled with D). These stable periodic
solutions are DROs. The other branch of unstable periodic solutions born at g = gpq1 extends
in the direction g < gpq1 until it turns around at g = g,q3 ~ 4.994 and becomes a third
branch of stable periodic solutions (solid black in Figures 12(A)—(B), labeled with U). These
stable periodic solutions are UROs. This stable branch of relaxation oscillations meets the
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Figure 12. (A) Numerically computed bifurcation diagram of the system (3.7) with bifurcation parameter
g. (B) Upper middle branches are zoomed in. (C) DROs when g = 6.2. (D) UROs when g = 6.2

other branch of unstable periodic solutions at g = gpqa =~ 6.245. As illustrated in Figure
12(B), there is a small range of g values near 5 over which UROs and SOs stably co-exist
and a large range of g values over which UROs and DROs stably co-exist (Figure 12(B)). All
of these features agree qualitatively with the bifurcation diagram in Figure 2 from the full
model (2.1)—(2.2). In particular, note that the family S grows abruptly in amplitude, as in
Figure 2(A), where the piecewise smooth coupling was also used, and that the bifurcations
that destabilize and connect the solution branches agree with those in Figure 2(C), which
provides additional evidence that these bifurcation types likely occur in Figure 2(A) as well.

Not surprisingly, the activity patterns of SOs, UROs, and DROs are qualitatively the same
as those shown in Figure 1. The time courses of DROs and UROs are illustrated in Figures
12(C)—(D). As in Figure 1, SOs and DROs share the same order of activation that can be
naturally deduced from the network architecture. In UROs, however, this natural order is
reversed.

To make things more clear in the following subsections, we next define some terms related
to the fast subsystem. When a neuron is active, we assume that at least one of the inhibited
neurons is totally suppressed. More precisely, again taking indices to be cyclic, if v; is active,
then we assume that v;11 is totally suppressed (below vpn) all the time except during the
transition between states. v;_1 (or equivalently v;y2), on the other hand, is near vy, and can
potentially be positive. Thus, if v; is active, then we only need to consider the v;-nullcline and
the v;yo-nullcline to describe the dynamics of the trajectory in the fast subsystem. Consider
(vi, vi+2)-space, where the horizontal axis is v; and vertical axis v;;o. Similarly to the two-
neuron network (Figures 6 and 7), over most of the time that v; is active, the fast subsystem
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has two stable fixed points and one unstable fixed point. The stable fixed point that the
projected trajectory approaches is located at the lower right part of (v;, v;1+2) space where v;
is near vmax and v;yo is near vyin. At the other stable fixed point, v; is near vy, and v is
near Upax. We call the former the lower fized point in (v;,vit2) space and denote it by FPr,
in (v;,vi+2) space. Similarly, we call the latter the upper fixed point in (v;,vi+2) space and
denote it by F'Py in (v;,v;42) space. Note that we will use these labels regardless of which
1 value we are considering; the specific fixed points to which they refer when used below will
be clear from the context. Finally, at the unstable fixed point, v; and v;12 take intermediate
values between vpmin and Vmax.

3.2.2. Adaptive release and adaptive escape mechanisms. Before we study some im-
portant features of DRO and URO activity patterns in more detail, we first consider how the
transition between states is initiated. As a concrete example, we consider the transition from
the vi-on state to the vz-on state in DROs. We show that there are two different transition
mechanisms depending on the synaptic strength (the value of parameter g), which also carry
over to UROs. In the following subsections, we study what happens in the transitions of UROs
and DROs by considering fast subsystems during fast jumps. This will reveal the mechanism
that determines, via the interplay between slow dynamics and fast dynamics, whether UROs
or DROs occur.

Figure 13 shows two relaxation-type oscillations in DROs for g = 5.6 (A) and g = 6.2 (C).
As stated in the previous section, the order of activation in DROs follows the natural order in
relation to the current network architecture, that is, v; — vs — vo. With the stronger synaptic
strength (Figure 13(C)), an active neuron exerts more inhibition onto the other neurons and
we observe that the active neuron stays in its active phase longer and the inhibited neurons
are more suppressed. Specifically, when v is active (red traces in both Figures 13(A) and
13(C)), the less inhibited neuron vz (black) is below v, = 0 (that is, vs is totally suppressed)
when g = 6.2 (Figures 13(C) and 12(C)) but above v, over most of the active duration of
v1 when g = 5.6.

These different statuses of the less inhibited neuron result in different fast subsystem bifur-
cation mechanisms between the two examples. The difference between these two mechanisms
can be seen more clearly if we look at the fast subspace. Figures 13(B) and 13(D) show the
corresponding fast subspace with the v; nullcline (black) and wvs nullcline (blue) when the
transition is initiated. At this moment, the stable fixed point and unstable fixed point (in-
tersection points of v1 nullcline and vz nullcline) merge and disappear through a saddle-node
bifurcation. In each figure, red dots denote the projection of the trajectory of the whole system
just before the transition is initiated. Note that when g = 5.6, the saddle-node bifurcation
happens at a point on S3, with the transition between states initiated when the active neuron
first decays below vpax; when that occurs, the suppressed neuron is already above vyi,. When
g = 6.2, on the other hand, the fast subsystem bifurcation happens at a point on Sy when the
suppressed neuron crosses vmin, with the active neuron already below vy ax.

Traditional release and escape mechanisms [48, 43] are not so well-defined for this system.
The case with g = 5.6 might be interpreted as a release mechanism, because it is only when the
active neuron v; drops below vpay that the transition can occur, while the case with g = 6.2
can be interpreted as an escape mechanism, since the transition occurs when wvg reaches vmin.
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Figure 13. Two examples of transitions arising for DROs. Adaptive escape example (A)—(B) when g = 5.6
and adaptive release example (C)—(D) when g = 6.2. In (A) and (C), v1 is in red, va in blue, and vs in black.
(B) and (D) show the corresponding fast subspace with the vi-nullcline (black) and the vs-nullcline (blue). In
each figure, red dots denote the values of vi and vs when bifurcation happens, hence the transition is initiated.

Under the weaker inhibition level, however, we can also argue that we have escape because the
growth of v3 above vy, happens first and eventually helps to pull v; down. Similarly, under
stronger inhibition, we can argue that we have release because the reduction in v; below vy ax
is essential for allowing v3 to grow. While these two interpretations both seem reasonable, we
refer to the weak inhibition case as a form of escape and the strong inhibition scenario as a
form of release, and the rationale for this choice will be clear in the later part of this section.

Sekerli and Butera refined the escape (E)/release (R) classification into intrinsic E, intrin-
sic R, synaptic E, and synaptic R [42]. In the first two, the switch mechanism is the usual jump
from a knee; that is, the switch from slow to fast flow happens at a saddle-node bifurcation of
the fast subsystem. In the synaptic cases, the switch is triggered by a crossing of a synaptic
threshold within the slow flow, which can be thought of as causing a jump in the nullclines by
fast threshold modulation [46]. In our case, for a model system with voltage-sensitive, piece-
wise smooth coupling, we first have a synaptic threshold crossing, where a voltage crosses either
Umax OT Umin, but this does not give a discontinuity in the associated synaptic variable nor an
immediate fast subsystem bifurcation. Thus, these two mechanisms do not match the Sekerli
and Butera scenarios. In fact, these transitions are qualitatively equivalent to the situation
dubbed as adaptation by Daun, Rubin, and Rybak [9] in the sense that (1) there is no thresh-
old where the synaptic variable jumps and (2) the lead-up to the transition between states
involves a gradual change in the inhibitory synaptic strength from one of the two transitioning
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cells to the other. For this reason, we call the transition with ¢ = 5.6 adaptive escape and that
with g = 6.2 adaptive release. Note that in the two-neuron network, adaptive release is the
only transition mechanism that occurs, at least after an initial transient (Figures 8 and 10).

As in the case of the two-neuron network (refer to Figure 6 and related paragraphs and
equations), we can derive the equations of the transition surfaces Y9 and X3 in the three-
neuron network. We still assume that when a neuron is active, at least one of the inhibited
neurons is totally suppressed over the active period; that is, the more inhibited neuron never
rises above vy, between transitions. As a concrete example, we consider the transition from
the vi-on state to the vs-on state. When v is active, vy is totally suppressed over the active
period of v; by assumption and system (3.7) is reduced to

v = I —v—my—gg-f(vs),
(3.20) bp = I —vy—ma—g(f(vs)+ grf(v1)),
03 = I —wv3—m3—gf(vr).

System (3.20) demonstrates that activity patterns in the vi-on state can be described by
the dynamics of v; and w3 only; that is, this dynamics is not influenced by wve. Thus, we
only need to consider the vi- and vs-nullclines in (v1,v3)-space to derive the equations of the
transition surfaces. Recall that the transition from the v1-on to the vs-on state can happen only
on the line segments So (Vmin < ¥1 < Vmax, V3 = Umin) and S5 (Vmin < v3 < Umax, V1 = VUmax)
in (v, vs)-space (Figure 6). Note that a fast subsystem bifurcation on Sy corresponds to
adaptive release and on S3 to adaptive escape. Now, for the transition to happen on the line
segment Sy in (v1,v3) space, the right elbow of the vi-nullcline, (I —m1,0), should lie on the
line segment So and on the middle branch of vs-nullcline, v3 = I —m3 — gv1/Vmax, at the same
time. From the Sy condition, we find that I — vmax < m1 < I and, when we also include the
vs-nullcline condition, we obtain

Hence, the transition surface for adaptive release is given by

g

Umax

(3.21) So: I —vpmax<mp <I and mg=1-—

(I — ml).

Similarly, the transition surface for adaptive escape is given by

Umax

99gr

(3.22) M3: [ —tUmax—99r <mi <I—vUmax and mg=1—g+ (m1 — I 4 vmax)-
These two surfaces act as transition surfaces for the termination of the vi-on state in
(mq, m3)-space. (Similarly, we can define transition surfaces to leave the vs-on state and the
vs-on state.) If the projection of the trajectory of the full system onto (m1,mg3) hits one of these
two surfaces, then a saddle-node bifurcation of the fast subsystem happens and a transition
from the wi-on state to the vs-on state is initiated. Now, Figure 14 shows the projection
of these transition surfaces onto (mp, mg)-space along with the projection of the solution of
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1.5

035

Figure 14. Projection of transition surfaces (piecewise-linear curves) onto (mi,ms)-space along with the
projection of trajectories of the full linear system (triangular closed loops) for g = 5.6 (black) and g = 6.2
(red). In each case, the dot denotes the moment when vi assumes its maximum, and the trajectory evolves
counterclockwise. The trajectory hits the transition surface for adaptive escape (X3, thin black curve) when
g = 5.6 and the transition surface for adaptive release (X2, thick red curve) when g = 6.2.

the full system (triangular closed loops) for g = 5.6 (black) and g = 6.2 (red). The projected
transition surface for each case is composed of two pieces, ¥y (thick curve) and X3 (thin curve).
For clarity, we denote the moment when v; assumes its maximum over its active period by a
dot in the figure. Over the active period of v1, m increases and mg decreases, and thus the
projection of the trajectory of the full system rotates counterclockwise over time and finally
hits one of the transition surfaces. When g = 5.6, the projection of the trajectory hits X3
(adaptive escape), and when g = 6.2, the projection of the trajectory hits X9 (adaptive release).

Now, we would like to give an analytical argument for why larger g favors the adaptive
release mechanism by plotting transition curves in (v, m)-space. We first summarize the
conditions for the adaptive escape and adaptive release mechanisms. In the adaptive escape
case (m1 < I — Umax),

vm X
m3:I_g+ ¢ (ml_I+UmaX)a
g-3gr
(3.23) V1 = Umax, and

vmax

v3=I—m3—g=— (m1 — I 4 vmax)-

,
In the adaptive release case (my > I — vpax),

9

mg=1— (I - ml)a
Umax
(3.24) vy =1 —mq, and
vy = 0.
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In (v1,mq)-space, equations (3.23) reduce to
(3.25) V1 = Umax for mq < I — Umax.
In (vs, m3)-space, equations (3.23) reduce to
mg=—-v3+1—g for wv3>0.

But, since the fast subsystem bifurcation happens when vy decays past vmax in adaptive
escape, we only need the first condition, (3.25). Similarly, in (vs, mg)-space, equations (3.24)
reduce to

(3.26) v3=0 for ms3>I—g.

Here we note that the transition curve for adaptive escape, (3.25), does not depend on g but
the adaptive release transition curve, (3.26), does. In fact, the bottom end of the adaptive
release transition curve is given by mg = I — g. Figures 15(B)—(F) and Figures 16(B)—(F)
provide a combined view of these transition curves, (3.25), and (3.26), when g = 5.6 and
g = 6.2, respectively; that is, the plots show a (v, m)-space in which we combine (v1, m;) and
(v, m3) information so that we can track the dynamics of both neurons together. In both
figures, the right thick vertical line is the transition curve for the adaptive escape mechanism,
(3.25), and the left thick vertical line is the curve for the adaptive release mechanism, (3.26).

Figure 15(A) shows the temporal profiles of v; (red) and vs (black) and five time points
chosen for illustration when g = 5.6. Figures 15(B) through 15(F) correspond to the time
points in Figure 15(A) in order of occurrence. In Figures 15(B)—(F), the vi-nullcline (red)
and vs-nullcline (black) are shown along with the projection of the trajectories of neuron 1
(red dot) and neuron 3 (black dot) at each time step. Each blue line is the m-nullcline, which
is the same, m = v/a, for neuron 1 and neuron 3. The intersection of the v;-nullcine and
the m-nullcline is a fixed point of the (vi,m;)-system (not shown in the figure), and hence
neuron 1 (red dot) slowly approaches this fixed point along the v;-nullcline. Similarly, neuron
3 (black dot) slowly approaches a fixed point of the (vs, m3)-system along the vs-nullcline.

Figure 15(B) shows the moment when neuron 3 crosses the line v3 = 0 near the point
(0,1 — g), the lower end of the adaptive release transition curve. Here we note that if v; is
fully active (v1 > vmax), then the vs-nullcline (m3g = —vs + I — g) goes through the lower end
point of the adaptive release transition curve. Here, the relative m values of the two neurons
do not allow for an immediate transition. Once past the line v3 = 0, v3 becomes positive,
which lowers the v;-nullcline (Figures 15(C)—(F)). Hence the fixed point of the (v, m)-system
moves to the left and downward and the trajectory of neuron 1 adjusts accordingly. Eventually
neuron 1 crosses the adaptive escape transition curve (Figures 15(E)—(F)) and a fast subsystem
bifurcation occurs. In summary, the characteristic of this mechanism is the lowering of the
vi-nullcline through the growth of v above vyiy.

When g = 6.2, on the other hand, the location of the v3 fixed point plays a crucial role.
Note that the vs fixed point is given by (2(/ — g)/3, (I — g)/3), which is a function of g; if
g < I, then the fixed point lies in the first quadrant in (v, m)-space, and if g > I, then it lies
in the third quadrant. Thus, when g > I, the passage through vs = 0 is blocked by the w3
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Figure 15. Adaptive escape in DROs when g = 5.6. (A) Time courses of vi and vs while neuron 1 is
active. Time points marked with dots are illustrated in the subsequent panels, in order from earliest time to
latest time. (B)—(F) Snapshots of positions of (vi,m1) and (vs,ms3) (red and black dots, resp.) plotted in a
common (v, m) phase plane. Each panel includes the vi nullcline (thin red), the vs nullcline (thin black), the m
nullcline shared by both cells (blue), and the adaptive escape (AE) and release (AR) curves defined by (3.25),
(3.26), resp. (thick black). In (B), note that the bottom point of the AR curve lies on the vs nullcline and no
transition occurs when v3 increases through vmin = 0. In (D), the trajectory for cell 1 hits the AE curve where
it intersects with the v1 nullcline, initiating a transition by adaptive escape.

fixed point if v; is fully active (v; > vmax) (Figures 16(B)—(C)). If the approach of neuron 1
toward its fixed point carries neuron 1 below v1 = vmax, then the vg-nullcline is shifted upward
accordingly due to the reduced inhibition from v; (Figure 16(D)). Hence, neuron 3 is released
to eventually cross vz = 0 through the adaptive release transition curve (Figures 16(E)—(F)).
In summary, for g > I, adaptive release is the only transition mechanism available, and this
observation explains why larger g favors adaptive release.

3.2.3. The loss of downhill relaxation oscillations as g decreases. In this section, we
consider the loss of DROs that happens at g = gpa2 = 5.375 (Figure 12(B)). We look into
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Figure 16. Adaptive release in DROs when g = 6.2. (A) Time courses of vi and vz while neuron 1 is
active. Time points marked with dots are illustrated in the subsequent panels, in order from earliest time to
latest time. (B)—(F) Snapshots of positions of (vi,m1) and (vs, ms) (red and black dots, resp.) plotted in a
common (v, m) phase plane. Each panel includes the vi nullcline (thin red), the vs nullcline (thin black), the m
nullcline shared by both cells (blue), and the adaptive escape (AE) and release (AR) curves defined by (3.25),
(3.26), resp. (thick black). In (B), note that the top point of the AE curve lies on the vy nullcline and no
transition occurs when vi decreases through Vmaz = 5. In (D), the tragectory for cell 3 hits the AR curve where
it intersects with the vs nullcline, initiating a transition by adaptive release.

the transition between states more deeply to investigate what is happening during fast jumps.
Simple numerical simulation allows us to gain insight about the mechanisms underlying the
loss of DROs as g decreases. This analysis will demonstrate some important ideas about the
interplay between slow dynamics and fast dynamics during fast jumps.

We first note that gpgo is slightly greater than 5.375; when g = 5.375, UROs are the only
solution. If we begin with DROs at g = 5.38 and change g to 5.375, then numerical simulation
shows that we lose DROs after some transient period due to the failure of the trajectory
in reaching the fixed point that it was supposed to reach during a transition. For example,
during the fast jump that follows the vi-on state, the DRO trajectory approaches the fixed
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point F'Pp in (vs, ve)-space with 0 < vg < Umge and v3 > Umae. On each transient cycle
during which the trajectory succeeds in reaching a small neighborhood of F P, the order of
activation is preserved. But, on some cycle, the trajectory fails to reach this neighborhood
and the activation order changes, which can result in the emergence of UROs.

To investigate what causes the failure of trajectory to reach close enough to FP; to
complete a transition, we trace the trajectory of the full system in a piecewise way from the
v1-on state to the vs-on state. In the vy-on state, through the slow dynamics, a fast subsystem
saddle-node bifurcation occurs (e.g., Figures 13(B), (D)) and the transition from the v;-on
state to the vs-on state is initiated. While the trajectory of the full system heads toward the
remaining fixed point in (v, vs)-space after the bifurcation, v; decreases through vy, = 0.
Once vy is turned off, the scene is changed and the trajectory of the full system lies under
the control of the (vy,v3) dynamics, while v; becomes the totally suppressed neuron. At
this moment, there are three fast subsystem fixed points in (vs, v2)-space: the stable point
FPr, an unstable point that forms a separatrix, and the second stable fixed point, F Py,
with larger vy and smaller vs. The relationship between the trajectory of the full system and
the v3- and ve-nullclines determines which one the trajectory approaches (cf. Figure 17(B),
which shows F'Pj, and the unstable fixed point). If the trajectory of the full system succeeds

A) B) C)

1 1 1

08 08 08
o0 06 06
> 04 04 04
° FPL FPL FP.
0.2 Y 02 . 02 o
%25 5 55 6 %25 5 55 6 %45 5 55 s
D) V3 E) Vg F) V3
1 11
08 10
' o5 e e ]
08 o ° E s
> 0.4 g0 Q 7
' £
= 6
0.2 0.3 - .
% a5 5 85 6 %Ba 06 08 1 4 54 545 55
V3 ms g

Figure 17. Transition away from the vi-on state when g = 5.375. (A)—(D) Four snapshots of the projection
of the trajectory of the full system onto (vs,v2)-space (red dots) along with the vs-nullcline (blue) and the va-
nullcline (black) with vi < 0 in a case where the trajectory does not reach close enough to FPr, to complete
the transition. Between the two nullclines, v2 < 0,03 > 0. Note in panel (D) that F Py, is gone even though
v3 < Umaz- (E) Projection of transition surface X3 (blue curve) and the trajectory snapshots (red dots),
which progress from left to right, into (ms, m2)-space. When the (ms, ma) trajectory crosses X3, a saddle-node
bifurcation of the fast subsystem occurs and F Py, is lost. (F) Plot of two times, one for the trajectory of the
full system to approach FPr (T,, blue diamonds) and the other for the bifurcation that eliminates F Pr, (Ty, red
circles), as a function of g. Markers denote numerically computed T, and Ty. Black curves are curve fittings.
For stable DROs (g > gnaz), Tu is substantially smaller than Ty, which guarantees the success of the trajectory
to approach F Pp, during the transition.
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in approaching F'Pp, then this completes the transition from the vi-on state to the wvs-on
state. But if the trajectory of the full system fails to reach F'Pr before FP; disappears
through a saddle-node bifurcation, then vs does not turn on next and the DRO pattern is
lost.

What we observe here can be cast as a competition between two times, one for the tra-
jectory of the full system to approach F Py, say, T, for approach, and the other for the loss
of F'Pp, to happen, say, T} for bifurcation, during the transition. We note that T is mostly
determined by the fast dynamics of (v2,v3) and T}, by the slow dynamics of (ma,ms3). When
v1 shuts off, the projection of the trajectory initially lies in the basin of attraction of FP;.
If T, is smaller than T}, then the trajectory converges O(e)-close to the stable FPr. If T, is
larger than T3, then F'P;, disappears through the saddle-node bifurcation while the projection
of the trajectory approaches it and thus the projection of the trajectory turns around and
approaches F'Py; instead.

Figures 17(A)—(E) display an example in which the trajectory of the full system fails to
reach F'P;, during the transition away from the vi-on state. When vy turns off, the projec-
tion of the trajectory of the full system lies in the basin of attraction for F Pr; that is, it
lies in the region to the right of the separatrix that comes from the middle unstable fixed
point (Figure 17(A)). While the trajectory approaches the stable F'Pp, a saddle-node bifur-
cation happens and F Py, is lost, and hence the trajectory turns around and heads for F Py
(Figures 17(B)—(D)). Figure 17(E) shows the transition surface X3 (blue line) and the pro-
jection of the trajectory (red dots) onto (ms,ms) space. The projection of the trajectory
moves from left to right over time. When v; turns off, (ms,ms) lies to the left of ¥3. As
the trajectory of the full system approaches FPr, (ms,m2) hits 33. Thus, a saddle-node
bifurcation happens before the trajectory of the full system reaches F Pr. A key point is that
even though the approach time T is ostensibly measured on the fast timescale and the bifur-
cation time Tp on the slow timescale, the proximity of the fast nullclines near the bifurcation
can cause T, and T} to take similar values. Figure 17(F) shows numerically computed Ty,
(blue diamonds) and T} (red circles) values as a function of parameter g. As g decreases,
the former time increases while the latter decreases. T, and T, become quite similar at
9 = gpd2-

These results imply that the relevant fast subspace during a transition is transiently par-
titioned into three subregions and three corresponding activity patterns are possible. In the
region to the right of the separatrix that comes out of the unstable fixed point of the fast
subsystem, if the trajectory is sufficiently close to F' Py, then the trajectory of the fast sub-
system succeeds in equilibrating at F' Py, corresponding to activation of vs, and then the slow
dynamics relaxes to its own fixed point, pulling the slaved, fast variables along the fixed point
manifold. If the trajectory lies in the region to the right of the separatrix but is sufficiently
close to the separatrix, then while the trajectory of the fast subsystem tries to equilibrate at
F Py, the slow dynamics pushes the fast system through a bifurcation, which forces a second
fast jump to a new fixed point manifold, with activation of v and hence a loss of DROs,
and then a slow relaxation follows. If the trajectory lies in the region to the left of the sep-
aratrix, then the trajectory of the fast subsystem approaches F'Py directly and v activates
correspondingly.
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3.2.4. Uphill relaxation oscillations. In this section, we discuss three topics. First, we
show that UROs and DROs share the same mechanisms for the initiation of transitions between
states. Second, we explain how “turn-around” during fast jumps happens by considering the
details of the relevant fast dynamics. Last, we consider how UROs are lost at g = gpq3 as
g decreases and at g,qs as g increases (Figure 12). In the former case, we find that UROs
disappear through the same interaction of fast and slow timescale effects that causes the
elimination of DROs.

We begin with an example of UROs when g = 6.0 (Figure 18(A)). Unlike in DROs, the
voltage traces of the two inhibited neurons follow similar paths in UROs. However, Figure
18(A) suggests that we may still assume that when a neuron is active, one of the inhibited
neurons is totally suppressed over the active period. Under this assumption, we can follow
the steps from the previous section to derive the equations of the transition surfaces and to
conclude that UROs and DROs share the same set of transition surfaces. Figure 18(B) shows
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Figure 18. UROs in the three-cell linear model system (3.7). (A) URO time course when g = 6.0. Red
trace denotes vi, blue vz, and black vs. (B) Projection of transition surfaces (lines) and trajectory of the full
system (dots) onto (m1,m3) space for g = 5.0 (black) and g = 6.0 (red). In each case, the thick line denotes
3o and the thin line X3, which meet at a black square. Bigger dots on the trajectories denote the moment when
v1 assumes its maximum, at the start of the vi active phase. (C)—(D) Projection of the full system trajectory
when vy turns off for g = 5.0 (C) and g = 6.0 (D). In both cases, the projection of the trajectory falls within the
basin of attraction of FPy. (E) When vi turns off after its active period, we measured two times, one for the
fast dynamics to reach F Py in (vs,v2)-space (blue diamonds) and the other for the loss of this fixed point (red
circles) for g from 5.0 to 5.1 with stepsize 0.02. First- and fourth-order polynomials, respectively, were used to
fit these curves. As g decreases toward gpas, the two curves approach and meet, such that UROs are lost. (F)
When v1 turns off after its active period, the distance between the projection of the trajectory of the full system
and an approzimation to the separatriz (the identity line in (vs,v2)-space) is measured for g from 5.6 to 6.2
with stepsize 0.1, from 6.21 to 6.24 with stepsize 0.01, and from 6.241 to 6.245 with stepsize 0.001 (red dots).
Cubic splines are used for curve fitting. Positive distances correspond to positions in the basin of attraction of
FPy. As g approaches gpaa, the distance decreases and finally vanishes, hence for g > gpaa, we lose UROs.
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the projection of the transition surfaces, 3o and X3 (solid line segments), onto (my, ms)-space
along with the projection of the trajectories of the full system (dotted curves) for g = 5.0
and g = 6.0 (refer to Figure 14 for comparison with DROs). The transition surfaces and full
system trajectory for ¢ = 5.0 and g = 6.0 are shown in black and red, respectively. As in
DROs, the thick line denotes ¥y (equation (3.21)) and the thin line 33 (equation (3.22)). The
trajectories move downward and to the right since m; increases and mg decreases over the
active period of v;. As in DROs, the projected trajectories reach X3 (adaptive escape) for
smaller g and X9 (adaptive release) for larger g. For example, when g = 5.0, the trajectory
hits 3 and when g = 6.0, the trajectory crosses Y. Thus, we can conclude that UROs
share with DROs the same mechanisms for the initiation of transition; that is, for small g, a
transition is initiated by the increase of the voltage of one of the inhibited neurons through 0,
which turns on its output, followed by the decrease of the voltage of the active neuron through
Umaz, Whereas for large g, a transition results from the decrease of the active neuron’s voltage
through vax, which reduces its output, followed by the increase of the voltage of one of the
inhibited neurons through 0.

Now we consider the interesting dynamics that arises during fast jumps within UROs,
in which a previously silent neuron that appears to be on track to activate undergoes an
abrupt switch from increasing to decreasing v and the other suppressed neuron activates next
instead (Figure 18(A)). To investigate how this turn-around happens during transitions, we
dissect the details of each step in the transition process. Again, we use the vi-on state as an
example for illustration. Once the transition is initiated through a saddle-node bifurcation
that annihilates F'Pr, in (v1,v3)-space, the control of the system behavior switches from the
(v1,v3) fast subsystem to the (vs, v2) fast subsystem. We will observe a transient in which vs
initially increases above vy yet neuron 3 fails to activate if one of two conditions occurs. In
the first scenario, F'Pr, in (vs, ve)-space is lost before the trajectory reaches it. For example,
Figure 18(C) shows the projection of the trajectory (red dot) onto (vs,vs)-space along with
the vz-nullcline (blue) and the wve-nullcline (black). We see that F'Pr, is not present, so the
trajectory is forced to approach F Py. In the second scenario, when v; turns off, the projec-
tion of the trajectory falls within the basin of attraction of F Py (the region to the left of
the separatrix), and hence although vs may increase as the trajectory initially travels close
to the separatrix, the passage to F'Pp is blocked; Figure 18(D) shows an example of this
case.

Next, we discuss the loss of UROs at g = gpq3 as g decreases and at g = gpas as g
increases (Figure 12). First, we find that the mechanism underlying the loss of UROs at
g = Ggpas is similar to that in DROs at g = gpq2: the competition between the two times, one
for the fast dynamics to equilibrate at the presumed fixed point (73) and the other for the
bifurcation that annihilates that point (73). Figure 18(E) shows the plot of these two times
under variation of parameter g (cf. Figure 17(F) for DROs). For g < gpq3, UROs are lost
and the trajectory of the full system approaches stable SOs (see Figure 12). On the other
hand, the loss of UROs at g = gpqs is due to the position of the trajectory relative to the
separatrix in the (v3,v2)-plane when v; turns off. Figure 18(F) shows that as g approaches
gpda, the distance between the trajectories of the UROs and the separatrix decreases and
finally becomes zero, corresponding to an exit from the basin of attraction of F'Py in the
(vs, v2)-plane.
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3.2.5. What determines UROs and DROs? The analysis that we have done helps to
clarify whether DROs or UROs occur from any given set of initial conditions for parameter
values for which the two solution types are bistable. For clarity, we continue to focus on
the transition away from the vi-on state. Recall that if m; is chosen at the fast subsystem
bifurcation that terminates the vi-on state, then the values of ms, v1, and v3 are determined by
(3.23) or (3.24). Moreover, we have assumed that we can perform a fast-slow decomposition,
so we assume that the trajectory lies on the vy-nullcline, with v = I —mg — gf(v3) — g - gr
in the adaptive escape case (m1 < I — Uymae) and voa = I —mg — g - g, f(v1) in the adaptive
release case (mj > I — Upqs). Hence, we can constrain our consideration of initial conditions
to the plane of values of the remaining free variables, m; and me.

Numerical simulations of solution behavior were performed with (m,mgy) varied over a
grid of values across successive simulations. For each run, we discarded an initial transient
period and then checked the order of cell activations in the resulting trajectories to determine
the solution type. These experiments show that two positively sloped curves, with positions
that depend on g, partition the (mq,m2) plane into three regions: a lower right region that
leads to UROs, with vy activation followed by vo and then vs; a middle region that leads to
DROs, with v; activation followed by v3 and then vs, which expands as ¢ increases; and an
upper left region that leads to a transient in which v, activation is followed by w3 activation,
then a second wv; activation, and finally vy activation that transitions into sustained UROs.
For visualization, we draw black solid boundary curves between these regions, such that
all numerical experiments on opposite sides of the curve yielded distinct solution behaviors
(Figures 19(A)—(C); however, note that the lower black curve is almost obscured by a green
curve, which is discussed below).

We have also found that the boundary between DROs and UROs is closely related to the
competition between two times, one for the trajectory of the full system to approach F P, (Ty)
and the other for the loss of F'Pr, to happen (7}), during the transition in the (vs,ve)-plane.
For (my,mgy) values away from the boundary in the DROs region, T} is larger than 7, and
thus the trajectory is able to approach F' Py, in the (vs, v2)-plane. For (mq, mg) values near the
boundary, however, these two times become comparable to each other. For (m1, mg) values in
DROs near the boundary, 7, is slightly greater than 7. For (m1, ma) values in UROs near the
boundary, the trajectory fails to reach F'P;. More specifically, the unstable fixed point moves
toward F'Pr, while the trajectory approaches F'Pr, and the trajectory ends up in the basin
for F'Py. As a result, the trajectory turns around and heads toward F'Py. The green curves
in Figures 19(A), (B), and (C) are numerically computed curves where T;, and T}, are almost
equal, and these lie quite close to the black dotted boundary curve between the DRO and
URO regions obtained based on direct simulation of solution behavior as mentioned above.

We did one more numerical experiment to test our idea that the selection between DROs
and URQOs is determined by the values of m; and mso at the fast subsystem bifurcation that
terminates the vi-on state. In this experiment, we constructed a two-dimensional map from
each subregion of (m1,mgy) and checked if solution trajectories return to the same subregion
after the transition between states takes place. For the lower UROs region, since the vg-on
state follows the vj-on state, we checked the values of mo and mg at the fast subsystem
bifurcation in the subsequent ve-on state, such that (mj,mg) at the end of the vi-on state
is mapped to (mg, m3) at the end of the ve-on state. For the middle DROs region, since the
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Figure 19. Numerical exploration of attracting dynamics. (A)—(B) Images of two-dimensional maps based
on dynamics of the adaptation variables when g = 5.8. An upper black curve separates an upper region where
transient DROs are followed by UROs from a middle region where DROs occur. A lower black curve, almost
covered by a green curve, separates the DRO region from a lower URO region (see text for more details). In (A),
red (blue) dots indicate the image of a collection of points from the lower URO region (the middle DRO region,).
In (B), red dots indicate the image of a collection of points from the upper URO region. Black dots indicate the
projections of the attracting URO and DRO solutions at the moment when vi turns off. (C) When g = 5.5, the
lower URO region is divided by a dotted black curve into two subregions. In the upper (lower) subregion, when
v1 turns off, the projection lies in the region to the right (left) of the location of the separatrix—approximated
locally by a line of slope 1—of the unstable fized point of the fast dynamics shown in (D). For mi = 0.9 and
ma = 0.6 (red dot in (C)), the projection of the trajectory when vi turns off is shown as the red dot in (D).
The unstable fized point in (D) is denoted by a black dot. As g increases, the black dotted curve approaches the
black solid curve until the upper subregion disappears.

vs-on state follows the vi-on state, we checked the values of mg and m; at the fast subsystem
bifurcation in the vs-on state, such that (mj, ma) at the end of the vi-on state is mapped
to (ms,m1) at the end of the vs-on state. For the upper UROs region, since the vs-on state
first follows the vi-on state, we also checked the values of ms and my at the fast subsystem
bifurcation in the subsequent vs-on state, such that (mj, mg) at the end of the vi-on state
is again mapped to (mg, m1) at the end of the vs-on state. In each subregion, we chose grid
points with a stepsize of 0.1 in both the m; and ms directions and checked the images under
the two-dimensional map. With an abuse of notation, all of the images of the grid points were
plotted in (m;j, mg)-space and the results are shown in Figures 19(A)—(B). The red dots in
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Figure 19(A) show the images of the points from the lower URO region and the blue dots show
the images of the points from the middle DRO region. We see that the two-dimensional map
from the lower URO region is a contraction map, hence the solution trajectory stays in the
lower URO region once it falls within that region, and similarly the map from the DRO region
contracts to a smaller set within that region. The red dots in Figure 19(B) represent the
images of the points from the upper URO region, which are all mapped into the lower URO
region under the two-dimensional map (Figure 19(B)). This phenomenon can be explained
heuristically as follows. For points in the upper URO region, we have ms < m; < mo. After
the fast bifurcation in the vi-on state, mq decreases and mg increases. But, when v turns
off, mg is still sufficiently less than mso that vy succeeds to activate. In the subsequent vs-on
state, when the fast bifurcation happens, m; < mg, and hence v; fires again, without v
firing in-between. As explained in Figure 19(A), once the trajectory falls within the lower
URO region, it cannot escape, and hence UROs ensue.

Finally, Figure 19(C) shows for a slightly different g value that there is a band of (mq, mg)
values near the boundary curve between the DRO region and the lower URO region where the
slow dynamics plays an important role in selecting between UROs and DROs and turn-around
of trajectories occurs. This region lies between the boundary curve (where the green and lower
black curves coincide) and another curve shown in dotted black, and we chose a sample point
in this region for purposes of illustration (red dot in Figure 19(C)). Using this point as our
initial condition, we obtain UROs in which vy turns on after v, but if we consider the fast
subsystem after v; turns off (Figure 19(D)), then we find that the projection of the trajectory
(red dot in Figure 19(D)) lies in the region to the right of the separatrix associated with the
unstable fixed point, which appears to be in the basin of the fixed point (FPr) with vs on.
However, similarly to what was demonstrated in Figure 17, through the slow dynamics, the
fast subsystem fixed point F' Py, is lost before vg fully activates and the trajectory subsequently
approaches F Py, with vo on, resulting in UROs. As g increases, this region where timescale
mixing occurs becomes smaller and eventually disappears.

3.3. Full model revisited. We now return to the full model, system (2.1) with ¢ =1,2,3
together with (2.2), (2.3), to apply the lessons learned from our analysis of simplified models.
Our analysis shows that to explore the outcomes of transitions between phases, we should
focus on the intersections of the nullsurfaces of the fast variables v; in the three-dimensional
fast subspace. For example, the nullsurface of vy, say, Ny, is given by

Cy1 + aulf(UZ) + bulf(v3)

(8:27) T o Fanf(va) + b f(vs)
where
ay1 = gSyn1b21VsynI, aj = gsyniba1,
bu1 = gsyn1b31VsynI, b1 = gsynibsi,

Cul = gADM1VK + gLUL + gSynED1VsynE, €11 = gapmi + gL + gsyneD1-

We emphasize that all ¢,; and ¢, and hence v;, depend on m;, and hence the shapes and
positions of these nullsurfaces change as the slow variables m; evolve.
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Figure 20 illustrates the transition from the vs-on state to the vs-on state during the
URO shown in Figure 1(F), where v; initially rises but then falls back down again and makes
way for ws activation. In this figure, the intersection of N; and Ni, say, Cio, is shown in
blue and the intersection of No and N3, say, Cos, is shown in red. The black dots denote
the intersection points of Ci2 and Ch3, which are fixed points of the fast subsystem. The
green dot is the projection of the trajectory of the whole system, which lies on top of and
obscures a black dot in panels (A), (B), and (F). Black dotted curves are v;- and ve-nullclines
projected onto the plane vs3 = —70 in (A)—(C), v1- and vs-nullclines projected onto the plane
vy = —70 in (D)—(E), and v3- and wvy-nullclines projected onto the plane v; = —70 in (F).
The gray dot in each case is the projection of the trajectory of the whole system. Figure 20
illustrates that the transition from the vs-on state to the vsz-on state is initiated by a change
in the relationship between Nj and N3 (i.e., the geometry of C12), which is induced by the
slow dynamics that is not explicitly visible in this diagram. As time progresses and the slow
variables evolve, two branches of C2 come together, merge, and finally disappear. In the
process, two fixed points of the full system are lost in a saddle-node bifurcation, including the
stable fixed point where the trajectory of the whole system resides. While the two branches of
(12 grow closer (panels (A)—(B)), two new fixed points are created through the intersection of
C12 and Coag toward the lower left corner of the plot. After the upper two fixed points merge
and disappear, the trajectory of the whole system approaches one of the newly generated fixed
points in the lower left region, which is stable (panel (C)). Switching to the (v, v3)-projection
in Figure 20(D), however, we see that the trajectory is blocked from reaching the fixed point
associated with the vi-on state due to the presence of an intervening saddle point. Instead, the
trajectory lies in the basin of attraction of the stable vs-on fixed point, to which it converges
in Figures 20(E)—(F). After the trajectory of the whole system settles down on the lower right
fixed point, the evolution of the slow variables causes the two previously lost fixed points to
reappear. Similarly, the transition from wvs-on state to vi-on state begins with the coalescence
of the two branches of Cys.

Similar numerics reveals an analogous process in the DRO case, except without the turn-
around component that arises in UROs such as in the transition from Figure 20(C) to Figure
20(D). For our parameter set, it appears that the loss of DROs with decreasing ¢ in the full
model occurs because the trajectory ends up on the other side of the separatrix and thus heads
toward a different fixed point than for larger g, analogously to what we illustrate for UROs
in the three-cell linear model in Figure 18(F), but we do not have a way to systematically
analyze this transition in the full model.

Our linear analysis also highlights the utility of considering projections to two-dimensional
slow or fast subspaces, corresponding to the variables involved in a transition. As part of
this step, we can compute transition surfaces given by bifurcation curves. As we saw in
the two-cell model for small g, we find that in our full model, only the transition surfaces
for adaptive release, and not those for adaptive escape, arise in the relevant range of slow
variables. Specifically, in the adaptive escape mechanism, the voltage of the active neuron
needs to be higher than vy.y. But in the full model, the lower bound on m prevents the
voltage of the active neuron from reaching this value. Figure 21(A) ((C), resp.) shows the
transition surface Xy (black curve) with the projection of the trajectory (red dots) for UROs
(DROs, resp.) when ggyn1 = 70. As in our previous figures, the large dot on the projection
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Figure 20. Transition from the v2-on state to the vz-on state shown in Figure 1(F) for the original model
(2.1). Blue (red, resp.) curves, Ci2 (Cas, Tesp.), are the intersections of the vi- and v2-nullsurfaces (v2- and
v3-, resp.). Black dots, the intersection points of Ci2 and Caz, are fized points of the fast subsystem. The
green dot is the projection of the trajectory of the whole system. Black dotted curves are vi- and v2-nullclines
projected onto the plane vs = —70 in (A)—(C), vi- and vs-nullclines projected onto the plane v = —70 in
(D)—(E), and vs- and vz-nullclines projected onto the plane vi = —70 in (F). Gray dot is the projection of the
trajectory of the whole system. (A) The trajectory rests at the upper stable fized point of the fast subsystem,
where v is on. (B) As time increases, two branches of C12 coalesce and the upper stable fived point is lost.
(C) As the transition progresses, the trajectory starts toward a fized point on the lower left part of the diagram
where v would be on and v2,v3 would be off. (D)—(E) When the output from va turns off, however, we see
in the projection to the (vi,vs) plane, the path to the fized point with vi on is blocked. Correspondingly, the
trajectory turns around and approaches a different fixed point on the lower right part of the diagram. (F) Along
this approach, vi turns off and the trajectory converges to the lower right fived point, where v3 is on. From (A)
to (F), t = 0,390,448,450,452,480 ms (bifurcation parameter s = 0,0.26,0.2987,0.3,0.3013,0.32).
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Figure 21. Ezample projections of solutions from the full model (2.1). First row shows UROs when g = 70
and second row DROs when g = 70. Figures in left column show X2 (black) and projection of trajectory of slow
system system (dots) onto (m1, ms3) space. As before, bigger dots on the projection of each trajectories denote
the moment when vi assumes its mazimum. In UROs, the projection of trajectory rotates clockwise and in
DROs, counterclockwise. Figures in right column show nullclines of fast variables when vi turns off. In each
case, vs nullcline (black) and ve nullcline (blue) intersect at three points. In UROs, the projection of trajectory
of the full system (red dot) falls within the region left to the separatriz and in DROs, within the region right to
the separatriz.

of the trajectory indicates the moment when v; assumes its maximum over its active period.
Over the active period of vy, m; increases and mg decreases, hence the projection of the
trajectory moves downward to the right and finally hits ¥ to initiate the transition away from
the v1-on state. In UROs, the projection of the trajectory evolves clockwise, and in DROs,
counterclockwise. As in the linear model, the structure of the fast subsystem during the fast
jumps, which depends on the values of slow variables at the fast subsystem bifurcation and
during the transition, determines the transition outcomes. Figure 21(B) ((D), resp.) shows
the projection of the trajectory (red dot) in (vs,v2)-space in UROs (DROs, resp.) when
gsyn1 = 70, along with the vs- and vy-nullclines (blue). As in linear model, in the URO case,
the projected trajectory lies in the basin of attraction of F'Py in (vs, ve)-space (Figure 21(B)),
while in the DRO case, the projection of the trajectory falls within the basin of attraction
of FPp, in (v3,vy)-space (Figure 21(D)). Note, however, that simply being in the basin of
attraction of a fixed point does not guarantee that a trajectory will approach that fixed point
monotonically; as seen in Figure 20, in the full three-dimensional fast flow, the trajectory’s
path may be complicated and may appear to go toward the separatrix in certain directions
before it moves away.
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4. Discussion. In this study, we analyzed activity patterns of a three-unit neuronal net-
work with all-to-all inhibitory synaptic coupling. Such inhibitory circuits often arise as build-
ing blocks of CPG models because of the prevalence of inhibitory interneurons within these
networks and because mutual inhibition provides a natural framework for producing the se-
quential activation patterns seen in muscle groups driven by CPG outputs. The main contribu-
tions of this work include a bifurcation study that reveals the existence of a large parameter
range over which bistability in oscillation patterns occurs, a mathematical analysis of the
mechanisms involved in generating these patterns, and an explanation of the role of fast and
slow timescale interaction in shaping phase transitions in this model. The use of linear models
allowed us to proceed with the mathematical analysis that we performed, which was critical for
obtaining a variety of mechanistic insights and for providing evidence that the effects revealed
by our numerical simulations are valid. Although we did not derive the linear model rigorously
from the nonlinear one, we provide a rationale for its form, and numerical experiments (e.g.,
Figures 2(C), (D) versus Figure 12; Figure 20; and Figures 17, 18 versus Figure 21) suggest
that the results obtained hold qualitatively for the full, nonlinear system (2.1)—(2.3), with the
nonlinearities in adaptation and inhibition in the full model affecting quantitative aspects of
system behavior and determining which specific mechanisms arise for specific parameter sets.

CPG circuits represent a natural subject for computational and mathematical study in
part because some, such as the crustacean stomatogastric ganglion, are experimentally acces-
sible, allowing for the extraction of information to inform models and the testing of theoretical
predictions; moreover, mechanistic principles that are derived from modeling work and sim-
plified settings provide a starting point for attempts to understand other CPGs, such as those
that drive mammalian locomotion, which are much more complex and less accessible. Cor-
respondingly, there has been extensive work on this topic in the literature, but plenty of
questions about CPGs have not yet been addressed.

We have identified six lessons from this study that we feel are the most interesting take-
aways. First, our work identifies and analyzes robust bistability between smooth oscillations
and relaxation-type oscillations as well as between two classes of relaxation oscillations fea-
turing different activation orders (Figures 1, 2, 12), despite a coupling anisotropy that would
appear to favor a unique direction of propagation. Previous work on simple three-unit neuron
models with inhibition has also highlighted bi- and multistability. For some CPG functions,
such as respiration, changes in activation order could be problematic. Interestingly, although
evidence suggests that the core respiratory CPG includes a three-cell inhibitory ring [29], at
least one of the nodes in the ring also includes an excitatory neuron population, and this
additional component may help to enforce a functional activation order. In other CPGs, bi-
or multistability seems like a desirable feature, to allow intentional modulation of outputs,
such as switches between forward and backward stepping or between swimming and scratch-
ing or stepping movements. In the latter context, this work supports the argument in the
literature [2, 5] that the same CPG circuit can be used to generate diverse motor outputs. A
series of earlier computational papers starting with work by Wojcik, Clewley, and Shilnikov
[50] has extensively documented the output patterns of three-neuron inhibitory circuit models
and their dependence on a range of parameters, including some bifurcation studies [8]. These
works use fast threshold modulation [46], in which coupling strength instantaneously jumps
when voltage crosses a threshold, in contrast to the continuously-voltage-dependent coupling

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/04/22 to 130.49.198.139 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

ACTIVITY OF A NEURONAL RING MODEL 1995

that we consider. Moreover, these studies are numerical, whereas our work illustrates the
dynamic mechanisms that determine network activity patterns. Another analytical study on
this topic also focused on a rich variety of possible activation orders within these circuits,
including alternatives to 1,2,3,... and 1,3,2,... in which individual units may activate more
than once per period (e.g., 1,2,1,3,1,2,...) [39]. That study, however, also had instantaneous
turn-on and turn-off of inhibition and did not consider multistability.

A second lesson of our work is that adaptation together with inhibition can give non-
intuitive effects. Indeed, these effects provide part of the explanation of how we can obtain
robust bistability despite a bias in the coupling strength that would seem to favor a specific
activation order. Stronger inhibition can be paradoxically advantageous to a neuron’s sub-
sequent activation because it can help adaptation to wear off faster, achieving a lower level
while a neuron is suppressed by another cell’s activity. A similar effect is known in settings in
which inhibitory inputs are required to allow a neuron to fire, such as post-inhibitory rebound
[49] or postinhibitory facilitation [11, 36]. Indeed, a somewhat similar principle could allow
a sufficiently strongly inhibited neuron to fire in response to removal of inhibition, whereas a
more weakly inhibited neuron would not.

A third lesson of our work returns to the issue of the form of the coupling function that we
consider. The use of synaptic coupling that jumps instantaneously between on and off states is
popular in theoretical and computational studies because it simplifies analysis and it reduces
the number of parameters to be tuned compared to other alternatives. Following previous
work [35], we use a coupling function that linearly grows with voltage between lower and
upper bounds. As a result, when a neuron’s activation ends and its inhibition of its suppressed
partners thus terminates, both of the other neurons’ voltages can rise above the lower bound,
allowing them to exert partial inhibition on each other as they compete to reach the upper
voltage bound, which we take as our representation of activation. In particular, a participant
in this competition that had been more strongly inhibited by the previously active neuron will
now more strongly inhibit its competitor than vice versa. Although the competitor may start
with a higher voltage, this disparity in inhibition contributes to the apparent switching that
we observe (e.g., Figures 1(F), 3, 12(D)), in which one neuron’s voltage overtakes another’s
during phase transitions in UROs. The idea of synaptic release kicking in from a relatively
low voltage may initially seem strange. But here, we use nonspiking neural units, which can
be thought of as representing the average state of a population that is synchronized in terms
of its activation state but not its spiking. When an average voltage is low but above rest in
this model, this would correspond to a low but nonzero spiking rate in a population, with a
corresponding low but nonzero level of synaptic release.

Fourth, and still related to the coupling in the model, we find phase transitions that occur
through effects that we term adaptive escape and adaptive release (Figures 13-16). These
effects are generalizations of classical escape and release [48, 43] as well as synaptic escape
and release [42] that involve a gradual change in coupling level (see also [9, 35]). In adaptive
escape and release, one neuron’s voltage crosses into the regime of linear synaptic dependence
on voltage, but this event does not allow an immediate phase transition. Rather, a change in
the neurons’ activation status requires a second neuron to cross into this regime. Nonetheless,
this second crossing is only possible because the first one occurred. Hence, adaptive escape
and release are cooperative events in which two neurons together engineer a transition. This
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mechanism does not strictly require continuous coupling: in theory, if an active cell crossed an
all-or-none synaptic threshold while still staying active, that crossing could destabilize a resting
state critical point of a suppressed neuron yet, due to the configuration of its voltage nullcline,
the silent neuron could still need to evolve for some time in phase space before escaping from
the silent phase and hence initiating a phase transition. Nonetheless, adaptive escape and
release become natural and robust to parameter variations with continuous coupling, although
classic escape and release may also occur.

The issue of nullcline configurations brings us to a fifth lesson, related to mixing of
timescales. Because CPG networks’ outputs exhibit extended phases with one neuron or
population active, followed by rapid activation switches, and because CPG neurons tend to
feature voltage-dependent currents with slowly varying aspects (e.g., slow inactivation of per-
sistent sodium current or dependence of certain currents on slowly varying calcium levels),
CPG models often can be considered using ideas of fast-slow decomposition (cf. [34, 9, 35]). In
fast-slow decomposition for a two-dimensional neural oscillator, the voltage is the fast variable
and some other variable, such as an adaptation level, is slow. Trajectories rapidly converge to
a small neighborhood of an attracting branch of the voltage nullcline, after which they slowly
evolve along that branch under the dynamics of the slow variable. When a trajectory reaches
a fold of the nullcline where the branch ends, corresponding to a saddle-node bifurcation of the
fast equation with the slow variable treated as a parameter, the fast dynamics takes control
again, a fast switch in neural activation occurs, and then another slow regime follows. In the
reduced models that we study, because of the form of the coupling, the fast nullcline branches
or surfaces can lie close together, allowing a mixing of timescales. Specifically, as a trajectory
approaches a stable critical point of the fast dynamics, the slow variables can change enough
to induce a bifurcation in the fast subsystem that annihilates that critical point, causing the
fast dynamics to change course (Figures 17, 19(C)—(D)). An analysis that completely sepa-
rates fast jumps between fast subsystem attractors alternating with slow passages along these
attractors would produce incorrect results. In the full model, we expect that similar effects
are occurring, combined with more complicated dynamics in the fast subsystem itself.

The above discussion focuses on the critical points of the fast dynamics. In our analysis
of the slow dynamics of our reduced models, however, a sixth lesson emerged. Within each
phase of a rhythm, the slow dynamics features an attracting critical point. From the relevant
regions of the slow phase space, however, trajectories converging to such a critical point would
cross a threshold at which a bifurcation of the fast subsystem would be induced (e.g., fixed
points of slow dynamics lie outside the kite illustrated in Figure 9, across the ¥; curves that
bound it). Thus, with respect to the slow timescale, the vector field could suddenly change,
and the location of the slow subsystem attractor would move as part of that transition. In
other words, the critical points were effectively illusory. Thus, this work illustrated the point,
seen previously in other contexts [17, 12, 23], that in systems with switching, critical points
that are outside of the relevant phase space domain can still be influential. This point will be
explored further in the neural circuit setting in future work.

In this study, piecewise-smoothness of the coupling function allows us to dissect the fast
dynamics in a piecewise way and we found that there are three possible scenarios that may
arise during phase transitions, which relate to the interplay between the fast dynamics and
slow dynamics. We found that the fast subspace during transitions is locally divided into three

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/04/22 to 130.49.198.139 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

ACTIVITY OF A NEURONAL RING MODEL 1997

subregions over which three different outcomes will emerge (cf. Figure 19). In one region, the
fast dynamics equilibrates in a standard way to a fixed point manifold; this outcome happens
in stabilized DROs. In another region, the fixed point manifold that would be expected to
attract the fast dynamics either is not present or is inaccessible due to a separatrix of the fast
subsystem, and the fast dynamics approaches another manifold of stable fixed points. This
outcome happens in stabilized UROs (e.g., Figures 20, 21). The most interesting case is when
the fast dynamics falls within the region between these two regimes. In this region, the fast
dynamics tries to settle down on a fixed point manifold but the slow dynamics pushes the fast
subsystem through a bifurcation, hence the fixed point manifold that appears to be the target
of the fast dynamics disappears and the fast subsystem trajectory is forced to approach a new
fixed point manifold directly (Figure 17(D)). On the second and third regions, turn-around
during fast jumps occurs. In general, trajectories enter the third region not within stabilized
UROs or DROs but rather during transients, such as those that occur, for example, when the
system behavior is far away from a stable periodic orbit due to a choice of initial condition.
But, as the bifurcation parameter, g, approaches bifurcation points at which solution branches
destabilize, we find an increase in the volume of initial conditions for which this possibility
occurs. For example, as g approaches gp42, where the stable DRO branch terminates, from
the right, the projection of the fast dynamics at the moment when an active neuron turns off
approaches the boundary between the first and the third regions (Figure 17(E)). We found
that the same mechanism applies when g approaches g,43, where UROs terminate, from the
right (Figure 18(E)). On the other hand, when g approaches gpq4, at the other end of the
URO branch, from the left, the projection of the fast dynamics when an active neuron turns
off approaches the boundary of the second region (Figure 18(F)).

Although this work gives rise to this variety of observations, plenty of open issues con-
cerning small neural circuits remain, including questions about the capabilities of individual
circuits to produce multiple rhythms, about the coordination of interacting CPG networks,
and about the mechanisms such as neuromodulation and other feedback and drive signals
that control and tune CPG outputs. Many of these questions will require moving beyond
the three-cell motif, yet it is worth keeping in mind that small circuits provide a relatively
tractable arena for the extraction of dynamic principles, which can provide useful predictions
for larger models and for experiments.
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