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ARTICLE INFO ABSTRACT

Keywords: During search and rescue, firefighters need to find paths in an unfamiliar space with minimum time and in-
Firefighter formation available. The effective memorization and retrieval of critical spatial information can help reduce risks
Wayfinding

and increase mission efficiency. Although evidence has shown that different formats of wayfinding information,
including landmarks, routes, and surveys, can impact search and rescue performance in different manners, a
deeper understanding of the characteristics of firefighters’ cognitive processes related to the varying wayfinding
information formats is less explored. To evaluate firefighters’ performance and cognitive characteristics in search
and rescue, a firefighter experiment in Virtual Reality (VR) was conducted. Firefighters (n = 40) were recruited
to participate in the simulated rescue task. After reviewing the spatial information in different formats, fire-
fighters were requested to find three victims inside a VR maze as quickly as possible. Task performance was
evaluated by the number of victims found and the time spent. Firefighters’ gaze patterns were analyzed to
evaluate their cognitive status. The result showed that although the cognitive load under the survey and route
conditions was significantly higher than under the landmark condition (p < 0.001), the decision-making
involved a more effective cognitive process related to choosing the right path at critical waypoints such as
where a turning decision must be made. Thus, the perceived workload and fatigue levels of the two conditions
were lower, and the wayfinding performance was better. In contrast, with landmark information, the cognitive
load levels were consistently high, along with increased mental fatigue.

The findings reveal a series of cognitive features related to a more effective spatial decision-making in search
and rescue. In the future, it is expected that these cognitive features can be used to develop real-time monitoring
and prediction models for wayfinding performance.

Virtual Reality
Gaze analysis
Cognitive analysis

1. Introduction

Firefighters perform arduous wayfinding tasks in hostile, chaotic,
and unfamiliar environments, which can lead to significant safety risks
[1]. According to the U.S. Fire Administration (USFA), a total of 23,825
(39%) firefighters were injured on the fire ground and 62 lost their lives
in the line of duty in 2019 [2]. Firefighting and rescue tasks impose
extensive physical and mental pressures on firefighters, and hence,
wayfinding during the emergency tasks can be extremely difficult.
Firefighters need to orient themselves in complex buildings, locate
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victims, and retreat from safe exits. This process requires firefighters to
possess good spatial knowledge of building layouts. However, it is nearly
impossible to familiarize firefighters with the building layout compre-
hensively given the complexity of contemporary buildings and the
limited time for preparation when facing an emergency. It is critical to
gain a deeper understanding of the cognitive process of firefighters for
developing and retrieving spatial knowledge that is used to optimize the
pre-rescue review sessions for a better understanding of the task, and
eventually to scale down the task risks.

As for the theoretical framework for understanding such a cognitive
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process, we rely on the Landmark-Route-Survey (LRS) model [3] pro-
posed by Siegel and White’s in 1975. The LRS model describes the for-
mation of spatial knowledge as a synergy of three forms of spatial
information: landmark, route, and survey [4,5]. The model suggests that
when a person is developing the spatial understanding of any new
spaces, the spatial knowledge can be stored and processed in the above
three forms. Specifically, spatial knowledge developed from landmarks
uses distinctive objects to mark the spatial positions and orientations.
Route-based spatial knowledge concentrates on the sequence of loca-
tions or orientations that leads to a certain destination. Survey-based
spatial knowledge is usually represented as maps, referring to a more
comprehensive spatial connection between locations. Although nor-
mally different forms of spatial knowledge are leveraged and developed
in parallel [6], it is infeasible for firefighters to develop such a
comprehensive level of spatial knowledge given the limited time in
search and rescue tasks. Instead, providing firefighters with structured
spatial knowledge (i.e., a proper combination of different formats of
spatial knowledge) can accelerate the spatial knowledge acquisition
dramatically [7-9]. In addition, evidence shows that different forms of
spatial knowledge are associated with distinct neural processes of
working memory [8], which can also impact the retrieval efficiency.
This is rather important in emergency wayfinding tasks because the high
physical and mental demands during the mission can further impose
burdens on the spatial knowledge retrieval. There is a pressing need to
understand the unique cognitive implications of different forms of
spatial knowledge for firefighters to plan out emergency wayfinding
tasks. The lessons learned can help design a more effective pre-mission
review strategy.

To fill the knowledge gap, we simulated a fire rescue wayfinding task
in Virtual Reality (VR) mazes with two phases: the information
reviewing phase and the wayfinding performance phase. To focus on the
individual cognitive patterns related to the forms of spatial knowledge,
we provided participants with distinct information in the forms of
landmarks, routes, and maps during the reviewing phase. After
reviewing the information, participants were asked to conduct a way-
finding task in VR. Eye-tracking was utilized in both phases to measure
the dynamic cognitive implications of different information. A total of
40 frontline firefighters were recruited to participate in this study. The
theoretical background, experiment design, measures, and findings are
explained in the rest of this paper.

2. Literature review
2.1. Spatial knowledge development and cognitive processes

To answer the question of how humans map or model the spatial
environment, Siegel and White [3] proposed the LRS model. This model
describes spatial knowledge as a mental representation of the environ-
ment that is constructed by temporal integration of successive percep-
tions over the environment. Further behavioral [3,4,10] and
neurological [11,12] studies have reached a consensus that the spatial
knowledge consists of fragmented and distorted reference pieces of the
space. The basic elements of such projection pieces are landmark rep-
resentations, route representations, and survey representations, which
are developed in parallel during a typical spatial knowledge acquisition
process [6,13]. Different forms of spatial knowledge (landmark, route,
and survey) can be acquired in synergies (prone to real-life-like navi-
gation-observe-learning progress) or separation (prone to a training
process with a certain spatial knowledge delivery method) [14]. In a
more common and ideal scenario, a person would rely on a natural
spatial knowledge acquisition process to build a comprehensive under-
standing of the space, including the gradual development of landmark,
route, and survey knowledge that can take time. However, for emer-
gency wayfinding, it would require the delivery of spatial knowledge
with only a limited time. It can be infeasible for a firefighter to acquire
spatial knowledge in a built-up manner prior to the task. In contrast,
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rapid pre-mission briefings are usually conducted based on limited in-
formation, such as oral communications of the route. As such, the spatial
knowledge acquisition process is often incomplete and separated.

Although the extent of interaction and integration among landmark,
route, and survey knowledge can gradually increase along with the
learning process, existing studies indicate that different acquisition
strategies can correspond with largely different durations for compre-
hension and varying cognitive implications [8]. By analyzing the
comprehension time for spatial knowledge in controlled experiments,
Lee and Tversky [8] found that landmark knowledge and route/survey
knowledge represented separate cognitive processes, and the format in
which the spatial knowledge was conveyed could impact the compre-
hension process significantly. Nori and Giusberti [15] found that spatial
learning with landmark and route knowledge had different directional
cognitive mechanisms compared to that with survey knowledge [10]. In
addition to the evidence from behavioral data, neurological studies also
suggested that the underlying neural paths were different when learning
spatial knowledge with different strategies. Epstein and Kanwisher [16]
discovered that the activation patterns in the navigation and visual
memory region of a human brain (parahippocampal place area) were
different when exposed to different formats of spatial knowledge. Neu-
roimaging analysis by Maguire et al. [17] further verified that the neural
substrates’ pattern of topographical memory retrieval shared different
patterns when the given information was changed.

In summary, behavioral and neurological evidence has generally
proven the theoretical validity of the cognitive implications of spatial
information forms during both the spatial knowledge encoding and
decoding, which could lead to substantially different wayfinding be-
haviors. More evidence is needed to examine how the unique cognitive
processes, driven by the three wayfinding knowledge forms, correlate
with the wayfinding performance. Especially, understanding how such
correlations are manifested in extreme situations, such as during the
emergency wayfinding, can contribute to the design of effective pre-
rescue briefings for emergency wayfinding.

2.2. Pupillometry as a cognitive measure

Measuring cognitive status is well-established area of research. In
general, there are three types of cognitive measurements: performance
measurements, subjective assessments, and physiological sensing [18].
Performance measurements and subjective assessments are typically
collected after a task is completed to posteriorly measure the overall
cognitive status. When the goal is to analyze the continuous and tem-
poral status changes of the dynamic cognitive process, the posterior
measurements are not appropriate. Physiological sensing techniques
like Electroencephalogram (EEG) [19], among many others, require a
complicated setup process, leading to usually uncomfortable user ex-
periences and a potentially limited motion range.

With the advent of wearable eye-tracking devices, pupillometry has
been widely used and recognized as an effective indicator of mental state
[20-22]. Pupillary diameter and eye blink activities are generally
recognized pupillometry measures indicating cognitive activities [20].
Behavioral [22-24] and neurological [25] studies consistently agreed
that pupillary diameter and eye blink rate would be considered closely
related to cognitive load and mental fatigue levels respectively. Ac-
cording to recent neurofunctional studies, the underlying principle for
the effectiveness of these measures is that activities in the neuro-
modulatory brain systems can trigger sympathetic and parasympathetic
branches of the nerve system, and further trigger sphincter and dilator
muscles that control the pupillary dilation [26,27]. The association be-
tween pupillary size and cognitive load has been examined in various
domains, such as solving mathematics [18,23], driving behaviors [28],
and speech perception [29] etc. However, noises in data caused by po-
sition/motor artifacts, blinks, and hardware tracking errors during the
pupillary measurement must be processed via a standard and delicate
process [30], including the outlier removal, missing value



Y. Ye et al.

interpolations, baseline corrections, and latency corrections [30,31].
After the data processing, tasks with higher difficulty levels are proven
to be associated with a larger pupillary dilation [32,33] and more active
pupillary oscillations [34,35]. In addition to the pupillary dilation, eye
blinks are considered closely tied to central dopaminergic functions
which can indicate different psychological conditions [36]. Studies
showed that eye blink rate was an effective indicator of fatigue and
mental loads [24,37,38]. Eye blink and pupillary dilation together are
indicative of complementary information but are demonstrated in
mutually exclusive biological paths [36]. Specifically, the eye blink rate
is an indicator more pertaining to measuring the sensory processing of
the cognitive process [39]. Thus, eye blink rate is more indicative of
mental fatigue, rather than a more neutral measure of cognitive load
changes [37,39]. In contrast, pupillary dilation often occurs during the
sustained information processing phase and is more associated with the
increased cognitive load [40]. In sum, both pupillary dilation and eye
blinks can be effective metrics for mental activities with different fo-
cuses on cognitive load and mental fatigue respectively.

3. Methodology
3.1. VR maze for wayfinding simulation

Our objective is to examine the behavioral and cognitive character-
istics of firefighters in wayfinding tasks affected by different types of
spatial knowledge. To maintain controlled and risk-free conditions, we
built a set of office mazes in VR to simulate firefighter wayfinding tasks
with Unity 3D-5.6.3 fl. The basic unit of the VR mazes was a 10 m by 10
m office room. We modulated the rooms with a varying number of en-
trances/exits and connected the rooms to form different mazes. Smoke
and fire effects were added to simulate fire rescue scenes in an immer-
sive way. We placed three virtual victims in the mazes and showed the

Control

Route
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locations of victims with different forms of information. Firefighters
were asked to find these victims in the adverse virtual environment
within the given time.

A within-participant experiment design was selected to focus on the
effect of different conditions on the same subject, i.e., any participant
was requested to engage in all conditions. To reduce the within-
participant learning effect interaction [41], we randomly generated
homogeneous maze layouts in Unity with a maze generation algorithm
[42] for each condition. The office maze designs followed the Bowyer-
Watson algorithm [43] to ensure the consistency of the total travel
distance needed to find target victims and the same number of turns
among the randomly generated paths. Thus, the mazes under different
conditions could have a consistent level of complexity, which main-
tained the common ground for comparison. Fig. 1 shows the generated
office maze layouts:

The navigation in this virtual rescue task was designed to be as
intuitive as possible. We adopted a hand-waving algorithm to control the
marching-forward motion in VR while the navigation orientation fol-
lowed the facing direction of a participant. The virtual environment was
delivered via a VR headset (HTC VIVE Head Mounted Display, USA). The
moving trajectories of firefighters were logged in VR at the frequency of
90 Hz and were exported as CSV files at the end of each trial for further
analysis. Tobii Pro eye tracker was integrated with a VR headset [44] to
track eye movement and pupillary data.

3.2. Experiment procedure

As shown in Fig. 2, the first stage was pre-experiment briefings. After
signing the informed consent, participants were asked to complete a
background survey on their age, gender, body-mass index, work expe-
rience, and VR experience. A paper-based cube test provided by the
Educational Testing Services (ETS) was performed to examine the

Landmark

Survey

Fig. 1. Randomly generated maze layouts; Blue circles denote the starting position; Yellow triangles denote the location of victims.
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Fig. 2. Experiment Procedure.

participants’ baseline spatial ability [45]. Participants with visual dis-
eases or severe VR sickness were excluded from the experiment. We then
went through the experiment protocol with the participants. In-
structions and demonstrations on the VR headsets and navigation con-
trol methods were given to participants. After briefings, we set up the
equipment for participants. We prepared a training scene for partici-
pants to get familiar with the VR environment and the navigation
methods in the VR mazes. The training scene was also a VR maze (with a
unique layout that was different from the maze layouts shown in Fig. 1)
in which participants could practice navigation and wayfinding actions.

After confirming that participants were familiar with the experiment
setup and that no additional familiarization burden existed, participants
were guided to begin the experiment with the control condition. The
control condition did not have the information review phase, simulating
a case in which no prior knowledge of the building or victims could be
provided. The participants were asked to navigate freely in the maze
(free exploration) and find the three victims within 3 min. The control
condition served as a performance baseline and further familiarized the

participants with the experiment task. Then each participant went
through all the treatment conditions in the within-subject experiment.
The participants were randomly assigned to experiment blocks in which
review-and-perform experiments with a certain sequence were con-
ducted. Each block represented a sequence of experiment conditions.
There were three blocks: landmark-route-survey, survey-landmark-
route, and route-survey-landmark. This incomplete block design can
minimize the influence of sequencing [46].

The three types of spatial knowledge are usually leveraged by a
person at the same time in wayfinding tasks, according to the original
Siegel and White framework. Nonetheless, given the fundamental dif-
ference among the three types of spatial knowledge, distinct cognitive
processes may be involved for each of them, leading to varying way-
finding performance. The scope of this research is to investigate the
unique cognitive characteristics (e.g., cognitive load and decision-
making) driven by each type of spatial knowledge. As a result, a
controlled experiment should be ensured to rule out the combined ef-
fects of different types of spatial knowledge. The design of treatment
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conditions aims to separate the landmark, route, and survey knowledge
from each other and reduce the interference among them. Although
these different formats of knowledge are entangled with each other in a
typical spatial learning process, the existing literature shows the need
for exploring the implications of each of them in a separate manner, such
as Nys et al. [47], Kim and Bock [6]. Inspired by existing studies, we
decoupled the spatial knowledge format as shown in Fig. 3. The land-
mark condition visually showed participants with key landmarks
(chairs, shelves) that could guide them to the three victims. To simulate
the real-world emergency search and rescue conditions, most landmarks
must be approached close enough to be visible. The route condition
instructed the optimal path that participants shall take to find victims.
Although it appeared to be a textual information memorization task, the
content provided by the route information was indeed related to the
spatial guidance. The survey condition showed the map of the maze, the
starting location, and the victims. Landmark pictures, route texts, and
survey maps are distinct but effective ways to provide navigation
guidance, although people may have largely different preferences. To
understand the features of using different spatial knowledge in
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firefighter wayfinding tasks, we intentionally simulated the low visi-
bility conditions. Different types of information under different condi-
tions stimulated the development of corresponding formats of spatial
knowledge.

Each experiment condition consisted of two phases: the review phase
and the performance phase. In the review phase, participants were given
3 min to review the information in the corresponding format, developing
corresponding specific forms of spatial knowledge. The performance
phase started immediately after the review phase, in which the partic-
ipants were given a maximum time of 3 min to find the three victims in
the virtual maze as accurately and quickly as possible. We chose three
minutes as the review time because the pilot test showed that three
minutes were adequate for all participants to memorize the given in-
formation. Similarly, three-minute tasks were used for the performance
phase because our pilot data showed that it was the time needed to
navigate through the entire maze. As such, the use of three minutes was
deemed appropriate for both the review phase and the performance
phase. After experiment tasks, participants were asked to finish a NASA
Task Load Index (NASA TLX) [48] questionnaire. Then the participants

Landmark Condition

Start to Target A

cross pot

open laptop

sofa (white)

TR

vast w/
w/ bamboo plant

black chair light  conference table

‘Target A to Target B

conference table

yellow flowerpot ~ colorful light
square glass

light tablet

cell phone

Start Point to Target A:

Forward. forward. left, forward, right, forward, left, forward

Target A to Target B:

Target B to Target C:

forward.

opened
umbrella w/ palm

Target B to Target C

paper stand

Turn around and forward, left, forward, right, forward, left, left, forward

Turn around and forward, forward, right. forward, forward, right, forward,

cylinder pot  colorful o 10u flowerpot
square glass

computer

sofa (blue)

Survey Condition

Fig. 3. The information reviewed by participants under different experiment conditions.
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were given 2 min of break time before starting the review phase of the
next experiment condition.

3.3. Data collection and evaluation

3.3.1. Task performance

Participants’ position, orientation, and task completion time were
recorded throughout the experiment performance phase. The core task
was to find the victims in the shortest time but not to exceed the 3-min-
ute time limit. We quantified the task performance by the number of
victims found and the time spent. We coupled the two metrics by
adopting the term ‘wayfinding score’ (Q). Wayfinding score is defined as
the Eq. (1):

Q= (€9)

ST

T

i=1

where T is the fixed total time (3 min), ¢; is the time spent for finding the
victim i. If victim i has not been found, t; = T. Using this evaluation
method, the wayfinding task would have the Q value ranging between
0 (the worst performance, in which no victim was found) and 3 (the best
performance, in which all the victims were found immediately). A
higher Q value refers to a better wayfinding performance. This Q value
was used as the main wayfinding performance indicator.

3.3.2. Cognitive load metrics

We measured the cognitive load with both subjective measures
(NASA TLX) and objective measures (eye-tracking). NASA TLX ques-
tionnaire was filled once after each experiment condition to provide an
overall subjective assessment of the performance and subjective evalu-
ation of the mental load. The mental load index reported by the par-
ticipants was collected for the post-experiment analysis. We scaled the
NASA TLX index to a range of 0-100.

Tobii eye tracker [44] was integrated with an HTC VIVE headset to
collect gaze and pupillary changes that indicated cognitive status. The
Tobii eye tracker can record gaze focus and pupillary size at a frequency
of 120 Hz and an estimated accuracy of 0.5°. Literature showed that gaze
focus data can be used to calculate gaze stationary entropy [49], fixa-
tions [50], or saccades [51] to estimate the attention distribution pat-
terns. The pupillary size was recorded throughout the information
review phases and task performance phases at a frequency of 90 Hz.
Although the frequency was lower than many pupillometry studies [52],
it was high enough to capture pupillary diameter changes and blink
activities [53] to indicate cognitive status. The higher frequency data
could be useful if oscillating eye movements needed to be analyzed,
which is out of the scope of this research [53].

The first set of metrics we extracted was the eye blink rate. Eye blink
duration typically ranges from 50 ms to 300 ms [54]. The eye tracker in
our experiment captured pupillary change at a frequency of 90 Hz which
represented a blank interval of 11 ms and thus could accurately capture
an eye blink event. The eye tracker recorded eye closure events as
invalid pupillary size values. Thus, we filtered the invalid pupillary size
data entries for both eyes to capture the eye closures. One blink activity
was defined by a continuous period in which a spontaneous eye closure
of both left and right eyes was detected. The blink rate was calculated by
dividing the number of blinks by the time.

We also analyzed cognitive load by measuring the pupillary dilation.
Extracting cognitive activities from pupillary size data needs several
steps of data processing. The first denoise procedure is to remove light
impacts. Light intensity is the dominant factor for pupillary size changes
while cognitive changes impose relatively minor impacts [26]. As a
result, we maintained the baseline luminance of the VR maze model
consistent across all experiment conditions. Then, following a pupillary
size correction method previously developed by us [31], we estimated
the luminance changes induced by the VR headset and subtracted the
pupillary size changes caused by light changes from the overall pupillary
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size data. The light luminance received by both eyes was estimated from
the screen color channels (red, green, and blue) value as given by [55],
which was further used to estimate the pupillary size change induced by
luminance [56]. Pupillary changes driven by cognitive activities were
estimated by subtracting the light effects from overall pupillary changes.
Then we followed a widely used pupillary size preparation method to
calculate the residual pupillary changes purely due to cognitive status
changes [18,23,28]. We performed a 1-min pupillary size baseline
measurement session for each participant in which participants were
sitting calmly. The average pupillary size during this session was used as
the individual pupillary baseline. Then we extracted the pupillary
dilation from the overall pupillary response. The widely recognized
pupillary index, Percentage of dilation (PD) [18,26,31,33], was applied
to indicate cognitive load. PD was computed following the Eq. (2):
pp=ti7r )
r

where P; is the pupillary dilation at the time i, and r is the pupillary size
baseline for this individual.

3.3.3. Decisional pattern analysis

In addition to aggregated measures that focus on the final outcome or
performance, we also wanted to analyze the pattern changes at impor-
tant discrete decision points during the task, e.g., turning points. As
shown in Fig. 1, the randomly generated VR mazes had a high degree of
freedom in navigation: rooms were connected in a complex way and
could lead to many dead ends. Not all the rooms were equally chal-
lenging for the participants to find their destinations. Specifically, each
room had two features that defined the level of difficulty in the way-
finding task: the number of entrances/exits, and whether it was on a
correct path. We propose that the number of entrances and exits in a
particular room can affect the level of difficulty of a wayfinding path
decision. As a result, separate analyses should be performed for different
levels of difficulty among the rooms. In a one-exit or two-exit room, a
participant only had one choice: returning from the entrance in a one-
exit room or proceeding to another exit in a two-exit room. In
contrast, a participant needed to decide which exit to choose in a three-
exit room or a four-exit room. So, a general assumption we made was
that one-exit and two-exit rooms were not as relevant as three-exit or
four-exit rooms in terms of decision-making. However, the assumption
did not hold when a participant entered the wrong room, i.e., a room
that was not on any path leading to the correct destinations and could
only lead to dead ends (without victims). When in a wrong room, the
participants would need to re-route the navigation path. The complexity
of such a re-routing decision was affected by how many possible new
paths the current room could lead to. When a room had more possible
paths, such as with more entrances and exits, the decisional process was
more difficult. Thus, we could categorize the cognitive processes in
different rooms according to the different complexity levels of decision-
making. We quantified the decisional complexity of a specific room with
the number of entrances/exits. The decisional complexity also depended
on whether the present room was on the correct path to the destination.
When it was on the wrong path, the decisional complexity was also
higher to move back to the correct path. Table 1 summarizes the deci-
sional complexity level of rooms with different features. Trivial/Deci-
sional room refers to the room with relatively low/high complexity of

Table 1
Room Decisional Importance according to number of entrances/exits and
correctness.

Number of Entrances/Exits Room Correctness Decisional Complexity

lor2 Correct Trivial Room

lor2 Wrong Decisional Room
3or4 Correct Decisional Room
3or4 Wrong Decisional Room
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decision-making processes. Categorizing the rooms according to deci-
sional complexity gave us a better insight into participants’ responses
when facing spatial decisions. Although with different designs and lay-
outs, the individual maze rooms were all made within a 10 m by 10 m
square space. So, the navigation trajectories could be marked by the
sequence of visited rooms for data processing.

We proposed an indicator for the decisional analysis: Decision-over-
Trivial Index (DTI). DTI is defined as the mental effort increment when
facing decisions, calculated by comparing the cognitive load at decision
points (i.e., important waypoints for turning decisions) over at the trivial
points (i.e., waypoints or straight lines that do not require any turning
decisions). DTI is given in Equation (3):

_ XD XAD
n m

DTI 3)
where m and n are the numbers of trivial and decision points that a
participant comes across in a trial, D; is the percentage of pupillary
dilation in room i. The overall PD calculation regards the complete
experiment trial as a single data point. In contrast, the decision point
analysis breaks the continuous process into discrete wayfinding decision
points. To be specific, DTI is an index indicating cognitive allocation.
DTI value indicates to what extent a participant spends (effective)
mental efforts on making spatial decisions. In our analysis, DTI quan-
tifies the aggregated cognitive load a participant spends only on making
decisions for the important waypoints, e.g., when in a room with more
entrances/exits, or when trying to move back to the right path to the
destination. Because DTI distinguishes the relative cognitive load
spending on important spatial decision-making from all cognitive load
data, a higher DTI value might indicate that the participant concentrated
more on making important wayfinding decisions, and thus is considered
effective for the wayfinding performance. Thus, in the setting of our
experiment, a higher DTI is desired as it means a more efficient mental
effort allocation strategy.

4. Data analysis
4.1. Overview

We recruited 40 frontline firefighters to participate in our study from
the Bryan Fire Department in Bryan, Texas. Out of all, eight firefighters
reported severe VR motion sickness and were unable to complete the
experiment. As a result, data from 32 effective participants were used for
the analysis. The remaining 32 effective participants were all healthy
adult males, with a mean age of 31 years (ranging from 23 years old to
41 years old). Their working experience ranged from 8 months to 17
years, with a mean working experience of 7 years. No previous VR
experience was reported from any of the participants.

4.2. Wayfinding performance

Our experiment was a simple repeated measures design, with the
treatments being different spatial knowledge forms during the review
phase. The impact of the different orders of conditions was eliminated
by treatments on multiple levels: eliminating familiarization burden
(pre-training sessions), eliminating residual effect (idling time between
treatments), and randomizing experiment sequence orders. We per-
formed a D’ Agostino and Pearson’s test [57] to examine the normality of
the wayfinding score (and also the same test for other normality tests
performed in this study). Threshold confidential interval was selected as
95% (p = 0.05) hereafter. The normality test result rejected the null
hypothesis that the wayfinding scores were normally distributed (with p
< 0.001) which failed to satisfy the pre-assumption of Analysis of
variance (ANOVA). Thus, the Friedman test, a non-parametric substi-
tution of repeated measures comparable with ANOVA, was performed to
analyze the statistical difference among different knowledge formats.
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Fig. 4 shows the wayfinding performance results with different experi-
mental conditions.

Friedman’s test showed that the spatial knowledge format had a
significant impact on the final task performance (p < 0.001). We per-
formed Wilcoxon signed rank tests to analyze the pairwise differences.
The result showed that the control group (given no prior knowledge of
the maze spatial layouts) was significantly different from all other
conditions (p < 0.05, 0.001, and 0.001 when compared with landmark,
route, and survey respectively). Landmark group was significantly
different from route group (p < 0.001) and survey group (p < 0.001). But
building spatial knowledge developed from route information had no
significant difference compared with survey information (p = 0.304) in
terms of the final wayfinding score. The results indicated that the
knowledge reviewing session was helpful for firefighters to perform
wayfinding tasks in general, and firefighters performed better when
reviewing route and survey knowledge than reviewing landmark
knowledge. Cube test results showed no significant relationship between
participants’ baseline spatial abilities and their wayfinding
performances.

4.3. Subjective workload evaluation

We performed a NASA TLX questionnaire survey to evaluate the
perceived task workload after finishing the wayfinding task in each
condition. We followed a standard NASA TLX data collection and pro-
cessing pipeline [58] to calculate the perceived workload level of the
wayfinding task under different conditions. The result is shown in Fig. 5.

1004
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.

.
.

Landmark Route Sur'vey
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Control

Fig. 5. Subjective Workload (NASA TLX) in Different Conditions.
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Similar to the patterns shown in the wayfinding score, the results were
not normally distributed. Thus, we followed the same statistical analysis
pipeline as in the wayfinding score analysis. The results showed that the
perceived workload was significantly different between landmark con-
dition and route condition (p = 0.014), between landmark and survey
condition (p < 0.001), between route and survey condition (p < 0.001),
between control and landmark condition (p < 0.001), and between
control and route condition (p < 0.001). No significant difference was
found between the control and survey conditions (p = 0.888). Subjective
workload results indicated that firefighters generally reported the
highest workload level when reviewing the information in landmark
format and the lowest workload level when reviewing the information in
survey format or review no information (control group).

4.4. Eye blink rate for measuring fatigue

As discussed earlier, eye blink rate (BR) can be used as an indicator of
fatigue. We calculated BR according to the number of eye blinks across
the total experiment time span (3 min). Data analysis showed that the BR
distribution was non-normal and was significantly different across four
conditions (p < 0.001). The pairwise test showed that all pairwise
combinations were significantly different except between the control
condition and survey condition (p = 0.571). The p-values were 0.001
between control and landmark, 0.0061 between control and route,
0.009 between landmark and route, 0.001 between landmark and sur-
vey, and 0.035 between route and survey. Fig. 6 shows the blink rate
results. The blink rate pattern implicated that the control and survey
conditions led to the lowest fatigue, while landmarks caused the highest
fatigue level.

4.5. Pupil dilation for measuring cognitive load

4.5.1. Average Percentage of pupillary dilation (PD)

To further explore the impact of different conditions on the cognitive
process, we collected and analyzed the pupillary size data. After per-
forming the data cleaning as described in the methodology, we calcu-
lated the average Percentage of Dilation (PD) under different conditions,
as shown in Fig. 7. The results showed that PD was not normally
distributed and was significantly impacted by the form of spatial
knowledge provided (p < 0.001). Similar to the wayfinding performance
score result, the pairwise test showed that participants’ PD was signifi-
cantly different between the control condition and all other conditions
(p = 0.027, p < 0.001, p < 0.001 for landmark, route, and survey
respectively). A significant difference was found between landmark and
route conditions (p < 0.001), and between landmark and survey con-
ditions (p < 0.001). No significant difference was found between route
and survey conditions (p = 0.561). The result indicated that the control
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Fig. 6. Average Blink Rate in Different Conditions.
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condition imposed the least mental load, while the route and survey
conditions imposed a relatively higher mental load.

4.5.2. Variation of pupillary dilation (PD Variation)

Considering that our study involved a continuous decisional process,
we also wanted to analyze the pupillary response pattern over time,
which could be measured as the variation when performing the task.
Fig. 8 is an example that shows the PD curves of a randomly selected
participant. It showed that the variability of PD was quite different
among different conditions for the same person. Specifically, under
route and survey conditions, not only the overall levels of PD increased,
but also the ranges between the maximum and minimum PD values were
also bigger. It indicated that this participant experienced a more drastic
change in terms of cognitive load under route and survey conditions,
such as switching from a low level of mental load to using a lot of mental
loads in a very short period of time. We compared the variance of PD
among different conditions. A higher variance means that PD changes
more drastically from the mean, implicating a higher magnitude of
pupillary response to stimuli (e.g., when trying to memorize the layout
or making an important turning decision). Fig. 9 shows the variance of
PD under different conditions. The statistical result indicated that the
control condition showed no significant difference from the landmark
condition (p = 0.078), and the route condition had no significant dif-
ference from the survey condition (p = 0.073). All other pairs were
significantly different. The results suggested that not only the average
pupillary dilation was different, but also the magnitude of pupillary
response was more drastic in route and survey conditions compared to
control and landmark condition.

4.5.3. Decision-over-Trivial index (DTI) Analysis

To further examine the spatial variation patterns, we performed the
Decision-over-Trivial Index (DTI) analysis for pupillary dilation. The
result is shown in Fig. 10. The data was not normally distributed. Wil-
coxon test showed that the control condition had no significant differ-
ence from the landmark condition (p = 0.445). The p-value between the
control condition and route group was 0.055, which was not significant
but still very small. The control condition was significantly different
from the survey condition (p < 0.001). All the treatment conditions were
significantly different: between landmark and route (p = 0.036), be-
tween landmark and survey (p < 0.001), and between route and survey
(p = 0.028). This result suggested that when reviewing information in
survey format, firefighters showed the highest DTI while reviewing in
landmark format led to the lowest DTI.

5. Discussion

The experiment revealed some potential behavioral and cognitive
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implications after reviewing different forms of spatial information. The
results suggested that reviewing building layout information in route
and survey formats could contribute to more effective use of spatial
cognition. Route and survey-based spatial knowledge helped partici-
pants understand the space better and thus led to a better wayfinding
performance (finding more victims in a shorter time).

In addition to task performance, we were also concerned about the
cognitive process that may have caused the difference in wayfinding
performance. We estimated cognitive load with the percentage of pupil
dilation. The results showed that survey and route conditions were
associated with a higher cognitive load. This is an interesting finding as
most literature would consider a higher cognitive load to be related to
worse performance. We found that the cognitive load in this wayfinding
task should be considered a neutral measure, which was related to the
mental efforts that participants were spending on making critical

wayfinding decisions. In other words, given the route and survey for-
mats, a participant generally spent more mental effort (thinking harder)
when performing the wayfinding task, which led to better performance.

To validate this interpretation, we analyzed the spatial distribution
features of the PD in all experiment trials. An interesting finding was
that PD variability was significantly different among all conditions. PD
variance described the spatial distribution of PD across the continuous
task. The source of PD variance was the participant’s mental response to
stimuli. More specifically speaking, in this continuous cognitive-driven
wayfinding task, if a participant was constantly thinking under a
consistent level of mental load, the PD variance should be small. In
contrast, if the participant was thinking harder under some circum-
stances and was more relaxed under other circumstances, the PD vari-
ance would be larger. Thus, the PD variance analysis showed that when
facing stimuli, such as making important wayfinding decisions, route
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and survey conditions imposed a higher magnitude of impact on par-
ticipants while control and landmark conditions imposed a lower
impact. To find out whether wayfinding decision-making was the stimuli
(or part of the stimulus) that caused the drastic increase of cognitive load
for the route and survey conditions, we adopted a decisional feature
analysis. As described in the methodology, we divided the continuous
process into discrete steps according to the maze rooms. We adopted a
parameter, Decisional-over-Trivial Index (DTI), to analyze the PD dif-
ference between decisional points and trivial points. The result showed
that DTI was higher in the survey condition, followed by the route
condition, and least in the landmark and control conditions. This result
echoed the variance analysis findings, in a sense that survey and route
conditions showed a higher PD variance when making important way-
finding decisions. It may suggest that after reviewing spatial information
in the forms of survey and route, participants tended to be more relaxed
when no decisions were needed to be made. When facing decision-
making points, the mental load raised much faster and higher accord-
ingly to solve the decision and spatial memory retrieval problem. DTI
values also echoed the subjective workload estimates (NASA TLX) and
fatigue estimates (blink rate). It indicates that mental effort allocation
strategy may also be related to the accumulation of fatigue, i.e., when
people are more relaxed at trivial points, fatigue is less likely to happen.

As mentioned, we also examined the perceived workload under
different conditions. NASA TLX results indicated that participants
generally perceived the lowest workload in the survey condition, fol-
lowed by the route conditions. Landmark caused the highest perceived
workload. The objective fatigue index, eye blink rate, was consistent
with this result. Subjective and objective evidence both agreed that it led
to the least mental fatigue to perform the VR maze wayfinding using the
survey information, which implied that the survey knowledge might be
easier to perceive and retrieve. In contrast, relying on the landmark
information caused a higher level of mental fatigue. Our interpretation
of this result is that relying on landmarks for navigation in an emergency
is naturally difficult in two ways. First, firefighters need to convert vi-
suospatial information (i.e., the images of the landmark objects) into
phonological information in their cognitive process (such as their se-
mantics). It requires additional time and causes an additional cognitive
burden to process the information during the task. Second, our experi-
ment focuses on the emergency wayfinding where visibility is often
affected. In our VR environment, visibility was lowered to simulate real-
world emergency wayfinding conditions. Participating firefighters must
go close enough to an object to be able to recognize it. It indeed
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increased the level of difficulty of relying on landmark information. We
designed this condition to capture the real-world challenges firefighters
would likely face.

Compared with the cognitive load result indicated by PD, the TLX
and eye blink rate results showed that route and survey knowledge led to
a higher cognitive load but a lower perceived workload and lower
accumulated fatigue. This finding inferred that perceived workload and
fatigue may not be directly associated with cognitive load. The results
echo previous findings [59-61] that fatigue shares a different neural
path with mental load and may change differently with the mental load.
Thus, it is likely that the cognitive load and fatigue assessments are
measuring different aspects or processes during the wayfinding decision-
making. For instance, the cognitive load may be related to measuring the
effort that a participant uses to retrieve spatial knowledge, while fatigue
and subjective workload measure the difficulty level of mapping the
mental spatial knowledge with the reality. In addition, it is also possible
that the cognitive load during this experiment was below the threshold
of cognitive overload, and thus the increased cognitive load measures
were more of a positive indicator of the effective use of mental effort in
making wayfinding decisions, rather than a negative indicator of the
mental fatigue.

Apart from the treatment groups, another interesting finding from
the workload and fatigue analysis was that, if no prior information about
the maze spatial layout was given (control condition), participants re-
ported similar workload and fatigue levels as those reviewing survey
information. This makes sense because when having no prior knowledge
about the maze layout, a participant may randomly choose a navigation
strategy without worrying about retrieving memories, and thus is not as
tired as under the landmark condition. This partially answers why the
control condition showed a slightly better performance than the land-
mark condition.

This study decoupled landmark, route, and survey to observe indi-
vidual patterns. However, the decoupling method can be potentially
improved. In addition, combining the information in a structured way
might be more intuitive, practical, and effective for wayfinding tasks in
real life. It is the future agenda to determine the effective method of
spatial information delivery by fine-tuning the combinations of different
formats of spatial information, for instance, marking the route on a
survey map, and showing directions based on landmark objects. Mean-
while, this study only recruited male firefighters for participation due to
the limited number of female frontline firefighters. Thus, whether
gender difference could play a role in the spatial cognition process
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remains a question unanswered. In addition, this study aimed to explore
the spatial cognitive process in an emergency wayfinding task, thus only
well-trained firefighters were recruited. Whether our findings can be
extended to general wayfinding tasks still needs further validation. It is
suggested that in future wayfinding studies, participants with more
diverse backgrounds can be recruited.

6. Conclusion

This study investigated different spatial knowledge acquisition
strategies prior to wayfinding in the context of emergency fire rescue.
Especially, the behavioral and cognitive implications using different
forms of spatial information were analyzed. A total of 32 frontline
firefighters completed this study. We found that when acquiring the
spatial knowledge by utilizing the route and survey (map) information,
participants tended to achieve a better wayfinding performance. We
further elaborated the findings by looking into the corresponding
cognitive characteristics. We found that although route and survey
knowledge could lead to a higher cognitive load in general, a lower
workload was perceived, and less fatigue was detected when performing
the task. This pattern indicated two possibilities: cognitive load may be a
neutral indicator than fatigue and perceived workload indicators, and
cognitive overload did not occur in our experiment.

We also found an interesting pattern that the survey-driven spatial
cognitive process led to a higher variance in mental effort distribution
(spatial distribution), in which a lower cognitive load was reported at
trivial points and a much higher cognitive load was reported at critical
decisional points. In contrast, the landmark-driven spatial cognitive
process led to a more evenly distributed mental effort: participants’
mental effort increments at decisional points were not as high as in the
other conditions. This may indicate a difference in attention allocation
strategies under different spatial knowledge acquisition strategies.

In conclusion, this paper analyzes and discusses several behavioral
and cognitive implications of firefighter wayfinding tasks under
different spatial knowledge acquisition strategies. It is expected to
contribute to a better understanding of the performance in emergency
wayfinding tasks and the cognitive causes thus contributing to the
design of effective spatial knowledge delivery methods. Furthermore,
the findings reveal a series of cognitive features related to a more
effective spatial decision-making in search and rescue. In the future, we
can track the pupillary pattern and other ergonomics features with
portable devices to provide real-time measures of users’ cognitive status,
as well as estimate potential impacts on task performance. If the
cognitive overload is observed, commands on retreat, additional help, or
cover can be made. Thus, this study might inspire a real-time monitoring
and prediction system for possible cognitive or performance issues in the
emergency wayfinding.
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