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A B S T R A C T   

During search and rescue, firefighters need to find paths in an unfamiliar space with minimum time and in
formation available. The effective memorization and retrieval of critical spatial information can help reduce risks 
and increase mission efficiency. Although evidence has shown that different formats of wayfinding information, 
including landmarks, routes, and surveys, can impact search and rescue performance in different manners, a 
deeper understanding of the characteristics of firefighters’ cognitive processes related to the varying wayfinding 
information formats is less explored. To evaluate firefighters’ performance and cognitive characteristics in search 
and rescue, a firefighter experiment in Virtual Reality (VR) was conducted. Firefighters (n = 40) were recruited 
to participate in the simulated rescue task. After reviewing the spatial information in different formats, fire
fighters were requested to find three victims inside a VR maze as quickly as possible. Task performance was 
evaluated by the number of victims found and the time spent. Firefighters’ gaze patterns were analyzed to 
evaluate their cognitive status. The result showed that although the cognitive load under the survey and route 
conditions was significantly higher than under the landmark condition (p < 0.001), the decision-making 
involved a more effective cognitive process related to choosing the right path at critical waypoints such as 
where a turning decision must be made. Thus, the perceived workload and fatigue levels of the two conditions 
were lower, and the wayfinding performance was better. In contrast, with landmark information, the cognitive 
load levels were consistently high, along with increased mental fatigue. 

The findings reveal a series of cognitive features related to a more effective spatial decision-making in search 
and rescue. In the future, it is expected that these cognitive features can be used to develop real-time monitoring 
and prediction models for wayfinding performance.   

1. Introduction 

Firefighters perform arduous wayfinding tasks in hostile, chaotic, 
and unfamiliar environments, which can lead to significant safety risks 
[1]. According to the U.S. Fire Administration (USFA), a total of 23,825 
(39%) firefighters were injured on the fire ground and 62 lost their lives 
in the line of duty in 2019 [2]. Firefighting and rescue tasks impose 
extensive physical and mental pressures on firefighters, and hence, 
wayfinding during the emergency tasks can be extremely difficult. 
Firefighters need to orient themselves in complex buildings, locate 

victims, and retreat from safe exits. This process requires firefighters to 
possess good spatial knowledge of building layouts. However, it is nearly 
impossible to familiarize firefighters with the building layout compre
hensively given the complexity of contemporary buildings and the 
limited time for preparation when facing an emergency. It is critical to 
gain a deeper understanding of the cognitive process of firefighters for 
developing and retrieving spatial knowledge that is used to optimize the 
pre-rescue review sessions for a better understanding of the task, and 
eventually to scale down the task risks. 

As for the theoretical framework for understanding such a cognitive 
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process, we rely on the Landmark-Route-Survey (LRS) model [3] pro
posed by Siegel and White’s in 1975. The LRS model describes the for
mation of spatial knowledge as a synergy of three forms of spatial 
information: landmark, route, and survey [4,5]. The model suggests that 
when a person is developing the spatial understanding of any new 
spaces, the spatial knowledge can be stored and processed in the above 
three forms. Specifically, spatial knowledge developed from landmarks 
uses distinctive objects to mark the spatial positions and orientations. 
Route-based spatial knowledge concentrates on the sequence of loca
tions or orientations that leads to a certain destination. Survey-based 
spatial knowledge is usually represented as maps, referring to a more 
comprehensive spatial connection between locations. Although nor
mally different forms of spatial knowledge are leveraged and developed 
in parallel [6], it is infeasible for firefighters to develop such a 
comprehensive level of spatial knowledge given the limited time in 
search and rescue tasks. Instead, providing firefighters with structured 
spatial knowledge (i.e., a proper combination of different formats of 
spatial knowledge) can accelerate the spatial knowledge acquisition 
dramatically [7–9]. In addition, evidence shows that different forms of 
spatial knowledge are associated with distinct neural processes of 
working memory [8], which can also impact the retrieval efficiency. 
This is rather important in emergency wayfinding tasks because the high 
physical and mental demands during the mission can further impose 
burdens on the spatial knowledge retrieval. There is a pressing need to 
understand the unique cognitive implications of different forms of 
spatial knowledge for firefighters to plan out emergency wayfinding 
tasks. The lessons learned can help design a more effective pre-mission 
review strategy. 

To fill the knowledge gap, we simulated a fire rescue wayfinding task 
in Virtual Reality (VR) mazes with two phases: the information 
reviewing phase and the wayfinding performance phase. To focus on the 
individual cognitive patterns related to the forms of spatial knowledge, 
we provided participants with distinct information in the forms of 
landmarks, routes, and maps during the reviewing phase. After 
reviewing the information, participants were asked to conduct a way
finding task in VR. Eye-tracking was utilized in both phases to measure 
the dynamic cognitive implications of different information. A total of 
40 frontline firefighters were recruited to participate in this study. The 
theoretical background, experiment design, measures, and findings are 
explained in the rest of this paper. 

2. Literature review 

2.1. Spatial knowledge development and cognitive processes 

To answer the question of how humans map or model the spatial 
environment, Siegel and White [3] proposed the LRS model. This model 
describes spatial knowledge as a mental representation of the environ
ment that is constructed by temporal integration of successive percep
tions over the environment. Further behavioral [3,4,10] and 
neurological [11,12] studies have reached a consensus that the spatial 
knowledge consists of fragmented and distorted reference pieces of the 
space. The basic elements of such projection pieces are landmark rep
resentations, route representations, and survey representations, which 
are developed in parallel during a typical spatial knowledge acquisition 
process [6,13]. Different forms of spatial knowledge (landmark, route, 
and survey) can be acquired in synergies (prone to real-life-like navi
gation-observe-learning progress) or separation (prone to a training 
process with a certain spatial knowledge delivery method) [14]. In a 
more common and ideal scenario, a person would rely on a natural 
spatial knowledge acquisition process to build a comprehensive under
standing of the space, including the gradual development of landmark, 
route, and survey knowledge that can take time. However, for emer
gency wayfinding, it would require the delivery of spatial knowledge 
with only a limited time. It can be infeasible for a firefighter to acquire 
spatial knowledge in a built-up manner prior to the task. In contrast, 

rapid pre-mission briefings are usually conducted based on limited in
formation, such as oral communications of the route. As such, the spatial 
knowledge acquisition process is often incomplete and separated. 

Although the extent of interaction and integration among landmark, 
route, and survey knowledge can gradually increase along with the 
learning process, existing studies indicate that different acquisition 
strategies can correspond with largely different durations for compre
hension and varying cognitive implications [8]. By analyzing the 
comprehension time for spatial knowledge in controlled experiments, 
Lee and Tversky [8] found that landmark knowledge and route/survey 
knowledge represented separate cognitive processes, and the format in 
which the spatial knowledge was conveyed could impact the compre
hension process significantly. Nori and Giusberti [15] found that spatial 
learning with landmark and route knowledge had different directional 
cognitive mechanisms compared to that with survey knowledge [10]. In 
addition to the evidence from behavioral data, neurological studies also 
suggested that the underlying neural paths were different when learning 
spatial knowledge with different strategies. Epstein and Kanwisher [16] 
discovered that the activation patterns in the navigation and visual 
memory region of a human brain (parahippocampal place area) were 
different when exposed to different formats of spatial knowledge. Neu
roimaging analysis by Maguire et al. [17] further verified that the neural 
substrates’ pattern of topographical memory retrieval shared different 
patterns when the given information was changed. 

In summary, behavioral and neurological evidence has generally 
proven the theoretical validity of the cognitive implications of spatial 
information forms during both the spatial knowledge encoding and 
decoding, which could lead to substantially different wayfinding be
haviors. More evidence is needed to examine how the unique cognitive 
processes, driven by the three wayfinding knowledge forms, correlate 
with the wayfinding performance. Especially, understanding how such 
correlations are manifested in extreme situations, such as during the 
emergency wayfinding, can contribute to the design of effective pre- 
rescue briefings for emergency wayfinding. 

2.2. Pupillometry as a cognitive measure 

Measuring cognitive status is well-established area of research. In 
general, there are three types of cognitive measurements: performance 
measurements, subjective assessments, and physiological sensing [18]. 
Performance measurements and subjective assessments are typically 
collected after a task is completed to posteriorly measure the overall 
cognitive status. When the goal is to analyze the continuous and tem
poral status changes of the dynamic cognitive process, the posterior 
measurements are not appropriate. Physiological sensing techniques 
like Electroencephalogram (EEG) [19], among many others, require a 
complicated setup process, leading to usually uncomfortable user ex
periences and a potentially limited motion range. 

With the advent of wearable eye-tracking devices, pupillometry has 
been widely used and recognized as an effective indicator of mental state 
[20–22]. Pupillary diameter and eye blink activities are generally 
recognized pupillometry measures indicating cognitive activities [20]. 
Behavioral [22–24] and neurological [25] studies consistently agreed 
that pupillary diameter and eye blink rate would be considered closely 
related to cognitive load and mental fatigue levels respectively. Ac
cording to recent neurofunctional studies, the underlying principle for 
the effectiveness of these measures is that activities in the neuro
modulatory brain systems can trigger sympathetic and parasympathetic 
branches of the nerve system, and further trigger sphincter and dilator 
muscles that control the pupillary dilation [26,27]. The association be
tween pupillary size and cognitive load has been examined in various 
domains, such as solving mathematics [18,23], driving behaviors [28], 
and speech perception [29] etc. However, noises in data caused by po
sition/motor artifacts, blinks, and hardware tracking errors during the 
pupillary measurement must be processed via a standard and delicate 
process [30], including the outlier removal, missing value 
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interpolations, baseline corrections, and latency corrections [30,31]. 
After the data processing, tasks with higher difficulty levels are proven 
to be associated with a larger pupillary dilation [32,33] and more active 
pupillary oscillations [34,35]. In addition to the pupillary dilation, eye 
blinks are considered closely tied to central dopaminergic functions 
which can indicate different psychological conditions [36]. Studies 
showed that eye blink rate was an effective indicator of fatigue and 
mental loads [24,37,38]. Eye blink and pupillary dilation together are 
indicative of complementary information but are demonstrated in 
mutually exclusive biological paths [36]. Specifically, the eye blink rate 
is an indicator more pertaining to measuring the sensory processing of 
the cognitive process [39]. Thus, eye blink rate is more indicative of 
mental fatigue, rather than a more neutral measure of cognitive load 
changes [37,39]. In contrast, pupillary dilation often occurs during the 
sustained information processing phase and is more associated with the 
increased cognitive load [40]. In sum, both pupillary dilation and eye 
blinks can be effective metrics for mental activities with different fo
cuses on cognitive load and mental fatigue respectively. 

3. Methodology 

3.1. VR maze for wayfinding simulation 

Our objective is to examine the behavioral and cognitive character
istics of firefighters in wayfinding tasks affected by different types of 
spatial knowledge. To maintain controlled and risk-free conditions, we 
built a set of office mazes in VR to simulate firefighter wayfinding tasks 
with Unity 3D-5.6.3 fl. The basic unit of the VR mazes was a 10 m by 10 
m office room. We modulated the rooms with a varying number of en
trances/exits and connected the rooms to form different mazes. Smoke 
and fire effects were added to simulate fire rescue scenes in an immer
sive way. We placed three virtual victims in the mazes and showed the 

locations of victims with different forms of information. Firefighters 
were asked to find these victims in the adverse virtual environment 
within the given time. 

A within-participant experiment design was selected to focus on the 
effect of different conditions on the same subject, i.e., any participant 
was requested to engage in all conditions. To reduce the within- 
participant learning effect interaction [41], we randomly generated 
homogeneous maze layouts in Unity with a maze generation algorithm 
[42] for each condition. The office maze designs followed the Bowyer- 
Watson algorithm [43] to ensure the consistency of the total travel 
distance needed to find target victims and the same number of turns 
among the randomly generated paths. Thus, the mazes under different 
conditions could have a consistent level of complexity, which main
tained the common ground for comparison. Fig. 1 shows the generated 
office maze layouts: 

The navigation in this virtual rescue task was designed to be as 
intuitive as possible. We adopted a hand-waving algorithm to control the 
marching-forward motion in VR while the navigation orientation fol
lowed the facing direction of a participant. The virtual environment was 
delivered via a VR headset (HTC VIVE Head Mounted Display, USA). The 
moving trajectories of firefighters were logged in VR at the frequency of 
90 Hz and were exported as CSV files at the end of each trial for further 
analysis. Tobii Pro eye tracker was integrated with a VR headset [44] to 
track eye movement and pupillary data. 

3.2. Experiment procedure 

As shown in Fig. 2, the first stage was pre-experiment briefings. After 
signing the informed consent, participants were asked to complete a 
background survey on their age, gender, body-mass index, work expe
rience, and VR experience. A paper-based cube test provided by the 
Educational Testing Services (ETS) was performed to examine the 

Fig. 1. Randomly generated maze layouts; Blue circles denote the starting position; Yellow triangles denote the location of victims.  
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participants’ baseline spatial ability [45]. Participants with visual dis
eases or severe VR sickness were excluded from the experiment. We then 
went through the experiment protocol with the participants. In
structions and demonstrations on the VR headsets and navigation con
trol methods were given to participants. After briefings, we set up the 
equipment for participants. We prepared a training scene for partici
pants to get familiar with the VR environment and the navigation 
methods in the VR mazes. The training scene was also a VR maze (with a 
unique layout that was different from the maze layouts shown in Fig. 1) 
in which participants could practice navigation and wayfinding actions. 

After confirming that participants were familiar with the experiment 
setup and that no additional familiarization burden existed, participants 
were guided to begin the experiment with the control condition. The 
control condition did not have the information review phase, simulating 
a case in which no prior knowledge of the building or victims could be 
provided. The participants were asked to navigate freely in the maze 
(free exploration) and find the three victims within 3 min. The control 
condition served as a performance baseline and further familiarized the 

participants with the experiment task. Then each participant went 
through all the treatment conditions in the within-subject experiment. 
The participants were randomly assigned to experiment blocks in which 
review-and-perform experiments with a certain sequence were con
ducted. Each block represented a sequence of experiment conditions. 
There were three blocks: landmark-route-survey, survey-landmark- 
route, and route-survey-landmark. This incomplete block design can 
minimize the influence of sequencing [46]. 

The three types of spatial knowledge are usually leveraged by a 
person at the same time in wayfinding tasks, according to the original 
Siegel and White framework. Nonetheless, given the fundamental dif
ference among the three types of spatial knowledge, distinct cognitive 
processes may be involved for each of them, leading to varying way
finding performance. The scope of this research is to investigate the 
unique cognitive characteristics (e.g., cognitive load and decision- 
making) driven by each type of spatial knowledge. As a result, a 
controlled experiment should be ensured to rule out the combined ef
fects of different types of spatial knowledge. The design of treatment 

Fig. 2. Experiment Procedure.  
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conditions aims to separate the landmark, route, and survey knowledge 
from each other and reduce the interference among them. Although 
these different formats of knowledge are entangled with each other in a 
typical spatial learning process, the existing literature shows the need 
for exploring the implications of each of them in a separate manner, such 
as Nys et al. [47], Kim and Bock [6]. Inspired by existing studies, we 
decoupled the spatial knowledge format as shown in Fig. 3. The land
mark condition visually showed participants with key landmarks 
(chairs, shelves) that could guide them to the three victims. To simulate 
the real-world emergency search and rescue conditions, most landmarks 
must be approached close enough to be visible. The route condition 
instructed the optimal path that participants shall take to find victims. 
Although it appeared to be a textual information memorization task, the 
content provided by the route information was indeed related to the 
spatial guidance. The survey condition showed the map of the maze, the 
starting location, and the victims. Landmark pictures, route texts, and 
survey maps are distinct but effective ways to provide navigation 
guidance, although people may have largely different preferences. To 
understand the features of using different spatial knowledge in 

firefighter wayfinding tasks, we intentionally simulated the low visi
bility conditions. Different types of information under different condi
tions stimulated the development of corresponding formats of spatial 
knowledge. 

Each experiment condition consisted of two phases: the review phase 
and the performance phase. In the review phase, participants were given 
3 min to review the information in the corresponding format, developing 
corresponding specific forms of spatial knowledge. The performance 
phase started immediately after the review phase, in which the partic
ipants were given a maximum time of 3 min to find the three victims in 
the virtual maze as accurately and quickly as possible. We chose three 
minutes as the review time because the pilot test showed that three 
minutes were adequate for all participants to memorize the given in
formation. Similarly, three-minute tasks were used for the performance 
phase because our pilot data showed that it was the time needed to 
navigate through the entire maze. As such, the use of three minutes was 
deemed appropriate for both the review phase and the performance 
phase. After experiment tasks, participants were asked to finish a NASA 
Task Load Index (NASA TLX) [48] questionnaire. Then the participants 

Fig. 3. The information reviewed by participants under different experiment conditions.  
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were given 2 min of break time before starting the review phase of the 
next experiment condition. 

3.3. Data collection and evaluation 

3.3.1. Task performance 
Participants’ position, orientation, and task completion time were 

recorded throughout the experiment performance phase. The core task 
was to find the victims in the shortest time but not to exceed the 3-min
ute time limit. We quantified the task performance by the number of 
victims found and the time spent. We coupled the two metrics by 
adopting the term ‘wayfinding score’ (Q). Wayfinding score is defined as 
the Eq. (1): 

Q =
∑3

i=1

T − ti

T
(1)  

where T is the fixed total time (3 min), ti is the time spent for finding the 
victim i. If victim i has not been found, ti = T. Using this evaluation 
method, the wayfinding task would have the Q value ranging between 
0 (the worst performance, in which no victim was found) and 3 (the best 
performance, in which all the victims were found immediately). A 
higher Q value refers to a better wayfinding performance. This Q value 
was used as the main wayfinding performance indicator. 

3.3.2. Cognitive load metrics 
We measured the cognitive load with both subjective measures 

(NASA TLX) and objective measures (eye-tracking). NASA TLX ques
tionnaire was filled once after each experiment condition to provide an 
overall subjective assessment of the performance and subjective evalu
ation of the mental load. The mental load index reported by the par
ticipants was collected for the post-experiment analysis. We scaled the 
NASA TLX index to a range of 0–100. 

Tobii eye tracker [44] was integrated with an HTC VIVE headset to 
collect gaze and pupillary changes that indicated cognitive status. The 
Tobii eye tracker can record gaze focus and pupillary size at a frequency 
of 120 Hz and an estimated accuracy of 0.5◦. Literature showed that gaze 
focus data can be used to calculate gaze stationary entropy [49], fixa
tions [50], or saccades [51] to estimate the attention distribution pat
terns. The pupillary size was recorded throughout the information 
review phases and task performance phases at a frequency of 90 Hz. 
Although the frequency was lower than many pupillometry studies [52], 
it was high enough to capture pupillary diameter changes and blink 
activities [53] to indicate cognitive status. The higher frequency data 
could be useful if oscillating eye movements needed to be analyzed, 
which is out of the scope of this research [53]. 

The first set of metrics we extracted was the eye blink rate. Eye blink 
duration typically ranges from 50 ms to 300 ms [54]. The eye tracker in 
our experiment captured pupillary change at a frequency of 90 Hz which 
represented a blank interval of 11 ms and thus could accurately capture 
an eye blink event. The eye tracker recorded eye closure events as 
invalid pupillary size values. Thus, we filtered the invalid pupillary size 
data entries for both eyes to capture the eye closures. One blink activity 
was defined by a continuous period in which a spontaneous eye closure 
of both left and right eyes was detected. The blink rate was calculated by 
dividing the number of blinks by the time. 

We also analyzed cognitive load by measuring the pupillary dilation. 
Extracting cognitive activities from pupillary size data needs several 
steps of data processing. The first denoise procedure is to remove light 
impacts. Light intensity is the dominant factor for pupillary size changes 
while cognitive changes impose relatively minor impacts [26]. As a 
result, we maintained the baseline luminance of the VR maze model 
consistent across all experiment conditions. Then, following a pupillary 
size correction method previously developed by us [31], we estimated 
the luminance changes induced by the VR headset and subtracted the 
pupillary size changes caused by light changes from the overall pupillary 

size data. The light luminance received by both eyes was estimated from 
the screen color channels (red, green, and blue) value as given by [55], 
which was further used to estimate the pupillary size change induced by 
luminance [56]. Pupillary changes driven by cognitive activities were 
estimated by subtracting the light effects from overall pupillary changes. 
Then we followed a widely used pupillary size preparation method to 
calculate the residual pupillary changes purely due to cognitive status 
changes [18,23,28]. We performed a 1-min pupillary size baseline 
measurement session for each participant in which participants were 
sitting calmly. The average pupillary size during this session was used as 
the individual pupillary baseline. Then we extracted the pupillary 
dilation from the overall pupillary response. The widely recognized 
pupillary index, Percentage of dilation (PD) [18,26,31,33], was applied 
to indicate cognitive load. PD was computed following the Eq. (2): 

PD =
Pi − r

r
(2)  

where Pi is the pupillary dilation at the time i, and r is the pupillary size 
baseline for this individual. 

3.3.3. Decisional pattern analysis 
In addition to aggregated measures that focus on the final outcome or 

performance, we also wanted to analyze the pattern changes at impor
tant discrete decision points during the task, e.g., turning points. As 
shown in Fig. 1, the randomly generated VR mazes had a high degree of 
freedom in navigation: rooms were connected in a complex way and 
could lead to many dead ends. Not all the rooms were equally chal
lenging for the participants to find their destinations. Specifically, each 
room had two features that defined the level of difficulty in the way
finding task: the number of entrances/exits, and whether it was on a 
correct path. We propose that the number of entrances and exits in a 
particular room can affect the level of difficulty of a wayfinding path 
decision. As a result, separate analyses should be performed for different 
levels of difficulty among the rooms. In a one-exit or two-exit room, a 
participant only had one choice: returning from the entrance in a one- 
exit room or proceeding to another exit in a two-exit room. In 
contrast, a participant needed to decide which exit to choose in a three- 
exit room or a four-exit room. So, a general assumption we made was 
that one-exit and two-exit rooms were not as relevant as three-exit or 
four-exit rooms in terms of decision-making. However, the assumption 
did not hold when a participant entered the wrong room, i.e., a room 
that was not on any path leading to the correct destinations and could 
only lead to dead ends (without victims). When in a wrong room, the 
participants would need to re-route the navigation path. The complexity 
of such a re-routing decision was affected by how many possible new 
paths the current room could lead to. When a room had more possible 
paths, such as with more entrances and exits, the decisional process was 
more difficult. Thus, we could categorize the cognitive processes in 
different rooms according to the different complexity levels of decision- 
making. We quantified the decisional complexity of a specific room with 
the number of entrances/exits. The decisional complexity also depended 
on whether the present room was on the correct path to the destination. 
When it was on the wrong path, the decisional complexity was also 
higher to move back to the correct path. Table 1 summarizes the deci
sional complexity level of rooms with different features. Trivial/Deci
sional room refers to the room with relatively low/high complexity of 

Table 1 
Room Decisional Importance according to number of entrances/exits and 
correctness.  

Number of Entrances/Exits Room Correctness Decisional Complexity 

1 or 2 Correct Trivial Room 
1 or 2 Wrong Decisional Room 
3 or 4 Correct Decisional Room 
3 or 4 Wrong Decisional Room  
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decision-making processes. Categorizing the rooms according to deci
sional complexity gave us a better insight into participants’ responses 
when facing spatial decisions. Although with different designs and lay
outs, the individual maze rooms were all made within a 10 m by 10 m 
square space. So, the navigation trajectories could be marked by the 
sequence of visited rooms for data processing. 

We proposed an indicator for the decisional analysis: Decision-over- 
Trivial Index (DTI). DTI is defined as the mental effort increment when 
facing decisions, calculated by comparing the cognitive load at decision 
points (i.e., important waypoints for turning decisions) over at the trivial 
points (i.e., waypoints or straight lines that do not require any turning 
decisions). DTI is given in Equation (3): 

DTI =

∑n
i=1Di

n
−

∑m
j=1Dj

m
(3)  

where m and n are the numbers of trivial and decision points that a 
participant comes across in a trial, Di is the percentage of pupillary 
dilation in room i. The overall PD calculation regards the complete 
experiment trial as a single data point. In contrast, the decision point 
analysis breaks the continuous process into discrete wayfinding decision 
points. To be specific, DTI is an index indicating cognitive allocation. 
DTI value indicates to what extent a participant spends (effective) 
mental efforts on making spatial decisions. In our analysis, DTI quan
tifies the aggregated cognitive load a participant spends only on making 
decisions for the important waypoints, e.g., when in a room with more 
entrances/exits, or when trying to move back to the right path to the 
destination. Because DTI distinguishes the relative cognitive load 
spending on important spatial decision-making from all cognitive load 
data, a higher DTI value might indicate that the participant concentrated 
more on making important wayfinding decisions, and thus is considered 
effective for the wayfinding performance. Thus, in the setting of our 
experiment, a higher DTI is desired as it means a more efficient mental 
effort allocation strategy. 

4. Data analysis 

4.1. Overview 

We recruited 40 frontline firefighters to participate in our study from 
the Bryan Fire Department in Bryan, Texas. Out of all, eight firefighters 
reported severe VR motion sickness and were unable to complete the 
experiment. As a result, data from 32 effective participants were used for 
the analysis. The remaining 32 effective participants were all healthy 
adult males, with a mean age of 31 years (ranging from 23 years old to 
41 years old). Their working experience ranged from 8 months to 17 
years, with a mean working experience of 7 years. No previous VR 
experience was reported from any of the participants. 

4.2. Wayfinding performance 

Our experiment was a simple repeated measures design, with the 
treatments being different spatial knowledge forms during the review 
phase. The impact of the different orders of conditions was eliminated 
by treatments on multiple levels: eliminating familiarization burden 
(pre-training sessions), eliminating residual effect (idling time between 
treatments), and randomizing experiment sequence orders. We per
formed a D’Agostino and Pearson’s test [57] to examine the normality of 
the wayfinding score (and also the same test for other normality tests 
performed in this study). Threshold confidential interval was selected as 
95% (p = 0.05) hereafter. The normality test result rejected the null 
hypothesis that the wayfinding scores were normally distributed (with p 
< 0.001) which failed to satisfy the pre-assumption of Analysis of 
variance (ANOVA). Thus, the Friedman test, a non-parametric substi
tution of repeated measures comparable with ANOVA, was performed to 
analyze the statistical difference among different knowledge formats. 

Fig. 4 shows the wayfinding performance results with different experi
mental conditions. 

Friedman’s test showed that the spatial knowledge format had a 
significant impact on the final task performance (p < 0.001). We per
formed Wilcoxon signed rank tests to analyze the pairwise differences. 
The result showed that the control group (given no prior knowledge of 
the maze spatial layouts) was significantly different from all other 
conditions (p < 0.05, 0.001, and 0.001 when compared with landmark, 
route, and survey respectively). Landmark group was significantly 
different from route group (p < 0.001) and survey group (p < 0.001). But 
building spatial knowledge developed from route information had no 
significant difference compared with survey information (p = 0.304) in 
terms of the final wayfinding score. The results indicated that the 
knowledge reviewing session was helpful for firefighters to perform 
wayfinding tasks in general, and firefighters performed better when 
reviewing route and survey knowledge than reviewing landmark 
knowledge. Cube test results showed no significant relationship between 
participants’ baseline spatial abilities and their wayfinding 
performances. 

4.3. Subjective workload evaluation 

We performed a NASA TLX questionnaire survey to evaluate the 
perceived task workload after finishing the wayfinding task in each 
condition. We followed a standard NASA TLX data collection and pro
cessing pipeline [58] to calculate the perceived workload level of the 
wayfinding task under different conditions. The result is shown in Fig. 5. 

Fig. 4. Wayfinding Score under Different Conditions.  

Fig. 5. Subjective Workload (NASA TLX) in Different Conditions.  
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Similar to the patterns shown in the wayfinding score, the results were 
not normally distributed. Thus, we followed the same statistical analysis 
pipeline as in the wayfinding score analysis. The results showed that the 
perceived workload was significantly different between landmark con
dition and route condition (p = 0.014), between landmark and survey 
condition (p < 0.001), between route and survey condition (p < 0.001), 
between control and landmark condition (p < 0.001), and between 
control and route condition (p < 0.001). No significant difference was 
found between the control and survey conditions (p = 0.888). Subjective 
workload results indicated that firefighters generally reported the 
highest workload level when reviewing the information in landmark 
format and the lowest workload level when reviewing the information in 
survey format or review no information (control group). 

4.4. Eye blink rate for measuring fatigue 

As discussed earlier, eye blink rate (BR) can be used as an indicator of 
fatigue. We calculated BR according to the number of eye blinks across 
the total experiment time span (3 min). Data analysis showed that the BR 
distribution was non-normal and was significantly different across four 
conditions (p < 0.001). The pairwise test showed that all pairwise 
combinations were significantly different except between the control 
condition and survey condition (p = 0.571). The p-values were 0.001 
between control and landmark, 0.0061 between control and route, 
0.009 between landmark and route, 0.001 between landmark and sur
vey, and 0.035 between route and survey. Fig. 6 shows the blink rate 
results. The blink rate pattern implicated that the control and survey 
conditions led to the lowest fatigue, while landmarks caused the highest 
fatigue level. 

4.5. Pupil dilation for measuring cognitive load 

4.5.1. Average Percentage of pupillary dilation (PD) 
To further explore the impact of different conditions on the cognitive 

process, we collected and analyzed the pupillary size data. After per
forming the data cleaning as described in the methodology, we calcu
lated the average Percentage of Dilation (PD) under different conditions, 
as shown in Fig. 7. The results showed that PD was not normally 
distributed and was significantly impacted by the form of spatial 
knowledge provided (p < 0.001). Similar to the wayfinding performance 
score result, the pairwise test showed that participants’ PD was signifi
cantly different between the control condition and all other conditions 
(p = 0.027, p < 0.001, p < 0.001 for landmark, route, and survey 
respectively). A significant difference was found between landmark and 
route conditions (p < 0.001), and between landmark and survey con
ditions (p < 0.001). No significant difference was found between route 
and survey conditions (p = 0.561). The result indicated that the control 

condition imposed the least mental load, while the route and survey 
conditions imposed a relatively higher mental load. 

4.5.2. Variation of pupillary dilation (PD Variation) 
Considering that our study involved a continuous decisional process, 

we also wanted to analyze the pupillary response pattern over time, 
which could be measured as the variation when performing the task. 
Fig. 8 is an example that shows the PD curves of a randomly selected 
participant. It showed that the variability of PD was quite different 
among different conditions for the same person. Specifically, under 
route and survey conditions, not only the overall levels of PD increased, 
but also the ranges between the maximum and minimum PD values were 
also bigger. It indicated that this participant experienced a more drastic 
change in terms of cognitive load under route and survey conditions, 
such as switching from a low level of mental load to using a lot of mental 
loads in a very short period of time. We compared the variance of PD 
among different conditions. A higher variance means that PD changes 
more drastically from the mean, implicating a higher magnitude of 
pupillary response to stimuli (e.g., when trying to memorize the layout 
or making an important turning decision). Fig. 9 shows the variance of 
PD under different conditions. The statistical result indicated that the 
control condition showed no significant difference from the landmark 
condition (p = 0.078), and the route condition had no significant dif
ference from the survey condition (p = 0.073). All other pairs were 
significantly different. The results suggested that not only the average 
pupillary dilation was different, but also the magnitude of pupillary 
response was more drastic in route and survey conditions compared to 
control and landmark condition. 

4.5.3. Decision-over-Trivial index (DTI) Analysis 
To further examine the spatial variation patterns, we performed the 

Decision-over-Trivial Index (DTI) analysis for pupillary dilation. The 
result is shown in Fig. 10. The data was not normally distributed. Wil
coxon test showed that the control condition had no significant differ
ence from the landmark condition (p = 0.445). The p-value between the 
control condition and route group was 0.055, which was not significant 
but still very small. The control condition was significantly different 
from the survey condition (p < 0.001). All the treatment conditions were 
significantly different: between landmark and route (p = 0.036), be
tween landmark and survey (p < 0.001), and between route and survey 
(p = 0.028). This result suggested that when reviewing information in 
survey format, firefighters showed the highest DTI while reviewing in 
landmark format led to the lowest DTI. 

5. Discussion 

The experiment revealed some potential behavioral and cognitive Fig. 6. Average Blink Rate in Different Conditions.  

Fig. 7. Overall Average Percentage of Pupil Dilation.  
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implications after reviewing different forms of spatial information. The 
results suggested that reviewing building layout information in route 
and survey formats could contribute to more effective use of spatial 
cognition. Route and survey-based spatial knowledge helped partici
pants understand the space better and thus led to a better wayfinding 
performance (finding more victims in a shorter time). 

In addition to task performance, we were also concerned about the 
cognitive process that may have caused the difference in wayfinding 
performance. We estimated cognitive load with the percentage of pupil 
dilation. The results showed that survey and route conditions were 
associated with a higher cognitive load. This is an interesting finding as 
most literature would consider a higher cognitive load to be related to 
worse performance. We found that the cognitive load in this wayfinding 
task should be considered a neutral measure, which was related to the 
mental efforts that participants were spending on making critical 

wayfinding decisions. In other words, given the route and survey for
mats, a participant generally spent more mental effort (thinking harder) 
when performing the wayfinding task, which led to better performance. 

To validate this interpretation, we analyzed the spatial distribution 
features of the PD in all experiment trials. An interesting finding was 
that PD variability was significantly different among all conditions. PD 
variance described the spatial distribution of PD across the continuous 
task. The source of PD variance was the participant’s mental response to 
stimuli. More specifically speaking, in this continuous cognitive-driven 
wayfinding task, if a participant was constantly thinking under a 
consistent level of mental load, the PD variance should be small. In 
contrast, if the participant was thinking harder under some circum
stances and was more relaxed under other circumstances, the PD vari
ance would be larger. Thus, the PD variance analysis showed that when 
facing stimuli, such as making important wayfinding decisions, route 

Fig. 8. Percentage of Pupil Dilation during the Experiment from a Randomly Selected Participant.  

Fig. 9. Variance of Percentage of Pupil Dilation.  
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and survey conditions imposed a higher magnitude of impact on par
ticipants while control and landmark conditions imposed a lower 
impact. To find out whether wayfinding decision-making was the stimuli 
(or part of the stimulus) that caused the drastic increase of cognitive load 
for the route and survey conditions, we adopted a decisional feature 
analysis. As described in the methodology, we divided the continuous 
process into discrete steps according to the maze rooms. We adopted a 
parameter, Decisional-over-Trivial Index (DTI), to analyze the PD dif
ference between decisional points and trivial points. The result showed 
that DTI was higher in the survey condition, followed by the route 
condition, and least in the landmark and control conditions. This result 
echoed the variance analysis findings, in a sense that survey and route 
conditions showed a higher PD variance when making important way
finding decisions. It may suggest that after reviewing spatial information 
in the forms of survey and route, participants tended to be more relaxed 
when no decisions were needed to be made. When facing decision- 
making points, the mental load raised much faster and higher accord
ingly to solve the decision and spatial memory retrieval problem. DTI 
values also echoed the subjective workload estimates (NASA TLX) and 
fatigue estimates (blink rate). It indicates that mental effort allocation 
strategy may also be related to the accumulation of fatigue, i.e., when 
people are more relaxed at trivial points, fatigue is less likely to happen. 

As mentioned, we also examined the perceived workload under 
different conditions. NASA TLX results indicated that participants 
generally perceived the lowest workload in the survey condition, fol
lowed by the route conditions. Landmark caused the highest perceived 
workload. The objective fatigue index, eye blink rate, was consistent 
with this result. Subjective and objective evidence both agreed that it led 
to the least mental fatigue to perform the VR maze wayfinding using the 
survey information, which implied that the survey knowledge might be 
easier to perceive and retrieve. In contrast, relying on the landmark 
information caused a higher level of mental fatigue. Our interpretation 
of this result is that relying on landmarks for navigation in an emergency 
is naturally difficult in two ways. First, firefighters need to convert vi
suospatial information (i.e., the images of the landmark objects) into 
phonological information in their cognitive process (such as their se
mantics). It requires additional time and causes an additional cognitive 
burden to process the information during the task. Second, our experi
ment focuses on the emergency wayfinding where visibility is often 
affected. In our VR environment, visibility was lowered to simulate real- 
world emergency wayfinding conditions. Participating firefighters must 
go close enough to an object to be able to recognize it. It indeed 

increased the level of difficulty of relying on landmark information. We 
designed this condition to capture the real-world challenges firefighters 
would likely face. 

Compared with the cognitive load result indicated by PD, the TLX 
and eye blink rate results showed that route and survey knowledge led to 
a higher cognitive load but a lower perceived workload and lower 
accumulated fatigue. This finding inferred that perceived workload and 
fatigue may not be directly associated with cognitive load. The results 
echo previous findings [59–61] that fatigue shares a different neural 
path with mental load and may change differently with the mental load. 
Thus, it is likely that the cognitive load and fatigue assessments are 
measuring different aspects or processes during the wayfinding decision- 
making. For instance, the cognitive load may be related to measuring the 
effort that a participant uses to retrieve spatial knowledge, while fatigue 
and subjective workload measure the difficulty level of mapping the 
mental spatial knowledge with the reality. In addition, it is also possible 
that the cognitive load during this experiment was below the threshold 
of cognitive overload, and thus the increased cognitive load measures 
were more of a positive indicator of the effective use of mental effort in 
making wayfinding decisions, rather than a negative indicator of the 
mental fatigue. 

Apart from the treatment groups, another interesting finding from 
the workload and fatigue analysis was that, if no prior information about 
the maze spatial layout was given (control condition), participants re
ported similar workload and fatigue levels as those reviewing survey 
information. This makes sense because when having no prior knowledge 
about the maze layout, a participant may randomly choose a navigation 
strategy without worrying about retrieving memories, and thus is not as 
tired as under the landmark condition. This partially answers why the 
control condition showed a slightly better performance than the land
mark condition. 

This study decoupled landmark, route, and survey to observe indi
vidual patterns. However, the decoupling method can be potentially 
improved. In addition, combining the information in a structured way 
might be more intuitive, practical, and effective for wayfinding tasks in 
real life. It is the future agenda to determine the effective method of 
spatial information delivery by fine-tuning the combinations of different 
formats of spatial information, for instance, marking the route on a 
survey map, and showing directions based on landmark objects. Mean
while, this study only recruited male firefighters for participation due to 
the limited number of female frontline firefighters. Thus, whether 
gender difference could play a role in the spatial cognition process 

Fig. 10. Decision-over-Trivial Index of Percentage of Pupil Dilation.  
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remains a question unanswered. In addition, this study aimed to explore 
the spatial cognitive process in an emergency wayfinding task, thus only 
well-trained firefighters were recruited. Whether our findings can be 
extended to general wayfinding tasks still needs further validation. It is 
suggested that in future wayfinding studies, participants with more 
diverse backgrounds can be recruited. 

6. Conclusion 

This study investigated different spatial knowledge acquisition 
strategies prior to wayfinding in the context of emergency fire rescue. 
Especially, the behavioral and cognitive implications using different 
forms of spatial information were analyzed. A total of 32 frontline 
firefighters completed this study. We found that when acquiring the 
spatial knowledge by utilizing the route and survey (map) information, 
participants tended to achieve a better wayfinding performance. We 
further elaborated the findings by looking into the corresponding 
cognitive characteristics. We found that although route and survey 
knowledge could lead to a higher cognitive load in general, a lower 
workload was perceived, and less fatigue was detected when performing 
the task. This pattern indicated two possibilities: cognitive load may be a 
neutral indicator than fatigue and perceived workload indicators, and 
cognitive overload did not occur in our experiment. 

We also found an interesting pattern that the survey-driven spatial 
cognitive process led to a higher variance in mental effort distribution 
(spatial distribution), in which a lower cognitive load was reported at 
trivial points and a much higher cognitive load was reported at critical 
decisional points. In contrast, the landmark-driven spatial cognitive 
process led to a more evenly distributed mental effort: participants’ 
mental effort increments at decisional points were not as high as in the 
other conditions. This may indicate a difference in attention allocation 
strategies under different spatial knowledge acquisition strategies. 

In conclusion, this paper analyzes and discusses several behavioral 
and cognitive implications of firefighter wayfinding tasks under 
different spatial knowledge acquisition strategies. It is expected to 
contribute to a better understanding of the performance in emergency 
wayfinding tasks and the cognitive causes thus contributing to the 
design of effective spatial knowledge delivery methods. Furthermore, 
the findings reveal a series of cognitive features related to a more 
effective spatial decision-making in search and rescue. In the future, we 
can track the pupillary pattern and other ergonomics features with 
portable devices to provide real-time measures of users’ cognitive status, 
as well as estimate potential impacts on task performance. If the 
cognitive overload is observed, commands on retreat, additional help, or 
cover can be made. Thus, this study might inspire a real-time monitoring 
and prediction system for possible cognitive or performance issues in the 
emergency wayfinding. 
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orientation: schematizing landmark, route and survey information in a single map, 
Spatial Cognit. Computation 17 (4) (2017) 1–31, https://doi.org/10.1080/ 
13875868.2017.1322597. 

[8] P.U. Lee, B. Tversky, Interplay between visual and spatial: the effect of landmark 
descriptions on comprehension of route/survey spatial descriptions, Spatial Cognit. 
Computation 5 (2–3) (2005) 163–185, https://doi.org/10.1080/ 
13875868.2005.9683802. 
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