
IEEE SENSORS JOURNAL, VOL. 21, NO. 22, NOVEMBER 15, 2021 25547

Modeling Cameras for Autonomous Vehicle and
Robot Simulation: An Overview

Asher Elmquist and Dan Negrut

Abstract—Simulation is increasingly important in the
development and testing of robots and autonomous vehicles
as it opens the door for candidate navigation, perception,
and sensor fusion algorithms to be expeditiously probed in
complex and safety-critical scenarios. As most robots and
autonomous vehicles make heavy use of cameras to perceive
their surroundings, camera modeling becomes a prerequisite
for the successful simulation of these autonomous agents.
This contributionoutlines the context in which camera models
are used; provides a component-by-component analysis of the image acquisition pipeline along with algorithms used for
its modeling; and closes with a discussion of data-driven approaches that embrace a different perspective on camera
modeling.

Index Terms— Simulation, imaging sensors, automotive, robotics.

I. INTRODUCTION

A
UTONOMOUS vehicles and robots are poised to have

an impact in multiple fields, e.g., transportation, health

care, disaster relief, farming, planetary exploration, etc. Since

the use of autonomous agents (AAs) permeates safety critical

applications where risk to human life is manifest [1]–[3], the

idea of improving AA designs through simulation is very

attractive [4]. Thus, it is preferred for a design to be proven

weak in simulation rather than in reality, since failures iden-

tified in simulation come with no human injury/death and/or

property loss. Setting aside the difficult issue of simulation-

to-reality transferability [5], which falls outside the scope of

this contribution, validated and accurate simulation provides

the means for efficient and versatile evaluation of novel AA

designs, see, for instance, [6]. The expectation is that the

control decisions reached in the real world, along with the

ensuing dynamics, are close or identical to the ones observed

in simulation when the AA model is exercised in a digital twin

of the real world scenario. If the simulation-to-reality gap is

addressed, simulation enables an expeditious, cost effective,

safe, and thorough approach to improving AA design [7].

Manuscript received August 19, 2021; accepted September 24, 2021.
Date of publication October 8, 2021; date of current version November 12,
2021. This work was supported in part by the Safety Research using
Simulation (SAFER-SIM) Program by a Grant from the U.S. Department
of Transportation’s University Transportation Centers Program under
Grant 69A3551747131 and in part by the National Science Foundation
under Grant CPS1739869. The associate editor coordinating the review
of this article and approving it for publication was Prof. Huang Chen Lee.
(Corresponding author: Asher Elmquist.)

The authors are with the Department of Mechanical Engineering,
University of Wisconsin-Madison, Madison, WI 53706 USA (e-mail:
amelmquist@wisc.edu; negrut@wisc.edu).

Digital Object Identifier 10.1109/JSEN.2021.3118952

As perception informs, downstream, the tasks of planning

and control, camera modeling is a prerequisite for the suc-

cessful simulation of AAs [8]. Against this backdrop, the goal

is to provide an overview of the foundations of modeling

cameras for their use in AA simulation. Throughout this

manuscript, the term “autonomous agents” will be used to

refer to robots and autonomous vehicles, including automated

vehicles and advanced driver-assistance systems (ADAS).

To focus this manuscript, discussion will be limited to RGB

mono-cameras due their ubiquity in robot and autonomous

vehicle applications, but it should be noted that infrared (IR)

cameras, neuromorphic (event) cameras, polarized cameras,

and stereo cameras are all important to the application of AAs.

Furthermore, the discussion is constrained to CMOS image

sensors, as CMOS is the technology of choice in this field.

The task of camera modeling is complicated by two facts:

(i) the model is tightly intertwined with that of the virtual

world that needs to be sensed; and, (i i) model development

requires an understanding of the hardware pipeline and image

processing algorithms encountered in the physical camera.

In relation to (i i), it is likely that the task of camera

modeling will increasingly embrace data-driven approaches,

which eschew many of the difficulties faced by physics-

based modeling approaches. We recognize this by including

a discussion of data-driven approaches that are used in several

capacities – from augmenting the physics-based approach to

replacing stages of the sensing pipeline, or even the entire

pipeline.

To further contextualize the application of camera modeling

and its connection to the virtual environment, a primary

focus of this paper will be on closed-loop operation, where

a camera model is placed in the AA simulation with the

1558-1748 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Wisconsin. Downloaded on September 04,2022 at 19:31:53 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-0142-1865
https://orcid.org/0000-0003-1565-2784

25548 IEEE SENSORS JOURNAL, VOL. 21, NO. 22, NOVEMBER 15, 2021

expectation that it produces images of the virtual environment

near, or faster than, real time. A secondary camera model

use-case of interest is that of synthetic dataset generation.

Indeed, extensive amounts of automatically labeled training

data can be generated in simulation and subsequently used in

offline training, tuning, and evaluation of perception networks

in machine learning. Since the synthetic data is generated for

offline use, the benefit of real-time or better performance is

reduced, which opens the door for more sophisticated sensor

models. This manuscript touches on offline approaches as

well, which despite being slower can point to future directions

of improvement for closed-loop solutions. For clarity, this

contribution will use the term “camera model” to refer to the

mathematical approximations of the physical phenomena and

induced artifacts of the camera. The term “camera simulation”

will be used to refer to the time-evolution of the aforemen-

tioned model and the process by which synthetic images are

produced.

In order to motivate the need for camera models/simulation,

this contribution starts off with a short overview of how

the models are used. Subsequently, Section §III outlines the

physics of camera sensing, with the discussion touching on

both internal and external components of the camera. Mod-

eling techniques that target internal camera components are

reviewed as follows: Section §IV concentrates on pre-sensor

distortion; Section §V focuses on sensor noise; Section §VI is

dedicated to post-sensor distortion. External factors in camera

simulation, including virtual environment considerations, are

discussed in Section §VII. Section §VIII highlights state-of-

the-art approaches for replacing physics-based modeling with

machine learning-enabled data-driven models. Section §IX

summarizes the relevant software solutions for AA camera

simulation, and touches on validation efforts and use cases.

II. PREAMBLE; CAMERA SIMULATION

The level of detail at which a camera must be modeled

is tightly coupled with the application for which synthetic

images are to be produced. For example, if the simulation is

used for offline training in hazardous weather conditions, then

it would be important to sacrifice computation performance

for weather realism. Or if the task is to test pedestrian

recognition systems with hardware in the loop in all lighting

conditions, then modeling the camera’s auto-exposure must be

done with high-performant algorithms even if model fidelity is

lowered. With this in mind, AA camera simulation is primarily

used for two general purposes: closed-loop evaluation, and

offline training. The former refers to software- or hardware-

in-the-loop simulation that embeds the control stack into the

simulation loop such that the navigation algorithms are tested

while being oblivious to the fact that they are flexed in

simulation rather than a real-world scenario. In offline training,

camera simulation is used to generate synthetic datasets for

training perception algorithms. The ability to automatically

label segmented images from simulation mitigates manual

labeling costs and increases throughput. These two application

areas are briefly discussed next to contextualize choices made

in camera model design.

A. Closed-Loop Simulation for AAs

For closed-loop simulation, the focus is on testing, design-

ing, and validating an AA control stack. To that end, the con-

trol stack is exercised in conditions that resemble real-world

operating scenarios. What is being monitored in simulation

may be outcomes such as lane keeping ability, grasping ability

of a robotic arm, or obstacle avoidance. In these circumstances,

temporal consistency in camera simulation is critical. For

example, the camera simulator should not have pedestrians

or objects flickering in and out of existence, or moving

unrealistically around the scene. This temporal importance is

discussed further in [9].

By-and-large, camera simulators for closed-loop testing fall

into two categories: either the model uses a game engine

graphics pipeline, e.g. [10]–[12]; or the model implements

its own camera pipeline [13]–[15]. Using a gaming engine

is convenient; however, accuracy might be inadequate, as is

the ability to add new features or improve the accuracy of the

model. This is because the video gaming graphics pipeline is

developed under tight real-time constraints for human con-

sumption; using gaming graphics for camera simulation is

serendipitous and assessing its adequacy for AA simulation

remains an open question whose answer is likely problem

dependent.

B. Simulation for Training Perception Algorithms

A second use of camera simulation is tied to developing

synthetic datasets for training. The idea is to use camera

simulation to generate synthetic images of never-before-seen

scenarios or objects. This alleviates the burden of data col-

lection and image labeling, since simulation frameworks can

automatically label the synthetic data. In this use case, real-

world datasets are replaced or augmented with synthetic

images; the end goal is to improve the perception software

stack of an AA. Since the datasets are created offline, lower

simulation speed is acceptable as long as image fidelity is high.

High image realism along with dataset bias and variance are

the main issues of concern [16].

Generating synthetic training data has been documented,

e.g., [17]–[21], and has met varying levels of success. One

prevailing tendency is the occurrence of downstream issues

tied to spatial and/or temporal coherence artifacts [9]. Only

rarely are these synthetic data sets benchmarked to evaluate

the realism of the data synthesized, e.g., realism of the scene,

including where and how objects are placed. Even more rare is

an evaluation of the quality of sensing done on these synthetic

images. One of the reasons for this is that how to quantify the

concept of sensor realism is still an open question.

Synthetic image generation has not been exclusively tied

to models built around the physics-based simulation of the

processes associated with image sensing. Recently, machine

learning (ML) techniques have been used to generate synthetic

datasets. These methods use data-driven approaches to remove

the burden of modeling some or all of the processes taking

place in the camera. An image stylizing approach was used

in [22] to augment a training dataset, producing augmented

synthetic samples. A generative adversarial network (GAN)

Authorized licensed use limited to: University of Wisconsin. Downloaded on September 04,2022 at 19:31:53 UTC from IEEE Xplore. Restrictions apply.

ELMQUIST AND NEGRUT: MODELING CAMERAS FOR AUTONOMOUS VEHICLE AND ROBOT SIMULATION 25549

Fig. 1. Illustration of the task-flow of an AA control stack (adapted
from [26]). Control stack implementation may vary depending on the
application.

Fig. 2. Semantic segmentation and object detection which are the
primary downstream processes of camera simulation. Examples are from
the BDD100K driving dataset [28].

was used in [23] to generate synthetic data for learning traffic

sign detection. A translation of sign appearance was also

proposed in [24] in order to generate additional data for

countries whose signs appear infrequently in training sets.

In line with expanding datasets, [25] proposed a method

for ML-based generation of images from a single image of

an object and its 3D geometrical representation. This was

shown to have positive effects when training object detection

networks since it was able to qualitatively retain object edges.

Many of these methods however are not directly effective for

closed-loop simulation owing to long computation times.

C. Autonomous Agent Perception

Whether the simulation is used for training perception

or evaluating closed-loop behavior, the direct downstream

process of camera simulation is perception, as shown in Fig. 1.

Camera-based AA perception includes semantic segmentation,

object detection, and visual odometry.

Semantic segmentation is the process of pixel-wise labeling

of an entire image as shown in Fig. 2a. Object detection, while

closely related to segmentation, is the detection, classification,

and estimation of specific categories of objects. For instance,

the output of object detection could be the size, location, ori-

entation, and confidence level when identifying pedestrians in

an image. An example of this is shown in Fig. 2b. While less

common, visual odometry is the use of images to determine

an ego-vehicle’s position, location, and velocity in space. This

is detailed further in [27].

By and large, the technology of choice for perception is

machine learning, specifically deep learning and convolutional

neural networks (CNN) due to their ability to associate regions

of pixels and detect high-dimensional features such as edges

Fig. 3. Illustration of VGG16 architecture [29] where all convolution
layers have ReLU activation. When used in segmentation and detection,
the network is truncated to exclude the fully connected layers that would
exist in the full VGG network.

and blobs. Many of these CNNs have a similar initial structure

whether it is applied to segmentation or recognition. This

structure is composed of stacked convolutional layers as shown

in Fig. 3. The most common structure are VGG [29] variants

such as VGG-16. This VGG network maps the RGB image

into a high-dimensional feature space that is then processed by

segmentation or detection-specific networks that compute the

final outputs, i.e., pixel label or bounding boxes. An example

of this initial CNN architecture is illustrated in Fig. 3. The

mapping of RGB image to higher-dimensional space means

specific distortion and artifacts will play a key role depending

on the network’s sensitivity to the artifact. For example, object

edge blur could change the magnitude of a machine-learned

edge-detector and make it more susceptible to missing the

object or, more likely, cause error in a bounding box prediction

as the exact edge may be unknown. While an in-depth study

of CNN architectures is out of the scope of this paper, further

information on the subject can be found in the following rep-

resentative work: YOLO [30], Faster-RCNN [31], SSD [32],

Mask-RCNN [33], FCN [34], and DeepLab [35].

III. CAMERA PIPELINE COMPONENTS

In a physics-based camera model, the process of generating

synthetic images when the camera is immersed in a virtual

environment calls for an understanding of the process by which

camera sensors produce data in the physical world. The camera

pipeline can be broken down into three distinct modules: i) the

optical systems, ii) the image sensor, iii) the image signal

processor (ISP). These are illustrated in Fig. 4. In the optical

system (module (i)), the light is focused by a complex set of

lenses. The intensity of the focused light is then measured

by the image sensor (module (ii)) and are translated into

electrical signals. These signals are then passed through the

ISP (module (iii)), which converts the RAW array into an RGB

image. Additionally, the ISP can adjust the light acquisition via

auto exposure. Depending on the camera, manufacturer, and

application, there are variations in the pipeline owing to factors

such as multiple lenses, anti-reflective coatings, or adjustable

parameters associated with the ISP.

Each stage of the camera sensing pipeline, i.e., lens, sensor,

or ISP, distorts the final image from the ground truth. In the

lens, optical distortions change how the camera perceives

reality. The sensor array, which measures the incident light,

introduces pixel noise. The ISP, which seeks to adjust and

improve the image characteristics, can change the magnitude

and distribution of the noise, adjust intensity levels across the

image, compress and encode the final output, and deblur and

denoise the image. The distortions and artifacts that correspond

Authorized licensed use limited to: University of Wisconsin. Downloaded on September 04,2022 at 19:31:53 UTC from IEEE Xplore. Restrictions apply.

25550 IEEE SENSORS JOURNAL, VOL. 21, NO. 22, NOVEMBER 15, 2021

Fig. 4. Each step in the imaging pipeline is responsible for distortion, noise, or artifacts. Optical distortion in the lens, noise introduced by the sensor,
and artifacts from post-processing the sensed image can significantly change the output image. Hashed boxes represent modules outside of the
physical camera.

to each step in the pipeline are summarized in Fig. 4. These

issues are further discussed in [36].

Beyond capturing the inner workings of the camera sen-

sor, two other aspects come into play in camera simulation:

1) the virtual environment; and 2) the downstream application

that will process and interpret the image. In regard to (1),

satisfactory virtual sensing requires a suitably defined virtual

environment. Too simple, and the virtual world resembles so

little of the real world that the simulation ceases to serve a

useful purpose no matter how sophisticated the camera model.

Too complex, and the handling of details becomes unneces-

sarily burdensome. Owing to strong impetus provided by the

video gaming industry, many computer graphics advances have

been made specifically to represent sophisticated, feature-rich

virtual worlds. In its agency, the camera model is expected to

handle both virtual world assets and scene effects. Regarding

(2), the synthetic data should be of a quality suitable for use

in tasks such as offline training or closed-loop evaluation of

obstacle detection, image segmentation, and visual odometry.

As such, downstream use dictates the required level of fidelity

of all aspects of the camera model.

IV. PRE-SENSOR DISTORTION MODELS

The first component of the camera sensor is the lens

system, which focuses light on the imaging plane. One or

multiple lenses redirect light onto the sensor array such that

the light is both intense enough to be measurable, and focused

enough to provide a meaningful representation of the scene.

In doing so, the resulting light can significantly differ from the

ground truth. Artifacts include radial and tangential distortions,

chromatic aberration, vignetting, lens flare, and depth-of-field

blur. Since automotive and robotic camera are often focused

at long distances with the object rarely appearing close to the

camera, depth-of-field is rarely a source of interest in these

application.

Radial and tangential distortions occur when the lens

refracts the incoming light differently across the sensor array.

This is most obvious in wide-angle cameras, with an example

from [37] shown in Fig. 5. Although many perception systems

first calibrate the image to remove the distortion [37], this

artifact fundamentally changes the extent of the scene that

is visible to the sensor and therefore AA. Exclusion of this

distortion in simulation could lead to artificial results since

the edges of the image may not faithfully represent the limits

of visibility.

The research in this field has focused on both accurately

recreating/understanding distortions as well as removing them

from existing images (as a post-processing step). A sum-

mary of classical models is given in [38], which discusses

approaches such as pinhole, fish-eye, and polynomial models

Fig. 5. Example lens distortion [37] c©2017 IEEE.

for the lens. More recent approaches for improving distor-

tion modeling are presented in [39]. The radial, division,

polynomial, and rational models discussed therein rely on

regression techniques; the field of view (FOV) model charac-

terizes the same distortion using physical parameters, i.e. the

camera FOV. Being physics-based, the FOV model potentially

removes the need for calibration, but is more constraining,

limiting the lens systems that can be faithfully modeled. The

FOV model is given by

r2 =
tan(r1 tan(ω))

tan ω
, (1)

where ω is the field of view, r1 is the radius from the optical

axis of the undistorted pixel location in the image, and r2 is the

radius of the distorted pixel. The radius from the optical axis

can be defined as ri =

√

x2
i + y2

i for i = 1, 2 where xi and yi

are the horizontal and vertical pixel distances from the image

center, taking care to adjust for the true angular distances these

pixels represent in the optical system. This model is based

exclusively on geometric considerations made in conjunction

with a single spherical lens. It captures the mapping shown in

Fig. 6, where the dashed lines represent the undistorted image

extent and the solid lines represent the extent of the image

captured by the camera (distorted image).

In robotic applications, a physics-based model can be help-

ful as multiple camera setups can be tried to identify a suitable

FOV for the application without ever having access to physical

hardware. However, for complex lenses the FOV model may

not hold. In this case, regression approaches are common.

In the simplest regression approach, the radial model gives

the distorted radius of the pixel location, r2, as a polynomial

function of the undistorted radius, r1:

r2 = r1(k0 + k1r1 + k2r2
1 + k3r3

1 + . . . + knrn
1), (2)

Authorized licensed use limited to: University of Wisconsin. Downloaded on September 04,2022 at 19:31:53 UTC from IEEE Xplore. Restrictions apply.

ELMQUIST AND NEGRUT: MODELING CAMERAS FOR AUTONOMOUS VEHICLE AND ROBOT SIMULATION 25551

Fig. 6. Mapping of lens distortion, showing the original image extent
and pixel location (dashed lines), and the distorted image extent and
pixel location (solid lines). The distorted image is what is captured by the
camera.

where k0, . . . , kn are fitting parameters. The division model

is the reciprocal of the radial model and uses similar tuning

parameters. Lastly, the polynomial and rational models are

analogous to the radial and division model respectively, with

the caveat that the horizontal and vertical distortions are

represented separately. While this makes for a more versatile

model, it increases the burden on fitting the model to data,

which is nontrivial. To calibrate these lens models, a regression

method for estimating model parameters for both the radial

and division models is proposed in [37]. Model parameters

are obtained as the solution of an optimization problem that

minimizes the error between projected lines and detected lines

from a repeated square calibration pattern. Depending on the

distortion model, calibration parameters will include the dis-

tortion fitting parameters (FOV model requires ω, radial model

requires k0, . . . , kn). Additionally, parameters that define the

sensor’s field of view, or depth-of-field characteristics (focal

length, pixel size, axis skew, and focal point) can also be

included in the camera calibration. A ray-tracing approach to

distortion is outlined in [40], where the entire lens system is

replaced with a mapping from input ray direction to output

ray direction. This is easily implemented in a simulation

framework within a ray tracing operation, but becomes more

complex for raster graphics. In [41], the authors discuss a

lower computational cost approach that modifies a scene in a

pre- or post-process step to account for radial distortion when

leveraging raster graphics. For closed-loop AA simulation, this

computational burden may be too great to warrant its use. A

data-driven method can be used to emulate lens distortion.

In [42], the polynomial models are replaced with a neural

network (NN). The advantage of this comes from a highly

flexible NN that can represent complex distortions. While an

NN could be used to represent the entire lens system, in [42]

the authors train it to be a surrogate model for a single lens

based on ray-traced scenes.

Another artifact that is considered in camera modeling is

vignetting, a subtle distortion manifested as a darkening of

the image around its outer edges. An example is shown in

Fig. 7 [43]. The darkening is a consequence of the aperture

Fig. 7. Example vignetting [43] c©2004 IEEE.

Fig. 8. Illustration of the optical axis and the off-axis angle, a quantity
used for vignetting and lens distortion.

limiting the field of view of the scene for pixels near the

extent of the sensor array [44]. Similarly to radial distortion,

vignetting can be corrected in the final image. However, since

this must be done digitally, and because vignetting decreases

the number of collected photons, the noise in these regions

may be increased when gain is applied.

In [44], vignetting is shown to have an effect on downstream

processes related to perception, pointing to the importance

of its modeling. Therein, vignetting in synthetic images is

produced via a lookup table generated using calibration data

collected from the sensor of interest. If focal length and image

sensor diameter of the camera are known, a model described

in [36] with derivation shown in [45] defines the relative fall

off of illumination as R = cos4 θ , where R is the relative

illumination and θ is the angle from the optical axis shown

in Fig. 8. Subsequently, θ can be calculated using the pixel

coordinates, the sensor size, and the distance from the lens to

the image sensor.

Highly dependent on the lens material, lens flare is an

artifact that leads to ghost objects appearing in the image.

Often, these are blurry, regular-shaped light patches caused

by undesired multi-path reflections of intense light that can

change what information is present in a swath of pixels. As

this can produce light blobs not present in the scene, it can

cause problems during AA object detection. An example of

lens flare discussed in [46] is shown in Fig. 9.

Authorized licensed use limited to: University of Wisconsin. Downloaded on September 04,2022 at 19:31:53 UTC from IEEE Xplore. Restrictions apply.

25552 IEEE SENSORS JOURNAL, VOL. 21, NO. 22, NOVEMBER 15, 2021

Fig. 9. Example lens flare [46] c©2018 Springer.

Lens flare has complex underlying physics that is difficult

to characterize, and its elimination is actively pursued by

camera manufacturers who develop proprietary, anti-reflective

lens coating to mitigate flare. Flare modeling is of interest

in the computer graphics community where reconstruction

of lens flare artifacts is done purely for visual appeal, and

physical plausibility takes back seat to simulation speed [47].

For the modeling of physically plausible lens flare, the solution

discussed in [47] models the probable multi-path reflections

through the lens system. While effective, this is computa-

tionally expensive for closed-loop simulation. Additionally,

it requires specialized information about the lens system,

which is often hard to determine and/or difficult to access,

most often being proprietary in nature. In an effort to reduce

the reliance on physical properties, a method proposed in [46]

uses a data-driven approach for flare reconstruction. It first

learns the propensity of lenses to flare, and then generates a

basis of ghost artifacts which, through optimization, can be

used to generate realistic lens flares. While the approach is

capable of modeling and simulating flare in unknown lens

systems, it requires a significant amount of setup and measure-

ment control to perform the data collection required. Although

there are few data-driven solutions reported in the literature,

it is likely that these pragmatic, data-driven approaches will

make an impact in AA perception applications.

Chromatic aberration is caused by wavelength-dependent

refraction that creates a slight positional offset of colors in

an image. Specifically, the divergence of colors when light

is refracted within the lens system is tied to the inability

of the lens to focus all components of the light’s spectrum

at the same location in space [48]. This artifact can be

problematic if precise edge-detection is needed in AA per-

ception. A physics-based approach to generating chromatic

aberration requires the ray tracing of wavelength-dependent

rays through the lens system and into the scene [49]. While

useful for computational camera simulation, this approach

is too compute intensive to be useful in AA simulation.

A similar method is proposed in [42]. However, rather than

requiring full knowledge of the lens system, image calibration

data is used to generate a regression model of the lens,

including wavelength-dependent optimization parameters to

model chromatic aberration. An approach more common for

Fig. 10. 20×20 pixel patches of noise from different datasets, illustrating
noise with and without ISP augmentation.

real-time rendering found in the gaming community is to

produce distortions and artifacts via heuristics that generate

visually appealing results. This paradigm is adopted in [48],

where separation of the color spectrum at the edge of objects

is performed, neglecting the lens or physics-based models

entirely. This is a tradeoff between fidelity and performance;

no study has been carried out to date to indicate whether this

tradeoff is acceptable or not in AA simulation.

V. SENSOR NOISE MODELS

Individual photoreceptors in the image sensor array mea-

sure the intensity of incoming light, and output a voltage

proportional to its intensity. There are several sources of

noise associated with this process: photon shot, fixed pattern,

dark current, readout, and quantization noise [36]. Photon-shot

noise is associated with the uncertainty in the number of pho-

tos incident on a single photoreceptor. The noise distribution

of photon count on the receptor follows a Poisson distribution

which, for high light intensity (large photon count), can also be

approximated with a Gaussian distribution. Fixed-pattern noise

is the variation in both the sensitivity and the voltage asso-

ciated with zero intensity across the array of photoreceptors.

This fixed-pattern noise is reproducible between image frames

and can often be reduced. Dark-current noise is the result of

heat or non-visible light causing phantom fluctuations in the

pixel measurements. Finally, noise is introduced when signals

are read from the sensor array and falls into two categories:

reading of the signal (readout noise); and conversion to digital

signal (quantization noise). The readout noise occurs in the

analog amplification and reset phases. Since the quantization

noise is associated with the quantization of the signal, this

takes on a uniform distribution with variance equal to one

twelfth of the quantization interval in the digital precision [50].

An example of the noise produced by the camera is shown in

Fig. 10a.

The raw sensor-measurement noise can be characterized

as a pixel dependent Gaussian distribution, see the European

Machine Vision Association (EMVA) Standard [53]. Referring

to Fig. 11, the noise can be expressed as

In(p) = I (p) + η, η ∼ N (0, σ 2
p)

σ 2
p = K 2σ 2

d + σ 2
q + K (µp − µp,dark), (3)

Authorized licensed use limited to: University of Wisconsin. Downloaded on September 04,2022 at 19:31:53 UTC from IEEE Xplore. Restrictions apply.

ELMQUIST AND NEGRUT: MODELING CAMERAS FOR AUTONOMOUS VEHICLE AND ROBOT SIMULATION 25553

Fig. 11. Noise model based on EMVA standard.

where In(p) is the intensity of the noisy pixel p, I (p) is the

intensity of the ground truth, η is the noise sampled from

a normal distribution parameterized by σp . The latter is a

function of the sensor gain K , the sensor readout noise σd , the

quantization noise σq , and the dark noise and shot noise, which

come from Poisson distributions parameterized by µp,dark and

µp respectively.

The intensity-dependent, uncorrelated-noise model is com-

monly used to estimate noise levels or generate noisy synthetic

data [54], [55]. This estimate is accurate for photoreceptor

measurements or for evaluating new camera designs if image

comparison is made in a raw sensed image [49]. However,

only rarely are raw images used directly in a practical com-

puter vision application. Indeed, computer vision applications

mostly use modified RGB images that are based on the raw

sensor readout. These RGB images are generated in the camera

after processing and compressing/encoding the data. The pixel

dependent model in Eq. (3) is not representative of noise after

the on-chip processing of the ISP, which is discussed next.

VI. POST-SENSOR ARTIFACT MODELS

Several artifacts in RGB images are traced back to the

ISP, which generates a more appealing image by adjusting for

color, brightness, noise, and pixel errors. The ISP runs a col-

lection of software algorithms that alter the image and include

white balancing, demosaicing, auto exposure, auto contrast,

color correction, deblurring, denoising, gamma correction,

down sampling, and compression. The nature of the ISP

transformations for a specific camera are typically unknown,

proprietary, and complex, with only general descriptions pub-

licly shared. Not providing solution details is the norm, since

both the hardware and software at work in processing raw

pixel data is what often provides a competitive advantage to

a camera manufacturer.

The ISP alters both the color and noise in an image, with

an example of the latter shown in Fig. 10b. Compared to

the standard model for noise in the raw image, the noise

in the RGB image tends to be longer-grain, and spatially,

chromatically, and temporally correlated [57], [58]. Figure 12

elaborates on how a raw noisy image feeds into the ISP

and how it is altered via a select set of image processing

algorithms. The right half of Fig. 12 shows a sample set of

algorithms proposed in [56], but it represents neither the full

extent of image processing, nor the variation within specific

algorithms, such as, for instance, white balance.

White balance processing seeks to mitigate color biases

in the image [59] and can additionally adjust the brightness

levels by applying gain to specific channels. A recent research

direction has embraced this concept to balance or apply auto

contrast to specific regions of the image to make darker regions

more perceivable as well as to prevent saturation in bright

regions of the image. Algorithms to produce context-aware

automatic white balance have been proposed in [60].

Another process present in any raw-to-RGB conversion is

demosaicing. This is the process by which the raw image from

the sensor array is interpolated to generate an image of the

same size with RGB values present at every pixel. This occurs

at the resolution of the image array and, due to the nature

of spatial interpolation, introduces spatial correlation of pixel

noise. The pattern used in the raw image array is hardware-

dependent, but the most common is the Bayer pattern. The

algorithms for demosaicing can vary from bilinear interpola-

tion to more complex edge-aware methods such as adaptive

homogeneity directed (AHD) demosaicing [61], [62]. While

the precise algorithm may not be available for a given camera,

a method for estimating the algorithm from calibration data is

described in [62]. The two primary effects of demosaicing are

spatial correlation of noise, and the blurring or generation of

artifacts near color boundaries.

In addition to white balancing and demosaicing, the ISP

often includes denoising and deblurring [63]. These procedures

are not perfect and may additionally correlate noise and alter

color boundaries, either blurring or artificially sharpening

regions. Auto exposure modeling is also important, since

adjusting exposure plays a significant role in AA applications

as the environmental lighting conditions can change rapidly

(e.g. under a bridge or in a tunnel). The effects of auto

exposure, which adjusts the exposure time, is delayed by a few

frames since the ISP employs pipelining in order to achieve

high frame throughput [64]. The challenge is in modeling

this lag, along with the image artifacts that crop up during

exposure adjustment. For instance, it is highly desirable to

faithfully generate the image stream as a simulated AA moves,

for instance, from intense sunlight to shade. Indeed, these

transitions, through the artifacts that crop up in the sensing

process, challenge the image segmentation and object recog-

nition tasks that anchor many AA control policies. Finally,

further processing such as compression, gamma correction,

and color correction, alter the chromatic, spatial, or temporal

nature of the images [65], [66].

If the ISP algorithms were known, they could be imple-

mented directly in the simulation, removing the need for

modeling. In reality, many algorithms are proprietary; even

when publicly available, the parameters controlling them are

not shared by the camera manufacturer. Consequently, by and

large, the raw information processing carried out by the ISP

is viewed as a black box.

In the image processing field of machine-learned denoising,

it has been found that accurately modeling the noise and ISP

as a single module can vastly improve training when using

synthetic images. This is also relevant to the perception field as

correlation between pixels can pose a challenge when attempt-

ing to precisely segment, pixel-wise, the edges of pedestrians

or vehicles. To assist with training denoising algorithms, [57],

[65]–[67] have each proposed and demonstrated lumped

noise models which factor in the sensor and ISP together,

Authorized licensed use limited to: University of Wisconsin. Downloaded on September 04,2022 at 19:31:53 UTC from IEEE Xplore. Restrictions apply.

25554 IEEE SENSORS JOURNAL, VOL. 21, NO. 22, NOVEMBER 15, 2021

Fig. 12. Full noise factors including ISP which introduces significant noise correlation. ISP example modified from [56].

such that they incorporate spatial, chromatic, and temporal

correlations.

In an effort to produce synthetic, noisy images for the

purpose of training denoising algorithms, raw, pixel-level input

was modified in [67] to account for plausible local spatial

and chromatic correlations by approximating the effect of ISP

demosaicing. The noise model is a modified version of the

standard following

I = f (L + ηs + ηc) + ηq

ηs ∼ N (0, Lσ 2
s)

ηc ∼ N (0, σ 2
c)

ηq ∼ U

(

−
q0

2
,

q0

2

)

, (4)

where I is the noisy image, f is the camera response function

(CRF), L is the photon intensity, q0 is the quantization,

and σc, σs , ηs , and ηc are tunable parameters, of which

the latter two are used to represent the intensity dependent

and intensity independent noise distributions, respectively. The

CRF, and conversely the inverse camera response function

(ICRF), is a camera-dependent function that maps the photon-

intensity space into the image color space. A CRF represents

the pixel sensitivity, gain, and gamma correction of a specific

camera. In order to convert the color image back to photon

intensity, the ICRF is applied. In the work described in [67],

the ICRF is important as it brings the image into a space where

the modified standard model is appropriate.

This intensity-dependent and demosaicing method was aug-

mented in [65] to include gamma correction and compression.

The resulting model, in combination with domain random-

ization techniques, was shown to be more effective than

previous approaches in training a convolutional denoising

algorithm [65]. In [66], a similar technique implemented a

pipeline for generating synthetic images by augmenting syn-

thetic data with realistic noise in order to account for artifacts

produced by the demosaicing, compression, and denoising

algorithms typically present in cell phone cameras. The results

shown in [66] demonstrate that the method advanced therein

allowed for the effective training and transfer to reality of a

denoising algorithm. A model for cross-channel dependence

of noise was proposed in [57] to increase the fidelity of color-

specific relationships. Although these implementations are

specific to training denoising networks, they provide insights

for synthetically adding noise to images to increase their

veracity when used in AA simulation.

In [68], the entire ISP was approximated such that images

taken with one camera could be mapped back to raw inputs,

and then mapped forward as if they had been taken with a

different camera. This solution relied on prohibitively large

amounts of real and calibrated data. Similar work was intro-

duced in [69] for the simulation and estimation of proposed

ISP algorithms to evaluate their effectiveness. The approach

combined ML and simulation of the entire imaging system to

estimate the final image that would be formed with a proposed

camera. However, the reliance on full camera simulation,

including modeling all lenses and pixel sensitivities, would

be computationally expensive for AA applications, preventing

these methods’ direct transfer to AA simulation.

It should be noted that there is an entire computational

camera simulation community keen on predicting sensor capa-

bilities for new designs; i.e., characterizing sensor performance

before building it. This requires accurately predicting the

incoming light, precisely estimating the photon intensity levels

at the sensor, and then, through accurate models of the image

sensor, predicting the distortion, noise levels, and abilities

of the proposed design [70]. While this process is highly

precise, it poses extreme computational challenges that make

it intractable for AA simulation [71].

VII. VIRTUAL ENVIRONMENT CONSIDERATIONS

In this section, the focus shifts from camera modeling

to camera simulation, the latter being highly influenced by

the virtual world in which the camera is immersed. Note

that the virtual world’s influence extends beyond its interplay

with the camera model, as it shapes, downstream, the task

of perception. As far as camera simulation is concerned,

the virtual world assets and attributes of interest include

meshes, material properties, textures, lighting, sprites, decks,

Authorized licensed use limited to: University of Wisconsin. Downloaded on September 04,2022 at 19:31:53 UTC from IEEE Xplore. Restrictions apply.

ELMQUIST AND NEGRUT: MODELING CAMERAS FOR AUTONOMOUS VEHICLE AND ROBOT SIMULATION 25555

etc., which are concepts that originated in the computer graph-

ics community. A discussion of physically-based rendering

and photorealism is provided in [72]. Against this backdrop,

a subpar representation of the virtual world will adversely

impact perception, regardless of how faithfully the camera

model can replicate lens artifacts, sensor noise, ISP distortion,

etc. For instance, the effective modeling of light in the virtual

world directly impacts the post-sensor effects discussed in

Section § VI, as the lighting conditions and contrast influence

the autoexposure, which controls the gain, and therefore noise

levels or saturation. Hence, without proper modeling of the

scene, a highly accurate autoexposure model would still be

unable to produce realistic results.

Beyond lighting, several other virtual world effects play an

important role in perception [73]. It has been noted repeatedly

that perception algorithms, e.g. [30], [31], [34], [35], [74],

are highly sensitive to weather-based artifacts associated with

cameras [75]. In comparison to lighting, the task of accom-

modating weather effects in virtual worlds is less established.

Much of the work to render environment conditions such as

fog, rain, snow, fire, dust, smoke, etc., has been driven by

the gaming community [76], [77] in the pursuit of achieving

human-judged realism and meeting performance requirements.

Simulating these weather-induced effects at a level that is AA

perception satisfactory, poses stiff challenges. Alas, these are

precisely the conditions encumbering many safety critical and

hazardous scenarios of interest, for which simulation may be

the only feasible method for probing AA behavior without

placing people or property in harms way.

An example of a gaming community-provided solution for

rain distortion of images used in AA perception is presented

in [78]. A rain-related discussion in [79] touches on a method

to reconstruct a scene from an image, predict the density

of rain on a per-pixel basis, and augment the scene with

rain to improve the robustness of machine learned algorithms.

Research and techniques used in rain removal [80], if played in

reverse, can provide insights into how to augment camera sen-

sor data. Rain based on computer graphics research for video

gaming is supported in various simulation environments [10],

[81] with further research from the computer graphics com-

munity detailed in [82]–[84]. It should be emphasized that the

challenge is not to inject rain in a scene but rather to do so and

have the camera model pick it up and produce synthetic images

of a quality suitable for use downstream, in AA perception.

To accommodate snow in virtual worlds, falling snow has

been discussed in [85], where the precipitation is treated much

like rain, inducing streaks and artifacts in the image. However,

snow poses additional challenges to image plausibility due

to the complex movement of accumulated snow. This is the

subject of research aimed at capturing the realism of snow

accumulation and movement [86], [87]. From a vehicle’s

perspective, this movement may be important as snowy roads

with traffic significantly change in appearance over time. For

other aspects of snow in a scene, it may be important to

model how the accumulated snow impacts the appearance of

the background scene [88].

For fog representation, the graphics community has devel-

oped expeditious models that approximate the light scattering

based on fog density and color, by using attenuation

laws [89], [90]. However, little work has been conducted to

quantify how well the approaches work in perception: the

synthetic images look good to the human eye, but might be

of little use when used for perception. What has been shown

though, is that a large change in perception ability occurs in

images with fog [85], [89].

Effects such as dust and smoke are known to impede the

perception in real-world applications. Similar to snow, this

may take the form of airborne particulates (e.g. smoke), or may

present as an accumulated layer on camera lenses or the

ground. Various techniques are used in graphics and the gam-

ing community and some attempts have been made to adapt

them for AA simulation purposes. Smoke simulation work,

reported in [91]–[93], looks at the mechanics of movement.

Depending on nature of the AA simulation, a sophisticated

model may not be necessary, and as such a cruder model may

suffice. While smoke represents an extreme edge case for AAs,

dust, even in typical use, can accumulate and begin to affect

normal operation. Layered dust has been studied, as shown

in [94], [95] in order to realistically model how it accumulates

and affects the visual characteristics of surfaces.

While various environment conditions can be accounted

for in several simulation platforms [10], [96]–[98], very little

research has been done into gauging, for instance, the real-

ism of simulated rain, in order to understand the extent to

which data produced is realistic insofar as AA perception is

concerned. Moreover, there are many nuances for the problem

at hand. For instance, how snow collects on a camera and

possibly occludes vision is highly dependent on the camera,

lens, shielding, and vehicle. Ultimately, the models and meth-

ods used in gaming and computer graphics can provide a

solid foundation, yet are not sufficient to be immediately and

effectively used in AA simulation.

VIII. DATA DRIVEN CAMERA SIMULATION

Hitherto, the discussion concentrated on capturing processes

that take place in the individual stages of the camera sensing

pipeline, i.e., the optical system, image sensor, or image signal

processing. When combined, submodels of these components

yield camera models that are robust and expeditious. A lim-

itation of this approach is tied to the lack of meaningful

parameters associated with the submodels. Producing these

parameters is nontrivial. For instance, for the ISP component

model, it is exceedingly difficult to identify model parameters

for the black box algorithms that come into play. As an

alternative, or potentially an augmentation to the traditional

approach, machine learning (ML) has shown promise in gen-

erating visually plausible camera sensor data [99]. ML can be

used to replace submodels (briefly touched upon in Sections

§ IV and VI), the entire sensing pipeline, or augment the

virtual environment.

Recent ML research has led to significant progress in the

so-called image-to-image translation, e.g., producing a map

from an aerial image; producing a picture of a landscape in

winter from an image in summer time; translating a black-

and-white image into a color image, etc. Seminal work in this

field centers on generative adversarial networks (GANs) [100].

Authorized licensed use limited to: University of Wisconsin. Downloaded on September 04,2022 at 19:31:53 UTC from IEEE Xplore. Restrictions apply.

25556 IEEE SENSORS JOURNAL, VOL. 21, NO. 22, NOVEMBER 15, 2021

TABLE I

AV SIMULATION PLATFORMS SUPPORTING MODELS OF RGB MONO-CAMERAS. THESE ARE SPLIT INTO TWO CATEGORIES BASED ON THE

AMOUNT OF PUBLISHED INFORMATION AVAILABLE TO REFLECT WHICH PLATFORMS ARE JUDGED BASED ON LIMITED DOCUMENTATION ONLY.

PLATFORMS ARE SORTED WITHIN THE TWO GROUPS BY ALPHABETICAL ORDER. KEY: AWGN: ADDITIVE WHITE GAUSSIAN NOISE; IDGN:

INTENSITY-DEPENDENT GAUSSIAN NOISE; FOV: FIELD-OF-VIEW MODEL; DASH(−): NOT REPORTED OR NOT AVAILABLE; PLUS (+): CAPABILITY

REPORTED WITHOUT SPECIFIC MODEL. NOTE: PLATFORMS MAY SUPPORT MODELS AND CAPABILITIES BEYOND THE SCOPE OF THIS REVIEW

INCLUDING OTHER SENSORS, OTHER WEATHER OR ARTIFACTS (E.G. DUST), VEHICLE DYNAMICS, PEDESTRIANS, ETC. FURTHERMORE,

SPECIFIC MODELS MAY BE SUPPORTED YET INFORMATION WAS UNATTAINABLE BY THE AUTHORS. THE INFORMATION BELOW IS NOT INTENDED

AS AN ENDORSING OF A PRODUCT OR A RANKING OR JUDGMENT OF PLATFORMS, BUT RATHER AS A SUMMARY

OF MORE COMMON PLATFORMS CURRENTLY USED IN THIS FIELD

These ML-based models are obtained by learning to map

input to output through optimization. An approach proposed

in [101] seeks to learn a model for image noise and then

engage in synthetic generation of noisy images. The work is

analogous to transferring noise from one image to another

via a GAN [100], [102] which can introduce abstract image

augmentations. By using machine learning, and specifically

convolutional neural networks (CNN), high-dimensional fea-

tures can be learned such as edges and contextual relationships

between pixel patches.

Examples of GAN-based image-to-image translation can be

found in [103]–[106]. In [105], it is demonstrated that on-road

images can be converted between various weather and lighting

conditions. GAN-based weather-induced augmentations were

employed in [107] to evaluate the ability of autonomous

vehicle perception networks to remain robust in decision

making between clear, foggy, and rainy versions of operating

scenarios (or images thereof). Another method for converting

between weather domains such as sunny, rainy, and foggy,

was proposed in [108], where the authors solved the image-

to-image translation problem for weather with remarkable

accuracy. Concretely, synthetic images were rendered using

traditional graphics techniques and then altered to introduce

complex weather effects. In [109], a GAN was successfully

trained to remove rain from images. If the training data

is reversed, this would result in an approach to generate

synthetic rain for rendered images. Similar work is reported

in [110], but rather than using a GAN, a NN is trained directly

using supervised learning to remove rain droplets from images

obtained while driving. While supervised learning allows for

more direct training approaches, this was only made possible

by collecting paired samples with a stereo camera setup with

one of the cameras obscured by droplets in front of the lens.

The image-to-image translation can be applied to semantic

maps directly, as shown in [111]. The approach accomplishes

two things: it encodes all weather translations into a single

network; and it removes the need to generate an initial image

altogether. While this allows a fully data-driven and general

approach to a complex project, it requires the neural network

to generate fine-grain detail, burdening the network’s capacity

to encode more weather-detailed information.

Note that handling weather-related artifacts does not repre-

sent the only use of ML in synthetic perception. GANs have

also been used in driving augmentations in [112], where the

virtual world was altered by injecting synthetic pedestrians

into the scene. This method was applied to specific regions

of the image, with background-aware training, in an attempt

to prevent unrealistic position and size of the augmentation.

In the future, synthetic pedestrians could become participants

in closed-loop simulation. However, in line with most of

Authorized licensed use limited to: University of Wisconsin. Downloaded on September 04,2022 at 19:31:53 UTC from IEEE Xplore. Restrictions apply.

ELMQUIST AND NEGRUT: MODELING CAMERAS FOR AUTONOMOUS VEHICLE AND ROBOT SIMULATION 25557

the ML-based research, the solution in [112] would require

additional temporal constraints to increase realism.

IX. CURRENT STATE OF CAMERA SIMULATION FOR

AUTONOMOUS AGENTS

A. Camera Model Implementations

For application in robotics and autonomous vehicles, cam-

era models have been implemented in several simulation

frameworks. These models tend to be expeditious in nature,

which often comes at the expense of fidelity. This stems from

a broad reliance on game engines for rendering. To understand

the current state of camera simulation, Tab. I lists known

simulation packages with significant camera support for AAs.

Of particular importance are the simulators that have support

for lens distortion, noise, and ISP artifacts, as these represent

higher-fidelity modeling support. With the topic of AA camera

simulation being nascent, very much in flux, and highly

competitive, it comes as no surprise that many simulation

platforms do not have published details on the implemented

models and algorithms. As such, the strengths and limitations

of these camera models have to be surmised from sparse

information available on the developers’ websites and from

marketing information.

Of particular note are the capabilities of Carla [10] and Air-

Sim [11] due to their extensive use in the research community.

These two platforms are built on gaming engines (Unreal and

Unity), and include camera and weather models developed for

gaming applications. Another important software platform in

the robotics community is Gazebo, which is well known for

its in-depth support for ROS. Gazebo supports a broad range

of sensors, but only includes a simple lens distortion model

and an oversimplified AWGN model for noise, which may

constrain the fidelity of camera-reliant Gazebo simulations.

In the commercial sector, software like SPEOS and OPTIS

from Ansys, Pro-SiVIC from ESI group, VTD from MSC

Software, DRIVE Sim from NVIDIA, and SynCity from

CVEDIA exemplify a prolific field of highly developed soft-

ware, many with validated solutions. Unfortunately, little infor-

mation is published about their specific camera models and

implementations.

B. Validation and Sensitivity Studies

Current efforts to validate camera models center around

traditional methods of data validation which seek to control

an environment and compare the simulated data to the real-

world data. These are usually performed in a tightly controlled

setting, with specific texture patterns and lighting. An example

of such validation is shown by the IFSTTAR team, [113],

[114], where Pro-SiVIC software from ESI group is demon-

strated to produce very similar results for lens distortion and

camera response. While this validation in controlled envi-

ronments is highly important, it is not necessarily indicative

of performance in on-road scenarios, which pose unique

challenges insofar as the downstream perception is concerned.

Specifically, even when a simulation platform and underlying

camera model are validated in controlled tests, they do not

typically generate synthetic data with sufficient realism to

replace real images when training machine learning algorithms

for perception [20], [115]. Furthermore, research has suggested

for improved downstream perception, matching the proper

distortion levels, blur, and noise play an important role in the

simulator [116], [117].

X. CONCLUSION

This overview of the camera modeling and simulation topic

touched on two classes of approaches. The class of physics-

based methods attempt to mimic the processes that take place

in the camera sensing pipeline, which has three stages: optical

system, sensor array, and ISP. Each stage has associated with

it distortion, noise, and artifacts that affect the end product,

in this case a synthetic image that is a replica of the virtual

world in which the camera is immersed. A second class

of methods relies on data-driven approaches that seek to

augment the virtual world, to replace submodels of various

camera stages, or even eliminate altogether the traditional,

physics-based camera models. The contribution highlights two

important aspects. First, camera modeling and simulation are

closely tied to the virtual world the camera is immersed

in and expected to generate images of. This camera-virtual

world interplay permeates the design of the camera, its use

in simulation, and the way in which the virtual world needs

to be set up. Second, there are few methods in place to

measure the quality of the synthetic images generated by a

camera sensor. The fact that one finds the image visually

plausible, or “realistic,” may not reflect how successful the

downstream use of these synthetic images will be in perception

for AA simulation. Looking ahead, reducing the simulation-

to-reality gap will require action in multiple directions, see,

for instance [4]. However, it is our believe that prominent

among these directions should be camera and virtual world

modeling. There are numerous outstanding questions about the

fidelity required in this nascent simulation domain, as well

as about the design of quantitative metrics that gauge the

level of realism associated with camera simulation insofar

as the task of perception is concerned. Having quantitative

metrics to judge the realism in camera simulation will help the

community understand the level of fidelity required in camera

modeling and virtual world definition, which bodes well for

the problem at hand as well as the larger AA simulation aim.

ACKNOWLEDGMENT

The U.S. Government assumes no liability for the ideas

expressed in this document or the use thereof.

REFERENCES

[1] The New York Times. Self-Driving Uber Car Kills Pedestrian in

Arizona, Where Robots Roam. Accessed: Apr. 7, 2018. [Online]. Avail-
able: https://www.nytimes.com/2018/03/19/technology/uber-driverless-
fatality.html

[2] Digital Trends. 6 Self-Driving Car Crashes That Tapped the Brakes

on the Autonomous Revolution. Accessed: Sep. 29, 2018. [Online].
Available: https://www.digitaltrends.com/cool-tech/most-significant-
self-driving-car-crashes/

[3] Wired. Waymo’s Self-Driving Car Crash in Arizona Revives Tough

Questions. Accessed: Sep. 29, 2018. [Online]. Available: https://www.
wired.com/story/waymo-crash-self-driving-google-arizona/

Authorized licensed use limited to: University of Wisconsin. Downloaded on September 04,2022 at 19:31:53 UTC from IEEE Xplore. Restrictions apply.

25558 IEEE SENSORS JOURNAL, VOL. 21, NO. 22, NOVEMBER 15, 2021

[4] H. Choi et al., “On the use of simulation in robotics: Opportunities,
challenges, and suggestions for moving forward,” Proc. Nat. Acad.

Sci. USA, vol. 118, no. 1, Jan. 2021, Art. no. e1907856118. [Online].
Available: https://www.pnas.org/content/118/1/e1907856118

[5] J. Collins, D. Howard, and J. Leitner, “Quantifying the reality gap in
robotic manipulation tasks,” in Proc. Int. Conf. Robot. Autom. (ICRA),
May 2019, pp. 6706–6712.

[6] Y. Kang, H. Yin, and C. Berger, “Test your self-driving algorithm:
An overview of publicly available driving datasets and virtual testing
environments,” IEEE Trans. Intell. Vehicles, vol. 4, no. 2, pp. 171–185,
Jun. 2019.

[7] Lindsay Brooke. SAE Kicks off Process to Establish Performance

Standards for Autonomous Vehicle Testing. Accessed: Sep. 29, 2018.
[Online]. Available: https://www.sae.org/news/2018/08/sae-kicks-off-
av-testing-performance-standards-process

[8] F. Rosique, P. J. Navarro, C. Fernández, and A. Padilla, “A systematic
review of perception system and simulators for autonomous vehicles
research,” Sensors, vol. 19, no. 3, p. 648, 2019.

[9] N. Sünderhauf et al., “The limits and potentials of deep learning for
robotics,” Int. J. Robot. Res., vol. 37, nos. 4–5, pp. 405–420, 2018.

[10] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An open urban driving simulator,” in Proc. 1st Annu. Conf.

Robot Learn., 2017, pp. 1–16.

[11] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “AirSim: High-fidelity
visual and physical simulation for autonomous vehicles,” in Field and

Service Robotics. Cham, Switzerland: Springer, 2018, pp. 621–635.

[12] NVIDIA. (2018). NVIDIA DRIVE Constellation. Accessed:
Feb. 6, 2018. [Online]. Available: https://www.nvidia.com/en-us/self-
driving-cars/drive-constellation/

[13] D. W. Carruth, “Simulation for training and testing intelligent systems,”
in Proc. World Symp. Digit. Intell. Syst. Mach. (DISA), Aug. 2018,
pp. 101–106.

[14] C. Goodin, R. Kala, A. Carrrillo, and L. Y. Liu, “Sensor modeling
for the virtual autonomous navigation environment,” in Proc. IEEE

Sensors, Oct. 2009, pp. 1588–1592.

[15] A. Elmquist, R. Serban, and D. Negrut, “A sensor simulation frame-
work for training and testing robots and autonomous vehicles,” J. Auto.

Vehicles Syst., vol. 1, no. 2, Apr. 2021, Art. no. 021001.

[16] C. Bowles et al., “GAN augmentation: Augmenting training data using
generative adversarial networks,” 2018, arXiv:1810.10863. [Online].
Available: http://arxiv.org/abs/1810.10863

[17] P. Durst, “Using physics-based M&S for training and testing machine
learning algorithms,” in Proc. 5th Int. Conf. Modeling Simulation
Auto. Syst. (MESAS), vol. 11472, Prague, Czech Republic: Springer,
Oct. 2018, p. 445.

[18] Z. Liu et al., “A system for generating complex physically accurate
sensor images for automotive applications,” Electron. Imag., vol. 2019,
no. 15, pp. 1–53, 2019.

[19] M. Wrenninge and J. Unger, “Synscapes: A photorealistic synthetic
dataset for street scene parsing,” 2018, arXiv:1810.08705. [Online].
Available: http://arxiv.org/abs/1810.08705

[20] G. Ros, L. Sellart, J. Materzynska, D. Vazquez, and A. M. Lopez,
“The SYNTHIA dataset: A large collection of synthetic images for
semantic segmentation of urban scenes,” in Proc. IEEE Conf. Comput.

Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 3234–3243.

[21] S. R. Richter, V. Vineet, S. Roth, and V. Koltun, “Playing for data:
Ground truth from computer games,” in Proc. Eur. Conf. Comput. Vis.

Cham, Switzerland: Springer, 2016, pp. 102–118.

[22] A. Dundar, M.-Y. Liu, T.-C. Wang, J. Zedlewski, and J. Kautz,
“Domain stylization: A strong, simple baseline for synthetic to real
image domain adaptation,” 2018, arXiv:1807.09384. [Online]. Avail-
able: http://arxiv.org/abs/1807.09384

[23] N. Soufi and M. Valdenegro-Toro, “Data augmentation with symbolic-
to-real image translation GANs for traffic sign recognition,” 2019,
arXiv:1907.12902. [Online]. Available: http://arxiv.org/abs/1907.12902

[24] A. Lukashou, “Improving benchmarks for autonomous vehicles test-
ing using synthetically generated images,” 2019, arXiv:1904.10261.
[Online]. Available: http://arxiv.org/abs/1904.10261

[25] A. Rozantsev, V. Lepetit, and P. Fua, “On rendering synthetic images
for training an object detector,” Comput. Vis. Image Understand.,
vol. 137, pp. 24–37, Aug. 2015.

[26] G. Girardin, “Road to robots. Sensors and computing for autonomous
vehicle,” in Proc. Auto. Vehicle Sensors Conf., 2018, pp. 1–38. [Online].
Available: https://www.autosensorsconf.com/sites/autosensorsconf/
files/assets/1

[27] D. Nistér, O. Naroditsky, and J. Bergen, “Visual odometry,” in Proc.

IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., (CVPR),
vol. 1, Jun. 2004, p. 1.

[28] F. Yu et al., “BDD100K: A diverse driving dataset for heterogeneous
multitask learning,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern

Recognit. (CVPR), Jun. 2020, pp. 2636–2645.

[29] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” 2014, arXiv:1409.1556. [Online].
Available: http://arxiv.org/abs/1409.1556

[30] J. Redmon and A. Farhadi, “YOLOv3: An incremental improvement,”
2018, arXiv:1804.02767. [Online]. Available: http://arxiv.org/abs/
1804.02767

[31] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards
real-time object detection with region proposal networks,” IEEE Trans.

Pattern Anal. Mach. Intell., vol. 39, no. 6, pp. 1137–1149, Jun. 2017.

[32] W. Liu et al., “SSD: Single shot multibox detector,” in Proc. Eur. Conf.

Comput. Vis. Cham, Switzerland: Springer, 2016, pp. 21–37.

[33] K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask R-CNN,” in
Proc. ICCV, Oct. 2017, pp. 2961–2969.

[34] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern

Recognit. (CVPR), Jun. 2015, pp. 3431–3440.

[35] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“DeepLab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected CRFs,” IEEE Trans. Pattern

Anal. Mach. Intell., vol. 40, no. 4, pp. 834–848, Apr. 2017.

[36] J. E. Farrell and B. A. Wandell, “Image systems simulation,” in Hand-

book of Digital Imaging. Hoboken, NJ, USA: Wiley, 2015, pp. 1–28.

[37] D. Santana-Cedrés, L. Gomez, M. Alemán Flores, A. Salgado,
L. Mazorra, and L. Alvarez, “Estimation of the lens distortion model by
minimizing a line reprojection error,” IEEE Sensors J., vol. 17, no. 9,
pp. 2848–2855, May 2017.

[38] P. Sturm, S. Ramalingam, J.-P. Tardif, S. Gasparini, and J. Barreto,
“Camera models and fundamental concepts used in geometric com-
puter vision,” Found. Trends Comput. Graph. Vis., vol. 6, pp. 1–183,
Jan. 2011.

[39] Z. Tang, R. G. von Gioi, P. Monasse, and J.-M. Morel, “A precision
analysis of camera distortion models,” IEEE Trans. Image Process.,
vol. 26, no. 6, pp. 2694–2704, Jun. 2017.

[40] Q. Zheng and C. Zheng, “Adaptive sparse polynomial regression for
camera lens simulation,” Vis. Comput., vol. 33, nos. 6–8, pp. 715–724,
Jun. 2017.

[41] M. Lambers, H. Sommerhoff, and A. Kolb, “Realistic lens distortion
rendering,” in Proc. 26th Int. Conf. Central Eur. Comput. Graph., Vis.

Comput. Vis., May 2018, pp. 27–32.

[42] Q. Zheng and C. Zheng, “NeuroLens: Data-driven camera lens simu-
lation using neural networks,” Comput. Graph. Forum, vol. 36, no. 8,
pp. 390–401, Dec. 2017.

[43] W. Yu, Y. Chung, and J. Soh, “Vignetting distortion correction method
for high quality digital imaging,” in Proc. 17th Int. Conf. Pattern

Recognit. (ICPR), Aug. 2004, pp. 666–669.

[44] K. Saad and S.-A. Schneider, “Camera vignetting model and its effects
on deep neural networks for object detection,” in Proc. IEEE Int. Conf.

Connected Vehicles Expo (ICCVE), Nov. 2019, pp. 1–5.

[45] D. A. Kerr, “Derivation of the cosine fourth law for falloff of illumi-
nance across a camera image,” Tech. Rep. 4, 2007.

[46] A. Walch et al., “Lens flare prediction based on measurements with
real-time visualization,” Vis. Comput., vol. 34, no. 9, pp. 1155–1164,
Sep. 2018.

[47] S. Lee and E. Eisemann, “Practical real-time lens-flare rendering,” in
Computer Graphics Forum, vol. 32. Hoboken, NJ, USA: Wiley, 2013,
pp. 1–6.

[48] N. Bisagno and N. Conci, “Virtual camera modeling for multi-view
simulation of surveillance scenes,” in Proc. 26th Eur. Signal Process.

Conf. (EUSIPCO), Sep. 2018, pp. 2170–2174.

[49] T. Nürnberg, M. Schambach, D. Uhlig, M. Heizmann, and F. P. León,
“A simulation framework for the design and evaluation of computa-
tional cameras,” Proc. SPIE, vol. 11061, Jun. 2019, Art. no. 1106102.

[50] M. Granados, B. Ajdin, M. Wand, C. Theobalt, H.-P. Seidel, and
H. P. A. Lensch, “Optimal HDR reconstruction with linear digital
cameras,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern

Recognit., Jun. 2010, pp. 215–222.

[51] A. Abdelhamed, S. Lin, and M. S. Brown, “A high-quality denoising
dataset for smartphone cameras,” in Proc. IEEE/CVF Conf. Comput.

Vis. Pattern Recognit., Jun. 2018, pp. 1692–1700.

Authorized licensed use limited to: University of Wisconsin. Downloaded on September 04,2022 at 19:31:53 UTC from IEEE Xplore. Restrictions apply.

ELMQUIST AND NEGRUT: MODELING CAMERAS FOR AUTONOMOUS VEHICLE AND ROBOT SIMULATION 25559

[52] M. Cordts et al., “The cityscapes dataset for semantic urban scene
understanding,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.

(CVPR), Jun. 2016, pp. 3213–3223.

[53] Standard for Characterization of Image Sensors and Cameras, EMVA
Standard, European Machine Vision Association, Barcelona, Spain,
2010, vol. 3.

[54] J. Rossmann, N. Hempe, M. Emde, and T. Steil, “A real-time optical
sensor simulation framework for development and testing of industrial
and mobile robot applications,” in Proc. 7th German Conf. Robot.
(ROBOTIK), 2012, pp. 1–6.

[55] S. W. Hasinoff, F. Durand, and W. T. Freeman, “Noise-optimal capture
for high dynamic range photography,” in Proc. IEEE Comput. Soc.

Conf. Comput. Vis. Pattern Recognit., Jun. 2010, pp. 553–560.

[56] S.-H. Choi, J. Cho, Y.-M. Tai, and S.-W. Lee, “Implementation of an
image signal processor for reconfigurable processors,” in Proc. IEEE

Int. Conf. Consum. Electron. (ICCE), Jan. 2014, pp. 141–142.

[57] S. Nam, Y. Hwang, Y. Matsushita, and S. J. Kim, “A holistic
approach to cross-channel image noise modeling and its application to
image denoising,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.

(CVPR), Jun. 2016, pp. 1683–1691.

[58] S. W. Hasinoff et al., “Burst photography for high dynamic range and
low-light imaging on mobile cameras,” ACM Trans. Graph., vol. 35,
no. 6, pp. 1–12, Nov. 2016.

[59] Z. Deng, A. Gijsenij, and J. Zhang, “Source camera identification using
auto-white balance approximation,” in Proc. Int. Conf. Comput. Vis.,
Nov. 2011, pp. 57–64.

[60] M. Afifi and M. S. Brown, “Deep white-balance editing,” in Proc.

IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,
pp. 1397–1406.

[61] H. S. Malvar, L.-w. He, and R. Cutler, “High-quality linear interpolation
for demosaicing of Bayer-patterned color images,” in Proc. IEEE Int.

Conf. Acoust., Speech, Signal Process., May 2004, p. 485.

[62] J. Takamatsu, Y. Matsushita, T. Ogasawara, and K. Ikeuchi, “Esti-
mating demosaicing algorithms using image noise variance,” in Proc.

IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., Jun. 2010,
pp. 279–286.

[63] A. Ignatov, L. Van Gool, and R. Timofte, “Replacing mobile cam-
era ISP with a single deep learning model,” in Proc. IEEE/CVF

Conf. Comput. Vis. Pattern Recognit. Workshops (CVPRW), Jun. 2020,
pp. 536–537.

[64] Y. Su and C.-C. J. Kuo, “Fast and robust camera’s auto exposure control
using convex or concave model,” in Proc. IEEE Int. Conf. Consum.

Electron. (ICCE), Jan. 2015, pp. 13–14.

[65] S. Guo, Z. Yan, K. Zhang, W. Zuo, and L. Zhang, “Toward convolu-
tional blind denoising of real photographs,” in Proc. IEEE/CVF Conf.

Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 1712–1722.

[66] R. Jaroensri, C. Biscarrat, M. Aittala, and F. Durand, “Gener-
ating training data for denoising real RGB images via camera
pipeline simulation,” 2019, arXiv:1904.08825. [Online]. Available:
http://arxiv.org/abs/1904.08825

[67] C. Liu, R. Szeliski, S. B. Kang, C. L. Zitnick, and W. T. Freeman,
“Automatic estimation and removal of noise from a single image,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 2, pp. 299–314,
Feb. 2008.

[68] S. J. Kim, H. T. Lin, Z. Lu, S. Süsstrunk, S. Lin, and M. S. Brown,
“A new in-camera imaging model for color computer vision and its
application,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 12,
pp. 2289–2302, Dec. 2012.

[69] H. Jiang, Q. Tian, J. Farrell, and B. A. Wandell, “Learning the image
processing pipeline,” IEEE Trans. Image Process., vol. 26, no. 10,
pp. 5032–5042, Oct. 2017.

[70] M.-G. Retzlaff, J. Hanika, J. Beyerer, and C. Dachsbacher, “Physically
based computer graphics for realistic image formation to simulate
optical measurement systems,” J. Sensors Sensor Syst., vol. 6, no. 1,
p. 171, 2017.

[71] H. Blasinski, J. Farrell, T. Lian, Z. Liu, and B. Wandell, “Optimizing
image acquisition systems for autonomous driving,” Electron. Imag.,
vol. 2018, no. 5, pp. 1–161, 2018.

[72] M. Pharr, W. Jakob, and G. Humphreys, Physically Based Rendering:

From Theory to Implementation. San Mateo, CA, USA: Morgan
Kaufmann, 2016.

[73] R. Song, J. Wetherall, S. Maskell, and J. Ralph, “Weather effects on
obstacle detection for autonomous car,” in Proc. 6th Int. Conf. Vehicle

Technol. Intell. Transp. Syst., Jan. 2020, pp. 331–341.

[74] X. Liu, Z. Deng, and Y. Yang, “Recent progress in semantic image seg-
mentation,” Artif. Intell. Rev., vol. 52, no. 2, pp. 1089–1106, Aug. 2019.

[75] Y. Tian, K. Pei, S. Jana, and B. Ray, “DeepTest: Automated testing of
deep-neural-network-driven autonomous cars,” in Proc. 40th Int. Conf.

Softw. Eng., May 2018, pp. 303–314.

[76] Unity3D. (2016). Main Website. Accessed: Jun. 9, 2016. [Online].
Available: https://unity3d.com/

[77] Epic Games. (2020). Unreal Engine. [Online]. Available: https://www.
unrealengine.com

[78] M. Tremblay, S. S. Halder, R. de Charette, and J.-F. Lalonde, “Rain
rendering for evaluating and improving robustness to bad weather,” Int.

J. Comput. Vis., vol. 129, no. 2, pp. 341–360, 2020.

[79] D. Hospach, S. Mueller, W. Rosenstiel, and O. Bringmann, “Simulation
of falling rain for robustness testing of video-based surround sensing
systems,” in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE),
Mar. 2016, pp. 233–236.

[80] X. Fu, J. Huang, X. Ding, Y. Liao, and J. Paisley, “Clearing the skies:
A deep network architecture for single-image rain removal,” IEEE
Trans. Image Process., vol. 26, no. 6, pp. 2944–2956, Jun. 2017.

[81] A. Best, S. Narang, L. Pasqualin, D. Barber, and D. Manocha,
“AutonoVi-sim: Autonomous vehicle simulation platform with weather,
sensing, and traffic control,” in Proc. IEEE/CVF Conf. Comput. Vis.

Pattern Recognit. Workshops (CVPRW), Jun. 2018, pp. 1048–1056.

[82] P. Rousseau, V. Jolivet, and D. Ghazanfarpour, “Realistic real-time rain
rendering,” Comput. Graph., vol. 30, no. 4, pp. 507–518, Aug. 2006.

[83] Y. Weber, V. Jolivet, G. Gilet, and D. Ghazanfarpour, “A multiscale
model for rain rendering in real-time,” Comput. Graph., vol. 50,
pp. 61–70, Aug. 2015.

[84] K. Garg and S. K. Nayar, “Vision and rain,” Int. J. Comput. Vis., vol. 75,
no. 1, pp. 3–27, 2007.

[85] A. V. Bernuth, G. Volk, and O. Bringmann, “Simulating photo-realistic
snow and fog on existing images for enhanced CNN training and
evaluation,” in Proc. IEEE Intell. Transp. Syst. Conf. (ITSC), Oct. 2019,
pp. 41–46.

[86] P. Goswami, C. Markowicz, and A. Hassan, “Real-time particle-based
snow simulation on the GPU,” in Proc. EGPGV Eurograph.-Eur. Assoc.

Comput. Graph., 2019, pp. 1–9.

[87] A. Wasmut, “Deformable snow rendering,” Bachelor thesis, Univ.
Koblenz-Landau, Landau, Germany, 2019.

[88] B. Neukom, S. M. Arisona, and S. Schubiger, “Real-time GIS-based
snow cover approximation and rendering for large terrains,” Comput.

Graph., vol. 71, pp. 14–22, Apr. 2018.

[89] K. Li, Y. Li, S. You, and N. Barnes, “Photo-realistic simulation of road
scene for data-driven methods in bad weather,” in Proc. IEEE Int. Conf.

Comput. Vis. Workshops (ICCVW), Oct. 2017, pp. 491–500.

[90] S. Kahraman and R. De Charette, “Influence of fog on computer vision
algorithms,” Inria, Paris, France, Tech. Rep., 2017.

[91] K. Zhou, Z. Ren, S. Lin, H. Bao, B. Guo, and H.-Y. Shum, “Real-
time smoke rendering using compensated ray marching,” in Proc. ACM

SIGGRAPH Papers (SIGGRAPH), 2008, pp. 1–12.

[92] R. Fedkiw, J. Stam, and H. W. Jensen, “Visual simulation of smoke,” in
Proc. 28th Annu. Conf. Comput. Graph. Interact. Techn. (SIGGRAPH),
2001, pp. 15–22.

[93] T. Brochu, T. Keeler, and R. Bridson, “Linear-time smoke animation
with vortex sheet meshes,” in Proc. ACM SIGGRAPH/Eurograph.

Symp. Comput. Animation. Princeton, NJ, USA: Citeseer, 2012,
pp. 87–95.

[94] S.-C. Hsu and T.-T. Wong, “Simulating dust accumulation,” IEEE

Comput. Graph. Appl., vol. 15, no. 1, pp. 18–22, Jan. 1995.

[95] J. Guo and J.-G. Pan, “Real-time simulating and rendering of layered
dust,” Vis. Comput., vol. 30, nos. 6–8, pp. 797–807, Jun. 2014.

[96] O. Michel, “Cyberbotics Ltd. Webots: Professional mobile robot sim-
ulation,” Int. J. Adv. Robotic Syst., vol. 1, no. 1, p. 5, Mar. 2004.

[97] S. Carpin, M. Lewis, J. Wang, S. Balakirsky, and C. Scrapper, “USAR-
Sim: A robot simulator for research and education,” in Proc. IEEE Int.

Conf. Robot. Autom., Apr. 2007, pp. 1400–1405.

[98] G. Rong et al., “LGSVL simulator: A high fidelity simulator for
autonomous driving,” in Proc. IEEE 23rd Int. Conf. Intell. Transp.

Syst. (ITSC), Sep. 2020, pp. 1–6.

[99] M. Uřičář, P. Křížek, D. Hurych, I. Sobh, S. Yogamani, and P. Denny,
“Yes, we gan: Applying adversarial techniques for autonomous
driving,” Electron. Imag., vol. 2019, no. 15, pp. 1–48, 2019.

[100] I. Goodfellow et al., “Generative adversarial nets,” in Proc. Adv. Neural

Inf. Process. Syst., 2014, pp. 2672–2680.

[101] H. Yan, X. Chen, V. Y. F. Tan, W. Yang, J. Wu, and J. Feng,
“Unsupervised image noise modeling with self-consistent GAN,” 2019,
arXiv:1906.05762. [Online]. Available: http://arxiv.org/abs/1906.05762

Authorized licensed use limited to: University of Wisconsin. Downloaded on September 04,2022 at 19:31:53 UTC from IEEE Xplore. Restrictions apply.

25560 IEEE SENSORS JOURNAL, VOL. 21, NO. 22, NOVEMBER 15, 2021

[102] T. Karras, S. Laine, and T. Aila, “A style-based generator architecture
for generative adversarial networks,” in Proc. IEEE/CVF Conf. Comput.

Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 4401–4410.
[103] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image

translation with conditional adversarial networks,” in Proc. IEEE Conf.

Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 1125–1134.
[104] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-

to-image translation using cycle-consistent adversarial networks,”
2017, arXiv:1703.10593. [Online]. Available: https://arxiv.org/abs/
1703.10593

[105] M.-Y. Liu, T. Breuel, and J. Kautz, “Unsupervised image-to-image
translation networks,” in Proc. Adv. Neural Inf. Process. Syst., 2017,
pp. 700–708.

[106] T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, A. Tao, J. Kautz, and B. Catanzaro,
“High-resolution image synthesis and semantic manipulation with
conditional GANs,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern

Recognit., Jun. 2018, pp. 8798–8807.
[107] M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid, “DeepRoad:

GAN-based metamorphic autonomous driving system testing,” 2018,
arXiv:1802.02295. [Online]. Available: http://arxiv.org/abs/1802.02295

[108] Y. Lin, Y. Li, H. Cui, and Z. Feng, “WeaGAN:Generative adversarial
network for weather translation of image among multi-domain,” in
Proc. 6th Int. Conf. Behav., Econ. Socio-Cultural Comput. (BESC),
Oct. 2019, pp. 1–5.

[109] H. Zhang, V. Sindagi, and V. M. Patel, “Image de-raining using a
conditional generative adversarial network,” IEEE Trans. Circuits Syst.

Video Technol., vol. 30, no. 11, pp. 3943–3956, Nov. 2020.
[110] H. Porav, T. Bruls, and P. Newman, “I can see clearly now: Image

restoration via de-raining,” in Proc. Int. Conf. Robot. Autom. (ICRA),
May 2019, pp. 7087–7093.

[111] L. Karacan, Z. Akata, A. Erdem, and E. Erdem, “Learning to generate
images of outdoor scenes from attributes and semantic layouts,” 2016,
arXiv:1612.00215. [Online]. Available: http://arxiv.org/abs/1612.00215

[112] X. Ouyang, Y. Cheng, Y. Jiang, C.-L. Li, and P. Zhou, “Pedestrian-
synthesis-GAN: Generating pedestrian data in real scene and
beyond,” 2018, arXiv:1804.02047. [Online]. Available: http://arxiv.org/
abs/1804.02047

[113] M. Grapinet, P. De Souza, J.-C. Smal, and J.-M. Blosseville,
“Characterization and simulation of optical sensors,” Accident Anal.
Prevention, vol. 60, pp. 344–352, Nov. 2013. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0001457513001693

[114] D. Gruyer, M. Grapinet, and P. De Souza, “Modeling and validation of
a new generic virtual optical sensor for ADAS prototyping,” in Proc.

IEEE Intell. Vehicles Symp., Jun. 2012, pp. 969–974.
[115] E. Pollard, D. Gruyer, J.-P. Tarel, S.-S. Ieng, and A. Cord, “Lane mark-

ing extraction with combination strategy and comparative evaluation
on synthetic and camera images,” in Proc. 14th Int. IEEE Conf. Intell.

Transp. Syst. (ITSC), Oct. 2011, pp. 1741–1746.
[116] S. Dodge and L. Karam, “Understanding how image quality affects

deep neural networks,” in Proc. 8th Int. Conf. Qual. Multimedia Exper.

(QoMEX), Jun. 2016, pp. 1–6.
[117] Y. Zhou, S. Song, and N.-M. Cheung, “On classification of distorted

images with deep convolutional neural networks,” in Proc. IEEE
Int. Conf. Acoust., Speech Signal Process. (ICASSP), Mar. 2017,
pp. 1213–1217.

Asher Elmquist received the B.S. (Hons.) and
M.S. degrees in mechanical engineering from
the University of Wisconsin-Madison in 2017
and 2019, respectively, where he is currently
pursuing the Ph.D. degree. His research inter-
ests include simulating autonomous vehicles and
robots, specifically relating to realistic sensor
simulation for developing, testing, and evaluat-
ing autonomous behavior. While an undergrad-
uate, he received Faustin Prinz Undergraduate
Research Fellowship and graduated with honors
in research.

Dan Negrut received the Ph.D. degree in
mechanical engineering from the University of
Iowa in 1998, under the supervision of Prof.
Edward J. Haug. He has courtesy appointments
with the Department of Computer Sciences and
the Department of Electrical and Computer Engi-
neering. He spent six years working at Mechan-
ical Dynamics, Inc. (a software company), Ann
Arbor, MI, USA. In 2004, he served as an
Adjunct Assistant Professor for the Department
of Mathematics, University of Michigan, Ann

Arbor. In 2005, he joined as a Visiting Scientist at Argonne National
Laboratory, Mathematics and Computer Science Division. He joined
the University of Wisconsin-Madison in 2005, where he is Mead Witter
Foundation Professor with the Department of Mechanical Engineer-
ing. He leads the Simulation-Based Engineering Laboratory. The lab’s
projects focus on high performance computing, computational dynamics,
artificial intelligence, terramechanics, autonomous vehicles, robotics,
and fluid-solid interaction problems. His interest is in computational
science. Since 2010, he has been an NVIDIA CUDA Fellow. He received
the National Science Foundation Career Award in 2009.

Authorized licensed use limited to: University of Wisconsin. Downloaded on September 04,2022 at 19:31:53 UTC from IEEE Xplore. Restrictions apply.

