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I. INTRODUCTION

UTONOMOUS vehicles and robots are poised to have

an impact in multiple fields, e.g., transportation, health
care, disaster relief, farming, planetary exploration, etc. Since
the use of autonomous agents (AAs) permeates safety critical
applications where risk to human life is manifest [1]-[3], the
idea of improving AA designs through simulation is very
attractive [4]. Thus, it is preferred for a design to be proven
weak in simulation rather than in reality, since failures iden-
tified in simulation come with no human injury/death and/or
property loss. Setting aside the difficult issue of simulation-
to-reality transferability [5], which falls outside the scope of
this contribution, validated and accurate simulation provides
the means for efficient and versatile evaluation of novel AA
designs, see, for instance, [6]. The expectation is that the
control decisions reached in the real world, along with the
ensuing dynamics, are close or identical to the ones observed
in simulation when the AA model is exercised in a digital twin
of the real world scenario. If the simulation-to-reality gap is
addressed, simulation enables an expeditious, cost effective,
safe, and thorough approach to improving AA design [7].
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As perception informs, downstream, the tasks of planning
and control, camera modeling is a prerequisite for the suc-
cessful simulation of AAs [8]. Against this backdrop, the goal
is to provide an overview of the foundations of modeling
cameras for their use in AA simulation. Throughout this
manuscript, the term “autonomous agents” will be used to
refer to robots and autonomous vehicles, including automated
vehicles and advanced driver-assistance systems (ADAS).
To focus this manuscript, discussion will be limited to RGB
mono-cameras due their ubiquity in robot and autonomous
vehicle applications, but it should be noted that infrared (IR)
cameras, neuromorphic (event) cameras, polarized cameras,
and stereo cameras are all important to the application of AAs.
Furthermore, the discussion is constrained to CMOS image
sensors, as CMOS is the technology of choice in this field.

The task of camera modeling is complicated by two facts:
(i) the model is tightly intertwined with that of the virtual
world that needs to be sensed; and, (ii) model development
requires an understanding of the hardware pipeline and image
processing algorithms encountered in the physical camera.
In relation to (ii), it is likely that the task of camera
modeling will increasingly embrace data-driven approaches,
which eschew many of the difficulties faced by physics-
based modeling approaches. We recognize this by including
a discussion of data-driven approaches that are used in several
capacities — from augmenting the physics-based approach to
replacing stages of the sensing pipeline, or even the entire
pipeline.

To further contextualize the application of camera modeling
and its connection to the virtual environment, a primary
focus of this paper will be on closed-loop operation, where
a camera model is placed in the AA simulation with the
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expectation that it produces images of the virtual environment
near, or faster than, real time. A secondary camera model
use-case of interest is that of synthetic dataset generation.
Indeed, extensive amounts of automatically labeled training
data can be generated in simulation and subsequently used in
offline training, tuning, and evaluation of perception networks
in machine learning. Since the synthetic data is generated for
offline use, the benefit of real-time or better performance is
reduced, which opens the door for more sophisticated sensor
models. This manuscript touches on offline approaches as
well, which despite being slower can point to future directions
of improvement for closed-loop solutions. For clarity, this
contribution will use the term “camera model” to refer to the
mathematical approximations of the physical phenomena and
induced artifacts of the camera. The term “camera simulation”
will be used to refer to the time-evolution of the aforemen-
tioned model and the process by which synthetic images are
produced.

In order to motivate the need for camera models/simulation,
this contribution starts off with a short overview of how
the models are used. Subsequently, Section §III outlines the
physics of camera sensing, with the discussion touching on
both internal and external components of the camera. Mod-
eling techniques that target internal camera components are
reviewed as follows: Section §IV concentrates on pre-sensor
distortion; Section §V focuses on sensor noise; Section §VI is
dedicated to post-sensor distortion. External factors in camera
simulation, including virtual environment considerations, are
discussed in Section §VII. Section §VIII highlights state-of-
the-art approaches for replacing physics-based modeling with
machine learning-enabled data-driven models. Section §IX
summarizes the relevant software solutions for AA camera
simulation, and touches on validation efforts and use cases.

[I. PREAMBLE; CAMERA SIMULATION

The level of detail at which a camera must be modeled
is tightly coupled with the application for which synthetic
images are to be produced. For example, if the simulation is
used for offline training in hazardous weather conditions, then
it would be important to sacrifice computation performance
for weather realism. Or if the task is to test pedestrian
recognition systems with hardware in the loop in all lighting
conditions, then modeling the camera’s auto-exposure must be
done with high-performant algorithms even if model fidelity is
lowered. With this in mind, AA camera simulation is primarily
used for two general purposes: closed-loop evaluation, and
offline training. The former refers to software- or hardware-
in-the-loop simulation that embeds the control stack into the
simulation loop such that the navigation algorithms are tested
while being oblivious to the fact that they are flexed in
simulation rather than a real-world scenario. In offline training,
camera simulation is used to generate synthetic datasets for
training perception algorithms. The ability to automatically
label segmented images from simulation mitigates manual
labeling costs and increases throughput. These two application
areas are briefly discussed next to contextualize choices made
in camera model design.

A. Closed-Loop Simulation for AAs

For closed-loop simulation, the focus is on testing, design-
ing, and validating an AA control stack. To that end, the con-
trol stack is exercised in conditions that resemble real-world
operating scenarios. What is being monitored in simulation
may be outcomes such as lane keeping ability, grasping ability
of a robotic arm, or obstacle avoidance. In these circumstances,
temporal consistency in camera simulation is critical. For
example, the camera simulator should not have pedestrians
or objects flickering in and out of existence, or moving
unrealistically around the scene. This temporal importance is
discussed further in [9].

By-and-large, camera simulators for closed-loop testing fall
into two categories: either the model uses a game engine
graphics pipeline, e.g. [10]-[12]; or the model implements
its own camera pipeline [13]-[15]. Using a gaming engine
is convenient; however, accuracy might be inadequate, as is
the ability to add new features or improve the accuracy of the
model. This is because the video gaming graphics pipeline is
developed under tight real-time constraints for human con-
sumption; using gaming graphics for camera simulation is
serendipitous and assessing its adequacy for AA simulation
remains an open question whose answer is likely problem
dependent.

B. Simulation for Training Perception Algorithms

A second use of camera simulation is tied to developing
synthetic datasets for training. The idea is to use camera
simulation to generate synthetic images of never-before-seen
scenarios or objects. This alleviates the burden of data col-
lection and image labeling, since simulation frameworks can
automatically label the synthetic data. In this use case, real-
world datasets are replaced or augmented with synthetic
images; the end goal is to improve the perception software
stack of an AA. Since the datasets are created offline, lower
simulation speed is acceptable as long as image fidelity is high.
High image realism along with dataset bias and variance are
the main issues of concern [16].

Generating synthetic training data has been documented,
e.g., [17]-[21], and has met varying levels of success. One
prevailing tendency is the occurrence of downstream issues
tied to spatial and/or temporal coherence artifacts [9]. Only
rarely are these synthetic data sets benchmarked to evaluate
the realism of the data synthesized, e.g., realism of the scene,
including where and how objects are placed. Even more rare is
an evaluation of the quality of sensing done on these synthetic
images. One of the reasons for this is that how to quantify the
concept of sensor realism is still an open question.

Synthetic image generation has not been exclusively tied
to models built around the physics-based simulation of the
processes associated with image sensing. Recently, machine
learning (ML) techniques have been used to generate synthetic
datasets. These methods use data-driven approaches to remove
the burden of modeling some or all of the processes taking
place in the camera. An image stylizing approach was used
in [22] to augment a training dataset, producing augmented
synthetic samples. A generative adversarial network (GAN)
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Fig. 1. llustration of the task-flow of an AA control stack (adapted

from [26]). Control stack implementation may vary depending on the
application.
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Fig. 2. Semantic segmentation and object detection which are the
primary downstream processes of camera simulation. Examples are from
the BDD100K driving dataset [28].

was used in [23] to generate synthetic data for learning traffic
sign detection. A translation of sign appearance was also
proposed in [24] in order to generate additional data for
countries whose signs appear infrequently in training sets.
In line with expanding datasets, [25] proposed a method
for ML-based generation of images from a single image of
an object and its 3D geometrical representation. This was
shown to have positive effects when training object detection
networks since it was able to qualitatively retain object edges.
Many of these methods however are not directly effective for
closed-loop simulation owing to long computation times.

C. Autonomous Agent Perception

Whether the simulation is used for training perception
or evaluating closed-loop behavior, the direct downstream
process of camera simulation is perception, as shown in Fig. 1.
Camera-based AA perception includes semantic segmentation,
object detection, and visual odometry.

Semantic segmentation is the process of pixel-wise labeling
of an entire image as shown in Fig. 2a. Object detection, while
closely related to segmentation, is the detection, classification,
and estimation of specific categories of objects. For instance,
the output of object detection could be the size, location, ori-
entation, and confidence level when identifying pedestrians in
an image. An example of this is shown in Fig. 2b. While less
common, visual odometry is the use of images to determine
an ego-vehicle’s position, location, and velocity in space. This
is detailed further in [27].

By and large, the technology of choice for perception is
machine learning, specifically deep learning and convolutional
neural networks (CNN) due to their ability to associate regions
of pixels and detect high-dimensional features such as edges
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Fig. 3. lllustration of VGG16 architecture [29] where all convolution
layers have ReLU activation. When used in segmentation and detection,
the network is truncated to exclude the fully connected layers that would
exist in the full VGG network.

and blobs. Many of these CNNs have a similar initial structure
whether it is applied to segmentation or recognition. This
structure is composed of stacked convolutional layers as shown
in Fig. 3. The most common structure are VGG [29] variants
such as VGG-16. This VGG network maps the RGB image
into a high-dimensional feature space that is then processed by
segmentation or detection-specific networks that compute the
final outputs, i.e., pixel label or bounding boxes. An example
of this initial CNN architecture is illustrated in Fig. 3. The
mapping of RGB image to higher-dimensional space means
specific distortion and artifacts will play a key role depending
on the network’s sensitivity to the artifact. For example, object
edge blur could change the magnitude of a machine-learned
edge-detector and make it more susceptible to missing the
object or, more likely, cause error in a bounding box prediction
as the exact edge may be unknown. While an in-depth study
of CNN architectures is out of the scope of this paper, further
information on the subject can be found in the following rep-
resentative work: YOLO [30], Faster-RCNN [31], SSD [32],
Mask-RCNN [33], FCN [34], and DeepLab [35].

I1l. CAMERA PIPELINE COMPONENTS

In a physics-based camera model, the process of generating
synthetic images when the camera is immersed in a virtual
environment calls for an understanding of the process by which
camera sensors produce data in the physical world. The camera
pipeline can be broken down into three distinct modules: i) the
optical systems, ii) the image sensor, iii) the image signal
processor (ISP). These are illustrated in Fig. 4. In the optical
system (module (i)), the light is focused by a complex set of
lenses. The intensity of the focused light is then measured
by the image sensor (module (ii)) and are translated into
electrical signals. These signals are then passed through the
ISP (module (iii)), which converts the RAW array into an RGB
image. Additionally, the ISP can adjust the light acquisition via
auto exposure. Depending on the camera, manufacturer, and
application, there are variations in the pipeline owing to factors
such as multiple lenses, anti-reflective coatings, or adjustable
parameters associated with the ISP.

Each stage of the camera sensing pipeline, i.e., lens, sensor,
or ISP, distorts the final image from the ground truth. In the
lens, optical distortions change how the camera perceives
reality. The sensor array, which measures the incident light,
introduces pixel noise. The ISP, which seeks to adjust and
improve the image characteristics, can change the magnitude
and distribution of the noise, adjust intensity levels across the
image, compress and encode the final output, and deblur and
denoise the image. The distortions and artifacts that correspond
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Fig. 4. Each step in the imaging pipeline is responsible for distortion, noise, or artifacts. Optical distortion in the lens, noise introduced by the sensor,
and artifacts from post-processing the sensed image can significantly change the output image. Hashed boxes represent modules outside of the

physical camera.

to each step in the pipeline are summarized in Fig. 4. These
issues are further discussed in [36].

Beyond capturing the inner workings of the camera sen-
sor, two other aspects come into play in camera simulation:
1) the virtual environment; and 2) the downstream application
that will process and interpret the image. In regard to (1),
satisfactory virtual sensing requires a suitably defined virtual
environment. Too simple, and the virtual world resembles so
little of the real world that the simulation ceases to serve a
useful purpose no matter how sophisticated the camera model.
Too complex, and the handling of details becomes unneces-
sarily burdensome. Owing to strong impetus provided by the
video gaming industry, many computer graphics advances have
been made specifically to represent sophisticated, feature-rich
virtual worlds. In its agency, the camera model is expected to
handle both virtual world assets and scene effects. Regarding
(2), the synthetic data should be of a quality suitable for use
in tasks such as offline training or closed-loop evaluation of
obstacle detection, image segmentation, and visual odometry.
As such, downstream use dictates the required level of fidelity
of all aspects of the camera model.

IV. PRE-SENSOR DISTORTION MODELS

The first component of the camera sensor is the lens
system, which focuses light on the imaging plane. One or
multiple lenses redirect light onto the sensor array such that
the light is both intense enough to be measurable, and focused
enough to provide a meaningful representation of the scene.
In doing so, the resulting light can significantly differ from the
ground truth. Artifacts include radial and tangential distortions,
chromatic aberration, vignetting, lens flare, and depth-of-field
blur. Since automotive and robotic camera are often focused
at long distances with the object rarely appearing close to the
camera, depth-of-field is rarely a source of interest in these
application.

Radial and tangential distortions occur when the lens
refracts the incoming light differently across the sensor array.
This is most obvious in wide-angle cameras, with an example
from [37] shown in Fig. 5. Although many perception systems
first calibrate the image to remove the distortion [37], this
artifact fundamentally changes the extent of the scene that
is visible to the sensor and therefore AA. Exclusion of this
distortion in simulation could lead to artificial results since
the edges of the image may not faithfully represent the limits
of visibility.

The research in this field has focused on both accurately
recreating/understanding distortions as well as removing them
from existing images (as a post-processing step). A sum-
mary of classical models is given in [38], which discusses
approaches such as pinhole, fish-eye, and polynomial models

ny L
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Fig. 5. Example lens distortion [37] ©2017 IEEE.

for the lens. More recent approaches for improving distor-
tion modeling are presented in [39]. The radial, division,
polynomial, and rational models discussed therein rely on
regression techniques; the field of view (FOV) model charac-
terizes the same distortion using physical parameters, i.e. the
camera FOV. Being physics-based, the FOV model potentially
removes the need for calibration, but is more constraining,
limiting the lens systems that can be faithfully modeled. The
FOV model is given by
tan(r| tan(w))
rp=———>"

(1

where o is the field of view, rq is the radius from the optical
axis of the undistorted pixel location in the image, and r; is the
radius of the distorted pixel. The radius from the optical axis

tan w

can be defined as r; = ,/xiz + yi2 fori = 1,2 where x; and y;
are the horizontal and vertical pixel distances from the image
center, taking care to adjust for the true angular distances these
pixels represent in the optical system. This model is based
exclusively on geometric considerations made in conjunction
with a single spherical lens. It captures the mapping shown in
Fig. 6, where the dashed lines represent the undistorted image
extent and the solid lines represent the extent of the image
captured by the camera (distorted image).

In robotic applications, a physics-based model can be help-
ful as multiple camera setups can be tried to identify a suitable
FOV for the application without ever having access to physical
hardware. However, for complex lenses the FOV model may
not hold. In this case, regression approaches are common.
In the simplest regression approach, the radial model gives
the distorted radius of the pixel location, 7, as a polynomial
function of the undistorted radius, r;:

ro =ri(ko + kiry +k2r12+k3rf + ...+ ko), 2)
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Fig. 6. Mapping of lens distortion, showing the original image extent
and pixel location (dashed lines), and the distorted image extent and
pixel location (solid lines). The distorted image is what is captured by the
camera.

where ko, ..., k, are fitting parameters. The division model
is the reciprocal of the radial model and uses similar tuning
parameters. Lastly, the polynomial and rational models are
analogous to the radial and division model respectively, with
the caveat that the horizontal and vertical distortions are
represented separately. While this makes for a more versatile
model, it increases the burden on fitting the model to data,
which is nontrivial. To calibrate these lens models, a regression
method for estimating model parameters for both the radial
and division models is proposed in [37]. Model parameters
are obtained as the solution of an optimization problem that
minimizes the error between projected lines and detected lines
from a repeated square calibration pattern. Depending on the
distortion model, calibration parameters will include the dis-
tortion fitting parameters (FOV model requires w, radial model
requires ko, ..., k,). Additionally, parameters that define the
sensor’s field of view, or depth-of-field characteristics (focal
length, pixel size, axis skew, and focal point) can also be
included in the camera calibration. A ray-tracing approach to
distortion is outlined in [40], where the entire lens system is
replaced with a mapping from input ray direction to output
ray direction. This is easily implemented in a simulation
framework within a ray tracing operation, but becomes more
complex for raster graphics. In [41], the authors discuss a
lower computational cost approach that modifies a scene in a
pre- or post-process step to account for radial distortion when
leveraging raster graphics. For closed-loop AA simulation, this
computational burden may be too great to warrant its use. A
data-driven method can be used to emulate lens distortion.
In [42], the polynomial models are replaced with a neural
network (NN). The advantage of this comes from a highly
flexible NN that can represent complex distortions. While an
NN could be used to represent the entire lens system, in [42]
the authors train it to be a surrogate model for a single lens
based on ray-traced scenes.

Another artifact that is considered in camera modeling is
vignetting, a subtle distortion manifested as a darkening of
the image around its outer edges. An example is shown in
Fig. 7 [43]. The darkening is a consequence of the aperture

_ﬁumber, especially

Fig. 7. Example vignetting [43] ©2004 |EEE.

lens
image

scene plane

optical
axis

Fig. 8. lllustration of the optical axis and the off-axis angle, a quantity
used for vignetting and lens distortion.

limiting the field of view of the scene for pixels near the
extent of the sensor array [44]. Similarly to radial distortion,
vignetting can be corrected in the final image. However, since
this must be done digitally, and because vignetting decreases
the number of collected photons, the noise in these regions
may be increased when gain is applied.

In [44], vignetting is shown to have an effect on downstream
processes related to perception, pointing to the importance
of its modeling. Therein, vignetting in synthetic images is
produced via a lookup table generated using calibration data
collected from the sensor of interest. If focal length and image
sensor diameter of the camera are known, a model described
in [36] with derivation shown in [45] defines the relative fall
off of illumination as R = cos*d, where R is the relative
illumination and @ is the angle from the optical axis shown
in Fig. 8. Subsequently, 8 can be calculated using the pixel
coordinates, the sensor size, and the distance from the lens to
the image sensor.

Highly dependent on the lens material, lens flare is an
artifact that leads to ghost objects appearing in the image.
Often, these are blurry, regular-shaped light patches caused
by undesired multi-path reflections of intense light that can
change what information is present in a swath of pixels. As
this can produce light blobs not present in the scene, it can
cause problems during AA object detection. An example of
lens flare discussed in [46] is shown in Fig. 9.
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Fig. 9. Example lens flare [46] ©2018 Springer.

Lens flare has complex underlying physics that is difficult
to characterize, and its elimination is actively pursued by
camera manufacturers who develop proprietary, anti-reflective
lens coating to mitigate flare. Flare modeling is of interest
in the computer graphics community where reconstruction
of lens flare artifacts is done purely for visual appeal, and
physical plausibility takes back seat to simulation speed [47].
For the modeling of physically plausible lens flare, the solution
discussed in [47] models the probable multi-path reflections
through the lens system. While effective, this is computa-
tionally expensive for closed-loop simulation. Additionally,
it requires specialized information about the lens system,
which is often hard to determine and/or difficult to access,
most often being proprietary in nature. In an effort to reduce
the reliance on physical properties, a method proposed in [46]
uses a data-driven approach for flare reconstruction. It first
learns the propensity of lenses to flare, and then generates a
basis of ghost artifacts which, through optimization, can be
used to generate realistic lens flares. While the approach is
capable of modeling and simulating flare in unknown lens
systems, it requires a significant amount of setup and measure-
ment control to perform the data collection required. Although
there are few data-driven solutions reported in the literature,
it is likely that these pragmatic, data-driven approaches will
make an impact in AA perception applications.

Chromatic aberration is caused by wavelength-dependent
refraction that creates a slight positional offset of colors in
an image. Specifically, the divergence of colors when light
is refracted within the lens system is tied to the inability
of the lens to focus all components of the light’s spectrum
at the same location in space [48]. This artifact can be
problematic if precise edge-detection is needed in AA per-
ception. A physics-based approach to generating chromatic
aberration requires the ray tracing of wavelength-dependent
rays through the lens system and into the scene [49]. While
useful for computational camera simulation, this approach
is too compute intensive to be useful in AA simulation.
A similar method is proposed in [42]. However, rather than
requiring full knowledge of the lens system, image calibration
data is used to generate a regression model of the lens,
including wavelength-dependent optimization parameters to
model chromatic aberration. An approach more common for

Noise after ISP from

Cityscapes [52].

(a) Noise with minimal ISP from (b)

SIDD [51].

Fig. 10. 20 x 20 pixel patches of noise from different datasets, illustrating
noise with and without ISP augmentation.

real-time rendering found in the gaming community is to
produce distortions and artifacts via heuristics that generate
visually appealing results. This paradigm is adopted in [48],
where separation of the color spectrum at the edge of objects
is performed, neglecting the lens or physics-based models
entirely. This is a tradeoff between fidelity and performance;
no study has been carried out to date to indicate whether this
tradeoff is acceptable or not in AA simulation.

V. SENSOR NOISE MODELS

Individual photoreceptors in the image sensor array mea-
sure the intensity of incoming light, and output a voltage
proportional to its intensity. There are several sources of
noise associated with this process: photon shot, fixed pattern,
dark current, readout, and quantization noise [36]. Photon-shot
noise is associated with the uncertainty in the number of pho-
tos incident on a single photoreceptor. The noise distribution
of photon count on the receptor follows a Poisson distribution
which, for high light intensity (large photon count), can also be
approximated with a Gaussian distribution. Fixed-pattern noise
is the variation in both the sensitivity and the voltage asso-
ciated with zero intensity across the array of photoreceptors.
This fixed-pattern noise is reproducible between image frames
and can often be reduced. Dark-current noise is the result of
heat or non-visible light causing phantom fluctuations in the
pixel measurements. Finally, noise is introduced when signals
are read from the sensor array and falls into two categories:
reading of the signal (readout noise); and conversion to digital
signal (quantization noise). The readout noise occurs in the
analog amplification and reset phases. Since the quantization
noise is associated with the quantization of the signal, this
takes on a uniform distribution with variance equal to one
twelfth of the quantization interval in the digital precision [50].
An example of the noise produced by the camera is shown in
Fig. 10a.

The raw sensor-measurement noise can be characterized
as a pixel dependent Gaussian distribution, see the European
Machine Vision Association (EMVA) Standard [53]. Referring
to Fig. 11, the noise can be expressed as

Li(p) = I(p) +n, n~N(@©,0})
oy =K%0]+0; + K(up— ttp.dark): 3)
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Fig. 11. Noise model based on EMVA standard.

where I,,(p) is the intensity of the noisy pixel p, I(p) is the
intensity of the ground truth, # is the noise sampled from
a normal distribution parameterized by o,. The latter is a
function of the sensor gain K, the sensor readout noise g4, the
quantization noise o, and the dark noise and shot noise, which
come from Poisson distributions parameterized by x p gark and
up Tespectively.

The intensity-dependent, uncorrelated-noise model is com-
monly used to estimate noise levels or generate noisy synthetic
data [54], [55]. This estimate is accurate for photoreceptor
measurements or for evaluating new camera designs if image
comparison is made in a raw sensed image [49]. However,
only rarely are raw images used directly in a practical com-
puter vision application. Indeed, computer vision applications
mostly use modified RGB images that are based on the raw
sensor readout. These RGB images are generated in the camera
after processing and compressing/encoding the data. The pixel
dependent model in Eq. (3) is not representative of noise after
the on-chip processing of the ISP, which is discussed next.

VI. POST-SENSOR ARTIFACT MODELS

Several artifacts in RGB images are traced back to the
ISP, which generates a more appealing image by adjusting for
color, brightness, noise, and pixel errors. The ISP runs a col-
lection of software algorithms that alter the image and include
white balancing, demosaicing, auto exposure, auto contrast,
color correction, deblurring, denoising, gamma correction,
down sampling, and compression. The nature of the ISP
transformations for a specific camera are typically unknown,
proprietary, and complex, with only general descriptions pub-
licly shared. Not providing solution details is the norm, since
both the hardware and software at work in processing raw
pixel data is what often provides a competitive advantage to
a camera manufacturer.

The ISP alters both the color and noise in an image, with
an example of the latter shown in Fig. 10b. Compared to
the standard model for noise in the raw image, the noise
in the RGB image tends to be longer-grain, and spatially,
chromatically, and temporally correlated [57], [58]. Figure 12
elaborates on how a raw noisy image feeds into the ISP
and how it is altered via a select set of image processing
algorithms. The right half of Fig. 12 shows a sample set of
algorithms proposed in [56], but it represents neither the full
extent of image processing, nor the variation within specific
algorithms, such as, for instance, white balance.

White balance processing seeks to mitigate color biases
in the image [59] and can additionally adjust the brightness
levels by applying gain to specific channels. A recent research

direction has embraced this concept to balance or apply auto
contrast to specific regions of the image to make darker regions
more perceivable as well as to prevent saturation in bright
regions of the image. Algorithms to produce context-aware
automatic white balance have been proposed in [60].

Another process present in any raw-to-RGB conversion is
demosaicing. This is the process by which the raw image from
the sensor array is interpolated to generate an image of the
same size with RGB values present at every pixel. This occurs
at the resolution of the image array and, due to the nature
of spatial interpolation, introduces spatial correlation of pixel
noise. The pattern used in the raw image array is hardware-
dependent, but the most common is the Bayer pattern. The
algorithms for demosaicing can vary from bilinear interpola-
tion to more complex edge-aware methods such as adaptive
homogeneity directed (AHD) demosaicing [61], [62]. While
the precise algorithm may not be available for a given camera,
a method for estimating the algorithm from calibration data is
described in [62]. The two primary effects of demosaicing are
spatial correlation of noise, and the blurring or generation of
artifacts near color boundaries.

In addition to white balancing and demosaicing, the ISP
often includes denoising and deblurring [63]. These procedures
are not perfect and may additionally correlate noise and alter
color boundaries, either blurring or artificially sharpening
regions. Auto exposure modeling is also important, since
adjusting exposure plays a significant role in AA applications
as the environmental lighting conditions can change rapidly
(e.g. under a bridge or in a tunnel). The effects of auto
exposure, which adjusts the exposure time, is delayed by a few
frames since the ISP employs pipelining in order to achieve
high frame throughput [64]. The challenge is in modeling
this lag, along with the image artifacts that crop up during
exposure adjustment. For instance, it is highly desirable to
faithfully generate the image stream as a simulated AA moves,
for instance, from intense sunlight to shade. Indeed, these
transitions, through the artifacts that crop up in the sensing
process, challenge the image segmentation and object recog-
nition tasks that anchor many AA control policies. Finally,
further processing such as compression, gamma correction,
and color correction, alter the chromatic, spatial, or temporal
nature of the images [65], [66].

If the ISP algorithms were known, they could be imple-
mented directly in the simulation, removing the need for
modeling. In reality, many algorithms are proprietary; even
when publicly available, the parameters controlling them are
not shared by the camera manufacturer. Consequently, by and
large, the raw information processing carried out by the ISP
is viewed as a black box.

In the image processing field of machine-learned denoising,
it has been found that accurately modeling the noise and ISP
as a single module can vastly improve training when using
synthetic images. This is also relevant to the perception field as
correlation between pixels can pose a challenge when attempt-
ing to precisely segment, pixel-wise, the edges of pedestrians
or vehicles. To assist with training denoising algorithms, [57],
[65]-[67] have each proposed and demonstrated lumped
noise models which factor in the sensor and ISP together,
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Fig. 12. Full noise factors including ISP which introduces significant noise correlation. ISP example modified from [56].

such that they incorporate spatial, chromatic, and temporal
correlations.

In an effort to produce synthetic, noisy images for the
purpose of training denoising algorithms, raw, pixel-level input
was modified in [67] to account for plausible local spatial
and chromatic correlations by approximating the effect of ISP
demosaicing. The noise model is a modified version of the
standard following

I'=f(L+ns+mn)+mng
ns ~ N, Lay)
ne ~ N(©,07)
q0 40

a u( 2°2 ) @
where [ is the noisy image, f is the camera response function
(CRF), L is the photon intensity, go is the quantization,
and o, o5, 15, and 7, are tunable parameters, of which
the latter two are used to represent the intensity dependent
and intensity independent noise distributions, respectively. The
CRF, and conversely the inverse camera response function
(ICRF), is a camera-dependent function that maps the photon-
intensity space into the image color space. A CRF represents
the pixel sensitivity, gain, and gamma correction of a specific
camera. In order to convert the color image back to photon
intensity, the ICRF is applied. In the work described in [67],
the ICRF is important as it brings the image into a space where
the modified standard model is appropriate.

This intensity-dependent and demosaicing method was aug-
mented in [65] to include gamma correction and compression.
The resulting model, in combination with domain random-
ization techniques, was shown to be more effective than
previous approaches in training a convolutional denoising
algorithm [65]. In [66], a similar technique implemented a
pipeline for generating synthetic images by augmenting syn-
thetic data with realistic noise in order to account for artifacts
produced by the demosaicing, compression, and denoising
algorithms typically present in cell phone cameras. The results
shown in [66] demonstrate that the method advanced therein
allowed for the effective training and transfer to reality of a

denoising algorithm. A model for cross-channel dependence
of noise was proposed in [57] to increase the fidelity of color-
specific relationships. Although these implementations are
specific to training denoising networks, they provide insights
for synthetically adding noise to images to increase their
veracity when used in AA simulation.

In [68], the entire ISP was approximated such that images
taken with one camera could be mapped back to raw inputs,
and then mapped forward as if they had been taken with a
different camera. This solution relied on prohibitively large
amounts of real and calibrated data. Similar work was intro-
duced in [69] for the simulation and estimation of proposed
ISP algorithms to evaluate their effectiveness. The approach
combined ML and simulation of the entire imaging system to
estimate the final image that would be formed with a proposed
camera. However, the reliance on full camera simulation,
including modeling all lenses and pixel sensitivities, would
be computationally expensive for AA applications, preventing
these methods’ direct transfer to AA simulation.

It should be noted that there is an entire computational
camera simulation community keen on predicting sensor capa-
bilities for new designs; i.e., characterizing sensor performance
before building it. This requires accurately predicting the
incoming light, precisely estimating the photon intensity levels
at the sensor, and then, through accurate models of the image
sensor, predicting the distortion, noise levels, and abilities
of the proposed design [70]. While this process is highly
precise, it poses extreme computational challenges that make
it intractable for AA simulation [71].

VII. VIRTUAL ENVIRONMENT CONSIDERATIONS

In this section, the focus shifts from camera modeling
to camera simulation, the latter being highly influenced by
the virtual world in which the camera is immersed. Note
that the virtual world’s influence extends beyond its interplay
with the camera model, as it shapes, downstream, the task
of perception. As far as camera simulation is concerned,
the virtual world assets and attributes of interest include
meshes, material properties, textures, lighting, sprites, decks,
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etc., which are concepts that originated in the computer graph-
ics community. A discussion of physically-based rendering
and photorealism is provided in [72]. Against this backdrop,
a subpar representation of the virtual world will adversely
impact perception, regardless of how faithfully the camera
model can replicate lens artifacts, sensor noise, ISP distortion,
etc. For instance, the effective modeling of light in the virtual
world directly impacts the post-sensor effects discussed in
Section § VI, as the lighting conditions and contrast influence
the autoexposure, which controls the gain, and therefore noise
levels or saturation. Hence, without proper modeling of the
scene, a highly accurate autoexposure model would still be
unable to produce realistic results.

Beyond lighting, several other virtual world effects play an
important role in perception [73]. It has been noted repeatedly
that perception algorithms, e.g. [30], [31], [34], [35], [74],
are highly sensitive to weather-based artifacts associated with
cameras [75]. In comparison to lighting, the task of accom-
modating weather effects in virtual worlds is less established.
Much of the work to render environment conditions such as
fog, rain, snow, fire, dust, smoke, etc., has been driven by
the gaming community [76], [77] in the pursuit of achieving
human-judged realism and meeting performance requirements.
Simulating these weather-induced effects at a level that is AA
perception satisfactory, poses stiff challenges. Alas, these are
precisely the conditions encumbering many safety critical and
hazardous scenarios of interest, for which simulation may be
the only feasible method for probing AA behavior without
placing people or property in harms way.

An example of a gaming community-provided solution for
rain distortion of images used in AA perception is presented
in [78]. A rain-related discussion in [79] touches on a method
to reconstruct a scene from an image, predict the density
of rain on a per-pixel basis, and augment the scene with
rain to improve the robustness of machine learned algorithms.
Research and techniques used in rain removal [80], if played in
reverse, can provide insights into how to augment camera sen-
sor data. Rain based on computer graphics research for video
gaming is supported in various simulation environments [10],
[81] with further research from the computer graphics com-
munity detailed in [82]-[84]. It should be emphasized that the
challenge is not to inject rain in a scene but rather to do so and
have the camera model pick it up and produce synthetic images
of a quality suitable for use downstream, in AA perception.

To accommodate snow in virtual worlds, falling snow has
been discussed in [85], where the precipitation is treated much
like rain, inducing streaks and artifacts in the image. However,
snow poses additional challenges to image plausibility due
to the complex movement of accumulated snow. This is the
subject of research aimed at capturing the realism of snow
accumulation and movement [86], [87]. From a vehicle’s
perspective, this movement may be important as snowy roads
with traffic significantly change in appearance over time. For
other aspects of snow in a scene, it may be important to
model how the accumulated snow impacts the appearance of
the background scene [88].

For fog representation, the graphics community has devel-
oped expeditious models that approximate the light scattering

based on fog density and color, by using attenuation
laws [89], [90]. However, little work has been conducted to
quantify how well the approaches work in perception: the
synthetic images look good to the human eye, but might be
of little use when used for perception. What has been shown
though, is that a large change in perception ability occurs in
images with fog [85], [89].

Effects such as dust and smoke are known to impede the
perception in real-world applications. Similar to snow, this
may take the form of airborne particulates (e.g. smoke), or may
present as an accumulated layer on camera lenses or the
ground. Various techniques are used in graphics and the gam-
ing community and some attempts have been made to adapt
them for AA simulation purposes. Smoke simulation work,
reported in [91]-[93], looks at the mechanics of movement.
Depending on nature of the AA simulation, a sophisticated
model may not be necessary, and as such a cruder model may
suffice. While smoke represents an extreme edge case for AAs,
dust, even in typical use, can accumulate and begin to affect
normal operation. Layered dust has been studied, as shown
in [94], [95] in order to realistically model how it accumulates
and affects the visual characteristics of surfaces.

While various environment conditions can be accounted
for in several simulation platforms [10], [96]-[98], very little
research has been done into gauging, for instance, the real-
ism of simulated rain, in order to understand the extent to
which data produced is realistic insofar as AA perception is
concerned. Moreover, there are many nuances for the problem
at hand. For instance, how snow collects on a camera and
possibly occludes vision is highly dependent on the camera,
lens, shielding, and vehicle. Ultimately, the models and meth-
ods used in gaming and computer graphics can provide a
solid foundation, yet are not sufficient to be immediately and
effectively used in AA simulation.

VIII. DATA DRIVEN CAMERA SIMULATION

Hitherto, the discussion concentrated on capturing processes
that take place in the individual stages of the camera sensing
pipeline, i.e., the optical system, image sensor, or image signal
processing. When combined, submodels of these components
yield camera models that are robust and expeditious. A lim-
itation of this approach is tied to the lack of meaningful
parameters associated with the submodels. Producing these
parameters is nontrivial. For instance, for the ISP component
model, it is exceedingly difficult to identify model parameters
for the black box algorithms that come into play. As an
alternative, or potentially an augmentation to the traditional
approach, machine learning (ML) has shown promise in gen-
erating visually plausible camera sensor data [99]. ML can be
used to replace submodels (briefly touched upon in Sections
§ IV and VI), the entire sensing pipeline, or augment the
virtual environment.

Recent ML research has led to significant progress in the
so-called image-to-image translation, e.g., producing a map
from an aerial image; producing a picture of a landscape in
winter from an image in summer time; translating a black-
and-white image into a color image, etc. Seminal work in this
field centers on generative adversarial networks (GANs) [100].
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TABLE |

AV SIMULATION PLATFORMS SUPPORTING MODELS OF RGB MONO-CAMERAS. THESE ARE SPLIT INTO TWO CATEGORIES BASED ON THE
AMOUNT OF PUBLISHED INFORMATION AVAILABLE TO REFLECT WHICH PLATFORMS ARE JUDGED BASED ON LIMITED DOCUMENTATION ONLY.
PLATFORMS ARE SORTED WITHIN THE TWO GROUPS BY ALPHABETICAL ORDER. KEY: AWGN: ADDITIVE WHITE GAUSSIAN NOISE; IDGN:
INTENSITY-DEPENDENT GAUSSIAN NOISE; FOV: FIELD-OF-VIEW MODEL; DASH(—): NOT REPORTED OR NOT AVAILABLE; PLUS (+): CAPABILITY
REPORTED WITHOUT SPECIFIC MODEL. NOTE: PLATFORMS MAY SUPPORT MODELS AND CAPABILITIES BEYOND THE SCOPE OF THIS REVIEW

INCLUDING OTHER SENSORS, OTHER WEATHER OR ARTIFACTS (E.G. DUST), VEHICLE DYNAMICS, PEDESTRIANS, ETC. FURTHERMORE,

SPECIFIC MODELS MAY BE SUPPORTED YET INFORMATION WAS UNATTAINABLE BY THE AUTHORS. THE INFORMATION BELOW IS NOT INTENDED
AS AN ENDORSING OF A PRODUCT OR A RANKING OR JUDGMENT OF PLATFORMS, BUT RATHER AS A SUMMARY

OF MORE COMMON PLATFORMS CURRENTLY USED IN THIS FIELD

Simulation Software Lens Distortions Noise ISP Artifacts Weather
AirSim From Unreal From Unreal From Unreal From Unreal
% AutonoVi fish-eye + - Fog
s | Carla Fish-eye, lens flare + auto-exposure, gamma Rain
'§ Chrono FOV IDGN, AWGN Gamma None
< CoppelliaSim (Formerly V-Rep) - - - -
£ [ Gazebo Radial AWGN - -
_: LG SVL Fish-eye - JPEG compression Rain
2 [ MAVS + + Gamma Rain, Snow, Fog
Z [ USARSIm S - - -
£ | VANE/ANVEL + - Compression, Gamma Rain
Webots - - - -
4D Virtualiz Fish-eye, omnidirectional - - +
Ansys SPEOS and OPTIS + + + -
ASM Traffic (dspace) + + + -
CarMaker (IPG Automotive) + + + -
DYNA4 (Tesis) + + + -
ESI Pro-SiVIC Fish-eye, omnidirectional,+ + + Rain, Fog, Snow
Mathworks Simulation 3D Camera | radial and tangential - - -
= [ NVIDIA ISAAC Sim + + + -
= [ NVIDIA DRIVE Sim + + + -
:% OpenDaVINCI and OpenDLV + + + -
° rfPro + + + Rain, Snow, Fog
£ [ SCANeR from AV Simulation ¥ T T -
g Siemens (TASS) PreScan + + + -
= | SynCity + Data driven + -
-‘E Vigrade + + + Rain
VTD - Vires + + + Snow

These ML-based models are obtained by learning to map
input to output through optimization. An approach proposed
in [101] seeks to learn a model for image noise and then
engage in synthetic generation of noisy images. The work is
analogous to transferring noise from one image to another
via a GAN [100], [102] which can introduce abstract image
augmentations. By using machine learning, and specifically
convolutional neural networks (CNN), high-dimensional fea-
tures can be learned such as edges and contextual relationships
between pixel patches.

Examples of GAN-based image-to-image translation can be
found in [103]-[106]. In [105], it is demonstrated that on-road
images can be converted between various weather and lighting
conditions. GAN-based weather-induced augmentations were
employed in [107] to evaluate the ability of autonomous
vehicle perception networks to remain robust in decision
making between clear, foggy, and rainy versions of operating
scenarios (or images thereof). Another method for converting
between weather domains such as sunny, rainy, and foggy,
was proposed in [108], where the authors solved the image-
to-image translation problem for weather with remarkable
accuracy. Concretely, synthetic images were rendered using
traditional graphics techniques and then altered to introduce
complex weather effects. In [109], a GAN was successfully
trained to remove rain from images. If the training data

is reversed, this would result in an approach to generate
synthetic rain for rendered images. Similar work is reported
in [110], but rather than using a GAN, a NN is trained directly
using supervised learning to remove rain droplets from images
obtained while driving. While supervised learning allows for
more direct training approaches, this was only made possible
by collecting paired samples with a stereo camera setup with
one of the cameras obscured by droplets in front of the lens.
The image-to-image translation can be applied to semantic
maps directly, as shown in [111]. The approach accomplishes
two things: it encodes all weather translations into a single
network; and it removes the need to generate an initial image
altogether. While this allows a fully data-driven and general
approach to a complex project, it requires the neural network
to generate fine-grain detail, burdening the network’s capacity
to encode more weather-detailed information.

Note that handling weather-related artifacts does not repre-
sent the only use of ML in synthetic perception. GANs have
also been used in driving augmentations in [112], where the
virtual world was altered by injecting synthetic pedestrians
into the scene. This method was applied to specific regions
of the image, with background-aware training, in an attempt
to prevent unrealistic position and size of the augmentation.
In the future, synthetic pedestrians could become participants
in closed-loop simulation. However, in line with most of
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the ML-based research, the solution in [112] would require
additional temporal constraints to increase realism.

IX. CURRENT STATE OF CAMERA SIMULATION FOR
AUTONOMOUS AGENTS
A. Camera Model Implementations

For application in robotics and autonomous vehicles, cam-
era models have been implemented in several simulation
frameworks. These models tend to be expeditious in nature,
which often comes at the expense of fidelity. This stems from
a broad reliance on game engines for rendering. To understand
the current state of camera simulation, Tab. I lists known
simulation packages with significant camera support for AAs.
Of particular importance are the simulators that have support
for lens distortion, noise, and ISP artifacts, as these represent
higher-fidelity modeling support. With the topic of AA camera
simulation being nascent, very much in flux, and highly
competitive, it comes as no surprise that many simulation
platforms do not have published details on the implemented
models and algorithms. As such, the strengths and limitations
of these camera models have to be surmised from sparse
information available on the developers’ websites and from
marketing information.

Of particular note are the capabilities of Carla [10] and Air-
Sim [11] due to their extensive use in the research community.
These two platforms are built on gaming engines (Unreal and
Unity), and include camera and weather models developed for
gaming applications. Another important software platform in
the robotics community is Gazebo, which is well known for
its in-depth support for ROS. Gazebo supports a broad range
of sensors, but only includes a simple lens distortion model
and an oversimplified AWGN model for noise, which may
constrain the fidelity of camera-reliant Gazebo simulations.

In the commercial sector, software like SPEOS and OPTIS
from Ansys, Pro-SiVIC from ESI group, VID from MSC
Software, DRIVE Sim from NVIDIA, and SynCity from
CVEDIA exemplify a prolific field of highly developed soft-
ware, many with validated solutions. Unfortunately, little infor-
mation is published about their specific camera models and
implementations.

B. Validation and Sensitivity Studies

Current efforts to validate camera models center around
traditional methods of data validation which seek to control
an environment and compare the simulated data to the real-
world data. These are usually performed in a tightly controlled
setting, with specific texture patterns and lighting. An example
of such validation is shown by the IFSTTAR team, [113],
[114], where Pro-SiVIC software from ESI group is demon-
strated to produce very similar results for lens distortion and
camera response. While this validation in controlled envi-
ronments is highly important, it is not necessarily indicative
of performance in on-road scenarios, which pose unique
challenges insofar as the downstream perception is concerned.
Specifically, even when a simulation platform and underlying
camera model are validated in controlled tests, they do not
typically generate synthetic data with sufficient realism to

replace real images when training machine learning algorithms
for perception [20], [115]. Furthermore, research has suggested
for improved downstream perception, matching the proper
distortion levels, blur, and noise play an important role in the
simulator [116], [117].

X. CONCLUSION

This overview of the camera modeling and simulation topic
touched on two classes of approaches. The class of physics-
based methods attempt to mimic the processes that take place
in the camera sensing pipeline, which has three stages: optical
system, sensor array, and ISP. Each stage has associated with
it distortion, noise, and artifacts that affect the end product,
in this case a synthetic image that is a replica of the virtual
world in which the camera is immersed. A second class
of methods relies on data-driven approaches that seek to
augment the virtual world, to replace submodels of various
camera stages, or even eliminate altogether the traditional,
physics-based camera models. The contribution highlights two
important aspects. First, camera modeling and simulation are
closely tied to the virtual world the camera is immersed
in and expected to generate images of. This camera-virtual
world interplay permeates the design of the camera, its use
in simulation, and the way in which the virtual world needs
to be set up. Second, there are few methods in place to
measure the quality of the synthetic images generated by a
camera sensor. The fact that one finds the image visually
plausible, or “realistic,” may not reflect how successful the
downstream use of these synthetic images will be in perception
for AA simulation. Looking ahead, reducing the simulation-
to-reality gap will require action in multiple directions, see,
for instance [4]. However, it is our believe that prominent
among these directions should be camera and virtual world
modeling. There are numerous outstanding questions about the
fidelity required in this nascent simulation domain, as well
as about the design of quantitative metrics that gauge the
level of realism associated with camera simulation insofar
as the task of perception is concerned. Having quantitative
metrics to judge the realism in camera simulation will help the
community understand the level of fidelity required in camera
modeling and virtual world definition, which bodes well for
the problem at hand as well as the larger AA simulation aim.
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