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ABSTRACT constraints might involve literals instead of just the variables.! An

We consider the P-CSP problem for 3-ary predicates P on satisfi-
able instances. We show that under certain conditions on P and
a (1,s) integrality gap instance of the P-CSP problem, it can be
translated into a dictatorship vs. quasirandomness test with perfect
completeness and soundness s + ¢, for every constant € > 0. Com-
pared to Ragahvendra’s result [STOC, 2008], we do not lose perfect
completeness. This is particularly interesting as this test implies
new hardness results on satisfiable constraint satisfaction problems,
assuming the Rich 2-to-1 Games Conjecture by Braverman, Khot,
and Minzer [ITCS, 2021]. Our result can be seen as the first step
of a potentially long-term challenging program of characterizing
optimal inapproximability of every satisfiable k-ary CSP.

At the heart of the reduction is our main analytical lemma for
a class of 3-ary predicates, which is a generalization of a lemma
by Mossel [Geometric and Functional Analysis, 2010]. The lemma
and a further generalization of it that we conjecture may be of
independent interest.
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1 INTRODUCTION

Constraint satisfaction problems (CSPs) are some of the most fun-
damental problems in computer science. Given a predicate P :
sk — {0,1}, for some alphabet %, a P-CSP instance consists of
a set of variables x1, x, . . ., x;, and a collection of local constraints
Ci1,Cy, . ..,Cm.Each constraint is of the type P(x;,, Xi,, . . ., xi; ). The
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algorithmic task is to decide if there exists an assignment to the vari-
ables that satisfies all the constraints. In a related problem, called
the Max-P-CSP problem, the task is to find an assignment to the
variables that satisfies the maximum fraction of the constraints. An
a-approximation algorithm is a polynomial-time algorithm which
always returns an assignment that satisfies at least « - OpT fraction
of the constraints, where OpT is the value of the optimum assign-
ment. The focus of the current work is on approximability of fully
satisfiable instances.

A systematic study of the complexity of solving CSPs was started
by Schaefer in 1978 [23] who showed that for every P over a 2-
element alphabet, the problem of checking satisfiability of a P-CSP
is either in P or is NP-complete. A famous Dichotomy Conjecture
of Feder and Vardi [10], which was resolved recently in huge break-
throughs by Bulatov and Zhuk independently [8, 25], states that
for every P, checking satisfiability of a P-CSP is either in P or is
NP-complete.

However, when it comes to designing optimal approximation
algorithms for Max-P-CSP on fully satisfiable instances, the ques-
tion is wide open. The PCP Theorem [1, 2, 11] proved in the early
90s shows that it is NP-hard to approximate many P-CSPs within a
constant factor @ < 1. This was vastly improved in a seminal result
by Haéstad [13] for certain CSPs. Hastad showed that for many CSPs,
it is NP-hard to do better than the approximation factor achieved
by a random assignment. More specifically, he showed that 3SAT
cannot be approximated better than % + ¢ for any constant £ > 0 in
polynomial time unless P = NP. Note that if we select a random
assignment, then it satisfies %—fraction of the clauses in expectation.
The result proved in [13] is stronger than what is stated - even if
we know that a given instance is fully satisfiable, i.e., there exists
an assignment that satisfies all the clauses, it is NP-hard to come
up with an assignment that satisfies more than (% + ¢)-fraction of
the clauses for any constant ¢ > 0.

Hastad also showed that it is NP-hard to find an assignment
to a given 3LIN instance? that satisfies more that (% + ¢)-fraction
of the constraints, even if we are guaranteed that there exists an
assignment that satisfies (1 — ¢)-fraction of the constraints. This is
interesting because unlike 3SAT, we can in fact find an assignment
that satisfies all the constraints of a given 3LIN instance, if there
exists one, in polynomial time. Thus, knowing that a given instance
of P-CSP is fully satisfiable, in principle, can be used to design
better approximation algorithms for Max-P-CSPs. In this paper,
we study the inapproximability of fully satisfiable instances. On
the other hand, as we will explain next, if the instance is almost
satisfiable, then by Raghavendra’s work [21], we know the precise

1See Definition 2.7 and Remark 2.8 for more details.
2This CSP is over the Boolean domain and constraints are of the type xi; ®xi, ®xiz =
1/0.
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approximation threshold for every P-CSP and the optimal algorithm
is given by semi-definite programming.

In order to gain better understanding of complexity of approxi-
mation algorithms for various optimization problems, Khot [17] in
2002 proposed the Unique Games Conjecture (UGC). Since then, for
various optimization problems, we now know the precise approxi-
mation factor that one can achieve in polynomial time assuming
the UGC. Max-Cut is one of the simplest CSPs in which the con-
straints are of the type x @ y = 1. Goemans and Williamson [12]
gave a agyy-approximation algorithm for Max-Cut problem where
agw ~ 0.878. Surprisingly, [18] showed that the approximation
algorithm by Goemans and Williamson is tight assuming the UGC.
Their hardness result relied on the ‘Majority is Stablest’ theorem
which was proved in [20].

For general CSPs, Austrin and Mossel [3] gave a very simple
sufficient criterion for a predicate P to be approximation resistant.
A predicate P is called approximation resistant if it is NP-hard (or
UG-hard) to achieve an approximation algorithm better than the
random assignment algorithm. 3SAT and 3LIN predicates described
above are examples of approximation resistant predicates. Austrin
and Mossel showed that if there exists a distribution supported only
on the satisfying assignments in P, which is balanced and pairwise
independent, then P is approximation resistant assuming the UGC.

The Max-Cut hardness result was beautifully generalized to
all constraint satisfaction problems by Raghavendra [21]. More
specifically, he showed that for any P-CSP problem, if there exists
a (c, s) basic SDP integrality gap instance®, then it is UG-hard to
find an assignment that satisfies (s + ¢) fraction of the constraints,
even if the given instance is (¢ — ¢)-satisfiable, for every constant
¢ > 0.For all ¢ € (0,1], let s(c) be the infimum value such that
there exists an (c, s(c)) integrality gap instance. By definition, the
SDP relaxation promises s(c) satisfying assignment on every c-
satisfiable instance. Raghavendra gives the rounding algorithm that
actually finds the s(c)-satisfying assignment. Thus, Raghavendra’s
result gives a complete answer to the complexity of approximating
Max-P-CSP assuming the UGC. However, it does not imply hardness
on instances that are fully satisfiable. This is because in translating
the integrality gap parameters (c, s) to hardness parameter, there
is always a loss of some small constant ¢ > 0 in the completeness
parameter.

The most important building-block in Raghavendra’s result (and
also in many prior works) is the dictatorship test. A function f :
3" — 3 is called a dictator function if it depends only on one
variable. A dictatorship test is a procedure which queries f at a few
(correlated) locations randomly and based on the function values at
these locations, it decides if f is a dictator function or far from any
dictator function (also referred to as quasirandom functions). We
briefly describe the notion of being far from dictator functions here.
Influence of a coordinate i in a function f is the probability that for
a random input (x1,x2,...,%), f changes its value if we change
the i*” coordinate. Note that dictator functions have one coordinate
whose influence is 1. A function is called far from dictator functions
if for every coordinate i, the influence of the coordinate i in f is
small.

3See Definition 2.16 for the formal definition.
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There are three important properties of the test which are useful
in getting hardness of approximation result for Max-P-CSP. The
first one is the completeness parameter ¢ — this is the probability
that the test accepts any dictator function. The second property
is the soundness parameter s — this is the probability with which
the test accepts far from dictator functions. The third property is
the decision predicate that the test uses in accepting or rejecting
the function f. If the decision predicate is P and the test has com-
pleteness ¢ and soundness s, then such a test can be translated into
a UG-hardness result for Max-P-CSP with completeness (¢ — ¢)
and soundness (s + ¢), for any constant ¢ > 0. In other words, it
is UG-hard to find an assignment that satisfies (s + ¢) fraction of
the constraints, even if the given instance is (¢ — ¢)-satisfiable, for
every constant € > 0.

Raghavendra proved his result by designing a dictatorship test
starting with a (c, s) integrality gap instance for Max-P-CSP such
that the test has completeness (¢ — ¢) and soundness (s + ¢), for
any constant ¢ > 0. Therefore, his test loses in the completeness
parameter and hence cannot be used in proving hardness result on
satisfiable instances. Note that even if the completeness parameter
of the test is ¢, because of the conjectured hardness of Unique Games,
one still loses small constant ¢ in the completeness parameter of
the final UG-hardness result.? In order to save this loss, Braverman,
Khot, and Minzer [7] proposed a Rich 2-to-1 Games Conjecture and
if we use this instead of Unique Games, then there is no loss in the
completeness parameter. Therefore, it is important that we do not
lose anything in the completeness parameter when designing the
dictatorship test.

In this work, we initiate a systematic study of completely char-
acterizing the precise approximability of every k-ary CSP on satis-
fiable instances (recognizing, of course, that the prior works have
obtained such a characterization for specific predicates, e.g., 3SAT).
In order to answer this challenging question, it was necessary first
to understand the complexity of checking satisfiability of CSP which
is the famous Dichotomy Conjecture. Now that this conjecture is re-
solved, we can embark on the study of approximability of satisfiable
CSPs.

As with the case with 3SAT and 3LIN, a predicate being linear
makes a big difference on the complexity of the CSP. Addressing
this issue of linearity is also a challenging aspect in the proof of
the Dichotomy Conjecture. In this work, we take the first step by
considering special class of non-linear predicates. We show how
to convert any (1, s)-integrality gap instance of a 3-ary CSP to a
dictatorship test with completeness 1 and soundness s + ¢, for any
constant € > 0. For our conclusion to hold, we need a few additional
properties from the predicate as well as from the integrality gap
instance that we describe next.

o Predicates not satisfying any linear embedding: Given a pred-
icate P: =3 — {0,1}, it is said to satisfy a linear equation
if there exists an Abelian group (G, +) and 3 embeddings
0:2—>G,¢:2—> Gandy : T — G such that the fol-
lowing hold: At least one of the embeddings is non-constant
and for every tuple (x,y,z) € P71(1), o(x) +$(y) +y(z) = 0
where 0 is the identity element of G.

4Unique Games can hard only on almost satisfiable instances. Therefore, any hardness
from Unique Games loses perfect completeness.



On Approximability of Satisfiable k-CSPs: |

e Semi-rich predicates: A predicate P: 33 — {0,1} is called
semi-rich if for each (x,y) € ¥ X X, there exists a z € ¥ such
that (x,y,z) € P~1(1). Also, for every (x,z) € X X %, there
exists a y € ¥ such that (x,y,z) € P_l(l).

o SDP solution that is semi-rich and that is not linearly embed-
dable: An SDP solution for a given P-CSP instance consists of
a local distribution for each constraint. We say the SDP solu-
tion is semi-rich and is not linearly embeddable if the support
of every local distribution is semi-rich and is not linearly
embeddable in any Abelian group (See Definitions 2.1, 2.2
and 2.3).

We now state our main theorem.

THEOREM 1.1. Let P: 33 — {0, 1} be any predicate that satisfies
the following conditions. (1) P does not satisfy any linear embedding,
(2) P is a semi-rich predicate, and (3) there exists an instance of P-CSP
that has a (1, s)-integrality gap for the basic SDP relaxation and an
optimal SDP solution is semi-rich and is not linearly embeddable.
Then for every ¢ > 0, there is a dictatorship test for P that has perfect
completeness and soundness s + ¢.

We do not believe that the semi-rich condition is really needed
in the theorem, but this is what we could show currently.

In order to focus on designing new dictatorship tests and a new
way to analyze the tests, in this work we will not discuss in detail
the application of this towards getting the conditional NP-hardness
results. However, for completeness, we mention the following im-
portant corollary of our main theorem. This follows from a recent
work by Braverman, Khot, Lifshitz and Minzer [6].

COROLLARY 1.2. For a predicate P satisfying the conditions from
Theorem 1.1, assuming the Rich-2-to-1 Games Conjecture with perfect
completeness, for every constant ¢ > 0, it is NP-hard to find an
assignment to a Max-P-CSP instance with value s + ¢ even if the
instance is fully satisfiable.’

Note that in Corollary 1.2, the first condition from the hypothesis
is necessary for such a statement to hold. This can be seen from the
Max-3LIN problem on an Abelian group G.° This predicate has a
linear embedding as well as there exists an instance with a SDP inte-
grality gap of (1, ﬁ + ¢), for every constant € > 0. However, if the
instance is satisfiable, then one can find the satisfying assignment
in polynomial time using Gaussian elimination.

It might be instructive to consider a couple of examples of predi-
cates that satisfy the first two conditions.

(1) Linear equations over a quasirandom group: Fix any group
(G, -) such that any non-trivial irreducible representation
of G has dimension greater than 1. Consider the predicate
Pg : G3 — {0,1} where Pal(l) ={(x,y,2) |x-y-z=1g},
where 16 is the identity element. The fact that G does not
have any non-trivial representation of dimension 1 implies
that P does not satisfy any linear embedding. Also, it is easily
observed that the predicate is semi-rich.

(2) Arithmetic progression over a quasirandom group: For a sim-
ilar group as above, consider a predicate P4p : G° — {0,1}

5 A notion of negation or literals or a mix of predicates is necessary for this result and
Theorem 1.1 to hold (See Remark 2.8).

Here, the predicate is {(x, y,2z) | x + y +z = 0} where 0 is the identity element in
G.
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where Pg},(l) = {(x,x-gx-¢*) | x,g € G}. It can be
shown that this predicate does not satisfy any linear em-
bedding. To see that P4p is semi-rich, we need to permute
the coordinates. Note that permuting the coordinates of a
predicate does not really change the complexity of the corre-
sponding CSP problem. By the change of variables x - g = h
we can write PZ}J(I) ={(h-g L hh-g) | hg € G}. We
can permute the coordinates to get the following predicate
15;‘113(1) ={(hh-g ' h-9) | hg € G}. Now, it is easily
observed that the predicate is semi-rich.

REMARK 1.3. A dictatorship test with optimal parameters (in fact,
the optimal NP-hardness result for satisfiable instances) for the pred-
icate PG was shown by Bhangale and Khot [4]. Our main theorem
gives new results for the predicate Pop (and many more). The predi-
cate Pap is fundamentally different from Pg as it does not support
any pairwise-independent distribution, whereas Pg does.

1.1 Related Work

Many hardness results on satisfiable CSPs are known for specific
CSPs. In this section, we state these results. Here, ¢ > 0 is an ar-
bitrary small constant. Hastad [13] in his seminal result showed
that for every k > 3, k-SAT is NP-hard to approximate within a
factorof 1 — 1/ 2k + ¢, even if the instance is satisfiable. Hastad and

Khot [14] proved that Boolean CSPs on k variables are NP-hard
1/2
to approximate within ratio 20(11 ) . For every prime p, they also
showed the hardness result for CSPs over an alphabet of size p,
O(kL/2y
—.

where the hardness factor is Huang [15] improved the

O(k1/3)
result for Boolean CSPs to the factor 2 3

. Brakensiek and Gu-
ruswami [5] formulated a problem called the ‘V Label Cover’ to
improve these results on satisfiable k-ary CSPs. Towards this, as-
suming the hardness of the V Label Cover, they showed that there
is an absolute constant ¢y such that for k > 3, given a satisfiable
instance of Boolean k-CSP, it is hard to find an assignment satis-
fying more than cok?/ 2k fraction of the constraints. These results
are non-trivial only for large values of k.

Towards getting an improved hardness result for Boolean sat-
isfiable 3-CSPs, Hastad [16] showed that the predicate NTW” is
NP-hard to approximate within a factor of 5/8 + ¢. For larger alpha-
bet, Engebretsen and Holmerin [9] showed that 3-ary CSPs over
an alphabet of size g is NP-hard to approximate within a factor of
é + % + ¢. Tang [24] showed a conditional result with the hardness
factor é
improved these results for 3-ary CSPs where where they showed
that it is NP-hard to approximate satisfiable 3-ary CSPs over an
alphabet of size g to within a factor of é + ¢, for infinitely many q.

+ % - % + &8 Very recently, the first two authors [4]

1.2 Techniques

For a given predicate P, we are interested in finding the maximum
ap such that (1) there exists an approximation algorithm that satis-
fies at least ap fraction of the constraints on satisfiable instances,
"The satisfying assignments for the NTW (Not-Two-Ones) predicate are all 3 bit strings
such that the number of 1s in them is not two.

8The theorem in [9] holds for every q > 3, and the theorem in [24] holds for every
q=>4
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and (2) for all € > 0, it is hard to find (ap +¢)-satisfying assignments
on satisfiable instances.

In order to answer the above question, the starting point is the
Dichotomy Theorem which gives a full characterization of predi-
cates for which the corresponding CSP is NP-complete or is in P
(i.e., deciding if @p = 1 or ap < 1). The characterization is based on
whether a certain non-trivial polymorphism exists for a given pred-
icate. For a given predicate P : 3 — {0, 1}, a function f : 2" — %
is called a polymorphism if for every k X n matrix constructed by
letting every column to be an arbitrary satisfying assignment to P
and letting x1, x, ..., x; € 2" be the rows of the matrix, it is the
case that (f(x1), f(x2),..., f(xx)) is also a satisfying assignment
to P. It is easy to see that a dictator function, i.e., f(x) = x; for
some 1 < i < n is always a polymorphism, and any other poly-
morphism is called a non-trivial polymorphism. The Dichotomy
Theorem states that for a predicate P, checking satisfiability of
P-CSP is in P if there exists a non-trivial polymorphism; otherwise,
it is NP-complete (ignoring some subtle issues).

Dictatorship test. Similar to polymorphisms, dictatorship tests
form the back-bone of proving hardness of approximating Max-
P-CSPs. Here we formally define the dictatorship test for a given
predicate.

DEFINITION 1.4. A dictatorship test for a predicate P : 3% —
{0, 1} can query a function f : 3™ — 3. The test picks a random k xn
matrix by letting every column to be a random satisfying assignment
to P (i.e., in P~1(1), with some fixed distribution y on P~1(1)) and
letting x1, x3, . .., X € X" be the rows of the matrix. The test accepts
if (f(x1), f(x2),..., f(xx)) is also a satisfying assignment to P.

Here again, it is obvious that if f is a dictator function, then the
test accepts with probability 1. If solving P-CSP is NP-complete then
it has no non-trivial polymorphisms according to the Dichotomy
Theorem. Therefore, the question here is to determine the maxi-
mum probability the test accepts a function f if f is far from being
a dictator function. If such a test exists where the maximum prob-
ability of acceptance for far from dictator functions is at most ap,
then using the Rich 2-to-1 Conjecture of Braverman, Khot, and
Minzer [7], one gets an NP-hardness of approximating P-CSP on
satisfiable instances to within a factor of ap.

We now describe the dictatorship test that we design for a large
class of predicates. The starting point is an instance ¢ of P-CSP and
let the value (i.e., maximum fraction of the constraints that can be
satisfied by an assignment) of this instance be s. The distribution p
in the test depends on the SDP solution for ¢ and we only consider
instances whose SDP value is 1. The SDP solution consists of vectors
as well as local distribution for each constraint. Since the SDP value
is 1, all these local distributions are supported on the satisfying
assignments to P. Let y; be the local distribution corresponding to
the it" constraint of the instance. The test is as follows. Here £ > 0
is a small constant independent of n.

If f is a dictator function, then the test accepts with probability
1. This follows because for every i, the distribution y; is supported
on the satsifying assignments to P and therefore every column of
the matrix is from P~1(1). A challenging task is to compute the
acceptance probability when f is far from dictator functions.
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Given f : 3" — 3,
(1) Select a constraint from ¢ according to the weights of
the constraints. Let i be the selected constraint.
(2) Construct a k X n matrix by setting each column of
the matrix independently according to the following
distribution: sample the column using y;.

(3) Check if P(f(x1), f(x2),...,f(xx) = 1.

Figure 1: Dictatorship test with completeness 1.

This test is a slight modification of Raghavendra’s test [21]. In
his test, in Step (2) with probability ¢, a random sample is chosen
from $¥. This uniform noise has an effect of killing all the high-
degree monomials of f and hence the analysis boils down to only
considering the low-degree functions. At this point, one can apply
the invariance principle for low-degree functions from Mossel [19]
and can replace the inputs with correlated Gaussians. Finally, the
expression involving the Gaussians is interpreted as a rounding al-
gorithm that rounds the SDP solution to an integral solution and the
value is upper-bounded by the integral value of the instance which
is s. Thus, the soundness of the test essentially matches the value
of the integral solution. However, because of the uniform noise,
the dictator functions will no longer pass the test with probability
1 and hence this test will not give hardness results on satisfiable
instances.

Coming back to our test, we cannot add uniform noise as we
want to maintain the completeness of the test to be 1. However, this
introduces a few challenges in the analysis of the test. The main
challenge is to show that the local distribution is enough to kill
the high-degree part of f. This in general is not true. Specifically,
if the predicate satisfies a linear equation, then this distribution is
not enough to kill the high-degree part (see the counterexample
in Remark 1.8). This is where we need the predicate (and the local
distributions) to not satisfy any linear equation. In this case, we use
our main analytical lemma, that we will discuss later, to show that
the high-degree part of f contributes little to the test acceptance
probability. However, we additionally need the predicate and the
SDP solution to be semi-rich.

Finally, similar to Raghavendra’s analysis, we use the low degree-
part of f in the rounding algorithm and relate the performance of
the algorithm to the test acceptance probability. This shows that if
f is far from dictator function, then the acceptance probability of
the test is upper bounded by the value of the assignment returned
by the rounding procedure, which is always upper-bounded by s.

Main analytical lemma. Analyzing the acceptance probability
of the test is a challenging task in general. One begins by thinking
of the function f as a real valued function, e.g. as an indicator of
the event that it takes a specific symbol in ¥ as its value. Skipping
some details, one needs to analyze expectations of the form

[ﬁfm)] ,

i=1

E
X1,X2, 000 X~ BT
here xi, x2, ..., x; are distributed as discussed in Definition 1.4.
As the low-degree part of f corresponds to the SDPs from the
algorithmic side, in order to prove our main theorem, we need to
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show that when f is a high-degree function, then this expectation
is small. Our main analytical lemma shows that this is indeed the
case. Following is the informal statement of the lemma (for a formal
statement, see Lemma 2.6).

LEMMA 1.5 (INFORMAL). Let P be any 3-ary predicate that is semi-
rich and does not satisfy any linear embedding. Let i be any distri-
bution that is fully supported on P~1(1). Then for any high-degree
bounded function f, we have

E

X1,X2,X3~ [

LF G ) fGes)]) <6

where & — 0 as the degree of the function increases.

We note that a high-degree function has E[f] ~ 0. This lemma
is proved in Section 3 and it is evident that the proof of this lemma
is quite involved. We believe that the semi-rich condition is not
needed for the conclusion to hold. Generalizing the lemma for k-
ary predicates and proving it without the semi-rich condition is a
fascinating analytical question for future work.

The lemma is a generalization of Lemma 6.2 by Mossel [19].
That lemma states that if the distribution y is connected then the
expectation is small. The connectedness condition can be stated
as follows: For every pair of assignments (a, b, c) and (a’,b’,¢’)
in P~1(1), there is a way to convert the first assignment to the
second by replacing only once coordinate at a time such that every
intermediate triple is in P~1(1). The predicate Pg that was men-
tioned earlier where Pc_;l(l) ={(xy,2) | x-y-z=1g} for some
non-Abelian group does not satisfy the connectedness condition,
as changing one coordinate from any satisfying assignment gives
a triple which is outside of Pél (1). This predicate, however, does
not satisfy any linear embedding if G does not have any non-trivial
representation of dimension 1. Pg is also semi-rich and hence we
can apply the above analytical lemma for Pg.

The proof of the above lemma for the predicate Pg is implicit
in the work of Bhangale and Khot [4]. Given this fact, our high-
level strategy to prove the lemma is as follows. We modify the
underlying distribution y and the predicate P so that the modified
predicate can be viewed as a set of equations over some non-Abelian
group. We do this by carefully adding more satisfying triplets to the
predicate. During the modifications, we maintain the properties of
the original predicate (i.e., semi-richness and not having any linear
embedding) as well as make sure that the expectation does not
change by much. Since the original predicate does not satisfy any
linear embedding, the group must be non-Abelian and also lacks
any non-trivial representation of dimension 1. Therefore, the final
expectation must be small. This shows that the earlier expectation
is also small.

1.3 Conclusion and Future Work

Our work leaves open many interesting problems. One obvious
open problem is to extend our main theorem for other class of
predicates. We could prove our analytical lemma for 3-ary semi-rich
predicates. However, we believe that this semi-richness condition
is not necessary for the conclusion to hold. One obvious open
question is to extend our main theorem to other 3-ary predicates
that are not semi-rich. More ambitiously, we put forth the following
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conjecture for general k-ary predicates. One can naturally extend
the definition of 3-ary predicates not satisfying any linear equation
to k-ary predicates as follows.

DEFINITION 1.6. Let P : 3K — {0, 1} be any k-ary predicate such
that the support on each coordinate is full. We say P satisfies a linear
embedding if there exists an Abelian group (G,+) and mappings
o : > — G such that

. Zf:l oi(x;) = 0 for every (x1,x2, ...,
is the identity element of G.
o one of the mappings {cri}if:1 is non-constant.

xi) € P71(1), where 0

Otherwise, we say P does not satisfy any linear embedding.
With this definition, we conjecture the following.

CoONJECTURE 1.7 (INFORMAL). Let P be any k-ary predicate that
does not satisfy any linear embedding. Let i be any distribution that
is fully supported on P~1(1). Given k functions fi, fo..., fi : =" —
[—1,1], such that one of the fis is a high-degree function, then we
have

E

X1,X25 e Xi~ [

o LG fa(x2) - fi () ]| < 6

where § — 0 as the degree of the function increases.

REMARK 1.8. We note that if the predicate satisfies a linear equa-
tion, then the conclusion does not hold. To see this, suppose P sat-
isfies a linear equation over an Abelian group G given by the em-
beddings {0'1} _1- Let x be any non-trivial character of G and define
f(xz) = 1)(((71((7‘1)1)) Now,

n

[[] [xtostce

J=1

filen) fa(x2) - fie (i) =

£:1= s ':':»

k
[ [ [xtes(Ga))

i=1

X Ul((xz)j )

where the last equality is because ofthe multiplicativity of the charac-
ter x. For every j, we have Zle 0i((x7)j) = 0 and hence the product
becomes 1 as y(0) = 1. Moreover, for large n, since one of the embed-
dings is non-constant, one of the fis is a high-degree function.

With a positive answer to the conjecture, we may be able to make
progress on predicates P that do not satisfy any linear equation. On
the other hand, if P does satisfy a certain linear equation, then a
hybrid algorithm that solves the SDP as well as the system of linear
equations might give an optimal algorithm for satisfiable CSPs. We
leave these as open problems for future work.

1.4 Organization

In Section 2 we state our main dictatorship test for 3-ary CSPs
satisfying conditions from Theorem 1.1. We start with preliminaries
in Section 2.1 where we define constraint satisfaction problems,
functions on product spaces and state the invariance principle. We
also state our main analytical lemma that we use in our dictatorship
test analysis in this section. In Section 2.2 we define the basic SDP
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relaxation for a Max-P-CSP. In Section 2.3, we state our dictatorship
test and prove the completeness and soundness analysis of the test.
We give an overview of the proof of our main analytical lemma in
Section 3. The proof consists of a series of steps which we prove in
the full version of the paper.

2 FROM INTEGRALITY GAP TO
DICTATORSHIP TEST

In this section, we show that if a P-CSP instance has a (1, s) inte-
grality gap for the basic SDP relaxation, then there is a dictatorship
test with completeness 1 and soundness s + ¢ for any ¢ > 0, if the
predicate and the SDP solution satisfy certain conditions.

2.1 Preliminaries

The focus of this paper is on special type of predicates that do not
satisfy any linear equation and that are semi-rich. We define these
two properties next. We define these properties for more general
predicates having different alphabet for each location, although
in our dictatorship test we only consider predicates of the type
P:33 - {0,1}.

DEFINITION 2.1. Let X, ®,T be finite alphabets. Let H C X ® X T
and ¥’ C X, C ® and T’ C T be the subsets on which H is
supported. We say H can be linearly embedded in an Abelian group if
there is an Abelian group (G,+) and mapso: 3" — G, ¢: &’ — G,
y: T — G such that

(1) forall (x,y,z) € H it holds that o(x) + $(y) + y(z) = 0;

(2) at least one of o, ¢, y is non-constant.

Otherwise, we say H cannot be embedded linearly into an Abelian
group, or simply H does not satisfy any linear equation.

DEFINITION 2.2. LetX, ®,T be finite alphabets. Let H C XX ®XT
and¥ C 3,®" C ® and T’ C T be the subsets on which H is
supported. We say H is semi-rich if the following two properties hold.

(1) Forall (x,y) € 3/ x®’, there exists z € T’ such that (x,y, z) €

H.
(2) Forall (x,z) € 3/ XTI, there existsy € ® such that (x,y,z) €
H.

Note that in the definition of semi-rich one of the three coor-
dinates is special. However, the location of the special coordinate
does not matter as we can permute the coordinates and study the
modified subset instead.

We now define the predicates that have these two properties.

DEFINITION 2.3. A predicate P: ¥ X ® X T — {0, 1} is said to be
linearly embedded into an Abelian group if and only if P~1(1) can
be linearly embedded in an Abelian group. P is called semi-rich if
P~1(1) is semi-rich.

Let (Q, u) be a probability space. Define the inner product on
this space by (f, g), = Exeplf(x)g(x)]. We will use the notation
Il pyp = Exe,,[lf(x)|p]1/1’ to denote the pt" norm of f. In order
to state our main analytical lemma, we need the following definition
of the noise operator.

DEFINITION 2.4. Let @ be a finite alphabet, and v be a measure on
®. For a parameter p € [0, 1], we define the p-correlated distribution
with respect to v as follows. For any y € ®, the distribution of inputs
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that are p-correlated with y is denoted by y’ ~ Tpy and is defined by
taking 'y’ = y with probability p, and otherwise sampling y’ ~ v.

As is often the case, we also view T, as an operator on functions,
mapping L2(®, v) to L2(®, v) by

(To9)(y)= E [9(y)].
y~Tpy

We then tensorize this operator, i.e., consider T?” which acts on
functions on n-variables, i.e. on L?(®", v®™). When clear from con-
text, we drop the ®n superscript from notation.

DEFINITION 2.5. Stabj(g) = (9. Tpg) Jon- We drop the superscript
v from Stab;(g), if it is clear from the context.

Let m = |®| and write the multilinear expansion of g with respect
to v, ie, g(y) = > g(0)ts(y), where £y = 1 is the

o€{0,1,...m-1}"
trivial character.” Then Staby (g) = > plel g(0)?, where
oe{0,1,...m-1}"

|o| is the number of non-zero entries in o. Thus, if g has small
weight on g(o) where |o| is small then Stab; (g) is small. Thus,
we use the notion of small stability of a function as a proxy for
high-degreeness of the function.

We now state the main analytical lemma that we use in the
analysis of our dictatorship test. The lemma is proved in the next
section (Section 3).

LEMMA 2.6. Forallm € N, ¢,a > 0 there exist £ > 0 and § > 0
such that the following holds. Suppose 1 is a distribution over X ®xT
whose support (a) is semi-rich, and (b) cannot be embedded in an
Abelian group. Further suppose that |X|, |®|, |T| < m, each atom in
i has probability at least a and marginals of p on 2, ® and T’ have
Sfull support. If f: 3" — [-1,1],g: " — [-1, 1], h: T" — [-1,1]
are functions such that

either Staby_#(f) < 6, or Stab;_g(g) < §, or Staby_¢(h) <6,

then Ex,y,z~y®" [f(x)g(Y)h(Z)] < e

2.1.1 Constraint Satisfaction Problems. We will use the notation
[R] to denote the set {1,2,...,R}. In our dictatorship test analysis,
we are going to need a few lemmas from Raghavendra’s thesis [22]
as black-box. Therefore, we try to use the same notations from his
thesis. Our analytical lemma (Lemma 2.6) that we prove in the next
section works only for the 3-ary CSPs. However, in this section,
we work with general k-ary P-CSPs. If we have the analogous
analytical lemma for any k-ary CSP, then the test designed in this
section can be combined with it to get a result for k-ary CSPs.

Raghavendra considered CSPs with mixed predicates. In this
work, we consider CSPs with one predicate P : sk = {0,1} (or
possibly mix of predicates with the same template P, as described
below). We formally define the P-CSP instance in the following
definition.

DEFINITION 2.7. For a given predicate P : ¥ — {0,1}, a P-CSP
instance is given by I = (V, P) where

- V is the set of variables.

9This is formally defined in the Section 2.1.2 below.
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- P is a probability distribution on the payoff functions P’ :
V= (0,1} of type,
P'(y) = P(yiy iy - -
i €V.

. yik))

for some iy, iy, ...,

REMARK 2.8. A P-CSP instance actually consists of a mix of payoffs
on the same template P. In the Boolean CSP, these mix of payoffs are
formed by using literals (or negations). Here are few examples to
illustrate this for Boolean CSPs as well as for general CSPs.

(1) In 3SAT, the template predicate P is P : {0,1}> — {0, 1} where
P(x,y,2z) = 0 iffx = y = z = 0. However, a 3SAT instance
contains 8 different payoffs, one for each literal pattern.

(2) In 3LIN, the template predicate P : {0,1}3 — {0,1} is such
that P(x,y,z) = 1 iff x @ y ® z = 1. In this case, the instance
also contains constraints of typex ® y & z = 0.

(3) In3LIN equations over a non Abelian group (G, -), the predicate
isP:G® — {0,1} such that P(x,y,z) = 1 iffx -y -z = 1g,
where 1 is the identity element of G. The instance contains
constraints of typex - y - z = g for some g € G.

Without the mix of payoffs, certain P-CSPs are trivial; for instance,
the all 1 assignment would satisfy every 3SAT and 3LIN instance.
Therefore we allow the use of such mix of payoffs in our instances.
Note that for certain predicates, like SNAE : {0, 1}3 — {0, 1}, defined
as 3ANAE(x,y,z) = 1 iff x,y, z are not all the same, instances without
any mix of payoffs are non-trivial to solve.

For a payoff P’, the set of indices iy, iy, . . ., i € V on which it
depends is denoted by V(P’). Let supp(#) be the set of payoffs in
3. Given a P-CSP instance 3, the objective is to find an assignment
y € 2V that maximizes the value of the instance which is defined
as follows:

val(y) = E_[P'(y)]-

(V,P) is defined as:

OpT(3J) = max val(y).
yEZ(v

Let A(Z) be the set of probability distributions on X.

The optimum value of the instance J =

2.1.2  Functions on Product Spaces. Let (Q, i) be a probability space
with |Q| = g and p has full support on Q. Define the inner product
between two functions f,g : Q@ — R on this space as follows:

(f,9) = Ex~plf (x)g(x)].

DEFINITION 2.9. An orthonormal ensemble consists of a basis of
real orthonormal random variables £ = {f, = 1, {1, . . .,{’q_l}, where
1 is the constant 1 function.

Henceforth, we will sometimes refer to orthonormal ensem-
bles as just ensembles. For an ensemble £ = {f{; = 1,£y,.. .,t’q_l}
of random variables, we will use LR t0 denote the ensemble ob-
tained by taking R independent copies of L. Furthermore, £ =
{[0(1), {’1(1), e {’(;l_)l} will denote the i independent copy of £.

Fix an ensemble L = {{p = 1,41,..., fq_l} that forms a basis for
L%*(Q). Given such a basis for L?(Q), it induces a basis for the space
L?(QR), given by the random variables

R
{fazzl—[ff,? ‘ 66{0,1,...,q—1}R}.
i=1
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Therefore, any function ¥ : QR — R has a multilinear expan-
sion

F(0)ts(2),
g-1}R

F(2) =

oe{0,1,...,
where {5 (2) = ]_[?:1 lo; (zi).
DEFINITION 2.10. A multi-index o is a vector (o1, 02, ...

{0,1,...,9 - 1R and the degree of o is denoted by |o| which is
equal to |O’| I{i € [R] | oi # 0}|. Given a set of indeterminates

X= {x |] €{0,1,...,9—1},i € [R]} and a multi-index o, define

the monomzal Xg as
K (i)
1
= | |in .
i=1

The degree of the monomial is given by |o|. A multilinear polynomial
over such indeterminates is given by

F(x) =
oe{0,1,...

.UR) €

Foxg.
g-1}R

Given any function ¥ : QR — R, with the multilinear ex-
pansion ¥(2) = X5cqo1,..g-1)R F(0)€5(z) with respect to the
orthonormal ensemble £ = {fy = 1,¢1,..., fq_l}, we define a cor-
responding formal polynomial in the indeterminates X = {xj(.i) lje
{0,1,...,g — 1},i € [R]}, as follows:

F(x) = ). 7(0)xe.

We will always use the symbol ¥ to denote real-valued function
on a product probability space QF. Further F(x) will denote the
formal multilinear polynomial corresponding to %. Hence F(LF)
is a random variable obtained by substituting the random variables
LR in place of x. For instance, the following equation holds in this
notation:

E [7(2)] = E[F(LY)].

zeQ
We now define the notion of the influence of a variable.

DEFINITION 2.11. For a function ¥ : QR — R over the space
(QR, 4®R), the influence of the jt" coordinate is given by:
Infj[F5p®F] = E  [Var el F (2],

z(-) eQR-
where 27 is a string missing the jth coordinate.

We have the following proposition that relates the average value
and the variance of a function to its Fourier coefficients.
PROPOSITION 2.12. For a function F : QR — R over the space
(QR, 4®RY, if F(2) = Y 5 F(0)ts(2) with respect to an orthonor-
mal ensemble L of (Q, 1), then E,cqr[F (2)] = Fo and Var[F] =
Za#o 77(3'
We also define the degree >
W>D .)T_ ®R

D weight of a function ¥ as follows:
-y
o:lo|>D

Another way of writing a function on a probability space as sum
of orthogonal functions is called the Efron-Stein decomposition.
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DEFINITION 2.13. Let (Q, y1) be a probability space and (QR, i®R)
be the corresponding product space. For a function f : QR — R, the
Efron-Stein decomposition of f with respect to the product space is
given by

R = Y fy(2),
BEIR]

where fg depends only on z; fori € B and forall p’ 2 f,a € of,
Ezepor [f/;(z) | zlg = a] =0.

f(zl,"'

We have the following facts about the Efron-Stein decomposition
of functions.

Fact 214, If f(2) = Spcir) f3(2) and g(2) = Zpcir) 9p(2)
are the Efron-Stein decomposztlons of f and g respectively w.r.t. the
product space (QF, ®R), then

(1) Tpf(2) = Lpcr) pP!f3(2) and
@) {f.9)uer = Xpc(r] . 9p) R

2.1.3  Vector valued functions. We will always use the symbol ¥ =
(F1,F2, .., 7‘"‘1) to denote a vector-valued function on a product
probability space QR Further, F(x) = (F,F,..., Fq) will denote
the formal multilinear polynomial corresponding to .

The notions of influence and degree > D weight can be extended
to the vector valued functions using the following definitions.

Infl T :U®R Z Inf; ?}
and
q
D1 u®R) = Z w>D [ 75 4],
j=1
2.1.4 Invariance Principle. Define functions f[o,l] :R - R and
£:RY — R as follows:
0 ifx<0
flog(x) =4 x fo<x<1,
1 ifx>1.

9
@) = ) (fioar(ay) —a))>
j=1

A crucial step in the analysis of the dictatorship test is to re-
place the discrete inputs with correlated Gaussians. The following
theorem from Mossel [19] states that one can do this provided the
functions do not have influential coordinates and the functions are
low-degree.

THEOREM 2.15 ([19]). Fix0 < a < 1/2 andd € N. Let (Q, ),
|Q| = m, be a finite probability space such that every atom has

probability at least a. Let £ = {t’(r) =1, t’(r) . t’(r)

thonormal ensemble of random variables over Q and g(’) = {9,

(r) (r)
1,4,..g"

variables.

Let F = (Fi, Fo,. ..,
mial on QR If Inf;[F; p®R] <
and Var[F;] <1 forall j € {1,...,

21} beanor-

(r) 2
} be an orthonormal ensemble of Gaussian random
F,;) denote a vector valued multilinear polyno-

t foralli € [R], W?P[F;u®R] < 6
d}, then the following holds.
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(1) For every function  : R — R that is thrice differentiable
with all its partial derivatives up to order 3 bounded uniformly
by Co,

[ELY(P(L™)] - Ely(F(G")]| < O (Dv% (Sa-l/z)D) +0(V6).

(2) For the function & defined above,

2/3
eler( - Bler & 1] < 0V (10a77)) 03B
In both the cases, the O(.) hides the constant Cy.

ProoF. The theorem follows from Theorem 4.1 from [19]. Trun-
cate the polynomial F to degree D to get a polynomial L. Using
Theorem 4.1 of Mossel [19], we have

E[Y(L(LR)] - B[ (LGF))]| < 2DCod* (8271/2)P 12

-0 (D\/? (801_1/2) ) .
Since ¢ is a smooth functional,

E[Y(L(LR)] - B (F(LR)]| < GollL(LR) - FLR)
=C (W2D [F;I—I®R]))1/2
< C()\/S.

Similarly, we get

EIV(L(GR)] - E[Y(F(GR)]| < CoVB.

Combining the three inequalities, we get the required bound for
(1.
The second item follows from Theorem 3.19 from [20]. Here

again, let L be the low-degree part of F truncated at degree D and
let H = F — L. Using Theorem 3.19 of [20],

[l - Bleceg ] < o V7 (10a1/2)D)2/3.
Using Lemma 3.24 from [20],
[ELECF(£R)] - BLEL(LR)|
< 2E[L(LYHLP] +E[H(LR)?
< 2\JB[L(LR)? ]\ E[H(LF)?] + E[H(LF)?)
<2V6+6<

\/_

where the second step follows from the Cauchy-Schwarz inequality.
Similarly, we get,

E[H(LR)2] + E[H(LR)?]

[ELEF(G™)] - BIELGR)I| < 38,

and the claim follows.
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2.2 SDP Relaxation

Given an instance 3 = (V, P), the basic semi-definite program-
ming relaxation of the instance is given in Figure 2. It consists of
vectors {bia}icy qes, distributions {pp} presypp(p) over the local
assignments (i.e., on V()Y and a unit vector b. Let val(V, 1) be
the objective value of the solution (V, y).

maximize
E E [P(x)] (1
PI~P xEppr
subject to
(bia.b;p) )
= Pr [xi=axj=b] P’ esupp(P),
X~ppr
i,j e VP,
abel (3)
(bia:bo) = |Ibiall} VieV,aes (4)
lIboll3 = 1 )
up € AV Py P’ € supp(P) (6)

Figure 2: Basic SDP relaxation of a P-CSP instance I = (V, P).

Following is a definition of (1, s) integrality gap instance.

DEFINITION 2.16. An instance 3 = (V,P) is a (1,s) SDP inte-
grality gap instance if the optimal value of the instance is at most s
and the optimal value of the basic SDP relaxation for J is 1.

For our dictatorship test to work, we require that the support
of every local distribution pp: is semi-rich and it is not linearly
embeddable in any Abelian group. Henceforth, we will assume that
the SDP solution satisfies this property.

2.3 Dictatorship Test

In this section, we study the dictatorship test for P-CSP instances
over a k-ary predicate P. Throughout this section, when k = 3, we
restrict ourselves to the predicates P that are semi-rich and that do
not satisfy any linear equation.

Let 3 = (V, P) be an instance of P-CSP, where P : ¥ — {0, 1}
and || = g. We will fix an arbitrary mapping from ¥ to {1, 2, ..., q},
denotedby¢:¥ — {1,2,...,q}.

Let (V, p) be a solution for the basic SDP relaxation of I which
is semi-rich and which does not satisfy any linear equation. For
each s € V, let Qg = (I, y5) be a probability space with atoms in =
where the probability of a € ¥ is ||bs,a||§. We assume that Qg has
full support for every s € V. However, our proof works even when
the support is a subset of X.

A function F : SR — 3 is called a dictator function if F(z) = z(?)
for some i € [R]. In Figure 3, we give the dictatorship test Dicty ,
for functions F : 3R — 3.

REMARK 2.17. There is one main difference between our test and the
dictatorship test given in [22]. In [22], in Step 2 (Figure 3), uniformly
random noise is added from sk This step loses the perfect completeness
of the dictatorship test.
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(1) Sample a payoff P’ ~ P.Let V(P’) = {s1,s2, .- -,
(2) Sample zpr = {251,232, Ces

Sk}

Zs;, } from the product dis-
tribution yP, , L.e,, independently for each i € [R],
(Z(l),ZSZ yeeesZ Sk)) ~ upr.

(3) Query the function values F(zy,), F(zs,), ...,

(4) Acceptiff P’(F(zs,),F(zs,),...,F(zs)) = 1.

F(zs;).

Figure 3: SDP integrality gap to a dictatorship test Dicty .

2.3.1 Completeness Analysis. The completeness of the test is de-
fined as follows,
Completeness(Dicty, ;) = m[kn] Pr[F passes Dicty,,].

F is the i? dictator

If the function is a dictator function, then the test accepts with
probability 1. The simple claim is proven below.

LEmMmA 2.18. Ifval(V, u) =1 then

Completeness(Dicty,,) = 1.

Proor. Consider a dictator function F(z) = zU) for some G
[R]. In this case, (F(zs,), F(zs,), .., F(zs,)) = (23,20, ..., 20).
When the payoff P’ ~ P is selected, then (zilj),zg), . .,zsi)) is
distributed according to ups. As the SDP value is 1, the distribution
upr is fully supported on P’~1(1) and hence the test passes with
probability 1. O

2.3.2  Soundness Analysis. We now move to prove the soundness
analysis of the test. Here we formally define the functions which are
far from dictator functions (also known as quasirandom functions).
Let Ag = {e1,e,..., eq} where e; is the jth basis vector of RY.

DEFINITION 2.19. For a function F : SR — 3, the corresponding
Ag-representation is a function F : R Ag given by

F(2) = eg(r(2))-

Therefore, in this setting F is a dictator function if ¥ (z) = e c(z0)
for some i € [R]. Any function ¥ : 3R — Ag4 can be interpreted
as a distribution on functions ' : =¥ — Ag as follows: For each
z € R, set the value of ¥’ (z) independently as

¥'(z) =e; with probability #(z); forall j € {1,2,...,

Thus, for each z € =R, we have F(z) = E[F'(2)].

Fix a function F : 3R — Ag4. For each s € V, let £ denote
the function ¥ interpreted as a function on the product probability
space (3R, u@F).

q}-

DEFINITION 2.20. A function F : =R Ag is said to be (7,0)-
quasirandom if for each s € V., it holds that

max Inf;[T;_sFs; u& Rl <7,

1<i<R

where Inf; [Fs; p2 S Zq Inf; [ﬁ,j;p?R] and Fs, j is the map F

restricted to the j*"-coordinate of Ag.
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The domain of payoff P’ can be extended from ¥ to Ag. To see
this, by the abuse of notation, first define a Ag-representation ofa
payoff P’ : 5k — {0,1} as P’ : A](; — {0, 1} where

P'(eq; €ay - ear) = P’ (¢ Ha1), ¢ (az), ....¢ 7 (ap)),

for all (a1, az,...,a;) € {1,2,.. .,q}k.

The function P’ can be extended to the domain AI(; by its multi-
linear extension. Again, by abusing the notation, define the exten-
sion P’ as:

k
P'(x1,%2,...,xp) = Z P'(0) l_[xi,g(cr,-)’ )
oexk i=1
for all x1,x2,...,x € Ag.
Define the soundness of the test as:

sup
T:ZR%Aq
F is (r,6)-quasirandom w.r.t.(V,u)

Soundness(Dicty, ) = Pr[¥ passes Dicty,,].

Extending P’ to R9K: We will extend the payoff function P’ fur-
ther to a real valued function on (R?)¥, by plugging the real values
in the expansion of P’ given in the Equation (7). This extension of
P’ is smooth in the following sense:

(1) All the partial derivatives of P’ up to order 3 are uniformly
bounded by Cy(g, k).
(2) P’ is a Lipschitz function with Lipschitz constant Cy(gq, k),

te V{x1,. ... xt} {yp, .y} € (RDK,

k
P/ (1, k) = P (g g)] < Colg k) D Nl = gl
i=1
Setting of parameters. Let £ > 0 be the parameter from Lemma 2.6.
Let § > 0 be a sufficiently small constant. Set 5 € (0, 1) to be the
smallest constant such that for all £ > 0,

1-9'a-a-9H*<n.

Note that as § — 0, (5) — 0. We will denote the smallest non-
zero probability of an atom in the SDP local distribution by a. As
the SDP instance is finite, we can assume that « > 0 independent
of R.

Local and Global Ensembles. Fix a given SDP solution (V, )
with value 1. We define the following local and global orthonormal
ensembles of random variables for every s € V as follows.

e Local Integral Ensembles £: The Local Integral Ensem-
ble L = {¢5 | s € V} for avariable s € V, &5 = {£s0
1,451,...,5q-1} is a set of random variables that are or-
thonormal ensembles for the space Q.

We also define the following global ensembles of random vari-
ables:

e Global Gaussian Ensembles G: The Global Gaussian En-
sembles G = {g, | s € V} are generated by setting g,

{950 = 1,951, - ., 9s,q-1} Where
gs,c = Z lsc(w)(bsw, ), Vee{l,...,q—-1},
WEeX
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Input: An SDP solution (V, p).

Setup: For each s € V, the probability space Qs = (, ys)
consists of atoms in 3 with the distribution s (a) = ||bs.q||>.
Let F denote the function obtained by interpreting the func-
tion ¥ : R — Aq as a function over QR Let Hs = Ty_sFs
for all s € V. Let Fs, H; denote the multilinear polynomials
corresponding to functions ¥, Hj respectively.

Rounding Scheme:

Step I: Sample R Gaussian vectors §(1), §(2), A §(R) with
the same dimension as V.

Step II: For each s € V, do the following:

(1) Foreach j € [R],letgi’]g =1landforce {1,...,q—1},
set
gs(,jc) = Z ts.c(0){bsw, §(1>>~
WEL
Let ggj) = (ggo) = 1,g£’]1),...,gs(,];_1) and g, =
2 R
9”98, g

(2) Evaluate the multilinear polynomial Hs with g as
inputs to obtain p; € R, ie., p, = Hs(g,).
(3) Round p, to p;.

ps = Scale(fjo,1]((P)1). flo11((Ps)2): - - - flo11 ((Ps)g)):

where
0 ifx<o0
fiong(x) =4 x fo<x<1,
1 ifx>1,
and
1 .
X1, ..., %g) if X5 x; #0,
Scale(xl,xz,,._,xq): Zixi(l q). Zl i
(1,0,0,...,0)  if ¥;x;=0.

(4) Assign the variable s € V a value a € ¥ with probabil-
ity (P:)g—l(a).
Step III: Output the assignment from Step I

Figure 4: Rounding Scheme Round.

and ¢ is a normal Gaussian random vector of appropriate
dimension.

The following lemma states that the local integral ensemble
and the global Gaussian ensemble have matching first and second
moments. We need this to apply the invariance principle in our
analysis below.

LEMMA 2.21. Foreverys € V, g is an orthonormal ensemble w.r.t.
the space Qs. Also, for any payoff P’ € P, the global ensembles G
match the following moments of the local integral ensembles L:

E[gs,c-gs',c'] = [fs,c (@) Ly o (0")]

E
(@,0")~ppr|(s.s)

forallce,c’ € {1,...,q — 1},s,s" € V(P’), where up/|(s,s’) is the
marginal distribution of up: on the coordinates of s, s’.
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Proor. Forany s,s” € V andc,c¢’ € {1,...,q — 1}, we have

Elgsc sl =E| D e(@)bsw §) D toe (@) by, O

WEX W' ER

D t,0(0), (0 E [(bsar ©)(bsr s ©)]

W, €Y

Z lsc (w)fs',c’ ((u') <bs,w, bs’,w’>~

@, €Y

®

Now, when s = s/, for  # @', (bs,¢, bs o) = 0 because of the SDP
constraints (3). Therefore, in this case

D toc(@)ts.e(0) Ibsoll

WEL
Ep [fs,c(w)[s,c’(w)] = {fsc, fS,C/>ﬂ5:

w~

E[gs,cgs,c’]

which is 1 when ¢ = ¢’ and 0 otherwise. This shows the orthonor-
mality of g;. Coming back to the Equation (8), again by the SDP
constraints (3), the inner-product (bs, , by ) is precisely the prob-
ability of (w, w”) according to the distribution pp:|(s,s”) for any

payoff P’ containing s and s’. This proves the lemma. O

Let Round#(V, p) be the expected value of the assignment re-
turned by the rounding algorithm in Figure 4. In this section, we
prove the following soundness lemma.

LEMMA 2.22. Let k = 3 and assume that the SDP solution is semi-
rich and does not satisfy any linear equation. Then, for any (t,)-
quasirandom function F,

Soundness(Dicty, ;) < Roundg#(V, ) + 05 . (1).

The notation o5 (1) means that it goes to 0 as § — 0 and 7 — 0.
Therefore, in this case the acceptance probability of the test is upper
bounded by the integral value of the given instance. This shows that
if there exists an (1, s) integrality gap instance of Max-P-CSP, then
there exists a dictatorship test with completeness 1 and soundness
s + ¢ for any constant ¢ > 0.

REMARK 2.23. If we can extend our main analytical lemma to other
predicates, then we can remove the condition on the predicate from
Lemma 2.22.

The acceptance probability of the test for a given function ¥ is
given by:

Pr[F passes Dicty ]
[P’(Tsl (zsl), Tsz (232), cees Tsk (Zsk))]~

= E E
PP zp

We will prove a series of claims which will help us relate the
probability to Roundg(V, y). We begin with the following claim
which shows that we can replace ¥ with its noisy version T;_s¥.
Here, we use the main analytical lemma (Lemma 2.6).

CraiM 2.24 (CHANGING F 1o ‘H). Let k = 3 and assume that the
SDP solution is semi-rich and does not satisfy any linear equation.
Then for every P’ € P,

Ezp [P,(Tsl (Z51 ), Tsz (Zsz): cees 7:3k (Zsk))] -

Bz, [P/ (Hy, (20)). Hoy (25)). ... sy (z5))] | <70
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Proor. Consider the following expression.

k
P/(Fs5, (25), Foy (25,)s- . Fp(25)) = Y P(0) | | Fsy0 (25))-

oexk Jj=1

We will show that for all P’ € P and o € 3,

k k
FIZ ZE/ ]—lﬁj,aj(zsj) _ZE/ ]—[HSj,O'j(ZSj) < ’7
Ph=1 =1
Let us define T'j for j' =1,...,k as follows:

vy
EZp/ Hj‘zl 7—{81',0'1' (ZSj) H];:j' 7:5‘_7,0']- (ZSj)] -
Ezp H§:1 Wsj,cj (ZSj) H§=j/+1 ﬂj,aj (Zsj)]
By triangle inequality, I' < % Ijr.

T e

1
EZP/ H§:l 7.{51',0'] (sz) H_];:jf 7'—51-,07 (sz)] -
EZP/ H:;:l q—lsj',dj (ZSJ') H§=j’+l '7751-,0']- (ZS]')]

B A/(?;dsj/,gj; (zsj/) _Wsj/,aj/ (Zsj/))'

zw | 1) Hijo(25) T1 oy Fsjo; (25))

Jj=1
E 7—{3]-,0'] (ZSj) )
zpr

(Id - T1-§)Fsj .0 (25, - Hj-:_ll
n’;:jq.l 7:5_,',0']' (ZSJ')

Here, Id is the identity operator. Now, the function Q := (Id —
Tl_g)ﬂj,,gj, (zsj,) is a function Q : 38 — [0, 1] that satisfies the
property of being a ‘high-degree’ function: Using the Efron-Stein
decomposition of Q and using Fact 2.14, we have

QT gQer = >, (1= -1 -9)EHII(Fs, 0)sll5-

SC[R]

Iy

Now, (1 - &) (1 - (1-6)%)? <  for every ¢ > 0. Therefore,
QT gQuor <1 D I(Fsy0,)sl3 < 1(8).
7 SC[R]

Hence, the product inside the expectation satisfies the hypothesis
of Lemma 2.6, with Stab,_#(Q) < 7(J). Applying the lemma, we
conclude that I';y < 1(5)/k, where (5) — 0 as § — 0. Therefore,

We now switch to the multilinear polynomials. By definition, we
have

ZEI [P,((I’{sl (zsl), Wsz (Zsz)s cees ﬂsk (Zsk))]

E [P'(Hs, (¢s,), Hs, (£s,), . . ., Hg (£5,))].

p’

Here, Lps is the joint distribution of the local ensembles based
on the distribution pp/. We now apply the Invariance Principle to
replace the Integral Ensembles with the Gaussian Ensembles.

Cram 2.25. (Moving to the global Gaussian ensembles) Using the
invariance principle, for every P’ € P, we have

E£§, [P,(Hsl ([Sl)’ HSz ((Sz)s AR HSk ((Sk))]_

, < Toé‘,a(l).
Egg{ [P (Hsl (gsl )’ Hsz (932)’ e Hsk (gsk))]
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Proor. This claim follows directly from the Invariance Principle,
i.e., from Theorem 2.15, and using Lemma 2.21. Here, the maximum
influence of the functions is at most 7 and any non-zero probability
of an atom is at least . Also, for D = O(log;_s 7), the degree > D
weight of the functions H is at most O(r). This is as follows.

S (Hoy

WP [ s p K]

o:|lo|>D

s 2
= ) a-9llFERy,<a-9P <
o:lo|>D

]

Therefore, W>P [H; u®R] = Z?:I WP H, jp®R) < g ¢
O(7).

The final claim shows that, as far as the multilinear polynomial
evaluations are concerned, the rounding step (Step II (3)) does not
change the expectation by much if the function ¥ is a quasirandom
function.

CrAIM 2.26. (Analyzing the loss due to truncation and scaling) For
every payoff P’ € P,

EgR [P/(Hsl(gsl)*’HSZ(gsz)*s“':HSk(gsk)*)]_ < Os.4(1)
’ ST~ .
EQR[P (HSl(gsl)’Hsz(gsz)’”~’Hsk(gsk))]

Proor. (f{sj = T1_57:sj is over the domain 3R and has the
range Ag. The difference between the first and the second ex-
pression (rounding error because of scaling and truncation) is
bounded by O(Co.q) - Seny (p) EI£(Hs(g,))] [22, Claim 7.4.2],
where £(a) = X (fjo,1](aj) - aj)2 and Cy is an absolute constant
from the smoothness property of the payoff P’. We know that
E[£(Hs(¢5))] = 0, as Hs(£s) € Ag. Now, we can apply the invari-
ance principle to conclude

E [£(Hs(g,))] - E [E(H(£s))]| < 100D,
gR .LR

p’

AsE[£(H(¢5))] = 0, the claim follows. O

Proof of Lemma 2.22. We are now ready to prove the soundness
of the test: The value returned by the rounding scheme is
Round#(V, p)

’ * * *
P'EPQER [P (Hsl(gsl) !HSZ(gsz) 3"~’Hsk(gsk) )]

and the soundness of the test is given by the following expression:

Pr[F passes Dicty ]
E E [P/(Fs, (z5)), Fs, (2s5,), ., Fsp (zs))]-
PP zp

For k = 3, using the Claims 2.24, 2.25, 2.26 that we proved earlier,
we can relate the two quantities as follows:

Pr[# passes Dicty,,] < Round#(V, p) +1(6) + 10521
Now, (8) — 0 as § — 0. Therefore, we get
Pr[ passes Dicty ;| < Round#(V, p) + 05, .(1),

as required.
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3 THE MAIN ANALYTICAL LEMMA

In this section, we give an overview of the proof our main analytical
lemma (Lemma 2.6). The reader is referred to the full-version of the
paper for the complete proof .

We begin by addressing a more specialized case, in which the
requirement of semi-rich support of the distribution is replaced
with the stronger condition that the support of the distribution is a
union of matchings:

DEFINITION 3.1. WesayasetS C IX®XT is a union of matchings
if there exists 3’ C 3 and a collection of matchings My C ® X T, one
for each x € ¥/, such that

S= U {x} X M.
xex’

The version of Lemma 2.6 for union of matchings is Lemma 3.2
stated below; another difference is that below we introduce some
asymmetry in the roles of f, g and h, and we need the stability of
either g or h to be small. In the full-version of the paper, we explain
the slight adaptations that allow our argument to go through in the
case of semi-rich support, and then explain how to generalize the
statement to the case the stability of f is small (thereby establishing
Lemma 2.6).

LEMMA 3.2. Forallm € N, &,a > 0 there exist £ > 0 and § > 0
such that the following holds. Suppose y is a distribution over XX ®xT'
whose support (a) is a union of matchings, and (b) cannot be embedded
in an Abelian group. Further suppose that |Z|,|®|,|T| < m and
each atom in yi has probability at least ar. Then, if f: 2" — [-1,1]
g: " — [-1,1], h: T — [-1, 1] are functions such that

e Staby_z(g) < & orStab;_g(h) < 6.

Then |Exyz~pen [f(X)9(y)R(2)]| <&

As the roles of g and h will be interchangeable in our argu-
ments, without loss of generality we shall focus on the case that
Stab;_¢(g) < J throughout this section. Before proceeding to the
formal argument, we begin with a quick overview of the proof that
outlines the main components involved.

Proof overview. The proof of Lemma 3.2 consists of several steps.
We think of supp(u) as a graph between ® and I, wherein edges
are labeled by elements of ¥ in the natural way. Our initial premise
is that for each x € X, the collection of edges labeled by x forms
a matching, and we perform several steps in order to improve the
structure we have on that graph (by possibly increasing the size of
the alphabet ¥).

(1) Let Ty € {0,1}®*T be the permutation matrix corresponding
to the matching labeled by x. First, we show that by moving
to a different distribution p’ satisfying similar properties
to u’, we may assume that not only the edges of Ty lie in
the graph of p’, but rather also the edges of Ty, T)g Ty, for
any x1, x2,x3 € 2. In other words, we may compose various
matchings and “insert” them into the support of our distri-
bution. Performing this step ¢ = Op,(1) times, we get that
as the graph of y is connected, we would end up with the
complete bipartite graph between ® and I'. We now move
on to a similar looking expectation to the one in the main
lemma but for p’, which is a distribution over > x®xT.
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(2) We next reduce the size of the alphabet ! to be smaller. Note
that for each ¥ € 3¢, the edges in the graph of y’ labeled by
X form a matching. We show that if for ¥, X’ these matchings
are not edge disjoint, then we may glue together the symbols
%, %X’ and modify the distribution y” and the functions f, g, h
(in a way that preserves their various properties) so that
the expectation does not drop too much. The edges of the
new symbols will consist of the union of the edges of the old
symbols, and the new alphabet for x is &’ C =f
We note that in such operation, if the matchings correspond-
ing to X, X’ were not identical, then the edges corresponding
to the new symbol will not form a matching. We show that
in that case, one may further do identification of symbols in
® and T that preserve the properties of the distributions and
the functions, and keeps the expectation high. Performing
such identification steps sufficiently many times, one returns
to the case wherein for each x € 3’ the edges corresponding
to x form a matching. We note that each time we perform
such step, the alphabet of y or z drops by at least 1, so in
total we will have at most 2m such steps.
We thus reach new alphabets X/, ®’,T’. We consider further
operations of composing three x-matchings, i.e. moving from
3/ to 3. We say that this move is worthwhile if doing
it, and then the subsequent identifications, the alphabets
@', T’ will shrink further. As long as performing this move
is worthwhile, we do so and otherwise we proceed to the
next step.
After performing Op, (1) steps as in the previous item, we
reach to the state wherein the alphabets are "/, ®”” and
I'”, and it is no longer worthwhile to execute the previ-
ous step. This means that for every (x1,x2,x3) € £”% and
(x4, x5, X6) € =%, the permutations Ty, T,ﬁz Ty, and Ty, T;S Ty,
are either identical, or are edge disjoint (otherwise we would
be able to execute the previous step once more). We use this
structure in order to identify a non-Abelian group structure.
More specifically, we construct a group (G, -) that has no
representations of dimension 1 (besides the trivial represen-
tation), such that our expectation is
E [£"(g91)9" (92)h" (g3)].

(91.92.93):93=9192
Here, f’,g’, h’ are really the same as the functions f, g, h we
have, except that they interpret their input as elements from
G. We argue that the fact that g’ is highly noise sensitive
implies that almost all of the mass of g’ (with respect to the
representation theoretic Fourier decomposition over G) lies
on the high degrees. We use this fact along with basic Fourier
analysis in order to give an upper bound on the expectation
above that vanishes as &, § — 0 (uniformly in n), and hence
finish the proof.

®)
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