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ABSTRACT

We consider the 𝑃-CSP problem for 3-ary predicates 𝑃 on satisfi-

able instances. We show that under certain conditions on 𝑃 and

a (1, 𝑠) integrality gap instance of the 𝑃-CSP problem, it can be

translated into a dictatorship vs. quasirandomness test with perfect

completeness and soundness 𝑠 + 𝜀, for every constant 𝜀 > 0. Com-

pared to Ragahvendra’s result [STOC, 2008], we do not lose perfect

completeness. This is particularly interesting as this test implies

new hardness results on satisfiable constraint satisfaction problems,

assuming the Rich 2-to-1 Games Conjecture by Braverman, Khot,

and Minzer [ITCS, 2021]. Our result can be seen as the first step

of a potentially long-term challenging program of characterizing

optimal inapproximability of every satisfiable 𝑘-ary CSP.

At the heart of the reduction is our main analytical lemma for

a class of 3-ary predicates, which is a generalization of a lemma

by Mossel [Geometric and Functional Analysis, 2010]. The lemma

and a further generalization of it that we conjecture may be of

independent interest.
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1 INTRODUCTION

Constraint satisfaction problems (CSPs) are some of the most fun-

damental problems in computer science. Given a predicate 𝑃 :

Σ
𝑘 → {0, 1}, for some alphabet Σ, a 𝑃-CSP instance consists of

a set of variables 𝑥1, 𝑥2, . . . , 𝑥𝑛 and a collection of local constraints

𝐶1,𝐶2, . . . ,𝐶𝑚 . Each constraint is of the type 𝑃 (𝑥𝑖1 , 𝑥𝑖2 , . . . , 𝑥𝑖𝑘 ). The
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constraints might involve literals instead of just the variables.1 An

algorithmic task is to decide if there exists an assignment to the vari-

ables that satisfies all the constraints. In a related problem, called

the Max-𝑃-CSP problem, the task is to find an assignment to the

variables that satisfies the maximum fraction of the constraints. An

𝛼-approximation algorithm is a polynomial-time algorithm which

always returns an assignment that satisfies at least 𝛼 ·Opt fraction

of the constraints, where Opt is the value of the optimum assign-

ment. The focus of the current work is on approximability of fully

satisfiable instances.

A systematic study of the complexity of solving CSPs was started

by Schaefer in 1978 [23] who showed that for every 𝑃 over a 2-

element alphabet, the problem of checking satisfiability of a 𝑃-CSP

is either in P or is NP-complete. A famous Dichotomy Conjecture

of Feder and Vardi [10], which was resolved recently in huge break-

throughs by Bulatov and Zhuk independently [8, 25], states that

for every 𝑃 , checking satisfiability of a 𝑃-CSP is either in P or is

NP-complete.

However, when it comes to designing optimal approximation

algorithms for Max-𝑃-CSP on fully satisfiable instances, the ques-

tion is wide open. The PCP Theorem [1, 2, 11] proved in the early

90s shows that it is NP-hard to approximate many 𝑃-CSPs within a

constant factor 𝛼 < 1. This was vastly improved in a seminal result

by Håstad [13] for certain CSPs. Håstad showed that for many CSPs,

it is NP-hard to do better than the approximation factor achieved

by a random assignment. More specifically, he showed that 3SAT

cannot be approximated better than 7
8 + 𝜀 for any constant 𝜀 > 0 in

polynomial time unless P = NP. Note that if we select a random

assignment, then it satisfies 7
8 -fraction of the clauses in expectation.

The result proved in [13] is stronger than what is stated ś even if

we know that a given instance is fully satisfiable, i.e., there exists

an assignment that satisfies all the clauses, it is NP-hard to come

up with an assignment that satisfies more than ( 78 + 𝜀)-fraction of

the clauses for any constant 𝜀 > 0.

Håstad also showed that it is NP-hard to find an assignment

to a given 3LIN instance2 that satisfies more that ( 12 + 𝜀)-fraction
of the constraints, even if we are guaranteed that there exists an

assignment that satisfies (1 − 𝜀)-fraction of the constraints. This is

interesting because unlike 3SAT, we can in fact find an assignment

that satisfies all the constraints of a given 3LIN instance, if there

exists one, in polynomial time. Thus, knowing that a given instance

of 𝑃-CSP is fully satisfiable, in principle, can be used to design

better approximation algorithms for Max-𝑃-CSPs. In this paper,

we study the inapproximability of fully satisfiable instances. On

the other hand, as we will explain next, if the instance is almost

satisfiable, then by Raghavendra’s work [21], we know the precise

1See Definition 2.7 and Remark 2.8 for more details.
2This CSP is over the Boolean domain and constraints are of the type 𝑥𝑖1 ⊕𝑥𝑖2 ⊕𝑥𝑖3 =

1/0.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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approximation threshold for every 𝑃-CSP and the optimal algorithm

is given by semi-definite programming.

In order to gain better understanding of complexity of approxi-

mation algorithms for various optimization problems, Khot [17] in

2002 proposed the Unique Games Conjecture (UGC). Since then, for

various optimization problems, we now know the precise approxi-

mation factor that one can achieve in polynomial time assuming

the UGC. Max-Cut is one of the simplest CSPs in which the con-

straints are of the type 𝑥 ⊕ 𝑦 = 1. Goemans and Williamson [12]

gave a 𝛼𝐺𝑊 -approximation algorithm for Max-Cut problem where

𝛼𝐺𝑊 ≈ 0.878. Surprisingly, [18] showed that the approximation

algorithm by Goemans and Williamson is tight assuming the UGC.

Their hardness result relied on the ‘Majority is Stablest’ theorem

which was proved in [20].

For general CSPs, Austrin and Mossel [3] gave a very simple

sufficient criterion for a predicate 𝑃 to be approximation resistant.

A predicate 𝑃 is called approximation resistant if it is NP-hard (or

UG-hard) to achieve an approximation algorithm better than the

random assignment algorithm. 3SAT and 3LIN predicates described

above are examples of approximation resistant predicates. Austrin

and Mossel showed that if there exists a distribution supported only

on the satisfying assignments in 𝑃 , which is balanced and pairwise

independent, then 𝑃 is approximation resistant assuming the UGC.

The Max-Cut hardness result was beautifully generalized to

all constraint satisfaction problems by Raghavendra [21]. More

specifically, he showed that for any 𝑃-CSP problem, if there exists

a (𝑐, 𝑠) basic SDP integrality gap instance3, then it is UG-hard to

find an assignment that satisfies (𝑠 + 𝜀) fraction of the constraints,

even if the given instance is (𝑐 − 𝜀)-satisfiable, for every constant

𝜀 > 0. For all 𝑐 ∈ (0, 1], let 𝑠 (𝑐) be the infimum value such that

there exists an (𝑐, 𝑠 (𝑐)) integrality gap instance. By definition, the

SDP relaxation promises 𝑠 (𝑐) satisfying assignment on every 𝑐-

satisfiable instance. Raghavendra gives the rounding algorithm that

actually finds the 𝑠 (𝑐)-satisfying assignment. Thus, Raghavendra’s

result gives a complete answer to the complexity of approximating

Max-𝑃-CSP assuming the UGC. However, it does not imply hardness

on instances that are fully satisfiable. This is because in translating

the integrality gap parameters (𝑐, 𝑠) to hardness parameter, there

is always a loss of some small constant 𝜀 > 0 in the completeness

parameter.

The most important building-block in Raghavendra’s result (and

also in many prior works) is the dictatorship test. A function 𝑓 :

Σ
𝑛 → Σ is called a dictator function if it depends only on one

variable. A dictatorship test is a procedure which queries 𝑓 at a few

(correlated) locations randomly and based on the function values at

these locations, it decides if 𝑓 is a dictator function or far from any

dictator function (also referred to as quasirandom functions). We

briefly describe the notion of being far from dictator functions here.

Influence of a coordinate 𝑖 in a function 𝑓 is the probability that for

a random input (𝑥1, 𝑥2, . . . , 𝑥𝑛), 𝑓 changes its value if we change

the 𝑖𝑡ℎ coordinate. Note that dictator functions have one coordinate

whose influence is 1. A function is called far from dictator functions

if for every coordinate 𝑖 , the influence of the coordinate 𝑖 in 𝑓 is

small.

3See Definition 2.16 for the formal definition.

There are three important properties of the test which are useful

in getting hardness of approximation result for Max-𝑃-CSP. The

first one is the completeness parameter 𝑐 Ð this is the probability

that the test accepts any dictator function. The second property

is the soundness parameter 𝑠 Ð this is the probability with which

the test accepts far from dictator functions. The third property is

the decision predicate that the test uses in accepting or rejecting

the function 𝑓 . If the decision predicate is 𝑃 and the test has com-

pleteness 𝑐 and soundness 𝑠 , then such a test can be translated into

a UG-hardness result for Max-𝑃-CSP with completeness (𝑐 − 𝜀)
and soundness (𝑠 + 𝜀), for any constant 𝜀 > 0. In other words, it

is UG-hard to find an assignment that satisfies (𝑠 + 𝜀) fraction of

the constraints, even if the given instance is (𝑐 − 𝜀)-satisfiable, for
every constant 𝜀 > 0.

Raghavendra proved his result by designing a dictatorship test

starting with a (𝑐, 𝑠) integrality gap instance for Max-𝑃-CSP such

that the test has completeness (𝑐 − 𝜀) and soundness (𝑠 + 𝜀), for
any constant 𝜀 > 0. Therefore, his test loses in the completeness

parameter and hence cannot be used in proving hardness result on

satisfiable instances. Note that even if the completeness parameter

of the test is 𝑐 , because of the conjectured hardness of UniqueGames,

one still loses small constant 𝜀 in the completeness parameter of

the final UG-hardness result.4 In order to save this loss, Braverman,

Khot, and Minzer [7] proposed a Rich 2-to-1 Games Conjecture and

if we use this instead of Unique Games, then there is no loss in the

completeness parameter. Therefore, it is important that we do not

lose anything in the completeness parameter when designing the

dictatorship test.

In this work, we initiate a systematic study of completely char-

acterizing the precise approximability of every 𝑘-ary CSP on satis-

fiable instances (recognizing, of course, that the prior works have

obtained such a characterization for specific predicates, e.g., 3SAT).

In order to answer this challenging question, it was necessary first

to understand the complexity of checking satisfiability of CSPwhich

is the famous Dichotomy Conjecture. Now that this conjecture is re-

solved, we can embark on the study of approximability of satisfiable

CSPs.

As with the case with 3SAT and 3LIN, a predicate being linear

makes a big difference on the complexity of the CSP. Addressing

this issue of linearity is also a challenging aspect in the proof of

the Dichotomy Conjecture. In this work, we take the first step by

considering special class of non-linear predicates. We show how

to convert any (1, 𝑠)-integrality gap instance of a 3-ary CSP to a

dictatorship test with completeness 1 and soundness 𝑠 + 𝜀, for any

constant 𝜀 > 0. For our conclusion to hold, we need a few additional

properties from the predicate as well as from the integrality gap

instance that we describe next.

• Predicates not satisfying any linear embedding: Given a pred-

icate 𝑃 : Σ3 → {0, 1}, it is said to satisfy a linear equation

if there exists an Abelian group (𝐺, +) and 3 embeddings

𝜎 : Σ → 𝐺 , 𝜙 : Σ → 𝐺 and 𝛾 : Σ → 𝐺 such that the fol-

lowing hold: At least one of the embeddings is non-constant

and for every tuple (𝑥,𝑦, 𝑧) ∈ 𝑃−1 (1), 𝜎 (𝑥) +𝜙 (𝑦) +𝛾 (𝑧) = 0

where 0 is the identity element of 𝐺 .

4Unique Games can hard only on almost satisfiable instances. Therefore, any hardness
from Unique Games loses perfect completeness.
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• Semi-rich predicates: A predicate 𝑃 : Σ3 → {0, 1} is called
semi-rich if for each (𝑥,𝑦) ∈ Σ × Σ, there exists a 𝑧 ∈ Σ such

that (𝑥,𝑦, 𝑧) ∈ 𝑃−1 (1). Also, for every (𝑥, 𝑧) ∈ Σ × Σ, there

exists a 𝑦 ∈ Σ such that (𝑥,𝑦, 𝑧) ∈ 𝑃−1 (1).
• SDP solution that is semi-rich and that is not linearly embed-

dable:An SDP solution for a given 𝑃-CSP instance consists of

a local distribution for each constraint. We say the SDP solu-

tion is semi-rich and is not linearly embeddable if the support

of every local distribution is semi-rich and is not linearly

embeddable in any Abelian group (See Definitions 2.1, 2.2

and 2.3).

We now state our main theorem.

Theorem 1.1. Let 𝑃 : Σ3 → {0, 1} be any predicate that satisfies
the following conditions. (1) 𝑃 does not satisfy any linear embedding,

(2) 𝑃 is a semi-rich predicate, and (3) there exists an instance of 𝑃-CSP

that has a (1, 𝑠)-integrality gap for the basic SDP relaxation and an

optimal SDP solution is semi-rich and is not linearly embeddable.

Then for every 𝜀 > 0, there is a dictatorship test for 𝑃 that has perfect

completeness and soundness 𝑠 + 𝜀.

We do not believe that the semi-rich condition is really needed

in the theorem, but this is what we could show currently.

In order to focus on designing new dictatorship tests and a new

way to analyze the tests, in this work we will not discuss in detail

the application of this towards getting the conditionalNP-hardness

results. However, for completeness, we mention the following im-

portant corollary of our main theorem. This follows from a recent

work by Braverman, Khot, Lifshitz and Minzer [6].

Corollary 1.2. For a predicate 𝑃 satisfying the conditions from

Theorem 1.1, assuming the Rich-2-to-1 Games Conjecture with perfect

completeness, for every constant 𝜀 > 0, it is NP-hard to find an

assignment to a Max-𝑃-CSP instance with value 𝑠 + 𝜀 even if the

instance is fully satisfiable.5

Note that in Corollary 1.2, the first condition from the hypothesis

is necessary for such a statement to hold. This can be seen from the

Max-3LIN problem on an Abelian group 𝐺 .6 This predicate has a

linear embedding as well as there exists an instance with a SDP inte-

grality gap of (1, 1
|𝐺 | + 𝜀), for every constant 𝜀 > 0. However, if the

instance is satisfiable, then one can find the satisfying assignment

in polynomial time using Gaussian elimination.

It might be instructive to consider a couple of examples of predi-

cates that satisfy the first two conditions.

(1) Linear equations over a quasirandom group: Fix any group

(𝐺, ·) such that any non-trivial irreducible representation

of 𝐺 has dimension greater than 1. Consider the predicate

𝑃𝐺 : 𝐺3 → {0, 1} where 𝑃−1
𝐺

(1) = {(𝑥,𝑦, 𝑧) | 𝑥 · 𝑦 · 𝑧 = 1𝐺 },
where 1𝐺 is the identity element. The fact that 𝐺 does not

have any non-trivial representation of dimension 1 implies

that 𝑃 does not satisfy any linear embedding. Also, it is easily

observed that the predicate is semi-rich.

(2) Arithmetic progression over a quasirandom group: For a sim-

ilar group as above, consider a predicate 𝑃𝐴𝑃 : 𝐺3 → {0, 1}
5A notion of negation or literals or a mix of predicates is necessary for this result and
Theorem 1.1 to hold (See Remark 2.8).
6Here, the predicate is {(𝑥, 𝑦, 𝑧) | 𝑥 + 𝑦 + 𝑧 = 0} where 0 is the identity element in
𝐺 .

where 𝑃−1
𝐴𝑃

(1) = {(𝑥, 𝑥 · 𝑔, 𝑥 · 𝑔2) | 𝑥, 𝑔 ∈ 𝐺}. It can be

shown that this predicate does not satisfy any linear em-

bedding. To see that 𝑃𝐴𝑃 is semi-rich, we need to permute

the coordinates. Note that permuting the coordinates of a

predicate does not really change the complexity of the corre-

sponding CSP problem. By the change of variables 𝑥 · 𝑔 = ℎ

we can write 𝑃−1
𝐴𝑃

(1) = {(ℎ · 𝑔−1, ℎ, ℎ · 𝑔) | ℎ,𝑔 ∈ 𝐺}. We

can permute the coordinates to get the following predicate

𝑃−1
𝐴𝑃

(1) = {(ℎ,ℎ · 𝑔−1, ℎ · 𝑔) | ℎ,𝑔 ∈ 𝐺}. Now, it is easily
observed that the predicate is semi-rich.

Remark 1.3. A dictatorship test with optimal parameters (in fact,

the optimal NP-hardness result for satisfiable instances) for the pred-

icate 𝑃𝐺 was shown by Bhangale and Khot [4]. Our main theorem

gives new results for the predicate 𝑃𝐴𝑃 (and many more). The predi-

cate 𝑃𝐴𝑃 is fundamentally different from 𝑃𝐺 as it does not support

any pairwise-independent distribution, whereas 𝑃𝐺 does.

1.1 Related Work

Many hardness results on satisfiable CSPs are known for specific

CSPs. In this section, we state these results. Here, 𝜀 > 0 is an ar-

bitrary small constant. Håstad [13] in his seminal result showed

that for every 𝑘 ⩾ 3, 𝑘-SAT is NP-hard to approximate within a

factor of 1 − 1/2𝑘 + 𝜀, even if the instance is satisfiable. Håstad and

Khot [14] proved that Boolean CSPs on 𝑘 variables are NP-hard

to approximate within ratio 2𝑂 (𝑘1/2 )

2𝑘
. For every prime 𝑝 , they also

showed the hardness result for CSPs over an alphabet of size 𝑝 ,

where the hardness factor is
𝑝𝑂 (𝑘1/2 )

𝑝𝑘
. Huang [15] improved the

result for Boolean CSPs to the factor 2𝑂̃ (𝑘1/3 )

2𝑘
. Brakensiek and Gu-

ruswami [5] formulated a problem called the ‘V Label Cover’ to

improve these results on satisfiable 𝑘-ary CSPs. Towards this, as-

suming the hardness of the V Label Cover, they showed that there

is an absolute constant 𝑐0 such that for 𝑘 ⩾ 3, given a satisfiable

instance of Boolean 𝑘-CSP, it is hard to find an assignment satis-

fying more than 𝑐0𝑘
2/2𝑘 fraction of the constraints. These results

are non-trivial only for large values of 𝑘 .

Towards getting an improved hardness result for Boolean sat-

isfiable 3-CSPs, Håstad [16] showed that the predicate NTW7 is

NP-hard to approximate within a factor of 5/8+ 𝜀. For larger alpha-
bet, Engebretsen and Holmerin [9] showed that 3-ary CSPs over

an alphabet of size 𝑞 is NP-hard to approximate within a factor of
1
𝑞 + 1

𝑞2
+ 𝜀. Tang [24] showed a conditional result with the hardness

factor 1
𝑞 + 1

𝑞2
− 1

𝑞3
+ 𝜀.8 Very recently, the first two authors [4]

improved these results for 3-ary CSPs where where they showed

that it is NP-hard to approximate satisfiable 3-ary CSPs over an

alphabet of size 𝑞 to within a factor of 1
𝑞 + 𝜀, for infinitely many 𝑞.

1.2 Techniques

For a given predicate 𝑃 , we are interested in finding the maximum

𝛼𝑃 such that (1) there exists an approximation algorithm that satis-

fies at least 𝛼𝑃 fraction of the constraints on satisfiable instances,

7The satisfying assignments for the NTW (Not-Two-Ones) predicate are all 3 bit strings
such that the number of 1s in them is not two.
8The theorem in [9] holds for every 𝑞 ⩾ 3, and the theorem in [24] holds for every
𝑞 ⩾ 4.
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and (2) for all 𝜀 > 0, it is hard to find (𝛼𝑃 +𝜀)-satisfying assignments

on satisfiable instances.

In order to answer the above question, the starting point is the

Dichotomy Theorem which gives a full characterization of predi-

cates for which the corresponding CSP is NP-complete or is in P

(i.e., deciding if 𝛼𝑃 = 1 or 𝛼𝑃 < 1). The characterization is based on

whether a certain non-trivial polymorphism exists for a given pred-

icate. For a given predicate 𝑃 : Σ𝑘 → {0, 1}, a function 𝑓 : Σ𝑛 → Σ

is called a polymorphism if for every 𝑘 × 𝑛 matrix constructed by

letting every column to be an arbitrary satisfying assignment to 𝑃

and letting 𝑥1, 𝑥2, . . . , 𝑥𝑘 ∈ Σ
𝑛 be the rows of the matrix, it is the

case that (𝑓 (𝑥1), 𝑓 (𝑥2), . . . , 𝑓 (𝑥𝑘 )) is also a satisfying assignment

to 𝑃 . It is easy to see that a dictator function, i.e., 𝑓 (𝑥) = 𝑥𝑖 for

some 1 ⩽ 𝑖 ⩽ 𝑛 is always a polymorphism, and any other poly-

morphism is called a non-trivial polymorphism. The Dichotomy

Theorem states that for a predicate 𝑃 , checking satisfiability of

𝑃-CSP is in P if there exists a non-trivial polymorphism; otherwise,

it is NP-complete (ignoring some subtle issues).

Dictatorship test. Similar to polymorphisms, dictatorship tests

form the back-bone of proving hardness of approximating Max-

𝑃-CSPs. Here we formally define the dictatorship test for a given

predicate.

Definition 1.4. A dictatorship test for a predicate 𝑃 : Σ𝑘 →
{0, 1} can query a function 𝑓 : Σ𝑛 → Σ. The test picks a random 𝑘×𝑛
matrix by letting every column to be a random satisfying assignment

to 𝑃 (i.e., in 𝑃−1 (1), with some fixed distribution 𝜇 on 𝑃−1 (1)) and
letting 𝑥1, 𝑥2, . . . , 𝑥𝑘 ∈ Σ

𝑛 be the rows of the matrix. The test accepts

if (𝑓 (𝑥1), 𝑓 (𝑥2), . . . , 𝑓 (𝑥𝑘 )) is also a satisfying assignment to 𝑃 .

Here again, it is obvious that if 𝑓 is a dictator function, then the

test accepts with probability 1. If solving 𝑃-CSP isNP-complete then

it has no non-trivial polymorphisms according to the Dichotomy

Theorem. Therefore, the question here is to determine the maxi-

mum probability the test accepts a function 𝑓 if 𝑓 is far from being

a dictator function. If such a test exists where the maximum prob-

ability of acceptance for far from dictator functions is at most 𝛼𝑃 ,

then using the Rich 2-to-1 Conjecture of Braverman, Khot, and

Minzer [7], one gets an NP-hardness of approximating 𝑃-CSP on

satisfiable instances to within a factor of 𝛼𝑃 .

We now describe the dictatorship test that we design for a large

class of predicates. The starting point is an instance 𝜙 of 𝑃-CSP and

let the value (i.e., maximum fraction of the constraints that can be

satisfied by an assignment) of this instance be 𝑠 . The distribution 𝜇

in the test depends on the SDP solution for 𝜙 and we only consider

instances whose SDP value is 1. The SDP solution consists of vectors

as well as local distribution for each constraint. Since the SDP value

is 1, all these local distributions are supported on the satisfying

assignments to 𝑃 . Let 𝜇𝑖 be the local distribution corresponding to

the 𝑖𝑡ℎ constraint of the instance. The test is as follows. Here 𝜀 > 0

is a small constant independent of 𝑛.

If 𝑓 is a dictator function, then the test accepts with probability

1. This follows because for every 𝑖 , the distribution 𝜇𝑖 is supported

on the satsifying assignments to 𝑃 and therefore every column of

the matrix is from 𝑃−1 (1). A challenging task is to compute the

acceptance probability when 𝑓 is far from dictator functions.

Given 𝑓 : Σ𝑛 → Σ,

(1) Select a constraint from 𝜙 according to the weights of

the constraints. Let 𝑖 be the selected constraint.

(2) Construct a 𝑘 × 𝑛 matrix by setting each column of

the matrix independently according to the following

distribution: sample the column using 𝜇𝑖 .

(3) Check if 𝑃 (𝑓 (𝑥1), 𝑓 (𝑥2), . . . , 𝑓 (𝑥𝑘 ) = 1.

Figure 1: Dictatorship test with completeness 1.

This test is a slight modification of Raghavendra’s test [21]. In

his test, in Step (2) with probability 𝜀, a random sample is chosen

from Σ
𝑘 . This uniform noise has an effect of killing all the high-

degree monomials of 𝑓 and hence the analysis boils down to only

considering the low-degree functions. At this point, one can apply

the invariance principle for low-degree functions from Mossel [19]

and can replace the inputs with correlated Gaussians. Finally, the

expression involving the Gaussians is interpreted as a rounding al-

gorithm that rounds the SDP solution to an integral solution and the

value is upper-bounded by the integral value of the instance which

is 𝑠 . Thus, the soundness of the test essentially matches the value

of the integral solution. However, because of the uniform noise,

the dictator functions will no longer pass the test with probability

1 and hence this test will not give hardness results on satisfiable

instances.

Coming back to our test, we cannot add uniform noise as we

want to maintain the completeness of the test to be 1. However, this

introduces a few challenges in the analysis of the test. The main

challenge is to show that the local distribution is enough to kill

the high-degree part of 𝑓 . This in general is not true. Specifically,

if the predicate satisfies a linear equation, then this distribution is

not enough to kill the high-degree part (see the counterexample

in Remark 1.8). This is where we need the predicate (and the local

distributions) to not satisfy any linear equation. In this case, we use

our main analytical lemma, that we will discuss later, to show that

the high-degree part of 𝑓 contributes little to the test acceptance

probability. However, we additionally need the predicate and the

SDP solution to be semi-rich.

Finally, similar to Raghavendra’s analysis, we use the low degree-

part of 𝑓 in the rounding algorithm and relate the performance of

the algorithm to the test acceptance probability. This shows that if

𝑓 is far from dictator function, then the acceptance probability of

the test is upper bounded by the value of the assignment returned

by the rounding procedure, which is always upper-bounded by 𝑠 .

Main analytical lemma. Analyzing the acceptance probability

of the test is a challenging task in general. One begins by thinking

of the function 𝑓 as a real valued function, e.g. as an indicator of

the event that it takes a specific symbol in Σ as its value. Skipping

some details, one needs to analyze expectations of the form

E
𝑥1,𝑥2,...,𝑥𝑘∼𝜇⊗𝑛

[
𝑘∏

𝑖=1

𝑓 (𝑥𝑖 )
]
,

here 𝑥1, 𝑥2, . . . , 𝑥𝑘 are distributed as discussed in Definition 1.4.

As the low-degree part of 𝑓 corresponds to the SDPs from the

algorithmic side, in order to prove our main theorem, we need to
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show that when 𝑓 is a high-degree function, then this expectation

is small. Our main analytical lemma shows that this is indeed the

case. Following is the informal statement of the lemma (for a formal

statement, see Lemma 2.6).

Lemma 1.5 (Informal). Let 𝑃 be any 3-ary predicate that is semi-

rich and does not satisfy any linear embedding. Let 𝜇 be any distri-

bution that is fully supported on 𝑃−1 (1). Then for any high-degree

bounded function 𝑓 , we have
����� E
𝑥1,𝑥2,𝑥3∼𝜇⊗𝑛

[𝑓 (𝑥1) 𝑓 (𝑥2) 𝑓 (𝑥3)]
����� ⩽ 𝛿,

where 𝛿 → 0 as the degree of the function increases.

We note that a high-degree function has E[𝑓 ] ≈ 0. This lemma

is proved in Section 3 and it is evident that the proof of this lemma

is quite involved. We believe that the semi-rich condition is not

needed for the conclusion to hold. Generalizing the lemma for 𝑘-

ary predicates and proving it without the semi-rich condition is a

fascinating analytical question for future work.

The lemma is a generalization of Lemma 6.2 by Mossel [19].

That lemma states that if the distribution 𝜇 is connected then the

expectation is small. The connectedness condition can be stated

as follows: For every pair of assignments (𝑎, 𝑏, 𝑐) and (𝑎′, 𝑏 ′, 𝑐 ′)
in 𝑃−1 (1), there is a way to convert the first assignment to the

second by replacing only once coordinate at a time such that every

intermediate triple is in 𝑃−1 (1). The predicate 𝑃𝐺 that was men-

tioned earlier where 𝑃−1
𝐺

(1) = {(𝑥,𝑦, 𝑧) | 𝑥 · 𝑦 · 𝑧 = 1𝐺 } for some

non-Abelian group does not satisfy the connectedness condition,

as changing one coordinate from any satisfying assignment gives

a triple which is outside of 𝑃−1
𝐺

(1). This predicate, however, does
not satisfy any linear embedding if𝐺 does not have any non-trivial

representation of dimension 1. 𝑃𝐺 is also semi-rich and hence we

can apply the above analytical lemma for 𝑃𝐺 .

The proof of the above lemma for the predicate 𝑃𝐺 is implicit

in the work of Bhangale and Khot [4]. Given this fact, our high-

level strategy to prove the lemma is as follows. We modify the

underlying distribution 𝜇 and the predicate 𝑃 so that the modified

predicate can be viewed as a set of equations over some non-Abelian

group. We do this by carefully adding more satisfying triplets to the

predicate. During the modifications, we maintain the properties of

the original predicate (i.e., semi-richness and not having any linear

embedding) as well as make sure that the expectation does not

change by much. Since the original predicate does not satisfy any

linear embedding, the group must be non-Abelian and also lacks

any non-trivial representation of dimension 1. Therefore, the final

expectation must be small. This shows that the earlier expectation

is also small.

1.3 Conclusion and Future Work

Our work leaves open many interesting problems. One obvious

open problem is to extend our main theorem for other class of

predicates. We could prove our analytical lemma for 3-ary semi-rich

predicates. However, we believe that this semi-richness condition

is not necessary for the conclusion to hold. One obvious open

question is to extend our main theorem to other 3-ary predicates

that are not semi-rich. More ambitiously, we put forth the following

conjecture for general 𝑘-ary predicates. One can naturally extend

the definition of 3-ary predicates not satisfying any linear equation

to 𝑘-ary predicates as follows.

Definition 1.6. Let 𝑃 : Σ𝑘 → {0, 1} be any 𝑘-ary predicate such

that the support on each coordinate is full. We say 𝑃 satisfies a linear

embedding if there exists an Abelian group (𝐺, +) and mappings

𝜎𝑖 : Σ → 𝐺 such that

• ∑𝑘
𝑖=1 𝜎𝑖 (𝑥𝑖 ) = 0 for every (𝑥1, 𝑥2, . . . , 𝑥𝑘 ) ∈ 𝑃−1 (1), where 0

is the identity element of 𝐺 .

• one of the mappings {𝜎𝑖 }𝑘𝑖=1 is non-constant.
Otherwise, we say 𝑃 does not satisfy any linear embedding.

With this definition, we conjecture the following.

Conjecture 1.7 (Informal). Let 𝑃 be any 𝑘-ary predicate that

does not satisfy any linear embedding. Let 𝜇 be any distribution that

is fully supported on 𝑃−1 (1). Given 𝑘 functions 𝑓1, 𝑓2, . . . , 𝑓𝑘 : Σ𝑛 →
[−1, 1], such that one of the 𝑓𝑖 s is a high-degree function, then we

have ����� E
𝑥1,𝑥2,...,𝑥𝑘∼𝜇⊗𝑛

[𝑓1 (𝑥1) 𝑓2 (𝑥2) · · · 𝑓𝑘 (𝑥𝑘 )]
����� ⩽ 𝛿,

where 𝛿 → 0 as the degree of the function increases.

Remark 1.8. We note that if the predicate satisfies a linear equa-

tion, then the conclusion does not hold. To see this, suppose 𝑃 sat-

isfies a linear equation over an Abelian group 𝐺 given by the em-

beddings {𝜎𝑖 }𝑘𝑖=1. Let 𝜒 be any non-trivial character of 𝐺 and define

𝑓𝑖 (𝑥𝑖 ) =
∏𝑛

𝑗=1 𝜒 (𝜎𝑖 ((𝑥𝑖 ) 𝑗 )). Now,

𝑓1 (𝑥1) 𝑓2 (𝑥2) · · · 𝑓𝑘 (𝑥𝑘 ) =
𝑘∏

𝑖=1

𝑛∏

𝑗=1

𝜒 (𝜎𝑖 ((𝑥𝑖 ) 𝑗 ))

=

𝑛∏

𝑗=1

𝑘∏

𝑖=1

𝜒 (𝜎𝑖 ((𝑥𝑖 ) 𝑗 ))

=

𝑛∏

𝑗=1

𝜒

(
𝑘∑︁

𝑖=1

𝜎𝑖 ((𝑥𝑖 ) 𝑗 )
)
,

where the last equality is because of the multiplicativity of the charac-

ter 𝜒 . For every 𝑗 , we have
∑𝑘
𝑖=1 𝜎𝑖 ((𝑥𝑖 ) 𝑗 ) = 0 and hence the product

becomes 1 as 𝜒 (0) = 1. Moreover, for large 𝑛, since one of the embed-

dings is non-constant, one of the 𝑓𝑖 s is a high-degree function.

With a positive answer to the conjecture, wemay be able to make

progress on predicates 𝑃 that do not satisfy any linear equation. On

the other hand, if 𝑃 does satisfy a certain linear equation, then a

hybrid algorithm that solves the SDP as well as the system of linear

equations might give an optimal algorithm for satisfiable CSPs. We

leave these as open problems for future work.

1.4 Organization

In Section 2 we state our main dictatorship test for 3-ary CSPs

satisfying conditions from Theorem 1.1. We start with preliminaries

in Section 2.1 where we define constraint satisfaction problems,

functions on product spaces and state the invariance principle. We

also state our main analytical lemma that we use in our dictatorship

test analysis in this section. In Section 2.2 we define the basic SDP
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relaxation for a Max-𝑃-CSP. In Section 2.3, we state our dictatorship

test and prove the completeness and soundness analysis of the test.

We give an overview of the proof of our main analytical lemma in

Section 3. The proof consists of a series of steps which we prove in

the full version of the paper.

2 FROM INTEGRALITY GAP TO

DICTATORSHIP TEST

In this section, we show that if a 𝑃-CSP instance has a (1, 𝑠) inte-
grality gap for the basic SDP relaxation, then there is a dictatorship

test with completeness 1 and soundness 𝑠 + 𝜀 for any 𝜀 > 0, if the

predicate and the SDP solution satisfy certain conditions.

2.1 Preliminaries

The focus of this paper is on special type of predicates that do not

satisfy any linear equation and that are semi-rich. We define these

two properties next. We define these properties for more general

predicates having different alphabet for each location, although

in our dictatorship test we only consider predicates of the type

𝑃 : Σ3 → {0, 1}.
Definition 2.1. Let Σ,Φ, Γ be finite alphabets. Let 𝐻 ⊆ Σ×Φ× Γ

and Σ
′ ⊆ Σ,Φ′ ⊆ Φ and Γ

′ ⊆ Γ be the subsets on which 𝐻 is

supported. We say 𝐻 can be linearly embedded in an Abelian group if

there is an Abelian group (𝐺, +) and maps 𝜎 : Σ′ → 𝐺 , 𝜙 : Φ′ → 𝐺 ,

𝛾 : Γ′ → 𝐺 such that

(1) for all (𝑥,𝑦, 𝑧) ∈ 𝐻 it holds that 𝜎 (𝑥) + 𝜙 (𝑦) + 𝛾 (𝑧) = 0;

(2) at least one of 𝜎, 𝜙,𝛾 is non-constant.

Otherwise, we say 𝐻 cannot be embedded linearly into an Abelian

group, or simply 𝐻 does not satisfy any linear equation.

Definition 2.2. Let Σ,Φ, Γ be finite alphabets. Let 𝐻 ⊆ Σ×Φ× Γ

and Σ
′ ⊆ Σ,Φ′ ⊆ Φ and Γ

′ ⊆ Γ be the subsets on which 𝐻 is

supported. We say 𝐻 is semi-rich if the following two properties hold.

(1) For all (𝑥,𝑦) ∈ Σ
′×Φ

′, there exists 𝑧 ∈ Γ
′ such that (𝑥,𝑦, 𝑧) ∈

𝐻 .

(2) For all (𝑥, 𝑧) ∈ Σ
′×Γ

′, there exists 𝑦 ∈ Φ
′ such that (𝑥,𝑦, 𝑧) ∈

𝐻 .

Note that in the definition of semi-rich one of the three coor-

dinates is special. However, the location of the special coordinate

does not matter as we can permute the coordinates and study the

modified subset instead.

We now define the predicates that have these two properties.

Definition 2.3. A predicate 𝑃 : Σ × Φ × Γ → {0, 1} is said to be
linearly embedded into an Abelian group if and only if 𝑃−1 (1) can
be linearly embedded in an Abelian group. 𝑃 is called semi-rich if

𝑃−1 (1) is semi-rich.

Let (Ω, 𝜇) be a probability space. Define the inner product on

this space by ⟨𝑓 , 𝑔⟩𝜇 := E𝑥 ∈𝜇 [𝑓 (𝑥)𝑔(𝑥)]. We will use the notation

∥ 𝑓 ∥𝑝 ;𝜇 := E𝑥 ∈𝜇 [|𝑓 (𝑥) |𝑝 ]1/𝑝 to denote the 𝑝𝑡ℎ norm of 𝑓 . In order

to state our main analytical lemma, we need the following definition

of the noise operator.

Definition 2.4. Let Φ be a finite alphabet, and 𝜈 be a measure on

Φ. For a parameter 𝜌 ∈ [0, 1], we define the 𝜌-correlated distribution
with respect to 𝜈 as follows. For any 𝑦 ∈ Φ, the distribution of inputs

that are 𝜌-correlated with 𝑦 is denoted by y′ ∼ T𝜌𝑦 and is defined by

taking y′ = 𝑦 with probability 𝜌 , and otherwise sampling y′ ∼ 𝜈 .

As is often the case, we also view T𝜌 as an operator on functions,

mapping 𝐿2 (Φ, 𝜈) to 𝐿2 (Φ, 𝜈) by
(T𝜌𝑔) (𝑦) = E

y′∼T𝜌𝑦

[
𝑔(y′)

]
.

We then tensorize this operator, i.e., consider T⊗𝑛
𝜌 which acts on

functions on 𝑛-variables, i.e. on 𝐿2 (Φ𝑛, 𝜈⊗𝑛). When clear from con-

text, we drop the ⊗𝑛 superscript from notation.

Definition 2.5. Stab𝜈𝜌 (𝑔) =
〈
𝑔,T𝜌𝑔

〉
𝜈⊗𝑛 . We drop the superscript

𝜈 from Stab𝜈𝜌 (𝑔), if it is clear from the context.

Let𝑚 = |Φ| and write the multilinear expansion of𝑔with respect

to 𝜈 , i.e., 𝑔(𝑦) =
∑

𝝈 ∈{0,1,...,𝑚−1}𝑛
𝑔(𝝈)ℓ𝝈 (𝑦), where ℓ0 ≡ 1 is the

trivial character.9 Then Stab𝜈𝜌 (𝑔) =
∑

𝝈 ∈{0,1,...,𝑚−1}𝑛
𝜌 |𝝈 |𝑔(𝝈)2, where

|𝝈 | is the number of non-zero entries in 𝝈 . Thus, if 𝑔 has small

weight on 𝑔(𝝈) where |𝝈 | is small then Stab𝜈𝜌 (𝑔) is small. Thus,

we use the notion of small stability of a function as a proxy for

high-degreeness of the function.

We now state the main analytical lemma that we use in the

analysis of our dictatorship test. The lemma is proved in the next

section (Section 3).

Lemma 2.6. For all𝑚 ∈ N, 𝜀, 𝛼 > 0 there exist 𝜉 > 0 and 𝛿 > 0

such that the following holds. Suppose 𝜇 is a distribution over Σ×Φ×Γ
whose support (a) is semi-rich, and (b) cannot be embedded in an

Abelian group. Further suppose that |Σ| , |Φ| , |Γ | ⩽ 𝑚, each atom in

𝜇 has probability at least 𝛼 and marginals of 𝜇 on Σ,Φ and Γ have

full support. If 𝑓 : Σ𝑛 → [−1, 1], 𝑔 : Φ𝑛 → [−1, 1], ℎ : Γ𝑛 → [−1, 1]
are functions such that

either Stab1−𝜉 (𝑓 ) ⩽ 𝛿 , or Stab1−𝜉 (𝑔) ⩽ 𝛿 , or Stab1−𝜉 (ℎ) ⩽ 𝛿 ,

then
���Ex,y,z∼𝜇⊗𝑛 [𝑓 (x)𝑔(y)ℎ(z)]

��� ⩽ 𝜀.

2.1.1 Constraint Satisfaction Problems. We will use the notation

[𝑅] to denote the set {1, 2, . . . , 𝑅}. In our dictatorship test analysis,

we are going to need a few lemmas from Raghavendra’s thesis [22]

as black-box. Therefore, we try to use the same notations from his

thesis. Our analytical lemma (Lemma 2.6) that we prove in the next

section works only for the 3-ary CSPs. However, in this section,

we work with general 𝑘-ary 𝑃-CSPs. If we have the analogous

analytical lemma for any 𝑘-ary CSP, then the test designed in this

section can be combined with it to get a result for 𝑘-ary CSPs.

Raghavendra considered CSPs with mixed predicates. In this

work, we consider CSPs with one predicate 𝑃 : Σ𝑘 → {0, 1} (or
possibly mix of predicates with the same template 𝑃 , as described

below). We formally define the 𝑃-CSP instance in the following

definition.

Definition 2.7. For a given predicate 𝑃 : Σ𝑘 → {0, 1}, a 𝑃-CSP
instance is given by ℑ = (V,P) where

- V is the set of variables.

9This is formally defined in the Section 2.1.2 below.
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- P is a probability distribution on the payoff functions 𝑃 ′ :

Σ
V → {0, 1} of type,

𝑃 ′(𝒚) = 𝑃 (𝑦𝑖1 , 𝑦𝑖2 , . . . , 𝑦𝑖𝑘 ),
for some 𝑖1, 𝑖2, . . . , 𝑖𝑘 ∈ V .

Remark 2.8. A 𝑃-CSP instance actually consists of a mix of payoffs

on the same template 𝑃 . In the Boolean CSP, these mix of payoffs are

formed by using literals (or negations). Here are few examples to

illustrate this for Boolean CSPs as well as for general CSPs.

(1) In 3SAT, the template predicate 𝑃 is 𝑃 : {0, 1}3 → {0, 1} where
𝑃 (𝑥,𝑦, 𝑧) = 0 iff 𝑥 = 𝑦 = 𝑧 = 0. However, a 3SAT instance

contains 8 different payoffs, one for each literal pattern.

(2) In 3LIN, the template predicate 𝑃 : {0, 1}3 → {0, 1} is such
that 𝑃 (𝑥,𝑦, 𝑧) = 1 iff 𝑥 ⊕ 𝑦 ⊕ 𝑧 = 1. In this case, the instance

also contains constraints of type 𝑥 ⊕ 𝑦 ⊕ 𝑧 = 0.

(3) In 3LIN equations over a non Abelian group (𝐺, ·), the predicate
is 𝑃 : 𝐺3 → {0, 1} such that 𝑃 (𝑥,𝑦, 𝑧) = 1 iff 𝑥 · 𝑦 · 𝑧 = 1𝐺 ,

where 1𝐺 is the identity element of 𝐺 . The instance contains

constraints of type 𝑥 · 𝑦 · 𝑧 = 𝑔 for some 𝑔 ∈ 𝐺 .

Without the mix of payoffs, certain 𝑃-CSPs are trivial; for instance,

the all 1 assignment would satisfy every 3SAT and 3LIN instance.

Therefore we allow the use of such mix of payoffs in our instances.

Note that for certain predicates, like 3𝑁𝐴𝐸 : {0, 1}3 → {0, 1}, defined
as 3𝑁𝐴𝐸 (𝑥,𝑦, 𝑧) = 1 iff 𝑥,𝑦, 𝑧 are not all the same, instances without

any mix of payoffs are non-trivial to solve.

For a payoff 𝑃 ′, the set of indices 𝑖1, 𝑖2, . . . , 𝑖𝑘 ∈ V on which it

depends is denoted by V(𝑃 ′). Let supp(P) be the set of payoffs in
ℑ. Given a 𝑃-CSP instance ℑ, the objective is to find an assignment

𝒚 ∈ Σ
V that maximizes the value of the instance which is defined

as follows:

val(𝒚) = E
𝑃 ′∼P

[𝑃 ′(𝒚)] .

The optimum value of the instance ℑ = (V,P) is defined as:

Opt(ℑ) = max
𝒚∈ΣV

val(𝒚).

Let ▲(Σ) be the set of probability distributions on Σ.

2.1.2 Functions on Product Spaces. Let (Ω, 𝜇) be a probability space
with |Ω | = 𝑞 and 𝜇 has full support on Ω. Define the inner product

between two functions 𝑓 , 𝑔 : Ω → R on this space as follows:

⟨𝑓 , 𝑔⟩ = E𝑥∼𝜇 [𝑓 (𝑥)𝑔(𝑥)].
Definition 2.9. An orthonormal ensemble consists of a basis of

real orthonormal random variables L = {ℓ0 ≡ 1, ℓ1, . . . , ℓ𝑞−1}, where
1 is the constant 1 function.

Henceforth, we will sometimes refer to orthonormal ensem-

bles as just ensembles. For an ensemble L = {ℓ0 ≡ 1, ℓ1, . . . , ℓ𝑞−1}
of random variables, we will use L𝑅 to denote the ensemble ob-

tained by taking 𝑅 independent copies of L. Furthermore, L (𝑖) =
{ℓ (𝑖)0 , ℓ

(𝑖)
1 , . . . , ℓ

(𝑖)
𝑞−1} will denote the 𝑖𝑡ℎ independent copy of L.

Fix an ensemble L = {ℓ0 ≡ 1, ℓ1, . . . , ℓ𝑞−1} that forms a basis for

𝐿2 (Ω). Given such a basis for 𝐿2 (Ω), it induces a basis for the space
𝐿2 (Ω𝑅), given by the random variables

{
ℓ𝝈 :=

𝑅∏

𝑖=1

ℓ
(𝑖)
𝜎𝑖

����� 𝝈 ∈ {0, 1, . . . , 𝑞 − 1}𝑅
}
.

Therefore, any function F : Ω𝑅 → R has a multilinear expan-

sion

F (𝒛) =
∑︁

𝝈 ∈{0,1,...,𝑞−1}𝑅
F̂ (𝝈)ℓ𝝈 (𝒛),

where ℓ𝝈 (𝒛) =
∏𝑅

𝑖=1 ℓ𝜎𝑖 (𝑧𝑖 ).
Definition 2.10. A multi-index 𝝈 is a vector (𝜎1, 𝜎2, . . . .𝜎𝑅) ∈

{0, 1, . . . , 𝑞 − 1}𝑅 and the degree of 𝝈 is denoted by |𝝈 | which is

equal to |𝝈 | = |{𝑖 ∈ [𝑅] | 𝜎𝑖 ≠ 0}|. Given a set of indeterminates

X = {𝑥 (𝑖)𝑗 | 𝑗 ∈ {0, 1, . . . , 𝑞 − 1}, 𝑖 ∈ [𝑅]} and a multi-index 𝝈 , define

the monomial 𝑥𝝈 as

𝑥𝝈 =

𝑅∏

𝑖=1

𝑥
(𝑖)
𝜎𝑖 .

The degree of the monomial is given by |𝝈 |. A multilinear polynomial

over such indeterminates is given by

𝐹 (𝒙) =
∑︁

𝝈 ∈{0,1,...,𝑞−1}𝑅
𝐹𝝈𝑥𝝈 .

Given any function F : Ω
𝑅 → R, with the multilinear ex-

pansion F (𝒛) =
∑
𝜎 ∈{0,1,...,𝑞−1}𝑅 F̂ (𝜎)ℓ𝜎 (𝒛) with respect to the

orthonormal ensemble L = {ℓ0 ≡ 1, ℓ1, . . . , ℓ𝑞−1}, we define a cor-
responding formal polynomial in the indeterminates X = {𝑥 (𝑖)𝑗 | 𝑗 ∈
{0, 1, . . . , 𝑞 − 1}, 𝑖 ∈ [𝑅]}, as follows:

𝐹 (𝒙) =
∑︁

𝝈

F̂ (𝝈)𝑥𝝈 .

We will always use the symbol F to denote real-valued function

on a product probability space Ω
𝑅 . Further 𝐹 (𝒙) will denote the

formal multilinear polynomial corresponding to F . Hence 𝐹 (L𝑅)
is a random variable obtained by substituting the random variables

L𝑅 in place of 𝒙 . For instance, the following equation holds in this

notation:

E
𝒛∈Ω𝑅

[F (𝒛)] = E[𝐹 (L𝑅)] .

We now define the notion of the influence of a variable.

Definition 2.11. For a function F : Ω𝑅 → R over the space

(Ω𝑅, 𝜇⊗𝑅), the influence of the 𝑗𝑡ℎ coordinate is given by:

Inf 𝑗 [F ; 𝜇⊗𝑅] = E
𝒛 (−𝑗 ) ∈Ω𝑅−1

[Var𝒛 ( 𝑗 ) ∈Ω [F (𝒛)]],

where 𝒛 (−𝑗) is a string missing the 𝑗𝑡ℎ coordinate.

We have the following proposition that relates the average value

and the variance of a function to its Fourier coefficients.

Proposition 2.12. For a function F : Ω𝑅 → R over the space

(Ω𝑅, 𝜇⊗𝑅), if F (𝒛) = ∑
𝝈 F̂ (𝝈)ℓ𝝈 (𝒛) with respect to an orthonor-

mal ensemble L of (Ω, 𝜇), then E𝒛∈Ω𝑅 [F (𝒛)] = F̂0 and Var[F ] =∑
𝝈≠0 F̂ 2

𝝈 .

We also define the degree ⩾ 𝐷 weight of a function F as follows:

𝑊 ⩾𝐷 [F ; 𝜇⊗𝑅] =
∑︁

𝝈 : |𝝈 |⩾𝐷
F̂ 2
𝝈 .

Another way of writing a function on a probability space as sum

of orthogonal functions is called the Efron-Stein decomposition.
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Definition 2.13. Let (Ω, 𝜇) be a probability space and (Ω𝑅, 𝜇⊗𝑅)
be the corresponding product space. For a function 𝑓 : Ω𝑅 → R, the
Efron-Stein decomposition of 𝑓 with respect to the product space is

given by

𝑓 (𝑧1, · · · , 𝑧𝑅) =
∑︁

𝛽⊆[𝑅 ]
𝑓𝛽 (𝒛),

where 𝑓𝛽 depends only on 𝑧𝑖 for 𝑖 ∈ 𝛽 and for all 𝛽 ′ ⊉ 𝛽, 𝒂 ∈ Ω
𝛽′ ,

E𝒛∈𝜇⊗𝑅
[
𝑓𝛽 (𝒛) | 𝒛 |𝛽′ = 𝒂

]
= 0.

We have the following facts about the Efron-Stein decomposition

of functions.

Fact 2.14. If 𝑓 (𝒛) =
∑

𝛽⊆[𝑅 ] 𝑓𝛽 (𝒛) and 𝑔(𝒛) =
∑

𝛽⊆[𝑅 ] 𝑔𝛽 (𝒛)
are the Efron-Stein decompositions of 𝑓 and 𝑔 respectively w.r.t. the

product space (Ω𝑅, 𝜇⊗𝑅), then
(1) 𝑇𝜌 𝑓 (𝒛) =

∑
𝛽⊆[𝑅 ] 𝜌 |𝛽 | 𝑓𝛽 (𝒛) and

(2) ⟨𝑓 , 𝑔⟩𝜇⊗𝑅 =
∑

𝛽⊆[𝑅 ] ⟨𝑓𝛽 , 𝑔𝛽 ⟩𝜇⊗𝑅 .

2.1.3 Vector valued functions. We will always use the symbol F =

(F1, F2, . . . , F𝑞) to denote a vector-valued function on a product

probability space Ω𝑅 . Further, 𝑭 (𝒙) = (𝐹1, 𝐹2, . . . , 𝐹𝑞) will denote
the formal multilinear polynomial corresponding to F.

The notions of influence and degree ⩾ 𝐷 weight can be extended

to the vector valued functions using the following definitions.

Inf𝑖 [F; 𝜇⊗𝑅] =
𝑞∑︁

𝑗=1

Inf𝑖 [F𝑗 ; 𝜇
⊗𝑅]

and

𝑊 ⩾𝐷 [F; 𝜇⊗𝑅] =
𝑞∑︁

𝑗=1

𝑊 ⩾𝐷 [F𝑗 ; 𝜇
⊗𝑅] .

2.1.4 Invariance Principle. Define functions 𝑓[0,1] : R → R and

𝜉 : R𝑞 → R as follows:

𝑓[0,1] (𝑥) =



0 if 𝑥 < 0

𝑥 if 0 ⩽ 𝑥 ⩽ 1,

1 if 𝑥 > 1.

𝜉 (𝒂) =
𝑞∑︁

𝑗=1

(𝑓[0,1] (𝑎 𝑗 ) − 𝑎 𝑗 )2 .

A crucial step in the analysis of the dictatorship test is to re-

place the discrete inputs with correlated Gaussians. The following

theorem from Mossel [19] states that one can do this provided the

functions do not have influential coordinates and the functions are

low-degree.

Theorem 2.15 ([19]). Fix 0 < 𝛼 ⩽ 1/2 and 𝑑 ∈ N. Let (Ω, 𝜇),
|Ω | = 𝑚, be a finite probability space such that every atom has

probability at least 𝛼 . Let L (𝑟 ) = {ℓ (𝑟 )0 ≡ 1, ℓ
(𝑟 )
1 , . . . , ℓ

(𝑟 )
𝑚−1} be an or-

thonormal ensemble of random variables over Ω and G (𝑟 ) = {𝑔 (𝑟 )0 ≡
1, 𝑔

(𝑟 )
1 , . . . , 𝑔

(𝑟 )
𝑚−1} be an orthonormal ensemble of Gaussian random

variables.

Let 𝑭 = (𝐹1, 𝐹2, . . . , 𝐹𝑑 ) denote a vector valued multilinear polyno-

mial on Ω
𝑅 . If Inf𝑖 [𝑭 ; 𝜇⊗𝑅] ⩽ 𝜏 for all 𝑖 ∈ [𝑅],𝑊 ⩾𝐷 [𝑭 ; 𝜇⊗𝑅] ⩽ 𝛿

and Var[𝐹 𝑗 ] ⩽ 1 for all 𝑗 ∈ {1, . . . , 𝑑}, then the following holds.

(1) For every function 𝜓 : R𝑑 → R that is thrice differentiable

with all its partial derivatives up to order 3 bounded uniformly

by 𝐶0,

���E[𝜓 (𝑭 (L𝑅))] − E[𝜓 (𝑭 (G𝑅))]
��� ⩽ 𝑂

(
𝐷
√
𝜏
(
8𝛼−1/2

)𝐷 )
+𝑂 (

√
𝛿) .

(2) For the function 𝜉 defined above,

���E[𝜉 (𝑭 (L𝑅))] − E[𝜉 (𝑭 (G𝑅))]
��� ⩽ 𝑂

(√
𝜏
(
10𝛼−1/2

)𝐷 )2/3
+𝑂 (

√
𝛿) .

In both the cases, the 𝑂 (.) hides the constant 𝐶0.

Proof. The theorem follows from Theorem 4.1 from [19]. Trun-

cate the polynomial 𝑭 to degree 𝐷 to get a polynomial 𝑳. Using

Theorem 4.1 of Mossel [19], we have
���E[𝜓 (𝑳(L𝑅))] − E[𝜓 (𝑳(G𝑅))]

��� ⩽ 2𝐷𝐶0𝑑
3 (8𝛼−1/2)𝐷𝜏1/2

= 𝑂

(
𝐷
√
𝜏
(
8𝛼−1/2

)𝐷 )
.

Since𝜓 is a smooth functional,

���E[𝜓 (𝑳(L𝑅))] − E[𝜓 (𝑭 (L𝑅))]
��� ⩽ 𝐶0∥𝑳(L𝑅) − 𝑭 (L𝑅)∥

= 𝐶0

(
𝑊 ⩾𝐷 [𝑭 ; 𝜇⊗𝑅])

)1/2

⩽ 𝐶0

√
𝛿.

Similarly, we get

���E[𝜓 (𝑳(G𝑅))] − E[𝜓 (𝑭 (G𝑅))]
��� ⩽ 𝐶0

√
𝛿.

Combining the three inequalities, we get the required bound for

(1).

The second item follows from Theorem 3.19 from [20]. Here

again, let 𝑳 be the low-degree part of 𝑭 truncated at degree 𝐷 and

let 𝑯 = 𝑭 − 𝑳. Using Theorem 3.19 of [20],

���E[𝜉 (𝑳(L𝑅))] − E[𝜉 (𝑳(G𝑅))]
��� ⩽ 𝑂

(√
𝜏
(
10𝛼−1/2

)𝐷 )2/3
.

Using Lemma 3.24 from [20],

���E[𝜉 (𝑭 (L𝑅))] − E[𝜉 (𝑳(L𝑅))]
���

⩽ 2E[𝑳(L𝑅)𝑯 (L𝑅)] + E[𝑯 (L𝑅)2]

⩽ 2

√︃
E[𝑳(L𝑅)2]

√︃
E[𝑯 (L𝑅)2] + E[𝑯 (L𝑅)2]

⩽ 2

√︃
E[𝑯 (L𝑅)2] + E[𝑯 (L𝑅)2] ⩽ 2

√
𝛿 + 𝛿 ⩽ 3

√
𝛿,

where the second step follows from the Cauchy-Schwarz inequality.

Similarly, we get,

���E[𝜉 (𝑭 (G𝑅))] − E[𝜉 (𝑳(G𝑅))]
��� ⩽ 3

√
𝛿,

and the claim follows.

□
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2.2 SDP Relaxation

Given an instance ℑ = (V,P), the basic semi-definite program-

ming relaxation of the instance is given in Figure 2. It consists of

vectors {𝒃𝑖,𝑎}𝑖∈V,𝑎∈Σ, distributions {𝜇𝑃 ′}𝑃 ′∈supp(P) over the local
assignments (i.e., on Σ

V(𝑃 ′) ) and a unit vector 𝒃0. Let val(𝑽 , 𝝁) be
the objective value of the solution (𝑽 , 𝝁).

maximize

E
𝑃 ′∼P

E
𝑥 ∈𝜇𝑃′

[𝑃 ′(𝑥)] (1)

subject to

⟨𝒃𝑖,𝑎, 𝒃 𝑗,𝑏⟩ (2)

= Pr
𝑥∼𝜇𝑃′

[𝑥𝑖 = 𝑎, 𝑥 𝑗 = 𝑏] 𝑃 ′ ∈ supp(P),

𝑖, 𝑗 ∈ V(𝑃 ′),
𝑎, 𝑏 ∈ Σ (3)

⟨𝒃𝑖,𝑎, 𝒃0⟩ = ∥𝒃𝑖,𝑎 ∥22 ∀𝑖 ∈ V, 𝑎 ∈ Σ (4)

∥𝒃0∥22 = 1 (5)

𝜇𝑃 ′ ∈ ▲(ΣV(𝑃 ′) ) 𝑃 ′ ∈ supp(P) (6)

Figure 2: Basic SDP relaxation of a 𝑃-CSP instanceℑ = (V,P).

Following is a definition of (1, 𝑠) integrality gap instance.

Definition 2.16. An instance ℑ = (V,P) is a (1, 𝑠) SDP inte-

grality gap instance if the optimal value of the instance is at most 𝑠

and the optimal value of the basic SDP relaxation for ℑ is 1.

For our dictatorship test to work, we require that the support

of every local distribution 𝜇𝑃 ′ is semi-rich and it is not linearly

embeddable in any Abelian group. Henceforth, we will assume that

the SDP solution satisfies this property.

2.3 Dictatorship Test

In this section, we study the dictatorship test for 𝑃-CSP instances

over a 𝑘-ary predicate 𝑃 . Throughout this section, when 𝑘 = 3, we

restrict ourselves to the predicates 𝑃 that are semi-rich and that do

not satisfy any linear equation.

Let ℑ = (V,P) be an instance of 𝑃-CSP, where 𝑃 : Σ𝑘 → {0, 1}
and |Σ| = 𝑞. We will fix an arbitrary mapping from Σ to {1, 2, . . . , 𝑞},
denoted by 𝜍 : Σ → {1, 2, . . . , 𝑞}.

Let (𝑽 , 𝝁) be a solution for the basic SDP relaxation of ℑ which

is semi-rich and which does not satisfy any linear equation. For

each 𝑠 ∈ V , let Ω𝑠 = (Σ, 𝜇𝑠 ) be a probability space with atoms in Σ

where the probability of 𝑎 ∈ Σ is ∥𝒃𝑠,𝑎 ∥22. We assume that Ω𝑠 has

full support for every 𝑠 ∈ V . However, our proof works even when

the support is a subset of Σ.

A function 𝐹 : Σ𝑅 → Σ is called a dictator function if 𝐹 (𝒛) = 𝒛 (𝑖)

for some 𝑖 ∈ [𝑅]. In Figure 3, we give the dictatorship test Dict𝑽 ,𝝁
for functions 𝐹 : Σ𝑅 → Σ.

Remark 2.17. There is one main difference between our test and the

dictatorship test given in [22]. In [22], in Step 2 (Figure 3), uniformly

random noise is added from Σ
𝑘 . This step loses the perfect completeness

of the dictatorship test.

(1) Sample a payoff 𝑃 ′ ∼ P. Let V(𝑃 ′) = {𝑠1, 𝑠2, . . . , 𝑠𝑘 }.
(2) Sample 𝒛𝑃 ′ = {𝒛𝑠1 , 𝒛𝑠2 , . . . , 𝒛𝑠𝑘 } from the product dis-

tribution 𝜇⊗𝑅
𝑃 ′ , i.e., independently for each 𝑖 ∈ [𝑅],

(𝒛 (𝑖)𝑠1 , 𝒛
(𝑖)
𝑠2 , . . . , 𝒛

(𝑖)
𝑠𝑘 ) ∼ 𝜇𝑃 ′ .

(3) Query the function values 𝐹 (𝒛𝑠1 ), 𝐹 (𝒛𝑠2 ), . . . , 𝐹 (𝒛𝑠𝑘 ).
(4) Accept iff 𝑃 ′(𝐹 (𝒛𝑠1 ), 𝐹 (𝒛𝑠2 ), . . . , 𝐹 (𝒛𝑠𝑘 )) = 1.

Figure 3: SDP integrality gap to a dictatorship test Dict𝑽 ,𝝁 .

2.3.1 Completeness Analysis. The completeness of the test is de-

fined as follows,

Completeness(Dict𝑽 ,𝝁 ) = min
𝑖∈[𝑅 ],

𝐹 is the 𝑖𝑡ℎ dictator

Pr[𝐹 passes Dict𝑽 ,𝝁 ] .

If the function is a dictator function, then the test accepts with

probability 1. The simple claim is proven below.

Lemma 2.18. If val(𝑽 , 𝝁) = 1 then

Completeness(Dict𝑽 ,𝝁 ) = 1.

Proof. Consider a dictator function 𝐹 (𝒛) = 𝒛 ( 𝑗) for some 𝑗 ∈
[𝑅]. In this case, (𝐹 (𝒛𝑠1 ), 𝐹 (𝒛𝑠2 ), . . . , 𝐹 (𝒛𝑠𝑘 )) = (𝒛 ( 𝑗)𝑠1 , 𝒛

( 𝑗)
𝑠2 , . . . , 𝒛

( 𝑗)
𝑠𝑘 ).

When the payoff 𝑃 ′ ∼ P is selected, then (𝒛 ( 𝑗)𝑠1 , 𝒛
( 𝑗)
𝑠2 , . . . , 𝒛

( 𝑗)
𝑠𝑘 ) is

distributed according to 𝜇𝑃 ′ . As the SDP value is 1, the distribution

𝜇𝑃 ′ is fully supported on 𝑃 ′−1 (1) and hence the test passes with

probability 1. □

2.3.2 Soundness Analysis. We now move to prove the soundness

analysis of the test. Here we formally define the functions which are

far from dictator functions (also known as quasirandom functions).

Let Δ𝑞 := {𝒆1, 𝒆2, . . . , 𝒆𝑞} where 𝒆 𝑗 is the 𝑗𝑡ℎ basis vector of R𝑞 .

Definition 2.19. For a function 𝐹 : Σ𝑅 → Σ, the corresponding

Δ𝑞-representation is a function F : Σ𝑅 → Δ𝑞 given by

F (𝒛) = 𝒆𝜍 (𝐹 (𝒛)) .

Therefore, in this setting 𝐹 is a dictator function ifF (𝒛) = 𝒆𝜍 (𝒛 (𝑖 ) )
for some 𝑖 ∈ [𝑅]. Any function F : Σ𝑅 → ▲𝑞 can be interpreted

as a distribution on functions F ′ : Σ𝑅 → Δ𝑞 as follows: For each

𝒛 ∈ Σ
𝑅 , set the value of F ′(𝒛) independently as

F
′(𝒛) = 𝒆 𝑗 with probability F (𝒛) 𝑗 for all 𝑗 ∈ {1, 2, . . . , 𝑞}.

Thus, for each 𝒛 ∈ Σ
𝑅 , we have F (𝒛) = E[F ′(𝒛)].

Fix a function F : Σ𝑅 → ▲𝑞 . For each 𝑠 ∈ V , let F𝑠 denote

the function F interpreted as a function on the product probability

space (Σ𝑅, 𝜇⊗𝑅𝑠 ).

Definition 2.20. A function F : Σ𝑅 → ▲𝑞 is said to be (𝜏, 𝛿)-
quasirandom if for each 𝑠 ∈ V , it holds that

max
1⩽𝑖⩽𝑅

Inf𝑖 [𝑇1−𝛿F𝑠 ; 𝜇
⊗𝑅
𝑠 ] ⩽ 𝜏,

where Inf𝑖 [F𝑠 ; 𝜇
⊗𝑅
𝑠 ] = ∑𝑞

𝑗=1 Inf𝑖 [F𝑠,𝑗 ; 𝜇
⊗𝑅
𝑠 ] and F𝑠,𝑗 is the mapF𝑠

restricted to the 𝑗𝑡ℎ-coordinate of ▲𝑞 .
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The domain of payoff 𝑃 ′ can be extended from Σ
𝑘 to ▲𝑘𝑞 . To see

this, by the abuse of notation, first define a Δ𝑞-representation of a

payoff 𝑃 ′ : Σ𝑘 → {0, 1} as 𝑃 ′ : Δ𝑘𝑞 → {0, 1} where

𝑃 ′(𝒆𝑎1 , 𝒆𝑎2 , . . . , 𝒆𝑎𝑘 ) = 𝑃 ′(𝜍−1 (𝑎1), 𝜍−1 (𝑎2), . . . , 𝜍−1 (𝑎𝑘 )),

for all (𝑎1, 𝑎2, . . . , 𝑎𝑘 ) ∈ {1, 2, . . . , 𝑞}𝑘 .
The function 𝑃 ′ can be extended to the domain ▲𝑘𝑞 by its multi-

linear extension. Again, by abusing the notation, define the exten-

sion 𝑃 ′ as:

𝑃 ′(𝒙1, 𝒙2, . . . , 𝒙𝑘 ) =
∑︁

𝜎 ∈Σ𝑘
𝑃 ′(𝜎)

𝑘∏

𝑖=1

𝑥𝑖,𝜍 (𝜎𝑖 ) , (7)

for all 𝒙1, 𝒙2, . . . , 𝒙𝑘 ∈ ▲𝑞 .
Define the soundness of the test as:

Soundness(Dict𝑽 ,𝝁 ) = sup
F:Σ𝑅→▲𝑞

F is (𝜏,𝛿)−quasirandom w.r.t.(𝑽 ,𝝁)

Pr[F passes Dict𝑽 ,𝝁 ] .

Extending 𝑃 ′ to R𝑞𝑘 : We will extend the payoff function 𝑃 ′ fur-
ther to a real valued function on (R𝑞)𝑘 , by plugging the real values

in the expansion of 𝑃 ′ given in the Equation (7). This extension of

𝑃 ′ is smooth in the following sense:

(1) All the partial derivatives of 𝑃 ′ up to order 3 are uniformly

bounded by 𝐶0 (𝑞, 𝑘).
(2) 𝑃 ′ is a Lipschitz function with Lipschitz constant 𝐶0 (𝑞, 𝑘),

i.e.,∀{𝒙1, . . . , 𝒙𝑘 }, {𝒚1, . . . ,𝒚𝑘 } ∈ (R𝑞)𝑘 ,

|𝑃 ′(𝒙1, . . . , 𝒙𝑘 ) − 𝑃 ′(𝒚1, . . . ,𝒚𝑘 ) | ⩽ 𝐶0 (𝑞, 𝑘)
𝑘∑︁

𝑖=1

∥𝒙𝑖 −𝒚𝑖 ∥2 .

Setting of parameters. Let 𝜉 > 0 be the parameter from Lemma 2.6.

Let 𝛿 > 0 be a sufficiently small constant. Set 𝜂 ∈ (0, 1) to be the

smallest constant such that for all ℓ ⩾ 0,

(1 − 𝜉)ℓ (1 − (1 − 𝛿)ℓ )2 ⩽ 𝜂.

Note that as 𝛿 → 0, 𝜂 (𝛿) → 0. We will denote the smallest non-

zero probability of an atom in the SDP local distribution by 𝛼 . As

the SDP instance is finite, we can assume that 𝛼 > 0 independent

of 𝑅.

Local and Global Ensembles. Fix a given SDP solution (𝑽 , 𝝁)
with value 1. We define the following local and global orthonormal

ensembles of random variables for every 𝑠 ∈ V as follows.

• Local Integral Ensembles L: The Local Integral Ensem-

ble L = {ℓ𝑠 | 𝑠 ∈ V} for a variable 𝑠 ∈ V , ℓ𝑠 = {ℓ𝑠,0 ≡
1, ℓ𝑠,1, . . . , ℓ𝑠,𝑞−1} is a set of random variables that are or-

thonormal ensembles for the space Ω𝑠 .

We also define the following global ensembles of random vari-

ables:

• Global Gaussian Ensembles G: The Global Gaussian En-

sembles G = {𝒈𝑠 | 𝑠 ∈ V} are generated by setting 𝒈𝑠 =

{𝑔𝑠,0 ≡ 1, 𝑔𝑠,1, . . . , 𝑔𝑠,𝑞−1} where

𝑔𝑠,𝑐 =

∑︁

𝜔 ∈Σ
ℓ𝑠,𝑐 (𝜔)⟨𝒃𝑠,𝜔 , 𝜻 ⟩, ∀𝑐 ∈ {1, . . . , 𝑞 − 1},

Input: An SDP solution (𝑽 , 𝝁).
Setup: For each 𝑠 ∈ V , the probability space Ω𝑠 = (Σ, 𝜇𝑠 )
consists of atoms in Σ with the distribution 𝜇𝑠 (𝑎) = ∥𝑏𝑠,𝑎 ∥2.
Let F𝑠 denote the function obtained by interpreting the func-

tion F : Σ𝑅 → ▲𝑞 as a function over Ω𝑅
𝑠 . Let H𝑠 = 𝑇1−𝛿F𝑠

for all 𝑠 ∈ V . Let 𝑭 𝑠 ,𝑯𝑠 denote the multilinear polynomials

corresponding to functions F𝑠 ,H𝑠 respectively.

Rounding Scheme:

Step I: Sample 𝑅 Gaussian vectors 𝜻 (1) , 𝜻 (2) , . . . , 𝜻 (𝑅) with
the same dimension as 𝑽 .

Step II: For each 𝑠 ∈ V , do the following:

(1) For each 𝑗 ∈ [𝑅], let 𝑔 ( 𝑗)𝑠,0 ≡ 1 and for 𝑐 ∈ {1, . . . , 𝑞− 1},
set

𝑔
( 𝑗)
𝑠,𝑐 =

∑︁

𝜔 ∈Σ
ℓ𝑠,𝑐 (𝜔)⟨𝒃𝑠,𝜔 , 𝜻 ( 𝑗) ⟩.

Let 𝒈
( 𝑗)
𝑠 = (𝑔 ( 𝑗)𝑠,0 ≡ 1, 𝑔

( 𝑗)
𝑠,1 , . . . , 𝑔

( 𝑗)
𝑠,𝑞−1) and 𝒈𝑠 =

(𝒈 (1)
𝑠 ,𝒈

(2)
𝑠 , . . . ,𝒈

(𝑅)
𝑠 ).

(2) Evaluate the multilinear polynomial 𝑯𝑠 with 𝒈𝑠 as

inputs to obtain 𝒑𝑠 ∈ R𝑞 , i.e., 𝒑𝑠 = 𝑯𝑠 (𝒈𝑠 ).
(3) Round 𝒑𝑠 to 𝒑

∗
𝑠 .

𝒑∗
𝑠 = Scale(𝑓[0,1] ((𝒑𝑠 )1), 𝑓[0,1] ((𝒑𝑠 )2), . . . , 𝑓[0,1] ((𝒑𝑠 )𝑞)),
where

𝑓[0,1] (𝑥) =



0 if 𝑥 < 0

𝑥 if 0 ⩽ 𝑥 ⩽ 1,

1 if 𝑥 > 1,

and

Scale(𝑥1, 𝑥2, . . . , 𝑥𝑞) =
{

1∑
𝑖 𝑥𝑖

(𝑥1, . . . , 𝑥𝑞) if
∑
𝑖 𝑥𝑖 ≠ 0,

(1, 0, 0, . . . , 0) if
∑
𝑖 𝑥𝑖 = 0.

(4) Assign the variable 𝑠 ∈ V a value 𝑎 ∈ Σ with probabil-

ity (𝒑∗
𝑠 )𝜍−1 (𝑎) .

Step III: Output the assignment from Step II.

Figure 4: Rounding Scheme RoundF .

and 𝜻 is a normal Gaussian random vector of appropriate

dimension.

The following lemma states that the local integral ensemble

and the global Gaussian ensemble have matching first and second

moments. We need this to apply the invariance principle in our

analysis below.

Lemma 2.21. For every 𝑠 ∈ V , 𝒈𝑠 is an orthonormal ensemble w.r.t.

the space Ω𝑠 . Also, for any payoff 𝑃 ′ ∈ P, the global ensembles G
match the following moments of the local integral ensembles L:

E
𝜻
[𝑔𝑠,𝑐 .𝑔𝑠′,𝑐′] = E

(𝜔,𝜔′)∼𝜇𝑃′ | (𝑠,𝑠′)
[ℓ𝑠,𝑐 (𝜔) .ℓ𝑠′,𝑐′ (𝜔 ′)]

for all 𝑐, 𝑐 ′ ∈ {1, . . . , 𝑞 − 1}, 𝑠, 𝑠 ′ ∈ V(𝑃 ′), where 𝜇𝑃 ′ | (𝑠, 𝑠 ′) is the
marginal distribution of 𝜇𝑃 ′ on the coordinates of 𝑠, 𝑠 ′.
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Proof. For any 𝑠, 𝑠 ′ ∈ V and 𝑐, 𝑐 ′ ∈ {1, . . . , 𝑞 − 1}, we have

E[𝑔𝑠,𝑐 .𝑔𝑠′,𝑐′] = E

[∑︁

𝜔 ∈Σ
ℓ𝑠,𝑐 (𝜔)⟨𝒃𝑠,𝜔 , 𝜻 ⟩

∑︁

𝜔′∈Σ
ℓ𝑠′,𝑐′ (𝜔 ′)⟨𝒃𝑠′,𝜔′, 𝜻 ⟩

]

=

∑︁

𝜔,𝜔′∈Σ
ℓ𝑠,𝑐 (𝜔)ℓ𝑠′,𝑐′ (𝜔 ′) E

[
⟨𝒃𝑠,𝜔 , 𝜻 ⟩⟨𝒃𝑠′,𝜔′, 𝜻 ⟩

]

=

∑︁

𝜔,𝜔′∈Σ
ℓ𝑠,𝑐 (𝜔)ℓ𝑠′,𝑐′ (𝜔 ′)⟨𝒃𝑠,𝜔 , 𝒃𝑠′,𝜔′⟩. (8)

Now, when 𝑠 = 𝑠 ′, for 𝜔 ≠ 𝜔 ′, ⟨𝒃𝑠,𝜔 , 𝒃𝑠′,𝜔′⟩ = 0 because of the SDP

constraints (3). Therefore, in this case

E[𝑔𝑠,𝑐 .𝑔𝑠,𝑐′] =
∑︁

𝜔 ∈Σ
ℓ𝑠,𝑐 (𝜔)ℓ𝑠,𝑐′ (𝜔)∥𝒃𝑠,𝜔 ∥22

= E
𝜔∼𝜇𝑠

[ℓ𝑠,𝑐 (𝜔)ℓ𝑠,𝑐′ (𝜔)] = ⟨ℓ𝑠,𝑐 , ℓ𝑠,𝑐′⟩𝜇𝑠 ,

which is 1 when 𝑐 = 𝑐 ′ and 0 otherwise. This shows the orthonor-

mality of 𝒈𝑠 . Coming back to the Equation (8), again by the SDP

constraints (3), the inner-product ⟨𝒃𝑠,𝜔 , 𝒃𝑠′,𝜔′⟩ is precisely the prob-
ability of (𝜔,𝜔 ′) according to the distribution 𝜇𝑃 ′ | (𝑠, 𝑠 ′) for any
payoff 𝑃 ′ containing 𝑠 and 𝑠 ′. This proves the lemma. □

Let RoundF (𝑽 , 𝝁) be the expected value of the assignment re-

turned by the rounding algorithm in Figure 4. In this section, we

prove the following soundness lemma.

Lemma 2.22. Let 𝑘 = 3 and assume that the SDP solution is semi-

rich and does not satisfy any linear equation. Then, for any (𝜏, 𝛿)-
quasirandom function F,

Soundness(Dict𝑽 ,𝝁 ) ⩽ RoundF (𝑽 , 𝝁) + 𝑜𝛿,𝜏 (1) .

The notation 𝑜𝛿,𝜏 (1) means that it goes to 0 as 𝛿 → 0 and 𝜏 → 0.

Therefore, in this case the acceptance probability of the test is upper

bounded by the integral value of the given instance. This shows that

if there exists an (1, 𝑠) integrality gap instance of Max-𝑃-CSP, then

there exists a dictatorship test with completeness 1 and soundness

𝑠 + 𝜀 for any constant 𝜀 > 0.

Remark 2.23. If we can extend our main analytical lemma to other

predicates, then we can remove the condition on the predicate from

Lemma 2.22.

The acceptance probability of the test for a given function F is

given by:

Pr[F passes Dict𝑽 ,𝝁 ]
= E

𝑃 ′∼P
E
𝒛𝑃′

[𝑃 ′(F𝑠1 (𝒛𝑠1 ),F𝑠2 (𝒛𝑠2 ), . . . ,F𝑠𝑘 (𝒛𝑠𝑘 ))] .

We will prove a series of claims which will help us relate the

probability to RoundF (𝑽 , 𝝁). We begin with the following claim

which shows that we can replace F with its noisy version 𝑇1−𝛿F.

Here, we use the main analytical lemma (Lemma 2.6).

Claim 2.24 (Changing F to H). Let 𝑘 = 3 and assume that the

SDP solution is semi-rich and does not satisfy any linear equation.

Then for every 𝑃 ′ ∈ P,
����
E𝒛𝑃′ [𝑃 ′(F𝑠1 (𝒛𝑠1 ),F𝑠2 (𝒛𝑠2 ), . . . ,F𝑠𝑘 (𝒛𝑠𝑘 ))]−
E𝒛𝑃′ [𝑃 ′(H𝑠1 (𝒛𝑠1 ),H𝑠2 (𝒛𝑠2 ), . . . ,H𝑠𝑘 (𝒛𝑠𝑘 ))]

���� ⩽ 𝜂 (𝛿) .

Proof. Consider the following expression.

𝑃 ′(F𝑠1 (𝒛𝑠1 ),F𝑠2 (𝒛𝑠2 ), . . . ,F𝑠𝑘 (𝒛𝑠𝑘 )) =
∑︁

𝜎 ∈Σ𝑘
𝑃 ′(𝜎)

𝑘∏

𝑗=1

F𝑠 𝑗 ,𝜎 𝑗 (𝒛𝑠 𝑗 ) .

We will show that for all 𝑃 ′ ∈ P and 𝜎 ∈ Σ
𝑘 ,

Γ :=

������
E
𝒛𝑃′



𝑘∏

𝑗=1

F𝑠 𝑗 ,𝜎 𝑗 (𝒛𝑠 𝑗 )

− E

𝒛𝑃′



𝑘∏

𝑗=1

H𝑠 𝑗 ,𝜎 𝑗 (𝒛𝑠 𝑗 )


������
⩽ 𝜂.

Let us define Γ𝑗 ′ for 𝑗
′ = 1, . . . , 𝑘 as follows:

Γ𝑗 ′ :=

������
E𝒛𝑃′

[∏𝑗 ′−1
𝑗=1 H𝑠 𝑗 ,𝜎 𝑗 (𝒛𝑠 𝑗 )

∏𝑘
𝑗=𝑗 ′ F𝑠 𝑗 ,𝜎 𝑗 (𝒛𝑠 𝑗 )

]
−

E𝒛𝑃′

[∏𝑗 ′

𝑗=1H𝑠 𝑗 ,𝜎 𝑗 (𝒛𝑠 𝑗 )
∏𝑘

𝑗=𝑗 ′+1 F𝑠 𝑗 ,𝜎 𝑗 (𝒛𝑠 𝑗 )
]

������
.

By triangle inequality, Γ ⩽
∑

𝑗 ′ Γ𝑗 ′ .

Γ𝑗 ′ =

������
E𝒛𝑃′

[∏𝑗 ′−1
𝑗=1 H𝑠 𝑗 ,𝜎 𝑗 (𝒛𝑠 𝑗 )

∏𝑘
𝑗=𝑗 ′ F𝑠 𝑗 ,𝜎 𝑗 (𝒛𝑠 𝑗 )

]
−

E𝒛𝑃′

[∏𝑗 ′

𝑗=1H𝑠 𝑗 ,𝜎 𝑗 (𝒛𝑠 𝑗 )
∏𝑘

𝑗=𝑗 ′+1 F𝑠 𝑗 ,𝜎 𝑗 (𝒛𝑠 𝑗 )
]

������

=

����� E𝒛𝑃′

[
(F𝑠 𝑗′ ,𝜎 𝑗′ (𝒛𝑠 𝑗′ ) − H𝑠 𝑗′ ,𝜎 𝑗′ (𝒛𝑠 𝑗′ ))·∏𝑗 ′−1

𝑗=1 H𝑠 𝑗 ,𝜎 𝑗 (𝒛𝑠 𝑗 )
∏𝑘

𝑗=𝑗 ′+1 F𝑠 𝑗 ,𝜎 𝑗 (𝒛𝑠 𝑗 )

] �����

=

����� E𝒛𝑃′

[
(Id −𝑇1−𝛿 )F𝑠 𝑗′ ,𝜎 𝑗′ (𝒛𝑠 𝑗′ ) ·

∏𝑗 ′−1
𝑗=1 H𝑠 𝑗 ,𝜎 𝑗 (𝒛𝑠 𝑗 )∏𝑘

𝑗=𝑗 ′+1 F𝑠 𝑗 ,𝜎 𝑗 (𝒛𝑠 𝑗 )

] ����� .

Here, Id is the identity operator. Now, the function 𝑄 := (Id −
𝑇1−𝛿 )F𝑠 𝑗′ ,𝜎 𝑗′ (𝒛𝑠 𝑗′ ) is a function 𝑄 : Σ𝑅 → [0, 1] that satisfies the
property of being a ‘high-degree’ function: Using the Efron-Stein

decomposition of 𝑄 and using Fact 2.14, we have

⟨𝑄,𝑇1−𝜉𝑄⟩𝜇⊗𝑅𝑠𝑗′
=

∑︁

𝑆⊆[𝑅 ]
(1 − 𝜉) |𝑆 | (1 − (1 − 𝛿) |𝑆 |)2∥(F𝑠 𝑗′ ,𝜎 𝑗′ )𝑆 ∥22 .

Now, (1 − 𝜉)ℓ (1 − (1 − 𝛿)ℓ )2 ⩽ 𝜂 for every ℓ ⩾ 0. Therefore,

⟨𝑄,𝑇1−𝜉𝑄⟩𝜇
𝑠⊗𝑅
𝑗′
⩽ 𝜂

∑︁

𝑆⊆[𝑅 ]
∥(F𝑠 𝑗′ ,𝜎 𝑗′ )𝑆 ∥22 ⩽ 𝜂 (𝛿).

Hence, the product inside the expectation satisfies the hypothesis

of Lemma 2.6, with Stab1−𝜉 (𝑄) ⩽ 𝜂 (𝛿). Applying the lemma, we

conclude that Γ𝑗 ′ ⩽ 𝜂 (𝛿)/𝑘, where 𝜂 (𝛿) → 0 as 𝛿 → 0. Therefore,

Γ ⩽
∑

𝑗 ′ Γ𝑗 ′ ⩽ 𝜂 (𝛿). □

We now switch to the multilinear polynomials. By definition, we

have

E
𝒛𝑃′

[𝑃 ′(H𝑠1 (𝒛𝑠1 ),H𝑠2 (𝒛𝑠2 ), . . . ,H𝑠𝑘 (𝒛𝑠𝑘 ))]

= E
L𝑅

𝑃′
[𝑃 ′(𝑯𝑠1 (ℓ𝑠1 ),𝑯𝑠2 (ℓ𝑠2 ), . . . ,𝑯𝑠𝑘 (ℓ𝑠𝑘 ))] .

Here, L𝑃 ′ is the joint distribution of the local ensembles based

on the distribution 𝜇𝑃 ′ . We now apply the Invariance Principle to

replace the Integral Ensembles with the Gaussian Ensembles.

Claim 2.25. (Moving to the global Gaussian ensembles) Using the

invariance principle, for every 𝑃 ′ ∈ P, we have
�����
EL𝑅

𝑃′
[𝑃 ′(𝑯𝑠1 (ℓ𝑠1 ),𝑯𝑠2 (ℓ𝑠2 ), . . . ,𝑯𝑠𝑘 (ℓ𝑠𝑘 ))]−

EG𝑅
𝑃′
[𝑃 ′(𝑯𝑠1 (𝒈𝑠1 ),𝑯𝑠2 (𝒈𝑠2 ), . . . ,𝑯𝑠𝑘 (𝒈𝑠𝑘 ))]

����� ⩽ 𝜏𝑂𝛿,𝛼 (1) .
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Proof. This claim follows directly from the Invariance Principle,

i.e., from Theorem 2.15, and using Lemma 2.21. Here, the maximum

influence of the functions is at most 𝜏 and any non-zero probability

of an atom is at least 𝛼 . Also, for 𝐷 = 𝑂 (log1−𝛿 𝜏), the degree ⩾ 𝐷

weight of the functions 𝑯𝑠 is at most 𝑂 (𝜏). This is as follows.

𝑊 ⩾𝐷 [H𝑠,𝑖 ; 𝜇
⊗𝑅] =

∑︁

𝝈 : |𝝈 |⩾𝐷
ˆ(H𝑠,𝑖 )

2
𝝈

=

∑︁

𝝈 : |𝝈 |⩾𝐷
(1 − 𝛿) |𝝈 | ˆ(F𝑠,𝑖 )

2
𝝈 ⩽ (1 − 𝛿)𝐷 ⩽ 𝜏 .

Therefore, 𝑊 ⩾𝐷 [H𝑠 ; 𝜇
⊗𝑅] =

∑𝑞
𝑗=1𝑊

⩾𝐷 [H𝑠,𝑗 ; 𝜇
⊗𝑅] ⩽ 𝑞 · 𝜏 =

𝑂 (𝜏). □

The final claim shows that, as far as the multilinear polynomial

evaluations are concerned, the rounding step (Step II (3)) does not

change the expectation by much if the function F is a quasirandom

function.

Claim 2.26. (Analyzing the loss due to truncation and scaling) For

every payoff 𝑃 ′ ∈ P,
����
EG𝑅 [𝑃 ′(𝑯𝑠1 (𝒈𝑠1 )

★,𝑯𝑠2 (𝒈𝑠2 )
★, . . . ,𝑯𝑠𝑘 (𝒈𝑠𝑘 )

★)]−
EG𝑅 [𝑃 ′(𝑯𝑠1 (𝒈𝑠1 ),𝑯𝑠2 (𝒈𝑠2 ), . . . ,𝑯𝑠𝑘 (𝒈𝑠𝑘 ))]

���� ⩽ 𝜏𝑂𝛿,𝛼 (1) .

Proof. H𝑠 𝑗 = 𝑇1−𝛿F𝑠 𝑗 is over the domain Σ
𝑅 and has the

range ▲𝑞 . The difference between the first and the second ex-

pression (rounding error because of scaling and truncation) is

bounded by 𝑂 (𝐶0, 𝑞) ·
∑
𝑠∈V(𝑃 ′) E[𝝃 (𝑯𝑠 (𝒈𝑠 ))] [22, Claim 7.4.2],

where 𝝃 (𝒂) = ∑
𝑗 (𝑓[0,1] (𝑎 𝑗 ) − 𝑎 𝑗 )2 and 𝐶0 is an absolute constant

from the smoothness property of the payoff 𝑃 ′. We know that

E[𝝃 (𝑯𝑠 (ℓ𝑠 ))] = 0, as 𝑯𝑠 (ℓ𝑠 ) ∈ ▲𝑞 . Now, we can apply the invari-

ance principle to conclude
����� EG𝑅

[𝝃 (𝑯𝑠 (𝒈𝑠 ))] − E
L𝑅

𝑃′
[𝝃 (𝑯𝑠 (ℓ𝑠 ))]

����� ⩽ 𝜏𝑂𝛿,𝛼 (1) .

As E[𝝃 (𝑯𝑠 (ℓ𝑠 ))] = 0, the claim follows. □

Proof of Lemma 2.22. We are now ready to prove the soundness

of the test: The value returned by the rounding scheme is

RoundF (𝑽 , 𝝁)
= E

𝑃 ′∈P
E
G𝑅

[
𝑃 ′(𝑯𝑠1 (𝒈𝑠1 )

★,𝑯𝑠2 (𝒈𝑠2 )
★, . . . ,𝑯𝑠𝑘 (𝒈𝑠𝑘 )

★)
]

and the soundness of the test is given by the following expression:

Pr[F passes Dict𝑽 ,𝝁 ]
= E

𝑃 ′∼P
E
𝒛𝑃′

[𝑃 ′(F𝑠1 (𝒛𝑠1 ),F𝑠1 (𝒛𝑠2 ), . . . ,F𝑠𝑘 (𝒛𝑠𝑘 ))] .

For 𝑘 = 3, using the Claims 2.24, 2.25, 2.26 that we proved earlier,

we can relate the two quantities as follows:

Pr[F passes Dict𝑽 ,𝝁 ] ⩽ RoundF (𝑽 , 𝝁) + 𝜂 (𝛿) + 𝜏𝑂𝛿,𝛼 (1) .

Now, 𝜂 (𝛿) → 0 as 𝛿 → 0. Therefore, we get

Pr[F passes Dict𝑽 ,𝝁 ] ⩽ RoundF (𝑽 , 𝝁) + 𝑜𝛿,𝜏 (1),

as required. □

3 THE MAIN ANALYTICAL LEMMA

In this section, we give an overview of the proof our main analytical

lemma (Lemma 2.6). The reader is referred to the full-version of the

paper for the complete proof .

We begin by addressing a more specialized case, in which the

requirement of semi-rich support of the distribution is replaced

with the stronger condition that the support of the distribution is a

union of matchings:

Definition 3.1. We say a set 𝑆 ⊆ Σ×Φ×Γ is a union of matchings

if there exists Σ′ ⊆ Σ and a collection of matchings𝑀𝑥 ⊆ Φ × Γ, one

for each 𝑥 ∈ Σ
′, such that

𝑆 =

⋃

𝑥 ∈Σ′
{𝑥} ×𝑀𝑥 .

The version of Lemma 2.6 for union of matchings is Lemma 3.2

stated below; another difference is that below we introduce some

asymmetry in the roles of 𝑓 , 𝑔 and ℎ, and we need the stability of

either 𝑔 or ℎ to be small. In the full-version of the paper, we explain

the slight adaptations that allow our argument to go through in the

case of semi-rich support, and then explain how to generalize the

statement to the case the stability of 𝑓 is small (thereby establishing

Lemma 2.6).

Lemma 3.2. For all𝑚 ∈ N, 𝜀, 𝛼 > 0 there exist 𝜉 > 0 and 𝛿 > 0

such that the following holds. Suppose 𝜇 is a distribution over Σ×Φ×Γ
whose support (a) is a union of matchings, and (b) cannot be embedded

in an Abelian group. Further suppose that |Σ| , |Φ| , |Γ | ⩽ 𝑚 and

each atom in 𝜇 has probability at least 𝛼 . Then, if 𝑓 : Σ𝑛 → [−1, 1]
𝑔 : Φ𝑛 → [−1, 1], ℎ : Γ𝑛 → [−1, 1] are functions such that

• Stab1−𝜉 (𝑔) ⩽ 𝛿 or Stab1−𝜉 (ℎ) ⩽ 𝛿 .

Then
���Ex,y,z∼𝜇⊗𝑛 [𝑓 (x)𝑔(y)ℎ(z)]

��� ⩽ 𝜀.

As the roles of 𝑔 and ℎ will be interchangeable in our argu-

ments, without loss of generality we shall focus on the case that

Stab1−𝜉 (𝑔) ⩽ 𝛿 throughout this section. Before proceeding to the

formal argument, we begin with a quick overview of the proof that

outlines the main components involved.

Proof overview. The proof of Lemma 3.2 consists of several steps.

We think of supp(𝜇) as a graph between Φ and Γ, wherein edges

are labeled by elements of Σ in the natural way. Our initial premise

is that for each 𝑥 ∈ Σ, the collection of edges labeled by 𝑥 forms

a matching, and we perform several steps in order to improve the

structure we have on that graph (by possibly increasing the size of

the alphabet Σ).

(1) Let𝑇𝑥 ∈ {0, 1}Φ×Γ be the permutation matrix corresponding

to the matching labeled by 𝑥 . First, we show that by moving

to a different distribution 𝜇 ′ satisfying similar properties

to 𝜇 ′, we may assume that not only the edges of 𝑇𝑥 lie in

the graph of 𝜇 ′, but rather also the edges of 𝑇𝑥1𝑇
𝑡
𝑥2𝑇𝑥3 for

any 𝑥1, 𝑥2, 𝑥3 ∈ Σ. In other words, we may compose various

matchings and łinsertž them into the support of our distri-

bution. Performing this step ℓ = 𝑂𝑚 (1) times, we get that

as the graph of 𝜇 is connected, we would end up with the

complete bipartite graph between Φ and Γ. We now move

on to a similar looking expectation to the one in the main

lemma but for 𝜇 ′, which is a distribution over Σℓ × Φ × Γ.
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(2) We next reduce the size of the alphabet Σℓ to be smaller. Note

that for each ®𝑥 ∈ Σ
ℓ , the edges in the graph of 𝜇 ′ labeled by

®𝑥 form a matching. We show that if for ®𝑥, ®𝑥 ′ these matchings

are not edge disjoint, then we may glue together the symbols

®𝑥, ®𝑥 ′ and modify the distribution 𝜇 ′ and the functions 𝑓 , 𝑔, ℎ

(in a way that preserves their various properties) so that

the expectation does not drop too much. The edges of the

new symbols will consist of the union of the edges of the old

symbols, and the new alphabet for 𝑥 is Σ′ ⊆ Σ
ℓ

We note that in such operation, if the matchings correspond-

ing to ®𝑥, ®𝑥 ′ were not identical, then the edges corresponding

to the new symbol will not form a matching. We show that

in that case, one may further do identification of symbols in

Φ and Γ that preserve the properties of the distributions and

the functions, and keeps the expectation high. Performing

such identification steps sufficiently many times, one returns

to the case wherein for each 𝑥 ∈ Σ
′ the edges corresponding

to 𝑥 form a matching. We note that each time we perform

such step, the alphabet of 𝑦 or 𝑧 drops by at least 1, so in

total we will have at most 2𝑚 such steps.

(3) We thus reach new alphabets Σ′,Φ′, Γ′. We consider further

operations of composing three 𝑥-matchings, i.e. moving from

Σ
′ to Σ

′3. We say that this move is worthwhile if doing

it, and then the subsequent identifications, the alphabets

Φ
′, Γ′ will shrink further. As long as performing this move

is worthwhile, we do so and otherwise we proceed to the

next step.

(4) After performing 𝑂𝑚 (1) steps as in the previous item, we

reach to the state wherein the alphabets are Σ
′′, Φ′′ and

Γ
′′, and it is no longer worthwhile to execute the previ-

ous step. This means that for every (𝑥1, 𝑥2, 𝑥3) ∈ Σ
′′3 and

(𝑥4, 𝑥5, 𝑥6) ∈ Σ
′′3, the permutations𝑇𝑥1𝑇

𝑡
𝑥2𝑇𝑥3 and𝑇𝑥4𝑇

𝑡
𝑥5𝑇𝑥6

are either identical, or are edge disjoint (otherwise we would

be able to execute the previous step once more). We use this

structure in order to identify a non-Abelian group structure.

More specifically, we construct a group (𝐺, ·) that has no
representations of dimension 1 (besides the trivial represen-

tation), such that our expectation is

E
(𝑔1,𝑔2,𝑔3) :𝑔3=𝑔1𝑔2

[
𝑓 ′(𝑔1)𝑔′(𝑔2)ℎ′(𝑔3)

]
.

Here, 𝑓 ′, 𝑔′, ℎ′ are really the same as the functions 𝑓 , 𝑔, ℎ we

have, except that they interpret their input as elements from

𝐺 . We argue that the fact that 𝑔′ is highly noise sensitive

implies that almost all of the mass of 𝑔′ (with respect to the

representation theoretic Fourier decomposition over 𝐺) lies

on the high degrees. We use this fact along with basic Fourier

analysis in order to give an upper bound on the expectation

above that vanishes as 𝜉, 𝛿 → 0 (uniformly in 𝑛), and hence

finish the proof.
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