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Abstract—Service Workers (SWs) are a powerful feature at the
core of Progressive Web Apps, namely web applications that
can continue to function when the user’s device is offline and
that have access to device sensors and capabilities previously
accessible only by native applications. During the past few years,
researchers have found a number of ways in which SWs may
be abused to achieve different malicious purposes. For instance,
SWs may be abused to build a web-based botnet, launch DDoS
attacks, or perform cryptomining; they may be hijacked to
create persistent cross-site scripting (XSS) attacks; they may be
leveraged in the context of side-channel attacks to compromise
users’ privacy; or they may be abused for phishing or social engi-
neering attacks using web push notifications-based malvertising.

In this paper, we reproduce and analyze known attack
vectors related to SWs and explore new abuse paths that have
not previously been considered. We systematize the attacks
into different categories, and then analyze whether, how, and
estimate when these attacks have been published and mitigated
by different browser vendors. Then, we discuss a number of
open SW security problems that are currently unmitigated, and
propose SW behavior monitoring approaches and new browser
policies that we believe should be implemented by browsers to
further improve SW security. Furthermore, we implement a
proof-of-concept version of several policies in the Chromium
code base, and also measure the behavior of SWs used by highly
popular web applications with respect to these new policies. Our
measurements show that it should be feasible to implement and
enforce stricter SW security policies without a significant impact
on most legitimate production SWs.

1. Introduction

Service Workers [1] are a powerful feature [2] at the core
of Progressive Web Apps [3], namely web applications that
can continue to function when the user’s device is offline and
that have access to device sensors and capabilities previously
accessible only by native applications. In practice, a Service
Worker (SW) is a JavaScript Worker [1] script with the
following high-level properties: (i) it is installed by a web
application rendered in a browser; (ii) after installation, the
SW can act as a proxy for network requests issued by its
web application, and can thus control how web content is
retrieved (e.g., from a local cache or the network) and what
content is eventually passed to the application; (iii) it is an
event-driven process that runs in the background, even when
its web application is not actively rendered on the browser, and
that can be activated by the browser based on events such as
receiving a web push message [4] or a request to fetch a web
page on behalf of its web application, among others.

Because SWs are a powerful feature, browser developers
are mindful of potential security risks that come with them.
Therefore, over time browsers have implemented a number
of security policies around SWs to limit potential abuse (see
Section 2). As an example, SW files can only be requested from
a secure first-party origin (essentially, via HTTPS and from the
same domain as the installing web application’s origin). How-
ever, during the past few years, researchers have found a number
of ways in which SWs may still be abused to achieve different
malicious purposes. For instance, SWs may be abused to build a
web-based botnet [5], launch DDoS attacks, or perform crypto-
mining [6]; they may be hijacked to create persistent cross-site
scripting (XSS) attacks [7]; they may be leveraged in the context
of side-channel attacks to compromise users’ privacy [8]; or
they may be abused for phishing [6] or social engineering
attacks using web push notifications-based malvertising [9].

In this paper, we reproduce and analyze known attack
vectors related to SWs, and explore new abuse paths that have
not previously been considered (Section 3). We first system-
atize this information by grouping the attacks into different
categories, based on the fundamental SW security weaknesses
that make the attacks possible. Afterwards, we analyze whether,
how, and estimate when these attacks have been published and
mitigated by different browser vendors, and organize this infor-
mation into an attacks and mitigations timeline (see Section 4,
Table 1 and Figure 1). Then, we discuss a number of open SW
security problems that to the best of our knowledge are currently
unmitigated. Accordingly, we propose SW behavior monitoring
approaches and new browser policies that we believe should
be implemented by browsers to further improve SW security
(Section 5). While preventing all types of SW abuse may not be
possible, we aim to propose policies that can limit the damage
that potential SW attacks can make, while minimizing the im-
pact the proposed browser changes may have on existing legit-
imate SW code. To demonstrate the feasibility of the proposed
browser policy changes, we implement a proof-of-concept
version of several policies in the Chromium code base, and also
measure the behavior of SWs used by highly popular web ap-
plications with respect to these new policies (Sections 6 and 7).

In summary, we make the following main contributions:

e We reproduce previously known attacks that abuse
SWs, discuss new paths for abuse that were previously
not considered, and systematize these SW attacks
into categories based on the fundamental features that
make them possible.

o We study whether, how, and estimate when the SW
attacks have been mitigated by different browser
vendors, and organize this information in an attacks
and mitigations timeline.



o We discuss open security problems related to SWs and
propose new browser policies that aim to reduce the
potential for future SW abuse.

o Finally, we implement a proof-of-concept version
of a number of such policies in Chromium. Also,
we measure how policy parameters could be tuned
to limit SW abuse without significantly impacting
legitimate SWs used by popular websites. To this
end, we build a SW forensic engine, namely an
instrumented Chromium browser that allows us to
obtain fine-grained information on the behavior of SW
code for real-world web applications.

o In addition, we disclosed the new attacks we found
to browser vendors and obtained confirmation of
their effectiveness. We also release our repository of
reproduced and new SW attacks, SW forensic engine,
proof-of-concept browser policy implementations and
measurements data to the community [10], [11].

2. Background

In this section, we provide a brief background on Service
Workers (SWs), focusing primarily on properties that are used
as part of the attacks and mitigations described in later sections.

2.1. Service Workers

A Service Worker (SW) is a JavaScript Worker [1], namely
an event-driven script that runs in the background and that does
not have direct access to the DOM. To run in the background,
a SW first needs to be registered by a web page. The SW code
has to be contained in a JavaScript file hosted under the same
origin as the origin of the web page that invokes its registration.
Once installed, the SW can be programmed to cache web pages
that may be later served to the user even if the browser is offline.
This allows a web application running in the browser to behave
more like a native application, even when the user’s device
connectivity to the Internet is unreliable. In addition, SWs can
receive push messages and send web push notifications to the
user even when the related web application is not open on the
browser, in a way similar to native application’s notifications.

2.2. SW Lifecycle

Once a website registers a SW, the SW code goes through
an installation and activation phase, after which it can control
web page requests under the website’s origin [12]. Before
installation completes, the SW can import additional scripts into
the worker’s context by using the importScripts APIL. As such,
additional code may be imported from any third-party origin.
The SW is ready to use only after it is activated. Installed SWs
can be updated at any point of time to a new version. Automatic
checks for these updates are scheduled by the browser at an
interval of 24 hours or whenever a user visits a web page that
the SW controls. An update could also be triggered at any
point of time by using the Update API. Furthermore, a SW
can be explicitly de-registered by its web application.

Once installed, the SW is activated immediately, if there is
no pre-existing SW installed from the same origin. Otherwise,
it needs to wait for a previously installed SW to finish its
execution. If required, this wait period can be skipped by using
the skipWaiting APIL. Once activated, the status of the SW
remains set to running until it is terminated by the browser.

Each time an event is sent to the SW, the browser activates the
SW code and signals the SW about the event.

2.3. SW Scope

Each SW has a scope that can be specified during the
registration process [13]. The scope represents the URL path
under which web pages are controlled by the SW'. If no scope
is specified, then by default the SW acquires the scope of the
URL path under which the SW file is hosted. Currently, a
website can have only one SW registered with a given scope.
However, multiple SWs can be registered under the same origin
if they have different scopes. If a SW, SWk, is registered
with a scope at the root level (i.e., scope="/"), it will gain
control over all pages of the website. However, if a second
SW, SWy, is registered with a more specific scope (e.g.,
scope="/test’), this SW is given priority over pages under
its specific scope. Therefore, any requests made for web pages
under this specific scope (e.g., /test/page.html) will be handled
by SW 4 and not SWg. However, SW 4 will not have access to
requests made by web pages outside its scope. Notably, a user
doesn’t have to visit a web page within the scope of the SW for
that particular SW to be registered. For example, when the user
visits a web page at the website’s root level (e.g., /index.html),
that page can register multiple SWs with different scopes.

2.4. Handling Network Requests

Once a SW is activated, it can listen to fetch events from
web pages under its scope and thus intercept requests for
web content. The SW can then make network requests for the
requested content and cache them (using the Cache API). Later,
when a cached resource is requested again, it can be served from
the cache, which can help to reduce content load latency and
enables a web application to continue working even if the device
is offline. As a result, SWs gain a powerful ability that allows
them to monitor users’ requests and also modify the response
sent back to the web page. As we will discuss in later sections,
this ability could lead to SW abuse and potential leaks of
sensitive information to third party sites (see Sections 3 and 5).

2.5. Push Notifications

A significant component of SWs is the ability to send web
push notifications to users who grant permission. To use push
notifications, a SW has to subscribe to a push service by using
the PushManager.subscribe API [14]. This includes adding
an applicationServeKey to the options. Once subscription is
successful, the browser creates an endpoint URL and an auth
secret key [15] that shouldn’t be shared outside the application.
These details are later used to steer push messages to the
correct SW. Whenever, a push message is sent to the browser,
the browser activates the corresponding SW and signals a push
event that the SW can handle. More details about subscribing
to push notifications can be found in [15].

While push messages are received in the background,
SWs can also ask the browser to display a visual notification
(typically in response to a push message) to the user. To this end,
SWs can call showNotification to display a message on the user
interface. Notice that while push messages and notifications are

1. For instance, a SW registered under origin https://example.com with scope
/test has control over all web content requests under https://example.com/test.
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typically used together, SWs may choose not to call showNoti-
fication in response to a push message being received (in some
browsers, this will trigger a default notification message issued
by the browser itself). Similarly, a SW can call showNotification
independently from receiving a push message.

To send notifications to the user, a SW needs to request
a one-time explicit user consent (usually during the SW reg-
istration phase), by invoking Notification.requestPermission().
However, in addition to the user granting permission to the
SW via the browser Ul, the browser itself can only display
visual notifications to the user if OS-level permission is
granted. Different OSes have their own policies regarding how
applications (including the browser) can obtain such permission.
As an example, in case of MacOS the permission is disabled by
default, unless the user specifically grants the permission (for
instance, at the end of the browser software installation process).
On the contrary, Windows grant such permission by default.

2.6. Periodic Background Sync

The Periodic Background Sync [16] API allows web
applications to configure their SWs so to make updates in
the background at a periodic time interval. It can be used to
trigger periodicsync events from the SW without any
event being received from a remote server. Effectively, this
feature allows a web application to keep its SW and cached
content up to date. This API is currently supported by Chrome
and other Chromium-based browsers, such as Edge and Opera.
However, given its ability to operate in the background, the
Periodic Background Sync poses a potential security threat that
has refrained other browsers, such as Firefox and Safari, from
implementing it [17]. To curb its possible abuse, browsers need
to enforce a number of restrictions on the API use [18]-[20].

2.7. Security Policies

In general, browsers enforce a number of default security
policies to limit potential SW abuse. For instance [21], [22]:

1) Only secure origins (HTTPS sites) can register SWs.

2) The JavaScript file containing SW code must be hosted
under the same origin as the website that registers the SW.

3) A SW should be terminated if the SW code has been idle
for more than 30 seconds or if an event takes more than
5 minutes to process.

4) Push notifications should trigger a user-visible notification
if the SW does not explicitly issue one.

5) The use of some APIs (e.g., Periodic Background Sync)
should be restricted by permissions that must be granted
by the browser (not necessarily via a direct Ul request
to the user [18]).

Unfortunately, not all browsers implement all policies and,
when implemented, differences exist among browser vendors.
In the rest of the paper, we discuss both previously known and
new ways in which an attacker could still abuse SWs to achieve
malicious goals despite the SW constraints listed above.

2.8. SWs vs. Extensions and Page-Level Scripts

The security model and policies that apply to SWs differ
significantly from those of browser extensions and page scripts.
For instance, while extensions need explicit user permission to
be installed, the installation of SWs is completely transparent
to users. Also, extension icons are typically visible next to
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the URL bar, whereas SW installations provide no visual
information to users. Yet, like extensions, SWs run in the
background and have powerful privileges that may be abused
by attackers. Extensions are first inspected by browser web
stores before publication to curtail the distribution of malicious
code, whereas we are not aware of any trusted service that
vets the security of SW code. Third-party code inclusions in
SWs are different from third-party scripts imported in a web
page because third-party SW code will run in the background
in a way that is completely transparent to the user, whereas
page scripts will stop running after the related tab is closed.
Additionally, Third-party code included in a SW automatically
inherits all privileges of the SW. Thus, the third-party code can
be used to intercept any web request and response for all URLs
under the SW’s origin and scope, could be awakened by push
messages to perform potentially malicious actions, or to send
notifications to the user at any time (even when the browser
is closed, in the case of mobile devices).

3. Service Worker Abuse

In this section, we describe and categorize a number of
known and new attacks that can be launched by abusing
Service Workers (SWs) in different ways. The discussion is
based on both a review of previous academic work on web
security, as well as the review of web specifications, browser
documentation, and the analysis of browser source code.

3.1. Academic Literature Review

To systematically select academic papers related to SW abuse,
we first explored papers published in the top four security
conferences (IEEE S&P, USENIX Security, ACM CCS, and
NDSS) and presented in their web security-related conference
sessions over the past 6 years. During this first step we
reviewed a total of 144 papers and found 4 papers [5], [6],
[8], [24] that were directly related to SW security. Next, for
each of these papers, we explored their related work sections
and cited references. This led us to review another 119 papers
from which we identified 6 additional papers related to SW
abuse [7], [9], [23], [25]-[27]. Additionally, we used Google
Scholar with search keywords such as “Service Worker,”

" “security,” “attacks,” “abuse,” etc. The
search results included papers we already found in the previous
two literature review steps, plus 5 more papers [28]-[32] that
discuss the performance and efficiency of Progressive Web
Apps, rather than focusing on security issues. As these latter
5 papers do not discuss SW abuse, they are discussed only
briefly in Section 8. Overall, we reviewed over 260 papers and
identified 10 relevant works [5]-[9], [23]-[27] that are related
to SW abuse. In the remainder of this section, we analyze these
10 papers and categorize the SW abuse they describe.

3.2. Abuse Categories

We group the attacks discovered via our literature review, as
well as new attacks found, into different categories based on
the root SW features that make them possible. For most of the
attacks we discuss, we (re-)produce our own proof-of-concept
implementations [11], which we tested on a large number of
browser versions from five major browser vendors.

Scope of Threats. In our categorization of SW threats, we
mainly focus on attacks that exploit weaknesses in SW-specific



TABLE 1: Overview of attacks and impacted browser versions. Legend: (@) first attack impact; (O) fix released; (©) partial fix
released; () no fix released yet; (iZ) always possible if notifications are supported/enabled; (x) attack not possible.
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security policies and functionalities and in which SWs
themselves are the primary subject or enabler of the attack.
These include the use of malicious SW code installed by
visiting an adversary-owned website, malicious code injected
into legitimate third-party SWs, the direct abuse of SWs to
launch side-channel attacks that may reveal private information
about a user’s browsing activities, and the use of SWs to launch
social engineering attacks.

A summary of the attacks we analyze is provided in
Table 1, which includes a reference to relevant previous
publications or online resources in which an attack was
described. To the best of our knowledge, some of the attack
variants we discuss were not previously considered and are
thus marked as “New.” In addition, Table 1 provides detailed
information on different browser features or APIs that are
exploited for each attack and information about what browser
versions were first affected and what version provided a fix,
if any. In this section we focus on categorizing the attacks,
whereas browser mitigations are discussed in Section 4.

While we primarily focus on attacks that directly exploit
SWs’ features (Sections 3.2.1 through 3.2.4), for completeness
in Section 3.2.5 we also discuss different types of abuse in
which SWs are used to augment other types of web attacks,
rather than SWs being the main subject or enabler of the attack.

3.2.1. Continuous Execution

Because SWs can run in the background, can issue network re-
quests, and can be activated at any time (even when their related
website origin is closed), they can be abused to stealthily run
unwanted or malicious code. For instance, SWs could be abused
by a malicious website to run cryptomining code [6] or to build
a web-based botnet [5]. Such types of attacks are generally
enabled by artificially prolonging the amount of execution time
granted by the browser to SW code running in the background,
thus (approximately) achieving continuous execution.

WebBot: Papadopoulos et al. [5] describe how to build a
SW-based botnet. If a victim visits a malicious website M,
this website can register a SW, Sy, which can run in the
background. When executed, Sy, could implement code that
(i) reaches out to a command-and-control (C&C) website to
receive commands and (ii) execute the received command
to perform actions such as participating in DDoS attacks,
distributed password cracking, function as a relay proxy, etc.

For the botnet to function properly, Sj; needs to
be periodically (frequently) activated. Papadopoulos et
al. [5] mention that this would be possible by using the
BackgroundSync API [33]. Based on this information alone,
we were initially unable to fully reproduce the attack. However,
we found an online discussion about the attack by Chromium
developers [20], which stated that the attack was possible
primarily due to a bug that allowed the Update API (see
Section 2) to be invoked from a SW’s activate listener. By
combining the information provided in [5] and [20], we were
able to reproduce the attack as explained below. For the attack
to work, the following components are required:

o SW script whose content keeps changing at server side
to appear fresher than the SW already registered.

o Leveraging the Update API, which checks if there
are any changes made to the SW file and fetches the
updated version of the SW script from the server.

o Leveraging the BackgroundSync API to activate the
SW every time the browser is re-opened.

function wait (ms) {
const tmp = setInterval (() => { x do bad = Y,
return new Promise (res => setTimeout (res, ms));

}

self.addEventListener ('activate’, event => {
self.registration.sync.register (' foo’);

100);

Wait 0
event .waitUntil (wait (25000) .then(() => {
self.registration.update(); 1))




[ V)i

Listing 1: Example of SW self-update on activate

As shown in Listing 1, as the SW is activated it registers
a BackgroundSync and then calls the Update API after a
predefined timeout. In general, the SW execution is supposed
to terminate after a fixed period of time (a few minutes). Since
the SW file in the server keeps changing, calling the update
method will fetch the newer version of the SW script. This
action is followed by the browser raising the activate event,
which causes the corresponding listener function in the SW
code to be executed, where malicious code can be invoked.
This cycle repeats, until the browser is closed (or the SW is
explicitly unregistered). When the browser is re-opened, the
BackgroundSync triggers a sync event and the SW will be
activated again restarting the execution cycle.

PushExe: Lee et al. [6] demonstrated that if an attacker was
successful in registering a SW and obtaining push notification
permission from the user, she could then leverage the Push
API to activate the SW code at any moment. In some browsers,
the attack could be rendered stealthy if the SW code does
not explicitly invoke the showNotification API when a push
notification is received. Using this approach, the authors were
able to keep the SW running continuously in the background
for long periods of time, for instance to perform cryptomining.

This attack was found to work in Firefox, Edge, and the
UC Browser [6], though the attack is not stealthy in Chrome
because the browser displays a default notification message for
every push event, which may alert the user about the presence
of a malicious SW running in the background.

By independently reproducing and testing this attack, we
verified that in Firefox and Edge the browser revokes the push
subscription of a SW (i.e., the SW cannot receive new push
events), if the SW fails to show a notification after receiving
a push message for 15 and 3 times respectively, thus blocking
the attack, as also mentioned in [6]. However, the attack could
still be made continuously stealthy in Firefox (whereas Edge
does not appear to be affected) by simply renewing the SW
registration in the background, after a few push messages are
received (i.e., before exceeding the browser’s limit for “silent”
push events), as shown in Listing 5 (in Appendix).

async function DisplayHideNotifications ()
{self.registration.showNotification () .then(
async () =>{ const notifications =
await self.registration.getNotifications();
for(let i = 0; i < notifications.length; i++) {
notifications([i].close();}
1)}
self.addEventListener (' push’,async function (event) {
event ..waitUntil ( DisplayHideNotifications());
)i

Listing 2: Immediately hiding notifications on push events

[New] StealthierPushExe: While working to attain SW Con-
tinuous Execution, we discovered a variant of PushExe that
can overcome the limitation of default notifications being
displayed to the user, which would then prevent potentially
alarming the user of suspicious activity. For instance, Chrome’s
implementation requires that a call to showNotification be
explicitly invoked by a SW upon receiving a push message. If
showNotification is not explicitly called, a default notification
stating ‘This site was updated in the background. will be
displayed. To avoid this, we found it was possible to first invoke
showNotification and then immediately invoke a function that

parses through all notifications displayed by the browser for
the SW’s origin (using getNotifications) and closes them using
Notification.close, as shown in Listing 2 (notice that the code
can be modified to selectively close only the attack-related
notifications, if desired). As a result, at every push event the
SW could display a notification and then immediately close
it, making it unnoticeable by the user. This would allow for
frequently activating the SW in a stealthier way (i.e., with no
visible UI signal), making it possible to achieve stealthy contin-
uous execution. We verified that this new attack work on both
desktop (Windows 10) and mobile (Android 11) devices, and
have disclosed it to the Chrome developers (see Section 3.3).

3.2.2. Side-Channels

This category of abuse includes attacks that allow unauthorized
parties to leverage SWs to gain sensitive information by
bypassing browser isolation.

OfflineOnload: In [6], Lee et al. propose a history-sniffing
attack that works as follows. A user first visits the attacker’s
website, which registers a SW. At a later time, if the user
again opens the attacker’s website in offline mode, the SW will
intercept the request and return a page that includes a number
of iframes whose URL points to third-party target sites. The
attacker’s goal is to determine if the user previously visited those
sites. Lee et al. found that in some browser versions, such as
Firefox 59.0.2 and Safari 11.1, if the browser is in offline mode,
the top page (i.e., the attacker’s page) is sent an onload event
related to an embedded iframe only if the target site had
already been visited by the user and a corresponding SW (with
offline support) had been registered. Therefore, the attackers
can register an onload event handler to sense if a third-party site
embedded in an iframe was previously visited by the user.

PerformanceTiming: In a recent paper by Karami et al. [8],
the authors propose two different history-sniffing attacks. Both
approaches involve the user visiting the attacker’s website,
which includes an iframe that loads content from a third-party
target site. Also, the attacks assume that the target website
was previously visited by the user, and that it registered a SW.
Furthermore, the iframe’s source URL must fall within the
scope of the targeted website’s SW.

The first attack (PerformanceTimingl) identifies the
presence of a previously registered third-party SW by
monitoring two attributes of PerformanceResourceTiming
API, namely workerStart and nextHopProtocol. The values
of these attributes change depending on whether the resource
is being loaded when the target page request is served via
a SW, compared to when no SW is yet registered, and can
thus be used to infer whether the page was previously visited
by the user. While working to reproduce this attack, we
additionally found that in Firefox there exists another property
of PerformanceResourceTiming, called initiator, that can also
be used to identify the presence of a SW in a similar way.

The second attack (PerformanceTiming2) is a timing-
based side-channel attack that measures the loading time
for the requested iframe resource on the user’s machine,
which can be compared to a pre-calculated loading time of
the resource without the presence of a SW. Because SWs
often cache resources to optimize performance and enable
offline browsing, the difference in the loading times can help
determine the presence of a SW [8].



3.2.3. SW Hijacking

We now discuss attacks that involve hijacking SW function-
alities, by either injecting malicious code into a legitimate SW
or by injecting a malicious SW into a benign origin.

XSSHijack: In [7], Chinprutthiwong et al. present an XSS
attack that can be used to hijack a legitimate site’s SW. They
found that the URL path of a SW script can in some cases
be manipulated to inject an attacker’s script into the SW
code. This is possible because some websites use dynamic
URL query parameters in the SW’s URL path that depend
on the window.location API. The authors demonstrate that
the attacker could modify the URL parameters by tricking
the users to visit a carefully crafted target URL. Although
the user ends up visiting the legitimate target website, failure
to validate the URL parameters could result in the injection
of attacker-controlled code into the SW context during the
registration of a legitimate SW. Such an attack is stealthy in
that it would go unnoticed by the user or the targeted website.

[New] ExtensionHijack: We discovered another possible
approach to hijack a legitimate website’s SW. Specifically, we
found that browser extensions can be used to inject malicious
SW code in the scope of any benign origin.

Specifically, Firefox is vulnerable to SW hijacking by
extensions because they are allowed to use the FilterResponse
API, which enables them to modify the request made to fetch a
SW script file during its registration phase. This API is unique
to Firefox and we leverage it to demonstrate this new attack.

To this end, we developed a basic Firefox extension that
has the capability to intercept requests using WebRequest and
WebRequestBlocking permissions, which are commonly used
by popular extensions, including ad blockers. Next, we need to
filter requests made for obtaining the SW script. To achieve this,
our extension uses the OnBeforeSendHeaders API to intercept
requests and obtain their HTTP headers. We identify SW script
requests, as well as scripts that are imported by the SW, by look-
ing for the header parameter name with value Service-Worker.
Once a request for SW code is identified, we read the SW file’s
content using the API FilterResponse. Before sending the file’s
data, we can insert at the beginning of the file a malicious code
snippet (although in our proof-of-concept extension we inject
harmless code) as shown in Listing 6 (in Appendix).

The advantage of this attack is that the extension itself does
not explicitly execute malicious code. Rather, the extension
uses allowed APIs to inject additional code to be executed
in the context of a SW. This may make it more difficult for
extension stores to classify the extension itself as malicious
in the first place. Additionally, because malicious extensions
often go unnoticed for long periods of time [34], the impact of
this attack may be significant. Even if the extension is detected
as malicious and removed from the browser after installation,
it may be too late, as the extension may have already injected
malicious SW code under many highly popular website origins,
which will continue to execute on a potentially large number
of browsers even after the extension is removed from the store
and the browser, until the SW code is updated.

[New] LibraryHijack: Website owners can leverage third-
party libraries from “push providers” (e.g., OneSignal.com,
SendPulse.com, iZooto.com, etc.) to conveniently enable and
manage push notification campaigns. Typically, this entails
including third-party code to run within the SW of a website,
W. As a result, the provider of the third-party code gains
complete access to W’s SW, whose capabilities go much

beyond providing push notifications. For example, the SW
script could be modified to intercept all fetch requests and inject
new page content that may harvest sensitive user information
and relay it back to an unauthorized server. Currently, there
are no restrictions posed on functionalities of third-party
SW libraries, and in Section 6 we discuss our findings on a
third-party library that indeed seems to misuse imported push
service code to track all web pages visited by the user on .

IndexDBHijack: In a recent paper by Chinprutthiwong et
al. [23], the authors propose a page-based XSS that could be
used to inject malicious code into a SW. This attack leverages
the IndexDB client-side storage API, which can be accessed
both via scripts running in the context of a page DOM as well
as via SW code running under the same origin. Notably, the pro-
posed page-level XSS attack poisons the IndexDB storage in a
manner such that, if the SW relies on content stored in IndexDB
to import additional URLSs, malicious scripts may be injected
into an otherwise legitimate SW, thus hijacking the SW’s code.

3.2.4. Push API and Notifications Abuse

SWs’ permissions to send notifications can also be abused
to launch different attacks. In the attacks described below, a
website must first register a SW and then obtain permission
from the user to send notifications.

Phishing: Lee et al. [6] discussed the possibility of launching
phishing attacks via WPNs. For instance, a malicious SW
could issue a notification that displays the Chrome icon
and a message such as “Google Chrome Premium,” and a
“DOWNLOAD” button, which when clicked on could lead
the user to installing malicious code. Furthermore, the authors
discuss how in some cases an attacker could extract the
PushSubscription object from network traffic [6], and then use
it to spoof push messages as arriving from a legitimate domain.

Malvertising: Although web push notifications (WPNs) were
initially meant to be used to send first-party messages to
users to keep them engaged with a website’s own content,
WPNSs have since become an alluring platform for advertisers
to reach users even when a given publisher website is not
being visited. For instance, ad networks such as VWO Engage
(formerly PushCrew), Roost, PushAd, etc., provide software
that allows web developers to easily include WPN-based ads
to their websites. To this end, web developers typically include
third-party SW code provided by these companies to their
websites. Besides potentially exposing a website’s SW to the
LibraryHijack attack described earlier, the website may also
be responsible for exposing users to malicious ads via their
WPNE, as reported in [9].

Stalkerware: In a recent paper [23], the authors describe how
attackers could hijack the PushSubscription object from a
benign website to spy on the website’s users, for instance by
revealing private information such as the users’ location, age,
etc. The attack starts with a page-level XSS attack and proceeds
by unsubscribing the current Push subscription and subscribing
again using the attacker’s app ID under the legitimate website’s
origin [23].

3.2.5. Augmenting Other Web Attacks

The attack categories discussed earlier directly abuse SWs
to launch different types of attacks and thug represent the
main focus of this paper. However, for completeness, we
also describe additional examples of SW abuse whose main



purpose is to augment different types of web attacks, rather
than directly exploiting SWs.

CachePoisoning: Squarcina et al. [25] describe how to launch
a man-in-the-middle attack against cached HTTP responses by
augmenting a page-level XSS attack using SWs. Specifically,
the attack assumes that an adversary can inject JavaScript
code within a web page under a victim third-party origin, V.
If V has registered a legitimate SW that makes use of the
Cache API [35], the attacker can use her XSS code to read
any page content previously cached by V’s SW, which may
include highly sensitive user information. In addition, the
attacker’s page-level code can also write into the cache shared
with the SW, thus potentially extending the XSS attack to any
cached page under V. This attack augmentation strategy is
only possible because page-level scripts and SW code under
the same origin share the same cache via the Cache API. Thus,
the authors propose that SW cache resources should be isolated
from the page-level cache [25].

PersistentMITM: Watanabe et al. [24] present five different at-
tacks against rehosted websites, of which one leverages SWs to
enable a persistent man-in-the-middle attack. These attacks are
possible only due to a vulnerability that the authors identified in
website rehosting services. Specifically, the vulnerability is due
to web rehosting services using the same domain name to rehost
different third-party domains. This effectively “disables” the
isolation imposed by the same origin policy. Consequently, if an
attacker can force a vulnerable web rehosting service to rehost
her malicious website under the same origin as other legitimate
third-party sites, the attacker may then be able to register a SW
that will act as a proxy for all web requests from all third-party
websites rehosted under the same origin. However, this attack
only affects users who visit the third-party sites under the re-
hosted domain, rather than their respective true domain names.

Cachelnference: In [26], [27], Van Goethem et al. study how
side-channel attacks can leverage a number of modern web
features to learn private information about a user, such as
learning the user’s behavior on social media sites. Among
several different attack variants, one variant leverages side-
channel attacks against cache entries stored by a SW. However,
these attacks are mostly independent from SW code and are
instead intimately linked to measuring cache access time or
leveraging browser-imposed cache size limits. Furthermore,
these attack variants rely on the Fetch and Cache APIs, which
are available to Web Workers in general, not only SWs. Thus,
these attacks can be implemented without the use of SW code.

3.3. Ethical Considerations and Disclosure

All attacks were tested using our own websites and lab client
machines. No real user or production website was affected.
We disclosed our findings to affected browser vendors.
First, on April 23rd, 2021, we reported the StealthierPushExe
attack (see Section 3.2.1) to the Chrome, Opera and Edge
developers. After about one month, we received confirmation
that the attack affects Chromium-based browsers (i.e., including
Chrome, Opera, Edge, and likely several other less popular
browsers). At the time of writing, the Chromium developers are
still discussing (in a private online forum) possible fixes. Some
of the steps described in the the discussion for patching the issue
follow an approach similar to some of the recommendations we
propose in this paper for restricting SW execution (notice that
we developed our proposed mitigation ahead of disclosing the
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Figure 1: Approximate timeline of attacks publication and
mitigations. The oo symbol denotes new attacks discovered
in this paper, which are not yet mitigated. Notice that some
mitigations were implemented before official attack publication,
perhaps thanks to responsible disclosure (the “*’ next to
WebBot denotes that a mitigation was described in online
documentation related to Firefox, but our own tests show the
attack appears to still be possible on that browser).

attack to the Chromium team). To the best of our knowledge,
the StealthierPushExe attack has not yet been mitigated.
Furthermore, we disclosed the Extension Hijack attack
(see Section 3.2.3) to the Firefox developers on June 2nd, 2021,
who confirmed that Firefox was indeed still vulnerable to this
attack. Recently (on December 7, 2021), this vulnerability was
fixed and the bug report has been closed accordingly [36].

4. Existing Mitigations

In this section, we discuss existing mitigations to some of the
attacks discussed in Section 3. As mentioned earlier, we have
(re-)produced a proof-of-concept version of the attacks. We
then tested the attacks using multiple versions of five different
browsers from different popular vendors, namely Chrome,
Firefox, Edge, Safari and Opera. To make testing with multiple
combinations of browser version and operating systems easier,
we made use of BrowserStack.com. Our purpose was to
estimate when (at what browser version) an attack was fixed,
whether it was fully or partially mitigated, or if the attack is
still feasible in some or all browsers.

Table 1 provides an overview of browser versions that are
vulnerable to the attacks, and what browser version (if any)
fixed or mitigated the vulnerability. Furthermore, Figure 1
visualizes an approximate timeline of when the attack was
made public and when a mitigation for the attack was released
(if any). Overall, we found that some of the attacks have been
mitigated by some browsers, but also that most of the attacks
are still possible on at least some of the latest browser versions.
Furthermore, some of the attacks introduced in Section 3
have not yet been considered for mitigation. Notice also from
Figure 1 that some attacks appear to have been mitigated
by some browsers before the attack was officially published,
perhaps as a result of responsible disclosure processes. Below
we discuss what mitigations have already been implemented
or planned so far by browsers, whereas in Section 5 we discuss
open problems and propose new mitigations.

4.1. Mitigating Continuous Execution

The continuous execution attacks described in Section 3.2.1
all require the victim to visit a malicious website that will


BrowserStack.com

register an attacker-controlled SW on the victim’s browser.
By design, to avoid overwhelming the user with UI alerts
for SW registration requests, the action of registering a SW
is silently allowed by default and the user is not informed
by the browser that the site she visited registered a SW. The
mitigations discussed below still assume that SWs can be
silently registered, but have the effect of limiting the number of
users granting notification permissions, limiting the frequency
with which a service worker is activated, or making SW
execution due to web push events less stealthy.

Termination Delay Limits. This existing mitigation has the
effect of fully preventing the WebBot attack. As explained
in Section 3.2.1, the WebBort attack exploited a self-update
behavior by continuously invoking the Update API, causing
the SW to self-update and continue executing malicious
code. To defend against this vulnerability, major browsers
such as Chrome, Edge and Opera have implemented a limit
of up to three minutes on the SW termination timeout (e.g.,
kMaxSelfUpdateDelay is set to three minutes in the
Chromium source code), when update is invoked while
handling an activate or install event [20]. In case of Firefox,
according to an online bug report [37] a fix was implemented
in v70.0. However, while testing our reproduced attack code
we were able to keep the SW running for hours. On the other
hand, Safari terminates the SW as soon as the related website
is closed and is therefore not affected by this attack. According
to [20], this fix was implemented before the WebBot attack
was officially published in [5], as reflected in Figure 1.

Notification UI Changes. Bilogrevic et al. [38] recently
showed that although 74% of all browser permission prompts
that users receive are about notification permissions, only 10%
of these requests are granted by users on desktop devices (21%
on mobile devices). Because notification permission requests
cause unwanted interruptions during normal user browsing, a
new and more quiet notification prompt has been introduced
in Chrome (starting from version 80) and in Firefox [38]-[40].
In Chrome, the quiet notification permission prompt is shown
within the URL bar when either of two conditions are met:
(1) the website requesting notification permission has a high
average deny rate across its visitors, or (ii) the user recently
denied notifications multiple times (e.g., 3 consecutive time)
on different websites within a given timeframe (e.g., 28 days).

While we did not find indications that the quiet notification
implemented by Chrome was intended to mitigate specific
types of SW abuse, it may have some mitigating effect on
the PushExe and StealthierPushExe attacks described in
Section 3.2.1. Because these attacks require victims to grant
notification permission to the attacker’s website, the Chrome
UI change may cause the attacker’s website to be selected for
the quiet notification prompt, potentially decreasing the number
of users that will actually grant the permission, thus mitigating
the attacks. However, as it is not a direct mitigation to those
two attacks, we do not consider the quiet notifications UI as
a fix for the purpose of Table 1. Furthermore, in Section 5 we
also discuss how this mitigation may be easily circumvented
by the attacker.

Default Notifications. We have confirmed that, at the time
of writing, the PushEXxe attack described in Section 3.2.1 still
works in the latest versions of Firefox (v91.0). In Chrome,
the PushExe is not stealthy, because a default notification

message” is shown after Chrome detects that no notification
is explicitly shown by the SW. However, we verified that the
StealthierPushEXxe attack that we introduced in Section 3.2.1
remains unmitigated in the latest versions of Chrome (v93.0),
Edge (v93.0) and Opera (v78.0).

4.2. Mitigating Side-Channels

Event Signaling. To mitigate the OfflineOnload attack
mentioned in Section 3.2.2, Chrome (at least since v50) ensures
that the iframe onload event is triggered regardless of the
presence of a SW. However, we were able to verify that this
attack is still possible even for the latest version of Firefox
(v91.0) and Safari (v14.0).

Site Isolation. The PerformanceTiming]1 attack summarized
in Section 3.2.2 can be mitigated by making sure that meta-data
related to a given origin is not revealed to third-party 1iframes.
This has been fixed in Chrome since version 83.0. However, as
mentioned in Section 3, we found that a variant of this attack ap-
pears to be still possible in the latest Firefox browser (v91.0) by
monitoring the initiator property from a third-party iframe.
Also, our tests with reproduced attack code for the Perfor-
manceTiming2 attack confirmed that it still remains unmiti-
gated in the latest versions of all major browsers (see Table 1).

4.3. Mitigating Other Attacks

Besides a recent mitigation for the ExtensionHijack that
followed our attack disclosure to Firefox (see Section 3.3),
we are not aware of specific mitigations that have already
been implemented by affected browsers to counter other
hijack attacks (Section 3.2.3) or social engineering attacks
(Section 3.2.4). We will discuss open problems and potential
new mitigations to some of these attacks in Section 5.

5. Open Problems and New Mitigations

In this section, we revisit some of the attacks presented in
Section 3 and highlight open problems that, to the best of
our knowledge, have not yet been addressed by browsers.
Furthermore, we also propose new mitigations that we believe
should be implemented in future browser versions to address
the problems we identified.

5.1. Limiting SW Execution

Open Problem: In Section 3.2.1, we discussed different
ways (both previously known as well as new ones) to (silently)
extend the execution time of SWs, to approximately achieve
continuous execution. Although some mitigations specific
to the attacks in Section 3.2.1 have been employed by some
browsers, it may still be possible to create similar attack
conditions that exploit existing or future SW features. For
instance, to circumvent existing mitigations related to always
showing notification messages to users every time a push event
occurs (see Section 4.1), the SW code could be activated only at
a time when the user may not be paying attention to the screen
(e.g., many users leave the browser always open, even at night),
as also discussed in [6]. Furthermore, even if the SW is activated
a large number of times in a row using many consecutive
push messages, the SW can prevent the browser from showing

2. Message: “The site has been updated in the background.”



multiple notifications from the same website, which may make
the user suspicious. To make sure that the user will only see
one single notification, the SW can keep reusing the same
tag parameter value, as shown in Listing 7 in Appendix.
Fundamentally, we found that browsers do not currently put any
constraints on the number of push messages a SW can receive
or on the amount of execution time granted to any given SW.
This leaves open possible abuse paths, as exemplified above.

Proposed Mitigation: To defend against present and future
continuous execution attacks, we need a more generalized
defense that can dynamically monitor the SW execution time
and throttle it when abuse is suspected. This can be accomplish
with additional browser policies. Specifically:

1) Monitor and limit the overall background execution time
for which a SW runs every time it is activated. This
will prevent known and unknown ways of artificially
elongating the time a SW remains active (e.g., this would
mitigate abuse vectors similar to the self-update exploit
used in the WebBot attack).

2) Limit the number of push events received by a SW within
a predefined time window. This would have the effect of
limiting the frequency with which a SW can be remotely
activated, thus throttling continuous execution attacks.

3) Ensure that a SW notification displayed to the user
remains visible until the user interacts with it (e.g., by
clicking on it or closing it explicitly). This would help
to mitigate stealthy activations via push events.

4) Limit the volume of third-party network requests issued
in the background by a SW. While this is not strictly a
limitation on execution time, it can be useful to mitigate
possible “bursty” bandwidth-exhaustion DDoS attacks
(e.g., by issuing many background network requests in
a short execution time) against third-party websites.

In Section 7, we discuss how we implemented a proof-
of-concept version of some of these policies in Chromium. In
Section 6, we measure how SWs are currently used by popular
websites and propose concrete thresholds to limit SW execution
with limited or no impact on legitimate SW functionalities.

5.2. Limiting Malicious SW Permissions

Because by design SWs can be silently registered by any
website, preventing the registration of an arbitrary SW may not
be possible®. However, notice that without being granted the
notification permission the SW cannot receive push messages
and the attacker is unable to launch effective continuous
execution attacks (Section 3.2.1) or social engineering attacks
(Section 3.2.4), thus limiting the damage that a malicious SW
may cause. The new quiet notification permission requests
described in [39] (see also Section 4.1) could therefore be seen
as a way of greatly restricting the damage a malicious SW
can do. The reason is that, presumably, only few users would
grant notification permission to an untrusted website (notice
also that the permission grant rate is already low in general for
most websites [38]). Thus, it is likely that a malicious site that
asks its visitors for notification permission would rapidly meet
the criteria to qualify for the quiet notification UL In turn, this

3. Obviously, blocking a known malicious website, for instance by
using URL blocklists, would also prevent any related SW to be registered.
Unfortunately, threat feeds and blacklists often have gaps and may not block
a malicious site for a prolonged time [41], during which many victims could
visit the SW and have a SW installed.

may have the effect of further reducing the number of users
who grant permission and whose browser can be meaningfully
abused by the malicious SW.
Open Problem: Unfortunately, the quiet notifications UI is
not in itself an effective mitigation for limiting the number of
victims that may grant notification permission to a malicious
SW. One reason for this is that malicious SWs can leverage
the same double permission prompt pattern [42], [43] that is
recommended as a good practice to legitimate web developers.
The double permission prompt consists in asking the user twice
whether they would like to receive notifications from a website.
The first time, the website uses JavaScript code [42], [43] to
create a notification permission dialog box within the page’s
context (see Figure 4 in Appendix). Only if the user confirms,
typically by clicking on a custom “Yes” or “Sign up” button, the
SW will go ahead an request the actual notification permission
through the browser UL The reason why legitimate websites
often use this pattern is because they want to avoid being
blocked from asking the user for notification permission again
in the near future. Since the website controls the JavaScript
dialog box, the browser will not be aware that the user may want
to block notifications from this site, and therefore the website
gets to ask again every time the user visits it. The net effect of
this legitimate (and recommended) web development pattern
is that the browser may grossly overestimate the notifications
allow-rate for a given website. Intuitively, it is highly likely that
users who do not want to receive notifications from a website
will click on the “Not now” or “Dismiss” (or equivalent) button
on the JavaScript dialog box and they will not be presented
with the real SW’s request for notification through the browser.
Ultimately, given that one of the criteria to enable quiet notifica-
tions Ul is a higher denial rate, malicious sites can evade this by
simply adopting the double permission pattern. In general, the
very recommendation to legitimate web developers on adopting
the double permission prompt may make the newly introduced
quiet notification UI much less effective than anticipated.
Another issue is due to the fact that the attacker’s site
could also launch social engineering attacks similar to the ones
mentioned in [44] to encourage the user to explicitly click on
the quiet UI’s icon and explicitly grant permission.

Proposed Mitigation: Unfortunately, preventing users from
granting notification permission to a malicious SW may
be difficult, as discussed above. In addition, once a SW is
registered and has been granted permission, the SW will persist
until the user explicitly removes them following a cumbersome
process that involves going through the browser preferences
and settings. If little or no constraints are imposed, this may
lead to significant abuse, as described in Section 3.

As a mitigation, we argue that the browser should monitor
each SW’s behavior for signs of abuse. The browser could then
explicitly offer the user to de-register a SW (with a specific UI
dialog box) when anomalous behavior is detected, or it could
automatically de-register the SW.

For instance, consider the following scenario:

e The user visits a malicious website once, at which
point a SW is registered and notification permission
is requested.

o Assume that the user grants notification permission
at first visit (e.g., due to a social engineering attack),
and that the user never visits the site again.

o Afterwards, the SW runs frequently in the background
(e.g., due to frequent push events) to achieve continuous



execution using one of the approaches described earlier.

In this example scenario, the browser could detect that the
SW is violating one or more of the policies we proposed in
Section 5.1, which will automatically limit SW execution. At
the same time, the browser could detect that the user has not
visited the site again since the first time the SW was registered,
or that the site has a very low engagement score as defined
by Chromium [45]. In this case, the browser could inform the
user and ask whether she would like to de-register the SW. To
make the decision easier, the browser could let the user know
that the SW has been running anomalously and frequently, and
that the user has visited the website only once (or very rarely).
As an alternative, if the SW is not explicitly de-registered by
the user and the browser continues to observe that the SW
abuses execution limit policies, it may simply de-register the
SW outright (notice that the SW could always be re-registered
next time the user visits the same site, if the user so desires).

5.3. Restricting Third-Party Code Inclusions

Open Problem: It is well known that third-party JavaScript
code inclusions come with security risks [46]. As discussed
in Section 3.2.3, the common practice of including third-party
code into SWs could lead to hijacking attacks. Content
Security Policies [21] (CSPs) can be used to defend against
SW hijacking attacks such as XSS, LibraryHijack and
IndexDBHijack, for instance by using the script-src
to restrict imported code into a SW to be loaded only from
authorized domains. However, implementing this defense is
up to web developers, and in Section 6 we show that only a
small fraction of websites express SW-specific CSP restrictions
(also, low CSP adoption is a known issue in general [47]).
Unfortunately, when CSP policies are missing, the browser
poses no restrictions to importing third-party code into a SW.

Proposed Mitigation: We argue that, given the potential for
abuse related to SWs, the browser should follow the fail-safe
defaults principle and deny the ability to import third-party code
by default. Namely, the browser should always assume a default
script-src: ‘self’ policy for SWs. The web developer
could then express exceptions to this default policy by explicitly
listing authorized third-party origins in the script-src di-
rective (this CSP directive would need to be sent to the browser
with every SW file response, which can be easily configured in
modern web servers). In Section 6, we will also show that the
number of different origins that would need to be authorized in
current production SWs is very small (only one or two, if any).

Unfortunately, script-src: ‘self’ does not
prevent eval () to be used in SW code [48], leaving a door
open to potential code hijacking attacks such as variants of
the XSS attack proposed in [7]. Instead, the use of eval ()
should be disabled by default and enabled explicitly by adding
the directive script-src: ’‘unsafe-eval’, as for
page JavaScript code. Notice also that the worker-src
CSP directive [49] can be used to restrict what URLs may be
used to load a SW file, but does not apply to the importScripts
APL Furthermore, worker-src does not have any effect
on blocking the use of eval () either.

5.4. Restricting the Scope of Third-Party Libraries

Open Problem: In some cases, web developers may want to
explicitly allow third-party services, such as push services, to
include code into their SWs. For instance, assume that website

W wants to make use of push service P (e.g., OneSignal.com,
iZooto.com, etc.). In this case, W would want to import P’s
third-party code into its SW, Sy (notice that P’s origin can
be easily specified in Syr’s script-src CSP directives, as
discussed earlier). Unfortunately, once P’s code is imported
in the context of Syy, there is no way to restrict what APIs
P’s code can use, thus potentially enabling a LibraryHijack
attack (see Section 3.2.3).

if (’serviceWorker’ in navigator) {
roposed register ()
options to sonly enable use of push notifica :
= prevent the use o other sensit e APIs
such okie store, che, fetch events, etc.
navigator
.serviceWorker.register (' /pushservice_sw.js’,
{scope: ’./pushservice_sw_scope/’,
capabilities: ’‘push’, ’notifications’})

}

Listing 3: Proposed change to register SW with limited
capabilities.

To attempt to isolate their third-party code from the
first-party website’s Sy, web developers could register a
separate SW, Sp, with a different scope, instead of running the
SW under the root path of W. This would allow Sp to coexist
with other SWs registered under 1. In addition, Sp would not
be able to intercept network requests related to content outside
of its scope, thus effectively isolating the third-party SW code.
However, while this would be an improvement, it does not
prevent Sp from being able to directly accessing W’s cookie
store [50]. Furthermore, Sp would also be able to access the
cache [35] and thus any content previously stored by Sy,
since there is currently no cache isolation for SWs registered
with different scopes under the same origin. Consequently, the
third-party code could still potentially access highly sensitive
information related to W.

Proposed Mitigation: To mitigate the risk of LibraryHijack
attacks, a possible approach is to explicitly limit the capabilities
that a given SW script can have. This list of capabilities
could be expressed at registration time. At the moment, when
registering a SW under a given origin (via ServiceWork—
erContainer.register () [13]), only the scope of the
service worker can be limited. However, we argue that the
options parameter should be extended to allow expressing
additional constraints. For instance, we could express what set
of functionalities or APIs the SW is allowed to access, or what
set of events it is allowed to listen to. This way, we could restrict
the capabilities of a third-party SW (i.e., a SW that imports third-
party code) to using the push and notifications APIs while deny-
ing the use of the cookie store, the cache, or the fetch AP as in
the example code in Listing 3. On the other hand, first-party SW
scripts could be registered without restrictions, so that they can
use any functionality made available to SWs by the browser.
More fine-grained changes would also be useful, such as
expressing whether the SW is allowed to access the cache but
at the same time indicate whether the cache for this SW should
be isolated by scope (notice that this proposed cache isolation
mechanism could be implemented in a way similar to the cache
isolation approach used for the now-deprecated AppCache
API [51]). These browser modifications would still allow push
services to provide a convenient way of managing push notifica-
tion campaigns on behalf of a website W while limiting expo-
sure of potentially sensitive information belonging to 1¥’s users.
Notice also that the proposed fine-grained SW policies would
be somewhat analogous to Feature Policy for iframes [52].




6. Measuring In-The-Wild SW Behavior

In this section, our objective is to measure the behavior of in-
the-wild SW code used by popular websites. The main goal is
to learn how production SW code may be impacted by some of
the mitigations we discussed in Section 5. We focus mostly on
mitigations against continuous execution attacks (Sections 5.1
and 5.2) and potentially malicious third-party code inclusions
(Sections 5.3 and 5.4), and aim to learn how policy enforcement
thresholds may be tuned to curtail possible attacks while
minimizing their impact on legitimate SW behaviors.

6.1. Browser Instrumentation for SW Forensics

To obtain fine-grained information on the behavior of
SW code for real-world web applications, we first
developed an instrumented version of the Chromium
browser (v84.0.4147.121) with an embedded Service Worker
Forensics engine. Our SW forensics engine logs fine-grained
information regarding the following:

o The occurrence of SW life-cycle events such as install,
activate, update, uninstall, and termination.

o Any permissions that were requested by the SW code,
such as push notifications and geolocation. In addition,
we automatically grant these permissions to monitor
how their related APIs are utilized.

o Detailed information about network requests issued by
SWs, including the URL of resources being fetched.

o API calls made by SW code with respect to caching,
push, and notification APIs.

e CPU and memory consumption, and network usage
(e.g., number of third-party network requests and
related URLSs) for each SW instance.

« We also simulate user interactions with the browser that
are required to trigger events to be handled by a SW.

The logs generated by our forensics engine are then
analyzed offline to measure useful properties about the
behavior of SWs in the wild. Since Chromium serves as a basis
for many popular browsers, such as Chrome, Opera, Edge,
etc., the measurement results we obtained can be considered
as representative of SW code running on a variety of browsers.

6.2. Experimental Setup

Because the main objective of our measurements is to under-
stand how real-world SW code behaves with respect to the
mitigations we proposed in Section 5, we focus on analyzing
SWs registered by the most popular websites according to
Alexa.com [53]. We organize our measurement results by
dividing the top Alexa websites into different bands, based
on their ranking (e.g., 0-1K, 1K-5K, 5-10K, etc.), as shown in
Table 2. Different rank bands provide insights into the behavior
of websites at different levels of popularity. We visited the home
page of the top 100k websites and found 5,309 sites that regis-
tered a SW. As our crawler interacted with these sites, in some
cases the automated clicks led to new pages hosted on third-
party domains being opened. As a result, the crawler visited an
additional 609 sites with rank >100k that also registered a SW.
Thus, overall we visited 5,918 websites with SWs. Of these,
1,750 websites requested to be granted notifications permission.

Since we are especially interested in mitigations against
continuous execution attacks, we focused our investigation on

the 1,750 (out of 5,918 websites that register a SW) whose SW
code requested notifications permission, and created a small
farm of automated instrumented browsers (see Section 6.1) to
interact with these web pages. For each of these 1,750 web
applications, we continued interacting with them and monitored
their SW behavior for 3 days. To drive our instrumented
browser to automatically visit and interact with these web
pages we made use of custom Puppeteer [54] scripts.

Notice that our data collection and analysis does not
include websites such as social media and messaging apps that
may require login to send notifications to users. The reason
is that for these websites the behavior of their SWs, such as
the number and frequency of web push notifications, is highly
dependent on user activities and social network. We exclude
these sites from our measurements, as it would be highly
challenging to simulate a realistic network of users that send
messages to each other in a way that is representative of a
large and diverse user population. However, it should be noted
that SW security policies that aim to impose limits on push
notifications may also include a customizable allow-list for
popular social media and messaging websites.

TABLE 2: Ranking bands for Alexa’s top 100K websites

Ranking Bands | Band_1 | Band 2 | Band_3 Band_4 Band_5 Band_6 Total
Ranking Range 0-1K IK-5K [ 5K-10K | T0K-50K | 50K-100K | 100K -IM
#Registered SWs 160 426 437 1917 2369 609 5918
#Analyzed SWs 56 151 145 585 204 609 1750

6.3. SW Behavior Results

In Section 5.1 we discussed a number of restrictions that
could be imposed on SWs to limit their execution time and
reduce potential damage that a malicious SW may cause
due to continuous execution attacks (see also Section 3.2.1).
Specifically, among other mitigations (see Section 5.1 for
details) we proposed to (a) limit overall background execution
time, (b) limit the number of push events within a given time
window, (¢) ensure notifications are visible to users, and (d)
limit the volume of third-party network requests.

In the following, we measure how current production SWs
behave, compared to the limitations listed above. This will help
us in two ways: (i) determine how different limits may impact
existing SW behaviors, and (ii) inform the choice of thresholds
that could be used in the implementation of new SW security
policies. Detailed measurement results are reported in Figure 2
and Table 3, which we discuss below.

6.3.1. Frequency of Push Events

Among the 1,750 websites we monitored, 518 of them have
a SW that received at least one push event during our analysis
period (i.e., 3 days). To estimate the frequency with which push
events are received by our instrumented browser, we divide the
timeline into slots of one hour, and count the number of push
events per hour for each SW. Figure 2a shows the distribution
(a CDF) of the number of push events per hour across all
monitored SWs. Also, from Table 3 we can see that at the 90th
percentile, SWs receive 14 push events or less per hour.

From Table 3, we can see that if we implemented a SW
security policy that limits the number of push events per hour
to <14, this policy would affect (i.e., throttle) the SWs of 49
different websites (49 is the sum of the number of SWs under
each ranking band), with almost half of the impacted websites
having a ranking above 100k (Band-6). While at a first glance
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Figure 2: SW behavior measurements. Each graph displays the distribution (CDF) of occurrences of an event within a specific
time window: a) Push count per hour; b) Push count per day; c) Third-party fetch count per SW activation; d) SW execution
time per activation (in minutes); e) SW execution time per day (in minutes).

this result may look like a potentially significant impact
on production SWs, a detailed manual analysis of the push
notifications that would be curtailed by the new policy reveals
something different. In fact, we found that all 49 websites that
would be potentially impacted sent notifications that could be
considered abusive. Specifically, the notifications we recorded
from those sites are related to (potentially malicious) WPN
ads, which were previously also identified by other researchers
in [9] as being often abusive (some example notifications
reconstructed from our logs are reported in Figure 5 in
appendix). Thus, it appears that the proposed limit on the
frequency of push messages would at most throttle the number
of push-based ads received by users, without significantly
affecting most legitimate SWs. At the same time, limiting
the number of push events that can activate a SW can help
to decrease the potential for continuous execution attacks that
may be used for instance to perform cryptomining, DDoS
attacks, or other malicious tasks, as further discussed later.

6.3.2. Execution Time

For each SW, we also measured the maximum execution time
per activation. Namely, we measure the time for which a SW ran
without releasing control or being forced to stop by the browser
(as before, these measurements were performed throughout
our 3 days of monitoring per each web application’s SW code).

As it can be seen in Figure 2d and Table 3, at 99% of
the instances, SWs were alive for a maximum duration of 5
minutes per activation. At the same time, we also found that 20
websites had a SW that at some point remained active beyond
the maximum limit (5 minutes) allowed by the browsers. The
maximum continuous execution time per activation that we
observed was 22 minutes. These cases of long continuous
execution were possible because the SW termination was
delayed by the browser as the SW received multiple events (e.g.,
multiple consecutive push events) in close succession, with the
next event arriving and being handled before the SW finished
handling the previous event. This again demonstrates that the
possibility of abusing SWs to perform malicious tasks such
as cryptomining and DDoS attacks remains open. As in Sec-
tion 5.1, we argue that the browser should impose stricter limits
to continuous SW execution. For instance, it could be limited to
5 minutes, since 99% of all SWs activations we measured never
exceeded this threshold. Longer continuous execution times
should be considered as anomalous and potentially dangerous.

Besides the execution time per activation, we also calculate
the overall SW execution time per day, as the sum of the
execution time spent during all activations of a given SW for
a day of observation. As shown in Figure 2e, 95% of SWs
were active for less than 90 minutes per day. However, we
found 17 websites whose SWs were active from 146 up to 400
minutes (over 6 hours). By analyzing the logs, we found that
these websites “spammed” the browser with a large number
of potentially malicious notifications (similar to Figure 5 in
appendix). As an example of a website whose SW exhibited
long execution times, we found that waploaded.com (ranked
51,299) registered a SW that sent over 50 push events per hour
in multiple time windows, and as a result activated its SW and
kept it running for long periods (e.g., 22 minutes in one single
activation and over 4 hours in a single day).

6.3.3. Third-party Background Network Requests

To reduce the risk and impact of SWs participating in DDoS
attacks, in Section 5.1 we proposed to limit the volume of
third-party network requests that the SW could issue while in
the background (i.e., when the related web application is not
rendering on a browser tab).

To understand what may be a good volume threshold, we
measured the number of fetch requests that were made to third-
party origins by each SW while running in the background.
Specifically, to identify these requests we perform two different
checks: (a) first, we make sure that the request was issued by
a SW by checking whether the JavaScript execution context
that issued the fetch request belongs to a SW script*, then
(b) we make sure the request was executed in the background
by checking if it was made from inside a fetch event listener,
which would indicate that it was invoked when a page request is
handled by a SW and thus it was not issued in the background.
To verify (b), we should notice that whenever a fetch listener
is started, it invokes the StartFetchEvent method and at
its completion it invokes DidHandleFetchEvent under
ServiceWorkerGlobalScope. We log these calls and
filter out any fetch requests made between these two events,
since they are not background requests. At the end of this
filtering process, we are left with the background network
requests made by SWs.

4. As determined by calling IsServiceWorkerGlobalScope () of
ExecutionContext.
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TABLE 3: Event counts at specific distribution percentiles — The threshold value is the percentile value from the corresponding
CDF (see Figure 5), whereas B-n represents the Alexa ranking band n.

Event Number of SW Origins above threahold value
Comnt No. of 90% 95% 99%
ooy | Theeshold | gy [ g2 | B3 | Ba | Bs | Bo | oo [y [ po | B3 |Ba|Bs|B6| oo gy [ po| B3| B4 BS|Bo
riging Value Value Value
Push Count per Hour 518 14 0 1 5 11 10 |22 |22 0 1 3 7 5 8 43 0 0 2 6 2 5
Push Count per Day 518 38 1 2 5 13 9 43 88 1 1 3 8 4 11 392 0 0 0 3 0 1
Third Party Fetch Count per Activation | 416 1 12 10 13 35 130 [4 |2 8 8 10 |25 26 |36 |6 5 4 8 12 19 17
SW Execution Time Per Activation 761 3 2 1 6 16 16 |38 |3 2 1 6 16 16 | 38 5 1 1 2 5 5 6
SW Execution Time Per Day 761 64 1 2 7 9 10 |33 |90 1 0 3 6 4 26 146 1 0 2 3 2 9
To account for network requests to explicitly authorized T T
third-parties, such as push services that are intentionally o2 Domains SW Domains
. . . . = api.pushnami.com 196
imported into a SW’s code, we first determine the domain & 1000 W gstaic.com 120
name associated with all URLs in importScripts calls and g % cdn.onesignal.com 95
o e S 600 app.najva.com 63
exclude them from our background network requests statistics 3 §3.amazonaws.com 50
(i.e., network requests from a SW to its push service domains g a0 edn.subscribers.com 40
. 8 200 cdn.aimtell.com 35
are effectively counted as first-party requests). After the storage googleapis.com 33
: : : 0—=Z pn ~ s cdn.izooto.com 31
filtering explained above, we found that 99% of all SWs issued Count of Unique-Origins i =
no more than 5 background network requests to third-party
origins per each activation. (@ (b)

Although we did not find any evidence of in-the-wild SWs
that performed malicious attacks such as DDoS attacks, we
were able to reproduce attack code that can indeed send a
large number (e.g., 50 per second) of third-party background
network requests with no browser limitations. Therefore, we
believe that limiting the number of such background requests
(e.g., to <)) per activation, in combination with limiting the
frequency of activations due to push events, as discussed in
Section 6.3.1, is necessary to significantly reduce the risk for
SW-based DDoS attacks while having minimal or no impact
on the vast majority of legitimate SWs.

6.3.4. Third-Party Code Inclusions

To measure whether it is possible to limit the potential for
hijacking attacks (see Section 5.3), we analyze the number of
third-party scripts imported by SWs. To this end, Figure 3a
shows the count of third-party scripts imported per SW, whereas
Table 3b shows the top 10 origins related to imported scripts.

The vast majority of origins recorded in our logs belong
to third-party push services (just among the top 10 origins, 7
are related to web push services). Also, as we can see from
Figure 3a, the vast majority of SWs that import third-party code
load it from at most one or two origins. Therefore, we believe
that the fail-safe defaults approach we proposed in Section 5.3,
whereby the browser should seta script-src: ‘self’
default CSP for every service worker, could be implemented
with no significant impact on existing SWs. This is because
the developers of existing SWs would only need to add one
or two authorized origins from which additional SW code can
be imported (e.g., in the Apache web server this could be done
with a minimal .htaccess file associated with the SW file
hosted on the website’s first-party origin [55]).

We also measured whether CSPs are currently used in
relation to SW code. To this end, we analyzed the HTTP
response for every SW file fetched from the 100K Alexa
websites. To identify the request (and related response) for
a SW file, we look for the Service-Worker request header,
which is explicitly found when a page fetches a SW file. We
found that 4.8% of all SW files have a CSP headers in the
response. However, only 0.8% include the script-src
directive. Applying script-src: ‘self’ as a default
policy would reduce the risk of potential hijacking attacks,
such as the XSS attacks presented in [7].

Figure 3: Third-Party(TP) Imports (a) Count of TP imported
domains per SWs (b) Top 10 TP domains imported by SWs

6.3.5. Third-Party Code Behavior

Although the default CSP restrictions discussed above may help
to mitigate some hijacking attacks, such as XSS attacks [7],
we need to be mindful that third-party libraries explicitly
allowed by web developers may still behave maliciously. For
example, as we studied the results of our measurements on SW
code imports, we found a few cases of potential unauthorized
tracking implemented in third-party libraries. For instance,
we found that code imported from coinPush (a third-party
push service) listens to fetch events, and can track all URLs
visited on the importing website, even though this may not be
necessary to enable the advertised push notification services.
Listing 8 (in Appendix) shows the (simplified) code that
appears to track all visited URLSs and send them to a remote site.

Such examples demonstrate that it is possible for third-party
services to potentially abuse their privileged access to SW code,
and should therefore be subjected to stricter default policies by
browsers and much more attention by developers. Therefore,
our recommendation is that the browser should implement
more fine-grained SW policies (similar to Feature Policy for
iframes) and web developers should carefully isolate SWs
that import third-party code by correctly setting their scope,
as we proposed in Section 5.4.

7. Implementing New SW Policies

To demonstrate that implementing the new policies proposed
in Section 5 is possible with reasonable effort, in the following
we discuss our own proof-of-concept implementation in the
Chromium (v84.0.4147.121) browser of some of those policies.

{ "name": <policy-name>,
"severity": <value>,
"threshold": <threshold>,
"duration_in_minutes":<duration> }

Listing 4: Template for count-based policies

To implement the new policies, we developed a new class
called SWPolicies within the Blink rendering engine. In
case of policies concerned with limiting the frequency of events




that activate a SW, we follow a template similar to the one
shown in Listing 4. Each time an event such as push or fetch
occurs, we invoke a corresponding method to update the related
counter (e.g., push_count_per_hour) and check if the count
falls within a predefined threshold, which could be selected
based on the trade-offs we discussed in our SW behavior
measurements results (see Section 6). When a policy violation
occurs (i.e., the threshold is exceeded), we log the violation
and increase a severity indicator. Then, if the severity level
reaches a predefined maximum value, the browser immediately
terminates the SW (and could also deregister it, if the user
engagement score for the SW’s origin is very low).

As a simplified example of how to terminate a SW, to
stop a SW that exceeds a given execution time we can start
a timer whenever the service worker is activated (see Listing 9,
in Appendix), and attach a callback method that will be called
once the timer expires. At this point, the callback can check
the state of the SW and terminate it (if it is still running) by
calling Blink’s SetIdleDelay method with delay set to
0 seconds. We use an approach similar to that described above
to implement and enforce the policies proposed in Section 5.1.
Furthermore, we tested these policies against a number of SW
attacks (using the approaches we described in Section 3) that
attempt to perform DDoS attacks, cryptomining, notification
spam, etc., and verified that we are indeed able to greatly
throttle such attacks, rendering them ineffective.

7.1. Discussion

As we consider the implementation of new browser policies that
would restrict SW behaviors, as discussed earlier, we should
carefully consider how they could impact legitimate SWs. In our
measurements (Section 6), we showed that it would be possible
to find enforcement thresholds whose effect is to greatly limit
abuse while interfering with the behavior of only few actual
legitimate SWs. In addition, we should consider that the imple-
mentation of the proposed policies could include a customizable
allow-list that can be pre-populated by the browser vendor and
extended with help from the user, if preferred. For instance,
consider the limits on the frequency of push notifications
proposed in Section 5.1. If a popular website (e.g., a social
media platform) legitimately needs to send a large number of
notifications (e.g., many tens or hundreds of notifications per
day), such an application could be added to this allow-list.
The effect of the proposed policies against continuous
execution attacks (Section 5) is that they may also limit the
execution time for a small fraction of legitimate SWs. However,
we should notice that browsers already implement a mechanism
to terminate a SW’s execution after a certain amount of
execution time. Therefore, SW developers already need to take
into account that their code could be forced into an idle state.
Unfortunately, as we demonstrated in Section 3, attackers can
trick the browser into executing SWs for much longer than it
would be otherwise allowed, which motivates the new policies
we proposed Section 5. Ultimately, we believe that limiting
the execution time of SWs would have a small to negligible
impact on legitimate SW code, while drastically reducing the
risk for SW abuse. Additionally, before enforcing the new
policies, browsers could grant a grace period during which
an alert is issued every time a SW policy is violated without
strictly enforcing the policy itself. During this transition period,
developers will then have the time to adjust their SW code to
make sure the new policies are not violated moving forward.

In general, because the vast majority of legitimate web
applications do not require a completely unfettered access to
push events, web notifications, background third-party requests,
etc., as shown in Section 6, and considering the potential
damage that SW abuse could cause given its powerful features
(see Section 3), we believe browsers should follow an approach
akin to the least privileges principle as much as possible and
limit those and other SW privileges.

8. Related Work

Throughout the paper we have discussed a number of previous
works that focus primarily on attacks against SWs or in which
SWs play a fundamental role. In this section, we briefly
discuss other works related to multiple aspects of web security,
including some additional attacks and mitigation measures.

While our paper focuses on SW abuse, other studies
focus more generally on PWAs, for instance measuring their
performance compared to traditional sites, and applications
in both desktop and mobile environments [28]-{31]. More
works [34], [56]-[59] are dedicated to measuring privacy
leakage due to third-party code, such as extensions, external
libraries and ad injections. In [60], the authors discuss issues
related to blind trust between cross origins and explain the
extent of damage it could lead to. Other works that focus on
client-side web security are [61]-[63], which include policy-
based access to restrict Javascipt APIs (e.g., the Performance
API) to mitigate timing based side-channel attacks. Similarly,
[64] presents a cost-benefit analysis to enable restrictions per
site without affecting its legitimate use. In [65], Jackson and
Barth argue that the concept of “fine-grained origins” (FGO)
is a flawed solution to curb origin contamination. In this paper
(Section 5.4), we discussed the use of scopes as a way to
isolate third-party SWs and proposed additional measures to
restrict the capabilities of third-party SWs to mitigate possible
origin contamination issues for SW scripts.

Other systematization of knowledge papers that consider
both attacks and mitigation measures have focused on web secu-
rity [66]-[68], mobile security [69], and IoT security [70]. Our
work is different because we focus on attacks on Service Work-
ers specifically, discuss existing mitigations, present a timeline
of when attacks and mitigations were introduced, present open
security problems, and proposed new policies that browsers
could adopt to limit the damage that SW abuse could cause.

9. Conclusion

In this paper, we reproduced and analyzed known attack vectors
related to Service Workers and explored new abuse paths that
have not previously been considered. We systematized the
attacks into different categories, and analyzed whether, how,
and when these attacks have been published and mitigated
by different browser vendors. Then, we discussed a number
of open SW security problems that are currently unmitigated,
and propose SW behavior monitoring approaches and new
browser policies that we believe should be implemented by
browsers to further improve SW security. Furthermore, we
implement a proof-of-concept version of several policies in
the Chromium code base, and also measure the behavior of
SWs used by highly popular web applications with respect to
these new policies. Our measurements show that it is feasible
to implement and enforce stricter SW security policy without
a significant impact on most legitimate production SWs.
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Appendix

1. Additional Example Code Snippets

self

.addEventListener (' push’,
// liste

sh

1nc I

push_count +=1

call

async function (event) ({

any computation here

// do not

if (push_count>10) {

//renew

51 ription
var options = {

userVisibleOnly: true,

applicationServerKey:
}i
self.registration.pushManager
.getSubscription () .then (function (subscription) {
subscription
.unsubscribe () .then (function (successful) {
/ You’ve sfully
e again

<applicationServerKey>

// Y

unsu

subsc

self.registration.pushManager.subscribe (options)
}) .catch (function (e) {

// Unsu ~ibe failed

b

var body = {registration_id:

sender_id:

obj.token,
obj.senderId,

logs: {url: url, timestamp: timestamp}}
return fetch (TRACKING_SERVER + ' /tracking url
’, { method: ’"POST’, mode: ’'no-cors’, body: body }
}

Listing 8: SW Code of Third-Party Push service

void

{

FROM_HERE, kServiceWorkerRunningDelay,
base::BindOnce (&SWPolicies: :OnSWTimeout
, base::Unretained(this), To<SWGlobalScope> (ex)));
}
void SWPolicies::0OnSWTimeout (SWGlobalScopex gs)
{ // term W

nate

mmediately

gs—>SetIdleDelay (base::TimeDelta: :FromSeconds (0)) ;
}

Listing 5: Example code to avoid showing notifications on
push events

function modifySw(url,
let filter
= browser.webRequest.filterResponseData (reqld);

reqld) {

filter.ondata =
let

decoder.decode (event .data,
let code_snippet = "self

.addEventListener (' push’, async function

event => {

str = {stream: true});

(event) {

console.log (’Extension::
filter
.write (encoder.encode (malicious_code+’\n’+str));
filter.disconnect ();

Received push’)} );"

}

Listing 6: Hijacking SW code from an extension

self
.addEventListener (' push’,
var
var

async function (event) ({
notificationTitle = ’Same Notification!’;
notificationOptions = {

body: event.data.text (),

same tag used for all incoming push

"notification-update-tag’

rrent tification

[ g tag

self.registration.showNotification
(notificationTitle, notificationOptions)

}

Listing 7: Reusing the same notification for multiple push
messages

Fetch he er to

tch’, function
if (e.request.url.indexOf

1

\

|
(location.origin) === 0 && isDocument (e.request)) {

|

|

/Unauthorized

a Tre K Xe
self.addEventListener (' fe

trackingUrl (e.request.url); } });
1 F ckingUR1l method

//simp fied version of tra

function trackingUrl (url) {

Listing 9: Example code for limiting SW execution time
& nypost.com *

:I=== II%%EI
POST

(a) JavaScript-based prompt

Get notifications from The New York
Post

Click 'Sign Up' then ‘Allow’

0O ‘I'nypoﬂxom

Q nypost.com wants to

A  Show notific

(b) Browser native prompt, after user clicked on ‘Sign Up’

Figure 4: Example of double permission prompt in use on a
popular website.

Amazon

$1,000 to your Amazon Account...

Viruses found (3)
& Warning - Your Computer

Is Infected!..

X SYSTEM ERROR

Join.super-samples.com

Zelle -
$750. Click Immediately

Join.super-samples.com

surveydeet.com

Figure 5: Examples of spam/malicious notifications
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