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Abstract—A nearest-neighbor-based detector against load re-
distribution attacks is presented. The detector is designed to
scale from small-scale to very large-scale systems while guaran-
teeing consistent detection performance. Extensive testing is per-
formed on a realistic large-scale system to evaluate the perfor-
mance of the proposed detector against a wide range of attacks,
from simple random noise attacks to sophisticated load redistri-
bution attacks. The detection capability is analyzed against dif-
ferent attack parameters to evaluate its sensitivity. A statistical
test that leverages the proposed detector is introduced to identi-
fy which loads are likely to have been maliciously modified,
thus, localizing the attack subgraph. This test is based on as-
cribing to each load a risk measure (probability of being at-
tacked) and then computing the best posterior likelihood that
minimizes log-loss.

Index Terms—Attack detection, cyber-security, false data in-
jection (FDI) attack, load redistribution attack, machine learn-
ing, nearest neighbor.

1. INTRODUCTION

HE power grid is a constantly evolving cyber-physical

system, and thus it is increasingly reliant on informa-
tion and communication technology. A vast research effort
undertaken in the past decade in the field of cyber-security
of power systems has identified some crucial vulnerabilities
of the cyber layer which can be exploited to disrupt the
physical system. In this context, [1] shows that state estima-
tion (SE) and the traditional bad data detector (BDD) used
in energy management systems (EMSs) can be -easily
spoofed and bypassed via false data injection (FDI) attacks.
This finding represents the basis for the design of a wide
class of the attacks called load redistribution (LR) attacks.
LR attacks can be performed by injecting intelligently de-
signed false measurements that lead to a wrong estimate of
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the system state. From the perspective of the operators, the
attack makes it appear as if the system loads have changed
from their actual values, without changing the net load.

In [2] and [3], the concept of LR attacks is formalized by
developing a bi-level attacker-defender problem for targeted
attacks. In this setting, the attacker can design false measure-
ments which can cause physical consequences on the sys-
tem. Specifically, [3] attempts to find an attack, which is un-
observable to the EMS, to cause an overload on a target
line. In a similar fashion, [4] and [5] present the examples
of LR attacks on the electricity market, which show that it is
possible to launch LR attacks that create system congestion,
thus manipulating locational marginal prices.

We propose a new BDD that can identify LR attacks
based on the analysis of load estimates, thus overcoming the
limitations of SE and the traditional BDD. In [6], we devel-
op three anomaly detectors, each based on a different ma-
chine learning technique: replicator neural network, support
vector machine, and nearest neighbor. These detectors can ef-
fectively determine if the observed loads represent a norma-
tive system state or if they have been maliciously modified.
The nearest neighbor-based detector works by finding the
near load vector close to the real-time loads in the historical
data. Based on the measured Euclidean distance, a threshold-
ing technique is used to decide if the loads are normative or
anomalous. From the tests, the nearest-neighbor-based detec-
tor demonstrates the best performance out of the three detec-
tors. In this paper, we build this preliminary work to design
an improved nearest-neighbor-based detector and an attack
localization scheme. The novel contributions of this paper
are as follows.

1) The basic detector is modified so that it scales to much
larger power system models while preserving the good detec-
tion performance shown in [6]. This is achieved by devising
a grouping strategy to organize the system loads into the
clusters that can be analyzed independently.

2) Extensive testing and sensitivity analysis are performed
to evaluate the performance of the detector against intelli-
gently designed LR attacks as well as random anomalous
load changes. This allows for the characterization of the
strengths and limitations of the detector. Furthermore, the
proposed detector is integrated within a complete EMS plat-
form to showcase its detection performance and computation
efficiency.

3) On the basis of the proposed detector, a statistical ap-
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proach is presented to localize the attacks and determine the
likelihood of each load being attacked. The deviation in
loads is captured via a Z-score and the log-loss is used as a
measure to find the likelihood function that minimizes the er-
ror. This represents a crucial step towards the development
of decision tools that can help operators to securely manage
power systems when targeted by cyber-attacks.

Related work on the design of FDI and LR attack detec-
tors can be found in the literature. For example, in [7], multi-
ple linear regression is used to study the voltage profiles in
a system and determine if an LR attack is taking place. Un-
like this paper, the method proposed in [7] is designed for
distribution systems, and the attacks tested are not realistic
as they simulate the changes in loads up to 100%. Other
work focuses on using deep neural networks to learn the
temporal correlation which exists between the real-time mea-
surements and previous samples [8], or verifying the statisti-
cal behavior of the estimated states over time [9]. The as-
sumption on which these detectors are built is that when an
attack is injected, the false measurements are not compatible
with the dynamics observed from the previous measure-
ments, thus making it possible to flag them as attacked. On
the basis of this, a slow ramping attack which only slightly
changes the system state at each sampling time will not be
detected to a large extent. Moreover, these detectors are test-
ed on limited attack scenarios and their performance is not
verified against multiple classes of attacks. Finally, while
many attack detectors have been proposed, the idea of detect-
ing FDI attacks by identifying patterns in the observed loads
has not been explored before.

The rest of this paper is organized as follows. A descrip-
tion of LR attacks and how to design them is presented in
Section II. The basic detection algorithm presented in [6] is
summarized and its performance limitations on large-scale
systems are shown in Section III. The required improve-
ments are described in Section IV and the detection results
on a wide range of LR attacks are presented in Section V.
The statistical analysis that leverages the improved nearest-
neighbor-based detector to determine the buses that have
been attacked is illustrated in Section VI. Finally, conclu-
sions are drawn in Section VII.

II. ATTACK MODEL AND DESIGN

For a power system, the relationship between the measure-
ment vector z and the state vector x can be written as:

z=h(x)+e

1
where h(-) is the non-linear relationship function between
measurements and states (usually, complex bus voltages);
and e is the vector of random measurement noises. As
shown in [1], an unobservable attack can be constructed by
replacing the original measurement vector z with a corrupted
set of measurements z as:

z=h(x+c)

2
where ¢ is the vector of attack states. Based on this funda-
mental result, [3] presents a bi-level optimization problem to
compute ¢ that will maximize the power flow on a specific
target line. To cause such physical consequences on the pow-

er system, the false measurements must be designed in such
a way that they will initiate a system response in the form
of generation redispatch. This can be done by creating an un-
observable attack that will lead SE to wrongly estimate the
system loads, thus causing a wrong dispatching solution.
The bi-level optimization problem proposed in [3] is im-
proved in [10] to make it more efficient and scalable to
large-scale systems. The first level models the attacker’s
choice of attack to maximize the overload on a target line;
and the second level models the system response to the at-
tack via a direct-current optimal power flow (DCOPF) to ob-
serve the resulting physical consequences. In designing the
false measurements, the attacker is limited on how much the
false loads can deviate from the real loads, which is repre-
sented by the load shift factor that represents the maximum
percentage by which any load can be modified. This con-
straint comes from the fact that an operator would easily
identify a large change in load over a short period as an
anomaly. In the existing literature, load shift factors ranging
from 10% [3], [10] to 50% [2] are considered as the maxi-
mum allowable values for an attack to remain unobservable.
The attack detector presented in this paper aims at identify-
ing in real time if the set of measured loads is genuine or if
it is the result of an attack on SE. As shown below, the pro-
posed detector is effective in identifying attacks with rela-
tively small load shift factors and it reaches perfect detection
for attacks with a load shift factor of 15% or higher.

III. BASIC DETECTION ALGORITHM

A. Small-scale Systems

The proposed detector works by analyzing the correlation
structure within the currently observed load values and com-
paring it with the attack-free historical load data. The mea-
sured load configuration to be tested is given as an input to
the detector which generates a scalar value. This value is
then compared against a threshold 7 to label the loads as nor-
mative or attacked. To evaluate the detection performance,
two metrics are used: (1) detection probability, which is the
ratio between the number of cases correctly labelled as at-
tacked and the total number of attacked cases; @ false
alarm rate, which is the number of normative cases labelled
as attacked that is divided by the total number of normative
cases. The specific value of the threshold is chosen as a trad-
eoff between detection probability and false alarm rate. The
proposed algorithm can be considered as a semi-supervised
learning problem since the detectors are trained only on nor-
mative data which are already widely available to the opera-
tors. Since no attacked data are needed in the training phase,
the detectors will not be biased towards specific types of at-
tacks. Given the almost identical detection capability of the
three detectors tested in [6], in this study, the nearest-neigh-
bor-based detector is chosen for its computation and explana-
tory simplicity.

Nearest-neighbor algorithms are based on the assumption
that the data labelled as normative lie in limited, dense re-
gions of space while anomalies are located further from
these neighborhoods [11], [12]. Let us define p € R" as the
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vector of observed load values to be tested, where n is the
number of loads in the power system. The normative data
are represented by the set Pl e R"*" of historical load vec-
tors &, € R" that have been observed in the past, where n, is
the total number of historical vectors. The classification is
done by measuring the Euclidean distance between the cur-
rent load profile p and every vector A, in the historical datas-
et (assumed to be attack-free). The nearest-neighbor distance
d for sample p is defined as:

d= min

i=1,2,...n,

P, 3)

To label p as normative or attacked, d is compared against
a pre-determined threshold z.

In [6], we test the nearest-neighbor algorithm on the IEEE
30-bus system. Publicly available zonal historical load data
from the PJM system [13] is mapped into the loads of the
IEEE 30-bus system to create hourly load profiles for 5 con-
secutive years. The detector proposed in [6] shows very high
detection capability with low false alarm rates. Figure 1
shows some of the results obtained on this small-scale sys-
tem [6]. The blue symbol represents the minimum distance
for the normative load vectors (not attacked), while the
green and red symbols represent the distances corresponding
to attacked cases with load shift factors of 10% and 15%, re-
spectively. This illustrates how loads resulting from attacks
lead to much longer nearest-neighbor distances compared
with normative load profiles, which demonstrates that the
minimum distance is an effective metric for attack detection.
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Fig. 1. Distribution of nearest-neighbor distance for normative and at-
tacked cases in IEEE 30-bus system.

B. Large-scale Systems

While the results obtained on the IEEE 30-bus system are
promising, the detector proposed in [6] needs to be tested on
large-scale systems to verify its performance in a more real-
istic setting and to guarantee its suitability for the implemen-
tation in real system operations. To this end, the same analy-
sis presented in [6] and summarized in the previous section
is performed on the synthetic Texas system [14], [15]. This
system, developed at Texas A&M University, is a synthetic
power system of the state of Texas. It has 2000 buses, 3206
branches, and 1125 loads and it includes bus-level hourly
load data for the year 2016. Using the attack model de-
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scribed in Section II, around 280 attacks with load shift fac-
tor of 15% have been designed on the most congested cases.
We randomly select 90% of the 8784 normative load vectors
to represent the historical data, and the remaining 10% for
testing. The nearest-neighbor algorithm is used to compute
the minimum distance for the test and the attacked load vec-
tors against the historical load data.

Figure 2 shows the minimum distance for each normative
load vector (blue symbol) and for the attacked cases with
load shift factor of 15% (red symbol). It is easy to see that
the detector proposed in [6] does not perform well, and that
the attacked cases are indistinguishable from the normative
ones. This can be explained by the fact that when measuring
the Euclidean distance between two high-dimension vectors,
the contribution of a limited subset of dimensions is small.
If only a few tens of loads are attacked, the total distance
measured over hundreds of loads will deviate only slightly
from the distance computed on the load vector where no
loads are modified. In this case, each load vector has dimen-
sions of 1125 and the attacks modify only about 100 to 200
loads; and the effect of the attacked loads is not large
enough to result in distance values significantly higher than
those of the normative data.
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Fig. 2. Distribution of nearest-neighbor distance for normative and at-
tacked cases in synthetic Texas system.

IV. DETECTION ON LARGE-SCALE SYSTEMS

The simple test presented in the previous section shows
that the basic nearest neighbor-based detector introduced in
[6] does not perform well when applied to large-scale sys-
tems with hundreds or thousands of buses. Therefore, we
need a new algorithm to improve the detection mechanism
to be effective for any system, regardless of its size. The
new algorithm aims to leverage the capability of the nearest-
neighbor algorithm to identify anomalous loads even when on-
ly a small fraction of the total system loads is being attacked.

Previous work has shown that in a large transmission-lev-
el system, LR attacks tend to target only some portions of
the network. As a consequence, the loads which are modi-
fied represent a subset of the total system loads and they are
restricted to a subgraph of limited size. Based on these ob-
servations, the detection algorithm is modified so that it ana-
lyzes multiple pre-defined subsets of the system loads. In
this paper, we propose a grouping strategy that can be used
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to divide the loads into relatively small groups so that they
can be analyzed independently and in parallel by the attack
detector. It is important to notice that the presented strategy
is just one example of grouping which empirically works
well for the systems tested. Different grouping strategies,
which may leverage specific knowledge and insights regard-
ing the power system to be secured, can be easily imple-
mented within the framework of the proposed detector.

A. Grouping Strategy

The first step required to define the load groups is to sort
the loads based on their megawatt rating from the largest to
the smallest. Starting from the largest load, the first group is
created by including the load itself and all its neighboring
loads within a certain radius r,, where the radius is mea-
sured as the smallest number of branches connecting two
loads. At this point, the next largest load is selected and if it
is not contained in any of the previous groups, a new group
is created. This process is repeated until n, groups are creat-
ed. Note that it is possible for a bus to be contained in multi-
ple groups, or no groups. The parameters r, and n, have a di-
rect effect on the detection performance and their selection
will be discussed in the next sections. As our results show,
this grouping strategy proves to be very effective in the de-
tection of LR attacks because it ensures that the largest
loads in a system are monitored. Prior work on FDI attacks
on SE shows that, to cause significant consequences, an at-
tacker is required to target large loads in order to create
large power flow changes [2]-[5].

B. Detection Algorithm

Dividing the n system loads into groups allows us to over-
come the dimensionality issue observed in Section III-B.
The basic nearest-neighbor-based detector can be used on
large-scale systems by running the nearest-neighbor algo-
rithm individually on each load group. In this case, a thresh-
old 7z, must be defined for each individual group g, for
jei{l.2,...,n,}. The vector peR" containing the estimated
loads computed by SE is divided into n, groups according to
the procedure described in the previous subsection. p/ is de-
fined as the vector containing the real-time values of the
loads in group g,. For each group, the minimum distance be-
tween the load vector p/ and the corresponding loads in the
historical dataset is calculated as:

| P, 4)

where A, is the subset of loads belonging to group g; from
the ™ historical load vector. The minimum distance is then
compared with the threshold z; to determine if the loads in
group g, are normative or anomalous. Specifically, if d,>7,
an alarm is raised, while if d,<7; the loads are considered at-
tack-free. This process is repeated for every group and if
one or more alarms are raised, the load vector p is labelled
as anomalous.

d,;= min
r=12...n,

V. TEST OF PROPOSED DETECTOR

A. Experimental Procedure

The performance of the proposed detector in conjunction
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with the grouping strategy is tested in depth in the following
subsections. The detection capability is measured both on in-
telligently designed attacks as well as random LR attacks;
moreover, we study its sensitivity to different parameters
such as the load shift factor of the attack and the number of
attacked buses.

The goal of the following experiments is to analyze the
quality of the detector by understanding if a load vector is
normative or attacked. The primary test system used is the
synthetic Texas system described in Section III-B, and all nu-
merical results discussed below are based on this system. Ad-
ditional testing performed on the 2383-bus Polish test case
[16], for which we generate historical load profiles based on
real data from a major US ISO [17], shows comparable re-
sults and is omitted in this paper due to space constraints.

First, the 1125 system loads in the Texas system are divid-
ed into groups following the procedure from Section IV-A.
For the tests described below, the parameters chosen for the
creation of the groups are r,=7 and n,=35, which ensure
that more than 60% of the loads in the system are included
in one or more groups and the ones that are outside of the
groups have at least one monitored neighboring load. More-
over, these load groups are equally spread across the system;
as a result, the system is effectively monitored in its entirety.
Preliminary testing has shown that increasing the number of
groups and thus of the loads considered does not improve de-
tection performance.

In each experiment, two datasets are needed: the norma-
tive load dataset P, € R"**** and the anomalous load datas-
et P, e R"**# where H varies for different types of the at-
tacks. The normative data represent one load vector for each
hour of 2016 (2016 was a leap year). The dataset P, con-
tains attacked load vectors which are designed starting from
the normative load vectors in dataset P,. Depending on the
type of the attack, some of the loads are modified either in-
telligently or randomly, as described below.

To compute detection probability and false alarm, the load
vectors of dataset P, are first divided into three subsets: his-
torical, training, and testing. The historical subset Pj* in-
cludes 70% of the total hours of 2016 and it represents the
past loads known to the system operator and used in its near-
est-neighbor algorithms. The training subset Pi™" represents
another 20% of P, and it is needed to determine the thresh-
olds 7; for each load group. The remaining 10% of norma-
tive load vectors is used as the testing subset Py* to deter-
mine the false alarm rate. To determine the threshold z; for
group g, the minimum distance d,; between each load vector
p) for time i in Py*" and the historical subset is computed us-
ing (4). The threshold z; is defined as a fixed fraction of the
maximum nearest-neighbor distance d which is defined
for each group as:

max, />

d max d,;

maxj "  pin
PPy

®)

For each load vector in Py*, the minimum distance from
P is computed and compared with the threshold. The false
alarm rate is the ratio between the number of times a load
vector is labelled as attacked, e.g., at least one load group
has the minimum distance greater than its corresponding
threshold, and the total number of load vectors in Py*. Simi-
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larly, the minimum distance is calculated for every attacked
case and the detection probability is computed. As we will
explain in more detail in the next sections, varying the
threshold about the value d,,,,; allows to span different detec-
tion probabilities and false alarm rates in order to determine
the receiver operation characteristic (ROC). The proposed de-
tector is extremely efficient and testing a load vector only
takes a fraction of a second on a normal laptop. Thus, even
on large-scale systems, the detector can easily run in real
time.

Since the normative load dataset is limited to one year, in
order to have a more complete assessment of the perfor-
mance of the detector, a k-folding technique is used to test
every hour of the year by rotating through multiple sets of
historical, training, and testing datasets. The hours of 2016
are randomly divided into ten equally sized partitions as il-
lustrated in Fig. 3. The partitions are fixed throughout the
testing process. For the 1% fold, the load vectors correspond-
ing to the hours in the first partition are assigned to Py,
those corresponding to the hours in the 2™ and 3™ partitions
are assigned to Py*" and those corresponding to the hours in
the remaining partitions are assigned to Py*. Given these par-
titions, the number of false alarms and the number of the de-
tected attacks are calculated on the normative and attacked
load vectors in the testing partition. The subsequent folds are
created by shifting the partitions assigned to the three datas-
ets by one: for example, in the 2™ fold, P will coincide
with the 2™ partition, Pi*" will coincide with the 3™ and 4"
partitions, and Py* will coincide with the remaining ones.
The final detection probability is then calculated by adding
up the correctly identified attacks across all folds and divid-
ing by the total number of attacks. The false alarm rate is
the total number of false alarms divided by 8784.

Partitioning of the data:
1 st 2nd 3rd 4th Slh 6lh 7lh 8111 9111 loth
Partitions W%w%*—w—ﬁ—%‘—%»—w—ﬁ—w—o{»—u—w&w”—w
N L
Attacked hours
Folding of the testing partitions:

o Test Training Historical
1% fold pr—++ i {
| | 1TeSt1 Training 1 Historical |
2" fold | T \ \
" ’ Training Historical Test
10" fold | { i+

1

Fig. 3. Description of k-folding technique and definition of datasets.

B. Detection of Intelligently Designed Attacks

We use the bi-level problem in [3] to design the attacks
that simulate specific changes in loads to cause physical
overflows on a target line, while being unobservable to the
system operators (and SE). The testing procedure described
in the previous sections is employed here to verify the abili-
ty of the proposed detector and grouping strategy in correct-
ly identifying malicious loads resulting from these intelligent-
ly designed attacks.

The bi-level problem in [3] is structured so that any one
branch can be selected as a target, and an attack will be de-
signed to maximize the flow on it. Depending on the specif-
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ic system conditions, a successful attack (i.e., one causing
the resulting power flow to exceed the branch rating) may
not exist; generally, the higher the pre-attack flow is, the
more likely the attack will lead to overflow. Therefore, the
first step in designing the attacks is to run an AC optimal
power flow (ACOPF) for every load vector in P, to identify
any congested branch. For the purpose of this study, a con-
gested branch is any line or transformer that has a base-case
power flow loading of 90% of its rating or more. The at-
tacks are designed on each hour of 2016 for which one or
more branches are congested. These branches are individual-
ly selected as the targets of the attacks. Thus, an hour will
have as many different attacks as the number of branches
with base-case flow above 90% in that hour. Moreover, for
each target branch, the attacks are designed with a load shift
factor ranging from 1% to 15% in steps of 1%. This allows
us to study how the detection performance varies in relation
to the attack magnitude. As a result of this process, 8861
successful attacks are computed, across every hour, target
line, and load shift factors.

The resulting attacked load vectors have been tested fol-
lowing the k-folding procedure in Section V-A, where the
threshold for each group g, varies from 0.94,,,; to 1.1d
Figure 4 shows the detection probability as a function of the
load shift factor and the false alarm rate.

max,j*
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Fig. 4. Detection probability as a function of load shift factor and false
alarm rate for intelligently designed attacks.

It can be observed that the detector does not perform well
on the attacks with very low load shift factors, while for
load shift factor between 10% and 15%, the detection proba-
bility goes from 0.8% to 1.0% with false alarm rates ranging
from 0.5% to 3%. While the load shift factor is an important
metric in the design phase of the attacks, from the perspec-
tive of operators, it is more meaningful to evaluate the physi-
cal consequences of the attacks. Figure 5 shows the detec-
tion probability as a function of the load shift factor and
false alarm rate.
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1 2 3 4 5 6 7 8 9 10 11
Line overload rate (%)
Fig. 5. Detection probability as a function of line overload and false alarm

rate for intelligently designed attacks.
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As shown in Fig. 5, we can easily observe that the detec-
tor has extremely high probability of detecting any attack
that would cause important physical damage. Considering
the safety margins built into the operation tools, an overload
rate of 2% or 3% is not likely to cause any system disruption.

C. Detection of Random LR Attacks

The experiments in the previous subsection have shown
that the proposed detector is effective in identifying the at-
tacked load vectors designed to create significant overflows
on specific target lines. In this subsection, the sensitivity of
this algorithm is investigated to anomalous loads which have
not necessarily been intelligently designed. Thus, a large
number of false load vectors will be created based on the
historical data. The detection performance is then computed
as the number of modified loads and the amount of load
change are varied across a broad spectrum.

The false load vectors are created by randomly selecting a
subset of the loads in each vector of P, and modifying them
by either increasing or decreasing their values by a given
load shift factor. In this study, the same load shift factors as
in the previous subsection are used, while the footprint size
of the attack as a percentage of the total number of system
loads varies between 10% and 100% in steps of 10% for ev-
ery hour. The resulting anomalous load dataset P, has dimen-
sions of 1125 x H, where H=8784x 15x10=1317600.

Similar to what is done in the previous subsection, all
these false load vectors are fed to the proposed detector and
the detection probability is computed. In this case, the detec-
tion probability is a function of three parameters: the false
alarm rate, the load shift factor, and the footprint size. Fig-
ure 6 shows the detection probability as a function of the
load shift factor and the footprint size with false alarm rates
of 5.5% and 0.4% for random LR attacks. Clearly, for a giv-
en load shift factor and footprint size, the detection probabili-
ty is higher when the false alarm rate is higher.

~ 15 1.0 5,
g £
< 13 08 =
511 I
izg’ 9 0.6 g
Z Z 04 g
2, 02 3
Q o]
! 0 A9
10 20 30 40 50 60 70 80 90 100
Footprint size (%)
(a)
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b 082
511 2
Q

L‘E 9 0.6 g
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10 20 30 40 50 60 70 80 90 100
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Fig. 6. Detection probability as a function of load shift factor and foot-

print size with false alarm rates of 5.5% and 0.4% for random LR attacks.
(a) False alarm rate is 5.5%. (b) False alarm rate is 0.4%.
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Overall, the proposed detector performs well, having per-
fect detection capability for a wide range of different at-
tacks. Compared with the detection performance on intelli-
gently designed attacks, the proposed detector is not as good
as identifying the random LR attacks with small load shift
factor and small percentages of the attacked loads. This can
be explained by the fact that the intelligently designed at-
tacks are designed in such a way that the modified loads be-
long to a spatially concentrated subgraph, thus it is likely
that some of the load groups will include a large number of
the attacked loads. In the random LR attacks, the loads are
modified across the whole network, and hence distributed
across a higher number of groups. Therefore, each group
will experience a smaller deviation from the normative data,
resulting in worse detection capability. Meanwhile, the ran-
dom LR attacks are less likely to cause line overloads.

Figure 7 shows the detection probability as a function of
line overload rate and false alarm rate. It can be observed
that any random LR attack that would result in line over-
loads is easily detected, demonstrating the high effectiveness
of the proposed detector in detecting anomalous and danger-
ous load vectors.
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Fig. 7. Detection probability as a function of line overload rate and false
alarm rate for random LR attacks.

D. Integration Within EMS

The proposed detector has been fully implemented in a
state-of-the-art EMS platform developed at Arizona State
University (ASU) [18]. This software was created as part of
National Science Foundation (NSF) Grant 1449080 [19],
[20]. The interface of the platform is shown in Appendix A
Fig. Al. On the left of Fig. Al is the network graph of the
Texas system, while, on the right, the simulation page with
the main blocks of the EMS is presented. In Fig. Al, the
“Thr” represents the threshold of the chi-square test in the
traditional bad data detector; and the “Err” represents the to-
tal state estimation error for the current set of measurements.
In the example shown, the traditional residue-based BDD
has easily been bypassed, while the proposed detector identi-
fies the attack and gives information on the extent of the at-
tack based on the number of groups that raise a flag. Over-
all, this platform allows for the testing of the detector in a
realistic power system operation environment while showcas-
ing its effectiveness in terms of computational efficiency and
integration within EMSs. Details on the design of the soft-
ware platform and its building blocks can be found in [21],
while the code for the attack detection algorithm is freely
available on Github [22].
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VI. ATTACK LOCALIZATION

In the previous sections, we introduce a BDD based on
the nearest-neighbor algorithm and a grouping strategy
which has excellent performance against both intelligently
designed attacks and random LR attacks. This nearest-neigh-
bor-based detector can be extended beyond simply determin-
ing whether a load vector contains anomalous data or not. It
can be leveraged to determine which buses have been modi-
fied or are deviating from their usual behavior. Localizing
the subgraph affected by an attack or load anomaly repre-
sents a step forward in terms of system operation security.
Knowing which loads are likely to cause the detector to
raise an alarm is an important step in the implementation of
secure EMS functionalities. For example, the load values
which are determined to be unreliable could be replaced by
forecasted values or an uncertainty margin assigned to them
so that the system could be operated in a secure state.

A similar approach for secure operations against cyber-at-
tacks is studied in [23], where an optimal dispatching prob-
lem is presented to find a secure and cost-effective dispatch-
ing solution considering variable bus loads, and thus protect-
ing the system from unexpected load changes. Also, in [24],
a secure unit commitment (UC) problem is formulated so
that in case of a cyber-attack the system operator can switch
from the normal UC solution to a secure one while follow-
ing all network constraints. The issue with these approaches
is that it would cause the system to be operated in a too con-
servative, and thus less efficient state for most of the time.
The advantage of being able to detect and localize an attack
is that the system operator can make a better informed deci-
sion on when and how to secure the system, without impact-
ing normal operations.

A. Likelihood Determination

The grouping strategy provides an approximate way of lo-
calizing the attacks by identifying groups of loads that devi-
ate from their normative behavior. In this subsection, we de-
scribe a statistical approach to further analyze the values of
the individual loads to identify which ones are more likely
to trigger the detector. Because of many possible attack sub-
graphs, determining exactly which are the attacked loads
would be extremely hard. Therefore, our goal is to assign to
each load a probability ¢, that represents the likelihood of
the load being attacked. In this sense, the likelihood is a risk
measure and it can be quantified using an empirical metric
that relies on estimated likelihoods, namely average log-loss
(also known as cross-entropy) [25]. Average log-loss is de-
fined as:

L

1=-1> ~[ylog, () +(1 ~y)log, (14,

L =1

(6)

where n, is the total number of samples, e.g., loads tested; g,
is the probability associated with each load; and y, is 1 if the
load is indeed attacked and 0 otherwise.

We define the values of the loads in group g; at time i as
p’,ﬁz[p’,ﬁ_,],pﬁ_z,...,pﬁi,c/]T, where k; is the number of loads in
group g, The minimum distance d,; between the load vector
p) and the historical data are computed using (4). As ex-
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plained in Section IV-B, if d,; is greater than threshold z,
the group g, may raise a violation at time i. Moreover, de-
fine the loads in the nearest-neighbor of p; as hl=
W Hsy s h’g,{/ T". For each load in group j, the normalized

difference between load / at time 7 and its corresponding val-
ue in the nearest-neighbor 4/, is computed as:

| PR,
5;,:# 1=1,2, ...k (7

We cannot directly know if a load is attacked through this
normalized difference because different loads could have dif-
ferent amounts of deviation. In order to account for this vari-
ability, we determine the normative behavior of each load by
computing the first- and second-order statistics of its normal-
ized difference u s and o,

Hy= > 8, LY

Liepy™

1 . ,
o, = /n > OGl—p,y VLY

i . 2 pwain
LiePy

®)

)

where n, is the total number of time samples in the training
dataset Pi™", i.e., the number of columns of Py
Given a specific load vector p, € Py* and its correspond-
ing ¢/, for all / and j, we determine how far each load devi-
ates from the normative behavior using a Z-score, which is
defined as:
5:'/.1_/1(5/
o

J
By

z},= (10)

Intuitively, the Z-score indicates that the number of stan-
dard deviations by which ¢/, is above (or below) the mean
for load / in group j observed in the attack-free data.

On the basis of this setup, there exists a joint distribution
Q... (z) for whether a load is attacked (a¢=1) or not (a=0), if
it belongs to a group that raises a violation (v=1) or not (v=
0), and its Z-score z. While Q,,(z) is not known, we can em-
pirically estimate the conditional probability Q,,(z) of a load
being attacked given its Z-score and whether it raises a viola-
tion or not. In other words, our goal is to define a likelihood
function £, (z) that takes the Z-score of a load and whether
it raises a violation to determine the probability that the load
is attacked as inputs.

First, we compute the Z-score (10) for all intelligently de-
signed attacks in P, that result in an overload rate of 3% or
more. As discussed in Section V-B, those are the attacks that
can cause significant damage and they are almost always de-
tected by the nearest-neighbor algorithm. The distribution of
the Z-score for the loads belonging to groups that raise a vio-
lation is shown in Fig. 8. From the curves of ¢, ,,_,(z) and
Pa_o.-1(z), which represent the distribution functions of Z-
score for the loads that are attacked and are not attacked, re-
spectively, we notice that if a load belongs to a group that
raises a violation, it is very likely that the load is indeed be-
ing attacked. Moreover, the higher the Z-score is, the more
likely the load is attacked. On the basis of these observa-
tions, we can define a function that maps the Z-score of a
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load to the likelihood of the load being attacked. The esti-
mated conditional likelihood for the loads belonging to
groups that raise a violation is computed as:

¢a:15v:1 (2)

Z.{zv:l(Z): 11
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Fig. 8. Distribution of Z-score and likelihood function for loads in groups
that raise a violation.

For the set of data points obtained by (11), we fit a
smooth curve with the form of 4e™® + C to avoid overfitting,
where A, B, C are constants. The corresponding likelihood
function is defined as /:’H“,:l (z), which can be used to assign
a probability of being attacked based on its Z-score to each
load. The same procedure is performed on the loads in
groups that do not raise a violation and the corresponding re-
sults of @,_1,0(2), @u0,-0(2), Lyy-o(2) and L,,_(z) are ob-
tained, as shown in Fig. 9. Comparing the curves of Zia‘v: (2)
and 2”:0(2), we notice that, for low Z-score values,
ﬁu‘\,:] (z) reaches a minimum likelihood value of around 0.5
while 2,,“,:0(2) reaches 0.
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Fig. 9. Distribution of Z-score and likelihood function for loads in groups

that do not raise a violation.

B. Numerical Results

The performance of the statistical approach proposed in

Section VI-A is tested on the intelligently designed attacks
from Section V-B, with 7,=d,,, . The conditional likelihood
functions ﬁaw:] (z) and ﬁa‘v:o(z) are learned on 70% of the at-
tacks and they are tested on the remaining 30%. The Z-score
for every load is computed using (10) and the average log-
loss is computed using (6).

For comparison, we also test two simpler approaches to
assign likelihood values to each load. The first one does not
rely on the Z-score and only considers if the load belongs to
groups with violations or not. On the basis of our data, on
average, in a group that raises a violation, 82% of the loads
are attacked, while in the groups that does not raise viola-
tions, only 10% are actually attacked. Considering this prior
knowledge, the first simple approach assigns ¢,=0.82 to
load / if the load is in a group that raises a violation and ¢,=
0.10 otherwise. The second approach is even simpler and it
assigns a fixed ¢, to every load regardless of which group it
belong to. From our results, the optimal value of ¢, for this
approach is ¢;=0.15. The average log-loss results of the pro-
posed statistical approach (indicated as g¢,,(z)) and the two
simpler ones (indicated as ¢g,, and ¢q,) are 0.340, 0.489, and
0.608, respectively. It can be observed that the more sophisti-
cated the approach is, i.e., the more information is used, the
smaller the average log-loss will be.

VII. CONCLUSION

In this paper, we propose an improved data-driven algo-
rithm for the detection of LR attacks and a statistical ap-
proach for the localization of the attacked buses. The detec-
tor based on the nearest-neighbor algorithm and a grouping
strategy is tested on a large number of attacks belonging to
two different classes: intelligently designed attacks and ran-
dom LR attacks. The results obtained on the synthetic Texas
system show the excellent detection capability of the pro-
posed detector, especially against the attacks that have the
worst consequences on the power system. The statistical ap-
proach for attack localization assigns a likelihood value to
each load indicating the probability of the load being at-
tacked. This approach offers operators a greater insight in
case of cyber-attacks allowing for more secure system opera-
tion.

As part of our future work, we intend to extend the pro-
posed detector to the analysis of different anomalies. The
model can be trained to not only detect an anomaly, but also
determine the type of event, e.g., cyber-attack, natural event,
and fault, that causes it. Moreover, the proposed detector can
be enhanced by considering additional information about
rare and sporadic events such as forecasts of extreme weath-
er events or temporary changes in load patterns due to
known causes, e.g., sporting events, holidays, etc. This could
result in both improved detection probability and lower false
alarm rate.

APPENDIX A

The implementation of the proposed detector within an
EMS is depicted in Fig. Al.
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