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1 Introduction

Recursive utilities1 play a central role in contemporary macroeconomics and finance. Under

recursive preferences, the value of a stream of per-period utilities is defined as the solution

to a nonlinear, stochastic, forward-looking di↵erence equation (or “recursion”). Despite

the importance of recursive utilities, existence and uniqueness remains an unresolved issue

as the recursions are typically not contraction mappings when state variables and per-

period utilities are unbounded. In this paper, we derive primitive, easily verifiable su�cient

conditions for existence and uniqueness of recursive utilities in stationary, infinite-horizon

Markovian environments, with an emphasis on robust preferences, models of ambiguity

aversion and learning about hidden states, and Epstein–Zin preferences. To accommodate

models used extensively in macroeconomics and finance, we allow both the support of the

Markov state vector and per-period utilities to be unbounded.

There are a large number of existence and uniqueness results for recursive utilities in models

with compact state space, and possibly also bounded per-period utilities.2 However, many

models used in macroeconomics and finance feature unbounded (i.e., non-compact) state

spaces and unbounded utilities. For instance, the extensive long-run risks literature following

Bansal and Yaron (2004) typically models state variables as vector autoregressive processes

with unbounded shocks.3 A seemingly reasonable approach for models with non-compact

state space is to truncate (i.e., compactifty) the state space and apply existing results for

compact state spaces. After all, this truncation occurs implicitly when computing solutions

numerically. However, truncation can materially alter the existence and uniqueness proper-

ties of the recursions we study. Knowing when the original model without truncation has

a unique solution remains important for reconciling numerical solutions with the original

(un-truncated) model envisioned by the researcher.

To illustrate this point, in Section 2 we present two empirically relevant examples to show

how non-existence and non-uniqueness can arise under unboundedness. For both examples,

we focus on a recursion arising under preferences for “robustness” (Hansen and Sargent,

1995, 2001; Hansen, Sargent, Turmuhambetova, and Williams, 2006) and under Epstein–Zin

1Throughout the paper, by “recursive utility” we mean “stochastic recursive utility”.
2See, e.g., Epstein and Zin (1989), Alvarez and Jermann (2005), Marinacci and Montrucchio (2010), Guo

and He (2017), Becker and Rincon-Zapatero (2017), Bloise and Vailakis (2018), Balbus (2020), Borovička
and Stachurski (2020), Ren and Stachurski (2020), and references therein.

3See, e.g., Hansen, Heaton, and Li (2008), Barillas, Hansen, and Sargent (2009), Wachter (2013), Bansal,
Kiku, Shaliastovich, and Yaron (2014), Croce, Lettau, and Ludvigson (2015), Bidder and Smith (2018), Col-
lard, Mukerji, Sheppard, and Tallon (2018), Schorfheide, Song, and Yaron (2018), and additional references
listed in Sections 4–6.
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preferences with unit intertemporal elasticity of substitution. The first example features a

simplified version of the consumption growth process from Schorfheide et al. (2018), for

which existence fails. The second example is from Bidder and Smith (2018) and Wachter

(2013), for which uniqueness fails. When the state space is truncated, however, the recursion

has a unique solution (irrespective of the truncation level) in both examples. This stark

di↵erence between the compact and unbounded case arises because the properties of the

recursion depend delicately on the tail behavior of state variables and truncation, even at

an arbitrarily high truncation level, materially alters tail behavior.

For many of the models we study, the single primitive su�cient condition we require for both

existence and uniqueness is that the distribution of growth in per-period utilities has thin

tails, in a sense we make precise. We verify this condition for robust preferences, models of

ambiguity aversion and learning about hidden states, and Epstein–Zin preferences with unit

intertemporal elasticity of substitution (IES). We consider both canonical linear-Gaussian

environments which are pertinent to the long-run risks literature as well as environments

featuring regime-switching and stochastic volatility.

As with much of the literature, we identify recursive utilities with fixed points of a nonlinear

operator acting on a suitable function class. One strand of the literature on existence and

uniqueness of (deterministic or stochastic) recursive utilities under unboundedness uses con-

traction mapping arguments for function classes defined via weighted sup-norms.4 However,

it is not always easy to find a suitable weighting function under which operators defining

recursive utilities are a contraction.5 Our arguments instead rely on monotonicity and con-

cavity/convexity properties of the recursions we study, as with earlier work by Marinacci

and Montrucchio (2010); see also Becker and Rincon-Zapatero (2017), Bloise and Vailakis

(2018), and Ren and Stachurski (2020), primarily for the compact case.6 While our approach

has some similarities with these earlier works, it di↵ers in terms of the function class and

technical arguments used so as to accommodate a broad class of empirically relevant models

with unbounded state space. In particular, our arguments do not rely on certain topological

properties of the space of bounded functions, such as the such the “solidness” of the cone

of non-negative functions.

4See, e.g., Boyd (1990) and Durán (2003) for deterministic and stochastic utilities, respectively. Le Van
and Vailakis (2005) provide a related approach for deterministic utilities under Lipschitz conditions.

5See, e.g., Le Van and Vailakis (2005) for a discussion.
6Marinacci and Montrucchio (2010) and Becker and Rincon-Zapatero (2017) allow for processes that are

bounded with probability one but growing over time using weighted `1-norms. See also Ren and Stachurski
(2020) for a particular parameterization of Epstein–Zin preferences with unbounded state space using a
weighted sup-norm, where the weighting function is tightly related to per-period utilities and the law of
motion of the Markov state.
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Our point of departure is to embed a transformation of the value function, such as its

logarithm, in a class of unbounded but thin-tailed functions. The class is an exponential-

Orlicz class used in empirical process theory in statistics (van der Vaart and Wellner, 1996)

and modern high-dimensional probability (Vershynin, 2018).7 Exponential-Orlicz classes are

naturally suited to the recursions we study, which involve the composition of exponential

and logarithmic transforms and expected values.

The key high-level condition we use to establish uniqueness is that a subgradient (in the

convex case) or supergradient (in the concave case) of the recursion is monotone and its

spectral radius is strictly less than one. For many of the models we study, the recursion is

convex and its subgradient is a discounted conditional expectation under a distorted law

of motion. Verifying the spectral radius condition in these models amounts to checking a

primitive thin-tail condition on the change-of-measure distorting the law of motion. We

specialize this condition to particular models, deriving more primitive thin-tail conditions

on the distribution of growth in per-period utility which are easy to verify: one simply has

to know the tail behavior of the distribution.

To illustrate the usefulness of our results, we then present applications to three classes of

models.

Section 4 studies a recursion arising under preferences for “robustness”, namely risk-sensitive

preferences (Hansen and Sargent, 1995), multiplier preferences (Hansen and Sargent, 2001),

constraint preferences (Hansen et al., 2006), and also under Epstein and Zin (1989) pref-

erences with unit IES. There are currently no uniqueness results in the literature for this

recursion allowing non-compact state space and unbounded utilities (see the discussion in

Section 4), both of which are important for models in macroeconomics and finance. We

establish new existence and uniqueness results under a single primitive thin-tail condition

on utility growth. We verify this condition in canonical linear-Gaussian environments and

environments featuring regime-switching and stochastic volatility, thereby establishing new

existence and uniqueness results for such settings.

Section 5 considers models with learning. We study extensions by Hansen and Sargent (2007,

2010) of multiplier preferences to accommodate both model uncertainty and uncertainty

about hidden states, dynamic models of ambiguity aversion studied by Ju and Miao (2012)

and Klibano↵, Marinacci, and Mukerji (2009), and Epstein–Zin preferences with unit IES

and learning. There are currently no existence and uniqueness results in the literature

7Previously, Hindy and Huang (1992) and Hindy, Huang, and Kreps (1992) used Orlicz classes to define
topologies for consumption paths in continuous time.

4



allowing non-compact state space and unbounded utilities (see the discussion in Section 5).

We establish existence and uniqueness under a single primitive thin-tail condition on utility

growth. We verify the condition, and therefore establish existence and uniqueness results,

for regime-switching environments (Ju and Miao, 2012) and Gaussian state-space models

(Hansen and Sargent, 2007, 2010; Croce et al., 2015; Collard et al., 2018).

Finally, in Section 6 we examine Epstein–Zin recursive utilities with IES not equal to one.

There are no uniqueness results for models with unbounded state space when risk aversion

and intertemporal substitution are in a range normally encountered in the long-run risks

literature (see the discussion in Section 6). Here we establish existence under an eigenvalue

condition from Hansen and Scheinkman (2012) and a thin-tail condition on its corresponding

eigenfunction. We verify this condition for linear-Gaussian environments which are pertinent

to the long-run risks literature. Appendix A gives definitions of mathematical terms used

in the main text. All proofs are in Appendix B.

2 Non-existence and non-uniqueness without boundedness

In this section, we present two empirically relevant examples of non-existence and non-

uniqueness in models with unbounded state spaces. The first features a simplified version

of the consumption growth process from Schorfheide et al. (2018), for which existence fails.

The second is the model from Bidder and Smith (2018) and Wachter (2013), for which

uniqueness fails. In both examples, however, there is always a unique solution when the

support of state variables are truncated (irrespective of the truncation level).

2.1 Non-existence

Consider the following simplified8 model of consumption growth {g}t�0 from Schorfheide

et al. (2018):

gt+1 = ⌫g + eht⌘gt+1 , ht+1 = ⌫h + ⇢ht + �⌘ht+1 , (1)

where |⇢| < 1, and the ⌘gt and ⌘ht are all i.i.d. N(0, 1). Let Xt = (gt, ht). Both gt and ht have

support R.

8We have removed a stochastic growth component from model (4) of Schorfheide et al. (2018) to simplify
presentation. Non-uniqueness arises here because of the form of the stochastic volatility process, and not
because of the absence of a stochastic growth component.
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Suppose we seek a solution v to the recursion

v(x) = � logEQ
h
ev(Xt+1)+↵gt+1

���Xt = x
i
, (2)

where � 2 (0, 1) and ↵ 2 R are preference parameters and EQ denotes expectation under

the law of motion (1). This recursion is studied in Section 4 and arises under preferences

for robustness as well as under Epstein–Zin preferences with unit IES. As the conditional

distribution of Xt+1 given Xt = (g, h) depends only on h, the right-hand side conditional

expectation, and therefore v, must depend only on h. Using (1), we see that recursion (2)

simplifies to

v(h) = a+ be2h + � logEQ
h
ev(ht+1)

���ht = h
i
=: Tv(h), (3)

where a = ↵�⌫g and b = 1
2↵

2�.

Let L1 denote the space of (equivalence classes of) functions f for which Eµ[|f(ht)|] <

1, where Eµ denotes expectation under the stationary distribution µ implied by (1) (see

Appendix A).

Proposition 2.1. Let ↵ 6= 0 and let consumption growth g evolve according to (1). Then:

recursion (3) has no solution in L1.

Now suppose instead that the support of h is truncated to some compact interval H :=

[�H,H] for H 2 (0,1). Under this truncation, T satisfies Blackwell’s su�cient conditions

for a contraction mapping on the space B(H) of bounded functions on H. Therefore, T has

a unique fixed point in B(H), irrespective of the truncation level H.

To understand the di↵erence between the bounded and unbounded cases, note from (2) that

for Tv to be well defined we need the tails of the (conditional) distribution of v(Xt+1)+↵gt+1

to decay su�ciently quickly (i.e., sub-exponentially). While this condition is always satisfied

in the bounded case, it is violated in model (1) due to the specification of the stochastic

volatility process. In Section 4 we present a di↵erent form of stochastic volatility with

thinner tails for which existence and uniqueness can be guaranteed without truncation.
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2.2 Non-uniqueness

Consider the model from Bidder and Smith (2018) (see also Wachter (2013)) in which

consumption growth g evolves as

gt+1 = ⌫g + wz,t+1 + �wg,t+1 , (4)

where wg,t+1 ⇠ N(0, 1) and wz,t+1|jt+1 ⇠ N(⌫jjt+1,�2j jt+1) with ⌫j < 0, and where jt+1|ht
is Poisson-distributed with mean ht, where {h}t�0 follows an autoregressive gamma process

with parameters (', c, �) (see appendix H of Backus, Chernov, and Zin (2014) and references

therein for details). Here consumption growth is subject to occasional “disasters” which

arrive at rate ht. We again seek a solution to recursion (2) with Xt = (gt, ht). The support

of gt is R and the support of ht is R+. As with the previous example, here it su�ces to

consider solutions depending only on h. Using (4), we may rewrite recursion (2) as

v(h) = a+ bh+ � logEQ[ev(ht+1)|ht = h] =: Tv(h) , (5)

where a = ↵�⌫g +
1
2↵

2��2 and b = �(e↵⌫j+
1
2↵

2�2
j � 1). Let q = 1 + cb� �'.

Proposition 2.2. Let consumption growth g evolve according to (4) and let q2 � 4cb > 0.

Then: recursion (5) has two solutions of the form vi(h) = ai + bih, i = 1, 2, where

b1 =
q�

p
q2 � 4cb

2c
, b2 =

q+
p
q2 � 4cb

2c
,

and ai =
a��� log(1�bic)

1�� , i = 1, 2.

Note that the condition q2 � 4cb > 0 is satisfied for the parameterization in Bidder and

Smith (2018), so uniqueness fails for that parameterization.

One may again verify that T is a contraction mapping on the space B(H) of bounded

functions on H := [0, H] when the support of h is truncated to [0, H] with H 2 (0,1).

Therefore, T has a unique fixed point in B(H), irrespective of the truncation level H.

In this example, the stability properties of fixed points also di↵er under truncation and

unboundedness. Under truncation, the recursion is a (global) contraction on B(H) so the

unique fixed point is globally attracting. In the unbounded case, suppose we restrict T to

a�ne functions of the form v(h) = a+ bh. Here the two solutions (ai, bi), i = 1, 2, solve the
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recursion (a, b) = T (a, b) (see the proof of Proposition 2.2 for a derivation), where

T (a, b) =

✓
a+ �a� �� log(1� bc) , b+

�'b

1� bc

◆
.

Fixed point iteration of T on an initial point (a0, b0) converges to (a1, b1) if b0 < b2, converges

to (a2, b2) if b0 = b2, and diverges otherwise. In the latter case, iterations diverge because

the tails of a0 + b0ht+1 +↵gt+1 become increasingly heavy under repeated application of T,
eventually becoming su�ciently heavy that Tv is no longer finite.

3 Preliminaries

Section 3.1 presents a basic existence and uniqueness result which serves as a useful starting

point for organizing the discussion that follows. The key condition for uniqueness is a

spectral radius condition on a sub- or supergradient of the operator. In many models with

forward-looking agents—including models we study in the later sections—the subgradient

is a discounted conditional expectation under a distorted law of motion. We then show in

Section 3.3 that the spectral radius condition holds in these models under a “thin tail”

condition on the change-of-measure distorting the law of motion. We shall use this result

to derive more primitive conditions for recursive utilities in Sections 4 and 5.

3.1 A basic fixed-point result

In this section, we present a basic existence and uniqueness result for an operator T acting

on a Banach lattice E with norm k ·k and partial order  (see Appendix A). We also require

E has a monotone convergence property : any increasing sequence {fn}n�1 ⇢ E bounded

above by some g 2 E converges to some f  g. Spaces with this property include Lp spaces

for 1  p < 1 and Orlicz spaces (see Section 3.2). We say that T is monotone if Tf  Tg
whenever f  g. A bounded linear operator Df on E is a subgradient of T at f if

Tg � Tf � Df (g � f) (6)

for each g 2 E , and a supergradient of T at f if inequality (6) is reversed:

Tg � Tf  Df (g � f) (7)
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for each g 2 E . Let kDk := sup{kDfk : f 2 E , kfk = 1} denote the norm of a linear operator

D on E , and ⇢(D; E) := limn!1 kDnk1/n denote the spectral radius of D, where Dn denotes

D applied n times in succession.

Proposition 3.1. (i) Existence: Let T be a continuous and monotone operator on E and

let there exist v, v̄ 2 E such that either (a) Tv̄  v̄ and {Tnv̄}n�1 is bounded from below by

v, or (b) Tv � v and {Tnv}n�1 is bounded from above by v̄. Then: Tnv̄ (if (a) holds) or

Tnv (if (b) holds) converges to a fixed point v 2 E as n ! 1, where v  v  v̄.

(ii) Uniqueness: Suppose that inequality (6) holds at each fixed point v 2 E, or inequality

(7) holds at each fixed point v 2 E, and Dv is monotone with ⇢(Dv; E) < 1 for each fixed

point v 2 E. Then: T has at most one fixed point in E.

When uniqueness cannot be guaranteed, ordering and stability criteria can be used to

refine the set of fixed points. Let V denote the set of fixed points of T. Say v is the smallest

(respectively largest) fixed point of T if v  v0 (resp. v � v0) holds for each v0 2 V. Say v is

stable if ⇢(Dv; E) < 1 (see, e.g., Amann (1976)).

Corollary 3.1. Let the conditions of Proposition 3.1(i) hold, let T satisfy (6) (resp. (7))

at each of its fixed points, and let v 2 E be a fixed point of T with ⇢(Dv; E) < 1. Then: v is

both the smallest (resp. largest) fixed point and the unique stable fixed point of T in E.

Stability of v is a useful property. In the examples we consider in Sections 4 and 5, the

subgradient is of the form Dv = �Ẽ with � 2 (0, 1), where Ẽ denotes conditional expec-

tation under a distorted probability measure. Stability ensures that discounted expected

utilities under Ẽ are finite. Stability of v also helps ensure that fixed-point iteration on a

neighborhood of v will converge to v (see Lemma B.4).

While Proposition 3.1(i) establishes that Tnv̄ (if (a) holds) or Tnv (if (b) holds) converges

to a fixed point of T as n ! 1, it is also possible to strengthen this to a (partial) global

convergence result.

Corollary 3.2. Let the conditions of Proposition 3.1 hold, with the additional restriction

that T satisfies (6) if (a) holds, or (7) if (b) holds, at v. Then: for any w 2 E for which

w  v̄ (if (a) holds) or w � v (if (b) holds), we have limn!1 Tnw = v.

We conclude this subsection by noting results similar to Proposition 3.1 appear in the

existing literature. Proposition 3.1(i) is based on Theorem 4.1(b) of Krasnosel’skii (1964),
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which assumes the order interval [v, v̄] be invariant under T. Invariance is not necessary: all
that is required is that either Tv̄  v̄ or Tv � Tv and the sequence {Tnv̄}n�1 or {Tnv}n�1

is bounded from below or above, respectively.9 Proposition 3.1(ii) uses similar techniques to

the literature on fixed points of order-convex maps (see, e.g., Chapter 5 of Amann (1976)).

Unlike much of this literature, Proposition 3.1(ii) does not require additional properties such

as compactness and di↵erentiability of T or strict positivity of Dv, which may be di�cult to

verify in practice, or that the cone of non-negative functions in E has non-empty interior,

which is a property not shared by Lp spaces with 1  p < 1 or Orlicz classes. We do not

view Proposition 3.1 as a contribution of this paper: we use it simply as a starting point to

derive more primitive existence and uniqueness conditions in the following sections.

3.2 Thin-tailed functions

In the applications that follow, we will take E to be a class of unbounded but “thin-tailed”

functions. Let µ be a probability measure on (X ,X ). Most of the applications will feature

a stationary Markov process {Xt}t�0 with statespace X , in which case we shall take µ to

be the stationary distribution of the Markov process (see Appendix A). Let L0 denote the

vector space of (equivalence classes of) all measurable functions on X . Define

L�r = {f 2 L0 : Eµ[exp(|f(X)/c|r)] < 1 for some c > 0},

E�r = {f 2 L0 : Eµ[exp(|f(X)/c|r)] < 1 for all c > 0},
(8)

for r � 1, where Eµ[ · ] denotes expectation with respect to the distribution µ of the random

variable X. Both L�r and E�r are Banach lattices when equipped with the (Luxemburg)

norm

kfk�r = inf {c > 0 : Eµ[exp(|f(X)/c|r)]  2} (9)

and the partial order f � g if and only if f(x) � g(x) µ-almost everywhere. The space L�r is

an (exponential) Orlicz space and E�r is its Orlicz heart.10 We will be mainly concerned with

E�r in what follows. Lemma B.5 shows that E�r has the monotone convergence property.

The spaces L�r and E�r are related to Lp(µ) spaces through the embeddings L1(µ) ,!

9Our requirement that E has the monotone convergence property is equivalent to the requirement from
Krasnosel’skii (1964) that the cone of non-negative functions is “regular”.

10More generally, Orlicz classes can be defined by replacing exp(xr) in display (8) by a convex, increasing
function � : R+ ! R+ for which �(0) = 0 and limx!1 �(x)/x = +1 (Krasnosel’skii and Rutickii, 1961).
We can then equip this space with the Luxemburg norm kfk� := inf{c > 0 : Eµ[�(|f(X)/c|)]  1}. The
spaces L�r and E�r and norm (9) correspond to the special case in which �(x) = �r(x) := exp(xr) � 1,
r � 1. We use the �r superscripts and subscripts to avoid confusion with Lp spaces and Lp norms.
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E�r ,! L�r ,! E�s ,! L�s ,! Lp(µ) for 1  s < r < 1, with kfkp  p!(log 2)1/r�1kfk�r

for each 1  p < 1 where k · kp denotes the Lp(µ) norm, and kfk�s  (log 2)1/r�1/skfk�r

(van der Vaart and Wellner, 1996, p. 95).

3.3 Verifying the spectral radius condition

In many models featuring forward-looking agents such as those we study in Sections 4

and 5, the subgradient is a discounted conditional expectation operator under a distorted

probability measure. That is, there is a wedge between the probability measure describing

the evolution of state variables and the probability measure under which the expectation

is taken. In this section we show how to verify the key spectral radius condition from

Proposition 3.1 under a thin-tail condition on the change of measure.

When there is no such wedge (e.g., time-separable preferences and rational expectations),

the spectral radius condition is easily seen to hold. Let {Xt}t�0 be a time-homogeneous

Markov process with transition kernel Q and stationary distribution µ (see Appendix A).

In what follows, we define E�r relative to the stationary distribution µ. Suppose Dv = �EQ,

where EQ denotes conditional expectation under Q. Then for any c > 0 and f 2 E�r ,

Eµ[exp(|Dvf(Xt)/(�c)|r)] = Eµ[exp(|EQ[f(Xt+1)|Xt]/c|r)]

 Eµ[EQ[exp(|f(Xt+1)|r/c)|Xt]]

= Eµ[exp(|f(Xt)|r/c)] ,

by Jensen’s inequality and the fact that µ is the stationary distribution of {Xt}t�0. Taking

f to be almost-everywhere constant, we see that the operator Dv has norm kDvk�r = � on

E�r and ⇢(Dv;E�r) = �. A similar argument applies for Lp(µ) spaces.

This argument breaks down in the settings we study, in which Dv = �Ẽ, where Ẽ denotes

conditional expectation under a distribution di↵erent from Q. Suppose

Ẽf(x) = EQ[m(Xt, Xt+1)f(Xt+1)|Xt = x] , (10)

where m is the (conditional) change-of-measure transforming EQ into Ẽ.11 We shall verify

the spectral radius condition under a thin-tail condition on m. For the intuition behind the

result, note that applying Dv involves multiplying by m, taking conditional expectations

under Q, and discounting. Therefore, provided the higher moments of m don’t diverge too

11That is, for each x 2 X , m(x, ·) takes values in R+ and
R
m(x, y)Q(dy, x) = 1.
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quickly, repeatedly applying Dv to thin-tailed functions ensures that the e↵ect of discounting

eventually dominates and the spectral radius condition holds.

To formalize this reasoning, let logm_0 denote the pointwise maximum of logm and 0 and

let µ⌦Q denote the joint (stationary) distribution of (Xt, Xt+1) (see Appendix A).

Lemma 3.1. Let D = �Ẽ where � 2 (0, 1) and Ẽ is of the form (10) with

Eµ⌦Q [exp(|logm(Xt, Xt+1) _ 0|r/c)] < 1 (11)

for some c > 0 and r > 1. Then: D is a bounded linear operator on E�s with ⇢(D;E�s) < 1

for each s � 1.

Remark 3.1. Lemma 3.1 does not require stationarity (or any other property) of {Xt}t�0

under the law of motion corresponding to Ẽ.

Remark 3.2. Lemma 3.1 establishes the spectral radius condition for all � 2 (0, 1). When

the change of measure m defining Ẽ has thin tails, any amount of discounting is su�cient

to overwhelm the e↵ect of the change of measure under repeated application of D = �Ẽ.

4 Application 1: Robust (and related) preferences

4.1 Setting

Consider an infinite-horizon environment in which the continuation value Vt of a stream of

per-period utilities {Ut}t�0 from date t forwards is defined recursively by

Vt = Ut � �✓ logE
h
e�✓�1Vt+1

���Ft

i
, (12)

where Ft is the date-t information set, � 2 (0, 1) is a time preference parameter, and ✓ > 0.

Recursion (12) arises under preferences for “robustness”, namely risk sensitive preferences

(Hansen and Sargent, 1995), multiplier preferences (Hansen and Sargent, 2001), and con-

straint preferences (Hansen et al., 2006). Recursion (12) is also equivalent to the recursion

under Epstein and Zin (1989) preferences with unit IES, in which case ✓ is a transformation

of the risk aversion parameter.12

12Specifically, ✓ = 1/(� � 1) where � is the coe�cient of relative risk aversion. See, e.g., Section III in
Hansen et al. (2008) for a derivation of recursion (12) from the Epstein–Zin recursion with unit IES.
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We follow much of the literature and consider environments characterized by a stationary

Markov state process {Xt}t�0 supported on a state space X ✓ Rd. Let Ft denote the

information set generated by the realization of the Markov state up to date t. Let Q denote

the Markov transition kernel, EQ denote conditional expectation with respect to Q, and

µ denote the stationary distribution of {Xt}t�0 (see Appendix A). In such environments

it follows for certain commonly used specifications of Ut that there exists v : X ! R and

u : X ⇥ X ! R and such that

v(Xt) = �1

✓

✓
Vt �

1

1� �
Ut

◆
, u(Xt, Xt+1) = Ut+1 � Ut .

For instance, this is true when Ut = log(Ct) and consumption growth log(Ct+1/Ct) is a

function of (Xt, Xt+1).13 Under these conditions, the recursion may be rewritten in terms

of the scaled continuation value function v:

v(x) = � logEQ
h
ev(Xt+1)+↵u(Xt,Xt+1)

���Xt = x
i
, (13)

where ↵ = �(✓(1� �))�1. Recursion (13) may be expressed as v = Tv, where

Tf(x) = � logEQ
h
ef(Xt+1)+↵u(Xt,Xt+1)

���Xt = x
i
.

4.2 Existing results

Hansen and Scheinkman (2012) and Christensen (2017) studied this recursion in the con-

text of Epstein–Zin preferences with unit IES and unbounded X . Hansen and Scheinkman

(2012) derived su�cient conditions for existence of a fixed point but not uniqueness. Their

conditions restrict moments of a Perron–Frobenius eigenfunction of an operator and require

convergence of a sequence of iterates of a related recursion. Christensen (2017) established

uniqueness on a neighborhood for the same recursion under a spectral radius condition but

did not establish existence or global uniqueness.

13Our results trivially extend to allow log(Ct+1/Ct) = g(Xt, Xt+1, Yt+1) where the conditional distribu-
tion of (Xt+1, Yt+1) given (Xt, Yt) depends only on Xt by redefining the state as (Xt, Yt).
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4.3 New results

Here we establish existence and uniqueness under a primitive thin-tail condition on the

growth in per-period utility. Formally, we require that for some r � 1,

Eµ⌦Q [exp(|u(Xt, Xt+1)|r/c)] < 1 for all c > 0, (14)

where Eµ⌦Q denotes expectation with respect to the stationary distribution of (Xt, Xt+1)

(see Appendix A). We verify this condition below in several examples. Note, however, that

both examples in Section 2 violate this condition.

We shall establish existence and uniqueness by applying Proposition 3.1. The operator

T is continuous, monotone, and convex under condition (14); see Lemma B.7. The proof

of existence constructs an upper value v̄ and shows the sequence of iterates {Tnv̄}n�1

is bounded from below. For uniqueness, by Jensen’s inequality the operator T satisfies

inequality (6) with subgradient

Dvf(x) = �Evf(x) ,

where Ev is a distorted conditional expectation:

Evf(x) = EQ[mv(Xt, Xt+1)f(Xt+1)|Xt = x] , (15)

mv(Xt, Xt+1) =
ev(Xt+1)+↵u(Xt,Xt+1)

EQ[ev(Xt+1)+↵u(Xt,Xt+1)|Xt]
. (16)

For robust preferences, Ev may be interpreted as expectation under the agent’s “worst-case”

model. The spectral radius condition is verified by applying Lemma 3.1; see Lemma B.8.

Theorem 4.1. Let condition (14) hold. Then: T has a fixed point v 2 E�r . Moreover, if

r > 1 then: (i) v is the unique fixed point of T in E�s for each s 2 (1, r], and (ii) v is both

the smallest fixed point and the unique stable fixed point of T in E�1.

Example 1: Linear-Gaussian environments. Condition (14) holds for all r 2 [1, 2)

when u(Xt, Xt+1) = �00Xt + �01Xt+1 and its stationary distribution is Gaussian.

This specification arises, for instance, with Ut = log(Cte�
0Xt) where log(Ct+1/Ct) is a func-

tion of (Xt, Xt+1) and the process {Xt}t�0 is a stationary Gaussian VAR(1):

Xt+1 = ⌫ +AXt + ut+1 , ut+1 ⇠ N(0,⌃) ,
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with all eigenvalues of A inside the unit circle. This setting was considered in Hansen et al.

(2008), Barillas et al. (2009), and several other works. It is known that T has a fixed point

of the form v(x) = a+ b0x where b = ↵�(I � �A0)�1(�0 +A0�1) and

a =
�

1� �

⇣
(↵�1 + b)0⌫ +

1

2
(↵�1 + b)0⌃(↵�1 + b)

⌘
.

Theorem 4.1 shows that v(x) = a + b0x is the unique fixed point in E�s for all s 2 (1, 2),

and the smallest fixed point and unique stable fixed point in E�1 . ⇤

Example 2: Fat tails and rare disasters. Consider the model from Section 2.2. Here

with Xt = (gt, ht) we have u(Xt, Xt+1) = gt+1. By iterated expectations we may deduce

Eµ⌦Q
h
ecu(Xt,Xt+1)

i
= ec⌫g+

c2�2

2 Eµ


exp

✓
ht

✓
exp

⇢
c⌫j +

c2�2
j

2

�
� 1

◆◆�
.

Condition (14) is violated for this model: the expectation on the right-hand side is only

finite if c is in a neighborhood of zero because the stationary distribution of ht is a Gamma

distribution. Note that uniqueness can fail for this model, as illustrated in Section 2.2.

One could modify this specification so that wz,t+1|jt+1 ⇠ N(⌫jj
&
t+1,�

2
j ) for some & 2 [12 , 1).

Given the low frequency of jumps, this modification is likely di�cult to distinguish empiri-

cally from the original specification. Under this modification, condition (14) holds for each

r 2 [1, 1/&). Therefore, there is a unique fixed point v 2 E�s for all s 2 (1, 1/&), and v is

both the smallest fixed point and the unique stable fixed point in E�1 . ⇤

Example 3: Regime-switching. Consider the same setup from Example 1 but suppose

now that the parameters of the VAR are state-dependent (see, e.g., Hamilton (1989), Cec-

chetti, Lam, and Mark (1990, 2000), Hansen and Sargent (2010), and Ang and Timmermann

(2012)):

Xt+1 = ⌫st +AstXt + ut+1 , ut+1 ⇠ N(0,⌃st) ,

where st is stationary, exogenous Markov state taking values in {1, . . . , N}, and all eigen-

values of As are inside the unit circle for each s = 1, . . . , N . The full state vector is now

(Xt, st), which is Markovian and stationary. The stationary distribution of growth in per-

period utilities u(Xt, Xt+1) is sub-Gaussian (see, e.g., Vershynin, 2018, Section 2.5), and so

condition (14) holds for all r 2 [1, 2). It follows by Theorem 4.1 there is a unique fixed point

v 2 E�s for all s 2 (1, 2) (with E�s defined with respect to the stationary distribution of

(Xt, st)), and v is both the smallest fixed point and the unique stable fixed point in E�1 . ⇤
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Example 4: Stochastic volatility. Consider the environment from section I.B of Bansal

and Yaron (2004) in which consumption growth gt+1 := log(Ct+1/Ct) is modeled as

gt+1 = ḡ + ht + �t⌘
g
t+1 ,

ht+1 = ⇢hht + 'h�t⌘
h
t+1 ,

�2t+1 = �̄2 + ⇢�(�
2
t � �̄2) + '�⌘

�
t+1 ,

where ⌘gt , ⌘
h
t , and ⌘

�
t are all i.i.d. N(0, 1). We alter this model slightly in two respects. First,

to focus on the implications of stochastic volatility and simplify exposition we set ⇢h = 0

though this is not essential to our analysis. Second, to deal with the complications arising

when �2t+1 < 0 we take absolute values. This leads to the consumption growth process

gt+1 = ḡ +
p
|st|⌘gt+1 ,

st+1 = s̄+ ⇢s(st � s̄) + 's⌘
s
t+1 ,

where ⌘gt and ⌘st are i.i.d. N(0, 1). Defining Xt = (gt, st), we see that u(Xt, Xt+1) = gt+1

when per-period utility is logarithmic in consumption. To verify condition (14), first note

that

Eµ⌦Q[exp(|(gt+1 � ḡ)/c|r)] = Eµ[E[exp(|
p

|st|⌘gt+1/c|
r)|st]] , (17)

where the inner expectation is taken with respect to ⌘gt+1 ⇠ N(0, 1). The inner expectation

is equivalent to E[exp(Y r/ar)] where Y = |Z| with Z ⇠ N(0, 1) and a = c/
p
|st| > 0. In

Appendix B we derive a crude bound on this expectation (see Lemma B.9) from which we

may deduce that for r 2 [1, 2),

EQ

"
exp

 �����

p
|st|⌘gt+1

c

�����

r!����� st

#


p
2p
⇡

0

@
 
2
p
|st|

r

cr

! 1
2�r

exp

 
(2|st|)

r
2�r

c
2r
2�r

!
+

 
4
p
|st|

r

cr

! 1
2�r

+
p
⇡

1

A .

As the stationary distribution of st is Gaussian, the exponent r
2�r of the |st| term appearing

in the right-hand side exponential must be less than 2 (equivalently, r 2 [1, 4/3)) so that

that the expectation (17) is finite for all c > 0. It follows that (14) holds for all r 2 [1, 4/3).

Therefore, there is a unique fixed point in v 2 E�s for all s 2 (1, 4/3), and v is both the

smallest fixed point and the unique stable fixed point in E�1 . ⇤
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4.4 Convergence of compact approximations

While there are many di↵erent ways to construct versions of T over truncated state spaces,

a natural approach is to simply restrict X to a large but compact set C and rescale the

transition density of {Xt}t�0 accordingly. We close this section by showing that this con-

struction yields an operator TC whose fixed point vC approaches the unique stable fixed

point v of T from below as C becomes large. Therefore, in view of Theorem 4.1(ii), vC will

not converge to any unstable fixed point of T (if unstable fixed points of T exist).

The operator TC is defined by truncating the support of {Xt}t�0 to a compact set C ⇢ X
and rescaling the transition distribution. Define

TCf(x) = � logEQ


ef(Xt+1)+↵u(Xt,Xt+1) 1l{Xt+1 2 C}

Q(C, x)

����Xt = x

�
, x 2 C ,

where Q(C, x) is the conditional probability (under the un-truncated transition kernel Q)

that Xt+1 2 C given Xt = x and 1l{x 2 C} = 1 if x 2 C and 0 otherwise. Let B(C) denote
the space of bounded functions on C under the sup-norm.

Proposition 4.1. Let supx2C | logEQ[e↵u(Xt,Xt+1)1l{Xt+1 2 C}/Q(C, x)|Xt = x]| < 1. Then:

TC has a unique fixed point vC 2 B(C). Moreover, if infx2C Q(C, x) > 0 then for any fixed

point v of T,
inf
x2C

(v(x)� vC(x)) �
�

1� �

✓
inf
x2C

logQ(C, x)
◆
.

As ✏C := � �
1�� (infx2C logQ(C, x)) > 0, Proposition 4.1 implies vC(x)  v(x) + ✏C holds for

all x 2 C. If T has a second (unstable) fixed point v0 � v, then for any subset of C upon

which v0 and v di↵er by more than ✏C , we have vC(x)  v(x) + ✏C < v0(x). As such, vC

cannot converge to v0 as C becomes large (i.e., as ✏C ! 0).

5 Application 2: Learning and ambiguity

We now extend the setting from Section 4 to models in which the agent learns about a hidden

state, e.g. a regime, stochastic volatility, growth process, or time-varying parameter. This

setting is relevant for several types of preferences, including: (i) the extension of multiplier

preferences by Hansen and Sargent (2007, 2010) to include concerns about misspecification

of beliefs about the hidden state, (ii) generalized recursive smooth ambiguity preferences

17



of Ju and Miao (2012) with unit IES, (iii) special cases of recursive smooth ambiguity

preferences studied by Klibano↵ et al. (2009), and (iv) Epstein and Zin (1989) recursive

preferences with unit IES and learning as used, for example, by Croce et al. (2015).

5.1 Setting

We again consider environments characterized by a Markov state process {Xt}t�0 with

transition kernel Q. Partition the state as Xt = ('t, ⇠t) where the agent observes 't but

does not observe ⇠t. Let Ot = �({'t,'t�1, . . . ,'0}) denote the history of the observed state

to date t. Beliefs about ⇠t are summarized by a posterior distribution ⇧t conditional on

Ot. We consider environments in which the continuation value Vt of a stream of per-period

utilities {Ut}t�0 from date t forward is defined recursively as

Vt = Ut � �✓ logE⇧t


EQ
h
e�#�1Vt+1

���Ot, ⇠t
i#

✓

����Ot

�
, (18)

for � 2 (0, 1). This recursion is from Hansen and Sargent (2007, 2010), who introduce

an extension of multiplier preferences to accommodate concerns about misspecification of

the model (Q) and beliefs about the hidden state (⇧t), where # > 0 and ✓ > 0 encode

concerns about misspecification of Q and ⇧t, respectively. When Ut = logCt, recursion (18)

also arises under generalized recursive smooth ambiguity preferences of Ju and Miao (2012)

with unit IES, where ✓ and # are one-to-one transformations of their ambiguity aversion

and risk aversion parameters, respectively. When # = ✓, recursion (18) reduces to

Vt = Ut � �# logE⇧t

h
EQ
h
e�#�1Vt+1

���Ot, ⇠t
i���Ot

i
.

With Ut = logCt, this recursion corresponds to Epstein–Zin recursive preferences with unit

IES and learning about the hidden state. In the limit as #! 1 (thus, the agent is confident

in Q but has doubts about the hidden state) recursion (18) becomes

Vt = Ut � �✓ logE⇧t

h
e�✓�1EQ[Vt+1|Ot,⇠t]

���Ot

i
. (19)

This recursion is obtained under recursive smooth ambiguity preferences of Klibano↵ et al.

(2009), when their � function is �(x) = exp(�✓�1x).

We impose several (standard) conditions to make the problem tractable. First, the state is

assumed to have a conventional hidden Markov structure, in which the conditional distri-

bution of Xt+1 given Xt factors into the product of a conditional distribution Q' for 't+1
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given ⇠t and a conditional distribution Q⇠ for ⇠t+1 given ⇠t. This nests models with regime-

switching studied by Ju and Miao (2012) as well as models with learning about a hidden

growth term as in Hansen and Sargent (2007, 2010), Croce et al. (2015) and Collard et al.

(2018). Our analysis extends to allow 't to influence 't+1, but we maintain this simpler

presentation for convenience.

Second, we assume ⇧t is summarized by a finite-dimensional su�cient statistic ⇠̂t:

⇧t(⇠t) = ⇧⇠(⇠t|⇠̂t)

for some conditional distribution ⇧⇠, where ⇠̂ is updated according to a time-invariant rule:

⇠̂t+1 = ⌅(⇠̂t,'t+1) .

These conditions are satisfied under Bayesian updating when the state ⇠t takes finitely

many values (e.g. a hidden regime) and when Xt evolves as a Gaussian state-space model;

see below. The rule for ⇠̂t could also represent belief updating in a boundedly-rational way.

Let X̂t = ('t, ⇠̂t) and let XX̂ , X⇠̂, and X' denote the support of X̂t, ⇠̂t, and 't.

We assume learning is in a “steady state”, i.e., {(⇠t, X̂t)}t�0 is stationary. In linear-Gaussian

environments, learning corresponds to the Kalman filter. If the filter is not initialized in

its steady-state then this process will typically be non-stationary. The stationary problem

studied here is a boundary problem representing convergence of the filter to its steady

state. Solutions can be obtained by backwards iteration from the steady-state boundary

solution.14 Uniqueness of the limiting steady state recursion is necessary for uniqueness of

the sequence of backward iterates.

Finally, we require that there exists v : X⇠̂ ! R and u : X' ! R such that

v(⇠̂t) = �1

✓

✓
Vt �

1

1� �
Ut

◆
, u('t+1) = Ut+1 � Ut .

Before proceeding, we give two examples of environments in which the preceding conditions

hold. In both examples, Ut = log(Ct) and log(Ct+1/Ct) is a function of 't+1.

Example 1: Regime switching. Suppose that ⇠t 2 {1, . . . , N} denotes a hidden Markov

state with transition matrix ⇤. Let the conditional distribution of 't+1 given ⇠t = ⇠ have

density q(·|⇠). The posterior ⇧t is identified with a vector ⇠̂t of regime probabilities given

14A similar approach is taken by Collin-Dufresne, Johannes, and Lochstoer (2016) in models featuring
Epstein–Zin preferences and learning about parameters of the data-generating process.
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Ot. Beliefs ⇠̂t are updated as

⇠̂t+1 = ⇤
q('t+1)� ⇠̂t

10(q('t+1)� ⇠̂t)
,

where q('t+1) is the N -vector whose entries are q('t+1|⇠) for ⇠ 2 {1, . . . , N}, � denotes

element-wise product, and 1 is a N -vector of ones (see, e.g., Hamilton, 1994, Section 4.2).

For example, Ju and Miao (2012) study an economy in which consumption and dividend

growth is jointly dependent on a hidden regime ⇠t:

log(Ct+1/Ct) = ⇠t + uCt+1 , log(Dt+1/Dt) = ⇣ log(Ct+1/Ct) + gd + uDt+1 ,

where uCt and uDt are i.i.d.N(0,�2C) andN(0,�2D). The observable state is 't = log(Ct/Ct�1).

The stationary distribution of u('t+1) is a finite mixture of Gaussians. Our results also allow

the volatility of consumption and dividend growth to be state-dependent. ⇤

Example 2: Gaussian state-space models. Suppose {Xt}t�0 evolves under Q accord-

ing to:

't+1 = A⇠t + u't+1 , ⇠t+1 = B⇠t + u⇠t+1 ,

where u't and u⇠t are i.i.d. N(0,⌃u) and N(0,⌃w) and all eigenvalues of B are inside the

unit circle. This is the setting studied in Hansen and Sargent (2007, 2010), Croce et al.

(2015), Collard et al. (2018), and several other works. If ⇠0 ⇠ N(µ̂0, ⌃̂0) under ⇧0 then

⇠t ⇠ N(µ̂t, ⌃̂t) under ⇧t. The matrix ⌃̂t will converge to a fixed matrix ⌃̄ as t ! 1. In this

steady state, the su�cient statistic for ⇧t is ⇠̂t = µ̂t which is updated using

⇠̂t+1 = B⇠̂t +B⌃̄A0(A⌃̄A0 + ⌃u)
�1('t+1 �A⇠̂t) .

The stationary distribution of u('t) is Gaussian. ⇤

5.2 Existing results

The only related existence and uniqueness result we are aware of in any of these setting is

that of Klibano↵ et al. (2009) for recursive smooth ambiguity preferences (recursion (19)).

Their result applies to bounded functions and requires bounded per-period utilities.
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5.3 New results

Recursion (18) may be reformulated as the fixed-point equation v = Tv where

Tf(⇠̂t) = � logE⇧⇠


EQ'

h
e

✓
#f(⌅(⇠̂t,'t+1))+↵u('t+1)

��� ⇠t, ⇠̂t
i#

✓

���� ⇠̂t
�
.

Recursion (19) in the limiting case with # = +1 may be reformulated as v = Tv where

Tf(⇠̂t) = � logE⇧⇠

h
eE

Q' [f(⌅(⇠̂t,'t+1))+↵u('t+1)|⇠t,⇠̂t]
��� ⇠̂t
i
.

The existence and uniqueness results presented below apply to either case, though the proofs

are presented only for the more involved setting in which # < 1.

Let E�r

X̂
be defined relative to the stationary distribution µ of X̂t = ('0

t, ⇠̂
0
t)
0. Similarly, let

E�r
' ⇢ E�r

X̂
and E�r

⇠̂
⇢ E�r

X̂
denote functions in E�r

X̂
depending only on ' or ⇠̂, respectively.

The key regularity condition is again that the stationary distribution of utility growth has

thin tails:

u 2 E�r
' (20)

for some r � 1. Note that this condition depends only on the marginal distribution of the

observed state and is therefore easy to verify.

We establish existence and uniqueness of fixed points of T by applying Proposition 3.1.

Further details on the form of the subgradient and verification of Lemma 3.1 are deferred

to Appendix B.5.

Theorem 5.1. Let condition (20) hold. Then: T has a fixed point v 2 E�r

⇠̂
. Moreover, if

r > 1, then: (i) v is the unique fixed point of T in E�s

⇠̂
for all s 2 (1, r], and (ii) v is both

the smallest fixed point and the unique stable fixed point of T in E�1

⇠̂
.

Example 1: Regime switching (continued). In the example of Ju and Miao (2012),

the stationary distribution of u('t+1) is a finite mixture of Gaussians, so (20) holds for

all r 2 [1, 2), including when the volatility of consumption and dividend growth is state-

dependent. Therefore, there is a unique fixed point v 2 E�s

⇠̂
for all s 2 (1, 2), and v is both

the smallest fixed point and the unique stable fixed point in E�1

⇠̂
. ⇤

Example 2: Gaussian state-space models (continued). Here the stationary distri-

bution of u('t+1) is Gaussian, so (20) holds for all r 2 [1, 2). Therefore, there is a unique
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fixed point in v 2 E�s

⇠̂
for all s 2 (1, 2), and v is both the smallest fixed point and the

unique stable fixed point in E�1

⇠̂
. ⇤

It is straightforward (albeit more cumbersome notationally) to extend the preceding analysis

to allow for u to depend on ('t,'t+1) and to allow the law of motion to be of the more

general form in which the conditional distribution of 't+1 given Xt depends on both 't and

⇠t. In this case, however, the e↵ective state vector will be X̂t rather than ⇠̂t.

6 Application 3: Epstein–Zin preferences

In this section we study Epstein and Zin (1989) recursive utility with IES 6= 1. Existence

and uniqueness when state variables have non-compact support is of particular importance

as many prominent models, such as those in the long-run risks literature, have non-compact

state space. There are currently no uniqueness results for the recursion we study with non-

compact state space. This is a complicated issue and it is beyond the scope of the paper

to provide a comprehensive treatment. Rather, we show how our approach may be used to

derive primitive existence conditions in empirically relevant settings.

6.1 Setting

The continuation value Vt of the agent’s consumption plan from time t forward solves

Vt =
n
(1� �)(Ct)

1�⇢ + �E[(Vt+1)
1�� |Ft]

1�⇢
1��

o 1
1�⇢

,

where Ct is date-t consumption, Ft is date-t information, � 2 (0, 1)[(1,1) is the coe�cient

of relative risk aversion, and 1/⇢ > 0 is the elasticity of intertemporal substitution.

We consider the ⇢ 6= 1 case in this section as the ⇢ = 1 case is studied in Section 4. We

again consider environments characterized by a stationary Markov process {Xt}t�0 with

state space X ✓ Rd. Let Q denote the Markov transition kernel and EQ denote conditional

expectation under Q. Also let log(Ct+1/Ct) = g(Xt, Xt+1) for some function g.15 Then

15Our results trivially extend to allow log(Ct+1/Ct) = g(Xt, Xt+1, Yt+1) where the conditional distribu-
tion of (Xt+1, Yt+1) given (Xt, Yt) depends only on Xt by redefining the state as (Xt, Yt).
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(1� ⇢) log(Vt/Ct) =: v(Xt), where v solves

v(x) = log

✓
(1� �) + �EQ

h
ev(Xt+1)+(1��)g(Xt,Xt+1)

���Xt = x
i 1



◆
(21)

with  = 1��
1�⇢ (see, e.g., Hansen et al. (2008)). The properties of this recursion are di↵erent

for  < 0,  2 (0, 1), and  2 [1,1). We focus on the case  < 0, as it is the pertinent case

in the long-run risks literature where typically � > 1 and 1/⇢ > 1.

6.2 Existing results

Epstein and Zin (1989) and Marinacci and Montrucchio (2010) derived su�cient conditions

for existence and uniqueness when consumption growth is bounded. Alvarez and Jermann

(2005) establish existence and uniqueness when consumption growth is i.i.d. with bounded

innovations. Guo and He (2017) establish su�cient conditions for existence and uniqueness

with finite state space. Borovička and Stachurski (2020; BS hereafter) present necessary and

su�cient conditions for existence when X is compact (under additional side conditions on

Q). Our results below and those of BS are non-nested if X is compact: we do not impose

any side conditions on Q, but we also do not establish uniqueness in the compact case.

Hansen and Scheinkman (2012; HS hereafter) and BS establish existence with unbounded X
when  < 0.16 We also only present su�cient conditions for existence because the operator

does not have a subgradient of the form studied in Section 3.3. Connections between our

conditions and those in HS and BS are discussed in more detail below.

6.3 New results

Under general conditions (see Hansen and Scheinkman (2009) and Christensen (2015, 2017)),

there exists a strictly positive function ◆ and scalar � > 0 solving17 the equation

�◆(x) = EQ[◆(Xt+1)(Ct+1/Ct)
1�� |Xt = x] . (22)

16Hansen and Scheinkman (2012) and Ren and Stachurski (2020) establish uniqueness when  � 1.
17Note the function ◆ is defined only up to scale normalization.
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Hansen and Scheinkman (2009) use ◆ and � to define a distorted conditional expectation

operator

Ẽf(x) = EQ


◆(Xt+1)(Ct+1/Ct)1��

�◆(Xt)
f(Xt+1)

����Xt = x

�
.

HS show that solving (21) is equivalent to finding a fixed point of

Tf(x) = log
⇣
(1� �)◆(x)�

1
 + ��

1
 Ẽ[ef(Xt+1)|Xt = x]

1


⌘
, (23)

with the solution to recursion (21) and the fixed point of T di↵ering additively by 1
 log ◆.18

We follow HS and assume {Xt}t�0 is stationary under the law of motion corresponding to

the distorted conditional expectation Ẽ. Let µ̃ denote the stationary distribution induced

by Ẽ and let Ẽ�r denote the corresponding Orlicz heart defined using µ̃. Our first regularity

condition requires that log ◆ has thin tails, in the sense that

log ◆ 2 Ẽ�r for some r � 1. (24)

Under this condition, Lemma B.12 shows that T is a continuous, monotone operator on Ẽ�s

for each 1  s  r. It is clear that Tv � log((1� �)◆(x)�
1
 ). Therefore, should there exist a

v̄ 2 Ẽ�r for which Tv̄  v̄, the sequence of iterates Tnv̄ must be bounded from below. The

remainder of the proof shows that the inequality Tv̄  v̄ holds for the function

v̄(x) = log

 
(1� �)

1X

n=0

(��
1
 )nẼn(◆�

1
 )(x)

!
.

The sum is convergent under the eigenvalue condition from Hansen and Scheinkman (2012),

namely

��
1
 < 1 . (25)

Remark 6.1. Although T is not contractive, it follows from Proposition 3.1(i) that the

sequence of iterates v̄,Tv̄,T2v̄, . . . will converge to a fixed point of T under the conditions

of Theorem 6.1 and Corollary 6.1 below. The same is true for the sequence of iterates

v,Tv,T2v, . . . with v(x) = log(1� �)� �1 log ◆(x).

Theorem 6.1. Let {Xt}t�0 be stationary under the law of motion corresponding to the

distorted conditional expectation Ẽ,  < 0, and conditions (24) and (25) hold. Then: T has

a fixed point in Ẽ�s and therefore the recursion (21) has a solution v 2 Ẽ�s for all s 2 [1, r].

18The version of recursion (22) above appears on p. 11968 of HS. In our notation, their recursion is Ûg(x) =
(1� �)◆(x)�

1
 + ��

1
 Ẽ[g(Xt+1)

|Xt = x]
1
 . Recursion (22) is obtained by setting Tf = log(Û(exp(f))).
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Condition (25) is the eigenvalue condition under which HS establish existence in L1(µ̃). BS

showed this condition is necessary for existence (under some additional operator-theoretic

side conditions). Condition (24) is stronger than the integrability conditions imposed on ◆

in Assumptions 4 and 5 of HS. However, this condition does not seem to bite for models

commonly encountered (see the linear-Gaussian example below) and also ensures that the

stochastic discount factor (SDF)

�

✓
Ct+1

Ct

◆�⇢
"

V 1��
t+1

EQ[V 1��
t+1 |Ft]

# ⇢��
1��

⌘ �e�⇢g(Xt,Xt+1)

"
ev(Xt+1)+(1��)g(Xt,Xt+1)

EQ[ev(Xt+1)+(1��)g(Xt,Xt+1)|Xt]

# ⇢��
1��

(26)

is well defined provided consumption growth g has su�ciently thin tails.

Theorem 6.1 has implications for existence in spaces defined relative to the stationary

distribution µ of {Xt}t�0. Suppose that µ̃ and µ are mutually absolutely continuous and

let � = dµ̃
dµ denote the change of measure of µ̃ with respect to µ. Consider the thin-tail

condition

Eµ[�(Xt)
1+"] < 1 and Eµ[�(Xt)

�"] < 1 for some " > 0. (27)

A su�cient condition for (27) is that log� 2 L�1 . The spaces Ẽ�r (defined using µ̃) and E�r

(defined using µ) are equivalent under condition (27); see Lemma B.3. We may therefore

restate condition (24) as

log ◆ 2 E�r for some r � 1. (28)

Corollary 6.1. Let {Xt}t�0 be stationary under the law of motion corresponding to the

distorted conditional expectation Ẽ,  < 0, and conditions (25), (27), and (28) hold. Then:

T has a fixed point in E�s and therefore the recursion (21) has a solution v 2 E�s for all

s 2 [1, r].

Example: Linear-Gaussian environments. Consider an environment studied in Sec-

tion I.A of Bansal and Yaron (2004), Hansen et al. (2008), and Bansal et al. (2014), amongst

others, in which

Xt+1 = ⌫ +AXt + ut+1 , ut ⇠ N(0,⌃) ,

with all eigenvalues of A inside the unit circle, and g(Xt, Xt+1) = �0Xt+1 for some vector �

(this is trivially true if log consumption growth is itself a component of Xt). Solving (22),

◆(x) = e(1��)�0A(I�A)�1x , � = e
(1��)2

2 �0(I�A)�1⌃(I�A0)�1�+(1��)�0(I�A)�1⌫ .
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To apply Corollary 6.1 we must verify conditions (25), (27), and (28). To verify condition

(27), first note

◆(Xt+1)(Ct+1/Ct)1��

�◆(Xt)
= e(1��)�0(I�A)�1ut+1�

(1��)2

2 �0(I�A)�1⌃(I�A0)�1�

so the ut are i.i.d. N((1� �)�0(I �A)�1⌃,⌃) under Ẽ. Equivalently, under Ẽ we have

Xt+1 = ⌫ + (1� �)�0(I �A)�1⌃+AXt + ut+1 , ut ⇠ N(0,⌃) .

This implies the stationary distributions µ and µ̃ are both Gaussian, with di↵erent means

but the same covariance. In consequence, log�(x) is a�ne in x and so condition (27) holds

for any " > 0. As log ◆(x) is also a�ne in x, we have that log ◆ 2 E�r for all r 2 [1, 2), which

verifies condition (28). It follows that the single condition one needs to verify for existence

of recursive utilities in linear-Gaussian environments is the eigenvalue condition (25), which

reduces to

�e
(1�⇢)(1��)

2 �0(I�A)�1⌃(I�A0)�1�+(1�⇢)�0(I�A)�1⌫ < 1 .

Note also that as g(Xt, Xt+1) = �0Xt+1, which belongs to E�r for r 2 [1, 2), the SDF (26)

is therefore well defined and all of its moments exist. ⇤

A Definitions of some mathematical terms

This appendix presents definitions of some mathematical terms used in the main text. We

refer the reader to standard references (e.g. Aliprantis and Border (1999)) for further details.

A set E equipped with a partial order � (i.e., a transitive, reflexive, and antisymmetric

relation on E) is a partially ordered set. Say that E is a lattice if each pair of elements

f, g 2 E has a supremum, denoted f _ g, and infimum, denoted f ^ g, in E .19 Say that E is

a Banach lattice if it is a Banach space when equipped with a norm k · k and k · k has the

property that for f, g 2 E , |f |  |g| implies kfk  kgk, where |f | = f _ (�f). Orlicz spaces

defined relative to a measure µ and Lp(µ) spaces are Banach lattices when equipped with

their Orlicz (or Luxemburg) and Lp(µ) norms, respectively, and the partial order f � g if

and only if f(x) � g(x) for µ-almost every x.

19That is, f  (f _ g), g  (f _ g), and f  h and g  h imply (f _ g)  h. The infimum is defined
analogously.
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Let (X ,X ) be a measurable space. A stochastic process {Xt}t�0 is a Markov process20 with

statespace X if for each t � 0, Xt is a random variable taking values in X , and for each

t � 0 and k � 1, the conditional distribution of Xt+k given {Xs}0st depends only on Xt.

Say {Xt}t�0 is time-homogeneous if for each t � 0 and x 2 X , the conditional distribution

of Xt+1 given Xt = x can be described by a transition kernel Q(·, x). That is, for each

x 2 X , Q(·, x) is a probability measure on (X ,X ), and Q(A, ·) is X -measurable for each

A 2 X . The conditional expectation of f(Xt, Xt+1) given Xt = x is

EQ[f(Xt, Xt+1)|Xt = x] :=

Z
f(x, y)Q(dy, x).

A probability measure µ on (X ,X ) is a stationary distribution if µ(A) =
R
Q(A, x)µ(dx)

for all A 2 X . In addition, say {Xt}t�0 is stationary if µ is unique and {Xt}t�0 is initialized

by drawing X0 from the stationary distribution µ. As such, the marginal distributions of

(Xt, . . . , Xt+k) do not depend on t. In particular, for any t � 0, the (unconditional) expected

values of functions of Xt and (Xt, Xt+1) are given by

Eµ[f(Xt)] =

Z
f dµ , Eµ⌦Q[h(Xt, Xt+1)] =

Z
h(x, y)Q(dy, x)µ(dx) ,

for all bounded measurable f : X ! R and h : X ⇥ X ! R.

B Proofs

Remark B.1. Several of the proofs below require showing that a function f is an element

of E�s with s � 1. That is, that Eµ[exp(|f(Xt)/c|s)] < 1 holds for all c > 0. For any

0 < c̄ < c we have (c̄/c)s < 1 and therefore

exp(|f(Xt)/c|s) = (exp(|f(Xt)/c̄|s))(c̄/c)
s  exp(|f(Xt)/c̄|s)

because exp(|f(Xt)/c̄|s) � 1. In order to show that f 2 E�s, one therefore only has to check

that Eµ[exp(|f(Xt)/c|s)] < 1 holds for all c 2 (0, ✏) for any fixed ✏ > 0.

20In this paper we consider discrete-time processes, for which the time index t ranges over the non-negative
integers.
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B.1 Ancillary results

A version of this first Lemma appears in Chapter 2.3 of the manuscript Pollard (2015) and

is used frequently to control the Orlicz norm k · k�r . We include a proof for convenience.

Lemma B.1 (Pollard (2015)). Let Eµ[exp(|f(X)/C|r)]� 1  C 0 for finite constants C > 0

and C 0 � 1. Then: kfk�r  CC 0.

Proof of Lemma B.1. Take ⌧ 2 [0, 1]. By convexity of �r(x) := exp(|x|r)� 1, we have

Eµ[�r(⌧ |f(X)|/C)]  ⌧Eµ[�r(|f(X)|/C)] + (1� ⌧)�r(0) = ⌧Eµ[�r(|f(Xt)|/C)] .

The result follows by setting ⌧ = 1/C 0.

For the next lemma, recall that k · kp denotes the usual Lp norm for 1  p < 1.

Lemma B.2 (Karakostas (2008); Chen, Jia, and Jiao (2016)). Let 1 < pi < 1 for i 2
N, and

P
1

i=1
1
pi

= 1. If
Q

1

i=1 kfikpi < 1 then
Q

1

i=1 fi is well defined and k
Q

1

i=1 fik1 
Q

1

i=1 kfikpi.

Let µ and ⌫ be two probability measures on a measurable space (X ,X ). We make explicit

the dependence of function classes and norms on the measures µ and ⌫. Let � = dµ
d⌫ , and

let k�kLp(⌫) denote its Lp(⌫) norm.

Lemma B.3. Let µ ⌧ ⌫ and
R
�p d⌫ < 1 for some p > 1. Then: E�r(⌫) ,! E�r(µ) and

L�r(⌫) ,! L�r(µ) for each r � 1.

Proof of Lemma B.3. To see that E�r(⌫) ✓ E�r(µ), take any f 2 E�r(⌫) and c > 0. Then:

Eµ
h
e|f(X)/c|r

i
= E⌫

h
�(X)e|f(X)/c|r

i
 k�kLp(⌫)E⌫

h
e|f(X)/(c/q1/r)|r

i 1
q
< 1 ,

where q > 1 is the dual index of p. Therefore, f 2 E�r(µ). Similarly, L�r(⌫) ✓ L�r(µ).

For continuity of the embedding, take f 2 L�r(⌫) and c = q
1
r kfk�r(⌫). Substituting into the

above display yields

Eµ[e|f(X)/c|r ]  2
1
q k�kLp(⌫) .

Therefore, kfkL�r (µ)  ((2
1
q k�kLp(⌫) � 1) _ 1)q

1
r kfkL�r (⌫) by Lemma B.1.
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B.2 Proofs for Section 2

Proof of Proposition 2.1. Suppose a solution v 2 L1 to (3) does indeed exist for some ↵ 6= 0.

Then v is a fixed point the operator T. Consider the related operator S, given by

Sf(h) = a+ be2h + �EQ [f(ht+1)|ht = h] .

As S is a contraction mapping on L1, we may deduce it has a unique fixed point w 2 L1

given by

w(h) =
a

1� �
+ b

1X

i=0

�iEQ[e2ht+i |ht = h] .

Note by Jensen’s inequality that Tf � Sf holds for any f , where f � g means f(h) � g(h)

holds µ-almost everywhere. Note also that w�v = Sw�Tv  Sw�Sv, where Sw(h)�Sv(h) =
�EQ[w(ht+1)�v(ht+1)|ht = h] =: D(w�v)(h). Therefore, (I�D)(w�v)  0, where I denotes
the identity operator. As (I� D) is invertible on L1 (see the discussion in Section 3.3) and

its inverse maps non-negative functions to non-negative functions, we have w � v  0 and

hence that v � w. Also note that w � w, where

w(h) =
a

1� �
+ be2h .

By monotonicity and the fact that the fixed point v of T is bounded below by w, we have

v = Tv � Tw , (29)

where

Tw(h) = a+ be2h + � logEQ


exp

✓
a

1� �
+ be2ht+1

◆����ht = h

�
.

But note that the right-hand side expectation is +1 for every h because b > 0. It follows

by inequality (29) that v(h) = +1 almost everywhere, which contradicts v 2 L1.

Proof of Proposition 2.2. Substituting v(h) = a + bh into (5) and using the conditional

characteristic function for the autoregressive gamma process (Backus et al., 2014, Appendix

H), we obtain

a+ bh = a+ bh+ �a+
�'b

1� bc
h� �� log(1� bc) .

Matching coe�cients gives a quadratic equation in b. When q := 1 + cb � �' satisfies
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q2 � 4cb > 0, there are two solutions for b:

b1 =
q�

p
q2 � 4cb

2c
, b2 =

q+
p
q2 � 4cb

2c
,

both of which satisfy 1 � bc > 0. Therefore, there are two solutions of the form vi(h) =

ai + bih, where ai =
a��� log(1�bic)

1�� , i = 1, 2.

B.3 Proofs for Section 3

Proof of Proposition 3.1. Existence: we prove this for case (a); similar arguments apply for

(b). The sequence {v̄n}n�1 with v̄n = Tnv̄ is monotone and bounded below by v. It follows

by the monotone convergence property that {v̄n}n�1 converges to some v 2 E with v � v.

Finally, kTv� vk  kTv�Tv̄nk+ kTv̄n � vk = kTv�Tv̄nk+ kv̄n+1 � vk ! 0 by continuity

of T, hence Tv = v.

Uniqueness: Suppose T satisfies (6) at each fixed point. Let v, v0 2 E be fixed points of T.
By (6), we have v0 � v = Tv0 � Tv � Dv(v0 � v), which implies that

(I� Dv)(v
0 � v) � 0 . (30)

As ⇢(Dv; E) < 1, we have (I � Dv)�1 =
P

1

i=0(Dv)i where the series converges in operator

norm (Kress, 2014, Theorem 10.15). The operator Dv is monotone and so (I�Dv)�1 is also

monotone. Applying (I� Dv)�1 to both sides of equation (30) yields v0 � v � 0. A parallel

argument yields v� v0 � 0. Therefore, v = v0. The proof follows by similar arguments when

T instead satisfies (7) at each of its fixed points.

Proof of Corollary 3.1. Suppose T satisfies (6) at each fixed point. By (6), for v, v0 2 V:

v0 � v = Tv0 � Tv � Dv(v
0 � v)

hence (I�Dv)(v0� v) � 0. When ⇢(Dv; E) < 1, the operator (I�Dv) is invertible on E with

(I � Dv)�1 =
P

1

n=0Dn
v . As Dv is monotone, so too is (I � Dv)�1. Applying (I � Dv)�1 to

both sides of the above display yields v0 � v � 0, so v is the smallest fixed point of T.

Suppose any other v0 2 V distinct from v was also stable. Then we could apply an identical

argument to obtain the reverse inequality v � v0 � 0, a contradiction. The proof when T
satisfies (7) at each fixed point follows similarly.
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Lemma B.4. Let v 2 E be a stable fixed point of T, and let there exist a neighborhood N

of v for which

Tf � Tv = Dv(f � v) + o(kf � vk) (31)

for all f 2 N . Then: there exists a neighborhood N 0 of v for which limn!1 Tnf = v for all

f 2 N 0

Proof of Lemma B.4. As ⇢(Dv; E) < 1, there exists n0 2 N and ✏ > 0 for which k(Dv)n0fk 
e�✏n0kfk for all f 2 E . Recursively applying condition (31), we may deduce that there exists

a su�ciently small neighborhood N 0 of v upon which

Tnf � v = (Dv)
n(f � v) + o(kf � vk) , for all 1  n  n0 , (32)

and hence

kTn0f � vk  e�✏n0kf � vk+ o(kf � vk) .

Making N 0 smaller if necessary, we may therefore deduce that there is a % 2 (0, 1) for

which kTn0f � vk  %kf � vk holds for all f 2 N 0. For any f 2 N 0 and k 2 N, we

therefore have that kTkn0f �vk  %kkf �vk. Moreover, for any n 2 N that is not an integer

multiple of n0, it follows by (32) with k = bn/n0c that Tnf � v = Tn�kn0(Tkn0f) � v =

(Dv)n�kn0(Tkn0f � v) + o(kTkn0f � vk) = O(kTkn0f � vk) = O(%k).

Proof of Corollary 3.2. Suppose condition (a) holds. Fix w 2 E with w  v̄, let w0 = w,

and let wn = Tnw for n 2 N. Also let v̄n = Tnv̄. By Proposition 3.1 we know that there is

a unique fixed point v 2 E . Then by monotonicity of T and the subgradient inequality (6),

for every n 2 N we have

v̄n � v � wn � v = Twn�1 � Tv � Dv(wn�1 � v) � (Dv)
n(w � v) ,

where the final inequality is by monotonicity of Dv. The left-hand side term v̄n � v ! 0 as

n ! 1 by Proposition 3.1. Moreover, as ⇢(Dv; E) < 1, there exists n0 2 N and ✏ > 0 for

which k(Dv)n0fk  e�✏n0kfk for all f 2 E , from which we may deduce that the right-hand

side term (Dv)n(w� v) ! 0 as n ! 1. As k · k is a lattice norm, it follows that wn ! v as

n ! 1. The proof when (b) holds and T satisfies (7) follows similarly.

Lemma B.5. Let µ be a probability measure on (X ,X ). Then: for any r � 1, the space

E�r has the monotone convergence property.
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Proof of Lemma B.5. Let {fn}n�1 ⇢ E�r be an increasing sequence of functions bounded

above by some g 2 E�r . As E�r ,! L1(µ), the sequence {fn}n�1 is uniformly bounded in

L1(µ) and so it follows by Beppo Levi’s monotone convergence theorem (Malliavin, 1995,

Theorem I.7.1) that there exists f 2 L1(µ) for which limn!1 fn = f (µ-almost everywhere)

and limn!1 kfn � fk1 = 0, where k · k1 denotes the L1(µ) norm. As f1  f  g, we have

|f |  |f1|+ |g|. Moreover, as f1, g 2 E�r , for any c > 0 we have

Eµ[exp(|f(X)/c|r)]  Eµ[exp(((|f1(X)|+ |g(X)|)/c)r)]

 1

2
Eµ[exp(|2f1(X)/c|r)] + 1

2
Eµ[exp(|2g(X)/c|r)] < 1 ,

from which it follows that f 2 E�r .

To establish convergence in k ·k�r , suppose that lim supn!1 kfn�fk�r � 2" for some " > 0.

Then

lim sup
n!1

Eµ[exp(|(fn(X)� f(X))/"|r)] � 2 . (33)

Note that {gn}n�1 with gn = exp(|(fn � f)/"|r) is a monotone sequence of non-negative

functions with lim supn!1 gn = 0 (µ-almost everywhere). Moreover, for each n � 1 we have

that

gn  exp
�
((|f1|+ |g|+ |f |)/")r

�
,

and the right-hand side is µ-integrable because f1, g, f 2 E�r . Therefore, by reverse Fatou:

lim sup
n!1

Eµ[exp(|(fn(X)� f(X))/"|r)]  Eµ
⇥
lim sup
n!1

exp(|(fn(X)� f(X))/"|r)
⇤
= 0 ,

contradicting (33). It follows that kfn � fk�r ! 0.

Remark B.2. It follows by identical arguments to Lemma B.5 that the Orlicz heart E� :=

{f 2 L0 : Eµ[�(f(X)/c)] < 1 for all c > 0} defined using any monotone, strictly convex � :

R+ ! R+ with �(0) = 0 and limx!1 �(x)/x ! +1 has the monotone convergence property

when equipped with the Luxemburg norm kfk� := inf {c > 0 : Eµ[ (|f(X)/c|)]  1}.

We next present an intermediate result used to prove Lemma 3.1. Note that condition (11)

implies that (logm _ 0) 2 L�r(µ⌦Q), the Orlicz class of functions f : X ⇥ X ! R defined

relative to the stationary distribution µ ⌦ Q of (Xt, Xt+1). With slight abuse of notation,

let k(logm _ 0)k�r denote the corresponding Orlicz norm of (logm _ 0).

Lemma B.6. Let Ẽ be of the form (10) and let m satisfy condition (11). Then for any
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p 2 (1,1) and n � 1:

Eµ⌦Q[m(Xt, Xt+1)
np]1/p  e(2nk(logm_0)k�r )

r
r�1 (2p)

1
r�1

+ 2
3
2p .

Moreover, for any � 2 (0, 1) there exists C 2 (0,1) and c 2 (0, 1 � �) depending only on

�, r, k(logm _ 0)k�r , and p such that the inequality

Eµ⌦Q[m(Xt, Xt+1)
np]1/p  Ce(�+c)�n

holds for each n � 1.

Proof of Lemma B.6. First note Eµ⌦Q[m(Xt, Xt+1)np]  Eµ⌦Q[enp|logm(Xt,Xt+1)_0|]. To sim-

plify notation, let Yt = (Xt, Xt+1), a = logm _ 0, and kak�r = k(logm _ 0)k�r . In what

follows, all probabilities (denoted Pr(·)) are taken with respect to µ ⌦ Q. Let A be a pos-

itive constant (specified below) and set |a| = a+ + a� with a+ = |a|1l{|a|  A} and

a� = |a|1l{|a| > A}. For any z > 0, we have

Pr
⇣
enp|a(Yt)| � z

⌘
 Pr

✓
a+(Yt) �

log z

2np

◆
+ Pr

✓
a�(Yt) �

log z

2np

◆
. (34)

By Markov’s inequality and definition of k · k�r , we have

Pr

✓
a�(Yt) �

log z

2np

◆
 Pr

✓
|a(Yt)|r �

Ar�1 log z

2np

◆

= Pr

 
exp

 
|a(Yt)|r
kakr�r

!
� exp

 
1

kakr�r

Ar�1 log z

2np

!!


Eµ⌦Q [exp (|a(Yt)/kak�r |

r)]

exp
⇣

1
kakr�r

Ar�1 log z
2np

⌘

 2 exp

 
� 1

kakr�r

Ar�1 log z

2np

!
.

Setting A = (kakr�r
4np)

1
r�1 , we obtain

Pr

✓
a�(Yt) �

log z

2np

◆
 2z�2 .
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As 2z�2 � 1 if z 
p
2, we therefore have

Z
1

0
Pr

✓
a�(Yt) �

log z

2np

◆
dz 

p
2 + 2

Z
1

p
2
z�2 dz = 2

3
2 . (35)

For the first term on the right-hand side of (34), as a+  A we have

Pr

✓
a+(Yt) �

log z

2np

◆
= 0 if z > e2npA . (36)

Note 2npA = (2npkak�r)
r

r�1 2
1

r�1 . Using the fact that E[Z] =
R
1

0 Pr(Z � z) dz for a non-

negative random variable Z, we may deduce from (34), (35), and (36) that

Eµ⌦Q[m(Xt, Xt+1)
np] 

Z
1

0
Pr(enp|a(Y )| � z) dz  e(2npkak�r )

r
r�1 2

1
r�1

+ 2
3
2 .

The first assertion follows because (x + y)1/p  x1/p + y1/p for x, y � 0 and p � 1. The

second assertion follows as n
r

r�1 = o((� + c)�n) for any � 2 (0, 1) and c 2 (0, 1� �).

Proof of Lemma 3.1. We first show D is a bounded linear operator on L�s for any s � 1.

Linearity follows by inspection. For boundedness, fix any s � 1 and take any f 2 L�s with

kfk�s > 0 and any q 2 (1,1). By applying Jensen’s inequality, definition of Ẽ from (10),

and Hölder’s inequality with p�1 + q�1 = 1, we obtain

Eµ


e|Df(Xt)/(q

1
s �kfk�s )|

s

�
= Eµ

h
eq

�1
|Ẽf(Xt)/kfk�s |

s
i

 Eµ⌦Q
h
m(Xt, Xt+1)e

q�1
|f(Xt+1)/kfk�s |

s
i

 Eµ⌦Q [m(Xt, Xt+1)
p]

1
p Eµ

h
e|f(Xt)/kfk�s |

s
i 1

q

 2
1
qEµ⌦Q [m(Xt, Xt+1)

p]
1
p ,

where the final line uses definition of k·k�s . Note all moments of m are finite under condition

(11). Let kDkL�s denote the operator norm of D on L�s . It follows by Lemma B.1 and

definition of the operator norm that

kDkL�s 
⇣⇣

2
1
qEµ⌦Q [m(Xt, Xt+1)

p]
1
p � 1

⌘
_ 1
⌘
q

1
s� < 1 .

One may similarly deduce that D maps E�s into E�s . Boundedness of D on E�s now follows

from kDkL�s < 1 because E�s is a closed linear subspace of L�s .
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We use Lemma B.6 to establish the spectral radius condition. We prove the result for the

spaces L�s ; the results for E�s follow because E�s is a closed linear subspace of L�s .

Suppose s > 1. Fix p, q 2 (1,1) with p�1 + q�1 = 1. For any f 2 L�s with kfk�s > 0, by

two applications of Jensen’s inequality we have

Eµ


e|D

nf(Xt)/(q
1
s (�

s�1
s )nkfk�s )|

s

�
= Eµ

h
e�

nq�1
|Ẽnf(Xt)/kfk�s |

s
i

 Eµ
h
eq

�1
|Ẽnf(Xt)/kfk�s |

s
i�n

 Eµ
h
Ẽng(Xt)

i�n

,

where g(x) = exp(q�1|f(x)/kfk�s |s). By Hölder’s inequality,

Eµ
h
Ẽng(Xt)

i
= Eµ⌦Q [m(Xt, Xt+1) · · ·m(Xt+n�1, Xt+n)g(Xt+n)]

 Eµ⌦Q [(m(Xt, Xt+1) · · ·m(Xt+n�1, Xt+n))
p]

1
p Eµ [|g(Xt)|q]

1
q

 Eµ⌦Q [m(Xt, Xt+1)
np]

1
np · · ·Eµ⌦Q [m(Xt+n�1, Xt+n)

np]
1
np Eµ [|g(Xt)|q]

1
q

= Eµ⌦Q [m(Xt, Xt+1)
np]

1
p Eµ [|g(Xt)|q]

1
q ,

where we have slightly abused notation by letting Eµ⌦Q denote expectation with respect to

the stationary distribution of (Xt, . . . , Xt+n). It follows by Lemma B.6, and definition of g

and k · k�s that

Eµ
h
Ẽng(Xt)

i
Eµ⌦Q [m(Xt, Xt+1)

np]
1
p Eµ

h
e|f(Xt)/kfk�s |

s
i 1

q  2
1
qCe(�+c)�n

for constants C 2 (0,1) and c 2 (0, 1� �) not depending on f . Therefore,

Eµ


e|D

nf(Xt)/(q
1
s (�

s�1
s )nkfk�s )|

s

�

⇣
2

1
qCe(�+c)�n

⌘�n

.

It follows by Lemma B.1 and definition of the operator norm kDnkL�s that

kDnkL�s 
✓✓⇣

2
1
qCe(�+c)�n

⌘�n

� 1

◆
_ 1

◆
q

1
s (�

s�1
s )n

and therefore ⇢(D;L�s) ⌘ limn!1 kDnk1/n
L�s  �

s�1
s < 1.

Now suppose s = 1. Fix " 2 (0, 1) and note that � < � + "c < � + c < 1 where c is as in
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Lemma B.6. For any f 2 L�1 with kfk�1 > 0, we have:

Eµ
h
e|D

nf(Xt)/(q�n(�+"c)�n
kfk�1 )|

i
= Eµ

h
e(�+"c)nq�1

|Ẽnf(Xt)/kfk�1 |
i

 Eµ
h
eq

�1
|Ẽnf(Xt)/kfk�1 |

i(�+"c)n

 Eµ
h
Ẽng(Xt)

i(�+"c)n

,

where g(x) = exp(q�1|f(x)|/kfk�1). By similar arguments to above, we obtain

Eµ
h
e|D

nf(Xt)/(q�n(�+"c)�n
kfk�1 )|

i
 (2

1
qCe(�+c)�n

)(�+"c)n .

By Lemma B.1 and definition of the operator norm kDnkL�1 , we may deduce that

kDnkL�1 
⇣⇣

(2
1
qCe(�+c)�n

)(�+"c)n � 1
⌘
_ 1
⌘
q

✓
�

� + "c

◆n

,

from which it follows similarly that ⇢(D;L�1) ⌘ limn!1 kDnk1/n
L�1

 �
�+"c < 1.

B.4 Proofs for Section 4

Proof of Theorem 4.1. We verify the conditions of Proposition 3.1. For existence, Lemma

B.7 shows T is a continuous, monotone, and convex operator on E�s for each 1  s  r.

Let

v̄(x) = (1� �)
1X

n=0

�n+1 log
�
(EQ)nh(x)

�
,

where h(x) = EQ[e
↵

1�� u(Xt,Xt+1)|Xt = x]. We first show that Eµ[exp(|v̄(Xt)/(�c)|r)] < 1
holds for each c 2 (0, 1]. By Jensen’s inequality (using the fact that

P
1

n=1(1 � �)�n = 1

and convexity of x 7! e|x/c|
r
and x 7! e|(log x)/c|

r
for c 2 (0, 1]), we obtain

Eµ
h
e|v̄(Xt)/(�c)|

r
i
= Eµ

"
exp

 �����(1� �)
1X

n=0

�n log
�
(EQ)nh(Xt)

�
/c

�����

r!#

 (1� �)
1X

n=0

�nEµ
h
exp

⇣��log
�
(EQ)nh(x)

�
/c
��r
⌘i

 (1� �)
1X

n=0

�nEµ⌦Q
h
e
|

↵
c(1��)u(Xt+n,Xt+n+1)|r

i

= Eµ⌦Q
h
e
|

↵
c(1��)u(Xt+n,Xt+n+1)|r

i
< 1 .
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It follows by Remark B.1 that v̄ 2 E�r .

We now show that Tv̄  v̄. By Holder’s inequality we first have

Tv̄(Xt)  � log

✓
EQ
h
ev̄(Xt+1)/�

���Xt

i�
EQ
h
e

↵
1�� u(Xt,Xt+1)

���Xt

i1��
◆

= �2 logEQ[ev̄(Xt+1)/� |Xt] + (1� �)� log h(Xt) . (37)

By Lemma B.2, we may deduce

logEQ
h
ev̄(Xt+1)/�

���Xt

i
= logEQ

"
1Y

n=0

�
(EQ)nh(Xt+1)

�(1��)�n

�����Xt

#

 log

 
1Y

n=0

EQ
⇥�
(EQ)nh(Xt+1)

���Xt
⇤(1��)�n

!

= (1� �)
1X

n=1

�n�1 log
�
(EQ)nh(Xt)

�
. (38)

Substituting (38) into (37) yields Tv̄  v̄.

We now show {Tnv̄}n�1 is bounded from below, first observe that

Tf(x) = � logEQ[ef(Xt+1)+↵u(Xt,Xt+1)|Xt = x] � �EQ[f(Xt+1) + ↵u(Xt, Xt+1)|Xt = x] .

Therefore,

Tnv̄ � (�EQ)nv̄ +
n�1X

s=0

(�EQ)s(h1)

for each n � 1, where h1(x) = �EQ[↵u(Xt, Xt+1)|Xt = x]. Note also that k�EQk�r = � and

⇢(�EQ;E�r) = � (see Section 3.3), and so we obtain lim infn!1 Tnv̄ � (I��EQ)�1h1 2 E�r .

Uniqueness: v is a fixed point of T : E�s ! E�s for each s 2 [1, r]. Moreover, T : E�s ! E�s

is convex by Lemma B.7 and Dv is a bounded, monotone linear operator with ⇢(Dv;E�s) < 1

for s 2 [1, r] by Lemma B.8. Uniqueness in E�s with s 2 (1, r] follows by Proposition 3.1(ii).

That v is the smallest and unique stable fixed point in E�1 follows by Corollary 3.1.

Lemma B.7. Let condition (14) hold. Then: T is a continuous, monotone and convex

operator on E�s for each 1  s  r.

Proof of Lemma B.7. Fix any 1  s  r. Take any f 2 E�s and c 2 (0, 1]. By convexity of
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x 7! e|(log x)/c|
s
for c 2 (0, 1] and Jensen’s inequality:

Eµ[exp(|Tf(Xt)/(�c)|s)] = Eµ


exp

✓����
1

c
logEQ

h
ef(Xt+1)+↵u(Xt,Xt+1)

���Xt

i����
s◆�

 Eµ


EQ


exp

✓����
1

c
log ef(Xt+1)+↵u(Xt,Xt+1)

����
s◆����Xt

��

= Eµ⌦Q


exp

✓����
f(Xt+1) + ↵u(Xt, Xt+1)

c

����
s◆�

< 1

which is finite for any f 2 E�s under (14). It follows by Remark B.1 that T : E�s ! E�s .

Continuity: Fix any f 2 E�s . Take g 2 E�s with kgk�s 2 (0, 2�1/s] and set c = 21/skgk�s .

Let Ef denote the distorted conditional expectation operator from (15) with f in place

of v. By convexity of x 7! e|(log x)/c|
s
for c 2 (0, 1] and the Jensen and Cauchy-Schwarz

inequalities,

Eµ [�s(|T(f + g)(Xt)� Tf(Xt)|/(�c))] + 1 = Eµ


exp

✓����
1

c
logEf

h
eg(Xt+1)

���Xt

i����
s◆�

 Eµ


Ef


exp

✓����
1

c
log eg(Xt+1)

����
s◆����Xt

��

= Eµ⌦Q


mf (Xt, Xt+1) exp

✓����
g(Xt+1)

c

����
s◆�

 Eµ
⇥
e2|g(Xt)/c|s

⇤1/2Eµ⌦Q[mf (Xt, Xt+1)
2]1/2

=
q
2Eµ⌦Q[mf (Xt, Xt+1)2]

because c = 21/skgk�s . Finiteness of Eµ⌦Q[mf (Xt, Xt+1)2] holds for any f 2 E�s under

(14). To see this, by several applications of the Cauchy–Schwarz and Jensen inequalities,

we have

Eµ⌦Q[mf (Xt, Xt+1)
2] = Eµ⌦Q

2

4
 

ef(Xt+1)+↵u(Xt,Xt+1)

EQ[ef(Xt+1)+↵u(Xt,Xt+1)|Xt]

!2
3

5

 Eµ⌦Q
h
e4|f(Xt+1)+↵u(Xt,Xt+1)|

i

 Eµ
h
e8|f(Xt)|

i1/2
Eµ⌦Q

h
e8|↵u(Xt,Xt+1)|

i1/2
,

which is finite for any f 2 E�s under (14). Continuity now follows by Lemma B.1. Mono-

tonicity follows from monotonicity of exp(·), log(·), and conditional expectations. Convexity
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follows by applying Hölder’s inequality to the conditional expectation

EQ
h
e⌧(v1(Xt+1)+↵u(Xt,Xt+1))+(1�⌧)(v2(Xt+1)+↵u(Xt,Xt+1))

���Xt = x
i

with p = ⌧�1 and q = (1� ⌧)�1.

Lemma B.8. Let condition (14) hold with r > 1 and fix any v 2 E�r0 with r0 > 1. Then:

for each s � 1, Dv is a continuous linear operator on E�s with ⇢(Dv;E�s) < 1.

Proof of Lemma B.8. We verify condition (11) from Lemma 3.1. The log change-of-measure

is

logmv(Xt, Xt+1) = v(Xt+1) + ↵u(Xt, Xt+1)� logEQ[ev(Xt+1)+↵u(Xt,Xt+1)|Xt] .

For any v 2 E�r0 with r0 > 1, setting r = (r ^ r0) > 1 and taking any c 2 (0, 1],

Eµ
h
e| logE

Q[ev(Xt+1)+↵u(Xt,Xt+1)|Xt]/c|r
i
 Eµ⌦Q

h
e|(v(Xt+1)+↵u(Xt,Xt+1))/c|r

i

by Jensen’s inequality. The right-hand side is finite by condition (14). Therefore,

Eµ⌦Q
h
e| logmv(Xt,Xt+1)/c|r

i
< 1

for any c 2 (0, 1] and hence for any c > 0 (see Remark B.1), verifying condition (11).

Lemma B.9. Let Y = |Z| with Z ⇠ N(0, 1). Then for a > 0 and r 2 [1, 2), we have

E

exp

✓
Y r

ar

◆�


p
2p
⇡

 ✓
2

ar

◆ 1
2�r

exp

 
2

r
2�r

a
2r
2�r

!
+

✓
4

ar

◆ 1
2�r

+
p
⇡

!
.

Proof of Lemma B.9. First write

E

exp

✓
Y r

ar

◆�
=

p
2p
⇡

Z
1

0
exp

✓
yr

ar
� 1

2
y2
◆
dy


p
2p
⇡

0

@
Z ( 2

ar )
1

2�r

0
exp

✓
yr

ar

◆
dy +

Z ( 4
ar )

1
2�r

( 2
ar )

1
2�r

dy +

Z
1

( 4
ar )

1
2�r

exp

✓
�1

4
y2
◆
dy

1

A


p
2p
⇡

 ✓
2

ar

◆ 1
2�r

exp

 
2

r
2�r

a
2r
2�r

!
+

✓
4

ar

◆ 1
2�r

+
p
⇡

!
.

The first inequality follows by noting that yr

ar �
1
2y

2  yr

ar (for the first integral), yr

ar �
1
2y

2  0

over [( 2
ar )

1
2�r ,1) (for the second integral), and yr

ar �
1
2y

2  �1
4y

2 over [( 4
ar )

1
2�r ,1) (for the
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third integral). For the three integrals on the second line, the first is bounded using the

inequality
R b
0 exp(y

r

ar )dy  b exp( b
r

ar ) (valid for b � 0); the second and third are trivial.

Proof of Proposition 4.1. The boundedness condition in the statement of the lemma ensures

TC is a self map on B(C). It is then straightforward to verify that TC satisfies Blackwell’s

su�cient conditions, and therefore has a unique fixed point vC 2 B(C).

To relate v and vC , let v| denote the restriction of v to C. Then for x 2 C, we have

v(x)� vC(x) = � logEQ[ev(Xt+1)+↵u(Xt,Xt+1)|Xt = x]� TCvC(x)

� � logEQ[ev|(Xt+1)+↵u(Xt,Xt+1)1l{Xt+1 2 C}|Xt = x]� TCvC(x)

= � logQ(C, x) + TCv|(x)� TCvC(x)

� � logQ(C, x) + �EQ
⇥
mC,vC(Xt, Xt+1)(v|(Xt+1)� vC(Xt+1))

��Xt = x
⇤

� � logQ(C, x) + � inf
x2C

(v(x)� vC(x)) ,

where the first inequality is by monotonicity of expectations, the second equality is because

infx2C Q(C, x) > 0, and the second inequality is by Jensen’s inequality with

mC,vC(Xt, Xt+1) =
evC(Xt+1)+↵u(Xt,Xt+1)1l{Xt+1 2 C}

EQ[evC(Xt+1)+↵u(Xt,Xt+1)1l{Xt+1 2 C}|Xt]
.

The result follows by taking the infimum of both sides with respect to x 2 C.

B.5 Proofs for Section 5

Recall X̂t = (⇠̂t,'t). The conditional distribution Q̂ of (⇠t, X̂t+1) given X̂t may be repre-

sented by

EQ̂[h(⇠t, X̂t+1)|X̂t] = EQ̂[h(⇠t, X̂t+1)|⇠̂t] = E⇧⇠⌦Q' [h(⇠t,'t+1,⌅(⇠̂t,'t+1))|⇠̂t] .
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Recall that µ is the stationary distribution of X̂t under Q̂. For v 2 E�1

⇠̂
, define

m
⇧⇠
v (⇠t, ⇠̂t) =

EQ'

h
e

✓
#v(⌅(⇠̂t,'t+1))+↵u('t+1)

��� ⇠t, ⇠̂t
i#

✓

E⇧⇠


EQ'

h
e

✓
#v(⌅(⇠̂t,'t+1))+↵u('t+1)

��� ⇠t, ⇠̂t
i#

✓

���� ⇠̂t
�

m
Q'
v (⇠t, ⇠̂t,'t+1) =

e
✓
#v(⌅(⇠̂t,'t+1))+↵u('t+1)

EQ'

h
e

✓
#v(⌅(⇠̂t,'t+1))+↵u('t+1)

��� ⇠t, ⇠̂t
i .

The quantity m
⇧⇠
v distorts the posterior distribution for ⇠t given X̂t whereas m

Q'
v distorts

the conditional distribution Q'. To simplify notation, define the distorted conditional ex-

pectations E⇧⇠
v and EQ'

v by

E⇧⇠
v f(⇠̂) = E⇧⇠

h
m

⇧⇠
v (⇠t, ⇠̂t)f(⇠t, ⇠̂t)

��� ⇠̂t = ⇠̂
i
,

EQ'
v f(⇠, ⇠̂) = E⇧⇠

h
m

Q'
v (⇠t, ⇠̂t,'t+1)f(⇠t, ⇠̂t,'t+1)

��� ⇠t = ⇠, ⇠̂t = ⇠̂
i
.

The subgradient of T at v is the composition of these two distorted conditional expectations,

discounted by �:

Dvf(⇠̂) = �EQ̂
h
mv(⇠t, ⇠̂t,'t+1)f(⇠̂t+1)

��� ⇠̂t = ⇠̂
i

(39)

where mv(⇠t, ⇠̂t,'t+1) = m
⇧⇠
v (⇠t, ⇠̂t)m

Q'
v (⇠t, ⇠̂t,'t+1).

Proof of Theorem 5.1. We verify the conditions of Proposition 3.1. Lemma B.10 shows that

T is a continuous, monotone, and convex operator on E�s

⇠̂
for each 1  s  r. If ✓ < #, let

v̄(⇠̂) = (1� �)
1X

n=0

�n+1 log

✓⇣
EQ̂
⌘n+1

g1(⇠̂)

◆
,

where g1(X̂t) = exp( ↵#
(1��)✓u('t)). For any c > 0, by Jensen’s inequality we may deduce

Eµ[e|v̄(⇠̂t)/(�c)|
r
]  (1� �)

1X

n=0

�nEµ

✓⇣
EQ̂
⌘n+1

gr1(⇠̂t)

◆�
,

where gr1(X̂t) = exp(| ↵#
(1��)✓cu('t)|r). As u 2 E�r

' , the right-hand side of the preceding

display is finite and so v̄ 2 E�r

⇠̂
.
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To show Tv̄  v̄, first by the Jensen and Hölder inequalities,

Tv̄(⇠̂) = � logE⇧⇠


EQ'

h
e

✓
# v̄(⌅(⇠̂t,'t+1))+↵u('t+1)

��� ⇠t, ⇠̂t
i#/✓���� ⇠̂t = ⇠̂

�

 � logEQ̂
h
ev̄(⇠̂t+1)+↵#

✓ u('t+1)
��� ⇠̂t = ⇠̂

i

 �2 logEQ̂
h
ev̄(⇠̂t+1)/�

��� ⇠̂t = ⇠̂
i
+ �(1� �) logEQ̂

h
e

↵#
(1��)✓u('t+1)

��� ⇠̂t = ⇠̂
i
.

By Lemma B.2, we may deduce
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hence Tv̄  v̄.

On the other hand, if #  ✓, let v̄(⇠̂) = #
✓ (1 � �)

P
1

n=0 �
n+1 log((EQ̂)n+1g2(⇠̂)) where

g2(X̂t) = e
↵

1�� u('t). By similar arguments to above, we may use the condition u 2 E�r
' to

deduce v̄ 2 E�r

⇠̂
. Again by the Jensen and Hölder inequalities,
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The inequality Tv̄  v̄ now follows by similar arguments to the previous case.

To show that the sequence of iterates Tnv̄ is bounded from below, first note that for any

f 2 E�r

⇠̂
, we have

Tf(⇠̂) � �EQ̂


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which follows by several applications of Jensen’s inequality. It follows that
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. Note also that ⇢(�EQ̂;E�r) = � (see Section

3.3), hence lim infn!1 Tnv̄ � (I� �EQ̂)�1g3 2 E�r . This completes the proof of existence.

For uniqueness, v is necessarily a fixed point of T : E�s

⇠̂
! E�s

⇠̂
for each 1  s  r.
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The subgradient Dv is monotone. Lemma B.11 shows Dv : E�s

⇠̂
! E�s

⇠̂
is bounded and

⇢(Dv;E
�s

⇠̂
) < 1 for s 2 [1, r]. Uniqueness follows by Proposition 3.1(ii) and Corollary 3.1.

Lemma B.10. Let condition (20) hold. Then: T is a continuous, monotone, and convex

operator on E�s

⇠̂
for each 1  s  r.

Proof of Lemma B.10. Fix s 2 [1, r]. We first show Eµ[exp(|Tf(⇠̂t)/(�c)|s)] < 1 holds for
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which is finite because f 2 E�s
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For continuity, fix f 2 E�s
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. Take g 2 E�s
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By similar arguments to the above, we may deduce
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because c = 21/skgk�s . The expectation on the right-hand side is finite because f 2 E�s

⇠̂

and u 2 E�r
' . It follows by Lemma B.1 that kT(f + g)� Tfk�s ! 0 as kgk�s ! 0.
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Finally, monotonicity follows from monotonicity of the exponential and logarithm functions

and monotonicity of conditional expectations. Convexity follows by Hölder’s inequality.

Lemma B.11. Let condition (20) hold. Fix any v 2 E
�r0

⇠̂
with r0 > 1. Then: for each s � 1,

Dv is a continuous linear operator on E�s

⇠̂
with ⇢(Dv;E

�s

⇠̂
) < 1.

Proof of Lemma B.11. It su�ces to verify the conditions of Lemma 3.1. By iterated expec-

tations, we may rewrite the subgradient from (39) as
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where m̄v(⇠̂t, ⇠̂t+1) denotes the conditional expectation ofmv(⇠t, ⇠̂t,'t+1) given ⇠̂t, ⇠̂t+1 under

Q̂. The thin-tail condition on mv then follows by similar arguments to the proof of Lemma

B.8 for any v 2 E
�r0

⇠̂
with r0 > 1.

B.6 Proof for Section 6

Proof of Theorem 6.1. In view of the discussion preceding Theorem 6.1 and Lemma B.12,

it su�ces to show that v̄ 2 Ẽ�r and that Tv̄  v̄. By (25), convexity of x 7! e|(log x)/c|
r
for

c 2 (0, 1], and two applications of Jensen’s inequality, for any c 2 (0, 1] we have
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 )nẼn(◆�

1
 )(Xt)

⌘
/c
���
r�

 (1� ��
1
 )

1X

n=0

(��
1
 )nEµ̃

h
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by condition (24), with the final equality because µ̃ is the stationary distribution corre-

sponding to Ẽ. It follows by Remark B.1 that v̄ 2 E�r .

To see that Tv̄  v̄, first note by Jensen’s inequality that E[Z]1/  E[Z] holds when  < 0
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for any random variable Z that is (strictly) positive with probability 1. Therefore,
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Existence now follows by Proposition 3.1(i).

Lemma B.12. Let condition (24) hold. Then for any  6= 0, the operator T from (23) is a

continuous, monotone operator on Ẽ�s for each 1  s  r.

Proof of Lemma B.12. Fix any s 2 [1, r]. We first show that Eµ[e|Tf(Xt)/c|s ] < 1 holds for

any f 2 Ẽ�s and c su�ciently small. By convexity of x 7! e|(log x)/c|
s
for c 2 (0, 1] and two

applications of Jensen’s inequality and iterated expectations, for any c 2 (0, 1 ^ ||�1] we

obtain
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where the right-hand side is finite under condition (24), and the final equality is because µ̃

is the stationary distribution under Ẽ. It follows by Remark B.1 that T : Ẽ�s ! Ẽ�s .

For continuity, fix f 2 Ẽ�s and take any h 2 Ẽ�s for which khk�s is su�ciently small in a

sense we make precise below (the norm should be understood to be defined relative to the

measure µ̃). Then

T(f + h)(x)� Tf(x) = log

(
(1� �)◆(x)�

1
 + ��

1
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and Ẽf denotes the distorted conditional expectation
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operator Ẽfg(x) := Ẽ[mf (Xt, Xt+1)g(Xt+1)|Xt = x] where

mf (Xt, Xt+1) =
ef(Xt+1)

Ẽ[ef(Xt+1)|Xt]
.

Take any c 2 (0, 1^ ||�1]. By convexity of x 7! e|(log x)/c|
s
for c 2 (0, 1], two applications of

Jensen’s inequality, and the Cauchy–Schwarz inequality, we obtain
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For h 2 E�s with khk�s  2�1/s(1 ^ ||�1), setting c = 21/skhk�s we therefore have

Eµ
h
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Continuity now follows by Lemma B.1. Monotonicity of T follows form monotonicity of

conditional expectations and monotonicity of the log and exp functions.

Proof of Corollary 6.1. Immediate from Theorem 6.1 and Lemma B.3.
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