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A SECOND ORDER ACCURATE, ENERGY STABLE NUMERICAL
SCHEME FOR THE ONE-DIMENSIONAL POROUS MEDIUM
EQUATION BY AN ENERGETIC VARIATIONAL APPROACH*

CHENGHUA DUANT, WENBIN CHEN?#, CHUN LIUS,
CHENG WANGY, AND XINGYE YUEI

Abstract. The porous medium equation (PME) is a typical nonlinear degenerate parabolic equa-
tion. An energetic variational approach (EVA) provides many insights to such a physical model, in
which the trajectory equation can be obtained, based on different dissipative energy laws. In this ar-
ticle, we propose and analyze a second order accurate in time numerical scheme for the PME in the
EVA approach. A modified Crank-Nicolson temporal discretization is applied, combined with the finite
difference over a uniform spatial mesh. Such a numerical scheme is highly nonlinear, and it is proved to
be uniquely solvable on an admissible convex set, in which the convexity of the nonlinear implicit terms
will play an important role. Subsequently, the energy dissipation property is established, with careful
summation by parts formulas applied in the spatial discretization. More importantly, an optimal rate
convergence analysis is provided in this work, in which many highly non-standard estimates have to
be involved, due to the nonlinear parabolic coefficients. The higher order asymptotic expansion (up to
fourth order temporal and spatial accuracy), the rough error estimate (to establish the W,i "> bound
for the numerical variable), and the refined error estimate have to be carried out to accomplish such a
convergence result. In our knowledge, it will be the first work to combine three theoretical properties
for a second order accurate numerical scheme to the PME in the EVA approach: unique solvability,
energy stability and optimal rate convergence analysis. A few numerical results are also presented in
this article, which demonstrate the robustness of the proposed numerical scheme.

Keywords. Energetic variational approach; porous medium equation; trajectory equation; optimal
rate convergence analysis.
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1. Introduction and background
In this paper, we consider the second order scheme of the porous medium equation
(PME):

hf=A0(f™), z€QCRY, m>1,

where f:= f(z,t) is a non-negative scalar function of space z € R? (d>1) and the time
teR", and m is a constant larger than 1. It has wide application in many physical and
biological models, such as an isentropic gas flow through a porous medium, the viscous
gravity currents, nonlinear heat transfer and image processing [39], etc.

The basic characteristic of the PME is that it is degenerate at points where f=
0. In turn, there are many special features: the finite speed of propagation, the free
boundary, and a possible waiting time phenomenon [13, 39]. Many theoretical analyses
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have been derived in the existing literature [1, 26, 32, 36, 37, 39], etc. Meanwhile, various
numerical methods have been studied for the PME, such as finite difference approach
[17], tracking algorithm method [9], a local discontinuous Galerkin finite element method
[45], Variational Particle Scheme (VPS) [44] and an adaptive moving mesh finite element
method [31]. Also see other related numerical works [4, 18, 25, 28, 29], etc.

The numerical methods have also been developed for the PME by an Energetic
Variational Approach (EnVarA). Instead of solving the original PME in Eulerian co-
ordinate directly, we need two steps: obtaining a trajectory equation by an EnVarA
and combining with the mass conservation law. Based on the trajectory of particles,
the free boundary and the waiting time can be obtained more accurately. Meanwhile,
the numerical solution can naturally keep the physical laws, such as the conservation
of mass, energy dissipation and force balance. Moreover, numerical schemes could be
constructed based on different dissipative energy laws. These features indicate certain
advantages of the Lagrangian method over the traditional Euler method. In [13, 14],
two different Lagrange numerical schemes have been derived, based on two different
energy dissipation laws. It has also been proved that these two numerical schemes are
uniquely solvable on an admissible convex set, and preserve the corresponding discrete
energy dissipation laws. Besides a good approximation for the solution without oscil-
lation and the free boundary, the notable advantage is that the waiting time problem
could be naturally treated, which has been a well-known difficult issue for all the existing
methods.

The aim of the paper is to construct a second order accurate scheme in both time and
space. A modified Crank-Nicolson approximation is taken in the temporal discretization,
and a finite difference is applied over a uniform spatial mesh. The resulting numerical
scheme is highly nonlinear, and its solution is equivalent to a minimization of a discrete
functional. In turn, its unique solvability comes from the convexity property associated
with the implicit nonlinear parts, combined with the singular nature of the logarithmic
terms. Subsequently, an unconditional energy stability is a direct consequence of the
convexity analysis of each numerical approximation. More importantly, an optimal rate
convergence analysis is provided in this work. In fact, the highly nonlinear nature of
the trajectory equation makes the corresponding analysis very challenging. To overcome
these subtle difficulties, we make use of a higher order expansion technique to ensure
a higher order consistency estimate, which is needed to obtain a discrete W bound
of the numerical solution. Similar ideas have been reported in earlier literature for
incompressible fluid equations [15, 16, 33, 42], non-local gradient flows [19, 21, 27],
while the analysis presented in this work turns out to be more complicated, due to the
lack of a linear diffusion term in the trajectory equation of the PME and the high order
of the numerical scheme. In addition, we have to carry out two-step estimates to recover
the nonlinear analysis:

e Step 1. A rough estimate for the discrete derivative of numerical solution,

namely (Dpz} ') at time ¢,,41, to control the nonlinear term;

e Step 2. A refined estimate for the numerical error function to obtain an optimal
convergence order.

Different from a standard error estimate, the rough estimate controls the nonlinear term,
which is an effective approach to handle the highly nonlinear term. As a result of the
rough estimate, the refined error estimate is performed to derive the desired convergence
result.

This paper is organized as follows. The trajectory equation of the PME and the
numerical scheme are outlined in Section 2 and Section 3, respectively. The proof of
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unique solvability analysis, unconditional energy stability, and optimal rate convergence
analysis are provided in Sections 4, 5 and 6, respectively. In addition, the convergence
of Newton’s iteration for the nonlinear numerical scheme can be found in Section 7.
Finally we present a simple numerical example to demonstrate the convergence rate of
the numerical scheme in Section 8. Some concluding remarks are also made in Section 9.

2. Trajectory equation of the PME

In comparison with solving the original PME directly, we split the PME into mass
conservation and force balance relationship (trajectory equation in Lagrangian coordi-
nate), which can be regarded as the gradient flow of total energy and contain all the
physical information of the system. Based on the trajectory of particles, the free bound-
ary, the finite speed and the waiting time can be computed more effectively. Moreover,
the system satisfies some laws of physics, such as the conservation of mass, force balance
and the dissipation of energy. In this section, we review the one-dimensional trajectory
equation, derived by an Energetic Variational Approach.

Firstly, we briefly introduce the Lagrangian coordinate and the Eulerian coordinate
systems.

DEFINITION 2.1.  Suppose that Qi and QF CR™, meN*, are domains with smooth
boundaries, time t>0, and v is a smooth vector field in R™. The flow map x(X,t):
QF — QF is defined as a solution of

d
%l'(X,t):V(l'(X,t),t), t>07

2(X,0)=X,

(2.1)

where X =(X1,..., X)) €QY and = (x1,...,2,,) €Q¥.  The coordinate system X is
called the Lagrangian coordinate and %Y is called the reference configuration; the coor-
dinate system x is called the Eulerian coordinate and 2 is called the deformed config-
uration [13, 14].

Considering Qf and Qf are the same domain described by different coordinate
systems, we uniformly denote the domain by € in the rest of this paper.
The following initial-boundary problem is formulated:

O f+0,(fv)=0, z€QCR, t>0, (2.2)
fv==0.(f"), xeQ, m>1, (2.3)
f(z,0)=fo(z) >0, z€Q, (2.4)
0. f=0, 2€09Q, t>0, (2.5)

where f is a non-negative function, (2 is a bounded domain and v is the velocity. The
following lemma is available; the proof has been provided in a recent work [13], here we
go over it again.

LEMMA 2.1.  f(x,t) is a positive solution of (2.2)-(2.5) if and only if f(x,t) satisfies
the corresponding energy dissipation law:

d o f )
ﬁ/gflnfdxf /Qm —[v|"dx. (2.6)

Proof. We first prove the energy dissipation law (2.6) if f is the solution of
(2.2)-(2.5). Multiplying by (1+1In f) and integrating on both sides of (2.2), we get

/(1+lnf)6tfd$:—/(1+1nf)8$(fv)d$.
Q Q
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Using integration by parts, in combination with (2.3), we have

d Oy
%/Qflnfdw: A ff(fv)de:_/Qmfi*1|v‘2d$§0' (2.7)

Subsequently, we are also able to derive (2.3) from the energy dissipation law (2.6)
by EnVarA, which include the mass conservation, the least action principle (LAP), the
maximum dissipation law (MDL), and force balance.

e The mass conservation. We know that the conservation of mass means

fo(X)dX = flz,t)dx= f(x(X,t)J)deta—de,

EF E¥ X

where fo(X) is the initial condition. EF CQF is the deformed configuration

of an arbitrary subdomain E C ', and det 8x(X Y is the Jacobian matrix of

the map: X —x(X,t). Thus, in thc Lagranglan coordlnatc, mass conservation
leads to

fo(X)
fla(X.t),t)= det‘gw (2.8)

In addition, (2.2) corresponds to a conservation law in the Eulerian coordinate.
e LAP. With (2.8) and the total energy

Etotal — / fnfdz, (2.9)
Q

the action functional in Lagrangian coordinate is

A(a:):/o / Qxfo (fO( ))dth,

where t* >0 is a given terminal time. By taking the variational of A(z) with
respect to x, we obtain the conservation force

FCO'I’L 6A a f’
Sr

in Eulerian coordinate, and
Jo(X)
Fcon = _a ;
( 6)(.73
e MDL. Consider the entropy production

_ f 2
A—/mem_lM dx.

By taking the variational of %A with respect to v, we have the dissipation force

in Lagrangian coordinate.

sin

5V mfnz—lv

Fd’LS
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in Eulerian coordinate and

BEVAN X
Fdis: (52$ = fo)(( )mflxt
t m(%ig;))

in Lagrangian coordinate.

e Force balance. By the force balance law, we obtain the trajectory equation:

fo(X) fo(X)

in the Lagrangian coordinate, and the Darcy’s law in the Eulerian coordinate

f

mfm—l u=

—0z f.

which is exactly (2.3).

Note that there is an assumption that the value of initial state fo(z) is non-negative in
Q to make [, fIn fdx well-defined in (2.6).
In turn, the trajectory problem becomes

fO(X) o fo(X)
Waﬂf*@x o ) XEQ >0, (2.11)
z|on = X|aq, t>0, (2.12)
r(X,0)=X, XeQ. (2.13)

Finally, with a substitution of (2.11) into (2.8), we obtain the solution f(z,t) to (2.2)-
(2.5). O

Throughout the rest of this article, the one-dimensional trajectory equation will be
considered.

3. The proposed numerical scheme
Consider the trajectory problem for the porous medium equation

X X
(53 o
$|X:0:0’ and x |X:1:1’ t>0, (32)

2(X,00=X, XeQ.

Let Xy be the left point of 2 and h= % be the spatial step, M € N*. Denote by
X, =X(r)=Xo+rh, where r takes on integer and half integer values. Let £y and Cps
be the spaces of functions whose domains are {X; | i=0,...,M} and {X,_1 | i=1,...,M},

-3
respectively. In component form, these functions are identified via l; =1(X;), i=0,...,M,

for [ €&y, and ¢i—% :¢(Xi—%)’ 1=1,....M, for ¢ €Cypy.
The difference operator Dy, :Eny —Car, dp :Cpar — Epr, and l~)h:5MHEM can be de-
fined as:

(Dul); 1 =(li—liy)/h, i=1,..., M, (3.4)

1
2
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(dn)i= b1y 3 —bi_3)/hy i=1,.. M —1, (3.5)
- (li+1_li71)/2hv izl,"'aM_la
(Dpl)i =4 (Alig1—liyo—31:)/2h, =0, (3.6)

(li,2—4li71 +3li)/2h, i=M.

Let Q:={l€&y | li—1<l;, 1<i<M; lg= Xy, lps = X} be the admissible set, in
which the particles are arranged in the order without twisting or exchanging. Its bound-
ary set is 0Q:={l€&p | i1 <l;, 1<i<M, and l;=1;—1, for some 1<i<M; lyp=
Xo, lpyr=Xnr}. Then Q:=0QuUdQ is a closed convex set.

For two grid functions f and g over a uniform numerical mesh h, the discrete 2
inner product and the associated ¢? norm are defined as

M-1
(F.9)=h(5 o0+ fregnn) + X figi)s 1= /D) (3.7

The corresponding ¢ inner product and ¢?> norm for the gradient variable could be
formulated as

M
(Dnf,Dng):=hY (Dnf)ioy(Dng)iss | Dafllz:=/(Dnf.Duf). (3.8)

=1

In addition to the discrete || - ||z norm, the discrete maximum norm is defined as || f||  :=
maxo<;<n | fi|. An application of inverse inequality gives

1£lloe <CR72|f|o- (3.9)

Notice that this inverse inequality is valid for the spatially discrete function, while it is
incorrect for a continuous function.

We propose the second order numerical scheme as follows, based on a modified
Crank-Nicolson approach. Given the positive initial state fo(X)€ Ep and the particle
position 2",2" "' € Q, find x" ! = (zf ', ...,2 ") € Q such that

fo(Xi) aptt —ap
fo(X) )m—l' At
Sp(zm,xm—1)
In(Dpa™ ™) —In(Dpa™)
- X
dh{(fO( ) Dyt — Dpan )

1 1
—AgAtDp (2" — ™) + AP (——— — —— } 3.10
oAD" ")+ A (s - )] (3.10)

m(

K2

~ 3 1
with Sy (2™, 2" 1) = maX(Dh(§$” - §x"71),At2),

for 1<i<M —1, and we take "' =0 and 2}/ ' =1, n=0,---,N — 1. Notice that Ay is
a second order artificial regularization parameter.
To solve the nonlinear Equation (3.10), we use Newton’s iteration.

Newton’s iteration. Set 2"t10=2". For k=0,1,2,---, update z" 1A+l = gntlk
&, which is the solution of
fo(Xi) 0a,

K2

At?
. o A n+1,k
YT T dn [ (fo(X)- W —&-AoAt—l—i(thnH’k)Q)Dhéz}

Sh (mn’znfl) i
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B fo( X)) o Tk g L
— m( e )mil A7 dh[fo(X)R

Sp(zm,xn—1) /4

1 1
thn-‘rl,k thn

— AgAtDy (z" 1k — g™y + AL )} L 1<i<M-1, (3.11)
with d,, =04,, =0,

where, for i=1,---, M,

—_a ?
T3

n+l,k [(1 - Dﬁ;}iﬁz,k ) +1n( D}gﬁ’fiz,k )‘|
i

w
1 (thn-i-l,k_thn)Q

1
2

and

Rtk _ [ln(th”Jrl*k) — ln(th”)}
i-g Dhl‘n+1’k—Dh$n 1—%.

Let w?“’k = |th?+11’k =Dy} 1|, 1<i< M. Then we have
-3 -3

. 1.k 1
1 T 4 A —
PR L T R
and
. 1.k 1
lim [P —
leJrl’k*)ORz_% DyantLk

i

Then we obtain the numerical solution f(a”,¢"):= fI" by

f_n:7f3(X), 0<i<M, (3.12)
! th'fl
K3

which is the discrete scheme of (2.8).

REMARK 3.1.  In the numerical scheme (3.10), the numerical discretization to the

. . . In(Dpaz"tH)—In(Dpa™)
nonlinear chemical potential term, namely Dy on i Dy an
1

ond order approximation to zi- at the middle time instant ¢"*/2, due to the fact
that Iny is the primitive function of 1 (in terms of y=0xz >0). Because of this sub-
tle fact, such a second order numerical discretization is labeled as a modified Crank-
Nicolson approximation. In particular, this approximation makes its inner product with
Dy (2"t —2™) exactly the difference of the nonlinear energy functionals between two
consecutive time steps, as will be observed in the later sections. Also see the related
works [6, 7, 8, 10, 11, 12, 20, 22, 23, 24, 35] for various gradient flows, in particular for
the modified Crank-Nicolson approximation to the nonlinear energy potential, which
takes a form of %ﬂw (with ¢ being the phase variable). In comparison with
the standard Crank-Nicolson formula, such a modified Crank-Nicolson approximation
greatly facilitates the energy stability analysis, while the standard formula would face

serious difficulty in the theoretical justification of this property.

, turns out to be a sec-

REMARK 3.2. The term Sp(z",2""1), given by Sh(m",x"_l):max(f)h(%m"—
%x”_l),AtQ) in (3.10), stands for a second order approximation to Oxx at the middle



994 A SECOND ORDER METHOD FOR POROUS MEDIUM EQUATION

time instant ¢"*1/2 in the nonlinear mobility part on the left-hand side. The mobility
function has to be explicitly updated in the numerical approximation, to ensure the
convexity of the temporal differentiation term and the unique solvability of the numer-
ical scheme. Therefore, we have to use a second order explicit extrapolation formula
in such a numerical approximation, which in turn gives the extrapolation weight coeffi-
cients as % and —% at time steps t7, t" !, respectively. In addition, a maximum value
of At? is taken, to ensure the point-wise positivity of such a mobility function. On the
other hand, if the exact PDE solution preserves a separation property, i.e, dxx > ¢ for
a fixed €y >0, we see that %Dh:c” — %th”’l will always be greater than another fixed
constant, if the numerical solution is a sufficiently accurate approximation to the exact
PME solution. In other words, if the exact PME solution preserves a phase separation
property and the numerical solution is sufficiently accurate, the value of Sy, (2", 2"~ 1)
will always be given by %f)hx” — %f)hx”_l, a second order approximation to dxx at

the middle time instant ¢"+1/2,

REMARK 3.3. A similar energy dissipative numerical method has been reported
in [18], based on Eulerian coordinate. The authors replace the original problem with
a perturbed problem by a positivity-preserving perturbation term. In comparison with
this method in Eulerian coordinate, the trajectory equation in the Lagrangian coordi-
nate can capture the trajectory of particles along the direction of the maximum energy
dissipation. Therefore, the numerical scheme in this paper can naturally satisfy the
original discrete energy dissipation law, preserve the positivity of the solution and the
force balance law. In particular, the degenerate feature, such as the free boundary and
the waiting time, can be solved more effectively. In addition, another advantage of
the Lagrange method could be observed from the fact that, numerical schemes can be
established [13] based on different dissipation laws.

In addition, we consider the trajectory equation and numerical scheme for the free
boundaries. If the initial data is given with a compact support in 2, the left and right
interfaces can be defined as

& =inf{x € Q:u(x,t) >0,t >0}, (3.13)

¢ =sup{z € Q:u(z,t)>0,t >0}. (3.14)

We denote I' := ¢!, €5 C Q2. In this case, we shall solve the initial-boundary value prob-
lem (2.11) with the boundary condition:

m Ox[fo(X)™ ]
m—1  (Oxx)™

Opx=— , X=¢ b, (3.15)

and the initial condition
r(X,0)=X, X eT°. (3.16)

The Equation (3.15) is derived from the trajectory Equation (2.11) by the fact that the
initial data fo(X)=0, X €0Q.
Based on the Crank-Nicolson temporal discretization, the full numerical scheme
becomes
gt —gn m_ Dy[fo(X)™ Y]

At m-l (M)m’ i=1,M. (3.17)

2

Again, the Newton’s iteration is applied in the numerical implementation.
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4. Unique solvability analysis
THEOREM 4.1. Given any z™, "', with Dpa™ >0, Dpaz" '>0 at a point-
wise level. In more details, we denote Q(’“)’l:minizlw,M(thk)i_l/g and Q(k)72:
M(Dhl’k)i_l/g, k=n,n—1, so that the following inequality is valid:

.....

O<Q(k),1SthkSQ(k)727 k:n7n—1 (41)

The proposed numerical scheme (3.10) is uniquely solvable, with Dpx™ ™ >0 at a point-
wise level.

Proof.  With an introduction # =2"*! — X it is clear that (3.10) could be rewritten

as
fo(Xz') . Xit T —x; :_dh[<f0(X) ln(1+D;L$2—1n(Dhl’ ))
m( fo(X)7 )m At 1+Dpz— Dpx™
Sp(zn,zn—1)/4

1 1
1+Dnpz Dpx™

— Ao AtDy (& —z™) + At ( )] (4.2)

Because of the fact that Zo =23, =0, we see that the solution of (4.2) is equivalent to
a minimization of the following discrete functional:

F#)=YF(@), with Fi(2)=5c( : JolX) e (X ), (03)
j=1 M\ S zn=1)

Fo(d) = <f0 (X)G(Dni, Dpa™), 1>, (4.4)

Fg(:ﬁ):AOAt(%HDhﬁcHgf(Dhi,th">), (4.5)

F4(:%):AtQ(—<ln(1+Dh:%,1>+<Dhsﬁ,ﬁ)>, (4.6)

In(14+z)—Inzg

TEm— for a fixed xq:

in which G(z,z) is given by the primitive function of —

0
In(1+¢)—1
G(:c,xo):/ %ﬂ:xodt, for > —1. (4.7

The convexity of Fy, F3 and Fy (in terms of &) is obvious. For the functional F», we
have the following observation, for = > —1:

_ln(1+x)—lnxo)' _ e te—zo)+(In(l+a) —Inzo) (4.8)

¢ (ac,xo):( 1+z—x0 (I4+z—x0)?

in which the convexity of —In(1+x) has been used. This fact implies the convexity of
F5. Therefore, we conclude that F' is convex in terms of &, provided that D,z > —1 at
a point-wise level. Furthermore, F' is strictly convex, because of the strict convexity of
Fy.

In the next step, we wish to prove that there exists a minimizer of F' at an interior
point of Q. To this end, consider the following closed domain: for a given § >0,

Qs:={X+2€Q : 14+(Dp&);41, >6,V0<i<M -1} C Q. (4.9)

Since Qs is a compact and convex set in RM 1 there exists a (not necessarily unique)
minimizer of F over Q5. The key point of our positivity analysis is that such a minimizer
could not occur on the boundary of Qs, if § is small enough.
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Assume a minimizer of F' over Qs, denoted by &*, occurs at a boundary point.
There is at least one grid point such that 1+ (Dp3*);,41,=09. Next we estimate the
value of F'(&*). For the F; part, the following bound is available, for any X +& € Q:

OSFl(i):QLAt< f{(zg())() )m—17(X I n)2>

1 ~|m— 3 n 1 n— m—
<o (ETIGRMALSQU A s AW, (40)
1

it €y g o0 ).

m(

in which the assumption (4.1) has been recalled, and we have made use of the following
fact:

0<X+z<1,sothat —1<X+4+z—2"<1, at a point-wise level. (4.11)

For the F, part, we observe that G(z,z¢) >0 for —1 <z <0, and

“In(1+t)—Inxg 1
—— [ S A—) | . ——dt=—1In(1 f > 4.12
G(z,z0) /0 - > /0 T n(l+z), forz>0, (4.12)

in which the convexity of In(1+¢) has been applied. Meanwhile, by the fact that X +4 €
9, we have the following observation:

1
0<1+(Dp)iprss < 7w VO<i<M-—1, since 0<z;<1,0<x;41 <L (4.13)
In turn, its substitution into (4.12) implies that
1
G(Dpi,Dpx™) > _hlﬁ =Inh, at any grid point. (4.14)

As a consequence, we obtain a lower bound for Fj:

Fa(*) = fo(X)G(Dni*, Dua"), 1) = | fo(X) - I, (4.15)
The derivation for a lower bound of Fj is straightforward:
o . n ApgAt
Fg(x )Z —AQAt<Dh5L‘,Dh$ >Z— 22 5 (416)

in which the inequality (4.13) has been applied. For the functional Fy, we see that the
second part has the following lower bound:

1 , 11 At?
> .

9 R —
At <Dh$(5, W> = —At E : Q(n),l - Cz(”)vlh7

(4.17)

in which the inequality (4.13) and the assumption (4.1) have been used. For the first
part of Fy, we recall that 1+ (Dy2*); 41/, =0, and the following estimate is available:

(014 D3, 1) =~ (114 (D)) + 3+ (D))
iig

> fh(lnéJr(Mf 1)1n%) :h(ln% +(M—1)Inh) > hln% +1nh, (4.18)
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in which the inequality (4.13) has been applied in the second step, and we have used
the fact that h-M =1 in the last step. In turn, we get a lower bound for Fy(Z*):

A~k 2 ~ N 1 2 1 AtQ 2
Fu(2")=At (—(ln(l—i—Dha:,l)—&—(th,i)) > At hln < +At“Inh.  (4.19)

Dz § Qi

Therefore, a combination of (4.10), (4.15), (4.16) and (4.19) yields a lower bound for
F(&*):

ApAt At?
h2 + QM1h

F(@*)ZAtthn%—Am,h, with Aagn= — (A + | fo(X)||oo)Inh.  (4.20)

Meanwhile, we observe that, by taking 2°=0, so that X +2° € Qs, the following
estimates are available:

0<Fy(2°) < AW (by (4.10)), Fp(i%) =0, F5(2°)=0, Fy(2°)=0,  (4.21)
so that
0<F(2%) <AW, (4.22)

We also notice that both Aa;  and AM are independent of §. Consequently, by taking
6 > 0 sufficiently small so that

1

A#?hl
thn(S

A A
L) (4.23)

A >AW | e 0<d<ex (—

At,h p Atzh
This yields a contradiction that F' takes a global minimum at Z* over Qg, because
F(3*)> F(2°). As a result, the global minimum of F' over Qs could only possibly occur
at an interior point, with § satisfying (4.23). We conclude that there must be a solution
i €(Qs)°, the interior region of Qj, so that for all ) € Cper,

0=d, F(&+s51)so. (4.24)

which is equivalent to the numerical solution of (4.2), provided that ¢ satisfies (4.23).
The existence of a numerical solution of (3.10), with “positive” gradient, is established.
In addition, since F' is a strictly convex function over Q, the uniqueness analysis for
this numerical solution is straightforward. ]

5. Unconditional energy stability

With the positivity-preserving and unique solvability properties for the numerical
scheme (3.10) established, we now prove energy stability. For any grid function  with
Dpx >0 at a point-wise level, the following discrete energy functional is introduced:

Ep(z):=(fo(X)In(Dpz),1). (5.1)

In fact, such a discrete energy functional is a second order numerical approximation to
the continuous version of the free energy, namely fQ fo(X)In(Oxx)dX, associated with
the trajectory Equation (2.10) of the PME. Notice that this energy is only involved with
Oxx (and Dpz in the finite difference approximation), not with x itself.

THEOREM 5.1. The proposed numerical scheme (3.10) is unconditionally energy
stable: Ep(x"T1) < Ep(a™).
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Proof. Taking a discrete inner product with (3.10) by "™ —2™, making use of
the summation by parts formula (because of the boundary condition (z"+!—z™)=
(2" —2™) ) =0), we get

1 (S (xnvmnil))mil n+1 n\2
2 i e =)

—<fo(X) In(Dpx" 1) —In(Dpa™)

Dpantl — Dyan
+AgAt|| Dy (z" 1 —m")H%—At2<

7l)hxn—‘,-l —Dhl‘n>

1 1

- D" _D ">:. 2
Dpantl  Dpan’ he ne 0 (5:2)

The first term on the left-hand side turns out to be non-negative, since Sy, (z",2" 1) >0,
fo(X) >0 at a point-wise level:

< (S(xn’xn—l))m—l
m(fo(X))"?

The second term exactly gives the difference between the discrete energy values at time
steps t"T1 and t":

(Tt —x”)2> >0. (5.3)

In(Dpa" ) —In(Dpa™)
_<fO(X) Dyxntl — Dpxn

_ _<f0(X)1n(th"+1), 1> + <f0(X)1n(th”)7 1> = Bp(z" ) = Ep (). (5.4)

,Dhl'n+l — thn>

The third term is clearly non-negative, and the last term turns out to be non-negative
as well:

1 1 n+1 n 1 n+1 ny\2
_ - — = — — > .

<thn+1 Dy ne T~ Pne ) <thn+1thn (Daa™ = Da") 20, (55)
in which we have made use of the unique solvability result, Dyz"*! >0, Dp2™ >0, at
the point-wise level, as given by Theorem 4.1. As a consequence, a substitution of (5.3)-
(5.5) into (5.2) reveals an unconditional energy stability of the numerical scheme:

En(z"™) = En(z") < — Ao At|| Dp (" —2™)||3 <0,s0 that Ey(z"*) < Ep(z™). (5.6)

This completes the proof of Theorem 5.1. ]

6. Optimal rate convergence analysis

Now we proceed into the convergence analysis. Let z. be the exact solution for the
PME Equation (3.1)-(3.3). With sufficiently regular initial data, we could assume that
the exact solution has regularity of class R:

ze €R:=H®(0,T;C(Q)NH" (0,T;C*(Q)) NL™® (0,75C°Q)), with

1k o zscmy = |1 CDem@]| Il oriemen = [IFCDllem o |

H*(0,T) Loo(0,T)

lgllene =3 l10tgllcw,  10%gllow) =max|otql (6.1)
£=0

In addition, we assume that the following separation property is valid for the exact solution,
in terms of its gradient:
Oxxe > €y, forep>0, (6.2)

at a point-wise level. The following theorem is the convergence result of the proposed scheme.
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THEOREM 6.1. Given initial data z.(-,t=0)€C°(Q), suppose the exact solution for the
PME Equation (3.1)-(3.3) is of regularity class R. Define the numerical error function as
ef =(xe)7 —x}, at a point-wise level. Then, provided At and h are sufficiently small, and
under the linear refinement requirement C1h < At < Csh, we have

n—1
n 1 m m 1/2
le"la+ (At I3 Da(em +e™3) T <O +A?), (6.3)
m=0

for all positive integers m, such that t, =nAt<T, where C' >0 is independent of n, At, and
h.

6.1. Higher order consistency analysis of (3.10): asymptotic expansion
of the numerical solution. By consistency, the exact solution z. solves the discrete
Equation (3.10) with second order accuracy in both time and space. Meanwhile, it is observed
that this leading local truncation error will not be enough to recover an a-priori W,i’w bound
for the temporal derivative of the numerical solution, which is needed in the nonlinear error
estimate. To remedy this, we use a higher order consistency analysis, via a perturbation
argument, to recover such a bound in later analysis. In more details, we need to construct
supplementary fields, ©n,1, Tat,1, Tat,2, and W, satisfying

W =zc+h’zn+ At ca) + At zaco, (6.4)

so that a higher O(At* +h*) consistency is satisfied with the given numerical scheme (3.10).
The constructed fields xx,1, a1, Tat,2, which will be found using a perturbation expansion,
will depend solely on the exact solution x..

In other words, we introduce a higher order approximate expansion of the exact solution,
since a leading order consistency estimate gives a second order accuracy in both time and
space, which is not able to control the discrete Wé *>® norm of the numerical solution. Instead
of substituting the exact solution into the numerical scheme, a careful construction of an
approximate profile is performed by adding O(At?), O(At?) and O(h?) correction terms to the
exact solution to satisfy an O(At*+h?*) truncation error. In turn, we estimate the numerical
error function between the constructed profile and the numerical solution, instead of a direct
comparison between the numerical solution and exact solution. Such a higher order consistency
enables us to derive a higher order convergence estimate in the || -||2 norm, which in turn leads
to a desired W,i *>® bound of the numerical solution, via an application of inverse inequality.
This approach has been reported for a wide class of nonlinear PDEs; see the related works
for the incompressible fluid equation [15, 16, 33, 34, 40, 41, 42], various gradient equations [3,
19, 21, 27], the porous medium equation based on the energetic variational approach [14], the
Poisson-Nernst-Planck system [28], the nonlinear wave equation [43], etc.

The following truncation error analysis for the temporal discretization can be obtained by
using a straightforward Taylor expansion

) I
m(fo(X)"2 At

In(dxa2t) —In(Oxx?) n n 1 1
== 0x [(BOO TS ) A (@ )+ A G — 5|
+AL (g T2 L A (g2 oA, (6.5)
with Se(mz,xzfl):a)(ém;l*1$271)~

2 2

Here the functions ggj ) (=0, 1) are smooth enough in the sense that their derivatives, both
the temporal and spatial ones, are bounded in the || - ||z norm. In more details, gﬁj) turns out
to be only dependent on the higher order derivatives (both spatial and temporal) of the exact

solution x., as indicated by the Taylor expansion. In fact, both g(lo) and ggj ) are space-time
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functions, i.e., they are time and space dependent, due to the involved higher order spatial
and temporal derivatives of the exact solution. Meanwhile, for a fixed time instant t"*1/2,
(g{”)"*1/2 and (g{")""/2 become spatial functions.

The temporal correction function xa¢,1 is given by solving the following equation:

(Oxxe)™ " (m—1)(0xze)"™ *Oxzat ;)

m(fo(X )2 A T T Ry ke
=0 (= o) gz Oxean) ~ a1”). (6.6)
2ai(0)=2ac1(1)=0, zari(t=0)=0. 6.7)

In fact, (6.6) is a linear parabolic PDE, with sufficiently regular coefficient functions. The exis-
tence and uniqueness of its solution could be derived by making use of a standard Galerkin pro-
cedure and Sobolev estimates, following the classical techniques for time-dependent parabolic
equation [38]. Such a solution depends solely on the exact profile z. and is regular enough. In
addition, the derivatives of xa¢,1 of various orders are bounded. Of course, an application of
the semi-implicit discretization to (6.6)-(6.7) implies that

(Se(af,an )™=t apiy—aRes | (m=1)(Se(al,af™ ")) *Se(zRhe1,0h01) al ! —al

m(fo(X))m=2 At m(fo(X))m=2 At
_ _ 1 l n+1 n _ (A (0)\n+1/2 2
=—x( FoX) G e ey Sox @il +aki) — (@) 20, (68)
. n n— 3 n 1 n—
with Se(xm,l,mmj):8x(§xm71—§xm711). (6.9)

Therefore, a combination of (6.5) and (6.8) leads to the third order temporal truncation error
for W1 ==z, +At2xm’1:
(Se(Wi, W)™ Wyt —wr
m(fo(X))™? At

In(Ox W) —In(dx W)
=—9 X 1
X[(fo( ) Ox (Wit —wp) )
_ n+l n 2 1 _ 1
AoAtox (W) W)+ At (aXWInJrl AxWr )}
+AE (g")" 2 oA, (6.10)

_ 1 _
with  Se (W7, Wy 1)=ax(gwf‘—§wl" .
In the derivation of (6.10), the following linearized expansions have been utilized:

1
Wit —wp gt ol

2
N A ToMr), (6.11)
(Se(af,ar ™)™+ (m=1)(Se(al,ar ™))" " Se(@hr,1,0h01) - At Tar,
=S (Wi Wi +0(ALY), (6.12)
In(9xz¢ ™) —In(dxa?) 2 1 1 ntl |
— At -Z0 +
Ox (22 =) (Ox ez rap))p 20X (Tau )

_ In(0x W) —In(Ox WT")
Ox (Wit —wp)

+0(AtY). (6.13)

Similarly, the temporal correction function xza¢ 2 is given by solving the following equation:

(Oxwe)™ (m—1)(Ox )™ 20x A2

(X2 e T e
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1 1)

=—0 (f X)———=0 )f ( , 6.14

x (= fo(X) (Oxa ) OxTaL2) =0 (6.14)

za,2(0)=zar,2(1)=0, xa:2(t=0)=0. (6.15)

Similarly, (6.14) is a linear parabolic PDE, with sufficiently regular coefficient functions, and its

unique solution depends solely on the exact profile z. and is smooth enough, with derivatives

of various orders staying bounded. In turn, an application of the semi-implicit discretization
to (6.14)-(6.15) implies that

(Se(xZ,xZ‘l))m‘l ] wZilg _$Zt,2 (m— 1)(Se($g7xg_l))m_QSe(iEZt,zvl'Z;é) ] a:Z'H —xy
m(fo(X))m2 At m(fo(X))™2 At

— _ 1 1 n+1 n 7 (1)\n+1/2 2

==0x (= hoX) Gy 30 @Rt +ohe)) — @) O, (616
. n n—1 3 n 1 n—1

with Se(xAt’Q,xAt’Q)zax(iasmg—ixAt’Q). (6.17)

Subsequently, a combination of (6.10) and (6.16) yields the fourth order temporal truncation
error for Wo =W1 —|—At3xm72 =2, —|—At2zAt,1 —|—At2xm,2:

(Se(Ws', W3t Wyt —wy
m(fo(X))m—? At

= o (s PN ) O

— Ao Atdx (Wt —Wah) + At?(

1 _ 1
IxWptt  oxWy

)} +o(arh, (6.18)

. n n— 3 n 1 n—
with S (W3, W, 1):5'X(5W2*§W2 1):

in which the linearized expansions have been extensively applied.

Next, we construct the spatial correction term xp,1 to upgrade the spatial accuracy order.
The following truncation error analysis for the spatial discretization can be obtained by using
a straightforward Taylor expansion for the constructed profile W5, and exact solution x.:

(Sh(Wg', Wy =)™t Wyt Wy
m(fo(X))m=2 At

In(Dy W) —In(D, W3")
=—d X
"[(f‘)() Dyp(Watt —wy) )
1 1
— Ao AtDy (Watt — Wi + AL® -
oAtDn (W ) AD p DhWQ")]
+R2 (RO 2 L O(hYy +O(ALY), (6.19)

with sh(W;,W;*):Eh(gWQ”— %WSH)-

Similarly, the function h(?) is smooth enough in the sense that its derivatives are bounded in
the |||z norm, and it is only dependent on the higher order derivatives (both spatial and
temporal) of the exact solution W2, henceforth only dependent on the exact solution z.. It
is a space-time function, while for a fixed time instant t"*'/2  (h(®))"*1/2 becomes a spatial
function. We also notice that there is no O(h*) truncation error term, due to the fact that
the centered difference used in the spatial discretization gives local truncation errors with only
even order terms, O(h?), O(h?), etc. Subsequently, the spatial correction function z, ; is given
by solving the following linear PDE:

(ax.re)"kl (m—l)(axwe)nkanth

m(fo))m2 T T T Gy e
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- 1 ©
—*aX(*fO(X)WaXJ?hJ)*hO , (6.20)
2r1(0)=zp1(1)=0, zn1(t=0)=0, (6.21)

and the solution depends only on the exact solution z., with the divided differences of various
orders staying bounded. In turn, an application of a full discretization to (6.20) implies that

(Sp (22, zn=t))ym=t ijlfmZ,l n (m*1)(5}1(3727172_1))m_25h(12,1a$231) .acg"'l—acg

m(fo(X)m=2 At m(fo(X))m—? At
_ B 1 1 ntl | n o (0)\n+1/2 2
== (~ o) G o 2 P +aha)) = (RO rom),  (6.22)
3 n n—1 ~ 3 n 1 n—1
with  Sp(xp 1,7, ):Dh(ignh,l_ixh,l ). (6.23)

Finally, a combination of (6.18) and (6.22) yields the fourth order temporal truncation error
for W=Wa+h®zp1=xe +h2xn,1 +At22ar1 +At*2zare (as given by (6.4)):

(Sh(Wn7Wn—1))m—l . Wn+1 _Wn
m(fo(X))™—2 At
B In(Dp W™ ) —In(D, W™)
_7dh|:(f0(X) Dh(Wn+1_Wn) )
1 1
—AoAtD n+l _ n A 2 _
OALDR W =W A G gt DhW”)]
+7™, with |72 < C(At* +hY), (6.24)

and Sh(W"7W”’1):5h(gW" - %W"’l).

Again, the linearized expansions have been extensively applied.

REMARK 6.1.  Since the temporal and spatial correction functions, namely za¢,1, Tat,2 and
Zh,1, are bounded, we recall the separation property (6.2) for the exact solution, and obtain a
similar property for the constructed profile W:

DLW > ¢y, for ¢g=2>0. (6.25)

Such a uniform bound will be used in the convergence analysis.

For the the constructed profile W, we also assume its discrete W2 bound, as well as the
W1 bound for its temporal derivatives:

IDaW lloo + [ DEW lloo SC*, - [IDeW™ || o + I DRDeW™ || + || Dn(DEW ™|, <C”,(6.26)

Wn+1 _ 2wn 4 anl
At? ’

B Wn+1 _ Wn
B At

with DW™: , D?I/Vn —

which comes from the regularity of the exact solution x. and the correction functions.

REMARK 6.2. The aim for such a higher order asymptotic expansion and truncation error
estimate is to justify an a-priori W,i’oo bound of the numerical solution, which is needed
to obtain the phase separation property, similarly formulated as (6.25) for the constructed
approximate solution. In addition, a discrete Wﬁ"x’ bound for the temporal derivatives of the
numerical solution is also needed in the nonlinear analysis, which turns out to be the key reason
to derive a fourth order consistency estimate for the constructed solution.
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6.2. A preliminary rough error estimate. Instead of a direct analysis for the
error function defined as e™ =z." —x™, we introduce an alternate numerical error function:

=W =z (6.27)

The advantage of such a numerical error function is associated with its higher order accu-
racy, which comes from the higher order consistency estimate (6.24). Moreover, the following
notations are introduced, for the convenience of the analysis presented later.

1 1
L2 §(xn+1 ), W2 = §(W"+1 +WM), (6.28)
jn+1/2:gwn_%xn—l, Wn+1/2:gwn—%wn_l, (629)
in+1/2 _ Wn_H/z —SEn+1/2 _ l(jn-&-l _’_.%n)7 én+1/2 _ V“[/n+1/2 _ i,n+1/2 _ gjn _ %i‘n—l
(6.30)

In turn, subtracting the numerical scheme (3.10) from the consistency estimate (6.24)
yields
(Sp(z™,z"t))™t ' gt —gn n (Sp (W™, W)™t — (S (a™,z™ 1))t ' wrt
m(fo(X))m=2 At m(fo(X))m=2 At
In(Dy W) —In(Dp,W™)  In(Dpz"™ ) —In(Dpz™)
== [ (S Dean )
n(W wn) Dy (z x")
Dhi‘n+1 . Dhin )]
DpWnH1Dpantlt D, WnDpa™
+77, with |77 < C(AE* +hY). (6.31)

—AoAtDy (E" T — ™) — A (

To proceed with the nonlinear analysis, we make the following a-priori assumption at the
previous time steps, for k=n,n—1,n—2:

[Z"]]2 <C(At*+h*), with C uniform for a fixed final time 7. (6.32)

Such an a-priori assumption will be recovered by the optimal rate convergence analysis at the
next time step, as will be demonstrated later. With this assumption, the following bounds for
the numerical solution are obtained, with the help of inverse inequality:

| DRi* |2 < - 2 <CC(AL +h%), (6.33)
~k - 5 *
||Dh5:k||oo§%SCC(Aﬁ+h5)§%, (6.34)

(=X

€

so that %0 <Dy =D,W*-Dyi" <"+ 2L .=¢, (6.35)

v

for k=n,n—1,n—2, in which the lower and upper bounds (6.25), (6.26), for the constructed
profile W, have been used. Notice that the separation property (6.2) is valid for the exact PDE
solution, with a fixed constant ep >0, while the constructed solution W preserves a similar
separation property (6.25), with an alternate constant ey >0. Without loss of generality, such
a constant could be taken as e =% >0. As a result, the bound (6.34) is always available,
provided that At and h are sufficiently small. In addition, the following observation is made,

motived by the preliminary estimate (6.34):

[ Dh® = D"~ |oo < | DW= DpW* ™! |oo + || D" — D" ™|
<CTAt+CC(AL2 +h3) < (C* +1)At, (6.36)
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for k=n,n—1, in which the regularity requirement (6.26) for the constructed solution has been
applied again. In turn, we conclude that

~ 3 x 1 5 ~ r, 1= k k—1 0 €0 _ € 2

— —_ = = — — > = > .
Dh(2x 5% )=Dpz +2Dh(x ") 21— 1 At7, (6.37)
so that Sh(xkaffk_l) =Dya" " = Dh(g * ; k_l)’ for k ’ L (6.38)

The following preliminary estimates are needed in the nonlinear error analysis for the two
terms on the left-hand side of (6.31).

LEMMA 6.1.  For the constructed profile W satisfying (6.26), and the numerical error function
with a discrete W bound given by (6.34), for k=n,n—1,n—2, we have

1S (" 2™ = (5@ 2" 2™ oo

SélAt, 639
(Su (W™, W)™ — (S (2" ")

=NTHEDLE with [N < Co, (6.40)

N2 = (m—1) (@)™ 2,
for some €@ between ﬁh(%W"—%W’“l) and Dh( x" —f:c 1),

and | DRNT || oo < Cs,
if we define (N"TY)o = (N TY2), (N2 = (N2 04, (6.41)

in which C1, Ca and Cs are only dependent on the exact solution, and independent of At and
h.

Proof. Based on the representation identity (6.38), we apply the intermediate value
theorem and see that

(Sh( n7 nfl))mfl_(Sh(xnflwran))mfl
— (m—1)(M)" 2D, ( (@ -2 *1)—%(;5"*1—95"*2)), (6.42)

with €1 between ﬁh(%x ;a:” 1) and Dh(3 n-1 ;x"_Q). Meanwhile, by the upper
estimate (6.35) and the lower bound (6.37), we get

€0 Sﬁh(§$k*1$k71)§ 3§

A substitution into (6.42), combined with the estimate (6.36), indicates the desired inequality,
with C1 =2(m— 1) max(% 50* ym=2(er +1).
O
A similar application of 1ntermediate value theorem reveals that

(Su (W™, W)™ = (S (™, 2" 1) = (m = 1) ()" T2 D", (6.44)

, for k=n,n—1, so that %O Sf(l) < % (6.43)

and £® between ﬁh(%W” — %W"‘l) and Dh(% — 1" 1). Using the same argument as
; . €5 2) .~ 3C*
in (6.43), we see that -2 <@ < 25—, so that

4 30 )|m_2|

A2 oo = [m = 1) (€)™ oo < Cai= (m— 1) max(=, 2
0

(6.45)

which completes the proof of (6.40). Moreover, for two adjacent grid points z; and z;41 (with
1<i< M —2), motivated by the fact that

§i is between DhW"+ 2 and Dy “n+1/2 5(2)1 is between DhW"Jr Y2and D :E"Ill/z, (6.46)
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we have the following observation:

€5, — €21 <[ Da WY = D

+ ‘ﬁh:?wrl/z

N 2n+41l/2
+ ‘thi+1

< %h(‘DiWZfll/z + ‘D,%Wi"“/z ) L OC(AL? +1h?)
<C*h+h=(C"+1)h, (6.47)

in which the preliminary estimate (6.34) and the regularity assumption (6.26) for the con-
structed profile have been used. On the other hand, with another application of intermediate
value theorem:

T NI = (m - 1) (€)™ T — (m - 1) ()
=(m—1)(m—2)(n")" 22 €2, (6.48)

with n® between 552) and §§_2~_>1, we get the desired estimate

4 3C*

NERE NPT < (m— 1) m— 2 max( =, =5
0

7

)m=3l et +1)h. (6.49)

This completes the proof of (6.41), by taking C3 = (m —1)|m — 2| max (% %)"’“3'(6'* +1).

* 9
€0

O

Now we proceed with a rough error estimate. Taking a discrete inner product with (6.31)
by 22" *! leads to

n ,n—1y\ym—1 ~n+l__ ~=n
<(Sh($ , )) T X ,21‘”+1>+2A0At<Dh(fn+l*57”),Dh5&n+1>

m(fo(X)m=2 At
In(DpyW™) —In(DyW")  In(Daz"™ ') —In(Dpa™)\ i1
-2 X _
<f0( )( Dy, (Wn+l —/n) Dy (an 1 —zn) ),x >
_ _2< (SpW™,Wr=hH)m =t — (S (e, 2"t Wt 55”+1>
- m(fo(X))" 2 At
2 Dpzntt Dpz™ el S
2A¢ <DhW"+1Dh$"+1 DnWnDpa™ ,Dn >+2<At , T > (650)

For the temporal derivative term, we make use of the equality

2" @ =) = (@) - @ P 2 @ @ (65
and get
Rz )™t gt g
<(Srr5(fo X )sz)—2 At 2 ’ >
Z ﬁ (< (S:’LTE:(CfO,(xX))BL)iz 7(~n+1)2> - < (S:),L('(Tfo’(xX))rzLEQ 7(jn)2>)
A (Bl DT ey — (eI a2y

(
B WICNC Sl e A
At m(fo(X))"2

Furthermore, with an application of the preliminary estimate (6.39), the last term of (6.52)
could be bounded as
i< (Sh(xvl7$7L—1))m71 _ (Sh(xn717xn72))m—l
At m(fo(X))m—2

,(:E”)2>. (6.52)

(@) <Calla" 3, (6.53)
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with Cy = Cy max( mgxfo(X))‘mfm.

1
ming fo(X)’
The second term on the left-hand side of (6.50) could be controlled by a standard inequal-
ity:

2A0AL(Dy (" — &™), Dpz™ ) > Ao AL(|| DR )3 — | Dri"”|2)- (6.54)

The Cauchy inequality could be applied to bound the term associated with the local truncation
error:

2(r", 2" <|lT I+ 11 (6.55)
For the second term on the right-hand side of (6.50), we make the following observation:

Dhi‘n+1
DhWn+1thn+1 )

thin
a( D
DyWnrDpxm ’

—2At2< Dhi "+1> <0, (6.56)

D"t ) <200 1DRE" |2+ [ Dz |2

1
3(e5)?
<AP|DRE" 3 +4A8(eq) || DR 3

< CsAt|E" T3 +4At(eh) || Drz"™ |3, (6.57)

in which (6.56) is based on the fact that Dy W™ >0, Dpz"* >0 (as given by the unique
solvability analysis in Theorem 4.1), the first step of (6.57) comes from the separation prop-
erty (6.25) (for the constructed profile W) and the preliminary estimate (6.35), and an inverse
inequality has been applied at the last step.

For the first term on the right-hand side of (6.50), the preliminary estimate (6.40) and the
regularity assumption (6.26) have to be applied:

o VWO (S T WIS

m(fo(X))™? At
_ <Nn+1/25hi,n+l/2 . Wn+1 —Wn i"+l>
m(fo(X))m—? At
< Col| D" 22|22 < 6(\|Dh53"+1/2\|3+\|5n+1||3), (6.58)

with Cg = fczo -max( mgxfo(X))‘m—Q‘.

ming fo(X)’

Notice that the inequality ||Dp f|l2 < ||Dnf||2 has been used in the last step.
The rest of the analysis is focused on the term associated with the nonlinear diffusion part:

In(Dp W™ —In(D, W™) N In(Dpz™ ) —In(Dpa™)

nlje _
NLS : Dh(WnJrl _Wn) Dh(xn+1 _xn)

(6.59)

The following lemma is needed in the nonlinear estimate; its proof will be provided in the
Appendix.

LEMMA 6.2. Fiz 29 >0, and we define q1(x):=— w for x>0. The following properties
are valid:
qi(z) >0, for any x>0, (6.60)
0 () —01(2) = (1) (y—2), with ¢} (n) between 5L, 5 and Gy, Vo >0,y>0,  (6.61)
q7 (z) <0, for any x>0, (6.62)
M is a decreasing function of x, for any fized y > 0. (6.63)

y—x
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Subsequently, the following point-wise nonlinear estimate becomes available for N'LE ntl/2,

LEMMA 6.3. At each numerical mesh cell (z;,zi+1), we have the following estimate

NELET =D, Dhgz;fll/z +€, Dy, (6.64)
withe® > 1 <eW  <o(es) 2 (6.65)

i+1/2 7 5 (C*)z S S2
Proof. The following decomposition is performed for N LE:

NLETT2=NLem > L NLem TP with
N,an+1/2’(1) __ ln(DhW"+1) — ln(Dhm") + ln(th"“) — ln(th”)

DyWntl — Dyxn Dypxntl — Dy xm
=q (DW= qu(Dpa™th), with fixed zo = Dpa™, (6.66)
N _ In(Dp W™ ) —In(D, W™) N In(Dp W™ —In(Dpa™)
N D,Wn+l — D, Wn DpWn+1 — Dpan
=q1(DRLW™) —q1(Dra"), with fixed zo =D, Wt (6.67)

For the first part N'LE"TY2 (1) we make use of the following bound for Dpz™*?

< (Dpa" i1 < since0<zp ' <1, VO<k< M, (6.68)

1
h b
so that an application of property (6.63) implies that

q(DR,W™ ) — g1 (Dpa™™) ! (DRW™ ) —qi(3)

DhW”+1 ,thn+1 - DhW"'H _
nl_In n
— O g (DY)
= h ’1L T >—oh, (6.69)
&= DpWnt 20~

in which the last step is based on the preliminary estimate (6.35), as well as the fact that the
value of —qi (DL,W™?) is between Dhulm - and D}II,,L . This inequality is equivalent to

1

n+1 1 ~n
Neep W =e?, Dnall),, with ey, > 25 h. (6.70)
For the first part NLE"TY%®) | we apply property (6.61) so that
NLET2E) = 4/ (DEW™) — g1 (Dra™) = ¢, () DnE", (6.71)
with ¢ () between L L and L . (6.72)

2(DpWn)2" 2(Dpzx™)?’ 2(Dp,Wnt1)2

On the other hand, by the separation property (6.25), the regularity assumption (6.26) for W,
combined with the preliminary estimate (6.35), we obtain the desired estimate:

<l <2(e;) (6.73)
In other words, the second estimate in (6.64) becomes available:

n+1 2 4 _
Nﬁg’b:l//22< )7§<+1/2Dhm7,+1/27 Wlth ( )2 >~ ,L(+)1/2 >~ ( ) 2- (674)

This completes the proof of Lemma 6.3. 0
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As a consequence of this lemma, we analyze the nonlinear product at each cell (z;,zi+1):

f( +1/2)_/\/'[,5'nj11/22 2Dh~7:-r11/2

:2f0(Xi+1/2)(§i+1/2(Dhj:L++11/2) +€z+1/2Dhi?lel/2'th;’zrl/z)
1 ~n *\ — ~N ~Mn
ZQfO(Xi+1/2)(2 = h(Dnd )t —2(e) 2thi$}2~thi+m)
2C™ ()™ n
> 2y (Kivs)- (- 24D (pya02). (6.75)

in which the Cauchy inequality has been applied at the last step. A summation of this inequality
yields

(fo(XONLE™ 2D 3" 1) > G~ [ D3, with Cr =4C" (65)~*[lfo(X) - (6.76)

Finally, a substitution of (6.52), (6.53), (6.54), (6.55), (6.56), (6.57), (6.58) and (6.76)
into (6.50) leads to

(Bt
(Sh(e"~1,zm )™=
ST

C “n _n
+ALT3 + 5 AL DRE 2|54 Cr - —||Dh 13- (6.77)

(@) + Al 3+ (Ao +4(e5) )AL Do 3

On the left-hand side, we observe the following point-wise lower bound, which comes from the
preliminary estimate (6.37):

CACAR ) 1,65 ma1 . 1 ) [m—2]
> = (= - - )

m(fo(X))m—2 = Cs m( 1 )™ min (maXQ 70X ,Irgnfo(X)) . (6.78)

At(CG + 1+C5At) 78, provided that At is sufficiently small, (6.79)

which in turn indicates that

(Sn(@",e" )" C n+1 O 1 mt1,2
< m(fO(X))m—Q At( +1+C5At) ( + ) >27”$ + ”2 (680)

On the right-hand side, the following estimates are available, based on the a-priori assump-
tion (6.32) and the preliminary estimate (6.33):

( (Shgg&s)—j)}?m_l (@) =O((At +1*)), (6.81)
AtC4||E" |2+ At||7™ |2 = O(AL(AL* +h1)?), (6.82)
(Ao+4(e5) ™AL ||Doi" |5 = O(AL? (AL® +1°)?), (6.83)
%AtHD T2 =0(AHAE +1*)?), (6.84)
67-%”1)@"”3 < CCrORCP (AL + )2, (6.85)

Then we arrive at a rough estimate for the numerical error function at time step t"*1:

%Hfinﬂ I3 < (CC‘7C’2C2 + 1) (At* +1*)?, provided that At and h are sufficiently small,
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e |22 < (AP +h?), with C:=

( ACCrCsC? +1) ). (6.86)

Cs
under the linear refinement requirement C1h < At <C2h. Subsequently, an application of 1-D
inverse inequality implies that

Cllz" |l
iz’ iz

DRz oo < <Ci(At2 +h2), with &, =CC, (6.87)
under the same linear refinement requirement. Because of the accuracy order, we could take
At and h sufficiently small so that C (At% +h%) <2, which in turn gives

%0 < Dpz"t =D W — D"t gc*+%’:é*, (6.88)

in which the lower and upper bounds (6.25), (6.26) (for the constructed profile W) have been
used again. Such a uniform ||-||;;;1,.c bound will play a very important role in the refined error
h

estimate.

REMARK 6.3.  In the rough error estimate (6.86), we see that the accuracy order is lower
than the one given by the a-priori-assumption (6.32). Therefore, such a rough estimate could
not be used for a global induction analysis. Instead, the purpose of such an estimate is to
establish a uniform |- ||W}1,oo bound for the numerical solution at time step t"*!, as well as its
temporal derivative, via the technique of inverse inequality. With these bounds established for
the numerical solution, the refined error analysis will yield much sharper estimates.

6.3. A further rough error estimate.  Meanwhile, we have to derive a discrete
W,} *>® bound for the second order temporal derivative of the numerical solution at time step
t""1, which will be needed in the refined error estimate. In fact, such a bound could not be
obtained by (6.87). To obtain such a bound, we have to perform a further rough error estimate.
We revisit the proof of Lemma 6.3 and discover that, §£i)1/2 has to be between D, W"H!
and Dp2"", based on the representation (6.66) and the property (6.61). In more details, the

regularity assumption (6.26) (for W) and the W;* bound (6.88) imply a similar bound for

(3)
f’LJrl/Q

2(0 2 _€Z+1/2_ (e0)™ " (6.89)

With such a bound at hand, we are able to rewrite the inner product in a more precise way:

fo(Xiya)NLEL 2 2Dy},

i+1/2
= 2.f0(Xi+1/2) (52+1/2 (Dhjzl-:rll/zf +'§1<'1)1/2Dhj?j11/2 ' Dhj?+1/2)
Z 2f0(Xi+1/2) (W(Dhﬁfj&gf - 2(68)72Dh3~7?++11/2 : Dhi'?+1/2)

Z 2f0(Xi+1/2) : (@(D ~;L4J_r11/2)2 —4(6*)2(68)74 : (Dhi‘?+1/2)2)v

which in turn gives

<fo(X)N£€”+l/2,2Dh:i”“> > Collz™ )2 = Cro| Dnz" |12, (6.90)

With 09 =

1 . 2 i ARN2 ky—4
3Gy M), Ca=8(E7 (&) o)

A substitution of this updated estimate yields a rewritten inequality for (6.77):

<(S:’£($;O,K;)f)li)_vzfl At(C6 -|—1+C5At) (& "“)2>+C9At||Dh~"+ll|
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(Su(a" " 2 )2 oA Ik VDAL D12
<< m{ax)m2 >>)+Atc‘4ll I3+ (Ao +4(ed) AL D" 13

n é n ~ ~n
+At||7 ||§+76At||Dhm 22 4 CroAt|| DRE" |2 (6.91)

Meanwhile, all other estimates (6.78)-(6.84) are still valid, then we arrive at

H "1+ CoAt]| Dz 3

C “n
6At||D Y221 Cro At DrE"™ |34+ O(AL (AL +h3)?)

< CuuAt(|| Dua" |5+ [1Dn@" " 13) + O(AL* (AL + 17)?)
<CAt(A +1%)?, (6.92)

with C’ll = C’g + gf , C’lg = 06’1 102+ 1, provided that At and h are sufficiently small. This in
turn results in a further rough estimate for "

IDRE" |2 < Co (AP +1h?),  with Oy = (C”) (6.93)
9
As a consequence, an application of 1-D inverse inequality gives a sharper estimate
for || D™ ™| oo
\|Dh5:”+1||oo§C”D+?l”zgég(Atg+h%), with O3 = CCy, (6.94)
IDAD2E" e < (Co 4 1)(AE 4 1) < Ar, DRa" = T = Z’;“}"*l , (6.95)
in combination with (6.34) , under the same linear refinement requirement. This ||| 1.0

bound for the second order temporal derivative will play a very important role in the refined
error estimate.

6.4. The refined error estimate. Now we proceed with the refined error estimate.
Taking a discrete inner product with (6.31) by 2" +/2=z"*! £ z" leads to

(Sh(xn,xnfl))mfl i,n+17i,n 41 . ~n+1_ o I o
{ m(fo(X))" 2 At HE" ) AAUD(E" "), D (a4 ")
In(Dp W™ —In(D,W™)  In(Dpa™ ") —In(Dpa™) 1l an
~(weo( Dp(WrHT—Wn)  Dj(ant1—zn) )-Du@*!+3")
_ 7< (Sh(Wn,Wnil))mil _ (Sh($n,l’n71))m71 ‘ WnJrl —-wn 253”+1/2>
m(fo(X))m—2 At
Dhi’n+1 Dyz" ol ~ N -

—A 2 _ D n+ n n ~n+1 n ) )

t <DhW"+1thn+1 DhWnDhLL'”7 h('r +z )>+<7— s L +z > (6 96)

For the temporal derivative term, the equality (z"**+z")(z"t —3")=(3"")% - (3")?

implies a similar estimate as in (6.52)-(6.53):

(ol g s
m(fo(X))m—? At

(S ) (S )

z—(<(Sf7§f;o’f;)_;,i)j1,(£"+1)2>—<(Sh(mn s 2)) — L @)) -Gl

n

+z
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For the second term on the left-hand side, the second term on the right-hand side of (6.96),
and the local truncation error terms, the following bounds could be similarly derived:

AoAU(Dy(E" T = &"), Du(F" +&n)) = Ao At(| DrE" 3~ | DrE"2), (6.98)

A" & 43" <A+ |E T E < A3+ (IIw"“HerH "l3),  (6.99)

_At2< Dyttt Dyz”
DhW"+1th”+l DhW"th”’

1
<2A¢*- | DLE™ |2+ || Dai™ || — A
%(63) 3(e5)?
<2087 (e5) X (I1DhE" |15 + 1 DRE"[13) +2A¢% (e5) 2 | Da" I3
<208 (e5) "2 (I1DnE" |13 + 21| Dn" |3), (6.100)

Dh(:z"+1+;z")>

~n 2
z"(2

in which the separation property (6.25) (for the constructed profile W), the preliminary esti-
mates (6.35), (6.88) (for ™ and 2™, respectively), have been used in (6.100).

For the first term on the right-hand side of (6.96), we cannot count on the estimate (6.58),
since there is no stability control for ||Dpz"+"?||3= |Dr(22" — 32" ")||5. To overcome this
difficulty, a summation by parts formula is applied, due to the fact that Z, ~n+1/2 ~n+1/2 =0:

<(Sh(Wn wn— 1))m 1 (Sh($n,$n71))m71 . Wn+1_Wn jn+1/2>

m(fo(X))™ At
=— <Nn+1/25h%n+1/2.wn+l_wn gj«n+1/2>
m(fo(X))"? At
~ nt1/2 WL W 1/ 1/
=2( Dy (Bl — g T?) 7 TR, 101
< h( (X)) z ),z > (6.101)

Meanwhile, the following observation is made in the finite difference space:
NP2 W W n+1/2 wrtt_wn
Dy, ( S '2?"+1/2) o
m(fo(X))™2 m(fo(X))™2
~n ~n+1 n—+1 n
(|| T2+ 1D 2) - (N2 oo + | DRN™ 2| )

Wn+1 _ Wn Dh(Wn+1 7Wn)
-(|| Nl I P o)

1 1
(st 1P (G )-)
< L(Got C)CusC (& o+ | Dua™ ), (6.102)

<l (

X :En+1/2)

2

o
(fo(X))m2

in which the preliminary W,"> estimates (6.40), (6.41), and the regularity assumption (6.26)
have been repeatedly used in the derivation. Then we arrive at

<(Sh(Wn wn— 1))m 1 (Sh(xn,xn—l))mfl .Wn+1_Wn jn+1/2>
m(fo(X))™~ At
n ~T Zn . ~ 1 ~ ~ ~ *
<2Cu (|7 2+ | Daz" T ) [F7F 22, (with Cra=—(Ca+C5)CoC)

1

with 6'131:” W}Hwa

low +11Dn (

(C’14+014( ") )|‘~n+1/2||2+01 ||~n+1/2“ +(C~V*)72‘|thn+1/2”§~ (6.103)

Again, the rest of the work is focused on the error analysis associated with the nonlinear
diffusion part, as given by (6.59). However, the point-wise estimate (6.64), (6.65) is not useful
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in the refined analysis any more. Instead, we begin with the following application of higher

order Taylor expansion for Inz, around “’%
Inz —Inzo 1 2 (z—20)? ( 1 1 ) (x—x0)?
- : ). , 6.104
rowo | ILm ' gbmya 8 \5E0)F  BE®)) 32 (6.104)

with £€® between 420 and £ between “’% and zo. This in turn gives

In(DyW™ ) —In(D,W™) 1 N 2 (DWWt —wm))?
Dy (Wn+l —Wn) Di( wn+12+wn ) 3(Dn Wn+12+wn )3 8
1 1 (Dp(WnH —wm))*
. 6.105
+(5607 * 57°) 32 ’ (6.105)
In(Dpz" ™) —In(Dpa™) _ 1 n 2 ' (Dp (2™ —z™))?
Dh(anrl _mn) Dh(zn+12+zn) S(Dh In+l2+l'n. )3 )
1 1 (Dp (2™t —z™))*
+(5(n<3>)5 + 5(17(4))5) = : (6.106)
with
n+1 n n+1 n
™ between Dh(W) and DWW @ between Dh(w) and D W™,
n+1 n n+1 n
n(S) between Dh(x 2+a: ) and Dzt 77(4> between Dh(x tz )and Dpz™.
Then we arrive at a decomposition for N.LE™TY/2:
NLe T P=NLD A NLP N LD, with
1 1 Dpim /2
NL® = + = : ., (6.107
Dh(Wn+12+Wn ) Dh(zn+12+zn ) Dh( W!L+12+W7L ) .Dh(z1t,+l2+zn ) ( )
1 D n+1 _ ny\\2 D n+1 _an 2
= (LB e o
(Dn=—5—"-) (Dn =)
@o_ 1 (_ 1 1 nt+l _ yrrny\4
NET = 160( ((nm)s + (n<z>)5)(Dh(W W)
1 1 n+1 ny\4
+(W+W)(Dh(l’ —X )) ) (6109)
For the leading expansion N LD the following nonlinear estimate is available:
- 2 ~n+1/212
NLWD 2Dz ) = ,(Dpa"™?
( =(5 () (e )
2
> || Dpi" 2|3, (6.110)
(C*)?

with repeated applications of (6.40), (6.41) and (6.26). The second expansion N'£? could
have a further decomposition: N'£® =N L L N L322 with

Dh(Wn+l _ Wn _‘_:rn-‘—l _l_n) 'Dh(jin+l _‘%n)

(2),1 _
N D , (6.111)
NLEZ=NLC® - Dyt (Dy (2" —a™))?, (6.112)
n+1/2\2 n+1/2 n+1/2 n+41/2\2

(Dy W) Dy 72)3
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We notice a bound for the nonlinear coefficient N'£C?):
3(C)?
5(e5)?

This in turn yields an estimate for the term associated with NLP2:

INVLC®| < =6(C*)*(e)) 2:=Cis, by (6.25), (6.26), (6.35), (6.88). (6.114)

NLDT 2D, 3" T2y > —2C6 At||DRE™ 2|2, with Chg:=Chs(C* +1)2, (6.115)

in which a point-wise bound ||Dz(z" " —z")||cc < (C* +1)At comes from (6.26), (6.35) and
(6.87). For NL®! we introduce the following discrete function

Dh(Wn+1_Wn) + Dh(zn+1_zn)

,Yn+1/2 —_ At(DhW"+1/2)3 At ,  so that (6.116)

VLD D@ +37)) = Aty (Dya" ) (Dua™))?)
= At((y" 2 (DRE™ %) = (v, (DaE™))))
—AL(y"T2 A2 (DR EM))P). (6.117)
For the last correction term, the following observation is made:

ntya_n=ifa _ AtDp(DiW™) + AtDy(Diz™)

K (DR WnHi72)8
D n+l _ n D n+l __  .n
+/\/'£C<2)-( (W s w )+ n(z i x ))-Dhj’,H»l/Q‘ (6.118)
Meanwhile, a ||- le « bound for D?z" is available, as a result of the further rough esti-

mate (6.95) and the regularlty assumption (6.26) for W:
IDr(De"lloo < [1Dh(DEW™) oo +|1Dn(DEE") | < C* + %0 =C". (6.119)

This in turn implies an O(At) estimate for the first part, in combination with (6.25)

Dy, (D}W™)+ Dy,(D2a™)

SO+ c*
(DhWnH172)3 =

(€5)°
A similar bound for the second part is also available, which comes from (6.26), (6.34), (6.94)
and (6.114):

At ‘ At. (6.120)

D (Wn+17Wn) D (ZCTH—l*CEn) _ )
(2) . h h . n+1/2
‘NLC ( N n = ) Dy
< (207 +1)Ch5(C +C5) (At +h3) <AL (6.121)

Therefore, an O(At) bound for 4"+"/2 —4™~"/2 is obtained:
[y T2 =" Y2| o < CurAt,  with Ciri=(C*4+C*)(ey) 3 +1, (6.122)
so that the nonlinear inner product associated with A'L®"! could be analyzed as follows:

NLEE Dy (F 1 +2")) > At((y" 2, (Dh@" ™ )%) = (4" V2, (Dri"))*))
—Cir A% D" (|3 (6.123)

Its combination with (6.115) yields the nonlinear estimate for A£(?):

VL D@ 43") > AU, (DRa™ 1)) = (777, (Dui™))?)
—Cis AL (|| DR |5 + || Dri"||3), with Cis=Cis+Cir . (6.124)
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The analysis for N'L® is similar for that of N'L®*2, We are able to obtain the following
estimate; the technical details are skipped for the sake of brevity.

(NLO, D@+ +37) > ~CaaAt(|Dn™ |3+ Du3"[3) — (A +)°.  (6.125)
A combination of (6.110), (6.124) and (6.125) results in an estimate for N'/LE™+2:

<N£8n+1/272Dh§:n+1/2>
R A (D)~ (7 (D))

2
(C)?
—Cao AL (| D™ |13+ | Da" [13) — (AL" +h")?, (6.126)
with Ca = Cig+ Cho.
Finally, a substitution of (6.97)-(6.100), (6.103) and (6.126) into (6.96) results in

(Sh(mnvxnil))mil ~n4142
( m{fo(X))" 2 @) (C+)?

+AA (| DRE" |3 = |D&" 13) + A8 ("2, (Dad™1)%) = (4", (DnE™))))
021

h:ﬁnJrl/z”%

(Sh(xn_ 73:" 2))m—1 ~n+1 ~ ~n |2 ~n—1

<

< (g @) + Coastla™ B+ Castla 3+ 5 At
+Caa AP (1D 3+ 1 DuE" |3) + At(I " 3+ (At +*)?), (6.127)

with Ca1 =Cha+C34(C*)?, Con = 6214 + % 42, Co3=Cu+ i+ % + 9@%’ Caa=Cao+4(eh) 2
Subsequently, a summation in time gives

<(Sh(m”,x"—1))m_17(£n+1)2>+ AtZHD ~k+1/2||

m(fo(X))" 2 (G2
A8 (Aol D™ 3+ (72, (Dni >2>)
B n+1 B n+1
05 A Y |73+ 2024 A8 3 | D" |3+ C(A + 142, (6.128)
k=0

with Cos = Caz + Cas + % Meanwhile, by the definition of 4™*"/? (6.116), we have

n+1/2H < 20* +1
=< @p

In turn, by taking Ao = (2C* +1)(e§) >+ 1, and making use of the inequality (6.78), we obtain

Iy by (6.26), (6.35), (6.87). (6.129)

CsllZ" (I3 w35+ AP DR 3
(C )?
B n+1 B n+1
ALY ||5ck|\§+2024At32 | DRa"||3 +C (At + )2, (6.130)
k= k=0

Therefore, an application of discrete Gronwall inequality (in the integral form) leads to the
desired higher order convergence estimate

/2 .
&+ + (€ mzw P am)B) < Caart+n), (6.131)

This completes the refined error estimate.
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6.5. Recovery of the a-priori assumption (6.32).  With the higher order error
estimate (6.131) at hand, we conclude that the a-priori assumption in (6.32) is satisfied at the
next time step t"“, since C4 takes the following form:

(625+2C~'24)tn+1) A ((025+26~'24)T).

Ca<Ce - <C:=Ce -
PP ( min(Csg, 1) P min(Cs, 1)

(6.132)

We also notice that Cs, Cas and Cas are independent of C. Therefore, the a-priori assumption
in (6.32) is satisfied, so that an induction analysis could be applied. This finishes the higher
order convergence analysis.

Finally, the convergence estimate (6.3) is a direct consequence of (6.131), combined with
the definition (6.4) of the constructed approximate solution W. This completes the proof of
Theorem 6.1.

7. Convergence analysis of Newton’s iteration
In this section, we prove the convergence of damped Newton’s iteration (3.11) in the convex
set Q, based on self-concordant [30]. The definition of self-concordant is given as the following:

DEFINITION 7.1. Let G be a finite-dimensional real vector space, Q be an open nonempty
convex subset of G, A: Q—R be a function, a>0. A is called self-concordant on Q with the
parameter value a, if A€ C? is a convex function on Q, and, for all x€Q and all w€G, the
following inequality holds:

|DPA(2)[u,u,u]| < 202 (D?A(z)[u,u])*?

(DFA(z)[u1,--- ,ux] henceforth denotes the value of the k-th differential of A taken at x along
the collection of directions wuy, - ,u) [30].

The self-concordant function has two typical characteristics [30]:

e Linear and (convex) quadratic functions are evidently self-concordant, since they have
zero third derivative.

e A function f:R"™ — R is self-concordant if it is self-concordant along every line in its
domain.

Then we review the definition of F', given by (4.3)-(4.6), in which G(z,z0) turns out to be the
primitive function of —%, for a fixed xo, as formulated in (4.7). The convexity of
Fy, F3 and F, (in terms of %) is obvious. For the functional F3, the inequality (4.8) is valid,
in which the convexity of —In(1+z) has been used. This fact implies the convexity of Fb.
Therefore, we conclude that F' is convex in terms of Z, provided that DpZ > —1 at a point-wise

level. Furthermore, F' is strictly convex, because of the strict convexity of Fj.

THEOREM 7.1. Suppose fo(X)€EN is the initial distribution with a positive lower bound for
XeQ and \/aI:Og_ILHMfo(Xi)hCM%m with a positive constant Cnewton, then F(&), defined
1

in (4.3)-(4.6), is a self-concordant function and Newton’s iteration is convergent in Q.

Proof. Since linear and quadratic functions have zero third derivative, F1 (%) and F3(%)
are self-concordant. We just need to prove F5(£) and Fy(Z) are self-concordant along every
line in Q.

Suppose " € Q and let

1
— "% y=1,...,M.
Then fi_% >0, i=1,---,M. For Vi=1,---,M, we can obtain

fO(XH—%)
1+Dh£i+% —Dpx

6F2(iz) . fO(Xz—%)
0% - 1+Dh{ii_% *th?

ln(EP%) n 1n(§i+l)a

2
1 1
1 i+ =
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02 Fy (i Jo(X;_1)
) — S(=6 ) +In,_y)
g h(1+Dh$i_l 7Dh1177_1_l)
3 i—3
fO(XH-l)
- N 2 2[(1_‘£i+%)+1n(£i+%)]7
h(14+Duéoy —Dua?, )
8 (5 2f0(X, 1
0 F{(mz) _ o(X; 1) (175-_;)+ln(€-_;)+1(1*6_;)2
973 3 =3 =3 2 =3
i h2(1+Dh:ici_rthv 1)
2 13
ZfO(Xi+l) 1
_ 2 3 |:(1_§i+%)+ln(€i+%)+§(1_§i+%)2:|‘
h2(1+Dh£i+; —thgl)
2 it3
QJCO(XFl 1
<| b [amg pme )+ 0-¢ 7]
h2 (1+Dhi’i_% _th?,;)
2f0(Xi+%)

1
3 |:(17§i+%)+1n(£i+%)+§(17€i+%)2:| ‘
h?(1+Dai,yy —Dra?,, )

Notice that 1
Int=In(1+(t—1))=(t—1)— 5(t—1)2+0(zt—1)3, VE>0,

hence there exists a constant Cnewton >0 such that
1 5]° 3
(-6l )+ 506 <Cnewien[-(1-6 ) -mie, )]

— mi V) PCNewton ;
If the parameter ﬁ,—ogznsnM fo(X3)) < , we obtain

2fo(X;_1
e (BN ESCNV IS B
h? (1+Dhi'i_% thm?_%)
3
1 Xi,l
<272 | — Jo( 2) 2[(1—51‘7%)"'11”(5%%)} Ni=1,---, M. (7.1)

h(l—f—Dhi‘F% — Dpa” 1)
i3

So F>(z) is self-concordant. By the same method, F4(Z) is also self-concordant. Based on

Theorem 2.2.3 in [30], Newton’s iteration is convergent in Q. ]

8. Numerical results

In this section, we present an example with a positive state to demonstrate the convergence
rate of the numerical scheme.

Before that, we define the error of a numerical solution measured in the £? and £° norms
as:

M-1
1
||€}L||§ = 5 <ei0hwo + Z eiih%‘ +eiMh$M> 5 (81)
i=1
and
el =, mass, {len. |}, (5.2
where e, =(eny,€ny, " ,€n,, ) and for the error of the density f— fn,

hzi =Ti+1 —Ti—1, 1§i§M—1; hro =1 —Zo; th =TM —TM-1,
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and for the error of the trajectory = —xp,
he; =2h, 1<i<M—-1, hgy=ha,, =h,

where h is the spatial step.

Example 1 (The problem with a positive initial state). Consider the problem (2.2)-(2.5)
in dimension one with a smooth positive initial data

fo(z)=05—(z—0.5)%, ze€Q:=(0,1). (8.3)

Firstly, the trajectory Equation (2.11) with the initial and boundary condition (2.12)-(2.13)
can be solved by the fully discrete scheme (3.10), and then the density function f in (2.8) can
be approximated by (3.12). The reference “exact” solution is obtained numerically on a much
finer mesh with h= ﬁ7 At= ﬁ. By Theorem 7.1, the convergence of Newton’s iteration
is ensured for any choice of At and h. Meanwhile, we take At=~h in the practical computations
for simplicity of presentation.

Table 8.1 shows the second order convergence for density f and trajectory « in the £? and
L°° norm with both mz% and m=3 at time t=0.05. That verifies the optimal convergence
rate of the numerical scheme. Figure 8.1 (a) and (b) present the density f for both values of m
at time t=0.05 and ¢t=0.1, respectively. That implies that the speed of diffusion increases as
m increases. The reason is that the density f is bigger than 1 such that the diffusion become
larger with the growth of m. Figure 8.2 (a) displays the decay of total energy and Figure 8.2

(b) shows that particles move outward at a finite speed for m=2.

m=5/3
h At el Iz Order el lloo Order [EAE Order lled oo Order
1/200 1/200 1.506e-04 3.277e-04 7.593e-05 7.844e-05

1/400 1/400 3.620e-05 2.056 8.421e-05 1.960 1.871e-05 2.021 1.934e-05 2.020
1/800 1/800 8.495e-06 2.092 2.033e-05 2.050 4.464e-06 2.067 4.617e-06 2.066
1/1600 1/1600 1.887e-06 2.170 4.695e-06 2.114 1.000e-06 2.158 1.036e-06 2.156
m=2

h At BB Order led oo Order [EAE Order lled oo Order
1/200 1/200 1.502e-04 3.279e-04 7.642e-05 7.902e-05

1/400 1/400 3.599e-05 2.061 8.370e-05 1.970 1.873e-05 2.028 1.938e-05 2.028
1/800 1/800 8.431e-06 2.094 2.005e-05 2.061 4.458e-06 2.071 4.615e-06 2.070
1/1600 1/1600 1.853e-06 2.186 4.563e-06 2.136 9.871e-07 2.175 1.024e-06 2.172

L At is the time step and h is the space step.

TABLE 8.1. Convergence rate of solution f and trajectory x at time t=0.05.

Example 2 (The problem with free boundaries). In this example, we consider the
Barenblatt solution [13], which can be expressed as

_ k(m—1 z|? 1/(m=1)
(t+1)~" (1—%ﬁ> , £ €[—£p,E5], >0,

0, otherwise in Q,

B (z,t) = (8.4)

where 14 =max{l,0}, k=(m+1)"" and

Ep= m(t+1)k~

Let Q=(—10,10). We take B (z,0) as the initial data and solve the problem with the
numerical scheme (3.10) with (3.17). Figure 8.3 (a) displays the numerical density frum and
the exact solution fezac: at time t=>5 and (b) gives a zoomed-in view near the right interface
with the parameter m =2, the spatial resolution M =100 and the time step A¢t=1/100. The
results indicate that the numerical solution is an effective approximation to the exact solution.
Moreover, Figure 8.4 (a) and (b) demonstrates the total energy decay and the total mass
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0.43}
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0.39
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(a) t=0.05 (b) t=0.1

Fic. 8.1. The density f at time t=0.05 and t=0.1 (h=1/100, At=1/100).

0.05
0.36 t t
0.04 % +
-0.361 I I
_ 0.03f ¢
£ |
-0.362 S 002k I
¥ *
-0.363 0014 r
. *

-0.364 : 0

0 0.05 0.1 0 0.2 0.4 0.6 0.8 1

particle position, x

(a) Total energy (b) Particle Position for m =2

F1G. 8.2. The evolution of total energy and particle position (h=1/100, At=1/100).

conservation, as well as the finite movement of particles, respectively. Table 8.2 gives the £?
and £°° convergence rates of f at time t =1, and at X =0. Because of the low regularity of the
exact solution in the free boundary set-up, only the first order convergence rates are observed
in this case.

Example 3 (The waiting time phenomenon). The waiting time phenomenon is a classical
and difficult problem in porous medium equation, which could occur for some initial state [39].
More detailed descriptions could be found in [13]. Now we consider the following set-up:

Q= (_575)7 (8.5)
—1 ) .4 1/(m—1)
_ {—mm [(1—0)sin®(z)+0Osin (x)} , x€[—m,0], 36
fol) {07 otherwise in , (8.6)
with 6 € [0,%]. Then the waiting time is positive and the exact value is given by [2]
1
. (8.7)

tezact = 2(m+1)(170) .
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0.6
0.05 fexact
— — —f
num
0.04
2 20.03
@ @
c c
[} [}
Co02 T 0.02
—f
exact 0.01
— — —f
num N\
0 : ’ : 0
-5 0 5 6
particle position, x particle position, x
(a) t=5 (b) Zoomed-in plot near right interface

Fic. 8.3. The density f at time t=5 and zoomed-in plot near right interface with the exact
solution fezact and the numerical solution fnum (M =100, At=1/100).

5 . . . . 5 NN N N N N N N N N N
x 47
c
— Energy 2 3l
‘@
mass 3
0 Q
g2
£
[]
gl
0
-5 -5 0 5
0 1 2 3 4 5 time, t
(a) Total energy and mass (b) Particle Position

F1G. 8.4. The evolution of total energy, total mass and particle position for m=2 (M =100,
At=1/100).

In the computation, we take m=2 and 0= i. Figure 8.5 displays the evolution of f. It is

observed that the interface of f remains static before ¢ =0.2405 (the waiting time), and then
moves at a finite speed with M =100 and At=1/2000. Furthermore, Figure 8.6 (a) presents
the total energy decay and the mass conservation of the system. The particle movement in
Figure 8.6 (b) reveals that the particles at the interface do not move until ¢=0.2405. In
addition, Table 8.3 gives the convergence order for the waiting time. Although the convergence
rate is less than first order, at least a positive accuracy order has been obtained in the simulation
of this challenging problem. This example demonstrates another advantage of the proposed
algorithm.

This numerical example suggests that the proposed scheme works for the case that fo(X) is
degenerate in €2g. Such a performance comes from the subtle fact that, there is no logarithmic
term in the Equation (3.1), while the energy formulation is always valid for non-negative
fo(X) (by noticing that the energy density function flnjf is well-defined even if f=0 in a
certain region).
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m=2
M At Heng Order ||e£||Oo Order
100 1/100  3.147e-03 2.381e-03

200 1/200 1.573e-03 1.0005 1.191e-03 0.999
400 1/400  7.865e-04 1.0001 5.953e-04 1.000
800 1/800 3.932e-04 1.0000 2.976e-04 1.000

TABLE 8.2. Example 2. The convergence rate of f at the finite time T'=1.

0.5 0.4
0.4 03 | |
503 | = \ \
'g \ \ Bo2r | \
8021 ! 3 \ \
04 \ \ 01t | \
\ \ \ \

0 0
-3 -2 -1 0 -3 -2 -1 0

particle position, x particle position, x
(a) t=0 (b) t=0.2405

I
w

o
)

density, f

o
o

-3 -2 -1 0
particle position, x

(c) t=0.5

Fi1c. 8.5. The evolution of density f with m=2 (M =100, At=1/2000).

0.5 Sk N N2 Sk . N2 e Nl
0.5
% 0.4
5
energy 203
0 ——— mass 8
Q.
% 0.2
-0.5 E
<0.1
-1 . . . 0
0 0.1 0.2 0.3 0.4 time, t
(a) Total energy and mass (b) Particle Position for m =2

F1G. 8.6. The evolution of total energy, total mass and particle position (M =100, At=1/2000).
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M At tr, [y, —ty, .|  Order
50 1/1000 0.2540 0.032

100 1/2000 0.2405 0.0183 0.806
200 1/4000 0.2328 0.01053 0.7973
Tt 0.2222

TABLE 8.3. Example 3. The convergence rate of waiting time (m=2, 6= i)

REMARK 8.1. In two or higher dimensions, the determinant of the deformation gradient,
ie., det%, will appear in the trajectory equation, which becomes a fully nonlinear degener-

ate parabolic system. An efficient numerical method, which can satisfy the discrete energy
dissipation law, has not been available in this area. A similar numerical method, based on
evolving diffeomorphisms [5], will also encounter a similar difficulty. Because of this limitation,
we have to focus on the one-dimensional equation in this article. The proposed numerical
scheme (3.10) preserves the second order temporal accuracy, as well as all the nice theoretical
properties, such as positivity-preservation, unique solvability, energy stability and optimal rate
convergence analysis (provided that the exact PDE solution is sufficiently smooth). In addi-
tion, this numerical algorithm is able to capture complicated physical structures in an accurate
way, such as waiting time phenomenon, in the practical computations, due to its Lagrange
approach. These combined features make the proposed numerical method very attractive, at
least for the one-dimensional case.

9. Concluding remarks

A second order accurate numerical scheme, both in time and space, is constructed and ana-
lyzed for the one-dimensional porous medium equation (PME) based on an energetic variational
approach (EVA). A modified Crank-Nicolson temporal discretization is applied, combined with
the finite difference over a uniform spatial mesh. Such a highly nonlinear numerical scheme is
proved to be uniquely solvable on an admissible convex set, and an energy dissipation property
is established, in which the convexity of the nonlinear implicit terms has played an important
role. Moreover, an optimal rate convergence analysis is provided in this work, in which many
highly non-standard estimates have to be involved. The higher order asymptotic expansion is
performed to obtain higher order consistency estimate, the rough error estimate is needed so
that an application of inverse inequality leads to an W}i '>® bound for the numerical variable.
Subsequently, the refined error estimate is carried out to accomplish the desired convergence
result, in which the Wé "> bound for the numerical solution is applied. A few numerical results
are also presented in this article, which demonstrates the robustness of the proposed numerical
scheme.

On the other hand, one obvious limitation of this work is associated with the one-dimensional
nature of the problem. In two or higher dimensions, the determinant of the deformation gradi-
ent, i.e., det g—;, will arise in the trajectory equation, which is a complex nonlinear degenerate
parabolic equation system. A suitable numerical method in multi-dimensional case, which can
satisfy the discrete energy dissipation law, is still in the investigation process. Solving for
multi-dimensional PME by this energetic method and the corresponding optimal error esti-
mate will be left to the future works. Another limitation is the assumption of a positive initial
condition (fp>0), in which the convergence rate does not depend on the constant m. It is
well known that if the initial state has a compact support, the convergent rate decreases with
m. In this case, the trajectory equation with a free boundary makes the convergence analysis
more difficult. This problem will also be considered in the future works.
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Appendix. Proof of Lemma 6.2. A direct calculation gives

¢ (z)=— i(xfxziigz;flmo) >0, (A1)

in which the convexity of —Inz (for z >0) has been applied:
1
—;(m—xo)+(lnx—lnxo)>0. (A.2)

Meanwhile, a detailed Taylor expansion leads to

Inz—Inzo= l(ac —x0)+ 2—; (x—x0)°, with ¢ between o and z, (A.3)
x
which in turn implies that
Lz —x¢)—(Inz—1 1
qi(z)=— G x(():)v ;n):z no) = T with ¢ between z¢ and x. (A.4)
— o

Therefore, an application of the intermediate value theorem indicates that

¢1(y) = q1(x) = g1 (n) (y — ), with 7 between z and y, (A.5)

g1 (n)= 2—22, with ¢, between xo and 7. (A.6)
7

Of course, a careful analysis implies that
_1
=5

This completes the proof of (6.61).
A further calculation gives

q1(n) is between Lot and Yz >0,y>0. (A7)

/
q1 (77) 2y2 ) 272 )

27
2z

— L (z—=20)® —2(z—x0) (%(x—mo) — (Inx —lnxo))

(x—x0)*

g/ (z) =~ <0, (A.8)

for any x>0, in which a higher order Taylor expansion has been applied:

1
572 (£ —20)* + = (x—2z0)*, with ¢ between zo and z.  (A.9)

1
lnm—lnx():;(x—xo)—i— 308

As a direct consequence, by an introduction of g2 (z):= w for a fixed y >0, we get

@)+ ) )
(y—=)? -
since q1(y) is concave: —qi(z)(y—2z)+ (q1(y) —q1(z)) <0, Yy >0,z >0.

¢a(x) (A.10)

This completes the proof of Lemma 6.2.
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