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The Argo data is a modern oceanography dataset that provides unprece-
dented global coverage of temperature and salinity measurements in the upper
2000 meters of depth of the ocean. We study the Argo data from the perspec-
tive of functional data analysis (FDA). We develop spatiotemporal functional
kriging methodology for mean and covariance estimation to predict tempera-
ture and salinity at a fixed location as a smooth function of depth. By combin-
ing tools from FDA and spatial statistics, including smoothing splines, local
regression, and multivariate spatial modeling and prediction, our approach
provides advantages over current methodology that consider pointwise es-
timation at fixed depths. Our approach naturally leverages the irregularly-
sampled data in space, time, and depth to fit a space-time functional model
for temperature and salinity. The developed framework provides new tools
to address fundamental scientific problems involving the entire upper water
column of the oceans, such as the estimation of ocean heat content, stratifica-
tion, and thermohaline oscillation. For example, we show that our functional
approach yields more accurate ocean heat content estimates than ones based
on discrete integral approximations in pressure. Further, using the derivative
function estimates, we obtain a new product of a global map of the mixed
layer depth, a key component in the study of heat absorption and nutrient
circulation in the oceans. The derivative estimates also reveal evidence for
density inversions in areas distinguished by mixing of particularly different
water masses.

1. Introduction. The development of technology has vastly increased the amount and
complexity of data available that monitor the Earth’s environment. We focus on one type of
such data collected by the Argo project, an international collaboration that oversees more
than 3800 devices, called floats, which measure the temperature and salinity of the oceans.
Each float periodically ascends from two kilometers deep while collecting temperature and
salinity measurements as a function of pressure, a proxy for depth, with one decibar (dbar)
roughly corresponding to one meter of depth. These data, referred to as profiles, are trans-
mitted over satellite to data processing centers along with the float’s coordinates and time
stamps. The drifting floats collect approximately 100,000 profiles each year, resulting in a
large and complex space-time dataset, indexed by longitude, latitude, time, and pressure; see
Argo (2000) for more information.

The global coverage of the Argo data and the depth of measurements provide previously
unavailable richness of oceanography data (see Figure 1). The data have begun to play a
critical part in measuring sea level rise, currents, and the global distribution of temperature
and salinity of the oceans. The oceans play a major role in the Earth’s climate; for example,
Roemmich et al. (2015) uses Argo data to study the warming oceans which account for more
than 90% of the net planetary energy increase. More than 1500 papers that use Argo data have
been published in the past five years; recently, the Argo data have begun to see research in
the statistics community. For example, Kuusela and Stein (2018) is the first such publication
which enumerates some directions for future statistical research for the Argo data. To the
best of our knowledge, none of the papers in this sizeable literature so far has fully taken into
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account the dependence of the Argo data across location, time, and pressure. For instance, the
inference of the spatial dependence of temperature and salinity has thus far been conducted
using a pressure-level by pressure-level approach.

We consider this problem of temperature and salinity estimation, using data from all val-
ues of pressure simultaneously, under the framework of functional data analysis (FDA). The
problem of spatial inference for functional data has only recently been addressed; see, for
instance, Baladandayuthapani et al. (2008), Gromenko, Kokoszka and Sojka (2017), Zhang
et al. (2016), Zhang and Li (2002), Zhou et al. (2010). A more thorough discussion of this
area will be given in Section 2.3. One aspect of such inference is “functional kriging,” where
the goal is to predict a function-valued variable at an unobserved location based on spatially
correlated function-valued covariates. Here, we develop a functional kriging methodology,
tailored to the challenges and complexities of the Argo data, and aimed at producing maps
or spatiotemporal predictions of temperature and salinity as functions of pressure along with
functional uncertainties. In the context of the Argo data, each profile can be considered func-
tional data, with measurements observed as a function of pressure for a fixed time and loca-
tion. In this framework we use nearby profiles in space and time to estimate temperature and
salinity between the profile locations. This is done by using functional models for the mean
and space-time covariance structure which also yields uncertainties and confidence sets for
the functional kriging estimates. The FDA approach provides computational, scientific, and
methodological advantages over current approaches that consider models for one pressure
level at a time by linearly interpolating temperature and salinity onto that pressure (Kuusela
and Stein (2018), Roemmich and Gilson (2009)). First, the FDA approach provides a prin-
cipled way to share information in the irregularly-sampled measurements across pressure
without perturbations (e.g., by linear interpolation). Second, the estimated functions capture
the complex thermohaline structure in the oceans as a function of pressure that arises from
the oceans’ stratification and mixing. The FDA approach also naturally yields estimates of
derivatives and integrals over the entire pressure dimension which can provide new insight
into key scientific problems.

We directly compare our FDA approach with current ones that, first, linearly interpolate
each profile onto fixed pressure levels. While such an interpolation simplifies the data for the
subsequent modeling compared to irregularly sampled pressures, it also introduces error or
neglects data depending on whether the profiles observed are sparse or dense in pressure.
Since Argo profiles typically range in number of observations from around 60 to 1000 mea-
surements, the Argo data present a combination of such heterogeneous data. When sparse
functional data are observed, that is, there are just a few measurements per profile, interpo-
lating or presmoothing each curve can decrease accuracy in comparison to pooling data from
profiles (Hall, Miiller and Wang (2006), Li and Hsing (2010)). When dense functional data
are available, only some observations are used to interpolate onto pressure levels, and the
smaller features of the temperature and salinity in the pressure dimension will be undetected.
The FDA approach both avoids the interpolation error for the sparsely-observed profiles and
leverages all measurements from each profile, and thus it describes the pressure dimension in
more intricate detail. Furthermore, when predicting at a large number of pressure levels (e.g.,
the 58 pressure levels or more in Roemmich and Gilson (2009)), the functional approach
can considerably reduce computations by sharing information across pressure and providing
functional predictions. Perhaps most notably, estimating at fixed levels limits one’s ability to
predict derivative and integral functionals of the temperature and salinity, since these must
be approximated from discrete predictions. On the other hand, derivatives and integral esti-
mates, along with their uncertainties, are readily available in our functional kriging approach
and can be leveraged for fundamental scientific problems, like the estimation of ocean heat
content and mixed layer depth (see Section 5 below).
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We first introduce our notation for the data and our model:

e The data: Denote the data for the ith profile as s;, d;, yi, (pi,;, Yi,j)’;'i1 fori=1,...,n,
where j indexes the measurement, s; = (s;1, $j2) is its location, (d;, y;) is its day of year
and year, respectively, and (p; ;, Y, j)’;i | is the pressure and response measurements. Here,
Y; j denotes temperature or salinity, depending on the context; in actuality, both are ob-
served for each i and j. In this analysis, different floats are treated identically, and the
various float characteristics are not used. Data can be viewed using an R Shiny Application
(Yarger (2020a)).

o The model: We assume that

(D Yi i =nlsi,di,yi, pi,j) + X (i di, yi, pi,j) + €

where u is a fixed mean function, X is a zero-mean stochastic process that captures the
dependence of the data, and ¢; ; is measurement error. We assume that the distribution of
X(-,-,y,)is the same for all y and that X is weakly dependent in time so that X (-, d;, y;, -)
and X(-,d;, yj,-) are independent for d; near d; and y; # y;. The ¢; ; are assumed to
form a white noise process in space, time, and pressure, with mean zero and variance
parameterized by « (s, d, p).

Our new approach to the estimation of the functional mean p combines two established
approaches in nonparametric statistics: smoothing splines and local polynomial regression;
see Green and Silverman (1994) and Fan and Gijbels (1996) for more information on these
methodologies, respectively. Specifically, we leverage irregularly sampled data in space and
time using local regression to form a spline estimate of the mean function of pressure. This
approach can model the strong vertical stratification in the oceans where water masses at
different depths can have drastically different characteristics. Our mean estimation reflects
the advantages of both of these approaches: computations are reduced by using univariate
B-splines along the pressure dimension while the nonlinear features of the oceans in space
and time are estimated in a statistically efficient manner by local polynomial regression. As a
byproduct, our approach extends that of Fan and Gijbels (1996) to the case of function-valued
data and provides new functional estimates of derivatives of the mean with respect to space
and time.

After subtracting the functional mean, we model the covariance structure of the residuals
in space, time, and pressure. First, we estimate the covariance between measurements in the
same profile, decompose this estimate to form functional principal components (FPCs), and
use the first K FPCs to estimate a space-time covariance structure. As in Kuusela and Stein
(2018), locally-estimated space-time covariance models are used to perform kriging and to
obtain the uncertainty in the estimates. This entails a unified and computationally tractable
functional modeling and prediction framework that takes into account the dependence in
space, time, and pressure.

Being able to fill data gaps in a principled manner to produce estimates of temperature and
salinity continuously at all locations, times, and pressures is of tremendous value to ocean
research. Some examples and references of traditional “mapping strategies,” or interpolation
approaches, in oceanography can be found in Boyer and Levitus (1994) and Ishii and Kimoto
(2009). As shown in Table 1 of Cheng and Zhu (2014), the resolution of available ocean data
continues to improve, the Argo project being a contributing factor in the past 10 years. Our
functional data approach is motivated by fully leveraging the benefit of the high-resolution
Argo data, but generalizations to other similar high-resolution data should be straightforward.
These approaches will potentially play an important role in ocean and climate research in
general.
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We mention some applications to demonstrate the advantages of our approach. The first
application is the estimation of the integrated ocean heat content at each location which is re-
lated to the integral of the temperature curves. Traditionally, the integrated ocean heat content
was studied through numerically interpolated data. The main focus of Cheng and Zhu (2014)
is to address the bias in such estimates caused by data sparsity. In our opinion, however, this
study and other traditional approaches do not always comprehensively consider the variabil-
ity throughout the analysis. Using our approach, distributional properties of the estimated
heat content can be easily obtained from the overall analysis. In particular, if the heat content
at a location is estimated with sparse data, then the model-based estimated error will reflect
that. More generally, by pooling data across space and time, our model-based approach can
be used to identify statistically significant anomalies in the ocean heat content which is one
important and active area of research (Roemmich et al. (2015)).

For the second application the functional predictions are used to estimate potential den-
sity, which provides valuable information about the vertical stratification of the oceans, a key
factor in their ability to absorb heat (Li et al. (2020)). For example, we use potential density
to estimate the depth of the mixed layer of the ocean, a region directly below the ocean sur-
face where the ocean mixes uniformly and is characterized by near-constant ocean properties
(Sections 4.2 and 7.4 of Talley et al. (2011)). The mixed layer drives the ocean-atmosphere
interactions and thus influences heat and carbon flux of the ocean, ocean circulation, and bi-
ological processes dependent on light (Holte et al. (2017)). Our functional estimates provide
mixed layer depth estimates over all open oceans for each day-year combination that have
minimal discretization error in pressure. Employing the bootstrap, we obtain distributions
of the mixed layer depths and use them to assess the within and between-year variations in
mixed layer depth. Our analysis shows, in particular, that summer mixed layer depths gener-
ally have smaller within-year variations and, at some locations, slightly larger between-year
variations than do winter mixed layer depths in proportion to their size. We also use the
potential density estimates to evaluate the occurrence of nonmonotone features of potential
density that indicate vertical instability in the water column, and we find evidence of such
features. Our framework provides the means to identify such anomalies on a global scale,
which can help oceanographers track the structural stability of the thermohaline oscillation,
a fundamental driver of Earth’s climate (Li et al. (2020), Rahmstorf et al. (2015)).

We outline the rest of the paper which loosely follows the structure of the Introduction.
In Section 2 the Argo data are introduced in more detail. In Section 3 we develop our ap-
proach for mean estimation and its computational implementation over the Argo data. After
subtracting the mean from the data, we estimate the covariance of the residuals, predict using
the estimated covariance, and assess the quality of our predictions in Section 4. In Section 5 a
framework to use the functional estimates is developed, specifically applied to the examples
outlined above. Throughout our analysis we provide the resulting estimates as data prod-
ucts to the community and introduce interactive R Shiny web applications for visualizing the
results (Yarger (2020a)). We conclude and identify future research directions in Section 6.
Throughout the paper we refer to figures, tables, and text from the Supplementary Material.

2. Argo data and existing methodologies. In this section we give a more detailed
overview of the Argo data, give an introduction to mapping methods, and situate our ap-
proach within the spatial FDA literature. While there is a variety of measurements of the
oceans, including sea surface temperature and ship-based measurements, we only use data
from the Argo project because it provides a natural comparison to existing approaches.

2.1. Data from the Argo project. The Argo program is an international collaboration that
develops and manages floats, mechanical devices that collect measurements on the world’s
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F1G. 1. Argo data examples. (Left) Locations of profiles collected in February 2016, colored by the temperature
of the measurement closest to the surface. (Right) Histogram of the number of measurements per profile.

oceans (Argo (2000)). The Argo project reached a goal of global coverage in late 2007 and has
continued to increase the number of floats to nearly 4000 today; see, for example, Figures 1
and 2 or a Shiny application (Yarger (2020a)). In 10-day cycles, each float descends from its
parking depth at 1000 dbar to a depth of 2000 dbar, then rises over the course of six hours to
the surface, collecting measurements of pressure, temperature, and salinity. Upon surfacing,
the float transmits the data via satellite. The pressure, temperature, and salinity data and its
associated location and time for each cycle is called a profile.

The Argo program was designed to sample approximately one profile every 10 days in each
3 by 3 degree region of the open oceans. Before this relatively uniform sampling of the Argo
program, sampling at greater depths was sparse and highly nonuniform in space and time,
with fewer measurements in the Southern Hemisphere and during winter months (Roemmich
and Gilson (2009)). In terms of depth, the pressures at which each float samples can vary from
float to float as well as from profile to profile, due to varying data transmission technology,
as seen in Figure 1. This heterogeneity in the sampling frequency is one important challenge
addressed by our functional approach.

The Argo data is made publicly available after transmission through satellite and various
data-quality control measures. For our analysis we use a preprocessed version of the Argo
data which was formed and used in Kuusela and Stein (2018). The data span the years 2007
to 2016 based on the May 2017 snapshot of the Argo data. The data include more than 245
million total point measurements from 994,709 profiles, of which 551,536 have extended
data quality (delayed-mode) checks. Throughout our analysis we, generally, use all profiles
for temperature, while for salinity delayed-mode profiles are needed to ensure minimal drift
or bias (Owens and Wong (2009)).

2.2. Argo mapping methodology. The problem of mapping irregularly-sampled spatial
data onto a grid or unobserved location is a common problem in spatial statistics, oceanog-
raphy, and the geosciences in general. The main methods to address this problem are similar
in the different fields, though they may be referred to with different names. In statistics it
is often called kriging or Gauss—Markov prediction, specifically referring to the conditional
prediction of a Gaussian random vector based on a spatial covariance structure (cf. Cressie
and Wikle (2015, Section 4.1)). In geology this method is also referred to as kriging (cf.
Chiles and Delfiner (2012, Chapter 3)), while in oceanography this is usually called objective
mapping or optimal interpolation (cf. Section 4.2 Thomson and Emery (2014), Barth et al.
(2008)), and it primarily focuses on constructing gridded predictions. Each, in essence, in-
volves specifying a mean and covariance structure, then using these to form a prediction. If
the true mean and covariance structure is specified, then the resulting prediction minimizes
mean-squared error over the class of linear predictors. These approaches generally require



A FUNCTIONAL-DATA APPROACH TO THE ARGO DATA 221

inversion of the covariance matrix of size n x n, where n is the number of observed spa-
tial locations. In optimal interpolation the covariance structure is more often specified using
subject-matter knowledge, rather than being estimated from the data.

In this framework we review approaches for mapping that specifically use the Argo data.
We focus on the important work of Roemmich and Gilson (2009), who provide a methodol-
ogy for mean estimation and analysis of anomalies, using the Argo data, as well as Kuusela
and Stein (2018), who focus on covariance estimation and introduce maximum likelihood
estimation for its model parameters in space and time. These are only two works in a wider
array of temperature and salinity estimation works using Argo data. Other approaches used to
form Argo data products include Gray and Riser (2015), who propose an iterative approach
to estimating the covariance function, Li et al. (2017), Gaillard (2012), Hosoda, Ohira and
Nakamura (2008), and Udaya Bhaskar, Ravichandran and Devender (2007). These focus on
scalar data at a limited number of pressure levels, and each uses a Gaussian or exponential
covariance function. We now turn to the Roemmich and Gilson product which is available
as the standard in global oceanography analysis using the Argo data. This product provides
estimates of the mean temperature and salinity separately as well as monthly anomalies from
the mean over grids of different resolutions in space and fixed pressure levels. Before estima-
tion the temperature and salinity for each profile is interpolated onto 58 fixed nonuniformly-
spaced pressure levels. Throughout, they use a distance based on latitude, longitude, and the
depth of the ocean floor at each location. The inclusion of the depth of the ocean floor bet-
ter handles areas where ocean currents run along the shores of continents, like the western
boundary currents (see, e.g., Section 7.8 of Talley et al. (2011)). To estimate the mean for
each pressure level and grid point of space, they combine data from the years 2004-2016,
using the 100 nearest profiles from each of the 12 months of the year. In addition, they only
use the interpolated values at a pressure level as well as the two adjacent pressure levels. A
weighted least squares approach based on distance from the grid point is used to fit a model
of the form

Bo + Bi(si1 — s01) + Pa(siz — s02) + Ba(si1 — 01)> + Ba(siz — s02)*

di2JTk d,-27rk)

( ) 6 6
2 2 in + E 0
; - 5 8
135(171 PO) ,36 (Pz FO) ]; Vi st (36525) k=1 ke S(36525

where s;; and s;» give the location of profile i, p; the pressure level of the interpolated
measurement, d; is the day of the year profile i was observed, and B, vk, and §; are scalar
coefficients. The coefficient By represents the time-averaged mean, while the %, and 8 give
the deviations from this mean at different times of the year. Overall, this approach is a form
of local regression, where the time dimension is estimated using a fixed Fourier basis.

After subtracting the mean, Roemmich and Gilson then provide a field of anomalies for
each month of each year that describes the variation away from the mean at a particular
location. These are formed by computing the conditional mean at each grid point in space
and pressure level, assuming Gaussianity and using a covariance of the form

(3)  Crc(Arg) =0.77-exp(—(a ' Arg/140)%) 4 0.23 - exp(—|a' Agg|/1111).

Here, Arg = (Ay,, Ay, Adep)T denotes a vector of distances between two locations s and
s’ for the zonal direction (east-west), meridional direction (north-south), and the distance
penalty for ocean depth described above. The vector a scales the relative directions and
is (1,1,1) above 20 degrees north and below 20 degrees south but changes linearly to
(0.25, 1, 1) at the equator which increases the covariance in the zonal direction in the tropics.
This choice is supported by empirical estimates near the surface. The covariance in (3) is
nonstationary, due to its dependence on a, though the covariance does not depend on time
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or the pressure level. To form the final product, the anomalies over all months and years are
averaged and added to the mean.

Kuusela and Stein (2018) employ the Roemmich and Gilson mean and study the covari-
ance structure in more detail by proposing a space-time covariance model and fitting it using
maximum likelihood. To address the nonstationarity of the data, they use the locally station-
ary assumption; that is, at each location, parameters of a stationary covariance are estimated
using data nearby, and the local covariance estimates are used for prediction at that location.
Data from different years are assumed independent, and one stationary covariance function
for data observed in the same year they consider is

2 A2 A2
Cxs(Aks) = ¢ -exp(— | L+ —2 4+ —4) + 62 1(Ags = 0),
05 05 6]

where Ags = (Ay,, Ay, Ag) " is the relevant distance between two locations and times in
longitude, latitude, and day of the year, respectively. The estimated parameters are the pro-
cess variance ¢, nugget variance o2, and three scale parameters 6 subscripted by their di-
rection. Thus, since the model is estimated at each pressure level, it can adapt to the large
differences in the covariance structure at different depths. Furthermore, the model provides
uncertainty for the estimates which are validated using cross validation for both Gaussian
and t-distributed measurement errors. At many depths the residuals may have non-Gaussian
features, as noted in Kuusela and Stein (2018). To further address this issue, Bolin and Wallin
(2020) explore a class of multivariate non-Gaussian spatial models that offer some improve-
ments in prediction on a limited analysis of Argo data.

To conclude this section, we recognize that some aspects of FDA are not altogether new to
oceanography. For example, splines have been used as a smoothing approach to interpolate
sparse observations in a profile; principal component analysis (PCA), known as empirical
orthogonal functions (EOF) analysis, is a common dimension-reduction approach (Thomson
and Emery (2014)). However, these are applied in somewhat limited ways that include little
statistical considerations.

2.3. Spatial FDA literature. The extension of spatial prediction for scalar data to func-
tional data has primarily been developed recently in the statistics discipline. For indepen-
dent and identically distributed functional data, the literature has been well developed and
presented, for example, in the books of Ramsay and Silverman (2013), Hsing and Eubank
(2015), and Kokoszka and Reimherr (2017). For spatially-dependent functional data most
of the literature has focused on the idealized regime where entire functions are observed.
In particular, there are detailed reviews in Delicado et al. (2010), Aguilera-Morillo, Durban
and Aguilera (2017), Kokoszka and Reimherr (2019), and Martinez-Herndndez and Genton
(2020). We outline some of the work in this area.

Recent developments in spatial FDA have provided increasingly comprehensive ap-
proaches for complex spatiotemporal data. Most of the literature focuses on geostatistical
(point-referenced) data, though approaches for areal data and point processes have been
considered (Cronie et al. (2019), Delicado et al. (2010), Zhang et al. (2016)). In addition,
methods for hierarchical spatial functional data have been developed through the work of
Baladandayuthapani et al. (2008), Staicu, Crainiceanu and Carroll (2010), and Zhou et al.
(2010). Ruiz-Medina (2011) and Zhang et al. (2016) extend spatial autoregressive or moving-
average processes to functional data. Staicu et al. (2012) develop copula-based methods
for skewed spatial functional data. Methods for clustering spatiotemporal functional data
have been proposed in Jiang and Serban (2012) and Romano, Balzanella and Verde (2017),
among others. Theory and methodology for spatial FDA have been explored in Zhang et al.
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(2016), and Gromenko, Kokoszka and Sojka (2017) and Zhang and Li (2002). In particular,
Gromenko, Kokoszka and Sojka (2017) propose an iterative approach for modeling the mean
and covariance structure while also addressing inference on the mean function. Bayesian ap-
proaches to spatial FDA are proposed in Baladandayuthapani et al. (2008) and Song and
Mallick (2019). The spatial FDA perspective has mostly been considered in applications
to environmental data (King et al. (2018), Monestiez and Nerini (2008), Pauthenet et al.
(2019), Rodriguez, Dunson and Gelfand (2009)) and medical applications, including neu-
roscience (Lynch and Chen (2018)) and a cancer study (Baladandayuthapani et al. (2008),
Staicu, Crainiceanu and Carroll (2010), Zhou et al. (2010)). Here, we directly situate our ap-
proach within this rich literature. Most of the mentioned approaches propose basis expansions
of mean and principal component functions and model the principal component scores as a
spatial process (e.g., Matérn); our approach does as well. At the broad level our approach
is similar to Gromenko, Kokoszka and Sojka (2017). Specifically, our two-stage approach,
where we estimate the covariance only after estimating the mean and forming residuals, is
similar to steps 1-3 of their Algorithm 3.1. Since there are a large number of parameters, this
two-stage approach helps reduce the parameter space. This approach is common in FDA and
is supported by the theoretical work in, for example, Li and Hsing (2010) or Yao, Miiller and
Wang (2005). Ideally, we would employ the iterative algorithm in Gromenko, Kokoszka and
Sojka (2017) in the spirit of iteratively reweighted least squares, but we are limited by the
computation. We justify this two-stage approach with an appeal to profile likelihood, where
the mean is estimated, assuming a fixed within-profile covariance, after which the covariance
is estimated assuming a fixed mean. We also extend their methodology by proposing a non-
separable covariance structure, as discussed below. Some of the methodology and motivation
is similar to King et al. (2018).

The Argo data call for more involved modeling than in the existing spatial FDA liter-
ature in a number of respects. The challenges include the addition of another dimension
(pressure) to the space and time dimensions, irregularly-spaced data in each of these dimen-
sions, the varying number of measurements per profile, the sparsity of data in space and time,
and the large size of the data. Here, we detail a few aspects of our approach that address
these complexities. First, the referenced approaches assume a constant mean in space, that
is, u(s,d,y, p) = u(p) for some function pu(p) as well as a stationary covariance. Due to
the nonstationary nature of the Argo data, a constant mean would not be physically adequate.
We allow the mean and covariance structure to change in space, providing a way to model
nonstationary functional data in space and time, extending the local stationarity assumption
of Kuusela and Stein (2018) for their setting of a fixed pressure level. This local approach for
the mean and covariance also helps address the computational challenges with respect to the
size of the data.

Next, most approaches in the literature depend on a basis representation of profiles. By
projecting each profile onto a suitable basis before modeling, this simplifies the subsequent
analysis, but such a step introduces systematic error. For such an interpolation approach to
be justifiable, all profiles should be densely sampled (cf. Hall, Miiller and Wang (2006), Li
and Hsing (2010)). For many Argo profiles, in particular ones sampled 2007-2010 that have
fewer measurements, an appropriate basis representation cannot be obtained. Our estimation
and prediction methodology avoids this issue and naturally accommodates both sparse and
dense data at their measured pressure.

Finally, in the Supplementary Material (Yarger, Stoev and Hsing (2022)) we illustrate the
nonseparability of our covariance model, described in Section 4, and compare the model
with existing literature. Our covariance model, by assuming separability for each principal
component direction, allows for a varying space-time covariance structure as a function of
depth. Such flexibility is necessary for the Argo data, since processes at the surface can be
much different than those at greater depth.
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3. Functional mean estimation for Argo data. In this section we introduce our func-
tional approach for mean estimation in which we estimate a smooth function . (so, do, y, pi, ;)
for a location so. We assume that the mean function p is smooth in terms of space, time, and
pressure. Due to the functional nature of the data, we focus on and formalize the smoothness
in pressure here. In particular, consider the class of functions

2000
W, = { f ‘ f 2) exists almost everywhere, and /
0

(D)) dp < oo,

where f® is the kth derivative of f. The space W is a Sobolev space of functions widely
used for nonparametric inference, including problems in FDA (Hsing and Eubank (2015),
Wahba (1990)). The size of ||f(2) ||]%2 = f(f(z)(p))zdp quantifies the smoothness of f, that

is, if [(f®(p))>dp =0, then f takes the form of a line.

3.1. A functional approach to mean estimation. We consider a mean estimated locally
in space and day of the year which can be evaluated at any pressure in [0, 2000]. Our novel
approach combines local regression (to smooth space and time) and smoothing splines (to
smooth pressure) by estimating the function

fﬁ,S(),d() (S[’ dlv yl ’ p)

2016

= Y Boy(P1Gi =)+ (s1i — 510)B1(P) + (520 — 520)B2(p)

4) y=2007
+ (517 — 510)°B3(p) + (520 — 20)°B4(p)
+ (s1; — 510) (521 — $20)B5(p) + (di — do)Be(p) + (di — do)*B1(p),

where so = (510, $20) is a fixed location and dj is a fixed day of the year. Here, the functions
Bo,y and By are specific to s and dy, though we omit this notation for ease of writing. As-
suming each function denoted with B y or B falls in the class W5, we include the standard
smoothing spline penalty on the second derivative of each function,

2016 7

2) 12 2)112

Pen(i) =%o ». 18I, + 2 mlBE L,
y=2007 k=1

where the A ; are nonnegative smoothing parameters. This penalty controls the smoothness of
the estimated functions. With this notation, for a fixed location sy we solve the optimization
problem

&) ﬂiréi&z(ﬂso,do (B) +Pen(n)),

where

1 < Kny oy (si — s0, di — do)
(6) bty (B) =~ —==

i=l

1
~3 2
m; 1Z; >(Yi = fpos0.do.i) |5

and Y; and fg g4, are vectors with entries {Yi,j}’;L and { f8.so.do (51> di» Vi Pi,j)}};ip re-
spectively. Here, K, 5, is a product of Epanechnikov kernels—the first based on the great-
circle distance between s; and sy with bandwidth 4, and the second based on the difference
in day of the year between d; and dy with bandwidth A;. This type of kernel is commonly
used for local regression (Fan and Gijbels (1996)). Also, ¥; is a matrix that specifies the
working correlation between measurements in the same profile; we address choosing its form
in the next section. Dividing by m; in (5) ensures that profiles with more measurements
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FIG. 2. Data used from 2010 for first 350 dbar for —170.5° W 0.5° N, dy = 45.25 for (Left) temperature (°C)
and (Right) salinity (practical salinity units, PSU). We plot the estimated mean functions Brg10(p) and B2013(p)
for two of the years and the year-averaged estimate B(p). In this figure as well as Figure 4, we plot according to
the oceanography convention with pressure on the y axis in reference to depth in the ocean.

do not contribute in greater proportion to the loss function compared to profiles with fewer
measurements. Once again, the resulting functions By , and B are estimated for each fixed
location sp and time dp, omitted for simplicity in the notation. We propose this new general
nonparametric approach of combining local regression and spline smoothing for estimating a
spatially-varying functional mean.

The optimization problem (5) is solved for temperature and salinity separately. The func-
tions B,y for y =2007, ..., 2016 give a mean function estimated from each year. The func-
tion B(p) = % Ziozlgom Bo,y(p) is the year-averaged mean at so and dy. The additional func-
tions B; through B; are used to estimate the derivatives of the mean, with respect to space
and time, for each pressure. Figure 2 gives results at one location in the Pacific Ocean for the
first 350 dbar with dp = 45.25, corresponding the mid-February. The mean functions are able
to capture the water column with constant temperature near the surface known as the mixed
layer, which we address in more detail in Section 5. The reader can compute (5) for fixed
smoothing parameters using an R Shiny application (Yarger (2020a)).

We motivate our functional approach by qualitatively comparing it to a multivariate local
regression approach with respect to pressure, space, and time. Both approaches are nonpara-
metric and should behave relatively similarly, given appropriate bandwidths and smoothing
parameters. However, some key advantages of the functional approach are as follows. First,
multivariate local regression can be challenged by the curse of dimensionality since no points
are truly “local” (Fan and Gijbels (1996)), while our approach reduces this problem by us-
ing all data in pressure simultaneously. This provides a “middle-ground” nonparametric tech-
nique between local estimation (computationally manageable, using a limited amount of data)
and multivariate/thin-plate splines (computationally intractable, using all of the data). Also,
applying local regression in pressure can introduce new challenges of bandwidth selection,
which we avoid. Due to the differences in variability and sampling in pressure, a constant
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bandwidth in pressure would not be appropriate. Our approach can also save computation,
since reestimation is not needed for any additional pressure measurement. Relatedly, deriva-
tives and integrals of pressure are immediately available for the entire pressure dimension,
while, for local regression, only derivatives are available at the points of computation. Our
approach is tailored to and reflects the functional nature of the data so that profiles and esti-
mated mean functions can be easily compared.

3.2. Computation and cross validation. In this section we give an overview of our ap-
proach for computation and how to choose smoothing parameters. More details are shown in
the Supplementary Material (Yarger, Stoev and Hsing (2022)). The solution to (5) must be
computed for each location of interest so; however, calculations for different sg do not rely on
each other, so they can be easily made in parallel over multiple computer cores. By applying
Theorem 6.6.9 of Hsing and Eubank (2015) to losses that include multiple functions in W,
we obtain that each function of the resulting solution to the infinite dimensional optimization
problem (5) is a natural cubic spline with knots at each uniquely observed p; ; for eachi such
that Ky p,(s; — so0,d; — do) > 0. Since the smoothness of each function is penalized in the
objective function using GCV, having a large number of knots does not contribute to overfit-
ting (Ruppert (2002)). On the other hand, placing a knot at each observed pressure value is
prohibitively costly when a large number of profiles are included in each fit. Commonly in
nonparametric regression, reducing the number of knots is done using the quantiles of p or
equispaced knots (Ruppert (2002)). We adopt a similar strategy in this functional setting by
employing penalized cubic B-splines bases with 200 equispaced knots in [0, 2000]. Our ex-
periments indicated that the difference with the exact solution involving knots at all relevant
pressures is small, and this basis provides knots at intervals near the size of Argo pressure un-
certainties of 2.4 dbar. Due to the local nature of the B-splines, the relevant matrices needed
to compute the solutions are sparse and banded which leads to further computational gains.
In particular, the Cholesky decomposition of matrices is numerically efficient. To compute
the B-spline basis functions and penalty, we use the £da package.

In addition to computing the solution, we also need to choose the smoothing parameters A ;
and bandwidths A and hy. Smoothing parameters A ; are currently chosen assuming 4 and
hy fixed. We set iy = 900 kilometers for both temperature and salinity and hy = 45.25 days.
This provides nearly enough profiles for each grid point and year and uses data from three
months of the year. Also, if fewer than 10 profiles were used for each year, A is increased
so that there are at least 10 profiles used for each year. To choose A, we use generalized
cross-validation (GCV) for its favorable properties, ease of calculation, and ability to include
a correlation structure in the observations (Wahba (1990)). The GCV score in the context of
our problem is

Y-y -7
(I —tr(A(V)/ng)?
where ng, = Y7 1(Kn n, (si — S0, di — do) > 0)m;, A(A) is the “hat” matrix defined in

Yarger, Stoev and Hsing (2022), Y are the observations for temperature or salinity, Y are
predictions using smoothing parameters A, and X! is the block-diagonal matrix

GCV(h) =

K,y (si — 50, di —d
271 — dlag|: hsshd(sl S0 1 0) Zl_], l — 1’ . ,n:l

nm;

Considering approaches like variable bandwidth selection, jointly choosing bandwidths and
smoothing parameters, and leave-one-profile-out cross-validation are methodological and
computational challenges that can motivate further research. Computing the leverage scores
for the calculation of GCV is the largest computational cost in the selection of A, and we
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detail how to compute them in Yarger, Stoev and Hsing (2022). For choosing multiple
smoothing parameters, computing the GCV function on a two-dimensional or larger grid
becomes prohibitively expensive. We have taken the approach of finding suitable fixed ra-
tios n¢ = A¢/Ao for each £, then using the smoothing parameters an and cross-validating
on the single parameter a > 0. These ratios are chosen to balance the units of each of the
covariates, and the quadratic terms require larger amounts of smoothing. In particular, we
let n = (1,103,108, 10'3, 1013, 10'3, 10%, 10'3) and conduct standard 1-d optimization using
optimize in R to search fora € (10_3, 107).

The irregular sampling of Argo profiles over pressure can present challenges for naive
spline estimation. This issue can be addressed using a working correlation structure in pres-
sure. A simple choice employed here is Markovian-type dependence in continuous pressure.
Specifically, we consider (X;) j x = exp(—7|p;,j — pikl) with T € (0, 00), resulting in a tridi-
agonal precision matrix X, ' In practice, we have found that using this within-profile corre-
lation with T = 0.001, which corresponds to a correlation of about 0.9512 for measurements
50 dbar apart, helps both the selection of A as well as the quality of solution. In Section 4 the
within-profile covariance is estimated, and in Yarger, Stoev and Hsing (2022) it is shown that
the empirical covariance estimates generally match well with this choice. One could include
a nonconstant working variance as well, though such benefit may be marginal.

We compute the solution to (5) in R on a one degree by one degree grid in space for mid-
February (dy = 45.25) between —80° S and 80° N. This results in 47,938 and 46,023 grid
points computed for temperature and salinity, respectively. For salinity we use only delayed-
mode data. For each profile i from the first three months of the year, residuals were computed
by using the mean estimate at the nearest grid point to profile i as ¥; j — fg(p;, ;). The implicit
assumption of computing these residuals is that the mean is represented well by a locally
quadratic function of day of the year for these three months as in (4). In Yarger, Stoev and
Hsing (2022) we compare with the February mean field estimates of Roemmich and Gilson
(2009).

3.3. Functional derivatives. One novelty in our approach of combining local regression
and spline smoothing is its estimation of functional derivatives. Namely, writing the mean
averaged over years as (s, d, p), the functions (81(p), f2(p)) estimate

o o
(ﬁwamcﬁm¢m)

the gradient consisting of the partial derivatives at s = so and d = do of the response with
respect to zonal distance and meridional distance, respectively. Likewise, (2 - ,33, 2. ,34 ,85)
estimate the second-order derivatives

82 2 82_
szdeZde e sdop)),

and (,36, 2. 37) estimate

<8u(s d, p), ad2 (s d, p))

at the location and time s = sg and d = dp. Collectively, these functions describe the local
quadratic behavior of the mean near sg and dy. In Figure 3 the derivatives in latitude and
time for temperature are given for a cross-section of the ocean for a fixed longitude. Also,
the figure includes the direction and strength of the spatial gradient at a fixed pressure of
10 dbar for salinity. These derivatives can identify the direction of warming and cooling for
each location and pressure as well as physical properties, including the exchange of salty
and fresh waters near the Strait of Gibraltar. Our functional approach facilitates this detailed
description of the ocean properties at any pressure.
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FI1G. 3. Estimates of derivatives of temperature in latitude (Top Left) and time (Bottom Left) for a fixed longitude
179.5 West. The derivative, with respect to latitude, reflects that in the middle latitudes (between (30, 50) and (—50,
—30)) the temperature increases as one moves toward the equator near the surface. The derivatives also identify
two separate areas of high temperature on either side of the equator near 250 dbar. The derivative with respect
to time demonstrates that, in mid-February, the temperature is mostly increasing in the Southern Hemisphere and
mostly decreasing in the Northern Hemisphere, as the time of year suggests. On the right, we give the gradient in
space in PSU per 100 km for salinity at 10 dbar in mid-February (Right). The gradient points toward the salinity
maximum in the Central North Atlantic identifies the flow of salty water from the Mediterranean Sea and shows
accordance with Talley et al. (2011) Figure 4.15 that gives the distribution of sea-surface salinity in the oceans in
January-March.

4. Covariance estimation. After subtracting the mean from the data, the spatial depen-
dence structure of the residuals can be modeled to provide predictions and estimate uncertain-
ties. Modeling the covariance in space, time, and pressure is a challenging task. For example,
there are considerable differences in the spatial dependence structure and residual variances
at different pressures and locations.

Our covariance estimation can be described in three steps. First, we estimate the functional
principal components (FPCs) which explain the first few dimensions of variability in pres-
sure (cf. Hsing and Eubank (2015, Chapter 9)). Next, each profile is summarized by these
principal components, and the resulting scores are modeled. Lastly, we estimate the remain-
ing variability not accounted for by the principal components. The implicit assumptions in
this approach are that the covariance structure of temperature and salinity changes smoothly
as a function of pressure, and only a small number of FPCs are needed to approximate the
spatial and temporal structure in pressure. Since modeling the dependence between the raw
measurements in space, time, and pressure simultaneously is not practical or appropriate due
to the number of observations and flexibility of covariance models, our functional approach
facilitates a dimension reduction strategy that shares information across pressure through the
FPCs.

We develop this approach in mathematical notation first by assuming

e Yi?j = X (si, d;, yi, pi,j) +€ij,



A FUNCTIONAL-DATA APPROACH TO THE ARGO DATA 229

where {Y0 i | are the residuals for profile i formed by subtracting the mean estimate from
the data, X (Is d, yi,-) for y; =2007,...,2016 are identically-distributed realizations of a

. ind . .
functional random field with mean 0, and ¢; <N (0, k(p, s, d)) is an independent measure-
ment error noise with mean 0 and finite variance that may depend on pressure, location, and
day of the year. If X (s;, d;, yi, -) € L, for each s; and d;, one can write

o0
X (sivdi, yis p) =) Zi(sis di y) (D),

k=1
where ¢y, are fixed orthonormal functions and the Zi (s, d, y) are scalar random fields that
are weakly dependent in time that we refer to as scores. This is similar to the Karhunen—
Loéve expansion for zero-mean square-integrable stochastic processes, though the scores
may be correlated across k due to their spatial dependence. In the subsequent development
we simplify the notation by defining Z; y = Z;(s;, d;, y;) where it does not cause confusion.
For an adequate choice of ¢y, we would expect that X (s;, d;, y;, -) can be approximated as

K
(8) X (sivdiyiop) =) Zixdr(p)

for some small number K. This effectively reduces the dimension of our problem. Here,
each ¢y is a fixed function that has been estimated through some form of functional principal
component analysis, with one such approach given in Section 4.1. For a choice of ¢ and a
profile i, the scores are estimated by the least squares solution

) Zi. = (o] &) o ¥?,

where Yi0 is are the residuals for profile i and ®; € R™*X1 is the matrix with j, £ entry
¢¢(pi, ;). The principal component functions ¢ and the scores Z; . are only estimates and
not the truth, though we use the same notation for convenience. We found that the alternative
approach to estimating the scores proposed by Yao, Miiller and Wang (2005) to give similar
results, though this approach is computationally expensive to implement on a large scale.
We assume that the decomposition (8) of X (s;, d;, yi, p) holds locally with respect to
both Z;  and ¢y, similar to the locally stationary assumption of Kuusela and Stein (2018).
That is, for a fixed location sg and time dy, the functions ¢y, are estimated and used to form
estimates of the {Z; k}f:l1 and the measurement error variance «(p) := x(sg, do, p) for all
nearby profiles. Next, the joint distribution of the nearby scores is modeled. For different

choices of (sg, do), the functions ¢ and resulting scores {Zi,k};iill and measurement error
variance « (p) are different.

The model gives a clear approach to address the fundamental problem of functional krig-
ing, that is, spatial prediction of functional data, using the conditional distribution at an un-
observed location, given the data observed. For any set of data Y° to provide a prediction for
the function-valued random field X (s, dx, y, -) for an unobserved location s, at time d,, one
has

(10) E{X (54, ds, y, P)IY°} = ¢ (p) "E[Z (51, du, y) Y],
(11) Var{X (sx, ds, v, p)IY°} = ¢(p) " Var{Z. (s, du, )Y} (),

where ¢ (p) = (¢1(p), ¢2(p), ..., Pk, (p))—r are the principal components and Z. (s, dx, y) =
(Zl(s*, ds,y), ..., Zk,(S«, dy, y))T are the scores of X (s, ds, y, -). Furthermore, for each
residual point Yl.? i

(12) E{Y?; 1Y} =E{X (si, di. yi. pi )|V},
(13) Var{Yl-(’)j|Y0} = Var{X (s;, d;, yi, Pi,j)|Y0} +«(pij)-



230 D. YARGER, S. STOEV AND T. HSING

Thus, if one assumes that the field of {Zi(s,d, y);k=1,..., K1; (s, d) € R3} is Gaussian,
one only needs a spatiotemporal model of the scores Zx(s,d, y) fork =1, ..., K| using the
conditional mean and variance as well as estimate « (p). We address the estimation of ¢ (p)
in Section 4.1, the modeling of the scores Z; x in Section 4.2, and the estimation of « (p) in
Yarger, Stoev and Hsing (2022).

4.1. Marginal covariance estimation in pressure. In this section we focus on the estima-
tion of ¢y in (8) which amounts to performing local functional principal component analysis
(FPCA). A fixed set of basis functions may not be suitable for different locations or seasons,
and the resulting decomposition would be suboptimal at most locations. We thus estimate ¢y
locally in space and time as done with the mean to provide an optimal decomposition. At each
location a local version of the approach given in Section 8.3 of Hsing and Eubank (2015) is
used to estimate the entire within-profile covariance. Then, the covariance is decomposed to
obtain the functional principal components. This approach uses data from both sparse and
dense profiles and avoids needing a basis representation of each profile as in Ramsay and
Silverman (2013). Also, it resembles our approach for mean estimation by treating the co-
variance as an expectation, and it provides advantages over other approaches, like thin plate
splines by using B-splines that greatly reduce computations (Wahba (1990)).

For fixed sg and dp, we solve the optimization problem,

(14) fso,dorenx\;\‘g®wz (ZS(),do (fs0.do) + Penfso,do ()‘))’

where

1 & Ky hy (si — S0, di — do)
(15) Lop.dy (frodg) = — D == S5 (Y2 = faodo i pid)’.

i—1 mi(m; — 1) 1<jtk<m;

In particular, f;, 4, is restricted to be of the form

M M
Fooudo(P1. D) =D D> iy ky Xy (P1) Xko (P2)

ki=1ky=1

where {oy, ,kz},i"ll k,=1 are scalar coefficients and { xx ( p)},i”: | is a univariate B-spline basis over
a fixed set of knots. As suggested in Wood (2006), the penalty used is

Peny , (A) = rvec(a) (L@ Iy + Iy ® Q) vec(a),

where ® is the standard Kronecker product 2 is the univariate smoothing matrix for the B-

2000

splines used with k1, k> entry f Xk, )(p))(kzz) (p)dp, and Iy is the M x M identity matrix.

This penalty approximates

2000 2000 82 2 32 2
L) e e
8p1 op;

as given in Wood (2006). The computation is similar to the approach for mean estimation,
with A chosen by cross-validation and using a product kernel with 4; = 550 kilometers and
hq = 45.25; this smaller spatial bandwidth is possible since we pool together data from all
years. We use M = 102 with equally spaced knots over [0, 2000] for the basis xi. The over-
all size of the problem is M?, whose computational cost increases much faster compared
to the mean estimation. This choice of knots is able to approximate the covariance operator
reasonably well while ensuring the calculations are computationally manageable. The ex-
clusion of points with j = k ensures that the measurement error ¢; ; is not included in the
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F1G. 4. Example of first two estimated functional principal components (Left) temperature (Right) salinity at
Long. 90.5 W and Lat. —10.5 S. The principal components suggest much higher variance near the surface of the
ocean, as expected.

estimates along the diagonal. This allows us to formally identify the variance parameter of
the measurement error in (7), similar to Yao, Miiller and Wang (2005).

The main goal of the covariance estimation is to obtain a basis of functional principal
components for the space-time modeling; we detail how to obtain orthonormal principal
component functions in Yarger, Stoev and Hsing (2022). At this point we estimate the FPCs
for temperature and salinity separately. By working in the corresponding FPC bases for fu-
ture modeling, we optimally reduce the infinite-dimensional kriging problem in pressure to a
finite-dimensional one using principal components.

An example of the first two functional principal components for a location is shown in
Figure 4. Similar plots for other locations can be viewed on an R Shiny application (Yarger
(2020a)). These principal components can give descriptive information on the variance and
dependence of temperature and salinity with respect to pressure. There is evidence that the
covariance and the principal components for temperature and salinity exhibit considerably
different structure.

REMARK. For any fixed location, the principal components are only identifiable up to
a sign. For this reason, only one basis {qbk},f:l is used at one time, and the scores are only
defined and predicted with respect to this fixed basis. Thus, the products of each score and
principal component are invariant to the sign of the principal component. Local regression
helps ensure, assuming a sensible smoothing parameter selection, that the estimated covari-
ance varies smoothly as one moves in space. One interesting problem of future research is
the estimation of the marginal covariance operator as a function of space and time. This will
require a careful registration and alignment of the principal components and scores when
moving from location to location.

4.2. Space-time modeling of scores. In this section we model the scores for spa-
tiotemporal prediction. In standard FDA the scores are uncorrelated latent variables, and
it is not always meaningful to model and predict them. For any two mean-zero, square-
integrable random functions X;(p) = Y 32 Zix¢r(p) for i = 1,2, the covariance becomes
Cov(X1(p1), X2(p2)) = 237 =1 k=1 Pk1 (P1) Pk, (P2)E(Z1 & Z2 k). When X and X are in-
dependent, [E(Z x, Z2,k,) = 0, and one cannot leverage any dependence between the scores.



232 D. YARGER, S. STOEV AND T. HSING

However, for spatially dependent functional data, Cov(Z x,, Z2 r,) may not be 0 and may
depend on the distance between the location of profiles 1 and 2. This motivates our approach
to model the dependence of the scores and utilize it for spatial prediction.

Focusing on the estimation of the random, mean-zero function in (8), we write

K K>
TOi.di,yi.p) =Y Zix¢e(p) and S°(si.d;.yi.p) = Wir(p).
k=1 k=1

where 79, Zik = Zi(s;,d;i, yi) and ¢ denote the respective terms of (8) for temperature,
and SO, Wi k := Wi(si,d;, y;) and Y denote the terms for salinity. For the modeling we
adopt the locally stationary assumption of Kuusela and Stein (2018). For each location, as
described in (9), we use the ¢ estimated at that location to compute the temperature scores
Z; i for profiles within some radius of that location and, likewise, use the respective terms
for salinity, ¥k, to compute W; ;. We exclude a small fraction of profiles that do not have
sufficient measurements to compute scores. The goal of this section is to estimate a predictive
distribution for the vector

Z,.
(W::) = (Z*,ly Z*,Zv LR} Z*,Klv W*,]v W*,27 et W*,KQ)T
at an unobserved location to jointly model temperature and salinity. We first introduce our
decorrelation step, as explained below, which is similar to Bachoc et al. (2020).

For the modeling of the resulting scores, let Xg.ores be a (K1 4+ K32) x (K1 + K2) marginal
covariance matrix of (ZI., Wl-T)T. This matrix Xgcores 1S €stimated by

. 1 Zi\ (T +
Escores - m Z (VV;.) (Zi,-’ Wi,‘) ’

i€ DSO

where Dy, are the set of nearby delayed mode profiles. Then, consider the standard eigende-
composition

i\:scores = VFVT,

where I is a diagonal matrix, and define

Zi.\ _ T (Zi.
(16) (Wi,) =V <Wi,-) .
The resulting transformed scores (Z;r B WJ)T are then approximately decorrelated with di-
agonal autocovariance matrix I".

Let M (v, A) = c1 AYK, (A) be the Matérn covariance with parameter v at distance A with
unit variance and scale, studied in, for example, Stein (1999). Here, c| is a constant so that
M(v,0) =1, and K, is the modified Bessel function of the second kind. The value of v > 0
governs the smoothness of the field of scores, where larger values give a smoother field. When
v = 1/2, the Matérn model reduces to the exponential function. In our experiments the choice
of v had minimal effects on the resulting predictions, and we set it to the common choice v =
1/2 as in Kuusela and Stein (2018). For Z,;k and Wi,k and each k, a Matérn model is fitted for
the decorrelated scores of the form E(Zi,kzj,k) = Ci(A;,j) or E(Wi,k Wj,k) = Ck 4k (Ai )
if y; = y; with

Ag \? Ay \2 Ag\?
(17) Ck(A)=yk-M(v, (J) +(i) +(—d) >+a,3-1(A:0),
s, .k Os, .k O k
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where A = (Ay,, Ay,, Ag) is a vector of corresponding distances in space and time. The
parameters 6, r, 6y, , and 64 are scale parameters that specify the correlation ranges for
each of the directions. Lastly, y and akz are parameters that describe the variance of the
spatial process and the nugget, respectively. This space-time model is considered in Kuusela
and Stein (2018) in their fixed pressure level analysis.

In summary, the resulting covariance of temperature and salinity is

T
TO(S' d;, yi, p1) To(s- d;,yi, p2) - .
18 E ben i djs ¥i =& VeV E
( ) l(SO(Si,di,Yi,Pl) So(sj’dj,yj,pz) P2 ( ,]) P1

if y; = y; and 0 otherwise, where C(4; ;) € REK1TK2)x(Ki+K2) jg the diagonal matrix with

the kth element Cx(A; ;) and E, = (%p) w?m) e RK1+K2)%2 This model, by considering
a nugget effect on each of the scores, also results in a kind of “functional nugget” for the

process, as described in (Zhang and Li (2002)). This functional nugget has covariance
E ) VC,VTE,,
where C, = diag(alz, o2, ..., 012{]+K2).

We estimate the spatial model for February at each location using data from January,
February, and March. For each location, profiles within 1100 kilometers were used (similar
to the size of the moving windows used in Kuusela and Stein (2018)). We set K1 = K> = 10,
which allows the profiles to be well represented by the principal components, though our
experiments suggest that using more principal components may slightly improve predic-
tions near the surface. We provide the reasoning of this choice in Yarger, Stoev and Hsing
(2022), where we show that 10 components explain a large proportion of the variability in
both temperature and salinity. Choosing the number of functional principal components un-
der a smoothly-varying covariance structure in space could be developed based on Li, Wang
and Carroll (2013). To estimate the parameters yx, 05, k, 65, k, 6.k, and akz for each k, we
employ the same approach as Kuusela and Stein (2018) using maximum likelihood summa-
rized below. Let Z y be the scores for one k for year y in each of the above models, and let
Var(Zy) = X, be a matrix specified by the parameters in (17) above. We assume that Zy are
multivariate Gaussian so that the log likelihood of the data for all y =2007,...,2016 is

1 2016 N N
——( Y log(det(Ey)) + Z] X' Zy +nylog(2m) |,
y=2007

where ny is the number of observations used in year y. This likelihood treats data from
different years as independent. To maximize the likelihood, we use the optimization L-BFGS-
B algorithm, due to Byrd et al. (1995), implemented in the opt im function in R.

One challenge is that quality control is essential for the salinity data; many Argo profiles
that have high-quality temperature data may not have the same quality of salinity data. Instead
of discarding such profiles, we offer a solution by using an established missing data approach
via an expectation-maximization-type (EM) algorithm:

1. (E step) Using the temperature, delayed-mode salinity data, and the estimated param-
eters, form a prediction (the conditional expectation) for the real-time salinity scores. In the
first iteration the prediction of the real-time salinity scores are 0.

2. (M step) Using all data (obtained from the E step) as if it were delayed-mode, estimate
the model parameters via maximum likelihood.

3. Alternate between the E and M steps, and repeat until a convergence criterion is met.
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This treats the real-time salinity scores as unobserved, latent variables. The differences
between estimated parameters from consecutive steps decrease quickly after the first few
steps. Therefore, at each grid point we decided to perform six iterations of the algorithm, and
the parameter estimates from the final M step are used. This choice strikes a balance between
computation time and statistical accuracy.

Estimating the joint dependence between temperature and salinity is not considered in
Kuusela and Stein (2018) and Roemmich and Gilson (2009). While it requires additional
computation, accounting for this dependence provides a more comprehensive analysis of
the Argo data. In particular, this enables us to predict and provide uncertainty estimates for
functionals of temperature and salinity, such as potential density and potential temperature.
The estimated parameters can be viewed using an R Shiny application (Yarger (2020a)).

4.3. Predictions, uncertainties, and prediction bands. In this section we employ the es-
timated spatial covariance for functional kriging. Under the assumptions of our model, this
provides an optimal functional prediction at an unobserved location. To detail this approach,
let Xy, be covariance matrix of the (true) decorrelated scores Z yr = (Zi,k)?; ', for a fixed
k in an area around a fixed location for a year y,. Notably, using the local stationarity as-
sumption, profiles within 1100 kilometers are used as in the Matérn estimation step. This
provides enough data for prediction while avoiding introducing data that may violate the
locally-stationary assumptlon The conditional distribution of Z, j := Zk(s*, dy, y4) at an

unobserved location given Z}* is
Zk Zy~ N(EH(E00 ™ Zyss i+ 0 = BH(5y0 ™ T1),

where X2 = Cov(Z*,k, Zy*). However, in our prediction problem, Zy*, Y12, and Xy are
unknown and are estimated by the approaches described in Section 4.2. 3
We similarly obtain the predictions for the decorrelated salinity scores Wy ;. From these

estimated distributions of the Z, ; and W, x, using the relation that (vZV:) =V( in/* ) described
*
in (16), the conditional distribution of the original scores is

(2|2 v< )\zymv(wa[(vzivi) \z} , vv[(vzv) )z} VT>.

The conditional distribution of T9(s, d, v, p) and S9s, d, y, p) can be found using (18) or
(12) and (13), providing a prediction for any pressure. In Yarger, Stoev and Hsing (2022), we
give an example prediction for one pressure.

We test the uncertainty estimates based on this model in a leave-one-profile-out manner.
For each February profile, the profile is left out, and nearby profiles are used to predict at the
location and time of the profile. Then, the left-out profile is compared with the predictions.
For salinity, only delayed-mode profiles are compared. For each quantity, we use bounds of
two standard deviations from the mean which corresponds to approximately a 95.4 percent
prediction interval. For brevity, we develop uncertainties for temperature, and similar bounds
are obtained for salinity. We consider both pointwise and uniform prediction bounds on the
residual curves Y; 0 = = ¢ (pi, J) Z4,. + €;,j. The pointwise 1 — o interval for the residual at
pressure p; j, based on (12) and (13), is

(P ) TEAZo | Zya} £ @1y & (i )T Var{Ze | Zya b (pi ) + R (pi ),

where g1 ¢/ is the 1 — /2 quantile of N (0, 1) and Kk is estimated as described in Yarger,
Stoev and Hsing (2022). In addition, we develop simultaneous predictions bands over pres-
sure by using the approach of Choi and Reimherr (2018) reviewed in the Supplementary
Material.
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TABLE 1
Average pointwise coverages of intervals and bands over all pressures

Quantity # Profiles Pointwise coverage Band coverage
Temperature 76,016 96.2 95.6
Salinity 45,188 98.2 96.6
Nominal level 95.4 95.4

In our empirical coverages in Table 1 (where K1 = K7 = 10), the intervals and bands show
good coverage for both temperature and salinity. In Table 1 the band coverage refers to the
proportion of profiles for which every observation of the left-out profile was covered by the
estimated band. The pointwise coverages correspond to the proportion of all measurements
covered by the intervals over all pressures. We also summarize the pointwise coverages by
pressure in Yarger, Stoev and Hsing (2022), and the coverage is achieved for most of the
pressure dimension, though typically the intervals in the range 20-200 dbar do not meet full
coverage, due to more complex processes near the surface.

4.4. Validation and comparison. We compare our approach with the Roemmich and
Gilson (RG) reference model and Model 5 of Kuusela and Stein (2018) (KS) which provide
predictions only at fixed pressure levels. In the Supplementary Material we compare the dif-
ferences between the KS and functional predictions at 10, 300, and 1500 dbar and find them
to be generally comparable. Also, we can compare the predictive errors through the cross-
validation approach described in the previous subsection. Our functional approach enables
the prediction of temperature and salinity without interpolation onto fixed pressure levels. To
provide a comparison with the fixed pressure levels of KS, we compute summaries of the
residuals by breaking up the interval [0, 2000] using the midpoints of the Roemmich and
Gilson pressure levels. For example, the intervals (6.25, 15], (290, 310], and (1456.25, 1550]
correspond to the 10 dbar, 300 dbar, and 1500 dbar levels, respectively. Not all profiles are
included in the comparison. For KS, profiles are removed in boundary seas and where the in-
terpolation fails, that is, where there are no measurements either above or below the relevant
pressure level, and we remove them in this comparison as well and only use profiles included
in KS at any of 10, 300, and 1500 dbar. The prediction errors are evaluated by the root mean
squared error (RMSE), defined as \/ % Y (vi,p — Ji,p)? and the 50% (median) and 75%
(3rd quartile) quantiles of |y; , — ¥ p| where y; , are the measurements corresponding to
pressure level p, and J; , are the predictions for that measurement.

We show the results in Table 2 as well as in the Supplementary Material. Our method out-
performs the Roemmich and Gilson-type reference model and has approximately the same
the prediction error as KS. Notably, we suspect that avoiding interpolation onto pressure lev-
els considerably improves our prediction error, especially at greater depths. For example, at
1500 dbar, the RMSE for the functional model outperforms KS, though it trails in the outlier-
resistant measures of the median and third quartile. This is due to a small number of profiles
that have sparse measurements at greater depths, leading to poor quality of interpolation in
pressure. At 300 decibars our functional model improves upon KS for each of the metrics,
and at 10 decibars the functional model is slightly worse. We explain a possible reason for
this gap at 10 decibars. Mainly, the correlation lengths in space can decrease quickly when
moving from 10-20 dbar to 40-50 dbar in some locations. Due to this effect, a pointwise
approach as in KS can better model the surface pressure levels because the conditions in the
small width of the interval near the surface are not easily isolated by the scores based on a
limited number of principal components. This motivates future work on a new space-time
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TABLE 2
Comparison of KS and functional approach prediction errors, temperature. RG residuals and functional
residuals refer to the residuals after subtracting the respective mean

Pressure ~ Metric RG residuals  Functional residuals ~ RG-type model KS Functional model
10 RMSE 0.8889 0.7540 0.6135 0.5072 0.5215
10 Q3 0.8670 0.6247 0.5026 0.3735 0.3940
10 Median 0.4750 0.3193 0.2556 0.1801 0.1961
300 RMSE 0.8149 0.8552 0.5782 0.5124 0.4968
300 Q3 0.6320 0.6845 04213 0.3684 0.3644
300 Median 0.3062 0.3494 0.1991 0.1740 0.1720
1500 RMSE 0.1337 0.1381 0.1014 0.0883 0.0857
1500 Q3 0.1043 0.1160 0.0736 0.0641 0.0689
1500 Median 0.0530 0.0620 0.0356 0.0311 0.0349

functional model that allows a scale parameter to change smoothly, but quickly, as a func-
tion of pressure, or, alternatively, an approach to adaptively choose the number of principal
components in space (ref. Section 6).

In Yarger, Stoev and Hsing (2022), the computational costs of our approach and KS are
roughly compared. We conclude that, when focusing on temperature, the FDA approach can
provide similar predictions for all pressures in roughly the same amount of time it takes
to compute a pointwise approach for 13 pressure levels. Thus, our approach can provide
approximately a four to five times speedup when considering the 58 Roemmich and Gilson
pressure levels.

5. Applications: Ocean heat content and potential density estimates. The procedures
of Sections 3 and 4 result in estimated functions of temperature and salinity at each location.
For these functions, derivatives and integrals can be easily calculated. Also, other oceano-
graphic measures of interest, like potential density and conservative temperature, can be de-
rived directly from the estimated temperature and salinity using TEOS-10 (e.g., in R, Kelley,
Richards and WG127 SCOR/IAPSO (2017)). In the Supplementary Material we present a
general framework for leveraging these estimates for other scientific problems and give spe-
cific examples in this section.

5.1. Ocean heat content. The amount of heat contained in the ocean is of great interest
for global climate change and has been studied extensively, since the ocean absorbs the major-
ity of the Earth’s excess heat. A nonexhaustive list includes Levitus et al. (2012), Roemmich
et al. (2015), Lyman and Johnson (2013), Roemmich, Gould and Gilson (2012), and Johnson
and Birnbaum (2017). While integrating temperature over pressure describes the heat content
in the ocean, it is biased since the temperature of two volumes of water with the same amount
of heat content at two different pressures is different. For this reason, conservative tempera-
ture is more commonly used for heat content estimates (McDougall (2003)). Conservative
temperature can be calculated using the standard oceanographic toolbox McDougall and
Barker (2011) which is implemented in R from Kelley, Richards and WG127 SCOR/IAPSO
(2017). We use the delta method approach described in Yarger, Stoev and Hsing (2022) to es-
timate its distribution. Following Meyssignac et al. (2019), denote conservative temperature
as a function of temperature, practical salinity, and pressure at a location as ®(¢, s, p) and
the ocean heat content at a location as

p*
Q=/(; Cp,0®(Ts,d,y(p)’ Ss,d,y(p)» p)dp,
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where ¢, and p are constants (the specific heat capacity and density of seawater, respectively)
and Ts 4,y and Sy 4,y are the predicted temperature and salinity functions at location s on day
of the year d for year y.

For a fixed location and day of the year, we consider anomalies from the mean as the dif-
ference between the ocean heat content (OHC) using a mean averaged over all years and the
conditional expectation of OHC for one year. Specifically, anomalies from the mean are com-
puted for each year as ]E{QlZy*} — E{Q}, where E{Q} is the ocean heat content, given by
year-averaged mean B(p) = % Ziozlgom Bo,y(p) from the mean form described in (4), and
an example of these estimates and standard deviations are shown in Figure 5 for February
2016, while similar plots for other years can be viewed in an R Shiny application (Yarger
(2020a)). Such estimates are computed for each location and a fixed day of the year in mid-
February. We compare the estimates for 0—700 dbar with the estimates available at NOAA
NODC (2019) that employ the Levitus et al. (2012) approach to estimation of ocean heat con-
tent. The large-scale features of the fields are similar, though our integrated functions show
finer-detail and smaller-scale features as well. We hypothesize that much of the difference in
smoothness and features is due to different temporal windows. Our field, as a prediction for
a fixed day in mid-February, estimates finer-scale activity, compared to the NOAA January—
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to-March average. The FDA approach, by modeling the dependence between different pres-
sures, makes these uncertainty estimates possible between any two pressures in [0, 2000] as
a natural consequence of our functional kriging approach.

Our functional data approach can evaluate the level of error for any interpolation scheme
when estimating integrals of the ocean properties. Cheng and Zhu (2014) have evaluated
the levels of uncertainty in ocean heat content due to insufficient sampling in pressure; we
evaluate here the amount of error one introduces by using a fixed number of pressure levels
with respect to the integrated ocean heat content. We compute our estimates for 0—700 dbar
on a fine (.5 dbar) grid as well as a coarse (10 dbar) grid that gives similar pressure gaps
used in Roemmich and Gilson (2009) or Li et al. (2020). We evaluate our estimates of OHC
as Q =cpp Znﬁflzl(pmﬂ — Pm)OT (pm), S(pm), pm) for a grid of pressures. Based on the
functional estimates, we derive the mean and variance of the estimates in the Supplementary
Material for two different grids,

Qﬁne ~ N(Mﬁne’ U[:%ne)a

2
Ocoarse ™~ N(Mcoarsea Ucoarse)‘

For each location, (tcoarse — Mfine)/ Mfine 18 Negligible, suggesting there is little bias introduced
by using a limited number of pressures. On the other hand, the differences in the estimates
of variance (62,1 — 0p.)/ 04 Plotted in Figure 5, are larger and can reach 0.3% in some
areas. This suggests that, if one uses oceanographic products at fixed levels to estimate the
ocean heat content, the estimates may be practically unbiased but may be burdened with
slightly higher variance. Our functional approach provides this comprehensive estimate of the
mean and covariance in pressure which evaluates the consequences of specific discretization

approaches in pressure.

5.2. Use of potential density estimates for mixed layer depth. Estimating the joint depen-
dence of temperature and salinity for any pressure gives estimates of quantities, like potential
density that give important information about the vertical structure of the oceans. More dense
water sinks below less dense water, and thus potential density helps describe the stratifica-
tion of the oceans: the larger the potential density gradient is in pressure, the more strati-
fied the water is at this point (Talley et al. (2011)). Potential density can be computed di-
rectly from temperature, salinity, pressure, and location using Kelley, Richards and WG127
SCOR/IAPSO (2017). In this section we use potential density to estimate the depth of the
mixed layer (which can be characterized by approximately constant potential density), and in
the next section we evaluate the deviations from monotonicity of potential density.

To describe this first application, the mixed layer is a section of the ocean near the surface
where the water mixes freely, giving near-uniform properties of temperature, salinity, and
density. The mixed layer governs the interaction between the atmosphere and the ocean, and
thus its study can reveal information about the carbon uptake and heat content of the ocean,
among other features (Holte et al. (2017)). During the summer the temperature at the surface
rises considerably, and the mixed layer is more shallow. During the winter the mixed layer
deepens at a lower temperature, resulting in large seasonal changes of its depth.

Mixed layers are usually estimated using discretely observed profiles; see Sections 4.2 and
7.4 of Talley et al. (2011) and Holte and Talley (2009) for algorithms to estimate the mixed
layer, and mixed-layer climatologies include Schmidtko, Johnson and Lyman (2013), Holte
et al. (2017), and Hosoda et al. (2010). In comparison to these approaches, our functional
approach offers two advantages. First, by basing the mixed layer estimates on entire func-
tions predicted from pooled data, we avoid discretization error in the mixed layer estimates.
Second, our estimates produce entire mixed layer distributions, even when few profiles have
been observed nearby; these are robust to the skewed nature of mixed layers.
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These estimates and their variability are assessed using the parametric bootstrap approach
described in Yarger, Stoev and Hsing (2022). For each location and year, we simulate B =
1000 times from the distribution of February mixed layer depth, based on a year-averaged
mean, and B times for each year from the conditional distribution of February mixed layer
depth. We present results using the variable density threshold approach described in Holte
et al. (2017), where the mixed layer depth is chosen as the first depth for which potential
density decreases an amount corresponding to a temperature decrease of 0.2°C.

Our modeling framework allows us to examine the within and across year variability of
MLD (mixed layer depth) estimates. This is an important step in quantifying significant
anomalies and trends in the MLD, due perhaps to climate change, which is of fundamental
scientific importance. Denoting D; as the estimated mixed layer depth for the jth simula-
tion using the year-averaged mean, and Dy ; as the estimated mixed layer depth for the jth
conditional simulation for year y, we define estimates based on summaries of the values:
D= ﬁ 23,0;26007 f: 1 Dy, j estimates the overall mean, the conditional simulation median

Dy estimates the median for year y, and the year-averaged simulation median D estimates
the year-averaged median. Then, consider the estimates of the variation

2016 B

MAEY = > >IDy; — Dyl
y=2007 j=1

2016 B

y=2007 j=1

where D is distributed as the year-averaged mixed layer depth at a given location and the
factor of 10 adjusts for the 10 years. That is, the mean absolute error with yearly estimates
(MAEY) and the year-averaged mean absolute error (MAE) give estimates of the variation
that are relatively robust to outliers. The value pye,r = MAEY/MAE gives an estimate of the
relative sizes of errors with year-specific medians vs. a single group median which evaluate
yearly variation in the MLD.

In Figure 6 we show selected summaries from the results. The algorithm picks out both
shallow mixed layers during the summer in the Southern Hemisphere as well as deeper mixed
layers during the winter for the Northern Hemisphere (top left). Winter mixed layers show
more variation than summer mixed layers (bottom right). There are two main reasons for this.
First, the distribution of the MLD is truncated near the surface, so distributions of MLD near
the surface will show less variation. Also, during the summer there is more stratification and
thus larger differences in ocean properties at the depth of the mixed layer, so the mixed layer
is more consistent. On the other hand, in winter the mixed layer depth is less well defined, and
absolute differences of the MLD from its median can be greater than 65 decibars. Finally, the
MAE is generally about the same size as MAEY (bottom left) which indicates that there are
not large differences in median mixed layer depths between years. Again, this pattern is more
evident in the Northern Hemisphere, while, for some locations in the Southern Hemisphere,
there is substantial between-year variation. These results indicate that differences in MLD
from year-to-year may not be discernible based on the current Argo array alone.

5.3. Monotonicity of density. Potential density generally increases as a function of pres-
sure as water becomes more dense, though this can often be violated for periods of a few hours
(Talley et al. (2011)). Here, our estimates are used to evaluate the occurrence of these den-
sity “inversions,” where potential density becomes nonmonotone. Kuusela and Stein (2018)
suggest that applying a monotonicity constraint on the density may improve estimation of
the mean and covariance structure. Talley et al. (2011) suggest that these inversions occur
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FIG. 6. February mixed layer depth in dbar by the variable threshold approach (Top Left) average D, (Top
Right) 80th percentile of the conditional MLD distribution, averaged over the ten years, February mixed layer
depth (Bottom Left) pyear, (Bottom Right) MAEY.

only on the order of a few hours, as gravity removes the instability in the density. Though
we have not imposed this constraint, we are in a position to evaluate how well this constraint
is satisfied based on our estimates. We compare the amount of inversion in our predictions
to the amount of density inversion in the raw Argo profile data, which we detail in Yarger,
Stoev and Hsing (2022). Here, we use our functional uncertainty estimates to evaluate how
consistent density inversions are at a fixed pressure.

To address the salience of the density constraints, we simulate from 1000 functions, using
our conditional simulation approach, then compute the proportion of times a density inver-
sion is shown at a particular pressure. In the bottom of Figure 7, we plot this at a pressure
of 550 decibars for the year 2015 (right) and compare it to the estimated gradient from raw
Argo profiles using finite differences (left). At this pressure, areas of density inversions are
consistently shown where marginal seas mix with the open oceans as well as areas in the
Antarctic Circumpolar Current, where there are stronger currents. These areas correspond
to areas where negative or low density gradients occur in the profiles. Many of these areas
are deep water formation regions, where fresh, cool water sinks, due to its high density. On
the other hand, in most of the open oceans there is little evidence of density inversion at
this pressure. We conclude that implementing a hard density constraint may not be appro-
priate, especially in areas of consistent ocean mixing near marginal seas and in the Southern
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Ocean. Moreover, the conditional simulations show that further study at all pressure levels
can provide valuable statistical insights to the open scientific question on the change of ocean
stratification and its effect on thermohaline circulation (Li et al. (2020)).

6. Conclusion and future directions. The Argo data are an exemplary modern dataset
that motivates new statistical approaches, development of methodology, and appropriate sta-
tistical applications. In this paper we have provided the first comprehensive functional-data
analysis of the Argo data which addresses methodological and computational challenges for
mean estimation, covariance estimation, functional kriging, and estimation of functionals of
the estimates. Our approach avoids the simplification of data in pressure via interpolation
which limits other methods’ ability to provide a comprehensive analysis. The predicted func-
tions give powerful new tools to fully explore important scientific problems. Furthermore, our
approach can decrease the computational burden of prediction by sharing information across
pressure. Our estimates match well or outperform existing methodologies that estimate ocean
properties at fixed pressure levels. Our analysis also introduces the local estimation of func-
tions and represents a leap forward in the analysis of spatiotemporal functional data.

The methods we develop could be applied to scientific problems in neuroscience and spa-
tial statistics. Here, we focus on spatial sensor networks. In the context of these applications,
our methods are amenable to use time, instead of pressure, as the functional variable. Two
specific case studies could include estimating air pollution (as in King et al. (2018)) and the
Canadian weather data (Ramsay et al. (2018)) studied in Delicado et al. (2010) and Kokoszka
and Reimherr (2019), among others. Instead of considering the annual cycle of temperature
at only 35 locations in the Canadian weather data, one could provide high-granularity esti-
mates using thousands of weather stations in North America. Notably, our mean estimation
approach establishes a new, computationally-efficient, hybrid methodology that combines
kernel estimation and smoothing splines.

Throughout our approach, there are areas for improvement. For mean estimation for Stage
1, one would want to select the amount of nearby data adaptively and allow for elliptical
regions in space. This is especially important for areas in the Western boundary currents and
other areas where changes in ocean properties are highly directional in space. One approach
would be to extend algorithms from local regression that choose the bandwidth to this func-
tional model. Using iteratively reweighted least squares or more careful smoothing parameter
selection may also give improvements.

For our spatial covariance modeling for Stage 2, we employ a relatively simple model
that successfully captures key features by jointly modeling temperature and salinity. In gen-
eral, we are limited by computational challenges, which could be addressed with approxi-
mate models, for example, Vecchia’s approximation (Guinness (2021)) or the SPDE approach
(Lindgren, Rue and Lindstrom (2011)). More complexity should be explored in the models.
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For example, a functional model that allows rapid changes in the scale parameter as a func-
tion of depth would likely improve upon our model. In addition, there is some evidence that
the cross-covariance between vectors of principal component scores include nonreversible,
that is, asymmetric dependence which is not available in the scalar Matérn-type multivari-
ate models. In addition, one could explore non-Gaussian models, which could provide better
coverage for prediction intervals, as demonstrated in Kuusela and Stein (2018) and Bolin
and Wallin (2020). Also, we have only modeled the local spatial dependence, and, ideally,
one would also like to combine estimates across space with uncertainty, for example, using
an approach similar to Wiens, Nychka and Kleiber (2020). This would enable uncertainty
estimates for global ocean heat content.

There is a wide variety of statistical research directions using the Argo data, many of
which are noted in the conclusion of Kuusela and Stein (2018). For instance, one would want
to consider integrating Argo data with other oceanographic data (e.g., satellite data) as well
as using additional biogeochemical variables that a limited set of Argo floats measure. Al-
though we have considered many standard approaches in FDA for use on the Argo data, there
are more tools that could be applied, including clustering of profiles, functional regression,
canonical correlation analysis, hypothesis testing, and data fusion with scalar data, like sea
surface temperature data. Moreover, the Argo data calls for full methodological and theoret-
ical development of the field of space-time functional data. For example, the large-sample
properties of the methodology used in this paper could be explored under functional and
spatial dependence.
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