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Abstract
In this paper, we propose and analyze a finite difference numerical scheme for the Cahn-
Hilliard-Navier-Stokes system, with logarithmic Flory-Huggins energy potential. In the
numerical approximation to the singular chemical potential, the logarithmic term and the
surface diffusion term are implicitly updated, while an explicit computation is applied to
the concave expansive term. Moreover, the convective term in the phase field evolutionary
equation is approximated in a semi-implicit manner. Similarly, the fluid momentum equa-
tion is computed by a semi-implicit algorithm: implicit treatment for the kinematic diffusion
term, explicit update for the pressure gradient, combined with semi-implicit approximations
to the fluid convection and the phase field coupled term, respectively. Such a semi-implicit
method gives an intermediate velocity field. Subsequently, a Helmholtz projection into the
divergence-free vector field yields the velocity vector and the pressure variable at the next
time step. This approach decouples the Stokes solver, which in turn drastically improves
the numerical efficiency. The positivity-preserving property and the unique solvability of
the proposed numerical scheme is theoretically justified, i.e., the phase variable is always
between -1 and 1, following the singular nature of the logarithmic term as the phase variable

B Cheng Wang
cwang1@umassd.edu

Wenbin Chen
wbchen@fudan.edu.cn

Jianyu Jing
20110180021@fudan.edu.cn

Xiaoming Wang
wangxm@sustech.edu.cn

1 Shanghai Key Laboratory for Contemporary Applied Mathematics, School of Mathematical
Sciences, Fudan University, 200433 Shanghai, China

2 School of Mathematical Sciences, Fudan University, 200433 Shanghai, China

3 Mathematics Department, University of Massachusetts, North Dartmouth, MA 02747, USA

4 International Center for Mathematics and Department of Mathematics, and Guangdong Provincial Key
Laboratory of Computational Science and Material Design, and National Center for Applied
Mathematics Shenzhen, Southern University of Science and Technology, 518055 Shenzhen, China

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-022-01872-1&domain=pdf
http://orcid.org/0000-0003-4220-8080


   31 Page 2 of 24 Journal of Scientific Computing            (2022) 92:31 

approaches the singular limit values. In addition, an iteration construction technique is applied
in the positivity-preserving and unique solvability analysis, motivated by the non-symmetric
nature of the fluid convection term. The energy stability of the proposed numerical scheme
could be derived by a careful estimate. A few numerical results are presented to validate the
robustness of the proposed numerical scheme.

Keywords Cahn-Hilliard-Navier-Stokes system · Flory Huggins energy potential ·
Positivity preserving · Monotonicity analysis · Energy stability · Numerical accuracy

Mathematics Subject Classification 35K35 · 35K55 · 49J40 · 65M06 · 65M12

1 Introduction

Let � ⊂ R
d (d = 2 or d = 3) be a bounded domain. For any φ ∈ H1(�), with a point-wise

bound, −1 < φ < 1, the Flory-Huggins energy functional is given by

E(φ) =
∫

�

(
(1 + φ) ln(1 + φ) + (1 − φ) ln(1 − φ) − θ0

2
φ2 + ε2

2
|∇φ|2

)
dx, (1.1)

in which ε, θ0 are positive constants associated with the diffuse interface width and inverse
temperature. See the related references [2, 9, 11, 18]. In this article, we assume that
� = (0, 1)3, and consider periodic boundary conditions, for simplicity of presentation.
An extension of our results for the model with homogeneous Neumann boundary conditions
is straightforward.

In addition, the phase field model coupled with fluid motion has also attracted a great deal
of attentions. For example, the Cahn-Hilliard-Navier-Stokes (CHNS) system is formulated
as

ut + u · ∇u + ∇ p − ν�u = −γφ∇μ, (1.2)

φt + ∇ · (φu) = �μ, μ := δφE = ln(1 + φ) − ln(1 − φ) − θ0φ − ε2�φ, (1.3)

∇ · u = 0. (1.4)

where γ > 0 is related to surface tension, p is a pressure, the term −γφ∇μ is a diffuse
interface approximation of the singular surface force, u is the advective velocity, and ν stands
for the kinematic viscosity. For simplicity, we assume a constant density, i.e., ρ ≡ 1. The
non-constant density system can be analyzed analogously. For such a system, the following
energy dissipation law could be carefully derived:

E ′
total(t) = −

∫
�

|∇μ|2dx − ν

γ

∫
�

|∇u|2dx ≤ 0, Etotal = E(φ) + 1

2γ
‖u‖2. (1.5)

See the detailed description of the CHNS model in [34] and many related numerical works
[3, 4, 6, 22, 23, 29, 30, 39, 40, 45, 50, 51] for various Cahn-Hilliard-Fluid systems, etc.

The energy stability has always been one focus issue for any numerical approximation to
the CHNS system, and there have been quite a few existingworks on this analysis [10, 26, 46].
Meanwhile, most existing energy stable numerical works have been based on the polynomial
approximation in the energy potential, so that a singularity (as the phase variables approach
the singular limit values) has been avoided. For the Flory-Huggins energy potential (1.1)
and the corresponding CHNS system (1.2)–(1.4), designing a numerical scheme to preserve
both the point-wise positivity (of the logarithmic arguments) and the energy stability turns
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out to be very challenging, due to the highly nonlinear, singular and coupled nature of the
PDE system. In this paper, we propose and analyze a numerical scheme for the CHNS
system (1.2)–(1.4), with three theoretical properties justified: positivity-preserving, unique
solvability, and unconditional energy stability.

The numerical approximation to the chemical potential is based on the convex-concave
decomposition of the Flory-Huggins energy functional. An implicit treatment of the nonlinear
singular logarithmic term is applied to theoretically justify its positivity-preserving property,
while a related analysis for the explicit treatment has also been available in a recent work [31],
based on the separation estimate of the gradient flow. In more details, the singular and convex
nature of the logarithmic term prevents the numerical solution reach the singular limit values,
so that a point-wise positivity is preserved for the logarithmic argument variables. The linear
expansive term is explicitly updated, for the sake of unique solvability, due to the negative
eigenvalues involved. The surface diffusion term is implicitly treated, which comes from its
convexity. Such a convex splitting approach has been reported in [7] for the pure phase field
model. Meanwhile, the other parts of the CHNS have to be handled very carefully, to ensure
the desired theoretical properties. The convective term in the phase field dynamic equation
is discretized in a semi-implicit way: explicit treatment for the phase variable and implicit
treatment for the velocity vector. The fluid momentum equation is computed by a similar
semi-implicit algorithm: implicit treatment for the kinematic diffusion term, explicit update
for the pressure gradient, alongwith semi-implicit approximations to the fluid convection and
the phase field coupled term, respectively. In turn, an intermediate velocity field is determined
by this semi-implicit method, which could be represented as a linear velocity solver, with a
fixed chemical potential profile. Subsequently, a Helmholtz projection into the divergence-
free vector field yields the velocity vector and the pressure variable at the next time step.
This approach decouples the Stokes solver, which in turn drastically improves the numerical
efficiency. Also see an earlier work [24] of a decoupled method for incompressible fluid, and
its extension to the phase-field-fluid system [35, 52], while the later ones are more focused
on the polynomial approximation in the phase field energy potential, instead of the singular
logarithmic ones.

The unique solvability and positivity-preserving analysis for the proposed numerical
scheme turns out to be highly non-standard, due to the nonlinear, singular and coupled
nature. In fact, the whole numerical system does not have a symmetric Jacobian matrix,
which comes from the non-symmetric nature of the fluid convective term in the momentum
equation. As a result, this numerical system could not be represented as a minimization of
a given discrete energy functional, and many associated mathematical techniques are not
applicable any more. And also, the singular nature in the chemical potential (as the phase
variable approaches the singular limit value) prevents a direct application of the Browder–
Minty lemma [1, 41], which has been a very powerful tool to deal with nonlinear, monotone,
while non-symmetric systems. To overcome these subtle difficulties, we come up with a new
approach to establish the unique solvability and positivity-preserving analysis. First, given
a fixed chemical potential profile, the velocity vector turns out to be a linear operator on
this profile. In more details, such a linear operator is non-symmetric, while a monotonic-
ity property is valid. Subsequently, a substitution of this linear velocity operator into the
phase variable evolutionary equation reveals that, the chemical potential field turns out to be
another linear operator of the discrete temporal derivative of the phase variable. Furthermore,
careful estimates imply the monotonicity property of this chemical potential operator, and
the discrete �2 and �∞ bounds of this operator could be appropriately established. With all
these preliminary estimates at hand, the whole numerical system could be represented as this
chemical potential operator, combined with the original chemical potential expansion (1.3)
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(including the singular logarithmic parts, the linear expansive part, and the surface diffusion
term). Again, this rewritten numerical system is highly nonlinear, singular and coupled, and
there is no existing theory to ensure its unique solvability. To avoid this difficulty, we propose
a nonlinear iteration process in the construction of the numerical solution. In more details,
the linear operator (associated with the chemical potential) is treated as the given source,
corresponding to the iterate at the previous stage, while the nonlinear chemical potential
expansion is applied to the iterate at the next stage, combined with a relaxation algorithm. By
the nonlinear analysis presented in a recent work [7], it is known that such an iteration process
creates a unique solution satisfying the positivity-preserving property at each iteration stage,
which comes from the convex nature of the logarithmic terms. Moreover, the monotonicity
analysis for the linear operator (associated with the chemical potential) leads to a contrac-
tion mapping estimate of this nonlinear iteration, provided that the relaxation parameter is
sufficiently large. Therefore, a fixed point argument could be effectively applied, the unique
solvability and positivity-preserving analysis could be theoretically justified for the proposed
numerical scheme.

The energy stability of the numerical scheme is a direct consequence of a careful energy
estimate, which gives a dissipation law for the discrete energy functional. The summation by
parts formulas for different physical variables, combined with the staggered location of the
fluid velocity vector and the phase variable, will play an important role in the analysis.

The rest of the article is organized as follows. In Sect. 2 we review the finite difference
approximation over the staggered grid, and propose the numerical scheme. The detailed proof
for the positivity-preserving property is provided in Sect. 3, and the modified energy stability
is proved in Sect. 4. Some numerical results are presented in Sect. 5. Finally, concluding
remarks are given in Sect. 6.

2 The Numerical Scheme

2.1 The Finite Difference Spatial Discretization

For simplicity of presentation, we focus our discussions on the two-dimensional (2-D) case,
with the computational domain given by � = (0, 1)2. An extension to the three-dimensional
(3-D) case is straightforward, and the details are left to the interested readers.

It is assumed that N is a positive integer such that h = 1
N , which is called the spatial step

size. The phase variable φ, as well as the chemical potential μ and and pressure field p, are
evaluated at the cell-centered mesh points: ((i + 1/2)h, ( j + 1/2)h), at the component-wise
level. In turn, the discrete gradient of φ is evaluated at the mesh points (ih, ( j + 1/2)h),
((i + 1/2)h, jh), respectively:

(Dxφ)i, j+1/2 = φi+1/2, j+1/2 − φi−1/2, j+1/2

h
,

(Dyφ)i+1/2, j = φi+1/2, j+1/2 − φi+1/2, j−1/2

h
. (2.1)

The five-point Laplacian takes a standard form. Similarly, the wide-stencil differences for
cell centered functions could be introduced as

(D̃xφ)i+1/2, j+1/2 = φi+3/2, j+1/2 − φi−1/2, j+1/2

2h
,

(D̃yφ)i+1/2, j+1/2 = φi+1/2, j+3/2 − φi+1/2, j−1/2

2h
. (2.2)
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Meanwhile, in order to enforce the divergence-free property of the velocity vector at the
discrete level, we choose a staggered grid for the velocity field, in which the individual
components of a given velocity, say, v = (vx , vy), are defined at the east-west cell edge
points (ih, ( j + 1/2)h), and the north-south cell edge points ((i + 1/2)h, jh), respectively.
This staggered grid is also known as the marker and cell (MAC) grid and was first proposed
in [28] to deal with the incompressible Navier-Stokes equations, and the detailed analyses
have been provided in [17, 47]. Also see the related applications to the primitive equations
[43] and planetary geostrophic equations [44], et cetera. In addition, the discrete periodic
function space is denoted as Cper, for all the physical variables, located at the corresponding
mesh points.

The discrete divergence of v, specifically,

∇h · v = Dxv
x + Dyv

y,

is defined at the cell center points ((i + 1/2)h, ( j + 1/2)h) as follows:

(∇h · v)i+1/2, j+1/2 := (
Dxv

x)
i+1/2, j+1/2

+ (
Dyv

y)
i+1/2, j+1/2

.

One key advantage of the MAC grid approach is that the discrete divergence of the unknown
grid velocity will always be identically zero at every cell center point. Such a divergence-
free property at the discrete level comes from the special structure of the MAC grid and
assures that the velocity field is orthogonal to a corresponding discrete pressure gradient at
the discrete level; see also reference [17].

For u = (ux , uy)T , v = (vx , vy)T , located at the staggered mesh points (xi , y j+1/2),
(xi+1/2, y j ), respectively, and the cell centered variables φ, μ, the following terms are eval-
uated as

u · ∇hv =
(
uxi, j+1/2 D̃xv

x
i, j+1/2 + Axyu

y
i, j+1/2 D̃yv

x
i, j+1/2

Axyuxi+1/2, j D̃xv
y
i+1/2, j + uy

i, j+1/2 D̃yv
y
i+1/2, j

)
, (2.3)

∇h · (vuT ) =
(
D̃x (uxvx )i, j+1/2 + D̃y(Axyuyvx )i, j+1/2

D̃x (Axyuxvy)i+1/2, j + D̃y(uyvy)i+1/2, j

)
, (2.4)

Ahφ∇hμ =
(

(Dxμ · Axφ)i, j+1/2)i, j+1/2

(Dyμ · Ayφ)i+1/2, j )i+1/2, j

)
, (2.5)

∇h · (Ahφu) = Dx (u
xAxφ)i+1/2, j+1/2 + Dy(u

yAyφ)i+1/2, j+1/2, (2.6)

where the following averaging operators have been employed:

Axyu
x
i+1/2, j = 1

4

(
uxi, j−1/2 + uxi, j+1/2 + uxi+1, j−1/2 + uxi+1, j+1/2

)
, (2.7)

Axφi, j+1/2 = 1

2

(
φi−1/2, j+1/2 + φi+1/2, j+1/2

)
. (2.8)

A few other average terms, such as Axyu
y
i, j+1/2, Ayφi+1/2, j , could be defined in the same

manner.

Definition 2.1 For any pair of variables ua , ub which are evaluated at the mesh points (i, j +
1/2), (such as u, Dxφ, Dxμ, Dx p, et cetera.), the discrete �2-inner product is defined by

〈ua, ub〉A = h2
N∑
j=1

N∑
i=1

uai, j+1/2 u
b
i, j+1/2; (2.9)
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for any pair of variables va , vb which are evaluated at the mesh points (i + 1/2, j, j + 1/2),
(such as v, Dyφ, Dyμ, Dy p, et cetera.), the discrete �2-inner product is defined by

〈va, vb〉B = h2
N∑
j=1

N∑
i=1

vai+1/2, j v
b
i+1/2, j ; (2.10)

for any pair of variables μa , μb which are evaluated at the mesh points (i + 1/2, j + 1/2),
(such as μ, φ, p, et cetera.), the discrete �2-inner product is defined by

〈μa, μb〉C = h2
N∑
j=1

N∑
i=1

μa
i+1/2, j+1/2 μb

i+1/2, j+1/2. (2.11)

In addition, for two velocity vector u = (ux , uy)T and v = (vx , vy)T , we denote their vector
inner product as

〈u, v〉1 = 〈ux , vx 〉A + 〈uy, vy〉B . (2.12)

Their �2 norms, namely, ‖ · ‖2 norm, can be defined accordingly. Clearly all the discrete �2

inner products defined above are second order accurate. In addition to the standard L2
h norm,

we also introduce the �p , 1 ≤ p < ∞, and �∞ norms for a grid function f evaluated at mesh
points (i + 1/2, j + 1/2):

‖ f ‖∞ := max
i, j

| fi+1/2, j+1/2|, ‖ f ‖p :=
⎛
⎝h2

N∑
i, j=1

| fi+1/2, j+1/2|p
⎞
⎠

1
p

, 1 ≤ p < ∞.

(2.13)

The following summation by parts formulas will be useful in the later analysis.

Lemma 2.1 For discrete grid functions u (evaluated at (xi , y j+1/2)), v (evaluated at
(xi+1/2, y j )), μ, p, φ (evaluated at (xi+1/2, y j+1/2)) satisfying the discrete periodic boundary
condition, the following identities are valid:

〈v, u · ∇hv〉1 + 〈v,∇h · (vuT )〉1 = 0, (2.14)

〈u,∇h p〉1 = 0, if ∇h · u = 0, (2.15)

−〈v,�hv〉1 = ‖∇hv‖22 := ‖∇hv
x‖21 + ‖∇hv

y‖22, (2.16)

−〈φ,�hφ〉C = ‖∇hφ‖22, (2.17)

−〈μ,∇h · (Ahφu)〉C = 〈u,Ahφ∇hμ〉1. (2.18)

For any discrete grid function φ, the discrete version of the energy is defined as

Eh(φ) := 〈(1 + φ) ln(1 + φ) + (1 − φ) ln(1 − φ), 1〉C − θ0

2
‖φ‖22 + ε2

2
‖∇hφ‖22.

(2.19)

2.2 The Fully Discrete Numerical Scheme

The following finite difference scheme is proposed: given φn, pn ∈ Cper, un evaluated at
the MAC staggered grid points, we find φn+1, pn+1 ∈ Cper,un+1 evaluated at the MAC
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staggered grid points, such that

ūn+1 − un

�t
+ 1

2
(un · ∇h ūn+1 + ∇h · (ūn+1(un)T ) + ∇h p

n − ν�h ūn+1

= −γ (Ahφ
n∇hμ

n+1), (2.20)

φn+1 − φn

�t
+ ∇h · (Ahφ

n ūn+1) = �hμ
n+1, (2.21)

μn+1 = ln(1 + φn+1) − ln(1 − φn+1) − θ0φ
n − ε2�hφ

n+1, (2.22)

un+1 − ūn+1

�t
+ ∇h(p

n+1 − pn) = 0, ∇h · un+1 = 0. (2.23)

3 The Unique Solvability and Positivity Preserving Analysis

In the numerical solution to (2.20)–(2.23), it is observed that the phase variable is mass
conservative, i.e.,

φn = φ0 := β0, with − 1 < β0 < 1, ∀ n ≥ 1, (3.1)

in which the average operator is given by f = 1
|�| 〈 f , 1〉�. The following preliminary

estimate, which was proved in a recent paper [7], is recalled.

Lemma 3.1 [7]. Suppose that ϕ�, ϕ̂ ∈ Cper , with ϕ̂ − ϕ� ∈ C̊per . Assume that 0 <

ϕ̂i, j,k, ϕ
�
i, j,k ≤ Mh, for all 1 ≤ i, j, k ≤ N, where Mh > 0 may depend on h. The fol-

lowing estimate is valid:

‖(−�h)
−1(ϕ̂ − ϕ�)‖∞ ≤ C̃1Mh, (3.2)

where C̃1 > 0 only depends on �.

To proceed with the unique solvability analysis, we implicitly define a linear operator Lh

as follows. Assume that the fields un , φn , and pn are fixed. For a given field μ, v = Lhμ is
the unique solution of the following discrete convection-diffusion equation:

v − un

�t
+ 1

2
(un · ∇hv + ∇h · (v(un)T )) + ∇h p

n − ν�hv = −γAhφ
n∇hμ. (3.3)

In fact, the linear operator Lh defined via (3.3) is an affine transform since it does not satisfy
the homogeneous property and thus not preserve the linear combination, as demonstrated
later. Given the time level tn fields (un, φn, pn), we can represent un+1 = Lh(μ

n+1). In
turn, un+1 becomes the discrete Helmholtz projection of un+1 into divergence-free space,
which we express as un+1 = Phun+1. Subsequently, a substitution of un+1 = Lh(μ

n+1)

into (2.21) leads to the following system of equations for φn+1 and μn+1:

φn+1 − φn

�t
= −∇h · (Ahφ

nLh(μ
n+1)) + �hμ

n+1, (3.4)

μn+1 = ln(1 + φn+1) − ln(1 − φn+1) − θ0φ
n − ε2�hφ

n+1. (3.5)

Of course, (3.4) could be rewritten as

φn+1 − φn

�t
= −Gh(μn+1), (3.6)
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Gh(μ) := ∇h · (Ahφ
nLhμ) − �hμ. (3.7)

Notice that Gh : (RN2
)2 → (RN2

)2 is a linear operator (with the discrete boundary
condition imposed). Furthermore, this linear operator is invertible, as demonstrated by the
following lemma.

Lemma 3.2 The linear operator Gh satisfies the monotonicity condition:

〈Gh(μ(1)) − Gh(μ(2)), μ(1) − μ(2)〉C ≥ ‖∇h(μ
(1) − μ(2))‖22 ≥ 0, (3.8)

for any μ(1), μ(2). In addition, equality is realized if and only if μ(1) = μ(2), if we require
μ(1) = μ(2) = 0. Therefore, the operator Gh is invertible.

Proof A difference function is introduced as μ̃ := μ(1) − μ(2). Since Gh is a linear operator,
the following expansion is made:

Gh(μ(1)) − Gh(μ(2)) = Gh(μ̃) = ∇h · (Ahφ
nLhμ̃) − �hμ̃. (3.9)

Taking a discrete inner product with (3.9) by μ̃ yields

〈Gh(μ̃), μ̃〉C = − 〈Ahφ
n∇hμ̃,Lhμ̃〉1 + ‖∇hμ̃‖22. (3.10)

Meanwhile, we define v(i) := Lh(μ
(i)), i = 1, 2, and ṽ := v(1) − v(2) = Lhμ̃, using the

linearity of Lh . In addition, the definition of Lh in (3.3) implies that

ṽ
�t

+ 1

2
(un · ∇h ṽ + ∇h · (ṽ(un)T )) − ν�h ṽ + γAhφ

n∇hμ̃ = 0. (3.11)

The non-homogeneous source terms, namely un
�t and∇h pn , vanish in this difference equation,

since ṽ is the difference of the two solutions v(1) and v(2). Subsequently, taking a discrete
inner product with (3.11) by ṽ = Lhμ̃ leads to

1

�t
‖ṽ‖22 + ν‖∇h ṽ‖22 + γ 〈(Ahφ

n∇hμ̃,Lhμ̃〉1 = 0, (3.12)

in which we have made use of the following identities:

〈un · ∇h ṽ + ∇h · (ṽ(un)T ), ṽ〉1 = 0, (3.13)

− (ṽ,�h ṽ) = ‖∇h ṽ‖22. (3.14)

Consequently, a combination of (3.12) and (3.10) leads to

〈Gh(μ̃), μ̃〉C = 1

γ

(
1

�t
‖ṽ‖22 + ν‖∇h ṽ‖22

)
+ ‖∇hμ̃‖22, (3.15)

which is equivalent to

〈Gh(μ(1)) − Gh(μ(2)), μ(1) − μ(2)〉C = 〈Gh(μ̃), μ̃〉C ≥ ‖∇hμ̃‖22
= ‖∇h(μ

(1) − μ(2))‖22 ≥ 0, (3.16)

so that (3.8) has been proved. In addition, it is clear that equality is valid if and only if μ̃ ≡ 0,
i.e., μ(1) = μ(2), under the requirement that μ(1) = μ(2) = 0. The proof is complete. ��

Since the linear operator Gh maps (RN2
)2 into (RN2

)2, we see that the inverse operator
G−1
h also maps (RN2

)2 into (RN2
)2. As a direct consequence of Lemma 3.2, the following

result is available.
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Proposition 3.1 The linear operator G−1
h also satisfies the monotonicity condition:

〈G−1
h (φ(1)) − G−1

h (φ(2)), φ(1) − φ(2)〉C ≥ ‖∇h(G−1
h (φ(1) − φ(2)))‖22

≥ C2
1‖G−1

h (φ(1) − φ(2)))‖22, (3.17)

for any φ(1), φ(2), with φ(1) = φ(2) = 0. The constant C1 is associated with the discrete
elliptic regularity

‖∇h f ‖2 ≥ C1‖ f ‖2, for any f with f = 0, with C1 only dependent on �. (3.18)

In addition, the equality is valid if and only if φ(1) = φ(2).

Proof We denote μ(i) = G−1
h (φ(i)), i = 1, 2, which is equivalent to φ(i) = Ghμ(i), i = 1, 2.

An application of (3.8) reveals that

〈G−1
h (φ(1)) − G−1

h (φ(2)), φ(1) − φ(2)〉C = 〈Gh(μ(1)) − Gh(μ(2)), μ(1) − μ(2)〉C
≥ ‖∇h(μ

(1) − μ(2))‖22 ≥ C2
1‖μ(1) − μ(2)‖22

= C2
1‖G−1

h (φ(1) − φ(2))‖22 ≥ 0. (3.19)

Clearly, the equality is valid if and only if φ(1) = φ(2). This finishes the proof for Proposi-
tion 3.1. ��

By the construction (3.3) and the definition (3.7) for the operator Gh , it is observed that
the following homogenization formula is available:

Gh(μ) = G(0)
h + G∗

h (μ), G(0)
h = ∇h · (Ahφ

n(un − �t∇h p
n)), for any μ = 0, (3.20)

in which G∗
h corresponds to a homogeneous linear operator. In fact, this operator satisfies the

linearity property as in the standard definition, in comparison with the operator Lh given by
(3.3). In addition, the following bound is assumed for the non-homogeneous source term,
which only depends on the numerical solution at the previous time step:

‖G(0)
h ‖2 ≤ A∗. (3.21)

Proposition 3.2 For any ϕ with ϕ = 0, the following ‖ · ‖2 and ‖ · ‖∞ bounds are valid:

‖G−1
h (ϕ)‖2 ≤ C−2

1 (‖ϕ‖2 + A∗), (3.22)

‖G−1
h (ϕ)‖∞ ≤ CC−2

1 h− 3
2 (‖ϕ‖2 + A∗). (3.23)

Proof For any ϕ with ϕ = 0, we denoteμ = G−1
h (ϕ). By the homogenization decomposition

(3.20), it is clear that G∗
h (μ) = ψ := ϕ −G(0)

h . Meanwhile, the monotonicity inequality (3.8)
implies that

〈G∗
h (μ), μ〉C ≥ ‖∇hμ‖22 ≥ C2

1‖μ‖22, so that

‖μ‖22 ≤ C−2
1 〈G∗

h (μ), μ〉C ≤ C−2
1 ‖G∗

h (μ)‖2 · ‖μ‖2,
‖μ‖2 ≤ C−2

1 ‖G∗
h (μ)‖2, (3.24)

in which the Cauchy inequality has been applied. Then we arrive at

‖G−1
h (ϕ)‖2 = ‖μ‖2 ≤ C−2

1 ‖G∗
h (μ)‖2 = C−2

1 ‖ϕ − G(0)
h ‖2

≤ C−2
1 (‖ϕ‖2 + ‖G(0)

h ‖2),
(3.25)

which is exactly (3.22). Furthermore, the‖·‖∞ estimate (3.23) comes fromadirect application
of 3-D inverse inequality. This finishes the proof of Proposition 3.2. ��
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By (3.4), (3.5) and (3.6), (3.7), it is clear that the numerical solution (2.20)–(2.22) could
be equivalently represented as the following nonlinear system, in terms of φn+1:

μn+1 + 1

�t
G−1
h (φn+1 − φn) = ln(1 + φn+1) − ln(1 − φn+1) − θ0φ

n − ε2�hφ
n+1

+ 1

�t
G−1
h (φn+1 − φn) = 0. (3.26)

Meanwhile, it is observed that G−1
h is not a symmetric operator, although it is monotone.

Because of this non-symmetric feature, we are not able to represent the numerical solution
of (3.26) as a minimization of certain discrete energy functional in terms of of φn+1.

To overcome this subtle difficulty, we observe the fact that, with a given field g, the
unique solvability and positivity preserving analysis of the following nonlinear system, for
any A ≥ 0, could be established in the same manner as in a recent work [7]:

ln(1 + φ) − ln(1 − φ) − θ0φ
n − ε2�hφ + Aφ = g. (3.27)

In fact, the implicit part of φ corresponds to a strictly convex energy functional:

Jnh (φ) =〈(1 + φ) ln(1 + φ) + (1 − φ) ln(1 − φ), 1〉C + ε2

2
‖∇hφ‖22 − 〈g + θ0φ

n, φ〉C .

(3.28)

The positivity preserving and unique solvability analysis of the numerical solution (3.27),
for a given g, is stated in the following proposition. The proof is skipped for the sake of
brevity, and the technical details are left to interested readers.

Proposition 3.3 Given φn ∈ Cper , with −1 < φn
i, j,k < 1, 1 ≤ i, j, k ≤ N, and φn = β0,

there exists a unique solution φ ∈ Cper to (3.27), with 0 < φi, j,k , 1 ≤ i, j, k ≤ N and
φ = β0. In addition, the following lower bound for the numerical solution is available, at a
point-wise level:

1 + φ, 1 − φ ≥ δ∗, so that ln δ∗ − ln
β0

2 − β0
+ 12ε2

h2
+ ‖g + θ0φ

n‖∞ = 0. (3.29)

Remark 3.1 The technique of positivity preserving analysis has been successfully applied to
various gradient flowmodels, such as the Cahn-Hilliard equation with Flory-Huggins energy
potential [5, 7, 12–14, 48], the liquid film droplet model [49], the Poisson-Nernst-Planck
system [37, 38, 42], the reaction-diffusion system with detailed balance [36], etc. In these
works, the convex nature of the energy functional associated with singular term has played
an essential role. This feature prevents the numerical solution approach the singular limit
value of 0, which turns out to be the key point in the analysis.

Of course, in the rewritten form of the numerical solution (3.26), g = − 1
�t G−1

h (φ − φn)

is coupled with the left hand side. The unique solvability and positivity preserving analysis
for the proposed numerical scheme is stated in the following theorem.

Theorem 3.1 Given φn ∈ Cper , with−1 < φn
i, j,k < 1, 1 ≤ i, j, k ≤ N, φn = β0, there exists

a unique solution φn+1 ∈ Cper to (2.20)–(2.23), or equivalently (3.26), with−1 < φn+1
i, j,k < 1,

1 ≤ i, j, k ≤ N, and φn+1 = β0.
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Proof The existence of the numerical solution for (3.26) is proved by an iteration approach.
Given the mth iterate ρ(m) ∈ Cper, with 0 < ρ

(m)
i, j,k , 1 ≤ i, j, k ≤ N , and ρ(m) = β0, the

following nonlinear iteration is constructed:

B∗
h (φ(m+1)) := ln(1 + φ(m+1)) − ln(1 − φ(m+1)) − ε2�hφ

(m+1) + Aφ(m+1) − θ0φ
n

= − 1

�t
G−1
h (φ(m) − φn) + Aφ(m). (3.30)

In fact, Proposition 3.3 has implied a point-wise positive solution φ(m+1) for any given
G−1
h (φ(m) − φn).
In the next step, we aim to establish the contraction mapping property of the nonlinear

iteration (3.30), for a sufficiently large A. The following difference function is introduced,
between two consecutive iteration stages:

e(m) := φ(m) − φ(m−1), for m ≥ 1. (3.31)

It is clear that e(m) = 0, due to the fact thatφ(m) = φ(m−1) = β0, for anym ≥ 1. Subsequently,
an application of discrete elliptic regularity (3.18) gives

‖∇he
(m)‖2 ≥ C1‖e(m)‖2, ∀m ≥ 1. (3.32)

Taking a difference of (3.30) between the mth and the (m + 1)st iteration stages leads to

B∗
h (φ(m+1)) − B∗

h (φ(m)) = ln(1 + φ(m+1)) − ln(1 + φ(m)) − ln(1 − φ(m+1))

+ ln(1 − φ(m)) + Ae(m+1) − ε2�he
(m+1)

= − 1

�t
G−1
h (φ(m) − φ(m−1)) + Ae(m).

(3.33)

In turn, taking a discrete inner product with (3.33) by e(m+1) results in

〈ln(1 + φ(m+1)) − ln(1 + φ(m)), e(m+1)〉C + 〈− ln(1 − φ(m+1)) + ln(1 − φ(m)), e(m+1)〉C
+ A〈e(m+1) − e(m), e(m+1)〉 + ε2‖∇he

(m+1)‖22
= − 1

�t

〈
G−1
h (φ(m) − φ(m−1)), e(m+1)

〉
C

.

(3.34)

The nonlinear inner products on the left hand side are always non-negative, due to the mono-
tone property of the logarithmic function:

〈ln(1 + φ(m+1)) − ln(1 + φ(m)), e(m+1)〉C
= 〈ln(1 + φ(m+1)) − ln(1 + φ(m)), φ(m+1) − φ(m)〉C ≥ 0. (3.35)

〈− ln(1 − φ(m+1)) + ln(1 + φ(m)), e(m+1)〉C ≥ 0, (similar analysis). (3.36)

For the iteration relaxation term, the following identity is available:

〈e(m+1) − e(m), e(m+1)〉C = 1

2
(‖e(m+1)‖22 − ‖e(m)‖22 + ‖e(m+1) − e(m)‖22). (3.37)

Going back (3.34), we get

A

2
‖e(m+1)‖22 + A

2
‖e(m+1) − e(m)‖22 + ε2‖∇he

(m+1)‖22
≤ A

2
‖e(m)‖22 − 1

�t

〈
G−1
h (φ(m) − φ(m−1)), e(m+1)

〉
C

. (3.38)
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For the right hand side inner product, we begin with the following decomposition:

−
〈
G−1
h (φ(m) − φ(m−1)), e(m+1)

〉
C

= −
〈
G−1
h (φ(m) − φ(m−1)), e(m)

〉
C

−
〈
G−1
h (φ(m) − φ(m−1)), e(m+1) − e(m)

〉
C

. (3.39)

The first part is always non-positive, with an application of the monotonicity analysis (3.17)
(in Proposition 3.1):

−
〈
G−1
h (φ(m) − φ(m−1)), e(m)

〉
C

= −
〈
G−1
h (φ(m) − φ(m−1)), φ(m) − φ(m−1)

〉
C

≤ 0. (3.40)

Moreover, the monotonicity analysis (3.17) reveals that

‖G−1
h (φ(m) − φ(m−1))‖2 ≤ C−2

1 ‖φ(m) − φ(m−1)‖2 = C−2
1 ‖e(m)‖2, (3.41)

so that the following estimate is valid for the second part:

−
〈
G−1
h (φ(m) − φ(m−1)), e(m+1) − e(m)

〉
C

≤ ‖G−1
h (φ(m) − φ(m−1))‖2 · ‖e(m+1) − e(m)‖2

≤ C−2
1 ‖e(m)‖2 · ‖e(m+1) − e(m)‖2. (3.42)

In turn, a substitution of (3.40) and (3.42) into (3.39) yields

− 1

�t

〈
G−1
h (φ(m) − φ(m−1)), e(m+1)

〉
C

≤ C−2
1 �t−1‖e(m)‖2 · ‖e(m+1) − e(m)‖2

≤ ε2

2
C2
1‖e(m)‖22 + 1

2
C−6
1 ε−2�t−2‖e(m+1) − e(m)‖22.

(3.43)

A combination of (3.38) and (3.43) yields

(
A

2
+ C2

1ε
2)‖e(m+1)‖22 + A

2
‖e(m+1) − e(m)‖22

≤ (
A

2
+ ε2

2
C2
1 )‖e(m)‖22 + 1

2
C−6
1 ε−2�t−2‖e(m+1) − e(m)‖22.

(3.44)

As a result, by taking A = C−6
1 ε−2�t−2, a fixed constant which may depend on �t , � and

ε, we arrive at the following iteration estimate:

(
A

2
+ C2

1ε
2)‖e(m+1)‖22 ≤ (

A

2
+ 1

2
C2
1ε

2)‖e(m)‖22. (3.45)

In other words, the nonlinear iteration (3.30) is assured to be a contractionmapping, by taking
A = C−6

1 ε−2�t−2. As a consequence, such a nonlinear process must have a convergence
solution in the fixed point iteration, and the limit convergence solution is exactly the solution
to (3.26), or equivalently, the numerical system (2.20)–(2.22). The existence of the proposed
numerical scheme is proved.

In addition, since the operator Bh corresponds to a strictly convex energy, and the linear
operator G−1

h (φ) is monotone (in terms of φ), the uniqueness analysis for the numerical
solution of (3.26) follows a standard monotonicity analysis.

After the unique intermediate velocity vector ūn+1, the numerical vector un+1 turns out
to be the discrete Helmholtz projection of ūn+1 into the divergence-free vector space, which
is equivalent to a discrete Poisson solver. The proof of Theorem 3.1 is complete. ��

Meanwhile, the Browder–Minty lemma is recalled as follows.
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Lemma 3.3 (Browder–Minty [1, 41]) Let X be a real, reflexive Banach space and suppose
X ′ is its dual. Let T : X → X ′ be (i) bounded; (ii) continuous; (iii) coercive, that is,

〈T (u), u〉
‖u‖X → +∞ as ‖u‖X → +∞; (3.46)

and (iv) monotone. Then for any g ∈ X ′ there exists a solution u ∈ X of the equation
T (u) = g. Furthermore, if the operator T is strictly monotone, then the solution u is unique.

Remark 3.2 In fact, the numerical solution (3.26) could be equivalently rewritten as follows

Fh(φ
n+1) := Bh(φ

n+1) + 1

�t
G−1
h (φn+1 − φn)

= ln(1 + φn+1) − ln(1 − φn+1)

−θ0φ
n − ε2�hφ

n+1 + 1

�t
G−1
h (φn+1 − φn) = 0. (3.47)

The monotone property of Fh(φ) could be derived in a straightforward manner. However, the
Browder–Minty lemma is not directly applicable for this numerical system, due to the fact
that ln(1 ± φ) becomes singular as φ → −1+ or φ → 1−, so that the coercivity condition
of the operator Fh could not be verified. Instead, the nonlinear iteration (3.30) is constructed,
and a contraction mapping property is theoretically justified, so that the convergence limit of
the fixed-point iteration turns out to be the solution of the numerical system (3.26).

Remark 3.3 At each fixed iteration stage, given by (3.30), it is clear that g = − 1
�t G−1

h (φ(m)−
φn) + Aφ(m). In addition, the ‖ · ‖∞ estimate (3.23) (in Proposition 3.2) implies that

‖G−1
h (φ(m) − φn)‖∞ ≤ CC−2

1 h− 3
2 (‖φ(m) − φn‖2 + A∗)

≤ CC−2
1 h− 3

2 (A∗ + 2|�| 12 ),
(3.48)

in which the last step comes from the fact that −1 < φ(m), φn < 1 at a point-wise level.
This in turn gives

‖g‖∞ ≤ 1

�t
‖G−1

h (φ(m) − φn)‖∞ + A‖φ(m)‖∞

≤ CC−2
1 (A∗ + 2|�| 12 )�t−1h− 3

2 + A, (3.49)

‖g + θ0φ
n‖∞ ≤ ‖g‖∞ + θ0‖φn‖∞ ≤ B∗

:= CC−2
1 (A∗ + 2|�| 12 )�t−1h− 3

2 + A + θ0. (3.50)

As a result, by the point-wise lower bound estimate (3.29) (in Proposition 3.3), we conclude
that

1 + φ(m+1), 1 − φ(m+1) ≥ δ∗, with ln δ∗ − ln
β0

2 − β0
+ 12ε2

h2
+ B∗ = 0. (3.51)

This lower bound δ∗ only depends on�t , h,�, un , φn , pn and β0, while it is viewed as a fixed
distance between 1 + φ(m+1) and 1 − φ(m+1) and the singular limit value 0, with all these
given parameters and the numerical solution at the previous time step, at any iteration stage.
Because of this lower bound, the point-wise convergence of the iteration solution φ(m+1),
ensured by the contraction mapping property (3.45), would not create a singular limit, so that
the point-wise positivity property is valid for the numerical solution of (3.30).
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Remark 3.4 We also point out that the iteration method utilized in the existence proof can be
formulated into a somewhat more general form as

N (un+1) + Lsu
n+1 + Run+1 = f − Lau

n + Run,

where N is a nonlinear monotone operator that satisfies the conditions in the Minty-Browder
theorem, Ls is a symmetric coercive linear operator, La is a (non-symmetric) and continuous
linear operator, and R is an appropriate regularization parameter. We leave the details to the
interested reader.

Remark 3.5 Periodic boundary conditions have been assumed throughout the analysis for
simplicity. A more careful analysis reveals that the positivity-preserving property remains
true even if we impose Neumann boundary condition for the phase variable, together with
a no-slip or free-slip boundary condition for the velocity. In another word, this analysis is
independent of the boundary condition for either the phase variable or the velocity vector,
and any boundary condition (even if it is non-homogeneous) coupled with the fluid solver
operator Lh would lead to the same estimate of the desired result. This will significantly
enhance the general availability of the positivity-preserving analysis presented in this paper.

4 Energy Stability Analysis

With the positivity-preserving and unique solvability properties for the numerical scheme
(2.20)–(2.23) established, a total energy dissipation law could be derived. The following
discrete phase field energy is introduced:

Eh(φ) := 〈(1 + φ) ln(1 + φ) + (1 − φ) ln(1 − φ), 1〉C − θ0

2
‖φ‖22 + ε2

2
‖∇hφ‖22. (4.1)

Theorem 4.1 For the numerical solution (2.20)–(2.23), we have

Ẽh(φ
n+1,un+1, pn+1) + ν�t

γ
‖∇h ūn+1‖22 + �t‖∇hμ

n+1‖22 ≤ Ẽh(φ
n,un, pn),

Ẽh(φ
n,un, pn) := Eh(φ

n) + 1

2γ
‖un‖22 + �t2

2γ
‖∇h p

n‖22,
(4.2)

so that Ẽh(φ
m,um, pm) ≤ Ẽh(φ

0,u0, p0) ≤ Q0, for all m ∈ N, where Q0 > 0 is a constant
independent of h.

Proof Taking discrete inner products with (2.20) by ūn+1, (2.21) by μn+1, leads to

1

2�t
(‖ūn+1‖22 − ‖un‖22 + ‖ūn+1 − un‖22)

+ ν‖∇h ūn+1‖22 + 〈∇h p
n, ūn+1〉1

= −γ 〈Ahφ
n∇hμ

n+1, ūn+1〉1, (4.3)

〈φn+1 − φn, μn+1〉C = 〈φn+1 − φn, ln(1 + φn+1)

− ln(1 − φn+1) − θ0φ
n − ε2�hφ

n+1〉C
= �t〈Ahφ

n∇hμ
n+1, ūn+1〉1 − �t‖∇hμ

n+1‖22. (4.4)
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Meanwhile, the convexity of the discrete energy terms, 〈(1+φ) ln(1+φ), 1〉C , 〈(1−φ) ln(1−
φ), 1〉C , ‖φ‖22 and‖∇hφ‖22 (in terms of φ), reveals that

〈φn+1 − φn, ln(1 + φn+1)〉C ≥ 〈
(1 + φn+1) ln(1 + φn+1), 1

〉
− 〈

(1 + φn) ln(1 + φn), 1
〉
, (4.5)

〈φn+1 − φn,− ln(1 − φn+1)〉C ≥ 〈
(1 − φn+1) ln(1 − φn+1), 1

〉
− 〈

(1 − φn) ln(1 − φn), 1
〉
, (4.6)

〈φn+1 − φn,−φn〉C ≥ −1

2
(‖φn+1‖22 − ‖φn‖22), (4.7)

〈φn+1 − φn,−�hφ
n+1〉C ≥ 1

2
(‖∇hφ

n+1‖22 − ‖∇hφ
n‖22). (4.8)

Consequently, a substitution of (4.5)–(4.8) into (4.3) and (4.4) leads to

Eh(φ
n+1) − Eh(φ

n) + 1

2γ
(‖ūn+1‖22 − ‖un‖22)

+ ν�t

γ
‖∇h ūn+1‖22 + �t‖∇hμ

n+1‖22 + �t

γ
〈∇h p

n, ūn+1〉1 ≤ 0.
(4.9)

Regarding the term 〈∇h pn, un+1〉1, the following identity is available:

〈∇h p
n,un+1〉1 = −〈pn,∇h · un+1〉C = −〈pn,�t�h(p

n+1 − pn)〉C
= �t〈∇h p

n,∇h(p
n+1 − pn)〉1

= �t

2
(‖∇h p

n+1‖22 − ‖∇h p
n‖22) − �t

2
‖∇h(p

n+1 − pn)‖22
= �t

2
(‖∇h p

n+1‖22 − ‖∇h p
n‖22) − 1

2�t
‖un+1 − un+1‖22, (4.10)

where (2.23) has been applied in the derivation. A substitution of (4.10) into (4.9) yields

Eh(φ
n+1) − Eh(φ

n) + 1

2γ
(‖ūn+1‖22 − ‖un‖22) + ν�t

γ
‖∇h ūn+1‖22 + �t‖∇hμ

n+1‖22

+�t2

2γ
(‖∇h p

n+1‖22 − ‖∇h p
n‖22) − 1

2γ
‖un+1 − un+1‖22 ≤ 0. (4.11)

On the other hand, taking a discrete inner product with (2.23) by un+1 results in

‖un+1‖22 − ‖un+1‖22 + ‖un+1 − un+1‖22 = 0, (4.12)

which comes from the fact that 〈un+1,∇h(pn+1 − pn)〉1 = 0. A combination of the last
identity with (4.11) leads to

Eh(φ
n+1) − Eh(φ

n) + 1

2γ
(‖un+1‖22 − ‖un‖22) + �t2

2γ
(‖∇h p

n+1‖22 − ‖∇h p
n‖22)

+ ν�t

γ
‖∇h ūn+1‖22 + �t‖∇hμ

n+1‖22 ≤ 0.

(4.13)

This is exactly the inequality (4.2), so that the total energy dissipation rate is established.
This finishes the proof of Theorem 4.1. ��
Remark 4.1 For the phase field model coupled with fluid motion, there have been quite a few
existingworks of optimal rate convergence analysis and error estimate, such as the ones for the
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Cahn-Hilliard-Hele-Shaw [3, 6, 39], Cahn-Hilliard-Navier-Stokes [10] flows, as well as the
one [4] coupled with the Darcy flow. Due to the energy structure, the standard �∞(0, T ; �2)

error estimate does not work out directly; instead, the �∞(0, T ; H1
h ) ∩ �2(0, T ; H3

h ) con-
vergence estimate has to be applied, so that the nonlinear errors associated with the phase
variable convective term could be cancelled. This technique has played a key role in the
convergence analysis for the Cahn-Hilliard-fluid models.

Meanwhile, all these existing works have been based on a phase energy with a polynomial
approximation. For the Cahn-Hilliard-Navier-Stokes system (1.2)–(1.4), with Flory-Huggins
phase energy (1.1), an optimal rate convergence analysis for the proposed numerical scheme
(2.20)–(2.23) is expected to be valid. In comparison with the analysis reported for the Cahn-
Hilliard-fluid models with polynomial approximation phase energy, the essential difficulties
are associated with the singular nature of the logarithmic terms. In turn, a uniform distance
between the numerical solution and the singular limit value has to be established, locally
in time, so that the convergence estimate could go through. Because of the nonlinear and
singular nature of the logarithmic term, the technique of combining the rough and refined error
estimates has to be applied in the convergence analysis; see the related works for the nonlocal
Cahn-Hilliard equation [32, 33], porous medium equation [15, 16], Poisson-Nernst-Planck
system [37], etc. The details will be presented in a future work.

Remark 4.2 For the Cahn-Hilliard-fluid model based on a phase energy with a polynomial
approximation, there have been some existing works of second order numerical schemes
[3, 10]. Meanwhile, for the pure phase field equation with logarithmic energy potential, a
few second order numerical schemes have also been reported [5, 7, 14], based on either
the Crank-Nicolson or backward differentiation formula (BDF) approach, in which both the
positivity-preserving and energy stability properties have been analyzed at a theoretical level.

For theCahn-Hilliard-Navier-Stokes system (1.2)–(1.4),with Flory-Huggins phase energy
(1.1), a second order numerical scheme could be derived in a similar manner. A modified
Crank-Nicolson approximation will be used as the temporal discretization, following the
idea reported in [5]. Semi-implicit approximations will be applied in the nonlinear convective
terms. The positivity-preserving and energy stability analyses are expected for this numerical
scheme.The details will be presented in a future work.

Remark 4.3 For simplicity of presentation, we have taken a constant mobility, M(φ) ≡ 1,
in Eq. (1.3). If a variable mobility is taken into consideration, i.e., if the mobility function is
phase variable dependent, the numerical scheme (2.20)–(2.23) could be derived in the same
fashion, and the positivity preserving and energy stability estimates could be established,
following similar ideas presented in this paper. In particular, the operator Gh will be re-
defined, while a similar monotonicity analysis is available. Moreover, the discrete maximum
norm bound of the inverse elliptic operator associated with the temporal derivative is needed,
following the estimates derived in a few related works [7, 37]. All these modified estimates
will lead to the desired results of both positivity preserving and energy stability properties.
The technical details are left to interested readers.

5 Numerical Results

In this section we present some numerical results, using the proposed method (2.20)–(2.23).
A preconditioned steepest descent (PSD) iteration algorithm is applied in the numerical
implementation of (2.21); the theoretical foundation of the PSD iteration has been analyzed
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in [20], and its application has been reported for various gradient flowmodels [8, 19, 21, 49],
etc.

5.1 Convergence Test for the Numerical Scheme

In this subsection we verify the accuracy of the numerical scheme (2.20)–(2.23). The com-
putational domain is chosen as� = (0, 1)2 for simplicity, and the exact solution of the phase
variable, velocity field, and the pressure field are given by

� = 1

π
sin(2πx) cos(2π y) cos(t),

u =
(− cos(2πx) sin(2π y) cos(t)

sin(2πx) cos(2π y) cos(t)

)
,

P = sin(2πx) sin(t),

and the equations are modified to include appropriate source terms in order to ensure that the
exact solution presented above does solve the system exactly.We alsomodify our algorithm to
accommodate these source terms in our numerics of course. Notice that the phase variable �

stays between−1 and 1, so that no singularity occurs during computation. For our numerical
experiment, we set the time size as �t = 8h2, so that spatial and temporal accuracy can
be checked simultaneously as the scheme is formally first order in time and second order
in space. The final time is chosen as T = 1. The surface diffusion parameter ε and the
expansive parameter θ0 are given by 0.5 and 3 respectively, while the kinematic viscosity
ν and the surface tension parameter γ are both set to 1. A sequence of spatial resolution
is chosen: N = 48 : 16 : 256. The expected temporal numerical accuracy assumption
e ≈ C(�t + h2) indicates that ln |e| ≈ lnC − 2 ln N , so that we plot ln |e| vs. ln N to
demonstrate the convergence order. Specific numerical errors are displayed in Fig. 1. The
slopes of the fitted lines related to three different physical variables are given by -2.0009,
-2.0457 and -1.9495, respectively. This verifies the first order accuracy in time and second
order accuracy in space.

5.2 Simulation of the Interface Pinchoff

In this subsection we report results on our simulation of binary fluids with topological inter-
face changes. A similar experiment has been performed in [25, 27]. The computational
domain is set as (0, 1)2, and we assume that the density variance of two fluids is small so
that a Boussinesq approximation can be used for simplicity. The following buoyancy term is
added to the Navier-Stokes equation in (2.20):

−b(φ)ŷ = −G(ρ(φ) − ρ̄)ŷ = −G
ρ1 − ρ2

2
(φ − φ̄)ŷ := −λ(φ − φ̄)ŷ,

where ŷ is the unit vector pointing upward
(
ŷ = (0, 1)

)
, G is the gravitational constant,

ρ(φ) = 1+φ
2 ρ1 + 1−φ

2 ρ2, ρ̄ is the spatially averaged density, φ̄ is the spatially averaged order
parameter, and λ = G ρ1−ρ2

2 . In addition, two interfaces that are small perturbations of flat
ones are introduced:

y1(x) = 1

2
− 0.5 + 0.1 cos(x)

2π
, y2(x) = 1

2
+ 0.5 + 0.1 cos(x)

2π
, (5.1)
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Fig. 1 The discrete �2 and �∞
numerical error vs. spatial
resolution N for
N = 48 : 16 : 256, and the time
step size is set as �t = 8h2. The
numerical results are obtained via
numerical scheme (2.20)–(2.23).
All the data shown in this figure
lie roughly on curves CN−2,
which agrees with the theoretical
analysis

and the initial condition for the phase variable is given by

φ0 = 0.8 tanh

(
y − y1(x)√

2ε

)
tanh

(
y − y2(x)√

2ε

)
.

In this simulation, we take ν = 0.001, γ = 5, θ0 = 3.2, ε = 0.01, and ρ1 = 1, ρ2 = 2.
The spatial mesh and time step size are taken as 1/256 and 1e-4, respectively. The snapshot
plots of the physical variables are displayed in Fig. 2. It is observed that the patterns of these
results are similar to the ones reported in [27].
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(a)

(b)

(c)

Fig. 2 Time snapshot plots of the interface pinchoff simulation. In each time snap we plot the phase variable,
velocity field and pressure distribution, respectively. The parameters are given by ν = 0.001, γ = 5, θ0 =
3.2, ε = 0.01, and ρ1 = 1, ρ2 = 2

5.3 Simulation with a Random Initial Data

To test the positivity-preserving property and energy stability, we give a two-dimensional
numerical simulation over � = (0, 1)2. Here the parameters are set to be: θ0 = 3.4, ε =
0.005, ν = 1 and γ = 2. In this experiment we still take the time and spatial step size as
�t = 1e − 4 and h = 1/256. The initial value is given by

φ0 = 0.2 + 0.05(2ri, j − 1),

where ri, j are uniformly distributed random numbers in [0, 1]. (5.2)

Eight snapshot plots in the simulation are displayed in Fig. 3. At t = 10, a single structure
emerges out of the random small scale initial data. Fig. 4 presents the time evolution of the
minimum and maximum values of the phase variable. It is observed that the minimum value
remains above −0.9303, while the maximum value remains 0.9185, so that the positivity
preserving property (for both 1+φ and 1−φ) has been verified in the numerical simulation.
In addition, the energy evolution curve, displayed in Fig. 5, verifies the energy dissipation of
the proposed numerical scheme.
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(d)

(e)

(f)

Fig. 2 continued

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3 Time snapshot plots captured during the simulation with the random initial condition (5.2). The phase
variable begins to separate and form many small structures, and eventually merges to one single structure
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Fig. 4 The time evolution of minimum value (left) and maximum value (right) of the phase variable, with the
random initial data (5.2)

Fig. 5 Semilog plot of the energy evolution with the modified energy (4.2), with the random initial data (5.2)

6 Concluding Remarks

In this paper we have presented and analyzed a finite difference numerical scheme for
the Cahn-Hilliard-Navier-Stokes system, with logarithmic Flory-Huggins energy potential.
A convex splitting numerical approximation is applied to the singular chemical potential:
implicit treatment for the logarithmic term and the surface diffusion term, combined with
an explicit update for the linear expansive term. For the convective term in the phase field
evolutionary equation, the phase variable is computed explicitly, while the velocity vector
is treated implicitly. A similar semi-implicit algorithm is applied to the fluid momentum
equation: implicit treatment for the kinematic diffusion term, explicit update for the pressure
gradient, combined with semi-implicit approximations to the fluid convection and the phase
field coupled term, respectively. In turn, this semi-implicit method generates an intermediate
velocity field, and a Helmholtz projection into the divergence-free vector field yields the
velocity vector and the pressure variable at the next time step. This decoupled approach
avoids a complicated Stokes solver, and the numerical efficiency is greatly improved. In
addition, we make use of the singular and convex nature of the logarithmic term, as well
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as the monotonicity analysis of the velocity solver, and come up with a nonlinear iteration
process to construct the numerical solution. With the help of careful estimates, the unique
solvability and the positivity-preserving analysis (for the logarithmic arguments) could be
theoretically established. The energy stability analysis has also been carefully derived, which
indicates a dissipative total energy at a discrete level. Some numerical results are presented,
which demonstrate the robustness and efficiency of the numerical scheme.
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