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We analyze a fully discrete finite element numerical scheme for the Cahn—Hilliard—Stokes—Darcy system
that models two-phase flows in coupled free flow and porous media. To avoid a well-known difficulty
associated with the coupling between the Cahn—Hilliard equation and the fluid motion, we make use of
the operator-splitting in the numerical scheme, so that these two solvers are decoupled, which in turn
would greatly improve the computational efficiency. The unique solvability and the energy stability have
been proved in Chen et al. (2017, Uniquely solvable and energy stable decoupled numerical schemes
for the Cahn—Hilliard—Stokes—Darcy system for two-phase flows in karstic geometry. Numer. Math., 137,
229-255). In this work, we carry out a detailed convergence analysis and error estimate for the fully
discrete finite element scheme, so that the optimal rate convergence order is established in the energy
norm, i.e., in the £>°(0, T; H! )ﬂ£2 o, T, H2) norm for the phase variables, as well as in the £°° (0, T H! n
£2(0, T; H%) norm for the velocity variable. Such an energy norm error estimate leads to a cancelation of
a nonlinear error term associated with the convection part, which turns out to be a key step to pass through
the analysis. In addition, a discrete 02 O; T;H 3) bound of the numerical solution for the phase variables
plays an important role in the error estimate, which is accomplished via a discrete version of Gagliardo—
Nirenberg inequality in the finite element setting.

Keywords: phase field model; two-phase flow; error analysis; unconditional stability.

1. Introduction

In many applications such as contaminant transport in karst aquifer, oil recovery in karst oil reservoir,
proton exchange membrane fuel cell technology and cardiovascular modeling, multiphase flows in
conduit and in porous media interact with each other, and therefore have to be considered together.

© The Author(s) 2021. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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Geometric configurations that consist of both conduit and porous media are termed as karstic geometry.
In this article we aim to analyze a decoupled numerical algorithm for solving the Cahn—Hilliard—Stokes—
Darcy model (CHSD) for two-phase flows in karst geometry—a domain configuration with conduit
interfacing porous media. We first recall the CHSD system derived in Han e al. (2014b). Let £2,
denote the conduit region and £2,, denote the porous media. The interface between the two parts (i.e.,
0£2.M0d£2,) is denoted by I, on which n_,, is the unit normal to I',,, pointing from 2. to §2,,. Then,
we define I, = 082\l and I, = 9$2,,\I,,,, with n.,n,, being the unit outer normals to I, and I,,.
On the interface I',,,, we denote by {7;} (i =1, ...,d — 1) alocal orthonormal basis for the tangent plane
to I',,,. A two-dimensional geometry is illustrated in Fig. 1.
In turn, the CHSD system takes the following form:

poou, =V -T@,P,)— ¢ Vu,., ing2, (1.1)
V.u,=0, in 2, (1.2)

0,0, +V - (u.e,)=dviM(e,)Vpu,), in 2, (1.3)
%Btum + v(gom)Hflum =—(VP,+¢,Vu,), in2,, (1.4)
V-u, =0, in 2, (1.5)

0,9, +V-(,p,) =div(M(g,,)Vu,,), in 2, (1.6)

The chemical potentials pi, i, turn out to be

1
M=y [E(wf —¢) = eA(pJ} , Jj€fc,m}, (1.7)

and the Cauchy stress tensor T is given by
T(u,,P.) =2v(p,)D(,) — P, (1.8)

in which D(u,) = %(Vuc + VuCT) and I is the d x d identity matrix. Here, o, is the density of the fluid,

M is the mobility satisfying 0 < My < M < M|, x is the porosity and v is the viscosity satisfying

0 < vy < v < vy. In addition, we assume that both the mobility M and the viscosity v are Lipschitz

continuous. I7 is the permeability matrix of size d x d that is assumed to be bounded, symmetric and

uniformly positive definite. The parameter y in (1.7) is a positive constant related to the surface tension.
The CHSD system is subject to the following boundary and interface conditions.

Boundary conditions on I'. and I,

do, A,

u =0 o2<="Fe_o onr, (1.9)
on, dn,
dp,

w,-n,=0 Im_"Mm_o onr (1.10)

on,  dm,
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FIG. 1. Schematic illustration of karst geometry in two dimensions.

Interface conditionson I',,:

O = Pes ;:fc’:’n = aali;, onl,,, (1.11)
Mo = Her M(g,,) aal’l"’:’n = M(g,) ;:m on I, (1.12)
w,-n, =u.,-n,, onl,, (1.13)
—2v(pn,, -D@n,, +P. =P, onl,, (1.14)

) i=1,....d—1lonT,, (1.15)

—v(p)t; - D@ )n,, = aBJSJTmTi -u,

where op;g; is an empirical parameter in the Beavers—Joseph—Saffman—Jones (BJSJ) condition and
tr(I7) is the trace of IT.
Define the total energy of the system as follows:

Lo, 2 Po 2 € >, 1
= [ & | & T SIVel? + —F(p) | dx .
&) /9(7 > lu.|” dx /Qm 2 la,,|” dx y/Q [2| 0| . (go)] , (1.16)

where F(p) = }t(go2 — 1)2. The CHSD system (1.1)—(1.15) obeys a dissipative energy law (Chen et al.,
2017):

%g’(z) =—91) <0, Vt>0, (1.17)
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where the rate of energy dissipation & is given by
() = / V(@) u,, > dr + / 2v(p,)[D(u,) [ dx
o 2

2 v(p)
+/QM(§0)|VM(§0)| dx+/r s s Zlu c72ds >0,  (1.18)

cm

The CHSD system (1.1)—(1.15) is systematically derived via Onsager’s extremum principle in Han
et al. (2014b). The well-posedness of a variant of the CHSD model is studied in Han ez al. (2014a).
A decoupled unconditionally stable numerical algorithm for solving the CHSD system is proposed
in Chen et al. (2017). Here, we focus on the error analysis of a similar decoupled numerical scheme
(cf. Section 2) in which the computation of Stokes equations and Darcy equations are nevertheless
coupled. The decoupling between the Cahn—Hilliard equation and fluid equations is accomplished
by a special technique of operator splitting in which an intermediate velocity for advection in the
Cahn—Hilliard equation is defined in terms of the capillarity from fluid equations. The application of
this specific fractional step method for solving phase field models is first reported in Minjeaud (2013)
and later in Shen & Yang (2015). To the best of our knowledge, error analysis of the decoupled scheme
via the aforementioned operator splitting has not been reported elsewhere for any phase field model
coupled with fluid motion.

There have been some convergence analysis works for either the Cahn—Hilliard—Navier—Stokes
(Stokes) (CHNS, CHS) or the Cahn—Hilliard—Darcy (Hele—Shaw) system (CHD, CHHS) in recent years.
The convergence of certain finite element numerical solutions to weak solutions of the CHNS equations
was proved in Feng (2006), and a similar analysis is perform for the CHHS system in Feng & Wise
(2012). Diegel et al. (2015) have established optimal convergence rates for a mixed finite element
method for solving the CHS system, with first-order temporal accuracy. More recently, an optimal
rate error estimate is presented for a second-order accurate numerical scheme for solving the CHNS
equations in Diegel ef al. (2017). A similar error estimate was also reported in Cai & Shen (2018),
based on a finite element discretization of a linear, weakly coupled energy stable scheme for the CHNS
system. As for the CHHS system, in which the kinematic diffusion term is replaced by a damping one,
an optimal error analysis has been presented in Chen et al. (2016) and Liu et al. (2017), in the framework
of finite difference and finite element spatial approximations, respectively.

The CHSD system consist of the CHS and the CHD equations, coupled together via a set of domain
interface boundary conditions. Hence, the advection in the Cahn-Hilliard flow is involved with both
the Stokes and the Darcy velocity fields. While the Stokes velocity has a regularity of L>(0, T; H'), the
Darcy velocity is only of L>(0, T;L?%). With the L*(0,T; H') bound of the velocity field, a uniform
maximum norm estimate of the phase has been derived, which significantly simplifies the error analysis
for the CHNS system (Diegel et al., 2017) and the CHS equations (Diegel et al., 2015). On the other
hand, for the CHD system, only an L”(0, T; L°°) bound (with a finite value of p) could be established
for the phase variable, as analyzed in Liu er al. (2017). The lack of uniform bound of the phase
variable has dramatically complicated the error analysis of the nonlinear advection associated with the
Cahn—Hilliard equation. A similar difficulty is encountered here for the error analysis of the
CHSD system. To overcome this subtle difficulty, we perform an L?(0,7;H>) bound estimate of
the phase variable in the numerical solution, which is accomplished by the usage of a discrete
Gagliardo—Nirenberg inequality in the finite element setting. This bound will play an important role to
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pass through the error estimate. Such a technique has been applied in the analysis for the CHHS system
in the existing literature, as reported in Chen et al. (2016, 2019) and Liu er al. (2017). Moreover, the
CHSD system contains a coupling between the CHS and CHD equations, the corresponding estimates
are expected to be even more challenging than the ones for the CHHS model.

The rest of the article is organized as follows. In Section 2, we introduce the weak formulation of
the CHSD system and present the decoupled numerical scheme. Some preliminary analysis including
the stability estimates are gathered in Section 3. The detailed error analysis of the numerical scheme is
carried out in Section 4. Finally, some concluding remarks are provided in Section 5.

2. The numerical scheme
2.1 The weak formulation

For the CHSD problem, we introduce the following spaces:

H(div; 2) = (weL?(2)|V-wel*2)}, je{cm),
H,, = {(weH'(2)|w=00nT}
H. 4, = {weH |V -w=0},
H,, = {(weHdiv;£2,) |w-n,=0o0nTI,},
H =f{weH,,|V-w=0}

m,div

X, = H'(2,)NLi2,).

Here, L%(.Qm) is a subspace of L2 whose elements are of mean zero. We also use the notation L(z)(.Q),
which is defined similarly and will be used later. We denote (-, -),., (-, -),,, the inner products on the spaces
LZ(QC), Lz(Qm), respectively (also for the corresponding vector spaces). The inner product on L*(§2)
is simply denoted by (-, -). In turn, it is clear that

V) = (s Vo) + s Ve Nl o) = Nty 72 s + litcllF2 g

where u,, 1= u|g and u, := ulg . We will suppress the dependence on the domain in the L? norm if
there is no ambiguity. And also, H’ stands for the dual space of H with the duality induced by the L?
inner product. For simplicity, we denote || - || := || - |z and || - [|,, := || - [I;p for I < p < 00, p # 2. In
addition, the notation ||-||,,, is introduced as the L? norm on the interface I, . For all the functions f, f
represents the mean value of f on its domain.

The definition of the weak formulation of the three-dimensional CHSD system is given below.
The two-dimensional case could be similarly defined with slight changes in time integrability of the
functions.

DEFINITION 2.1 Suppose that d = 3 and T > 0 is arbitrary. We consider the initial data
@ € H'(2),u.(0) e H u,0) e H The functions (u., P.,u,, P, ¢, ) with the following
properties

c,div? m,div*

u, € L¥(0,T;L(£2,) N L2(0, T: H,p), 2 € L3 (0,T; (H,p)), 2.1)
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u, € L=(0,T;L%(£2,)) N L*(0,T; H,, ), 2 € L3 (0, T; (H,,0)), (2.2)
P, e Li(0,T:L%(82,)), P, €Li(0.T:X,). (2.3)

@ € L®(0,T;H' (2)) N L*(0,T; H*(2)), ¢, € L*(0; T (H' (2))), (2.4)
we L*0,T;H (£2)), (2.5)

is called a finite energy weak solution of the CHSD system (1.1)—(1.15), if the following conditions are
satisfied.
(1) For any v, ¢ € H'(£2),

(0,0,v) + M(@)Viu(e), Vv) — (ug, Vv) =0, (2.6)
1
Y [;(f(w),cb) + e(Vrp,V¢)] — (w(@).¢) =0, f(p):=¢ —0¢. 2.7
(2) Forany v, € H .y and g, € LZ(.QC),

p0<aluc’vc>c + ac(uc’vc) + bc(vc’Pc) + / Pm(vc ’ ncm) ds

cm

b1, 00) + (9. V(@) V,), =0, 2.8)
where
< v(p)
030 =2 (0P, + 3 | ws o . pas
by(vouq) = —(V-Vouqy)e.

(3) Foranyv, € H, ;and g,, € H'Y(2,),

%(atum, V), +a,w,.v,)+b, (v, . P,)—b,w,, q,)
H(@, VI (@) Vi) — /Fm u.-n,q,ds=0, 2.9
where
(W, v,) = (V)T ', v,)

b, (Vo @) = (Vs VG000

@D ¢li—g = 9o, u.|,—g = v (0),u,],_o =u,(0).
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(5) The finite energy solution satisfies the energy inequality
t
&(t) +/ P(r)dr < &(s), (2.10)
N

for all t € [s,T) and almost all s € [0, T) (including s = 0), where the total energy & is given by (1.16).

2.2 The numerical scheme

Let > 0 be the time step size, K = [T /7], and set * =kt for0 <k <K. Similarly, we denote u* as a
numerical approximation to u(tk) = u(kt), with a notation u(¢) := u(., r) for simplicity. Let Zh and Zf[
be a quasi-uniform triangulation of the domain §2, and §2,, with mesh size A. Then, .7 b= Zh U 9,,’;‘
forms a triangulation of the whole domain £2. .7 and (.7) coincide on the interface I',,,. Let Y, denote
the finite element approximation of H'(£2), such as

Y, = {v, € C(2)|v;|x € P.(K),YK € T}

Additionally, we introduce Y, := Y, N L2(52). Let X", M X! M", be the finite element approximation
of HC’O,L2(.QC),Hm’0,Xm, respectively, while the approximation polynomials have adequate degrees.

We assume that Xi’ and Mf are stable approximation spaces for Stokes velocity and pressure in the
sense that

sup & Vi) > cllgyll,  Vg; € ML (2.11)
wext | Vallg

The validity of such an inf-sup condition for some standard finite element spaces can be found in Layton

et al. (2002). The classical P2-P0, Taylor-Hood finite element spaces and the Mini finite element spaces

are commonly adopted in practice for X’c’ and Mf,’; cf. Girault & Raviart (1986) and Layton et al. (2002).

The spaces an and M’ are assumed to be stable in the sense that

(Vh7 Vq}l)m

> cligll. Vay € My, 2.12)
x4l
In particular, we notice that the Taylor—Hood finite element spaces satisfy the above condition.

We will focus on the error analysis of the following unconditionally energy stable scheme that
decouples the computation of the Cahn—Hilliard flow from that of fluid equations, i.e., for a totally
decoupled scheme; see the related descriptions in Chen et al. (2017). Given 0 < k£ < K — 1, find
((plf'l , ulh‘H , ulg"zl , P]C"';l , u/ﬂhl , Pf:hl) € Y, x Y, x X! x M" x X" x M such that for all (Vs s Vs Ges Vs Q)

€Y, xY, x Xf X Mf.’ X Xf; X Mf’n, there holds

Gt + M@ Vit vv) — @t ek, vv) = 0, (2.13a)

1
y [g(f(w';f“,wl’i),qb) + e(W’g”,vw] — (it ) =0, (2.13b)
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p0(8,ule,v )C—i—alg(ulc‘fgl,vc) +bC(VC,Pk+1) +/ Pk+](v -n,,)dS

— b T g + (@, vk v, =0,

(5, ul v+ a (W, b (v, PEED 4 (6 Vil ),

k+1 k+1
- [_ Wn - Nenlm ds — bm(um ho qm) =0,
cm

where
(pk+l QDk
k+1 k+1\3 k k+1 . h h
forthop) = (™) —¢f, St = -
k1
—k+1 20 Y.k umh k+1 _
it { ., XE€SL, X—+<pmhvumh_0,
u, _k+1 T gk
u.,, xe82., u. ; k1
c.h ¢ IOO—C + (pC!hV,uc’h =0,

"(u’g*,;l,v )= Z(U((pch)]l)(uk+l) D(v,)),

V(cpc )
+Z/ Qpjsy h)(“kJrl T)(v. - 7,)dS,

b(Verq) = —=(V-v.,4,.)
afn(ulrcn-i_hl’ m) - (V((pm )H_lulr(n-f_hl’vm)m’
by (Vs @) = (Vs Vi) -

The initial values are taken as follows:

o) = 2%, W0, = @}) ujQ, j € f{c,m}.

J> U

(2.13¢)

(2.13d)

(2.14)

(2.15)

(2.16)

2.17)
(2.18)

(2.19)

(2.20)

The unique solvability of the proposed scheme (2.132)—(2.19) has been proved via a convexity
analysis, and the energy stability is ensured by a careful estimate; the details could be found in
Chen et al. (2017). In this article, we focus on the optimal rate convergence analysis and error estimate.

3. Some preliminary estimates

Some projections are needed in the later analysis. Ritz projection &2 : H'(2) — Y,

(V(gz(p — <p),Vv) =0, Vvey, (P¢—¢1) =0,

3.1)

and for ¢ = ¢(1),Vt € [0, T], where ¢ is of the weak solution to CHSD system (1.1)—(1.15), we define

the modified Ritz projection 29: H'(2) — Y,

(M@)V(PPu— ), Vv) =0, YveY, (P%u—pu1)=0.

(3.2)
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Stokes—Darcy projection (ngu,f@fp, f@;ﬁ,u,,@,ﬁp): (HC,O’LZ(‘QC)’Hm,O’Xm) — (Xf.,Mf.’, Xf,’VMf’”),

which, forall v, € Xé’ q. € M, v, € Xf,‘l, q, € M, satisfies the following equalities:

2(V(¢C)D(L@c¢'3u“c)’D(Vc))c + 35 I, aBJSJ\;% ((yfu“c) : Ti) (Ve 7;) dS

- (,@g’pPG, V- Vc)c + frcm(yﬁ,me) (Ve m,) dS+ (V : (@gfuuc),qc)

c

=2(v(@IDW). D)) + S5 fr s S (v, ) (v, - 7)) dS

- (Pc’ V. Vc)c + fl"cm Pm (Vc : ncm) ds + (V ", qc)c > (3.3)

(v @1 (Z80) V) +(V( P8P V) =Pt V) = /F ) (2%.1,) 14, dS

m

- (u(¢m)n—1um,vm)m + (VP V), — (0 V4, — /F u,-n,,q, dS. (3.4)

Especially, for 0 < k < K, we rewrite the notation of the projections above as follows:
P = PN, (3.5)

(@;ﬁu, Pk

ep?

k k . k k k k
PE @m,p) - (gagjf; ), P, P, @,%;) . (3.6)

What follows is a standard result of Ritz projection Brenner & Scott (2008). There exists a constant
C > 0 depending on M, M, such that the Ritz projections & and Pk satisfies

|20 — o], +h|V(Ze - 0)], < Chr™ g Wit (3.7)

| 7% — o + 1| V(Z*0 — 0] < ChH @] 110 (3.8)

for all ¢ € Hatl (£2), ¢ 20, p e [2,00] and all 0 < k < K with Y, consisting of polynomials of order
q or higher.

For the Stokes—Darcy projection, the following error estimates have been established in Riviere &
Yotov (2005), Mu & Zhu (2010) and Chen et al. (2013):

”uc - ‘@f,uuc ”HI(.QC) + ”um - ‘@rlr(t,uum” < h (”uCHH‘IH(QC) + ”um ||Hq+l(gm)) : (3.9
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Here, we introduce the linear operator T, : f/h — f/h, which is defined via the variational problem:
given ¢ € f/h, find T,(¢) € Y ; such that

(VT,(0). VE) = (£.£), VE €Y, (3.10)
With this operator, we are able to define the following |[-|| _; ; norm:
111y = [VTHO]| = (YT, VT, @) = /(€. Th(©). V¢ € ¥ (.11

We also define the discrete Laplacian, A;: Y, — f/h as follows: forany v, € ¥}, A,v;, € f/h denotes
the unique solution to the problem

(A ) = —(Vv,, VE), VE €Y, (3.12)

We recall the following discrete Gagliardo—Nirenberg inequality from Heywood & Rannacher

(1982) and Liu et al. (2017), which is needed for the uniform estimate of the order parameter (p,]jﬂ.

LEmMA 3.1 Suppose that £2 is a convex and polyhedral domain. Then, for any ¢, € Y},

3(4—d)

_d Se—ay
lenllie < Clawen ™ llonl s + Cllonlls You €ty d=2.3, (3.13)

and consequently,

d 24—5d
len =@l < CIVA[T [Veu| " + C[Vey] a=2.3, (3.14)
where @, is the mean value of ¢,,.
The following technical lemma has been proven in Diegel et al. (2017).
LEMMA 3.2 Suppose g € H!(£2) and v € f/h. Then,
1(g: I < CIIVIlIvIZ (3.15)

holds for some C > 0 that is independent of A.
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ERROR ANALYSIS FOR THE CAHN-HILLIARD-STOKES-DARCY SYSTEM 2631
We also recall the inverse inequality
d/q—d/pyl—
lenllwn < CHYT PR gy llys. V@, € V) (3.16)

forall I <p<g<oo, 0K<I<m< 1.
The following trace theorem is necessary for the estimate of certain interface boundary terms.

LEMMA 3.3 Suppose v € H!(£2). Then,

”v”L4(3Q) < C||V||H1(Q)~ (3.17)

In particular, for u;, € Hc,o’ there holds

lwyllzacr,) < CID@ 2, (3.18)

Now, we derive some stability estimate of the scheme (2.13a)—(2.20). The following estimates are
direct consequence of the discrete energy law established in Chen et al. (2017).

LEMMA 3.4 Let (<pk+1,u/;l+l, IC‘ZI,PIC‘ZI, fn+hl,Pk+l) €Y, xY, x Xh X Mh X Xh X Mh be the unique

solution of (2.13a)—(2.20) for 0 < k < K — 1. Then, there exists a constant C > 0 dependent on the
initial data such that

2 2 2 2
s [t P+ P+ o = 17+ vk < c (.19)

max < C, (3.20)

aq
0<k<K H "l g,

K-

._.

(219 1+ bl b el P+ ot —
=0

+ by P+ Vet — bl < (321)

=~

hold forevery 0 < k< K —1,d =2,3.

For the error analysis, we also need the uniform bound of the order parameter and the chemical
potential for which we derive the following stability estimates; see also (Diegel ef al., 2015, Lemma
2.13).

LEmMA 3.5 Let (cpk“,uﬁﬂ, ];‘ZI,P]:‘;l, fn"'hl,PkH) €Y, xY, x Xh X Mh X Xh X Mh be the unique

solution of (2.13a)—(2.20) for 0 < k < K — 1. Then, there exists some constant C > 0 dependent on y
and € such that

| AP < o) + (3.22)

| < vl + (3.23)
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K—

—_

T [HAW';E“ |? 4+ [kt ||i,1] < C(T+1), (3.24)
k=0 K—1
T Z [k |7 < e+, (3.25)
K—1 k=0 86-d)
" [Hmhwﬁ“ 1P+ oft] " } <CT+1) (3.26)
o0
k=0

hold forevery 0 < k< K —1,d =2,3.

Proof. Setting ¢, = AhgokH in (2.13b), by the uniform bound of ”(pkH‘

we have

o and ||<ph H in Lemma 3.4,

||Ah§0k+1”2 — (V(pZ+1 VAhQDk+1)

1
_ (f((ﬂkH,(ph) Ah<pk+1) E(Mh+1 Ah‘PkH)

<ot ot

< (H<ﬂk+l + H(ﬂh H) H Ahq)k'H H Hukﬂ ” H Ah‘/’kﬂ H

S ;Z(C”‘/’ZHH +H¢hH) HAM‘“)H IR Pl

< aryma | g Lot 6

Therefore, we get

k1 H2 2¢

< bl X

which in turn proves (3.22). Likewise, by taking ¢ = ,uk+1 in (2.13b), one derives

k+1 H

H“ (f((p"“,wh) u"“) +ye (V(ph+1 vu"“)

v

< WWﬁ%WWW+whWWW%W
2 2.2 2 1 2
Y€
< Ll b+ 5 e[+ 5 v [+ 5 [
2 2 2
< L (I L Il + 3t + 5 ot [+ 3 ot [
b 262 Ph s T |0 " 5 1V¥ 5 | Vi
2 Cy?  Cple?

< k41 H ”V k+1 H Ly _ 329

2 H 2 + 2¢2 + 2 ( )

220z Jaquieidag z0 uo 1senb AQ ¥E1/0£9/1.292/€/Zp/o1o1e/eulewl/W0d"dno-oiLapeoe)/:SARY WOy Papeojumoq



ERROR ANALYSIS FOR THE CAHN-HILLIARD-STOKES-DARCY SYSTEM 2633

As a result, inequality (3.23) holds, i.e.,

2 2 C 2
i < g [+ s e

Moreover, the inequality (3.24) follows from (3.22), (3.23) and (3.21). By Lemma 3.1, one has

d —d)
k+1 Kl || TET || gt | X600 k+1
il < clawat 7 ]2 + e,
26dd
< C”Ah ket ]| 260 4 o 3.31)
Thus, an application of Young’s inequality gives
46— 4 4(6d—d)
H(’O;’{HH a (C HAh k1| 26 +C) (C HAh(pkHH —I—C). (3.32)
o0

Subsequently, a combination of (3.24), (3.28) and (3.32) yields (3.25). )
For the inequality (3.26), we observe the following identity for any v;, € ¥, A,v;,, A2v, € ¥;:

2
(Vo V4R,) = [V A, = HAhvh H g (3.33)

and that

2 2 2

3
) ol

2

3
H (<p’,§+l) — )

|
—~
S
B
s

(-9

2
e2laf +2]v ()| +2 ool

H!

VAN
[\
—_
S
=
L
~—
w

w

6 2 2
k+1 k k+1 k+1
=2 (¢h+) L6+2H¢h H! (¢h+) Ve

=

6 2 2
k+1 k k—+1 k—+1
< e[t 2ot + ot [ et
6 2 4(6—d) 6 —2d
< e[, w2l +oloet | (g b L7 + 2

(3.34)

VAN
a
N
B
t
+
O
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Then, by taking ¢;, = A%q)lg‘”‘l in (2.13b), one obtains

2 1 1 3
HVAhwkHH _ ; (MI;+1’A}2!¢£+1) > ((¢;<l+l) _¢£’A%¢II§+1)

1
< —— (Vuh—&-l VAh(pkH) ((p£+l) q)/hc A%¢}l§+1”
V4SS H! 1,h
1 k1 k1 1 M1\ |k 1
< s lvtt [vawt | + 2 | (@) o H
H!
1 1?1 P k12
< |Vt S |6n) -]+ vaet|
y € Hl 2
1 w12 C g T k12
S A IRl T R |20l N CED
which yields that
2 2 oo~
k41 k+1 k1| @
[vawi | < oz v [+ S et ] + 5 (336)

Also, notice that (¢}, 1) = (¢, 1) = C, YO < k < K, by taking v, = 1 in (2.13a). By Lemma 3.1, we
derive

4(6 ) 4(6 d) 0
H(pkﬂ H H(pkﬂ (p;TFl H + ‘(pﬁ“ C HVAh k+1 HV k+1 LcC H V(pkﬂH I ‘902‘
d
< CHVAh LD o (3.37)
so that
8(6—d)
Hd‘“” T <cC HVA <p"+1H el (3.38)

Combining (3.36), (3.38), (3.21) and (3.25), one readily derives (3.26). This completes the proof. Il

4. The optimal rate error analysis

In this section, we provide a convergence analysis and error estimate for the numerical scheme
(2.132)—(2.20). Further regularity assumptions for the weak solution are needed in the analysis.

AssuMPTION 1 We assume that weak solutions to the CHSD system (2.6)—(2.9) have the following
additional regularities:

o e (0.7 wH@) N2t (0. 11" @) (12 (0.7:2%@)) (1% (0. TsH (@), 4.1y
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e l® (0, T: Hq+1(9)), 4.2)

u, € L® (0, T: [Hq+1(gc)]d) Nw' (o, T, [L2(.QC)]d) N H (o, T: [Lz(.Qc)]d), 4.3)
u,, € L® (o, T; [Hq“(:zm)]d) nw' (0, T [L2(9m)]d) N > (0, T [L2(9m)]d), (4.4)

where g > 1 is the spatial approximation order.
The following assumptions are also made, on the parameters of the problem

My <M(p) <M, IM|<C, vy<vip)<vy, P[<C 4.5

For the weak solution (u., P.,u,,, P, ¢, u) to the CHSD system (2.6)—(2.9), we set
Io(p('x’ t) = ‘P(x, t) - gzgo(x’ t)’ PM(X’ t) = ,bL()C, t) - @(p(t)ﬂ(x’ [)s (46)

=" B 0) = w(x ) — 32“"% 0, jel{e,mh 4.7

specially, for 0 < k < K, j € {c, m},

P = oft = (- 2eh) | | == (u" Y| L @)

2; j 2 j

wk|  _ wk _ gpk Lk k Dk k pk
o Qj—p] =uf — P, P o =P - PP, 4.9)
andforO0 < k< K—1,je{c,m},
Re-k+1 Rw L (5 Phtl al¢k+1) RUWAHL|  — pukHL . o gkl kbl atu].‘“,
) 52 12 ! ! !

k+1 . k+1_ k|2 k+1_ k|2 k+1_ ok |2 k+1_ k|2 k+1_ k]2

R = (oMt = + et —uf " + ot —ug [ "= " =gt 4w b7 @.10)

The error functions are defined as follows, forj € {¢,m} and 0 < k < K:

ok N = o‘j‘/”k = (,%pk _ ¢;f) o Pk o _ e}"’k — (wk _ ‘Plii) o @11
g = of = (‘@%“k ) o ¢y = et = (k- uf) g @12
oy = = Tl — e M, =g = - (4.13)

o, =t = AP B | =gt = B n

Note that the numerical solution (pfl satisfies mass conservation by choosing v, = 1 in (2.13a), same as
the weak solution ¢. Recall also that (pg = P¢°. Then, by the definition of Ritz projection, we see that
(%, 1) = (2¢*, 1) = (¢f,1) = C forall 0 < k < K. This enables one to apply Poincaré inequality to
p“”k, ok Pk, SIU‘/”k‘H for 0 < k < K. We shall also make use of the fact that o9, SIU“”"‘H € )o’h.
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Given any ¢ € [0, T], the solution to the CHSD system satisfies

(81‘(@('0/{4-1"}) + (M((pk+1)vﬁ+lﬂk+l’vv) _ (uk+1(pk+l’vv) — (R(O,k-Fl’v)’ (4153)
ye(VP2eH Vg — (ZHH M gy 4 & (f(wk“) ¢) = (p"FFL ), (4.15b)

,00(8 !@k-f‘l k"rl V) +a (ﬁkﬁ'l k+1 vV ) +b (V (@Z\C}-l})ﬁ""l) + t@r]z’l‘;’lpﬁj-l(vc .ncm) ds
Tem

b (25 g + @ VT v ) = g (RE V), (@.15¢)

mp - m

P
k+1, k+1 kel kel Po [ puk+1
_/1‘ L@C:lt l'l(,'+ cmqm dS+ ((p + + ’vm)m = Y(Rgl + 9Vm)n19 (4-15d)
forallv, ¢ €Y, v; eX 4 th je{e,myand 0 <k < K — 1.
Subtracting (2. 13a) (2 l3d) from (4.15a)—(4.15d), we obtain
G040 + M@ Vo441, ) = — (M) = Meh) V2, vy)

+(uk+1(pk+l —k+l(pg’ VV) + (R(p,k-‘rl’v)’ (4163)
ye(Vorkt vg) — @ ¢) = (0"44.9) = L (1) — o). @16b)

P00t v, +/ on v, - mg,) ds

cm

+alg(o,;l,k+l )+b (V pk—H) _ bc(o_cl‘l,k-‘rl’qc)

(,’C

k+1
_ pO(R?,k+1’Vc)C _ ((plcc+lvulcc+l ‘Pchvﬂ + )

ch’c
c

=2 (W@k) = (@D ), D))

v(@Eth — v(gk,)
+Z/ Aprsy i) o (@§;1u§+1.zi)(vc.r,.)ds, (4.16¢)

Po k+1 k+1 k o _uwk+l
(8 “ * ’Vm)m - Ucu, AR N dm ds + am(oﬁ’ * ’Vm)m
cm

+b (V pk+l) _ bm(o,nl;,k-Fl’qm)

m’m

P
_ 7o(R;,kJrl’vm)m_( Pty kel _ €0m Vl’Ll:n+h1’ )m
((v(gok+l) v(so,’;,h))ﬂ‘lﬂ,ﬁﬁ}u’;“,vm,h)m, (4.16d)

foral 0 < k< K—-1,v, ¢ €Y, vjEX]}-‘, qjeM;',je{c,m}.
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Setting v = o* 1 in (4.162), ¢ = 8,091 in (4.16b), v, = 0%+ g = o T in (4.160),

= aﬁ’k“, q, = ob k1 in (4.16d), adding the resulting equations and noticing that for d = 2, 3,

SMp) <My, vy<v(@) <vy, A (D <A, t(l1) <di

2
e LA N S NI @1

max

am |-l <l

we derive the following error equation for the numerical scheme:
2 € 2 2 2
e R (L +H%¢,k+l_(,w,k>u)

Po ‘ whtl ‘2
+ 2t ( %c

wk+1 2 wk+1 wk
e e (e I

_ _((M(wk-&-l) M(fﬂh)) v 7kt k+1 Vauk+l)

uk+l 2

2 2
\)n

wk+1 uk
O'c — O'c

I

cm

m

2
"y Hgng,kﬂ uk .

2
Guk+1”

) ((v(wf“) B V(fpf,h)) D(gzk+1 k—H) D(Guk+1))

-1 k1 k

B Z/ o vige) — v(gen) (@k-&-luk—&-l . T_) (O_u,k+l . T.) ds
“ L., BIJSJ m cu “c i c i
— ((veh = vieh ) T PNl o)

4+ Fo (R;,k+l o.u,k-H) + 0 (Rg,k+l’gcu,k+l) n (Rrp,k+l’aﬂ,k+l)
X m c

>Tm

+ (pu,k+l,8[6<p,k+l) + (uk+l(pk+l —k+1(pk Vau,kJrl)

€

11
=>1I. (4.18)
j=1

where we have designated the eleven terms on the right-hand side of (4.18) by I.,j = 1,2---11. Now,
we estimate the ;s in a series of lemmas.

LemmA 4.1 (Estimate of the first term I;). Suppose (¢, u,u.,u,,P.,P,) is a weak solution to
(4.15a)—(4.15d) with the additional regularities described in Assumption 1, d = 2,3. Set M;, as the
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lower bound of the mobility M(¢). Then, the first term /; of RHS of (4.18) satisfies
R R G Ry S et

(4.19)

for a constant C independent of T and #.
Proof. 'We split the term into two parts as follows:
= (M) = M(gh)) VT R Vo) = (M) = M(ef)) Vot vordet)

_ ((M((pk+l) - M(gplhc)) vkt Va“”‘“) ‘
(4.20)

By the inverse inequality, there exists a constant §; > 0 such that for all 0 < k < K — 1, we have

(et

< ¢t —mgp] [warss| ot

<C H(pkﬂ _ (ple h HMkJrl jd/3—d/2 H Vo okt H
6 2

H
1-d/6 || k+1 k K+1
<ant= et — gl [voret]
Cl & 2 0 2
< = [kt = k‘ %1 )V u,kHH
0 Htp “h H! + 2 7
C P 2 2 0 2
<o\l =l +er]) + 3 v
GI(H('O ¢H1+e H! +2 “
C 2 0 2
< € (oo fse )+ oo
1
and similarly,
‘((M((pk-f‘l) _ M((P;li)) Vﬂk—‘rl, Vo—ll«,k+1)‘
<cmih —mi| [virt] Joor]
<clott = d] [vors]
k+1_ k k1
<clot =], oo
C 2 0 2
< £ (s o)+ S
1

Combining (4.21) and (4.22) and choosing 8, = %, one obtains (4.19). This completes the proof. [
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The estimates of 1,, 15,1, in (4.18) are summarized in the following lemma.

LEmMA 4.2 (Estimates of I, I5,1, ). The assumptions are the same as in Lemma 4.1. Then, 1,, 15,1, of
RHS in (4.18) satisfy

)_2 ((v(¢§+l) V(%h)) D(9k+1 uktl), D(O_uk+l))

2
<cC (Rk+1 + HVe%k H ) + % ‘]D)(oc’ (4.23)
d—1 K1y ook
_Z/ o g™ ) — v(@en) (@kﬂ k+1 T.) (au,k+l_T') s
“ o BJSJ m cu Ye i c i
k1 k||? Gkt 2
< (R 4 | Vet ") + oy — , (4.24)
2 cm
‘_ ((U(¢k+1) _ V(Q‘)fn,h)) 19k+1 k+h1’02k+l)m‘
k+1 k|2 Yo k1|2
<R+ HW‘/” H + 2 ‘on‘;’ ) : (4.25)

where Cs are constants independent of t and A.

Proof. The inequality (4.23) is derived the same way as (4.19), that is,

’_2 ((v(¢§+1) V(‘Pch)) D2k, ]D)(ch,kﬂ))c‘
<P ((v@hh = vk D). DY) |+ 2 (vl —viely) Dl Deh) |

<2 v, Jo ] [ o]t st ot e

st = ], o o o] o

ol

D(O’Cl.l’k+l) H

k+1
¢

H?

k+1 k

C Pe wc,h

H!

C

< £ (rer s o ) oumion]
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With an application of Lemma 3.3, one has

! k+1 k
_Z/ o vp ™) —v(e,,) (yk+luk+l .-,_) (Gu,k-H ) T_) ds
< Jr., BISI T e bl yk ) (o l

o c Lokt — vk ‘ wk+1 ‘ulg+1 ‘o.
= Z (@) = viecn) o WP s, < eran ) 1€
< STkt — ok H uk+1 + H]D ultl o
X Zl be (pc,h L4(Fz:m) (pc ) L2(-Qc) ( ¢ ) LZ(QC) ¢

=

d—1
< Sk — ok h‘ulg+1‘ ‘ 1g+1‘ ‘a'ﬁlak-i-l.
= Zl" b T Veh|piq, ¢ lr2@) ¢ Mo ) 1°

=

d—1

k k41

<Xcfe=al,, o=,

i=1

2

cm

C (Rk+] i Hve(pk
'93

d—
o3 e,

Likewise,
) (v((pk+l) _ V(‘an,h)) H—l@iilu;Thl’G;,k+l) ‘
vkt vk (|en

<C

k+1 _ k 1-d/6 | k+1 k+1 uk+1
sl et (0 i, ot ) |
<C
<C

k+1 ” wk+1 H

.

gt —whH

C
(v 4w )+
94

uk+1H

uk+1”2

By choosing 6, = 2,6,

The next lemma contains the estimates of [;,j = 5,6,7, 8.

m
W ot o font )

= ags J#(:T)\’ 0, = X—g, we complete the proof of the lemma.

4.27)

(4.28)

LEmMA 4.3 (Estimates of s, I¢, 17, Ig). The assumptions are the same as in Lemma 4.1. One has the

following estimates on the terms /s, I, I7, Ig of RHS in (4.18):

% (R:’lik+l’oz,k+l) < C‘R}’l{kHH + uk—H‘ ’
m
2
‘Po (Rlcl,k+1,o,cll,k+l)c < C‘Rlcl,k+1 H n ?0 )D(O_;l,k+])" ’
‘(Rw,k+l G;L,k-i—l) < CHRw,k+1H2+_0 va,u,k+1H2
b 12 b
’(pu,k+l’8l0<p,k+l) < vauk+1H +6, H(SGMHH

—Lh

(4.29)
(4.30)
4.31)

(4.32)
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Proof. In fact, (4.29) is a direct result of the Cauchy—Schwarz inequality. Thanks to the Poincaré
inequality and Korn’s inequality (Brenner & Scott, 2008), for any 65 > 0, we have

u,k+1 wk+1
o 8207

< [ooret ozt < clooret | [peoten]

C
<

2 2
e wht H +96HID>(02""“)H , V6 >0. (4.33)

We notice that (RW‘H, 1) = 0 holds for all 0 < k < K — 1 by choosing the test function v = 1 in (2.6)

and using the mass conservation of Ritz projection. Let o#*+1 be the mean value of o***1 on 2, it
follows that

k41 k41 _ k41 k41 k41 k41
() = [t e -

C 2 2
< C”R“”Hl H H%M”‘“” < Q—HR“’J‘“H +o, H VU“’H—IH . Ve, >0, (434)
7

For the eighth term of the RHS of (4.18), we apply Lemma 3.2 and recall 8,0“”"“ € f/h for all
0 < k < K — 1. Thus, for any 65 > 0, one gets

C 2 2
R R e e IV o R i W
8 1,

—-1Lh

The proof is complete upon setting g = 2,6, = %" (]
The following lemma gives an estimate of the ninth term /4 on the RHS of (4.18).

LEmMmA 4.4 (Estimate of Iy). The assumptions are the same as in Lemma 4.1. Then, for any
0 < k < K — 1, the following inequality holds for a constant C that is independent of t and A:

(uk+1¢k+1 _ ﬁ11§+1¢£, Vo.u,kﬂ)

2
(pc,h c

e e L R G
0

2
‘ ) ] (4.36)
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Proof. We first split the term on £2,, as follows:

k+1 k+1 k+1 k
Pm m,h (pmh

k+1 k41 k X k+1 k+1 k+1 _ k+1
Pm (um,h - P_()(pm hvl’L ) P =Wy Pm mh(pmh + (wm h) V“’

X
k+1 ((p’11<1+1 (prlz +e%,k) _,_(p/;l’h (u1;1+1 _uln<1+e:’11,k)_p_((pm )2 (Vpu k+l+vauk+1 Vﬂk—&-l)
0

TX 2
=7, - X (d‘mh) VoA (4.37)
Po
where

X

In light of ¥, < C and e |;n < C|[Ve?* ||, one has

TX
17,.] <‘ k-1 (go,’j,+1 o+ ewk)HJermh( el _ gk 4 uk)H+ (<Pm )2 ( uk+1+WLk+1)‘
<[] o =+ en ] ok, o - +e“"\+Cf ot [oots + v,

eit]) +celebal,, (7o +)

) +ee (e fval)

<clenr=ehvei], ol (H“i‘n“ -u)

<clat =l +evart] el (e - “’fn\

(4.39)
By Young’s inequality, we obtain
2 -1 k+1 k|2 k||?
Il < e (14 o], ) + ¢ o = ], + ¢ v
2 2 2
welll (s -l e T)
o0
2 ket || et 1 k| k| * (o1 k||*
<Cr 1+va$ H6 +CR +CHVef; H +CH¢hH R+ 4 || ‘ . (4.40)
o

Similarly, with the following definition:

T
I 2 k! (gof“ ok + ef’k) + ¢k, (u’;+1 —uk e‘;") - p—(go{ihf (vpg*v"“ + w’;*‘), 4.41)
0
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one gets

2 2 2
< ce (14 [soean ) e s [ sl (0 + e
o

2
‘ ) (4.42)
Consequently, the following inequality is valid:

P+ P < o2 (14 [womset )+ crert v cwers o] (meot 4 Jens
o0

)

(4.43)

Thus, for constant 6y > 0, there holds

(uk+1(pk+1 k+1(pk Vou,k-i-l)

k+1 k+1 _ k+1 k wok+1 k+1 k+1 _ k+1 k wok+1
—( P ~Uep Pep VO )+( Pm -~ W P> VO )

m

T (k)2 k+1 k+1 24 k+1 k+1
= ( c IO_() (wc,h) Vo—cﬂ’ * ’VUL{L’ * + Im - 20 ((pm h) VO’,ﬁ’ * > Varlnl’ M
C

m

2 2
_ (Ic,vo_ét,k-'rl) i (Im’v%t,kﬂ) T ‘% Vo okt H X H‘Pﬁmvanlf’kﬂﬂ
¢ m. Po po 1
koo wkt | _TX |k ookt |F L L 2 2 k1
<= [okavori | = ZE b ot T o (] + [10) + 65 | Vo<
Po Po b9
2 ¢ 2 2 C 2
ettt [P e 2 (1 o )
Po Po b9 6
k-1 k||? k[|* ( pkt wk|?
+R +HVe‘/” H +H<ph” REH 4 [l ‘ . (4.44)
o
This proves the lemma by choosing 6y = % O

The term I, is estimated in the following lemma.

LEmMA 4.5 (Estimate of the term /). The assumptions are the same as in Lemma 4.1. Then, the tenth
term of RHS in (4.18) satisfies

y
);(f(sok“up"“) f(<pk“,<p';§),8ta“”’°“)’

2 C 2 2
<oulpor i (0 (1 [ ) [resn [ e ). aa
-Lh Oy

for a constant C independent of t and h.
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Proof. First, we need to estimate HV (f((pk+1 o*th f((pkH,go ))” Recall that f(a,b) = a®> — b.
Hence,

|V (@ = e ob) |

<l -] -
-t o (-t )|
R T P

<3l ol e oot sl e |+ [ (0 - )+ e

6

<c (o], + e,

2
e eslote [ Jver= [ (o = ) |+ e
H, o0

<[l =) e (o) v + o] 4.46)
which in turn yields
2
[V (@ = e eb) |
k+1 k+1 ? k|2 k|
<cfw (=) re e | [L) foest | cfwer]
k41 k+1 k+1 2 k|2
<R (14 |of H [vers1|"+ c|vers|” (4.47)
Thus, by Lemma 3.2, we derive the following estimate for any 6,, > 0:
14
’ ( P, k1) — f(§0k+l,(p£)’8tacp,k+l)‘
C HV (f(war] k+1) f(¢k+l,(p;cl)) H Hsto.(ﬂ,k‘l’l H lh
<6y H56<Pk+1H - Hv(f( k4 Gty f(‘/’kH"Ph))H
10
K1 C (rh+1 4 ket 1 ket ]| k|
<O [5,0% H +—(® 1+ ok ” [versst| "4 [vert|T). @as)
10
This completes the proof. 0

Finally, we estimate the last term /;; in the following lemma.
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LEmMA 4.6 (Estimate of the ;;). The assumptions are the same as in Lemma 4.1. Then, for the last
term /,; of RHS in (4.18), the following inequality holds for a constant C independent of = and A:

‘_ (¢k+1vuk+1 _(p;clvuﬁ+l’au,k+l))

2 M 2 2 2
cc(rte v )« o fves o (el ) [ ws
o

Proof. We make use of the following decomposition:

Hw"“vu"“ AL H = ” @ — gV v (A — gt

_ H ((pk+1 —of e(p,k) Vst 4 (pﬁveu,kﬂ‘

H H oo

Then, for any 6;; > 0, there holds

k1, k41 _ kg, k]l _wktl k1, k4l _ kg, k+1 k1
(ot vutt = v om ) < ot outt — o o

<|e(let =]+ lert]) + o] [vers] o]
H! H! 00

il (GRSt R i W) Gt Bl e | 1 L
H! H! 00
2 2 2 2 C 2 2
<o =+l ) Lot o fves [ gofob] o]
H! H! 014 o0
2 2 C 2 2
co(mrswet Y e o [ (s L) e s
11 ©
The proof is complete by choosing 6,; = % (]

The next lemma gives an estimate of ||<Sto"‘”””r1 H YT

LeEMMA 4.7 The assumptions are the same as in Lemma 4.1. There exists a constant C > 0 independent
of T and % such that

2
1

2 2 25M
s L |

2 2
s rtr ) [vors [ e

eu,k

2
‘ (4.52)

2 2 2
re(vefa) ror s clver] s clal
o0 o0
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Proof. Recall tkﬂlat ||C||2_1,h = IVTLOI? = (VT,(£), VT,(0)) = (¢, T,(0)) forall ¢ € ¥,,. Noticing
that 8,091 € ¥,, setting v = T),(8,0*1) in (4.16a), using (4.19), (4.37) and (4.43), we derive

2
Jt1
o]
—1h

_((M((pk—i-l) M(%)) VI VT, (6, Utpk-i-l))+(Rtﬂ,k+l,-|-h(5ta<p,k+l))

= (c?,cr(/”k'H Ty (8to‘p’k+1 ))

k k
— (M(cph)VU“’ +1’VTh(8tUw’k+l)) + (uk+1<pk+1 k“(pﬁ,VTh(é,U‘p’kH))
2 1 2
<C (Rk+1 + Hve%k ) +3 H VTh((thtﬂ,kH)H + HRWCHH HTh(‘SzU(p’kH)H

+HM(<p{j)vau,k+1 HvTh((gtaw,kﬂ)H+Huk+1¢k+1 et kH HVT sa(pkﬂ)H

< CR 4 ¢ || werk 2 1 ok+1 |2 0t 1 k1
< |+ |V )|+ e re| 9T, 04 |

2
HM((pk)Vo_ukJrIH 4o HVTh(ataw,kH)H ” k1 gt —k+1 kH o HVT’I(S’G%HI)HZ

4
2 SM? 2 2
< CRMH! +CHVe¢”"H + —41 Vohktl H +CHR“”"Jrl H + g ”VTh((S,a<"”‘“)H2
o) APCHRURY X ’
1 Rl CIRLANN IR Ml G L
0
2
<CR*' ¢ H Ve%sz LM | gk H2 e HR“”"H H2 42 H
4 5 1,h
+§H1”2_|_§ L(k)zv u,k+12 5 2 S TX k2 ;uc+12
g I%e ) 2o Pen O + 5 ”ImH + E p—0(€0m,h) VO'm’
2 2
e L I e e L R e
1,h
2
5t 4 2 5-[ 2
+5 (1 1)+ 5 ek o |+ X Ll v
2 (5M?
<CR"+1+CHW¢“"H +( 2 +Ct? H(p;,H )HV<;'*”‘+1H2+CHR‘/’*"“H2+i a*"k“H
5 —1,h
2 2 2 2 2
+ 2 + 2 vau,k+1H6+c(1 + ng,’j”oo) RE+1 +CHVe‘ﬂJ“ +c”¢’,jH guk‘
o0
5M? 4 2 2
<o (er ) ot et o
00 5 —Lh
2 2 2 2 2
k k+1 k
e (el ) me s cfvet v et [vost [ clob]fe] 453)
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Since 7 || ¢ H <t+71|¢f H < C(T + 1) from Lemma 3.5, the proof is complete once we move
% ”6,0‘/’ A+l H _pto the left-hand side of the inequality. (I

With all these estimates of the RHS terms in place, the error equation (4.18) leads to the following
result.

LEmMA 4.8 Suppose (¢, u,u,,u,, P, P,) is a weak solution to (4.15a)—(4.15d) satisfying additional
regularities prescribed in Assumption 1. Then, for any 7,# > 0, there exists a constant C > 0,
independent of 4 and 7, such that forany 0 < k < K — 1,

2 2
vttt | 22 ([warset | - et ]+ [ioesst —om )
2 2 2
+ Lo oWkt H _ ‘au,k ’ S Uu,k‘
21, c Cc C C

uk+1 2

2
K+
+ v HD(%“ )H +ag —= ‘T

2
uk-HH H uk
Tk 21:)( (” m
T
o]
Po

2 2
< crstc (e o ) [vorte o (1 c ) o
o

cm

2 2 v 2
RO S

m

2 TX 2
ﬁﬂf,hvacu’kﬂ H + P_o H <an,hVUrIrf’k+l H

I

k 2 k 2 k 2
o] o] +ef ot (4.54)
[o/0]
where
AR ey H2+ ‘R?,k+l“2+ HRw,k+1H2+(1+ H"’f}fHZ )Rk+1
o0
2 2 2 2
1o 0 e e I (B Pl W el
2 k+1 2
F+1 )vaﬂ’ + ”6 (4.55)

Proof. Substituting the estimates in Lemmas 4.1-4.7 into the right-hand side of the error equation
(4.18), choosing

M,

by =00 =
6 (25M1 +C (T + 1))

, (4.56)
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with C; the positive constant defined in inequality (4.52), we get

M 2 €
e G I Y (2 e N2 R G AT

Po 41,2 Jy2 an| k2
+ 22 (ot 112 = o1 + o — o

2t
2 P 2
k-1 0 wht1
+V0 HD(O’“’ )H +aBJS]— ‘O’.’ T
C 2 /d)\I ; c 1 om
Po wk+1)2 wk 2 k41 wk2 Vo || _wks
+ e (I P = o7 + 1t = o hiP) + 22 o

T 2 TX 2
+ P_o‘ <P]c(,hvacu’k+l H + P_o H‘Pr];,hva;ﬁf’ﬁl H
2 u.k+1 2 uk+1 2 @.k+1 2 k 2 k+1
< Cr +C)Rm’ H +c|re ” +CHR’ ” +C 1+”<th R
o0
2 2 2 4 2
N e e T
o0 o0
k1|2 2 k1|2 k|? 12
refvprtat] ree [vprsrt i (1+cob] ) o] @57
o
The proof is complete since [[e™*[|? = [[p" + 0|2 < 2 (][p"F|1*> + [lo®¥]|?) and || V&1 <
CIIV o+ 6. O

Regarding %! in Equation (4.55), the following estimate could be derived.

LEmMA 4.9 Suppose (¢, u,u,,u,, P.,P,) is a weak solution to (4.15a)—(4.15d) satisfying additional
regularities in Assumption 1. Then, for all 0 < / < K — 1, there holds

1

2 [u
S A < T+ e+ ;/ +1 (||atpw(.,z)||2+ ||3tp“(-,t)||2) dr
k=0 0

i 7z
4 2 2
i 021 ) Y (L S
k=0 k=0

1/2

)
‘ . (4.58)

uk
P

1
+ T\ 2YT ¥ 1(2’
k=0
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Proof. First, by Minkowski’s inequality and Holder’s inequality, one obtains

2 2
e <o

2 2
<2, (9¢k+1 _ (pk+l)H ) Hst(pkﬂ _ at(pkﬂ H

2 Tkt 2 Tt 1 2
== / 9,09 .0y dt|| + = / (t —1)0,0(, 1) dt

T 1y T 1y

o) fkt1 2 4 Tt 2
<= (/ [3,07C. 0 dr) + = (/ (t — 1) 0,00 dt)
T 7 T tx

2 [l 2 Tt 1
[ ol a5 [ el
T 173 3 173

N

Likewise, for j € {c,m}, one has

2 2 [+

wk+1

R < /
T ty

2 2 Tt 1
atp]!‘(.,t) H dr + ?T/ ” du(-, 1) ”2 dr.
Tk

Applying Minkowski’s inequality and Holder’s inequality again gives, for j € {c,m},

4 Tk+1 4 Tkt 1
ot = = | [ e a] < (f
t 173
a1 Tt 3 tet1
<( / Ha,¢<.,¢)u4dz) ( / dt) = [ el o
t 173 Tk

which in turn leads to

4
9,0(-,1) H dt)

2 2 2 2\ 2
() = (Jorrt =t + o (o = )+ Jut = t])

4 4 4
(ot =] 7 (et =) |+ et - )

N

N

k41
C’3/ (lowCol + vagc.ol + [auc.n]*) ar
179

2649

(4.59)

(4.60)

(4.61)

(4.62)
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Therefore, for d = 2, 3, by using Cauchy—Schwarz inequality and Lemma 3.5, one gets

2(6—d) 2 172 l 2
d 2 : k+1
o0
k=0

1/2

1 [
2
k k+1 k
E (1+H¢hHm)R+ < kEOC(1+H<ph

k=0
46 172 fn A A A 1/2
<(ZC(1+H%’§HM )) (cﬁ /0 (lawc.ol* + [vapce.n] +||8tu(-,t)||)dt)
k=0
[ 4(6d—d) 1/2 fie1 4 4 4 1/2
<Cr(rz(1+nw’guw )) (/0 (lawol* + [vagc.o] +||a,u(.,t)|;)dt)
k=0

fi11 4 4 4 12
< Cr T+1(/ (||at¢(-,r)|| + | Vo, 0| +||a,u(-,t)||)dt) <CtVT+1. (4.63)
0

Similarly, we have

1

; 12, 1/2
4 2 86-d) 4
k=0

k=0 k=0
; NE
< co? T+1(Z ”vp%"“H) , (4.64)
k=0
1 2 2 1 4(6—d) 172 1 4 1/2
k wk -1/2 k d wk
Sl () < (-2 427)) (Z2)
k=0 k=0 k=0
; NG
< Ct_l/zs/T-i-l(Z‘p“’k’ ) . (4.65)
k=0

Henceforth, it follows that

2
R+ H 4 ’

1 l

2
S =Y [tz n ”Rtp,kﬂ H +‘
k=0 k=0

4 2 2 2 2
N R e R ST
o8]

o]

2 2
R;,m” +(1+H¢5H )Rk+1
o

Jk
o"

]
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— 2 141
S (T+ VT 1) T ?T/ ) (Hango(.,t)uz + Ha,,u(~,t) HZ) dr
0
2 [l / , .
+ ;/ + (“8,,0‘/’(.’1) ||2 + Hatpll(.’[) “2) dr + Z ((1 + 'L'2) HVIOMJH—I H6 " ”V,O(p’kH )
’ k=0

1/2
)

Jk
o"

; 2 1
4
Yoo\ 2yT T 1(2 HW”‘“ H ) + VAT F 1(2‘
k=0 k=0

2 2 [+
< (T+ T T+ §) o+ 2 [ (It ol + Jastcol?) o
0

1 172y
4 2 2
4o YT l(z vaw,k+1 H ) Y ((1 +1?) vau,kH” n vaw,kH )
k=0 k=0 6
i 4 1/2
+ o\ AYT 1(2 ‘ pUk ‘ ) . (4.66)
k=0
This completes the proof. 0

Now, we are ready to prove the main convergence theorem.

THEOREM 1 Suppose (¢, u,u,,u,, P, P,) is a weak solution to (4.15a)—(4.15d) with the additional
regularities described in Assumption 1. Recall the definition of error functions os in Equations
4.11-4.14 and the p?, p", p** in Equations 4.6—4.9. Then, provided that 0 < v < t, for some sufficiently
small 7; > 0,

2 2
s

2 K=l 2
gkt H ) 11 Z H Vo hhtl H
k=0
)

2 K-l 2
wht1 2 ko jk+1
k=0

2 2
©.k+1 @k wk+1 uk wk+1 uk
‘V(o —o?H| + |o. — + oy — oy,

Oc

T

wk+1
O, b

2
|
cm

5 d-l
o]+
i=1

k=0 L

ccfe+ [ (100l + 1ol a2 3 [vors])
k=0

AN 172
) ) } (4.67)

172

uk
P

K K
2 2
> (Hw‘"”‘” + 1+ 7)) [ vprktt Hé) + r1/2(z |
k=0 k=0

holds for some constant C(7) > 0 independent of 7 and A.
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Proof. Applying t Zi:o to (4.54), and observing that 0#* = 0 and a].“’k =0fork =0, je{c,m}it
follows that '

Sy -5
L\ Vag¥ + =
2 2

2.p
G:LHIH +_OH""‘;JHH ”2( Vo ,um”)

2x

wk+l _ _uk
c

I
ve ‘ k+1 k Hz Po ‘ ‘2 Po H wk+1 uwk
z YV (a® —o¥ 7o 20 | yu — oW
+k O( ( a?")l + lof o + "
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2x m

2w uk+1H2
— o’
cm * 2x H m
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)
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[l e S

23T

o i =o
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2 2
<ozt vor 3 (14 fobt[ ) fvos] t+cld])|
rz + rz + || o +rkZ(; + oy o o
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46-d 2
cfzggk+l+cf(1+”w“ o )meu +f(1+cH¢h )ngw”
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2(6—d)
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2 2
k k+1 k k41

wk+1 H 2

1 I
2 2
+ Tk_zl o + tk_gl oy - o

uk ‘2. (4.68)

l 4(6—d) 2 l
S0 Uhg T I [ RN R
+ ‘C;( + |[@p - lof + r; +2 |

Moving all the terms indexed (/ + 1) to the left-hand side, one has
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d u,/+1
) o]
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2 2 00
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2 1

+T—Z[

Po 1 =o

1 I 4(6—d) ) 1 2(6—d)
< aZ%"“+aZ(1+H¢’,§H ’ )HVUWH +Cr2(1+2H¢ZH ’ )(
o o
k=0 k=1

o Vo_uk+1H +x Hgﬂm Volkt! H ]

Gu,k

i

(4.69)

By Lemma 3.5 we have, forall 0 </ < K — 1,

4(6—d)

I+1 H
o0

1
( ot 86 ) ( zH(pk—HH Hezd ) oy w0

Hence, we can choose a sufficiently small 7; such that forall0 < 7 <7y and0 </ < K -1

4(6—d)
Ct (1 + Hga’“ H a )< Cr + CT%(C T+ 1) < g, 471
)/ 4(6—d) Vf
Y$ _corf1+ H<p’+‘ H BE A (4.72)
2 4
IO 2(6—d) ,0
Do_ce(1+]ef| 7 )=2 4.73)
2 00 4
,0 2(6 d) ,0
ro 0
—cef1 H H > Po, 474
2y T( + |ep iy 4.74)

It follows from (4.69) that
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p6=d)

Noticing that t ZkK=O H(p’,i ¢ < C(T + 1) for p = 2,4, and in light of Lemma 4.9, we arrive
o

at the error estimate (4.67) by setting / = K — 1 and applying discrete Gronwall’s inequality. This
completes the proof. 0

CoRrOLLARY 4.1 Suppose (¢, i, u.,u,, P, P,) is a weak solution to (4.15a)—(4.15d) satisfying the
regularities Assumption 1. Then, there exists ; > 0 such that for all t < t; the following optimal
convergence rates hold:

2
max (H Ve#kt] H +

2
elcx,k+1 H i
0<k<K—1

k1% = k1% = k13 |12
) o 3 et 4 3 [
k=0 k=0
< C(T) (7% + h*),

where g > 1 is the spatial approximation order.
For numerical evidence of the convergence results, we refer to Chen ef al. (2017).

REMARK 4.1 In the discrete energy dissipation analysis established in Chen et al. (2017), for the
numerical scheme, a cancelation of a nonlinear error term associated with the convection part has
played a very important role. Meanwhile, in the optimal rate error estimate presented in this section,
such a cancelation technique is not needed in the convergence proof, due to the subtle fact that, a
growth constant for the velocity error term, namely (1 + C ||(p£||§o) appearing in (4.49), would not
lead to a theoretical difficulty in the derivation of discrete Gronwall inequality. This fact is associated
with Navier—Stokes nature for the fluid velocity, in which the higher order kinematic diffusion and the
temporal derivative of the velocity variable have greatly facilitated the analysis at both the analytic and
numerical levels. In comparison, for the Cahn—Hilliard—Hele—Shaw system, in which the fluid velocity
is statically determined by the phase field variables, such a cancelation technique is necessary to pass
through the optimal rate convergence analysis because of lack of regularity for the velocity field; see the
related works Chen et al. (2016); Diegel et al. (2017); Liu et al. (2017), etc.

5. Concluding remarks

In this article, we provide an optimal rate convergence analysis and error estimate of a fully discrete
finite element numerical scheme for the CHSD system that models two-phase flows. An operator
splitting is applied in the numerical scheme, so that a coupling between the Cahn-Hilliard and the
fluid solvers is avoided. The unique solvability and the energy stability have already been proven in
the existing literature. The optimal rate error estimate is established in the energy norm, £>°(0, T; H') N
62(0, T;H 2) norm for the phase variables and £°°(0, T; H 1) ﬂKZ(O, T; H2) norm for the velocity variable.
A discrete £2(0; T; H*) bound of the numerical solution for the phase variables also plays an important
role, which is accomplished via a discrete version of Gagliardo—Nirenberg inequality in the finite
element space.
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