IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION SYSTEMS, VOL. 00, NO. 0, MONTH 0000 1

Digital Watermarking for Detecting Malicious
Intellectual Property Cores in NoC Architectures

Subodha Charles, Member, IEEE, Vincent Bindschaedler, Member, IEEE, and Prabhat Mishra, Fellow, IEEE

Abstract—System-on-chip (SoC) developers utilize Intellectual
Property (IP) cores from third-party vendors due to increasing
design complexity, cost as well as time-to-market constraints.
A typical SoC consists of a wide variety of IP cores (such as
processor, memory, controller, FPGA, etc.) that interact using a
Network-on-Chip (NoC). This global trend of designing SoCs
using third-party IPs raises serious concerns about security
vulnerabilities. Since NoC facilitates communication between
all IPs in an SoC, NoC is the ideal place for any hardware
Trojans to hide and launch a plethora of attacks. Due to
the resource-constrained nature of SoCs, developing security
solutions against such attacks is a major challenge. In particular,
in an eavesdropping attack, a Trojan infected router copies
packets transferred through the NoC and re-routes the duplicated
packets to an accompanying malicious application running on
another IP in an attempt to extract confidential information.
While authenticated encryption can thwart such attacks, it incurs
unacceptable overhead in resource-constrained SoCs. In this
paper, we propose a lightweight alternative defense based on
digital watermarking techniques. We develop theoretical models
to provide security guarantees. Experiments using realistic SoC
models and diverse applications demonstrate that our approach
can significantly outperform state-of-the-art methods.

I. INTRODUCTION

Design considerations for roads in a city involve accessibil-
ity, traffic distribution, and handling of specific scenarios. For
example, an important objective in the design of a network of
roads is to ensure ease of access to popular and important
places in the city such as offices, schools, parks, etc. If
prominent places are all located in the same area, the roads
in that area will be congested while roads in other areas
will remain (relatively) empty. An architect should ensure
that the traffic is as uniformly distributed as possible or
the main roads have enough lanes to mitigate congestion. A
System-on-chip (SoC) designer faces similar challenges when
designing the communication infrastructure connecting all the
SoC components, i.e., processor cores, memories, controllers,
input/output, etc. As the complexity of SoCs increase, more
and more Intellectual Property (IP) cores are integrated on
the same SoC. State-of-the-art SoCs have hundreds of com-
ponents. For example, a typical automotive SoC may include
100-200 diverse IP cores. The demand for scalable and high-
throughput interconnects has made Network-on-chip (NoC)
the standard interconnection solution for complex SoCs [1].

Due to time-to-market constraints, it is a common practice
for manufacturers to outsource IPs to third-party vendors.
Typically, manufacturers produce only a few important IPs
in-house and integrate them with third-party IPs to obtain

S. Charles is with the University of Moratuwa, Colombo, Sri Lanka. e-mail:
scharles@uom.lk. V. Bindschaedler and P. Mishra are with the University of
Florida, Gainesville, Florida, USA.

the final SoC. As a result of this distributed supply chain,
it is feasible for an attacker to insert malicious implants,
such as hardware Trojans, into the IPs [2], [3], [4]. A recent
occurrence of a hardware security breach due to third-party
vendors aiming at industrial espionage raised concerns across
top US authorities [5]. The attack was facilitated by a hardware
Trojan that acted as a covert backdoor and spied on computer
servers used by more than 30 companies in USA.

To address this concern, we consider the following attack
scenario. A hardware Trojan integrated in the NoC IP launches
an attack to eavesdrop on the NoC packets. The goal is
to exfiltrate information while remaining hidden, and thus
the Trojan will not perform any action that would reveal its
presence, such as corrupting packets to cause SoC malfunction
(data integrity attacks) or degrade performance causing denial-
of-service (DoS) attacks. Previous work has explored the most
effective way of launching an eavesdropping attack in NoC,
considering attack effectiveness and difficulty to detect the
Trojan. It identified Trojan(s) inserted in NoC component(s)
colluding with another malicious IP(s) as the strongest attack
model. An illustrative example of this scenario is shown
in Figure 1, where a hardware Trojan-infected router and
an accomplice application launch an eavesdropping attack
where the infected router copies packets passing through it
and sends them to the accomplice application running on
another malicious IP. This hardware-software collusion attack
is similar to the Illinois Malicious Processor (IMP) [6]. This
setting and related threat models have been the focus of [3]
as well as several prior studies [7], [2], [8], [9], [10], [11].

NoC security research has proposed authenticated encryp-
tion (AE) as a solution to eavesdropping attacks [7], [11],
[10]. With AE, packets are encrypted to ensure confidentiality
and an authentication tag is appended to each packet to
ensure integrity (and detect re-routed packets). However, the
use of AE as the defense to eavesdropping attacks is sub-
optimal for two reasons. First, it incurs significant performance
degradation on resource-constrained devices (as we show
experimentally in Section IV). Second, authentication tags
may be unnecessarily complex if used only for the purpose
of detecting eavesdropping attackers who seek to remain
undetected as long as possible — and thus are unlikely to
interfere with data integrity.

In this paper, we ask a fundamental question: is it possible
to replace authenticated encryption with a lightweight defense
while maintaining security against eavesdropping attacks?
Specifically, we propose to replace the costly computation of
authentication tags with a lightweight eavesdropping attack
detection mechanism based on digital watermarking. The
attack detection capabilities achieved by digital watermarking

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION SYSTEMS, VOL. 00, NO. 0, MONTH 0000 2

is coupled with encryption to ensure data confidentiality. 7o

the best of our knowledge, this is the first work that secures

NoC-based SoCs using digital watermarking. Specifically, this

paper makes the following major contributions:

o We propose a lightweight digital watermarking based secu-
rity mechanism to detect eavesdropping attacks.

o« We show that our proposed approach detects attacks in
a timely manner and substantiate our claims using both
theoretical analysis and experimental results.

o Experimental results show that our approach incurs signif-
icantly lower performance overhead compared to authenti-
cated encryption, which makes it an ideal fit for resource-
constrained SoCs.

The remainder of the paper is organized as follows. Sec-
tion II highlights how our approach differs from prior related
research and describes our threat model in Section III. Sec-
tion IV motivates the need for our work. Section V introduces
our watermarking-based attack detection method. Section VI
provides theoretical guarantees on performance and security of
our approach followed by experimental results in Section VII.
Section VIII discusses additional security considerations. Fi-
nally, Section IX concludes the paper.

II. RELATED WORK
We discuss related efforts in two broad categories.

A. NoC Security

State-of-the-art NoC security revolves around protecting
information traveling in the network against physical, soft-
ware and side channel attacks [12]. While detecting hardware
Trojans in NoC IPs during design time is still in its infancy,
most solutions aim to detect/mitigate the threat of hardware
Trojans during runtime. To identify most prominent threats
in NoC-based SoCs, we surveyed 25 related papers published
in the last 10 years and categorized them into five widely
studied categories of NoC security attacks: i) eavesdropping,
ii) spoofing and data integrity, iii) denial-of-service, iv) buffer
overflow and memory extraction, and v) side channel attacks.
Results are shown in Table I.

The survey makes it evident that eavesdropping attacks
are indeed one of the most widely explored threat models
related to security in NoC-based SoC. The threat model used
in this work is well-established and has been considered in
previous work that proposed solutions to protect the SoC from
a compromised NoC IP eavesdropping on data [7], [2], [8], [9],
[10], [11], [3], [27]. Ancajas et al. proposed a combination of
data scrambling, packet authentication and node obfuscation
to prevent eavesdropping attacks [3]. In [2], a combination of
threshold voltage degradation and an encoding based packet
duplication detector was proposed. Charles et al. proposed to
increase the difficulty of information extraction by introducing
anonymous routing in the NoC [8]. Manor et al. attempted
to reduce the effectiveness of hardware Trojans trying to
manipulate data packets using bit shuffling and Hamming
error correction codes [9]. When eavesdropping attacks are
considered, packet authentication combined with encryption
(authenticated encryption) is the most popular countermea-
sure [27], [3], [16], [13], [7], [10], [11]. Therefore, in this

TABLE I: Summary of NoC security papers found in literature
categorized by attack class and defense type. Attack Class:
Eavesdropping (EAV), Spoofing/Data Integrity (SDI), Denial-
of-service (DOS), Buffer Overflow and Memory Extraction
(BOM) and Side Channel Attacks (SCA). Defense Type:
Obfuscation (OBF), Detection (DET) and Localization (LOC).

Paper Attack Class Defense Type
Sajeesh, 2011 [13] EAV OBF, DET
Porquet, 2011 [14] BOM OBF
Wang, 2012 [15] SCA OBF
Kapoor, 2013 [16] EAV OBF, DET
Yu, 2013 [17] SDI OBF
Ancajas, 2014 [3] EAV OBF
Saeed, 2014 [18] BOM DET
Sepulveda, 2015 [19] BOM OBF, DET
Rajesh, 2015 [20] DOS DET
Biswas, 2015 [21] DOS DET
Reinbrecht, 2016 [22] SCA OBF, DET
Boraten, 2016 [10] EAV OBF
Prasad, 2017 [23] DOS DET
Sepulveda, 2017 [11] EAV OBF

Frey, 2017 [24] DOS OBF, DET
Indrusiak, 2017 [25] SCA OBF
Sepulveda, 2018 [26] DOS DET
Hussain, 2018 [7] EAV DET, LOC
Kumar, 2018 [9] EAV OBF
Chittamuru, 2018 [27] EAV OBF, DET
Lebiednik, 2018 [28] EAV OBF
Indrusiak, 2019 [29] SCA OBF
Charles, 2019 [4] DOS DET, LOC
Raparti, 2019 [2] EAV DET, LOC
Charles, 2020 [8] EAV OBF

paper, we compare our proposed approach with the most
widely adopted approach.

B. Digital watermarking

The process of hiding information related to digital data in
the data itself is called digital watermarking. It has been widely
used in domains such as broadcast monitoring, copyright iden-
tification, transaction tracking, and copy control. For example,
in the movie industry, a unique watermark can be embedded in
every movie. If the movie later gets published on the internet
illegally, the embedded watermark can be used to identify the
person who leaked it. Biswas et al. [30] presented a technique
called circular path-based fingerprinting using fingerprint em-
bedding against NoC IP stealing attacks. However, the threat
model used in this paper - eavesdropping attacks, cannot be
addressed using their approach. Network flow watermarking is
one possible solution to prevent eavesdropping attacks [31]. In
network flow watermarking, watermarks are embedded into the
packet flow using packet content [32], timing information [33]
or packet size [34]. This can be used for tracing botmasters
in a botnet [35], tracing other network-based attacks [36]
and service dependency detection [37]. To the best of our
knowledge, network flow watermarking has never been studied
in the context of NoC.

III. THREAT MODEL

The global trend of distributed design, validation and fab-
rication has raised concerns about security vulnerabilities.
Malicious implants, such as hardware Trojans, can be inserted
into the RTL or into the netlist of an IP core with the intention

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION SYSTEMS, VOL. 00, NO. 0, MONTH 0000 3

of launching attacks without being detected at the post-silicon
verification stage or during runtime [38]. Insertion of Trojans
can happen in many places of the long, distributed supply
chain such as by an untrusted CAD tool or designer or at
the foundry via reverse engineering [38]. As evidence of the
globally distributed supply chain of NoC IPs, iSuppli, an
independent market research firm, reports that the FlexNoC
on-chip interconnection architecture [39] is used by four out
of the top five Chinese fabless semiconductor OEM (original
equipment manufacturer) companies [40]. In fact, Arteris, the
company that developed FlexNoC, achieved a sales growth of
1002% over a three-year time period through IP licensing [40].
Therefore, there is ample opportunity for attackers to integrate
hardware Trojans in the NoC IP and compromise the SoC.
NoC IPs are ideal candidates to insert hardware Trojans due
to several reasons: i) the complexity of NoC IPs makes it ex-
tremely difficult to detect hardware Trojans during functional
verification as well as runtime [2], ii) extracting data from NoC
packets allows attackers to obtain confidential information
without relying on memory access or hacking into individual
IPs, and iii) the distributed nature of NoC components across
the SoC makes it easier to launch attacks.

We focus on eavesdropping attacks, also known as snooping
attacks, which pose a serious threat to applications running
on many-core SoCs. IPs that are integrated on the same
SoC use the NoC IP when communicating through message
passing as well as through shared memory. For example,
the Intel Knights Landing architecture prompts memory re-
quests/responses from cores to traverse the NoC for shared
cache look-ups and for off-chip memory accesses [1]. There-
fore, eavesdropping on data transferred through the NoC
allows adversaries to extract confidential information.

Adversarial model: In this paper, we consider an adversary
consisting of a hardware Trojan-infected router and a colluding
malicious application running on an IP. The goal of the
adversary is to exfiltrate confidential information by observing
NoC traffic without being detected. Remaining hidden is key
for the adversary to exfiltrate as much information as possible.
Because the adversary must remain hidden, we assume that
the adversary does not interfere with the normal operation of
the NoC. For example, this means that the adversary does not
modify the content of packets (attack on integrity) or cause
large delays in processing of packets (denial-of-service) as
either would likely lead to detection.

Attack scenario: Eavesdropping attacks by malicious NoC
IPs rely on the hardware Trojan creating duplicate packets
with modified headers (specifically, destination address in the
header) and sending them into the NoC for an accomplice
application to receive them [3], [2]. Figure 1 shows an
illustrative example. We consider a commonly used 2D Mesh
NoC topology where IPs are connected to the NoC, more
specifically to the router, via a network interface (NI). When
the NI receives a message from the local IP, the message is
packetized and injected into the network.! Packets injected

"Most NoCs facilitate flits, which is a further breakdown of a packet used
for flow control purposes. We stick to the level of packets for the ease of
explanation as our method remains the same at the flit level as well.

Untrusted
Application Y

Trusted
Application
<S>

Trusted
Application
D

Router

u Network Interface (NI)

> Intellectual Property (IP) Core

Trojan Infected Router

Fig. 1: Illustration of an eavesdropping attack through collud-
ing hardware and software. A hardware Trojan integrated in a
router (X') copies packets passing through it and sends them
to a malicious application running on an IP (Y). An NI and an
IP core are connected to each router. (For clarity, only three
such pairs are shown.)

into the NoC are routed using the hop-by-hop, turn-based XY
routing algorithm and received by the destination router. The
NI then combines the packets to form the message which is
passed to the intended destination IP. In our example (Fig-
ure 1), two trusted applications running in nodes .S and D are
communicating with each other, and an eavesdropping attack is
launched to steal confidential information. The attack is carried
out by two main components: i) a Trojan-infected router, and
ii) an IP running a malicious application. The malicious router
(X) copies packets passing through it and sends them to the
IP running the malicious program at node Y, which reads
the confidential information. To facilitate this attack, several
steps should be carried out by the attacker. First, the hardware
Trojan is inserted by the third-party NoC IP provider during
design time. The Trojan is designed such that it can act upon
commands sent by the malicious application. Once the SoC
is deployed, the malicious application sends commands at
a desired time to launch the attack. The Trojan then starts
copying and sending packets to the malicious application. The
malicious application can also send commands to pause the
attack to avoid being detected.

Figure 2 shows a block diagram of a router design infected
with the Trojan that launches the attack described in our
threat model [3]. The Trojan copies packets arriving at the
input buffer, changes the header information so that the new
destination of the packet is where the malicious application
is (node Y according to our illustrative example) and inject
the new packet back to the input buffers so that it gets routed
through the NoC to reach Y. The Trojan does not tamper
with any other part of the packet, except for the header to
re-route the packet, due to two reasons: i) the goal is to
extract information, so corrupting data defeats the purpose,
and ii) corrupting data increases chances of the Trojan getting
detected. Since the original packet is not tampered with and
is routed to the intended destination D, the normal operation
of the SoC is preserved. The Trojan also has a very small
area and power footprint. Ancajas et al. [3] used a similar
threat model and reported 4.62% and 0.28% area and power
overhead, respectively, when compared with the router design

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION SYSTEMS, VOL. 00, NO. 0, MONTH 0000 4

without the Trojan. The performance overhead for routing
packets to the malicious application is less than 1% [3].

Note that the adversarial model does not assume that the
processing IP is malicious, rather it assumes that the IP is
running a malicious program. While there are a wide variety of
IP trust validation approaches [38], [41], they are not designed
for IPs running malicious programs. Therefore, the likelihood
of the Trojan being detected is very small unless additional
security mechanisms (such as the one proposed in this paper)
are implemented. The goal of the malicious program is to
eavesdrop on the packets to attack on-chip communication
security, therefore, the defense mechanism needs to be at the
network layer [42], which is the focus of this paper.

Route Compute

VC Allocator

Output
Ports

_—

Cross Bar
Switch

Input
Buffers

Fig. 2: Router infected with a hardware Trojan.

IV. MOTIVATION

As explained in Section II, AE is a widely accepted coun-
termeasure against eavesdropping attacks. Encryption provides
packet confidentiality and authentication is capable of detect-
ing re-routed packets. Since the header is modified by the
hardware Trojan in order to re-route the packet to the mali-
cious application, the authentication tag validation fails and
the attack is detected. To analyze the performance overhead
introduced by an AE scheme, we ran FFT, RADIX (RDX),
FMM and LU benchmarks from the SPLASH-2 benchmark
suite [43] on an 8 x 8 Mesh NoC-based SoC with 64 IPs
using the gem5 simulator [44] considering two scenarios:

o Default-NoC: Bare NoC that does not implement encryp-
tion or authentication.
« AE-NoC: NoC that uses an authenticated encryption.

More details about the experimental setup is given in
Section VII-A. Results are shown in Figure 3. A 12-cycle delay
was assumed for encryption/decryption and authentication tag
calculation when simulating AE-NoC according to the evalu-
ations in [16]. The values are normalized to the scenario that
consumes the most time. AE-NoC shows 59% (57% on aver-
age) increase in NoC delay (average NoC traversal delay for
all packets) and 17% (13% on average) increase in execution
time compared to the Default-NoC. The overhead for security
has a relatively lower impact on execution time compared to
the NoC delay since the execution time also includes the time
for executing instructions and memory operations (in addition
to NoC delay). NoC delay in Default-NoC case is caused by
delays at routers, links and the NI. In AE-NoC, in addition to
those delays, encryption/decryption delays and authentication
tag calculation/validation delays are added to each packet.

= Default-NoC B AE-NoC

NoC Delay
©ooo
oOND O R

Normalized

FFT RDX

(a) NoC delay

FMM LU

Normalized
Execution Time

FFT RDX

FMM LU

(b) Execution time
Fig. 3: NoC delay and execution time comparison across
different levels of security for four SPLASH-2 benchmarks.

Additional delays are due to complex encryption/decryption
operations and hash calculations for authentication.

When security is considered, Default-NoC leaves the data
totally vulnerable to attacks, whereas AE-NoC ensures con-
fidentiality and data integrity. For systems with real-time
requirements, an execution time increase of 17% to accom-
modate a security mechanism is unacceptable. Furthermore,
validating the authentication tag for each packet contributes
to the SoC power consumption. Since the Trojan is rarely
activated and only the packet header is modified (packet data
is not corrupted) to avoid detection, authenticating each packet
becomes inefficient in terms of both performance and power
consumption [7]. Clearly, authenticating to detect re-routed
packets introduce unnecessary overhead. It would be ideal if
the security provided by AE-NoC could be achieved while
maintaining the performance of Default-NoC. However, in
resource-constrained environments, there is always a trade-off
between security and performance.

In this paper, we propose a novel digital watermarking-
based security mechanism that incurs minimal overhead while
providing high security. Our approach replaces authentication
by watermarking. Encryption is used to ensure data confiden-
tiality. Our method achieves a better trade-off than: (1) no
authentication that is vulnerable to credible Trojan attacks,
and (2) authenticated encryption, which incurs performance
degradation limiting their use in real-time applications.

V. NOC PACKET WATERMARKING

In this section, we first present a few key definitions and
concepts used in our proposed watermarking construction. We
then describe our lightweight eavesdropping attack detection
mechanism based on digital watermarking.

A. Definitions

In this section, we introduce two important definitions that
would be used in the rest of the paper.

1) Hoeffding’s Inequaliry: Let {X1,..., X,,} be a sequence
of independent and bounded random variables with X; € [a, b]
for all 7, where —oo < a < b < co. Then;

%zn:(Xl -E [Xz])‘ > t‘| < 6(7(3322)2)
i=1

Pr

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION SYSTEMS, VOL. 00, NO. 0, MONTH 0000 5

for all ¢ > 0 [45]. By Herffding;s Lemma, which says if X; €
[a,b] then E [e*X] < e*(®=@)7/8 for any A > 0, a random
variable bounded in [a, b] is sub-Gaussian with variance proxy

o2 = %_ Therefore;

|

2) Bounds for Binary Codes: Let C be a binary code of
length w, size M (i.e., having M codewords) and minimum
Hamming distance § between any two codewords denoted by
(w, M, d). The distance distribution of C can be calculated as;

% Z(Xi - E[X;])

zt] <32

1

It is clear that Bo =1 and B; = 0 for 0 < 7 < d [46].

Let A(w,d) represent the maximum number of codewords
M in any binary code of length w and minimum Hamming
distance d between codewords. Finding optimum A(w, d) for
a given w and d is an NP-Hard problem [47]. However, exact
solutions are known for few combinations of values and in
the general case, upper and lower bounds of the maximum
number of codewords are known [48].

B. Overview

We call the flow of packets sent from one IP (source)
to another IP (destination), a packet stream. Our detection
mechanism relies on the following assumptions about the
architecture and threat model.

o The Trojan does not tamper with the legitimate packet
content as this may reveal its presence (Section III). The
Trojan only modifies the header of duplicated packets
to change the destination (data fields of the duplicated
packets are not tampered with) and it allows the legitimate
packets to pass as usual.

« Packets are not dropped by intermediate routers and the
order of packets in a packet stream is kept constant. This
is reasonable as deadlock and livelock free XY routing
is used together with FIFO buffers [2].

« When the attacker injects copied packets into the NoC,
all the packets can get delayed due to congestion. While
this delay is random, the maximum delay is bounded. We
explore this assumption in detail in Section VI-B.

Our proposed approach is to embed a unique watermark
into every packet stream. Figure 4 shows an overview. We
propose to include the watermark encoder and decoder at the
NI of each node. It is reasonable to assume that the NI can
be trusted since it acts as the interface between all the IPs
in the SoC and the NoC IP, and is typically designed in-
house [16], [8]. The NI at source S encodes the watermark
and the NI at destination D decodes it to identify that the
packet stream is valid, or in other words, the packets in the
packet stream are intended to be received by D. This process
is followed by each source/destination pair in the NoC. In
case of an attack, the watermark decoded by the NI of the
receiving node (node Y according to our illustrative example),
will be invalid and a potential attack is flagged. To ensure

this behavior, the watermarking mechanism must have the
following characteristics:
1) The watermark is unique to each packet stream.
2) There is a shared secret between S and D, which is
“hard” for any other node to guess or deduce.

[Watermark
{ Encoder

Router

n Network Interface (NI)

. Intellectual Property (IP) Core

Trojan Infected Router

Fig. 4: Overview of the watermarking scheme where the
watermark encoder and decoder are implemented at the NI.

In addition to watermarking, we rely on encryp-
tion/decryption modules implemented at the NIs. The water-
mark is embedded in the encrypted packets and is decoded
before the decryption process. Encrypting packets is required
to provide data confidentiality during packet transfers and
due to the nature of our watermarking scheme that allows
the malicious application to receive some packets before
detecting the attack. Proposing an encryption mechanism is
beyond the scope of this paper and several previous work
have already proposed NoC-based SoC architectures with
encryption/decryption modules implemented at the NI [16],
[13], [8]. Our proposed watermarking scheme can be imple-
mented on top of those solutions. The performance improve-
ment is achieved by replacing the authentication scheme with
our lightweight digital watermarking scheme. The following
sections describe our approach in detail. First, we outline
the concept behind probabilistic NoC packet watermarking
(Section V-C), and then discuss the operation of the water-
mark encoder and decoder in detail (Section V-D). Finally,
we outline an effective method for managing secrets shared
between nodes (Section V-E).

C. Probabilistic Watermarking Concept

The watermark wgp is embedded by the NI of S before
the packets are injected into the NoC. We use a timing-
based watermark (as opposed to size or content-based) for
three reasons; (i) timing alterations are harder to detect by
an attacker, (ii) it allows a lightweight implementation as it is
easy to manipulate, and (iii) it does not alter the packet content
allowing encryption schemes to be implemented together
with watermarking. The watermark is embedded by slightly
delaying certain packets in the stream. If wgp is unique, it
should be correctly decoded at the NI of destination D with
high probability. In contrast, the probability of decoding wsp
as valid at any other NI should be very low.

Given n packets of a packet stream Psp such that;

Psp ={psp,1,PSD,1s -, PSD,is -, PSD,n}

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION SYSTEMS, VOL. 00, NO. 0, MONTH 0000 6

the inter-packet delay (IPD) between any two packets can be
calculated as Tsp;,i+1 = tsp,i+1 — tsp,; where tgp; is the
timestamp of the packet pgp ;. Without loss of generality,
for the ease of illustration, we will remove “SD” from the
notation and denote the packet stream Psp as P and IPD
TSD,ii+1 aS T;.

The encoder selects 2m packets {pr,,Dryys .y Pry,, + OUL
of the n packets of packet stream P. The selected packets
are paired with another 2m packets (outside of the initially
selected 2m packets) to create 2m pairs such that each pair is
constructed as {p,_,pr, 45} where z > 1 and z = 1,...,2m.
Therefore, it is assumed that the packet stream has at least
4m packets. The IPD between each pair of packets can be
calculated as;

Tr, = trz +x — t'r‘z (2)

Given that the 2m packets are selected independently and
randomly, we model the IPDs as independently and identically
distributed (IID) random variables with a common distribution.
The IPD values are then divided into 2 groups. Since we had
2m pairs of packets, each group will have m IPD values. Let
the IPD values of the two groups be denoted by T]i and T,?
(k = 1,...,m), respectively. It follows that both 7} and 772 are
IID. Therefore, the expected values p (and the variances) of
the two distributions are equal. Let A be the average difference
between the two IPD distributions:

1 &t — 72
A:*'Zk k (3)

m 2
k=1

Then, we can calculate the expected value and variance of A:

—E[r]-E[}] =0, Var(A)=2.

E[A] ~

Where o2 is the variance of the distribution ﬁ. In other
words, the distribution of A is symmetric and centered around
zero. The parameter m is referred to as the sample size.

The core idea of our watermarking approach is to intention-
ally delay a selected set of packets to shift the A distribution
left or right to encode the watermark bits in the timing
information of the packets. Specifically, the distribution of A
can be shifted along the x-axis to be centered on —« or « by
decreasing or increasing A by «, where « is called the shift
amount. As a result, the probability of A being negative or
positive will increase. Concretely, to embed bit 0, we decrease
A by a. To embed bit 1, we 1ncrease A by a. Decreasing A

can be done by decreasmg each ~ T by a (Equation 3).

Decreasing ~ i = i can be achieved by decreasing each 7} by
« and increasing each 72 by . It is easy to see that increasing
A can be done in a similar way. Decreasing or increasing one
IPD (7}) is achieved by delaying the first packet or the second
packet of the pair, respectively.

The encoded watermark can be detected by calculating A
and checking if A is positive or negative. If A > 0, bit 1 is
decoded. Otherwise (if A < 0) bit 0 is decoded. This scheme
can be extended to a w-bit watermark (wsp) by repeating the
above process w times. During the decoding process, a w-bit
watermark (wy) is extracted from the packet stream and if the

hamming distance between wgp and wy, is lower than a pre-
defined error margin §, we can conclude that the watermark
embedded at the source S is detected at the receiver. If the
watermark does not match, an attack is flagged.

Figure 5 shows the distribution of A and the corresponding
distribution after shifting it by o > 0. Since our scheme is
probabilistic, there is a probability that the embedded water-
mark bits will be incorrectly decoded, thus leading to false
alarms (false positives) or missed detection (false negatives).
This is because for any o > 0, a small portion of the
distribution of A falls outside the range (—oo, . Therefore,
if we embed bit 0, there is a small probability that the bit will
be incorrectly decoded as 1. It can be seen that this probability
is the same as the probability that a sample from the unshifted
distribution takes a value outside the range (—oo, «]. Similarly,
a bit encoded to be 1 can be decoded incorrectly because
samples from A have a small probability of falling outside the
range [—, 00). However, we can tune parameters m (sample
size), a (shift amount) and § (error margin) to achieve a very
high (nearly 100%) decoding success rate (Section VII).

Distribution shifted right by a
to encode bit 1

; \\ /—“J\\

|
H — - \ —

-a 0 o 0
Fig. 5: Example showing the A distribution shifted by a.

Expected A Distribution

To provide formal guarantees, we define the bit decoding
success rate (BDSR) as the probability of the embedded
watermark bit being decoded correctly (for a shift amount
of). We denote this quantity by Pr[A < a]. Note that the
BDSR also depends on m and o2, but this is not explicit in
the notation Pr [A < «] because it is implicitly captured by A.
We give an illustrative example to further explain this concept.

Prz Pr1+3

O ANEONR=

1'2 r1+3 r2+3 time
Flg 6: Sample packet stream with m =1 and = = 3.

r2+3

Illustrative Example: Figure 6 shows a sample packet stream
in the time domain with packet injection times. For ease of
explanation in this example, m is set to one and therefore,
two packets (2m) are selected from the packet stream (P,
and P,,). Both packets are paired with two other packets that
are = (=3) packets away in the packet stream (P, with P, 43
and P,, with P, 3). The IPD between each pair is calculated
as Tr, =ty 4+3—1tr, and 7., = t,,4+3—1,,. The two IPD values
are then divided into two groups and A calculated according
to Equation 3 as “2—""2 (sum for all m and division by m not
shown since m = 1). We repeated the process using a packet
stream that had more than 3000 packets obtained by running
a simulation using the gem5 architectural simulator [44] on a

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION SYSTEMS, VOL. 00, NO. 0, MONTH 0000 7

real benchmark. An 8 x 8 Mesh NoC was modelled using the
Garnet2.0 [49] interconnection network model. The node in
the top left corner (node S) ran the RADIX benchmark from
the SPLASH-2 benchmark suite [43]. One memory controller
was modelled and attached to the node in the bottom right
corner (node D) so that the memory requests always traverse
from S to D. Figure 7 shows the histogram collected at the
NI of S for the distribution of A with m = 1 and z = 3.
Packets were collected at random with the above parameter
values to plot A. We can observe from Figure 7 that the
distribution closely approximates the distribution we expected.
The calculated sample mean (I [A]) for this particular example
was 0.0053, which is very close to zero. Increasing the number
of selected packets (2m) further increases the likelihood of the
sample mean being zero.
900

800
700

>
o 600
c
o 500
=]
5400
£ 300
200
allin
0 — ————-- --———— = Time
PR R EEEEREEEEREE RN
Fr e e S S cSccScSsY“go0oocgogggogoo o .
=Nl -~ N - W o N o N) iS)
SO BN OO T O N fcdaasnersxg

Fig. 7: Distribution of A with m =1 and =z = 3.

D. Watermark Encoder and Decoder

As outlined in Section V-B, our watermarking scheme
includes a shared secret between S and D, which is “hard”
for any other node to guess or deduce. In addition, several
parameters are shared between S and D. Specifically, S and
D share the tuple (m, o, wsp,K). The first three parameters
were introduced in Section V-B as the sample size (m), the
shift amount (), and the unique watermark that represents
Psp (wsp). The length of wsp (w) can be derived from
wgp. In addition, K is a secret which is used to derive a
key for the encryption scheme and a seed S using a key
derivation function. S is used to seed the pseudo-random
number generator which selects the 2m IPDs. We assume the
attacker does not know wgp or K, but may know m and a.

1) Watermark Encoding Process: When the watermark
encoder, which is integrated in the NI of node S, receives
packets from its local IP with the destination node D, it
encodes the watermark according to the process outlined in
Section V-C and the shared secret between S and D. The
selection of the IPDs that construct the A distribution needs
to be deterministic so that the process is identical for the
watermark encoder and decoder, and it needs to ensure that an
attacker cannot replicate the same behavior. To achieve this,
we need a method to pair packets deterministically based on
the shared secret, but that appears uniformly random to the
attacker (who does not know the shared secret). We propose
to implement this using a pseudo-random number generator
(PRNG) seeded (i.e., initialized) with S (or something derived
from it). This ensures that the encoder and decoder produce
the same sequence of random numbers. Further, an attacker
(who does not know the seed) cannot predict the next PRNG

output, even with the knowledge of the previous output [50].
There are many possible hardware implementations of PRNG
that are suitable for our framework [51]. For example, our
approach can be built on top of LFSR-based PRNGs where
the period (repeat sequence) can be determined and optimized.

Let F denote the selection function that given a packet
stream, selects and divides 2m IPDs into two groups, each
of size m. We choose a window of packets and pair two
random packets together from each window. Therefore, to
construct 2m IPDs, 2m such packet windows are required. The
operation of F used in our method is outlined in Algorithm 1.
The PRNG seeded with S is used to randomly generate two
integers r, and x (line 1) suchthat 0 <r, <W—-1land 0 < x
and r, +x < W —1, where W is the size of the window. This
can be done using rejection sampling to ensure that r, # x
and then calling the smaller integer r, and the larger r, + x.
The packet at the index 7, (p,,) is paired with the packet that
is packets away giving the random pair {p,_,p., .} (lines
4-5). The calculated IPD values are then evenly divided into
two groups (lines 6-11).

Since 2m IPDs are required to encode a 1-bit watermark, w
iterations of the procedure F are required to encode the w-bit
watermark. When encoding one watermark bit, the distribution
discussed in Section V-C holds only when each pair of packets
is the same distance = apart from each other. Therefore, the
same 7, and x values are used for each iteration of k. When
encoding another watermark bit, another iteration of F is
required in which another pair of r, and x values will be
generated by the PRNG. To ensure that the same r, and x
values are not generated for subsequent watermark bits, the
PRNG must be seeded only once. An example to show how
the selection function can be used to encode a w-bit watermark
including how to select the window is given in Section VII.

Algorithm 1 - Selection Function F

Input: Seed S
Output: Two IPD groups used to encode one watermark bit
Procedure: F

I: 7,2 < PRNG(S)

2: for all k=1,...,2m do

3: A «+ selectNextWindow(Psp)

4: Dr, < Alr.]

5: Dr, 4o < Alr, + 2]
6: Tp, < trz+x — t,,«z
7: if £ is odd then

8: T,i — Tr,

9: else

10: T,f — Tr,

11: return [{7, 73, ..., 75} {72, 72, ..., 72 }]

2) Watermark Decoding Process: Node D upon examining
the packet stream Psp, decodes the w-bit watermark wfg D
by following the process outlined in Section V-C and the
shared secret tuple. The decoder concludes that the watermark
is valid if the Hamming distance between wgp (taken from
the shared secret tuple) and w4, (decoded from the received
packet stream Pgp) is less than or equal to the error margin

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION SYSTEMS, VOL. 00, NO. 0, MONTH 0000 8

0. Formally, the watermark is valid if;
D(wsp,wsp) <6 4)

where D is the Hamming distance between two bit strings and
0 < ¢ < w. The reason for allowing an error margin ¢ and
not looking for an exact match is that no matter how large the
shift amount « is, there is a probability that the watermark
is decoded incorrectly as discussed in Section VI-A. Tuning
parameter ¢ allows us to minimize this probability. As shown
in Section VI-B, it allows to minimize the impact of the attack.

E. Managing Shared Secrets

The watermark encoder and decoder operation introduced
in Section V-D relies on shared secret tuples between nodes to
make sure the watermarking scheme cannot be compromised.
To facilitate this, an efficient way to generate and manage
such secrets is required. Developing an efficient management
mechanism is beyond the scope of this work and many
previous studies have addressed this problem in several ways.
One such example is the key management system proposed
by Lebiednik et al. [28]. In their work, a separate IP called
the key distribution center (KDC) handles the distribution of
keys. Each node in the network negotiates a new key with
the KDC using a pre-shared portion of memory that is known
by only the KDC and the corresponding node. The node then
communicates with the KDC using this unique key whenever
it wants to obtain a new key. The KDC can then allocate keys
and inform other nodes as required. AE schemes also rely
on the services of a KDC to manage shared keys between
nodes [16], [13], [7], [11]. Our proposed digital watermarking
scheme can be integrated with a similar key generation and
management mechanism.

VI. THEORETICAL ANALYSIS

In this section, we provide some mathematical guarantees
about the correctness and security of the watermarking scheme
which we further validate with experimental results in Sec-
tion VII. First, we provide a bound on BDSR during normal
operation (Section VI-A). Then we evaluate the impact of an
attacker on BDSR (Section VI-B). Finally, we present how
the error margin § can be selected such that it maximizes
the chance of successfully decoding the watermark while
minimizing the chances of an attack if the attacker is aware
of our detection method (Section VI-C).

A. Bit Decoding Success Rate During Normal Operation

Given this watermark encoding/decoding scheme, it is clear
that larger the shift amount « is, the higher the bit decoding
success rate (BDSR) will be. However, having arbitrarily large
« is not feasible in systems with real-time constraints. In this
section, we show that we can achieve close to 100% BDSR
for arbitrarily small o by changing the sample size m.

As discussed in Section V-C, a watermark bit can be
decoded incorrectly if at the receiver’s end, |A| > «. There-
fore, we should analyze the behavior of Pr[|A| > a]. There
are several well-established statistical tools for this, but in
particular we can use concentration results, also known as tail

bounds. Since the IPDs are bounded and independent, we can
use Hoeffding’s inequality (introduced in Section V-Al) and
equations from Section V-C related to the distribution of A;

ma?

Pr|Al > o] < e(f 207))

Using symmetry; PrlA<a]l>1- %(3(7 207) (6)
Therefore, we can observe that the BDSR is lower bounded
by a value that depends on o and m. The results show that
irrespective of the distribution of the IPDs, for arbitrarily small
« values, we can always take the BDSR close to 100% by
increasing the sample size m. In other words, no matter how
small the shift amount o needs to be to abide by the timing
constraints of the system, we can still achieve high BDSR by
selecting more packets in each IPD group.

B. Impact of an Attack on the Bit Decoding Success Rate

Having established mathematical guarantees about BDSR
during normal operation, we shift our focus to explore how
BDSR of legitimate packet streams can be affected by an
attack. According to the threat model, the Trojan infected
router copies packets and sends them to a malicious appli-
cation running on a different IP. As a result, more packets
are introduced to the network which can cause congestion.
All packets in the network can be delayed because of this.
Therefore, the attack can introduce additional delays to the
legitimate packet streams. It is safe to assume that these
additional delays are finite. If the attacker delays packets
indefinitely through congestion, the attack is no longer an
eavesdropping attack, but rather a flooding type of denial-of-
service attack [4] that is beyond the scope of this paper.

Given that the Trojan-infected router does not know which
packets were selected by the watermark encoder (as explained
in Section V-D), the delay introduced by the attacker (whatever
it is) on the selected IPDs is IID from the perspective of S
and D. Using this insight, we can analyze A’, which is the
distribution after modifying A defined in Equation 3 with the
added delays, and conclude that;

1 (__ma?
Pr [A' < a] >1-— 56(2(0+vd>2) (7)

where o, is the added delay variance due to the added
congestion. Observe that the only change is the increase in
variance caused by the attacker. We can choose o, depending
on the amount of congestion the attacker is willing to cause
without risking being detected. Similar to the argument we
made when reasoning about the BDSR using Equation 6, we
can see that BDSR is lower bounded and by manipulating
the sample size, we can make the BDSR arbitrarily close to
100%. Therefore, the impact on the watermarking detection
is a bounded increase of variance on an otherwise 100%
successful watermarking scheme. As the illustrative example
that calculates BDSR in Section VII-B outlines, the success
rate can be brought very close to 100% even with the selection
of a modest value for m.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION SYSTEMS, VOL. 00, NO. 0, MONTH 0000 9

C. Optimal Error Margin Selection

As discussed in Section V-D, the use of the error margin
0 instead of an exact match between the decoded and the
expected watermark, allows us to tune § to maximize the
watermark detection success rate (WDSR). Unlike BDSR,
which refers to the success of decoding a single bit, WDSR
considers the entire watermark with w bits. The probabilistic
nature of our watermarking scheme leaves a small probability
that the watermark will be incorrectly decoded irrespective of
the values chosen for the parameters. While this probability
is small, efficient selection of & can push WDSR as close
as possible to 100%. On the other hand, using a larger error
margin also increases the success of potential attacks. Indeed,
assuming that the attacker is aware of our detection strategy,
the best strategy for an attacker to eavesdrop on data without
being detected is to try to forge a watermark. If he succeeds,
then the duplicated packets will be accepted as valid by the
node that runs the accomplice application and our proposed
watermarking-based defense will be defeated. We call the
success probability of such a forging attack the watermark
forging success probability (WFSP). The goal of the detection
scheme is thus to set the parameters such that WDSR is
maximized while minimizing WEFSP. We explore how this can
be achieved in this section.

1) Maximizing Watermark Detection Rate: The probabil-
ity of incorrectly decoding a bit was formalized using the
metric BDSR as Pr[A < «]. Considering symmetry, let ¢ =
Pr[—oo < A<a] = Pr[—a <A < oo]. Then for a w-bit
watermark, probability of accurately decoding all w bits will
be ¥". Therefore, the expected WDSR can be calculated as;

0

3 (Z’) 91 —) ®)
i=0

We can see that with a large d, the expected WDSR increases.
We observe from Equation 8 that;

)
3 (1”) 9O (L —9) > 9" ©)
i=0

Therefore, we can make the expected WDSR larger than the
desired WDSR by increasing 1. Revisiting Equation 7, we
observe that ¥} can be made sufficiently close to 1 by increasing
the sample size m irrespective of «, o and o4. Therefore, we
can conclude that in theory, it is possible to make WDSR close
to 100% even with a modest error margin.

2) Minimizing Risk of Watermark Forging Attacks: While
increasing d can increase WDSR, larger the §, larger the
expected WESP will be. We address this in two steps. First,
we select watermarks such that under a given error margin 9,
the probability that one watermark can be incorrectly decoded
as another watermark (watermark collision) is minimized.
Then, we discuss the case where an attacker, after knowing
our detection mechanism, tries to inject duplicated packets
such that the decoder at the receiver incorrectly validates the
watermark (watermark forging) and accepts the duplicated
packet steam as valid.

The problem of selecting distinct w-bit watermarks for
each source-destination pair can be recast as the problem

of selecting distinct codewords. This is a well-established
problem that has been extensively studied in the information
theory literature. Indeed, it is known that for any given set
of distinct codewords, if the minimum Hamming distance
between any two codewords is at least 20 4+ 1, a nearest
neighbor decoder will always decode correctly when there are
6 or fewer errors [52]. Therefore, if the watermarks are chosen
such that any two watermarks are at least 20+ 1 distance apart,
the probability of a watermark collision is minimal. We select
the number of bits in the watermark w such that this property
is satisfied using the method explained in Section V-A2. An
example of how w is selected is given in Section VII-B2.

Even if w is selected such that watermark collision prob-
ability is minimized, an attacker may still try to impersonate
a legitimate sender. Assume that wgp and wgy are valid
watermarks with distance 26 + 1 (minimum possible distance
between two watermarks) between nodes S and D and S and
Y, respectively. A Trojan-infected router in the path from S to
D duplicates packets and sends to an accomplice application
in node Y. For Y to accept the duplicated packet stream as
a legitimate packet stream coming from .S, the watermark of
the duplicated packet stream should match wgy. We refer to
this attack as a watermark forging attack.

Section V-D and Section V-E detailed how watermarks are
kept unknown to any other parties, except for the sender and
receiver in a packet stream, using shared secrets. Therefore,
the attacker’s method to forge a watermark can be reduced to
a random bit flipping game with the goal of matching wgy .
Random bit flipping is achieved by randomly delaying the
duplicated packets in Pgp. For the attacker to win the game,
wgp should change to wgy. Since the minimum distance
between any two watermarks is 26 + 1, considering the error
margin of §, the minimum required number of bit flips is §+1.
Therefore, the attacker should flip at least § + 1 bits to win
the game. However, flipping the wrong bits can take the target
even further. Therefore, the best chance for the attacker to
win the game is if it flips the correct § 4+ 1 bits of wgp to
match wgy (to end up within the error-margin of wgy, i.e.,
within §-Hamming distance of wgy). The probability that the
attacker flips the correct 6 + 1 bits at any given round of the
game is thus: (521)_1. Assuming the attacker plays n times,
the attacker’s probability of winning, or in other words, the
probability of successfully forging the watermark (WFSP) at
least once (after n attempts) is;

]

Observe that by manipulating w and 9, this probability can be
made arbitrarily small. Furthermore, n cannot be arbitrarily
large because if the probability of winning in the first few
attempts is low, then the attacker will be detected before the
attacker can successfully forge the watermark.

This allows us to conclude that we can make WDSR close
to 100% and WEFSP close to 0%. Equations 7, 8 and 10
combined give us the theoretical trade-off model between
WDSR and WFSP. However, we cannot accommodate arbi-
trarily large m and w in practical scenarios. Therefore, in the

(10)

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION SYSTEMS, VOL. 00, NO. 0, MONTH 0000 10

next section, we perform experimental evaluation and discuss
realistic values that can be achieved under our threat model
and architecture.

VII. EXPERIMENTAL RESULTS

In this section, we experimentally evaluate the theoretical
models established in previous sections and choose the param-
eters that give the optimum results. The selected parameters
are then used to explore the performance gain achieved by
using our method compared to traditional AE based schemes.

A. Experimental Setup

We evaluated our approach by modeling an NoC-based SoC
using the cycle-accurate full-system simulator - gem5 [44].
“GARNET2.0” interconnection network model that is inte-
grated with gem5 was used to model an 8x8 Mesh 2D
NoC [49]. To ensure the accuracy of our simulator model
when compared to real hardware, we used the simulator
framework proposed in [53], which has validated simulator
results with results from the Intel Knights Landing (KNL)
architecture (Xeon Phi 7210 hardware platform [54]), when
setting up the experimental environment. Figure 8 shows
an overview of the NoC-based SoC model. Each IP was
modeled as a processor core executing a given task at 1GHz
with a private L1 Cache. Eight memory controllers were
modeled and attached to the IPs in the boundary providing
the interface to off-chip memory. In case of a cache miss, the
memory request/response messages were sent to/from memory
controllers as NoC packets. The NoC was modeled with 3-
stage (buffer write, route compute + virtual channel allocation
+ switch allocation, and link traversal) pipelined routers with
wormbhole switching and 4 virtual channel buffers at each input
port. Packets are routed using the deadlock and livelock free,
hop-by-hop, turn-based XY deterministic routing protocol.

TP YT YT
b e e e e i o

Iililil Iilili

-0

p ol o e o o e e

c ot W
= ! !;!A*A!H Memory

Controller

Fig. 8: 8x8 Mesh NoC setup used to generate results.

Each processor core in the SoC was assigned an instance
out of FFT, RADIX (RDX), FFM and LU benchmarks from
the SPLASH-2 benchmark suite [43]. Each simulation round
can in theory, give (624) x 2 = 4032 packet streams (assuming
two-way communication between any pair out of the 64 nodes)
and the number of iterations that depended on the number of
benchmarks (four in our case) can give 4 x (%) x 2 = 16,128
packet streams. However, depending on the address mapping,
only some node pairs out of all the possible node pairs
communicate. Our simulations generated 3072 packet streams
for all benchmarks between 1024 unique node pairs which we

used to evaluate our method. However, to decide the number
of bits in the watermark w, looking at only the number of
unique node pairs is not sufficient because to avoid watermark
collisions, the Hamming distance between any two watermarks
should be at least 2§ + 1. According to Section V-A2, as
increases, w increases as well. Therefore, more packets are
required to encode the watermark and as a result, the time
to detect an ongoing attack increases (more packets need to
be observed before recognizing the watermark). Increasing m
has a similar impact. Increasing « increases the application
execution time and it takes longer to detect eavesdropping
attacks. This motivates us to explore optimum parameter (m,
« and ¢) values such that WDSR is maximized and attack
detection time, execution time as well as WFSP are minimized.

B. Parameter Tuning

We first explore m and o when encoding a single watermark
bit and then extend the discussion to consider WDSR, WFSP,
execution time and detection time.

1) Bit Decoding Success Rate Behavior with m and «:
When embedding one watermark bit in a packet stream,
Equation 6 gives a theoretical estimate of the BDSR. To
compare the theoretically expected BDSR with experimental
results, we use a non-overlapping sliding window of A packets
and select 2m IPDs according to the method in Section V-D1.
One bit is encoded in each of the 3072 selected packet steams
following the same methodology and decoded at the receiver’s
side according to the method introduced in Section V-C. A = 8
is chosen to ensure adequate randomness in the IPD selection
process. A detailed analysis of A value selection is given in
Section VIII. We keep a = 60ns fixed and vary m from 2 to
15. Results are shown in Figure 9. We compare the outcome
from our experiments with the theoretical model (Equation 6).
For example, expected BDSR for m = 4, a = 60ns and
02 = 2662 is calculated as;

4x602

1 (-
Pr[A <60] >1— 5e(555) ~ 0,967

BDSR

0.7 —e—Experimental BDSR

0.65 —e— Expected BDSR

2 3 4 5 6 7 8 9 10 11 12 13 14 15
sample size (m)

Fig. 9: BDSR variation with sample size m. a = 60ns.

We now fix m = 4 and vary a from 10ns to 100ns
to explore BDSR variation with a. Figure 10 shows the
comparison between the theoretical model (Equation 6) and
results generated from our experiments. The experimental
results in both Figure 9 and Figure 10 show that our theoretical
model gives an accurate bound on BDSR. As a and m
are increased, BDSR converges to 1. However, our goal
is to detect any attack with high accuracy while incurring
minimum performance overhead. Therefore, BDSR is not the

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION SYSTEMS, VOL. 00, NO. 0, MONTH 0000 11

only deciding factor. As a and m is increased, the execution
time of the application/benchmark running with our attack
detection mechanism increases as well. o and m should be
chosen such that this trade-off is maintained.

BDSR

0.7 —o—Experimental BDSR
0.65 ; Expected BDSR

0.55 .

10 20 30 40 50 60 70 8 90 100
shift amount (a)

Fig. 10: BDSR variation with shift amount . m = 4.

While Figure 9 and Figure 10 show how BDSR varies with
m and a, both figures had one parameter fixed while varying
the other. To observe how both m and « effect the BDSR as
well as the execution time, we did a grid search in the ranges
2<m <10, 10 < a <80 and w = 20 and eliminated cases
where expected BDSR was less than 0.95 and execution time
increase was more than 5%. These thresholds were chosen
to achieve the optimum balance in the trade-off. Results are
shown in Figure 11. w = 20 is chosen because, to provide
a unique watermark for each communicating node pair (1024
in our experiments), 10 bits are required. 10 additional bits
are kept to allow error margins as well as to avoid collisions.
However, as discussed in Section VII-B2, w can be further
optimized leading to a better execution time. Execution time
increase is measured as the average execution time increase
as a percentage when benchmarks are run with our approach
compared to Default-NoC introduced in Section IV. Out of
the possible combinations in Figure 11, we pick m = 4 and
a = 60 as it gives an adequate trade-off for our exploration.

0952 | 0970
50 X X X 0.989 | 0.991
4.27% | 4.75%
0967 | 0983
60 X X 0.985 | 0995 X
217% | 4.73%
a 0.968 | 0.987
70 X 0.971 | 0.990 X X
3.80% | 4.54%
0.955 | 0.986
O 0.960 | 0.989 X X X
3.42% | 4.19%

Fig. 11: BDSR and execution time variation with m and a.
w fixed at 20. The green cells show expected BDSR, purple
show experimental BDSR and yellow indicate execution time
increase. Crosses indicate either expected BDSR or execution
time increase falling beyond our selected thresholds.

2) Choosing 6 and w: With the values selected for m and
«, we explore the impact of the error margin 6 on WDSR. To
calculate expected WDSR according to Equation 8, w should
be decided. However, the value of w is dependant on the
value we select for 4. Therefore, we explore the behavior of

expected WDSR with respect to ¢ for several fixed w values
(w € {14, 16, 18,20}). Results are shown in Figure 12. § =0
represents exact matches between the decoded watermark and
the expected watermark without using an error margin. The
importance of using ¢ is evident when the scenario of looking
for exact matches (§ = 0) is compared with any other § value.
For example, for the values ¥ = 0.967 and w = 20, WDSR
with exact matches is 9% = 51.1% whereas for the same o
and w values with an error margin of 2, WDSR is 97.3%.

1

0.95
0.9
0.85
o 0.8
v 0.75 w=14
g o7 w=16
= 065
0.6 w=18
052 w=20
0 1 2 3 4 5

error margin (8)

Fig. 12: Expected WDSR variation with error margin & for
several w values. m and « fixed at 4 and 60ns, respectively.

As outlined in Section VI-C2, the chosen ¢ value affects the
chances of the attacker succeeding in a forging attack (WFSP).
To evaluate the impact, we explored WDSR (Equation 8)
and WFSP (Equation 10) values for different combinations
of w and §. However not all w and § values can co-exist
if watermark collisions are to be avoided. Assume that the
chosen § value is 2. As outlined in Section VI-C2, for two
watermarks not to collide, they should be at least 20 + 1(=5 if
0 = 2) Hamming distance apart. Since there are 1024 unique
node pairs, we can set w as the minimum number of bits
required to generate 1024 unique codewords such that the
minimum Hamming distance between any two codewords is 5.
In other words, we are looking for w such that A(w,5) > 1024
according to Section V-A2. From [48], we can derive w > 18.
Therefore, to ensure that there are no collisions between
watermarks with an error margin of 2, at least 18 bits are
required for the watermark. Similarly, we can derive w > 21,
for 6 = 3, and w > 14 for § = 1. Since increasing w has
an impact on execution time as well, for each § value, we
pick the two smallest possible w value such that there are no
watermark collisions. Table II shows expected WDSR, WESP
values, experimental WDSR value and execution time increase
for the selected configurations.

TABLE II: WDSR, WFSP and execution time increase for
varying w and 6. ¥ = 0.967, n = 10.

. Execution
5| w E\’,‘\}’Sgﬁd WFSP Exlzgrll)nslg“al Time
Increase
1 14 0.9238 0.1046 0.9538 3.49%
1 15 0.9139 0.0912 0.9512 3.61%
2 | 18 0.9797 0.0121 0.9801 3.95%
2|19 0.9765 0.0102 0.97884 4.06%
3| 21 0.9955 0.0075 0.9987 4.29%
3|22 0.9946 0.0064 0.9964 4.40%

These results strongly support our claim that WESP can be
made arbitrarily small by manipulating w and §. We observe

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION SYSTEMS, VOL. 00, NO. 0, MONTH 0000 12

from Figure 12 that WDSR converges to 1 starting 6 = 2.
Furthermore, observing values in Table II, we can pick § = 2
and w = 18 as a configuration that gives an adequate trade-off.
The chosen values gives an experimental WDSR of 98%. It is
important to note that the presence of watermark or detection
mismatch does not affect the functional behavior since the
watermark is embedded in the timing information, not in the
packet content. In terms of attack detection, our approach is
98% accurate for the chosen parameters. The remaining 2%
consists of both false positive and false negative cases.

C. Performance Evaluation

With the selected parameters, m = 4, a = 60, § = 2,
w = 18, we explore the performance improvement achieved
by our method compared to the traditional AE based de-
fenses. Section IV introduced two scenarios - Default-NoC
and AE-NoC against which we evaluate the performance of
our approach (digital watermarking-based attack detection
coupled with encryption). As outlined in Section II, AE-
NoC is selected for comparison since it is the most widely
adopted approach to mitigate similar threats according to
existing literature. NoC delay and execution time comparison
are shown in Figure 13 considering Default-NoC, AE-NoC
and our watermarking based attack detection method. Our
approach only increases the NoC delay by 27.9% (26.3% on
average) and execution time by 5.2% (3.95% on average)
compared to the default NoC whereas AE-NoC increased
NoC delay by 59% (57% on average) and execution time
by 17% (13% on average). Therefore, our method has the
ability to significantly improve performance compared to other
state-of-the-art security mechanisms intended at preventing
eavesdropping attacks.

& Default-NoC # Our Approach

8 AE-NoC

1
0.8
0.6
0.4
0.2

Normalized
NoC Delay

FFT RDX
(a) NoC delay

FMM LU

Normalized
Execution Time

FFT RDX

FMM LU

(b) Execution time

Fig. 13: NoC delay and execution time comparison.

In addition to execution time comparison, time taken to
detect an ongoing attack (detection time) is also critical.
Detection time is calculated as the time taken to decode the
complete watermark from a packet stream. As soon as the
w-bit watermark is decoded and validated, any eavesdropping
attack can be detected. Table III shows detection time for each
benchmark normalized to total execution time. This shows that
our watermark detection scheme is capable of detecting any
eavesdropping attacks in a timely manner.

TABLE III: Attack detection time for different applica-
tions/benchmarks. Each value is normalized to the correspond-
ing benchmark execution time.

FFT
6.56E-3

RDX
4.8E-5

FMM LU
1.9E-4 | 3.9E-4

To evaluate the scalability of our approach, we ran the same
experiments using the FFT benchmark on 4x4, 8x8 and 16x6
Mesh NoCs. Results are normalized to the highest runtime and
shown in Figure 14. The increase in the number of nodes from
4x4 to 8x8 introduced a 9.6% increase in NoC delay and 2.1%
in execution time. When the number of nodes were increased
from 8x8 to 16x6, the NoC delay increased by 16.2% and
as a result, execution time increased by 3.7%. However, this
increase is similarly applicable to all three scenarios (not only
our approach) as seen in Figure 14, since the NoC size increase
causes similar packet transfer delays in other scenarios as well.

& Default-NoC # Our Approach

8 AE-NoC

1

E % o8
=8 06
g Q 04
zZ 02
0
ax4 8x8 16x16
(a) NoC delay
o 1
3 E oo
= c 038
o o
Es 07
= 3o
o O
zg 0.6
@ 05
4x4 8x8 16x16
(b) Execution time
Fig. 14: Performance comparison across NoC configurations.

In summary, these results validate our theoretical model
and provide a framework to tune the parameters such that
eavesdropping attacks can be detected quickly with high ac-
curacy while providing a significant performance improvement
compared to existing state-of-the-art solutions.

VIII. DISCUSSION

The security of the watermarking scheme depends on the
secrecy of some parameters (Section V-D). Parameters include
the watermark wgp as well as the key K for each Pgsp.
A key distribution center (KDC) acts as a trusted dealer to
distribute these parameters. In this section, we discuss security
implications if some of these assumptions do not hold.

A. Eliminating the Trusted Dealer

In the absence of a trusted dealer, each communicating node
pair will have to agree on a watermark and a key. While
this can be facilitated by key-exchange protocols such as the
Diffie-Hellman key exchange, the lack of a trusted dealer
can cause duplicated watermarks (watermark collisions). If
watermarks are selected uniformly at random to minimize
the chances of collision, according to the birthday bound, the
number of bits assigned to the watermark should be double
of what is required. For example, if an 18-bit watermark
is required in the presence of a trusted dealer, 36 bits are

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION SYSTEMS, VOL. 00, NO. 0, MONTH 0000 13

required in its absence because of the birthday bound. While
our watermarking scheme can give better accuracy and less
collisions for a 36-bit watermark, the execution time as well
as the detection time will increase. Therefore, a designer needs
to carefully select the size of the watermark to minimize the
collision without violating the performance budget.

B. What Can Be Inferred from Packet Timing?

It is important to note that the watermark is encoded in
the IPD values, not in the individual packet injection/received
times. Furthermore, packet injection times can vary depending
on the behavior of the application as well. There can be
phases in the application execution where more packets are
injected to the NoC whereas in some other phases, delay
between packet injections is comparatively high. Therefore,
“guessing” the watermark cannot be easily accomplished by
merely observing packet arrival times. Moreover, the only way
for an attacker to forge the watermark successfully is to know
both the watermark and the PRNG seed.

Indeed, even if the watermark could be inferred from packet
timing, the PRNG seed cannot be inferred from packet timing
information due to cryptographic guarantees of using a PRNG.
In the next section, we assume that the watermark is known
by the adversary but not the PRNG seed and analyze the
probability that an attacker can forge the watermark. This
probability can be reduced to a random bit flipping game
(probability = 3).

C. Watermark Is Not a Secret Anymore?

Assume that the attacker knows the watermark, but not
the PRNG seed. To forge the watermark, the attacker must
select the two correct packets (that forms the IPD) from each
window. Observe that without the PRNG seed, the attacker’s
probability of correctly guessing the two packets from a given
window is 1/ (’2\) (Case I). Similarly, we can derive that the
probability of two packets chosen by the attacker partially
overlapping with the correct two packets and the probability
of the attacker not selecting either one of the two correct
packets are 2(A —2)/(3) (Case II) and (*;?)/(3) (Case III),
respectively. Therefore, the higher the value chosen for A, the
lower the chances of a successful attack. The probability of the
attacker not selecting either one of the two packets correctly
(Case III) goes above 0.5 at A = 8. In the overlapping scenario,
if the first packet selected by the attacker is the correct second
packet (or vice versa), delaying it will give the incorrect
watermark bit. However, to give a conservative estimate, we
ignore that possibility and use A = 8 so that the probability of
selecting both packets incorrectly is at least % This analysis
shows that our watermarking scheme can be tuned to work
even in scenarios with very strong security assumptions such
as the watermark being leaked to the attacker. Additionally, for
systems which require even stronger security, another layer of
security can be added if we rotate the watermark assigned
between each pair of nodes after some number of iterations.

IX. CONCLUSION

In this paper, we introduced a lightweight eavesdropping
attack detection mechanism using digital watermarking in

NoC-based SoCs. We consider a widely explored threat model
in on-chip communication architectures where a hardware
Trojan-infected router in the NoC IP copies packets passing
through it, and re-routes the duplicated packets to an accom-
panying malicious application running on another IP in an
attempt to leak information. Compared to existing authenti-
cated encryption based methods, our approach offers signifi-
cant performance improvement while providing the required
security guarantees. Performance improvement is achieved by
replacing authentication with packet watermarking that can
detect duplicated packet streams at the network interface of
the receiver. We discussed the accuracy and security of our
approach using theoretical models and empirically validated
them. Experimental results demonstrated that our approach can
significantly outperform the state-of-the-art methods.

ACKNOWLEDGMENT

This work was partially supported by the National Science
Foundation (NSF) grant SaTC-1936040.

REFERENCES

[1] A. Sodani et al., “Knights landing: Second-generation intel xeon phi
product,” IEEE MICRO, vol. 36, no. 2, pp. 34-46, 2016.

[2] V.Y. Raparti and S. Pasricha, “Lightweight mitigation of hardware trojan
attacks in noc-based manycore computing,” in Proceedings of the 56th
Annual Design Automation Conference (DAC). ACM, 2019, p. 48.

[3] D. M. Ancajas et al., “Fort-nocs: Mitigating the threat of a compromised
noc,” in Proceedings of the 51st Annual Design Automation Conference
(DAC). ACM, 2014, pp. 1-6.

[4] S. Charles et al., “Real-time detection and localization of dos attacks in
noc based socs,” in Design, Automation & Test in Europe Conference
& Exhibition (DATE). IEEE, 2019, pp. 1160-1165.

[5] “The big hack: How china used a tiny chip to infiltrate u.s. com-
panies,” https://www.bloomberg.com/news/features/2018-10-04/the-big-
hack-how-china-used-a-tiny-chip-to-infiltrate-america-s-top-companies.

[6] S. T. King et al., “Designing and implementing malicious hardware.”
Proceedings of the Ist Usenix Workshop on Large-Scale Exploits and
Emergent Threats (LEET), vol. 8, pp. 1-8, 2008.

[71 M. Hussain et al., “Eetd: An energy efficient design for runtime hard-
ware trojan detection in untrusted network-on-chip,” in IEEE Computer
Society Annual Symposium on VLSI (ISVLSI), 2018, pp. 345-350.

[8] S. Charles et al., “Lightweight anonymous routing in noc based socs,”
in 2020 Design, Automation & Test in Europe Conference & Exhibition
(DATE). 1EEE, 2020, pp. 334-337.

[91 M. K. JYV et al., “Run time mitigation of performance degradation
hardware trojan attacks in network on chip,” in IEEE Computer Society
Annual Symposium on VLSI (ISVLSI), 2018, pp. 738-743.

[10] T. Boraten and A. K. Kodi, “Packet security with path sensitization for
nocs,” in Design, Automation & Test in Europe Conference & Exhibition
(DATE). 1EEE, 2016, pp. 1136-1139.

[11] J. Sepilveda et al., “Towards protected mpsoc communication for

information protection against a malicious noc,” Procedia computer

science, vol. 108, pp. 1103-1112, 2017.

S. Charles and P. Mishra, “A survey of network-on-chip security attacks

and countermeasures,” ACM Computing Surveys (CSUR), vol. 54, no. 5,

pp. 1-36, 2021.

K. Sajeesh and H. K. Kapoor, “An authenticated encryption based secu-

rity framework for noc architectures,” in 2011 International Symposium

on Electronic System Design. 1EEE, 2011, pp. 134-139.

[14] J. Porquet et al., “Noc-mpu: A secure architecture for flexible co-hosting

on shared memory mpsocs,” in Design, Automation & Test in Europe

Conference & Exhibition (DATE). 1EEE, 2011, pp. 1-4.

Y. Wang and G. E. Suh, “Efficient timing channel protection for on-

chip networks,” in 2012 IEEE/ACM Sixth International Symposium on

Networks-on-Chip, 2012, pp. 142-151.

H. K. Kapoor et al., “A security framework for noc using authenticated

encryption and session keys,” Circuits, Systems, and Signal Processing,

vol. 32, no. 6, pp. 2605-2622, 2013.

[12]

[13]

[15]

[16]

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION SYSTEMS, VOL. 00, NO. 0, MONTH 0000 14

(171

[18]

[19]

(20]

[21]

[22]

[23]

[24]

[25]

[26]

(271

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]
[37]
[38]
[39]
[40]
[41]
[42]

[43]

Q. Yu and J. Frey, “Exploiting error control approaches for hardware
trojans on network-on-chip links,” in 2013 IEEE international sympo-
sium on defect and fault tolerance in VLSI and nanotechnology systems
(DFTS). IEEE, 2013, pp. 266-271.

A. Saeed et al., “An id and address protection unit for noc based com-
munication architectures,” in Proc. of the 7th International Conference
on Security of Information and Networks, 2014, pp. 288-294.

J. Sepulveda et al., “Reconfigurable security architecture for disrupted
protection zones in noc-based mpsocs,” in 2015 10th International
Symposium on Reconfigurable Communication-centric Systems-on-Chip
(ReCoSoC). 1IEEE, 2015, pp. 1-8.

R. JS et al.,, “Runtime detection of a bandwidth denial attack from
a rogue network-on-chip,” in Proceedings of the 9th International
Symposium on Networks-on-Chip. ACM, 2015, p. 8.

A. K. Biswas et al., “Router attack toward noc-enabled mpsoc and
monitoring countermeasures against such threat,” Circuits, Systems, and
Signal Processing, vol. 34, no. 10, pp. 3241-3290, 2015.

C. Reinbrecht et al., “Gossip noc—avoiding timing side-channel attacks
through traffic management,” in 2016 IEEE Computer Society Annual
Symposium on VLSI (ISVLSI). 1EEE, 2016, pp. 601-606.

N. Prasad et al., “Runtime mitigation of illegal packet request attacks
in networks-on-chip,” in IEEE International Symposium on Circuits and
Systems (ISCAS). 1EEE, 2017, pp. 1-4.

J. Frey and Q. Yu, “A hardened network-on-chip design using runtime
hardware trojan mitigation methods,” Integration, vol. 56, pp. 15-31,
2017.

L. S. Indrusiak et al., “Side-channel attack resilience through route ran-
domisation in secure real-time networks-on-chip,” in /2th International
Symposium on Reconfigurable Communication-centric Systems-on-Chip
(ReCoSoC). 1IEEE, 2017, pp. 1-8.

J. Sepulveda et al., “Towards the formal verification of security prop-
erties of a network-on-chip router,” in 23rd European Test Symposium
(ETS). IEEE, 2018, pp. 1-6.

S. V. R. Chittamuru et al., “SOTERIA: Exploiting process variations
to enhance hardware security with photonic NoC architectures,” in
Proceedings of the 55th Annual Design Automation Conference (DAC).
IEEE, 2018, pp. 1-6.

B. Lebiednik er al., “Architecting a secure wireless network-on-chip,”
in Twelfth IEEE/ACM International Symposium on Networks-on-Chip
(NOCS), 2018, pp. 1-8.

L. S. Indrusiak et al., “Side-channel protected mpsoc through se-
cure real-time networks-on-chip,” Microprocessors and Microsystems,
vol. 68, pp. 34-46, 2019.

A. K. Biswas, “Network-on-chip intellectual property protection using
circular path-based fingerprinting,” ACM Journal on Emerging Tech-
nologies in Computing Systems (JETC), vol. 17, no. 1, pp. 1-22, 2020.
A. Tacovazzi et al., “Network flow watermarking: A survey,” IEEE
Communications Surveys & Tutorials, vol. 19, no. 1, pp. 512-530, 2016.
H. Deng et al., “Selective forwarding attack detection using watermark
in wsns,” in International Colloquium on Computing, Communication,
Control, and Management (ISECS), vol. 3. 1EEE, 2009, pp. 109-113.
X. Wang et al., “Robust network-based attack attribution through proba-
bilistic watermarking of packet flows,” North Carolina State University.
Dept. of Computer Science, Tech. Rep., 2005.

Z. Ling et al., “Novel packet size-based covert channel attacks against
anonymizer,” IEEE Transactions on Computers, vol. 62, no. 12, pp.
2411-2426, 2012.

A. Houmansadr and N. Borisov, “Botmosaic: Collaborative network
watermark for the detection of irc-based botnets,” Journal of Systems
and Software, vol. 86, no. 3, pp. 707-715, 2013.

A. Houmansadr er al., “Rainbow: A robust and invisible non-blind
watermark for network flows.” in NDSS, 2009.

A. Zand et al., “Rippler: Delay injection for service dependency detec-
tion,” in /EEE INFOCOM, 2014, pp. 2157-2165.
P. Mishra et al., Hardware IP security and trust.
3-319-49024-3, 2017.

Arteris, “Flexnoc resilience package,” 2009, www.arteris.com/flexnoc-
resilience-package-functional-safety.

K. Shuler, “Majority of leading china semiconductor companies rely on
arteris network-on-chip interconnect ip,” 2013.

F. Farahmandi et al., System-on-Chip Security Validation and Verifica-
tion. Springer, ISBN 978-3-030-30596-3, 2020.

P. Mishra and S. Charles, Network-on-Chip Security and Privacy.
Springer, ISBN 978-3-030-69130-1, 2021.

S. C. Woo et al., “The splash-2 programs: Characterization and method-
ological considerations,” ACM SIGARCH computer architecture news,
vol. 23, no. 2, pp. 24-36, 1995.

Springer, ISBN 978-

[44]

[45]

[46]

(471

(48]

[49]

[50]

(51]

[52]

[53]

[54]

N. Binkert et al., “The gem5 simulator,” ACM SIGARCH Computer
Architecture News, vol. 39, no. 2, pp. 1-7, 2011.

W. Hoeffding, “Probability inequalities for sums of bounded random
variables,” in The Collected Works of Wassily Hoeffding. Springer,
1994, pp. 409-426.

R. M. Roth and G. Seroussi, “Bounds for binary codes with narrow
distance distributions,” IEEE transactions on information theory, vol. 53,
no. 8, pp. 2760-2768, 2007.

I. Dumer et al., “Hardness of approximating the minimum distance of a
linear code,” IEEE Transactions on Information Theory, vol. 49, no. 1,
pp. 22-37, 2003.

M. Best et al., “Bounds for binary codes of length less than 25, IEEE
Transactions on Information theory, vol. 24, no. 1, pp. 81-93, 1978.
N. Agarwal et al., “Garnet: A detailed on-chip network model inside
a full-system simulator,” in IEEE International symposium on perfor-
mance analysis of systems and software, 2009, pp. 33-42.

A. Van Herrewege and I. Verbauwhede, “Software only, extremely
compact, keccak-based secure prng on arm cortex-m,” in Proc. 51st
Annual Design Automation Conference (DAC). 1EEE, 2014, pp. 1-6.
M. Bakiri et al., “Survey on hardware implementation of random number
generators on fpga: Theory and experimental analyses,” Computer
Science Review, vol. 27, pp. 135-153, 2018.

A. May and I. Ozerov, “On computing nearest neighbors with applica-
tions to decoding of binary linear codes,” in Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques.
Springer, 2015, pp. 203-228.

S. Charles et al., “Exploration of memory and cluster modes in directory-
based many-core cmps,” in Twelfth IEEE/ACM International Symposium
on Networks-on-Chip (NOCS), 2018, pp. 1-8.

Intel, “Intel xeon phi processor
https://ark.intel.com/content/www/us/en/ark/products/94033/intel-
xeon-phi-processor-7210-16gb-1-30-ghz-64-core.html.

7210,

Subodha Charles is a Senior Lecturer in the De-
partment of Electronics and Telecommunications
Engineering, University of Moratuwa, Sri Lanka. He
received his Ph.D in Computer Science from the
University of Florida in 2020. His research inter-
ests include hardware security and trust, embedded
systems and computer architecture.

Vincent Bindschaedler is an assistant professor
in the department of Computer and Information
Science and Engineering at the University of Florida.
He received his Ph.D. in Computer Science from the
University of Illinois at Urbana-Champaign in 2018.
His research interests include data privacy, applied
cryptography, and privacy-preserving technologies.
His recent work focuses on emerging problems at
the intersection of machine learning with security
and privacy.

Prabhat Mishra is a Professor in the Department of
Computer and Information Science and Engineering
at the University of Florida. He received his Ph.D. in
Computer Science from the University of California
at Irvine in 2004. His research interests include
embedded systems, hardware security and trust,
system-on-chip validation, and quantum computing.
He currently serves as an Associate Editor of ACM
Transactions on Embedded Computing Systems and
IEEE Transactions on VLSI Systems. He is an IEEE
Fellow and ACM Distinguished Scientist.

