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SUMMARY

Genomic data sets contain the effects of various unobserved biological variables in addition to the variable
of primary interest. These latent variables often affect a large number of features (e.g., genes), giving rise
to dense latent variation. This latent variation presents both challenges and opportunities for classification.
While some of these latent variables may be partially correlated with the phenotype of interest and thus
helpful, others may be uncorrelated and merely contribute additional noise. Moreover, whether potentially
helpful or not, these latent variables may obscure weaker effects that impact only a small number of features
but more directly capture the signal of primary interest. To address these challenges, we propose the cross-
residualization classifier (CRC). Through an adjustment and ensemble procedure, the CRC estimates and
residualizes out the latent variation, trains a classifier on the residuals, and then reintegrates the latent
variation in a final ensemble classifier. Thus, the latent variables are accounted for without discarding any
potentially predictive information. We apply the method to simulated data and a variety of genomic data
sets from multiple platforms. In general, we find that the CRC performs well relative to existing classifiers
and sometimes offers substantial gains.
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1. INTRODUCTION

High-dimensional classification is a ubiquitous and challenging problem in genomics. Classical methods,
such as linear discriminant analysis, cannot be used directly since usual estimates for population parameters
are poor when the number of features exceeds the number of observations. Various strategies have been
developed to address this issue. In genomics, popular approaches include various forms of dimension
reduction (Li, 2010), feature selection (Saeys and others, 2007), as well as the “independence rule”
(Bickel and Levina, 2004). These strategies are embedded in many popular classifiers (Zou and Hastie,
2005; Dudoit and Fridlyand, 2003; Nguyen and Rocke, 2002; Tibshirani and others, 2002).

Many of these approaches work by discarding or disregarding aspects of the data. For example, feature
selection methods aim to select a small subset of relevant features while ignoring many null features.
Dimension reduction strategies such as principal components analysis (PCA) focus attention on a low-
dimensional subspace of the original feature space, disregarding uninformative dimensions that merely
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contain noise. The independence rule, which disregards correlations between features, is yet another exam-
ple. When the assumptions underlying these approaches hold, they can yield substantial improvements in
classifier fit and accuracy by reducing the number of parameters one must estimate.

However, these assumptions are not always appropriate for genomic data (Hall and others, 2014).
Consider a hypothetical data set of methylation signatures generated from a sample of lung tumors. The
tumors are of either Type A or Type B, and we wish to train a classifier on the methylation data for
the purpose of classifying new lung tumors. Although tumor type is the signal of primary interest in this
classification task, it is likely only one of many signals present in the data, many of which arise from various
biological and environmental factors. For instance, it has been observed that smokers and nonsmokers
differ in their DNA methylation signatures across the whole genome (Wan and others, 2012). Air pollution
and exposure to fine particulates have also been found to affect gene expression and methylation patterns
(Bind and others, 2014; Quay and others, 1998). Since these variables affect genetic activity across many
genes, the data contain widespread correlations across the features and many dense signals in addition
to the signal of primary interest (Boyle and others, 2017). As an added complication, these additional
variables are generally latent. For instance, smoking status and fine particulate exposure are frequently
not recorded, difficult to measure, or under-reported. These issues are especially challenging when the
signal of primary interest is sparse.

In this setting, the aforementioned strategies for coping with high-dimensionality may not be optimal.
Dimension reduction strategies may ignore informative dimensions of the feature space, and feature
selection strategies may discard discriminative variables. The independence rule is similarly suboptimal.
For example, in Fan and others (2012), it is shown that leveraging correlations between variables can
yield further reduction in misclassification error, as opposed to simply ignoring them. Thus when dense
latent signals are present, commonly used strategies may not only discard noise but relevant information
as well.

There is a growing body of work on high-dimensional estimation and prediction in the presence of dense
signals (Cook and others, 2012; Dobriban and Wager, 2018; Dicker, 2012), and a substantial portion of this
literature focuses on such problems as arising from latent variables specifically (Kneip and Sarda, 2011;
Zheng and others, 2017; Dicker, 2012). One way to account for latent variables consists of performing
PCA and using the leading principal components as additional predictors in the model; Kneip and Sarda
(2011) discuss this idea in the context of linear regression. Another approach to account for the effects of
latent variables is to assume “conditional sparsity” of the coefficient vector or covariance matrix in a linear
regression model (Zheng and others, 2017; Fan and others, 2013). Roughly speaking, these conditional
methods model and condition on the presence of latent factors in order to accurately estimate the model
parameters of interest.

Our main contribution in this article is a framework for training a classifier in the presence of latent
variables. We focus primarily on the setting in which the signal of primary interest is sparse, the latent
signals are dense, and the latent signals are potentially correlated with the signal of primary interest. The
key idea is to decompose the data into a dense low-rank component and a sparse component, train sep-
arate classifiers on these components, and combine these classifiers into a single ensemble. Importantly,
the sparse component is adjusted for the dense low-rank component, so that these two components con-
tain distinct information. We propose an algorithm for performing this simultaneous decomposition and
adjustment, which we call cross-residualization. We also propose a specific instantiation of our frame-
work, the cross-residualization classifier (CRC) for the setting in which the class-conditional distributions
are Gaussian. In this setting, simple linear classifiers may be trained on each of the separate components.
However, the CRC framework is modular, and for more complex settings, it can accommodate flexible
implementations with the component-wise classifiers chosen according to the specific application at hand.

The article is organized as follows. Section 2 introduces the model and discusses the challenges and
opportunities presented by latent variables in more detail. Section 3 presents the CRC. Section 4 contains
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simulations which demonstrate the advantages of our approach and offer comparisons to classifiers com-
monly used in genomic applications. Section 5 applies the method to a diverse collection of genomic data
sets. Section 6 concludes.

2. MODEL AND MOTIVATION

Here, we present a sequence of models to illustrate the challenges and opportunities that latent variables
present for classification of genomic data.

Simple model

Suppose an observation is given by (S, T ), where S ∈ R
1×p is the feature vector and T ∈ {±1} is the

class label. For example, S might be a vector of expression levels for p genes and T might indicate
the presence or absence of a disease. Consider a model for S in which no latent factors are present,
S1×p = T1×1γ1×p + ε1×p, where T ∈ {±1} with P(T = 1) = π ∈ (0, 1). We assume that ε ∼ N (0, �),
where � = diag(σ 2

1 , . . . , σ 2
p ). We assume that T is binary and π = 1/2 in this article for simplicity;

however, our discussion and methodology readily generalize to the multiclass setting and to cases in
which the prior probabilities are not uniform.

Under this simple model, S | T ∼ N (Tγ , �). The optimal Bayes classifier is f (x) = sign
(
wsimple · x

)
,

where wsimple ∝ �−1γ ′ = (γ1/σ
2
1 , . . . , γp/σ

2
p )′. In many applications, the vector γ is sparse since the

variable of primary interest affects only a small fraction of the genes. Since �−1 is a diagonal matrix,
a sparse γ implies the optimal weight vector wsimple is also sparse. Thus, methods such as the indepen-
dence rule and variable selection techniques can be used to efficiently estimate wsimple, despite it being a
p-dimensional parameter.

Uncorrelated latent variables

In reality, genomic data contain the effects of biological variables other than the variable of primary
interest. These variables are generally latent, so observations might be more appropriately modeled via a
latent factor model

Z1×p = T1×1γ1×p + L1×rαr×p + ε1×p, (2.1)

where L represents the latent variables. Here we assume that L ∼ N (0, �) and is uncorrelated with T , that
is, L | T ∼ N (0, �). We assume that the latent biological variables tend to affect a large proportion of
genes, so the coefficient matrix α is dense. The number of latent variables, r, is unknown, but we assume
that r < n − 1. Note that the feature vector in model (2.1) is denoted by Z instead of S; we continue to
reserve S to denote S = Tγ + ε (which is unobserved in this model). Similar to before, we can think of Z
as representing gene expression and T as disease status, although gene expression is now a function of the
latent variables in addition to disease status. Latent variable models similar to (2.1) appear frequently in
the batch effect normalization literature, where the latent variables represent unwanted technical factors to
be removed (Leek and Storey, 2007, 2008; Listgarten and others, 2010; Gagnon-Bartsch and Speed, 2012;
Sun and others, 2012; Parker and others, 2014; Wang and others, 2017). Here, however, we consider the
latent variables to be biological variables responsible for variation across a large number of features.

Under the uncorrelated factor model in (2.1), Z | T ∼ N (Tγ , α′�α+�). The optimal Bayes classifier
is again a linear classifier of the form f (x) = sign (wuncorr · x), where now wuncorr ∝ (α′�α +�)

−1
γ ′.

Unlike wsimple, the optimal weight vector wuncorr is dense, even if γ is sparse. Consequently, strategies that
were effective under the simple model may no longer be ideal.
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4 N. Y. PAYNE AND J. A. GAGNON-BARTSCH

This has implications for classification analyses of genomic data, since latent variables presumably exist
in nearly every genomic data set. For example, in all of the data sets we examine in Section 5, more than half
of the variance is captured in the first 10 principal components (see Table S.3 of the supplementary material
available at Biostatistics online). Even when these latent variables are uncorrelated with the variable of
primary interest, their presence will result in an optimal weight vector that is nonsparse. Commonly used
strategies such as sparse feature selection will result in many zero feature weights when they are optimally
nonzero. Under (2.1), we observe Z but not S. However, observing S would be preferable to observing
Z , for the reasons highlighted above. If it were possible to extract S from Z , then classification could be
performed on S using usual techniques.

Correlated latent variables

Finally, consider a model in which the latent variables L are correlated with T . We continue to model an
observation by Z = Tγ + Lα + ε, but now let L | T ∼ N (Tη, �), where η ∈ R

1×r . If η = 0, all r latent
variables are uncorrelated with T and this model is equivalent to the uncorrelated latent factor model.
Under this model, Z | T ∼ N (T (γ + ηα), α′�α +�) . The optimal Bayes classifier is once again linear,
but with weights wcorr ∝ (α′�α +�)

−1
(γ +ηα)′. The correlated latent variable model presents the same

challenges as the uncorrelated latent variable model. Since the covariance matrix of the class-conditional
distribution is nondiagonal, the vector wcorr is dense, even if γ is sparse.

However, when the latent variables are correlated with T , they can provide valuable discriminative
information, as seen in the form of wcorr. The class-conditional means will typically be more separated under
the correlated model compared to the uncorrelated model (i.e.,±(γ + ηα) versus±γ ), and classification
will generally be easier. If γ is weak and sparse, then the presence of L correlated with T may be especially
valuable. As a result, observing S is no longer preferable to observing Z when L and T are correlated, as
S no longer contains all the predictive information present in Z .

Discussion

Latent variables present both challenges and opportunities in a high-dimensional classification analysis.
In the presence of dense latent signals, the optimal classifier is defined by a dense, p-dimensional vector
of weights. Strategies such as feature selection are frequently used to estimate this weight vector, but they
may discard relevant information, particularly in the case where the latent variables are correlated with
the class label.

Henceforth, we work with the correlated latent factor model, which subsumes the simple and uncor-
related models. If there are no latent factors, then Z is simply S and we can use the simple strategies
mentioned above to train a classifier. If L and T are uncorrelated, training a classifier is more complicated,
but a possible strategy would be to first isolate S from Z and then train a classifier on S. Such a strategy
is reasonable because S contains all of the predictive information available in Z ; that is, (Z |= T ) | S when
L and T are uncorrelated. However, this is no longer true when L and T are correlated, since L now
also contains predictive information. While recovering S alone is insufficient under the correlated model,
recovering both S and L would be, in the sense that (Z |= T ) | S, L.

These observations suggest a procedure in practice. Suppose for a moment that L were known. We
could use L to estimate α, and then residualize the latent variables from Z to obtain an estimate of S; that
is, Ŝ = Z − Lα̂. With both Ŝ and L in hand, we could train separate classifiers on S and L, and then use a
metaclassifier to combine them in an ensemble. Of course, L is unobserved under our model and must be
estimated in order to carry out this procedure. Fortunately, L can be well-approximated by the top r left
singular vectors of Z when γ is sparse and p� n. In fact, in the limit it is possible to recover L perfectly,
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up to an arbitrary parameterization (for conditions, see Section S.1 of the supplementary material available
at Biostatistics online).

Even so, challenges remain. If we train a classifier on Ŝ and L̂, then applying this classifier to out-of-
sample observations entails estimating analogous quantities for out-of-sample observations. There is also
the question of how to estimate r, the rank of L. Additionally, utilizing an estimate of L to estimate S
may lead to downstream overfitting in the classifier trained on Ŝ. The ensemble may suffer as a result. We
address these challenges in Section 3, in which we lay out algorithms for training a classifier (the CRC)
according to the framework outlined above.

In separating the dense latent signals from the sparse signal of interest, one can view the CRC as
performing a kind of forward selection. The former can be viewed as a common effect shared across
all features and the latter a feature specific effect (Kneip and Sarda, 2011). By residualizing out Lα (or
an approximation thereof), we isolate the sparse signals so that we learn which of the p features has an
individual effect beyond shared the latent effect. The metaclassifier utilizes this information to improve
classification accuracy beyond what can be achieved by a classifier trained on the dense latent signals
alone. Because the classifiers in the ensemble are roughly uncorrelated, the utility of the metaclassifier is
enhanced.

We now introduce some notation. Let the training set be an i.i.d. sample from the correlated latent
factor model. Denote the training observations by {(Z1, T1), . . . , (Zn, Tn)}, where Zi = Tiγ + Liα + εi for
i = 1, . . . , n. The training data in matrix form is denoted by

Zn×p = [Z ′1, . . . , Z ′n]′ = T n×1γ1×p + Ln×rαr×p + εn×p.

We define Z−i to be the (n − 1) × p matrix consisting of all rows in Z except the ith. Finally, denote a
generic target observation, an out-of-sample observation for which we wish to make a class prediction,
by Z = Tγ + Lα + ε.

We do not include an intercept term in the model. In practice, we may recenter the columns of Z to
have mean 0 and apply the same recentering to Z (see Section S.2 of the supplementary material available
at Biostatistics online).

3. THE CRC

The CRC is an ensemble of two linear discriminant-based classifiers, which we refer to as CRC-L and
CRC-S. CRC-L and CRC-S are trained on the dense latent signals and the sparse signal of interest,
respectively. A metaclassifier is fit to the resulting discriminant scores to form the ensemble.

3.1. CRC-L: training a classifier on the latent signals

One strategy for fitting a classifier on the latent signals is to use principal components linear discriminant
analysis (PC-LDA). That is, first estimate L by projecting Z onto the top r principal components of Z and
then train an LDA classifier on this estimate. Given that L can be recovered by the principal components (see
Section S.1 of the supplementary material available at Biostatistics online) and that the class-conditional
distribution of L is Gaussian under our model, PC-LDA is a natural strategy. One challenge, however, is
that r is unknown and must be estimated. If r̂ < r, then we may fail to capture all relevant information
in L. On the other hand, if r̂ > r, then the estimate L̂ will overfit the training data, potentially leading to
downstream overfitting in the ensemble. In general, estimating r is a challenging task (Choi and others,
2017; Jolliffe, 2002).

We take an alternative approach which does not require an estimate of r or even an explicit estimate of
L. Specifically, we project Z onto all principal components of Z and then use LDA to train a classifier on
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6 N. Y. PAYNE AND J. A. GAGNON-BARTSCH

the projected data (details in Section S.3 of the supplementary material available at Biostatistics online).
This approach amounts to PC-LDA using all n principal components, which has good out-of-sample
performance despite overfitting the training data. To see this, consider the regression analogue of PC-
LDA, principal components regression (PCR). PCR and ridge regression are well-known to be closely
related (Jolliffe, 2002; Friedman and others, 2001) and are in fact equivalent in a special case. If n
principal components are used, PCR is equivalent to ridge regression with the ridge penalty tending to
zero, a technique more commonly known as ridgeless regression (Hastie and others, 2019). Ridgeless
regression interpolates the training data, resulting in perfect overfitting. However, it has been shown to
have good out-of-sample predictive accuracy when p � n (Hastie and others, 2019). This property
motivates our approach. So long as we apply CRC-L to out-of-sample observations, we avoid estimating
r without suffering too much from the negative effects of overfitting. Overfitting in the training data
remains an issue when fitting the ensemble, but this issue is easily addressed via a leave-one-out approach
(Section 3.3).

Comment: In this article, we focus on the case in which γ is sparse. The characterization of CRC-L
as a classifier trained on the latent variables L changes if γ is not sparse, but this does not necessarily
impact performance. For further comments, see Section S.1 of the supplementary material available at
Biostatistics online.

3.2. CRC-S: training a classifier on the signal of primary interest

We next build a classifier on S. Diagonal LDA (DLDA) is a natural choice for this classifier, since S
is normal with diagonal covariance. Since neither S nor S is known, the first step in training CRC-S is
to obtain estimates Ŝ and Ŝ. We propose two algorithms for doing so: residualization to obtain Ŝ and
cross-residualization to obtain Ŝ.

3.2.1. Residualization Recovering S for an out-of-sample observation is one of the key challenges of
our approach. Even if S were known in the training data, a classifier trained on S would not be useful
unless we could also recover S for an out-of-sample observation Z . Here, we focus on recovering S.

Suppose that L were observed (for both the training and target observations). Additionally, suppose γ

were known. In this case, we could recover S in a straightforward manner. Since Z − Tγ = Lα + ε, an
estimate of α could be obtained by regressing Z − Tγ onto L. Having obtained α̂, we could residualize
the latent variables from Z to obtain an estimate of S; that is, Ŝ = Z − Lα̂.

However, since neither the latent variables nor γ are known this approach must be modified. With
regard to the latent variables, one option would be to estimate L and L directly by projecting Z and Z
onto the first several principal components of Z . We could then replace L and L by their estimates in
the procedure described above, and let Ŝ = Z − L̂(L̂

′
L̂)−1L̂

′
(Z − Tγ ). Since L̂ and L̂ are obtained by

projecting Z and Z onto the principal components of Z , this may be viewed as performing a PCR in which
the training set predictors are Z , the training set response variables are Z − Tγ , and the resulting fitted
model is applied to Z in order to predict Lα; the predicted Lα is then subtracted from Z to give Ŝ. As
discussed in the previous section, one challenge of PCR is selecting the number of principal components
to use. However, when p � n good out-of-sample performance may be achieved by simply using all
n principal components. As in the previous section, we adopt this approach both because it avoids the
need to obtain an explicit estimate of r and because it provides, after some algebra, a simple closed-form
solution

Ŝ = Z − ZZ ′(ZZ ′)−1(Z − T γ̂ ), (3.2)
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where γ̂ is an estimate of γ (discussed below). Another advantage of using all n principal components is
that it closely parallels the approach taken in CRC-L. This is advantageous because our ultimate goal in
computing Ŝ is to obtain any residual predictive information in Z that is not already captured by CRC-L.

With regard to estimating γ , several options are available. Importantly, any estimate of γ must take
into account the presence of the latent variables. In particular, simply taking the difference in class means,
i.e., letting γ̂ = (T ′T)−1T ′Z , is not a viable option because this estimate will be biased if L is correlated
with T . Estimators that account for L can be found in the batch effects normalization literature. The
estimator we use, γ̂ = [T ′(ZZ ′)−1T ]−1T ′(ZZ ′)−1Z , is from Gagnon-Bartsch and others (2013) and has
the advantage of having a simple closed-form expression. This estimator may be seen as approximating
the ordinary least squares estimate of γ from a regression in which L is known (Section S.4 of the
supplementary material available at Biostatistics online). Other estimates of γ , similar in spirit, include
those obtained via surrogate variables analysis (Leek and Storey, 2007, 2008), the confounder adjusted
testing and estimation framework (Wang and others, 2017), as well as several others (Listgarten and
others, 2010; Gagnon-Bartsch and Speed, 2012; Sun and others, 2012; Gerard and Stephens, 2021).

3.2.2. Cross-residualization In addition to recovering S for an out-of-sample observation, we also wish
to recover S in the training data.A natural approach would be simply to apply the residualization procedure
to the training data as well. A complication is that the residualization procedure uses PCR with all n
principal components, and although this works well for out-of-sample observations, it massively overfits
the training data. Indeed, substituting Z for Z in (3.2) to obtain Ŝ would yield Ŝ = Z −ZZ ′(ZZ ′)−1(Z −
T γ̂ ) = T γ̂ , a rank one matrix in which each column (predictor) is perfectly correlated with T . This may
be interpreted as the PCR overfitting to the ε term in the training data, and therefore residualizing out the
ε term along with Lα.

However, it is necessary to preserve the ε term in order to properly train a classifier. For example, in the
DLDA classifier that we will fit, it is necessary to preserve the ε term in order to estimate the individual
feature variances σ 2

1 , . . . , σ 2
p . More generally, overfitting to the training data introduces an asymmetry

between the predictors Ŝ to which the classifier is trained and the predictors Ŝ to which the classifier
is applied. As a result of this asymmetry, we would not expect a classifier trained on Ŝ to generalize
well to Ŝ.

We address this problem by applying the residualization procedure to the training data in a leave-one-out
manner. For each i ∈ {1, . . . , n} we let

Ŝi = Zi − ZiZ
′
−i(Z−iZ

′
−i)
−1(Z−i − T−iγ̂

(i)), (3.3)

where γ̂ (i) = [T ′−i(Z−iZ
′
−i)
−1T−i]−1T ′−i(Z−iZ

′
−i)
−1Z−i. We then let Ŝ = [Ŝ ′1, . . . , Ŝ ′n]′. By computing

Ŝ in this leave-one-out manner, we put Ŝ and Ŝ on equal footing; each row of Ŝ is computed in a manner
analogous to the manner in which Ŝ is computed. As a result, we can expect a classifier trained on Ŝ to
generalize well to Ŝ. We refer to this leave-one-out approach as cross-residualization.

Comment. An alternative strategy to address overfitting in the training data would be to explicitly
estimate r when performing the PCR in the residualization procedure. If r̂ � n, this would reduce the
overfitting. However, we prefer the cross-residualization strategy for several reasons. First, as previously
noted, estimating r is a challenging problem. Second, for any r̂ we would expect at least some degree of
overfitting to the training data, which would introduce asymmetry between the training and target data,
thereby impacting the ability of the classifier to generalize to the target data. Finally, we note that because
(3.3) has a simple closed-form solution, and in particular because (Z−iZ

′
−i)
−1 can be computed using

a rank-one downdate, cross-residualization can be implemented in a computationally efficient manner.
Thus, cross-residualization provides an approach that does not require selecting a tuning parameter, is
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8 N. Y. PAYNE AND J. A. GAGNON-BARTSCH

computationally efficient, and guarantees that the training predictors Ŝ and target predictors Ŝ are on equal
footing.

3.2.3. DLDA Cross-residualization effectively removes the sources of variation common across all fea-
tures, and the columns of Ŝ are therefore approximately decorrelated. As a result, we can take advantage
of this decorrelation and fit a classifier to Ŝ using DLDA. When fitting by DLDA, feature selection is
an important consideration. Because cross-residualization effectively removes the sources of variation
common across all features, we wish to select features based on their individual predictive effects beyond
the common latent effect. Selecting too many null features may render the ensemble step less useful. Since
the columns of Ŝ are approximately decorrelated, we utilize a simple marginal screening scheme in which
only the features with the N smallest p-values are used for classification (i.e., the “top” N features). Here,
N ∈ {1, . . . , p} is a tuning parameter that is selected via a grid search. For details, see Section S.5 of the
supplementary material available at Biostatistics online.

3.3. Fitting the ensemble

There are many ways in which we might combine CRC-S and CRC-L into an ensemble. Voting is a popular
approach (Yang and others, 2010), but here there are only two classifiers to be combined. Instead, we adopt
elements of the super learning approach of Polley and others (2011). In the super learner, the training data
are split into several folds, and each classifier in the ensemble is fit to each fold. The resulting fits are used
to estimate the optimal weighted combination of classifiers. These estimated weights minimize cross-
validated error over all possible weighted linear combinations of the classifiers. The ensemble classifier
is then obtained by fitting each of the classifiers to the entire training set and combining them with the
estimated weights.

The CRC is well-suited to the super learning approach since cross-residualization is already a leave-
one-out procedure. To fit the CRC ensemble, we score the training observations using CRC-S and CRC-L
in a leave-one-out manner and then train a metaclassifier on these scores. Under our model, these scores
are Gaussian conditional on the class label, and we therefore use LDA for the metaclassifier. Assembling
all steps, we arrive at Algorithm 1, which summarizes the CRC.

An alternative interpretation of the CRC arises if we unpack Algorithm 1 and examine how the CRC
acts on Z instead of the discriminant scores ss and sl . Note that ss and sl arise as linear functions of Z .
For sl , this is clear. For ss, observe that (3.2) may be rewritten as Ŝ = Z[I − Z ′(ZZ ′)−1

(Z − T γ̂ )] and
hence ss = Z[I −Z ′(ZZ ′)−1

(Z −T γ̂ )]ws is a linear function of Z . In addition, ĉ is itself a linear classifier
and can be expressed as ĉ(sl , ss) = sign

(
b1ss + b2sl

)
where b1 and b2 are scalar weights. Therefore,

ĉ(ss, sl) = sign (Zw) where w = b1[I − Z ′(ZZ ′)−1
(Z − T γ̂ )]ws + b2wl . The expression for w shows that

the CRC is itself a linear classifier that weights each feature of an observation by a weighted average of
the CRC-S weights (meant to capture the sparse signals) and CRC-L weights (meant to capture the dense,
low-rank latent signals), where the relative weighting is determined by the relative predictive value of the
individual classifiers. Features may receive large weights due to the discriminative information they carry
about the sparse signals, the latent signals, or both.

4. SIMULATIONS

We perform several simulations to illustrate the inner workings of the CRC and to compare the CRC to
other classifiers which are frequently used in genomic applications.

We generate data according to the simple, uncorrelated, and correlated models from Section 2. For all
three models, we let � = Ip and γ = ( 1√

3
, 1√

3
, 1√

3
, 0, . . . , 0). For the uncorrelated and correlated models,

we set r = 3 and � = Ir×r , and generate i.i.d. αij from a standard normal distribution. In the correlated
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Algorithm 1: Cross-residualization classifier (CRC)
Data: Zn×p, T n×1, Z1×p

Result: T̂ ∈ {±1}
1 Residualization

Data: Zn×p, T n×1, Z1×p

Result: Ŝ1×p

2 γ̂ ← [T ′(ZZ ′)−1T ]−1T ′(ZZ ′)−1Z
3 L̂α← ZZ ′(ZZ ′)−1(Z − T γ̂ )

4 return Ŝ ← Z − L̂α

5 Cross-residualization
Data: Zn×p, T n×1

Result: Ŝn×p

6 for i in 1, …, n do
7 Ŝi ← result of residualization algorithm applied to (Z−i, T−i, Zi)

8 end

9 return Ŝ ← [Ŝ ′1, . . . , Ŝ ′n]′
10 CRC-L

Data: Zn×p, T n×1, Z1×p

Result: sl ∈ R

11 Use PC-LDA (with n principal components) to train a classifier on (Z , T), resulting in weight
vector wl

12 sl ← Zwl

13 return sl

14 CRC-S
Data: Ŝn×p, T n×1, Ŝ1×p

Result: ss ∈ R

15 Use DLDA to train a classifier on (Ŝ, T), resulting in weight vector ws

16 ss ← Ŝws

17 return ss

18 Ensemble classifier
Data: Zn×p, Ŝn×p, T n×p, sl , ss

Result: T̂ ∈ {±1}
19 for i in 1, …, n do
20 sl

i ← result of CRC-L applied to (Z−i, T−i, Zi)

21 ss
i ← result of CRC-S applied to (Ŝ−i, T−i, Ŝi)

22 end
23 Use LDA to train a classifier ĉ on predictors {(sl

i , ss
i )}ni=1, and response T

24 return ĉ(sl , ss)

Notes: Some details are omitted for clarity. In particular, CRC-S has a feature selection step, and the
implementations of both CRC-L and CRC-S differ slightly when applied to n−1 observations rather than
n. See Sections S.3 and S.5 of the supplementary material available at Biostatistics online.
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Fig. 1. Mean accuracies of CRC, CRC-S, and CRC-L when p = 100 000. Sample size n is depicted on a square-root
scale. The dashed horizontal lines are at 
(1) and 
(

√
2) and indicate Bayes optimal accuracy rates (as detailed in

the text).

model, we additionally set η = ( 1√
3
, 1√

3
, 1√

3
). Note that the Bayes optimal accuracy rate is 
(

√
γ ′γ ) for a

classifier trained on S and 
(
√

η′η) for a classifier trained on L. For a classifier trained on (S, L), the Bayes
optimal accuracy rate is 
(

√
γ ′γ + η′η). Thus with our parameter choices, the Bayes optimal accuracy

rate for a classifier trained on (S, L) is 
(1) under the simple model, 
(1) under the uncorrelated model,
and 
(

√
2) under the correlated model.

For each model, we generate a balanced class label vector of dimension n and a feature matrix of
dimension n× p, for varying n and p. We let n range from 50 to 1000 and consider p = 20 000, 100 000,
and 500 000, roughly corresponding to the number of features found in various types of “omics” data sets.
For each n and p, we replicate this procedure several times and average accuracy rates for CRC, CRC-S,
and CRC-L across replications. For computational feasibility, we vary the number of replications with n
(see Section S.6 of the supplementary material available at Biostatistics online). Results for p = 100 000
are depicted in Figure 1; results for p = 20 000 and p = 500 000 can be found in Section S.6 of the
supplementary material available at Biostatistics online.

To see how the CRC ensemble works to improve classification accuracy, we first look at the performance
of its component classifiers, CRC-L and CRC-S. CRC-L has an accuracy rate close to 50% under the simple
and uncorrelated models, which can be attributed to the sparsity of γ and the additional noise contributed
by the latent variables in the uncorrelated case. The accuracy of CRC-L increases slightly as n increases, as
is expected. Although CRC-L performs poorly under the simple and uncorrelated models, it has accuracy
close to the Bayes optimal rate (for L) under the correlated model, even when n is relatively small. Looking
at the other component classifier, we see that CRC-S performs well across all models. For large n, CRC-S
has accuracy close to the Bayes optimal rate for S. In particular, CRC-S exhibits similar performance
under the simple and uncorrelated models, suggesting that cross-residualization is providing a reasonable
estimate of S, allowing CRC-S to effectively pick up on the sparse signal.

CRC behaves as expected in the simple and uncorrelated cases, with accuracies on par with CRC-S.
However, it is the correlated case that is particularly illustrative. For large n, CRC-S and CRC-L have
accuracies close to the Bayes accuracy rates for S and L, respectively, but both of these accuracies are less
than the Bayes accuracy rate for (S, L). The accuracy of the CRC ensemble, however, is close to the Bayes
accuracy rate for (S, L) for large n, suggesting that the CRC is making more efficient use of the signal in
the data by considering the sparse signals and dense latent signals separately. Whereas the uncorrelated
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Fig. 2. Mean accuracies of glmnet, PAM, DLDA, and CRC when p = 100 000. Sample size n is depicted on a
square-root scale. The dashed horizontal lines are at 
(1) and 
(

√
2) and indicate Bayes optimal accuracy rates (as

detailed in the text).

case demonstrates that improved recovery of the sparse signals can improve classification accuracy, the
correlated case demonstrates that there are potential information gains to be made beyond better sparse
recovery when dense latent signals exist.

In Figure 2, we repeat the simulation with other classifiers commonly used in genomics: penalized
logistic regression (glmnet) (Zou and Hastie, 2005), DLDA (Dudoit and Fridlyand, 2003), and nearest
shrunken centroids (PAM) (Tibshirani and others, 2002). These classifiers are all linear. In particular,
DLDA and PAM are discriminant-based, like the CRC. Both glmnet and PAM have shrinkage parameters
which are tuned via cross-validation. The glmnet classifier has an additional parameter, the elastic net
mixing parameter α. We set α to various values from 0 to 1 since simulation results are potentially sensitive
to the value of this parameter. For visual simplicity, we include only the results for α = 1 in Figure 2; this
is the value of α for which glmnet generally performs best. Results for glmnet at other values of α can
be found in Section S.6 of the supplementary material available at Biostatistics online. We use our own
implementation of DLDA, which includes a feature selection step that is identical to the feature selection
step in CRC-S. As a result, DLDA and CRC-S differ only in that DLDA is fit to Z whereas CRC-S is fit
to Ŝ.

Figure 2 displays the results. Under the simple model, the classifiers perform similarly, with the excep-
tion of PAM, for which accuracy appears to degrade as the sample size increases. We believe that this is
related to PAM selecting a large number of features in the simple setting (see Table S.1 of the supplementary
material available at Biostatistics online). Under the uncorrelated and correlated models, however, the CRC
appears to offer substantial gains over the other methods, particularly for moderate sample sizes. PAM
and DLDA perform similarly under the correlated and uncorrelated models, which is perhaps expected
since PAM is essentially DLDA with an �1 penalty to perform feature selection.

It is interesting to compare CRC-S and DLDA under the three models. Recall that in our simulation,
the two methods differ only in that DLDA is fit to Z , whereas CRC-S is fit to Ŝ. As expected, DLDA
behaves much like CRC-S under the simple model. However, this is no longer the case when latent factors
are present. Under the uncorrelated model, DLDA is outperformed by CRC-S despite both classifiers
selecting a similarly small number of features (see Table S.1 of the supplementary material available at
Biostatistics online), suggesting that feature selection alone is not necessarily effective when the optimal
feature weights are nonsparse. As noted in Section 2, sparsity in S does not necessarily imply sparsity in
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Table 1. Data sets. In the “Classes” column, the number of samples in each class is given in parentheses.
The Alzheimer’s and Sepsis data sets contain multiple samples per subject (individual person), so we
additionally give the number of subjects. For details, see Section S.7 of the supplementary material
available at Biostatistics online.

Name Type Platform n p Classes

Alzheimer’s Methyl. HM 450k 190 485 512 Disease (106; 54), Control (84; 42)
Asthma Methyl. HM 450k 115 485 512 Asthma (74), Control (41)
Colorectal Cancer Expr. U133 Plus 2.0 200 54 675 Cancer (100), Normal (100)
Crohn’s (Methyl.) Methyl. EPIC 238 504 790 CD (164), Non-IBD Control (74)
Crohn’s (Expr.) Expr. HiSeq 2000 304 13 151 CD (254), Non-IBD (50)
FASD Methyl. HM 450k 103 485 512 FASD (39), Control (64)
Sepsis Expr. HiSeq 2500 217 27 670 Healthy (58; 20),

Critically ill nonseptic (63; 22),
Sepsis (96; 29)

Z , even if L and T are uncorrelated. Under the correlated model, DLDA performs similarly to CRC-S,
but both are outperformed by the CRC ensemble, highlighting the effectiveness of cross-residualization
when used in conjunction with an ensemble strategy.

In Section S.9 of the supplementary material available at Biostatistics online, we examine the robustness
of the CRC to violations of our model, including sparse α, nonnormally distributed latent variables, and
nonnormal errors. In general, we find the CRC to be robust to violations of our model, an encouraging
conclusion for a method we hope to be of use in a wide variety of genomic applications.

5. APPLICATIONS TO GENOMIC DATA

We apply the CRC to a variety of publicly available genomic data sets. These data sets cover a broad range
of phenotypes, including Alzheimer’s disease, asthma, cancer, Crohn’s disease, fetal alcohol spectrum
disorder (FASD), and sepsis (for details, see Section S.7 of the supplementary material available at
Biostatistics online). The data sets also encompass several technologies and include gene expression data
from multiple platforms (Illumina HiSeq 2000 and 2500, and Affymetrix HG U133 Plus 2.0 microarray)
as well as methylation data from two platforms (Illumina Infinium 450K and EPIC BeadChip arrays). See
Table 1 for a summary, and Section S.7 of the supplementary material available at Biostatistics online
for additional details. We select these particular data sets because they have a relatively large number of
samples within each class and a clearly defined phenotype.

We compare the CRC to the same classifiers from Section 4. For each data set, we assess the performance
of each classifier as follows. Let n0 = min{n1, n2}, where n1, n2 are the class sizes (number of observations
in each class). To form the training set, we randomly sample �0.8 · n0� observations from each class. Of
the remaining observations, we sample n0 − �0.8 · n0� from each class to form the test set. This results in
balanced training and test sets, so that the baseline accuracy rate is 50% across data sets and interpretation of
accuracies is not complicated by class imbalances. We create 200 train-test splits in this way and compute
the mean test accuracy of each classifier across replications (Table 2). For the Alzheimer’s and Sepsis
data sets, we modify the procedure slightly to account for the fact that there are multiple observations per
individual; see Section S.8 of the supplementary material available at Biostatistics online.

The CRC generally performs well relative to other classifiers. CRC-L generally performs well across
the data sets, suggesting that there may be dense latent factors that are predictive of the class labels.
CRC-S generally outperforms DLDA, highlighting the value of (cross-)residualization, and suggesting
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Table 2. Results on various genomic data sets. Boldface denotes the highest accuracy rate(s). Standard
errors are all less than 0.004.

Data set glmnet PAM DLDA CRC CRC-S CRC-L

Alzheimer’s 0.74 0.72 0.70 0.78 0.78 0.79
Asthma 0.75 0.78 0.75 0.77 0.76 0.76
Colorectal cancer 0.91 0.74 0.76 0.94 0.94 0.88
Crohn’s (Expr.) 0.91 0.86 0.88 0.91 0.88 0.91
Crohn’s (Methyl.) 0.87 0.86 0.85 0.88 0.88 0.80
FASD 0.77 0.79 0.76 0.84 0.84 0.78
Sepsis (Healthy vs. Crit-Ill) 0.85 0.79 0.80 0.90 0.89 0.84
Sepsis (Sepsis vs. Crit-Ill) 0.70 0.70 0.69 0.77 0.76 0.77
Sepsis (Sepsis vs. Healthy) 0.94 0.91 0.92 0.95 0.95 0.94

once again that the signal of primary interest may be sparse in S but dense in Z . As with the simulations of
Section 4, the relative performance of CRC-S and DLDA on these data sets suggests that feature selection
in conjunction with cross-residualization can be more effective than feature selection alone when dense
latent variation is present. Overall, the CRC generally performs as well as the better of its two component
classifiers.

Another promising result is that the CRC appears to perform well within subgroups of interest. In
the Alzheimer’s data set, there are four types of samples: purified glia cells, purified neuron cells, bulk
tissue taken from the temporal cortex, and bulk tissue taken from the frontal cortex. In Section S.8 of the
supplementary material available at Biostatistics online, we report accuracy rates within each subgroup for
the analysis performed in this section. Notably, the CRC performs as well or better than the other classifiers
within each cell type. For certain cell types and classification tasks, there is a marked improvement in
accuracy rates. We see similar results in the Sepsis data set, in which samples occur across three cell types
(CD4, CD14, and CD8).

We also investigate the performance of other classifiers including k-nearest neighbors (kNN), random
forest, and support vector machines (SVM) on these data sets. These simulation results can be found in
Section S.11 of the supplementary material available at Biostatistics online. Compared to the additional
methods we examined, the CRC achieved the highest accuracy rate across most of the data sets, although
SVM with a linear kernel performed as well as the CRC on several of the data sets.

6. DISCUSSION

The CRC ensemble derives its strength from the separation of the sparse signal of interest and dense
latent signals. While ensembles in general typically offer some benefit by combining multiple classifiers,
the CRC fully exploits this benefit by combining classifiers trained on different sources of information.
In particular, we are able to better leverage information contained in the sparse signal, which may be
obscured by the dense latent signals.

In addition to its statistical performance, the CRC offers several practical advantages, many of which
stem from its modularity. There are four individual prediction algorithms used within the CRC—the PC-
LDA in CRC-L, the PCR in the residualization step, the DLDA in CRC-S, and the LDA that defines the
ensemble. There are several distinct benefits to this modular structure. In particular, modularity makes
it easier to conceptualize an approach as well as easier to implement and debug (Gerard and Stephens,
2021). In addition, modularity produces additional opportunities for diagnostics, as there are intermediate
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outputs that can be inspected and visualized. Finally, because individual algorithms are easily swapped
out, the CRC can be readily refined and adapted to new settings.

For example, we may wish to modify CRC-L and replace PC-LDA with some other algorithm if there
is reason to believe that the latent variables are not normally distributed. This might occur, for example,
if there are subgroups within a class (e.g., subtypes of a cancer). In this case, it may be desirable to fit
CRC-L using PC-kNN or some other nonparametric method. To maintain the complementary nature of
CRC-S and CRC-L, we might choose to use PC-kNN within the residualization and cross-residualization
algorithms as well, so that the same signals captured by CRC-L are those residualized out of Z .

Improvements and adaptations of CRC-S are also possible. For example, we could do away with a
marginal screening procedure for feature selection, and instead, utilize shrinkage penalties. We believe
that such alternatives have the potential to improve the accuracy of CRC-S; the fact that glmnet outperforms
CRC-S in the simple simulation (left panel of Figure 2) suggests that there is indeed room for improvement.
In addition, CRC-S could be generalized to accommodate more general error structures. For example,
even after removing the latent variables, correlations may remain between a few individual genes whose
functions are tightly related. In such cases, it may make sense to model � as a sparse but not strictly
diagonal matrix.

Finally, neither residualization nor cross-residualization require T to be a binary variable. By taking
T to be continuous, we can extend CRC to the regression setting, provided that we modify CRC-S and
CRC-L accordingly (i.e., substituting regression-based equivalents). Again, the modularity of the CRC
makes this relatively straightforward from both a conceptual and practical standpoint.

The specific algorithms that we have chosen to use in the CRC also offer practical advantages of their
own. In particular, our implementations of PC-LDA and PCR use all n principal components and therefore
do not require the selection of a tuning parameter. The resulting methods are computationally efficient and
have closed-form solutions. In using all n principal components, we take advantage of the fact that PCR
and PC-LDA continue to have good out-of-sample predictions despite severely overfitting to the training
data. This strategy is made possible by the leave-one-out manner in which we apply these algorithms,
which allows us to avoid issues that would otherwise arise due to the overfitting of the training data. In
particular, the leave-one-out nature of cross-residualization allows us to preserve the ε term, which is
critical to properly fitting CRC-S. In addition, the leave-one-out manner in which we obtain the CRC-L
and CRC-S scores allows us to properly weight CRC-L and CRC-S in the ensemble. The net effect of this
approach is that we replace tuning with over-parameterization and leave-one-out fits; we are hopeful that
this general strategy may be useful in other contexts as well. The leave-one-out fits within the ensemble
provide another benefit; namely, built-in estimates of error rates for the individual components and the
CRC as a whole.

Regardless of the specific implementation, we believe the analyses in this paper highlight the importance
of accounting for the latent variables that are prevalent in genomic data. By doing so, weaker biological
signals which may be less prominent but equally as important can be better incorporated into analyses of
such data.

Finally, we note that we have assumed throughout this article that the data generating distribution is
stable, that is, that the distribution of (Z , T ) is the same in the training and target sets. This stability
assumption is typical and underlies many commonly used statistical prediction methods. Moreover, this
stability assumption is reasonable in many genomic applications, at least in cases where the classifier is
applied to a target population that is representative of the training population. However, there are important
cases in which this assumption is questionable.

Consider, for example, batch effects. In a well-designed study, some care may be taken to ensure that
batch is not correlated with biology (e.g., by randomizing the run order of the samples), but in practice,
this may not always be feasible and batch may indeed end up being correlated with biology. Moreover,
the correlation between batch and biology may differ between the training and target sets, resulting in
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distribution shift, i.e., the joint distribution of (Z , T ) will differ in the training and target sets. Such
distribution shift presents a major challenge; efforts to address it include transfer learning approaches
(Pan and Yang, 2010; Weiss and others, 2016) and normalization approaches (McCall and others, 2010;
Parker and others, 2014).

We believe the CRC may also offer additional opportunities to address the issue of nonstability. In
particular, we suspect that by separating the dense signals in L from the sparse signals in S we will
often incidentally separate nonstable signals from stable ones as well. More specifically, we suspect that
nonstable signals such as those arising from batch effects or differences between the training and target
populations will typically impact a large number of features and therefore appear in L. Conversely, we
suspect that the sparse signals that appear in S will typically have a biological origin directly related to the
phenotype of interest and will therefore be largely stable. The resulting separation would only be partial,
however—although S might be mostly stable, L would presumably contain both stable and nonstable
signals. Additional strategies will therefore be needed to further decompose L into stable and nonstable
components, or to otherwise accommodate potential distribution shift in L.

7. SOFTWARE AND CODE

An R package implementing the CRC, as well as code for reproducing the results in this article, is publicly
available at https://github.com/yujiap/crc_code.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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