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a b s t r a c t

In this paper, a fully discrete numerical scheme is proposed and analyzed for the
harmonic mapping flow, with the fourth order spatial accuracy and higher than third
order temporal accuracy. The fourth order spatial accuracy is realized via a long stencil
finite difference, and the boundary extrapolation is implemented by making use of
higher order Taylor expansion. Meanwhile, the high order (third or fourth order)
temporal accuracy is based on a semi-implicit algorithm, which uses a combination
of explicit Adams–Bashforth extrapolation for the nonlinear terms and implicit Adams–
Moulton interpolation for the viscous diffusion term, with the corresponding integration
formula coefficients. Both the consistency, linearized stability analysis and optimal rate
convergence estimate (in the ℓ∞(0, T ; ℓ2) ∩ ℓ2(0, T ;H1

h ) norm) are provided. A few
numerical examples are also presented in this article.
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1. Introduction

The liquid crystal is a very important model with potential applications in physics and chemistry [1,2]. The prototypic
for continuum models in ferromagnetics [3] and liquid crystal theory [4,5] is based on the following energy, known as
harmonic maps into spheres [6]:

E(u) =
1

2

∫

Ω

|∇u|2dx. (1.1)

In turn, its long-time behavior into spheres [6] is given by

ut − ∆u = |∇u|2u, in Ω × [0, T ),

∂nu = 0, on ∂Ω × [0, T ),

u(0, ·) = u0, in Ω.

(1.2)

Here, Ω ⊂ R
d(d = 1, 2, 3) is the domain, ∂Ω represents the boundary, and n is the outer unit norm vector of ∂Ω .

The solution for (1.2) has been extensively analyzed in many exiting works. An obvious conclusion which can be verified
by fundamental PDE analysis is that, if |u| = 1 at the initial time, and then |u| = 1 at any later time. This property could
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be verified by taking inner product with u on both sides. The global existence of weak solution for a linearized eigenvalue
PDE ut − ∆u − λu = 0 has been proved in [7], under the requirement that |u| = 1 and λ satisfies certain conditions
formulated in the reference. Furthermore, the partial regularity results of this equation have been established in [8]. More
related works about (1.2) can be found in [9–12].

In fact, the energy dissipation property of the harmonic mapping flow (1.2) could be observed in the following fact.
Under the point-wise constraint |u| = 1, we see that the dynamic equation in (1.2) could be equivalently rewritten as

ut = −u × (u × ∆u). (1.3)

In turn, taking inner product with (1.3) by −∆u, we arrive at the following energy dissipation law:

1

2

d

dt
E(u(t)) =

(

u × (u × ∆u), ∆u

)

≤ 0. (1.4)

Also see the related works [13,14] for the Landau–Lifshitz system in the micromagnetics model.
Since an explicit form of the exact solution for (1.2) is not available, an efficient numerical scheme is highly desirable.

Among the existing numerical works, the high-order-accurate schemes are very limited. Bartels presented a stable and
convergent finite element approximation scheme in [15]. Alouges used finite difference methods, which are convergent
in a continuous setting [4]. Vese and Osher also solved a similar equation, so-called p-harmonic flows, whose energy
function is expressed as Ep(u) =

∫

Ω
|∇u|pdx, by finite difference algorithm in [16]. Also see [17,18] for the finite element

approximations to the p-harmonic flow. A more recent work [19] reports the motion of singularity development for the
harmonic mapping, based on a first order semi-implicit temporal discretization and the standard centered difference
spatial approximation. Of course, many other numerical methods can also be used to solve this equation, such as the
Fourier pseudo-spectral approximation and others.

In fact, a fourth order and even more accurate spatial discretization is highly desirable, for the sake of its ability to
capture the more detailed structure with a reduced computational cost. In this paper, we propose and analyze high order
(third or fourth order) accurate in time, fourth order long stencil finite difference methods for the harmonic mapping
flow (1.2), with the stability and convergence established at a theoretical level. As is well known, the finite difference
approximation has its advantage of being straightforward in the consistency analysis, based on a direct application of
Taylor expansion. There have been quite a few existing works of fourth order long stencil difference schemes applied
to various nonlinear PDEs, such as incompressible fluid equations [20–23], Cahn–Hilliard equation [24], and Maxwell
equation [25]. We observe that, an application of such a long stencil difference approximation to the harmonic mapping
flow is appropriate, due to the homogeneous Neumann boundary condition. In the temporal discretization, we adopt an
explicit multi-step Adams–Bashforth approach for the nonlinear gradient terms and an implicit Adams–Moulton method
for the diffusion term. This approach has the advantage of handling the nonlinear terms in an inexpensive way, while
providing the stability associated with implicit methods. On the other hand, a straightforward application of high order
accurate Adams–Bashforth/Adams–Moulton will lead to an unstable method, as demonstrated in an existing work [26].
Instead, we look for an Adams–Moulton interpolation so that the diffusion term is more focused on the time step tn+1,
i.e., the coefficient at time step tn+1 dominates the sum of the rest of diffusion coefficients. It is discovered that the Adams–
Moulton interpolation which involves the time node points tn+1, tn−1 and tn−3 gives the corresponding coefficients as
2/3, 5/12, −1/12, respectively, which satisfies the unconditional stability condition, in the third order temporally accurate
algorithm. Stability and convergence for such a multi-step, semi-implicit method have been provided for the viscous
Burgers’ equation [26] and incompressible Navier–Stokes equation [27]. Its application to the harmonic mapping flow (1.2)
will be analyzed in this work, with an optimal rate convergence estimate available. The fourth order accurate algorithm
could also be derived in a similar fashion.

This article is organized as follows. The numerical scheme is proposed in Section 2, with the main theoretical results
stated. The detailed convergence analysis and error estimate is provided in Section 3. Some numerical results are presented
in Section 4. Finally, some concluding remarks are made in Section 5.

2. The numerical scheme and the main theoretical result

The long stencil fourth order finite difference formula is derived by the Taylor expansion for any test function. Over
a one-dimensional domain Ω = (0, 1), we use the cell-centered grid points xi+1/2 = (i + 1/2)h, with h = 1

N
, with N

the number of numerical mesh cells. The fourth order approximations to the first and second order derivatives, over a
uniform cell-centered grid, are given by

D
1
x,(4)fi+1/2 = D̃x(1 −

h2

6
D2
x )fi+1/2 =

fi−3/2 − 8fi−1/2 + 8fi+3/2 − fi+5/2

12h

= f ′(xi+1/2) + O(h4), (2.1)

D
2
x,(4)fi+1/2 = D2

x (1 −
h2

12
D2
x )fi+1/2 =

−fi−3/2 + 16fi−1/2 − 30fi+1/2 + 16fi+3/2 − fi+5/2

12h2

= f ′′(xi+1/2) + O(h4), (2.2)
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where D̃x and D2
x are the standard centered difference approximation to the first and second order derivatives, respectively.

See the detailed derivations in the related Refs. [28–31]. These long stencil fourth order finite difference approximations
have been extensively applied to different types of partial differential equations (PDEs), such as incompressible Boussinesq
equation [21,23], three-dimensional geophysical fluid models [20,22], and the Maxwell equation [25].

An extension to the three dimensional domain Ω = (0, 1)3, with the cell-centered grid points (xi+1/2, yj+1/2, zk+1/2),
is straightforward. The corresponding difference operators in the y and z directions, namely Dy,(4), D

2
y,(4), Dz,(4), D

2
z,(4),

could be similarly defined. In turn, we denote ∆h,(4) = D2
x,(4) + D2

y,(4) + D2
z,(4). A careful calculation reveals that D2

x,(4)f =

(D2
x − h2

12
D4
x )f , in which D2

x is the standard centered difference operator. Furthermore, both operators correspond to non-
positive eigenvalues associated with the Fourier Cosine eigenvectors, and this subtle fact will play an important role in the
stability and convergence analysis. Also see the related works for the Fourier pseudo-spectral numerical methods [32–40].

At each cell-centered grid point (xi+1/2, yj+1/2, zk+1/2), the nonlinear terms are evaluated as follows.

(|∇h,(4)u|2u)i+1/2,j+1/2,k+1/2 = (|∇h,(4)u|2)i+1/2,j+1/2,k+1/2ui+1/2,j+1/2,k+1/2, (2.3)

|∇h,(4)u|2 = |∇h,(4)u|
2 + |∇h,(4)v|2 + |∇h,(4)w|2,

(|∇h,(4)f |
2)i+1/2,j+1/2,k+1/2 = (D1

x,(4)f )
2
i+1/2,j+1/2,k+1/2 + (D1

y,(4)f )
2
i+1/2,j+1/2,k+1/2

+(D1
z,(4)f )

2
i+1/2,j+1/2,k+1/2.

The following fully discrete numerical scheme is proposed, with third order temporal accuracy and fourth order long
stencil difference spatial approximation:

un+1 − un

∆t
− ∆h,(4)(

2

3
un+1 +

5

12
un−1 −

1

12
un−3)

=
23

12
|∇h,(4)u

n|
2
un −

4

3
|∇h,(4)u

n−1|
2
un−1 +

5

12
|∇h,(4)u

n−2|
2
un−2. (2.4)

Moreover, determination of u at ‘‘ghost’’ points is needed at each boundary section to implement (2.4). In general, using
fewer interior points may lead to improved stability for a given order approximation. For brevity of the presentation we
concentrate on the boundary section Γz where z = 0.

Because of the Neumann boundary condition given by (1.2), the value of u on the boundary is not known explicitly, only
its normal derivative. In turn, (2.4) is applied at every interior computational point (xi+1/2, yj+1/2, zk+1/2), 0 ≤ i, j, k ≤ N−1.
This fact requires one to determine two ‘‘ghost’’ point values, ui+1/2,j+1/2,−1/2 and ui+1/2,j+1/2,−3/2, to carry out (2.4). We
begin with one-sided approximations around the boundary section Γz . For simplicity of presentation, we only focus on the
variable u; the corresponding derivation could be extended to v and w in a straightforward way, since all these variables
are evaluated at the same cell-centered mesh points. Local Taylor expansion near the boundary gives

ui+1/2,j+1/2,−1/2 = ui+1/2,j+1/2,1/2 − h∂zui+1/2,j+1/2,0 −
h3

24
∂3
z ui+1/2,j+1/2,0 + O(h5), (2.5)

ui+1/2,j+1/2,−3/2 = ui+1/2,j+1/2,3/2 − 3h∂zui+1/2,j+1/2,0 −
9h3

8
∂3
z ui+1/2,j+1/2,0 + O(h5). (2.6)

The term ∂zui+1/2,j+1/2,0 in (2.5) and (2.6) is known from the homogeneous Neumann boundary condition (1.2). It remains
to determine ∂3

z ∂zui+1/2,j+1/2,0, for which we use information from the PDE and its derivatives. Applying ∂z to the first
evolutionary equation in (1.2) along Γz gives

uzt − |∇u|2uz − 2u(∇u · ∇uz + ∇v · ∇vz + ∇w · ∇wz) = uzxx + uzyy + ∂3
z u, on Γz . (2.7)

The first two terms on the left-hand side as well as the first two terms on the right-hand side of (2.7) disappear, due to
the homogeneous Neumann boundary condition for u. For the third term on the left hand side, we observe that

∇u · ∇uz = ux · uzx + vx · vzx + wx · wzx = 0, on Γz, (2.8)

since uz = vz = wz = 0 on the boundary section. Similar derivations could be made to the two other terms on the left
hand side:

∇v · ∇vz = 0, ∇w · ∇wz = 0, on Γz . (2.9)

Combining all these arguments and substituting them back into (2.7), ∂3
z u is approximated along Γz by

∂3
z ui+1/2,j+1/2,0 = 0. (2.10)

Subsequently, plugging (2.10) back into (2.5) and (2.6), we have

ui+1/2,j+1/2,−1/2 = ui+1/2,j+1/2,1/2 + O(h5), ui+1/2,j+1/2,−3/2 = ui+1/2,j+1/2,3/2 + O(h5). (2.11)

Similar extrapolation formulas could be derived to two other components, namely v and w, and we arrive at the
boundary condition for the numerical scheme (2.4):

un+1
i+1/2,j+1/2,−1/2 = un+1

i+1/2,j+1/2,1/2, un+1
i+1/2,j+1/2,−3/2 = un+1

i+1/2,j+1/2,3/2. (2.12)

3
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Analogous formulas follow for the remaining three boundaries. The stability of the above one-sided approximations near
the boundary will be proved in later sections; also see the related works [20–24].

Similarly, a fourth order accurate (in time) numerical scheme could be derived as follows, which combines the
Adams–Bashforth explicit extrapolation (for the nonlinear terms) and the Adams–Mouton interpolation (for the diffusion
term):

un+1 − un

∆t
− ∆h,(4)(

757

1152
un+1 +

470

1152
un−1 −

118

1152
un−5 +

43

1152
un−7)

=
55

24
|∇h,(4)u

n|
2
un −

59

24
|∇h,(4)u

n−1|
2
un−1 +

37

24
|∇h,(4)u

n−2|
2
un−2 −

3

8
|∇h,(4)u

n−3|
2
un−3. (2.13)

To carry out the stability and convergence analysis, we have to introduce a discrete ℓ2 inner product and ℓ2 norm:

∥f∥2 =
√

⟨f, f⟩, with ⟨f, g⟩ = h3

N−1
∑

i,j,k=0

fi+1/2,j+1/2,k+1/2gi+1/2,j+1/2,k+1/2, (2.14)

for all grid functions f, g evaluated on staggered mesh points. In particular, the discrete inner product of two discrete
gradient vectors is defined as

⟨∇hf, ∇hg⟩ = ⟨Dxf,Dxg⟩ + ⟨Dyf,Dyg⟩ + ⟨Dzf,Dzg⟩, ∥∇hf∥2 =
√

⟨∇hf, ∇hf⟩, (2.15)

⟨Dxf,Dxg⟩ = h3

N−1
∑

i,k=0

(

N
∑

i=0

ai(Dxf )i,j+1/2,k+1/2(Dxg)i,j+1/2,k+1/2

)

,

⟨Dyf,Dyg⟩ = h3

N−1
∑

j,k=0

(

N
∑

j=0

aj(Dxf )i+1/2,j,k+1/2(Dxg)i+1/2,j,k+1/2

)

,

⟨Dzf,Dzg⟩ = h3

N−1
∑

i,j=0

(

N
∑

k=0

ak(Dz f )i+1/2,j+1/2,k(Dzg)i+1/2,j+1/2,k

)

,

with a0 = aN = 0, and aj = 1 for 1 ≤ j ≤ N − 1. Notice that the homogeneous Neumann boundary condition is imposed
for f and g, as given by (2.12), in the evaluation of their discrete gradient. In addition, the following summation by parts
formulas will be used in the later analysis:

− ⟨f, ∆2
hg⟩ = ⟨∇hf, ∇hg⟩, ⟨f,D4

xg⟩ = ⟨D2
x f,D

2
xg⟩, ⟨f,D4

yg⟩ = ⟨D2
yf,D

2
yg⟩, ⟨f,D4

zg⟩ = ⟨D2
z f,D

2
zg⟩, (2.16)

with f and g satisfying homogeneous Neumann boundary condition given by (2.12). Furthermore, the following estimate
is needed in the later stability and convergence analysis.

Lemma 2.1. For f and g satisfying homogeneous Neumann boundary condition given by (2.12), we have

−⟨f, ∆h,(4)g⟩ = ⟨∇hf, ∇hg⟩(4)

= ⟨∇hf, ∇hg⟩ +
h2

12
(⟨D2

x f,D
2
xg⟩ + ⟨D2

yf,D
2
yg⟩ + ⟨D2

z f,D
2
zg⟩). (2.17)

Proof. Because of the fact that D2
x,(4)g = (D2

x − h2

12
D4
x )g (and similar definitions for D2

x,(4) and D2
y,(4)), the estimate (2.17)

is a direct consequences of the following identities, which come from an application of the summation by parts
formulas (2.16):

−⟨f,D2
x,(4)g⟩ = ⟨Dxf,Dxg⟩ +

h2

12
⟨D2

x f,D
2
xg⟩, −⟨f,D2

y,(4)g⟩ = ⟨Dyf,Dyg⟩ +
h2

12
⟨D2

yf,D
2
yg⟩,

−⟨f,D2
z,(4)g⟩ = ⟨Dzf,Dzg⟩ +

h2

12
⟨D2

z f,D
2
zg⟩. □

In turn, for any f satisfying the homogeneous boundary condition given by (2.12), we introduce the following auxiliary
norms, which will facilitate the later analysis.

∥∇hf∥2,(4) :=
(

∥∇hf∥
2
2 +

h2

12
(∥D2

x f∥
2
2 + ∥D2

yf∥
2
2 + ∥D2

z f∥
2
2)

)
1
2
. (2.18)

As a result, an application of Cauchy inequality yields the following result, in combination with (2.17):

⏐

⏐⟨∇hf, ∇hg⟩(4)
⏐

⏐ ≤ ∥∇hf∥2,(4) · ∥∇hg∥2,(4) ≤
1

2
(∥∇hf∥

2
2,(4) + ∥∇hg∥

2
2,(4)). (2.19)

In addition, the following estimates are needed in the later analysis.

4
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Lemma 2.2. For f satisfying homogeneous Neumann boundary condition given by (2.12), we have

∥∇hf∥2 ≤ ∥∇hf∥2,(4), (2.20)

∥∇h,(4)f∥
2
2 ≤

25

9
∥∇hf∥

2
2, with ∥∇h,(4)f∥

2
2 := ∥D1

x,(4)f∥
2
2 + ∥D1

y,(4)f∥
2
2 + ∥D1

z,(4)f∥
2
2. (2.21)

Proof. Inequality (2.20) comes directly from the definition (2.18). For the inequality (2.21), we begin with the following
observation (based on the definition (2.1):

D
1
x,(4)fi+1/2 = −

1

12
(Dxf)i−1 +

7

12
(Dxf)i +

7

12
(Dxf)i+1 −

1

12
(Dxf)i+2. (2.22)

In turn, an application of the Cauchy inequality implies that

⏐

⏐D
1
x,(4)fi+1/2

⏐

⏐

2
≤ 4

( 1

122
((Dxf)

2
i−1 + Dxf)

2
i+2 +

72

122
((Dxf)

2
i + (Dxf)

2
i+1)

)

. (2.23)

Summing over index i, we get

∥D1
x,(4)f∥

2
2 ≤ 4

(

2 ·
1

122
+ 2 ·

72

122

)

∥Dxf∥
2
2 =

25

9
∥Dxf∥

2
2. (2.24)

Similar estimate could be derived for ∥D1
y,(4)f∥

2
2 and ∥D1

z,(4)f∥
2
2:

∥D1
y,(4)f∥

2
2 ≤

25

9
∥Dyf∥

2
2, ∥D1

z,(4)f∥
2
2 ≤

25

9
∥Dzf∥

2
2. (2.25)

Finally, inequality (2.21) is a direct consequence of (2.24) and (2.25). □

In addition to the standard ℓ2 norm, we also introduce the ℓp, 1 ≤ p < ∞, and ℓ∞ norms for a grid function f ∈ GN :

∥f ∥∞ := max
i,j,k

|fi+1/2,j+1/2,k+1/2|, ∥f ∥p :=
(

h3

N−1
∑

i,j,k=0

|fi+1/2,j+1/2,k+1/2|
p
)

1
p
, 1 ≤ p < ∞. (2.26)

The main theoretical result of this article is stated below.

Theorem 2.3. For any time T ∗ > 0, we assume that exact solution ue to the harmonic mapping flow equation (1.2) satisfies
the regularity requirement ue ∈ H3(0, T ;H3) ∩ L∞(0, T ;H6). We denote the u∆t,h as the continuous function as the extension

of the fully discrete numerical solution obtained by (2.4). As ∆t, h → 0 under a linear refinement requirement ∆t ≤ Ch, we

obtain the following result:

∥u∆t,h − ue∥ℓ∞(0,T∗;ℓ2) + ∥u∆t,h − ue∥ℓ2(0,T∗;H1
h
) ≤ C(∆t3 + h4). (2.27)

In the later sections, we denote u and U as the numerical solution and the exact solution, respectively.

3. The convergence analysis

3.1. The consistency analysis

We denote U = ue as the exact solution, and make a symmetric extension at the ‘‘ghost" numerical mesh points
(around the boundary section Γz : z = 0):

Ui+1/2,j+1/2,−1/2 = Ui+1/2,j+1/2,1/2, Ui+1/2,j+1/2,−3/2 = Ui+1/2,j+1/2,3/2. (3.1)

The following truncation error estimates can be derived using a high order Taylor expansion in time:

Un+1 − Un =

∫ tn+1

tn
∂tU (·, t) dt,

23

12
|∇Un|

2
Un −

4

3
|∇Un−1|

2
Un−1 +

5

12
|∇Un−2|

2
Un−2 =

1

∆t

∫ tn+1

tn
|∇U|2U (·, t) dt + τ

n
1,

with ∥τ1∥ℓ2(0,T∗;L2) ≤ C∆t3∥U∥2

H3(0,T∗;H3)
≤ C∆t3,

∆

(

2

3
Un+1 +

5

12
Un−1 −

1

12
Un−3

)

=
1

∆t

∫ tn+1

tn
∆U (·, t) dt + τ

n
2,

with ∥τ2∥ℓ2(0,T∗;L2) ≤ C∆t3∥UN∥H3(0,T∗;H2) ≤ C∆t3.

5
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This in turn leads to the third order temporal consistency of the approximate solution U:

Un+1 − Un

∆t
−

23

12
|∇Un|

2
Un +

4

3
|∇Un−1|

2
Un−1 −

5

12
|∇Un−2|

2
Un−2

−∆

(

2

3
Un+1 +

5

12
Un−1 −

1

12
Un−3

)

= τ
n
3, (3.2)

with ∥τ3∥ℓ2(0,T∗;ℓ2) ≤ C∆t3. Meanwhile, by making use of the consistency analysis for the long stencil difference
approximation, established in a recent work [24], we have

∥∇Un − ∇h,(4)U
n∥2 ≤ Ch4∥U∥H5 , ∥∆Un − ∆h,(4)U

n∥2 ≤ Ch4∥U∥H6 . (3.3)

Note that such an approximation estimate was derived in [24] based on the periodic boundary condition, which this
analysis could also be applied to the test function with homogeneous Neumann boundary condition. This in turn leads to
the spatial truncation error estimate for the numerical scheme:

|∇Uk|
2
Uk − |∇h,(4)U

k|
2
Uk = O(h4)∥Uk∥H5 · ∥Uk∥2

H3 , ∆h,(4)U
k − ∆Uk = O(h4)∥Uk∥H6 , (3.4)

for k = n, n−1, n−2, n−3. A combination of (3.2) and (3.4) yields the desired consistency estimate for the fully discrete
scheme, with third order temporal accuracy order and fourth order spatial accuracy order:

Un+1 − Un

∆t
−

23

12
|∇h,(4)U

n|
2
Un +

4

3
|∇h,(4)U

n−1|
2
Un−1 −

5

12
|∇h,(4)U

n−2|
2
Un−2

= ∆h,(4)

(

2

3
Un+1 +

5

12
Un−1 −

1

12
Un−3

)

+ τ
n, with ∥τ∥ℓ2(0,T∗;ℓ2) ≤ C

(

∆t3 + h4
)

. (3.5)

In addition, we have to establish the discrete boundary condition for the exact solution, analogous to (2.12). For simplicity,
we focus on the ue component, and this analysis could be extended to the two other components in a straightforward
way. First, a higher order Taylor expansion around Γz : z = 0 gives

(ue)i+1/2,j+1/2,−1/2 = (ue)i+1/2,j+1/2,1/2 − h(∂zue)i+1/2,j+1/2,0 −
h3

24
(∂3

z ue)i+1/2,j+1/2,0

−
h5

1920
(∂5

z ue)i+1/2,j+1/2,0 + O(h7), (3.6)

(ue)i+1/2,j+1/2,−3/2 = (ue)i+1/2,j+1/2,3/2 − 3h(∂zue)i+1/2,j+1/2,0 −
9h3

8
(∂3

z ue)i+1/2,j+1/2,0

−
81h5

640
(∂5

z ue)i+1/2,j+1/2,0 + O(h7). (3.7)

Meanwhile, we have to perform similar analysis as in the derivations in (2.7)–(2.10) to obtain an exact value of ∂5
z ue

along Γz . An application of ∂3
z operator to the first evolutionary equation in (1.2) along Γz , as well as careful boundary

evaluations, will result in the following boundary condition for ∂5
z ue:

∂5
z ue = 0, on Γz . (3.8)

The details are skipped for the sake of brevity. Therefore, a substitution of (3.8) into (3.6), (3.7) results in the higher order
extrapolation estimates:

(ue)i+1/2,j+1/2,−1/2 = (ue)i+1/2,j+1/2,1/2 + O(h7),

(ue)i+1/2,j+1/2,−3/2 = (ue)i+1/2,j+1/2,3/2 + O(h7). (3.9)

The same estimates are also available for the components ve and we. In comparison with the exact extrapolation
formula (3.1), we see that the O(h7) extrapolation error does not cause an O(h4) accuracy order loss (for the spatial
discretization) around the boundary points.

Subsequently, the numerical error function is defined at a point-wise level:

e
k = Uk − uk, ∀k ≥ 0. (3.10)

In turn, subtracting the numerical scheme (2.4) from the consistency estimate (3.5) gives

e
n+1 − e

n

∆t
−

23

12
NLE

n +
4

3
NLE

n−1 −
5

12
NLE

n−2

= ∆h,(4)

(

2

3
e
n+1 +

5

12
e
n−1 −

1

12
e
n−3

)

+ τ
n, (3.11)

with NLE
k = |∇h,(4)u

k|
2
e
k +

(

∇h,(4)(U
k + uk) ⊗ ∇h,(4)e

k
)

Uk, k = n, n − 1, n − 2. (3.12)

6
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Furthermore, by the boundary extrapolation formula (2.12) and the estimate (3.9), we conclude that

ei+1/2,j+1/2,−1/2 = ei+1/2,j+1/2,1/2, ei+1/2,j+1/2,−3/2 = ei+1/2,j+1/2,3/2. (3.13)

The exact solution has a discrete W 2,∞ bound

∥U∥
L∞(0,T∗;W

1,∞
h

)
≤ C∗, i.e. ∥Uk∥∞ ≤ C∗, ∥∇hU

k∥∞ ≤ C∗, (3.14)

for any k ≥ 0, which comes from the regularity of the constructed solution. Furthermore, making use of the detailed

expansion (2.22) for the D1
x,(4) operator, we get the following bound for the exact solution:

∥∇h,(4)U
k∥∞ ≤

4

3
∥∇hU

k∥∞ ≤
4

3
C∗, for any k. (3.15)

3.2. An a-priori W
1,∞
h assumption

We assume a-priori that the numerical error function has a W
1,∞
h bound at the previous time steps:

∥ek∥∞ ≤ 1, ∥∇he
k∥∞ ≤ 1, with k = n, n − 1, n − 2, (3.16)

so that the W
1,∞
h bound for the numerical solution at these time steps can be obtained as

∥uk∥∞ = ∥Uk − e
k∥∞ ≤ ∥Uk∥∞ + ∥ek∥∞ ≤ C∗ + 1 := C̃0,

∥∇hu
k∥∞ = ∥∇hU

k − ∇he
k∥∞ ≤ ∥∇hU

k∥∞ + ∥∇he
k∥∞ ≤ C∗ + 1 = C̃0. (3.17)

Similarly, we are able to derive the following bound for the numerical solution, based on the detailed expansion (2.22):

∥∇h,(4)u
k∥∞ ≤

4

3
∥∇hu

k∥∞ ≤
4

3
C̃0, for k = n, n − 1, n − 2. (3.18)

Such a W
1,∞
h assumption (3.16) for the numerical error function could be recovered at the next time step, via the ℓ2

convergence estimate, combined with an application of inverse inequality, as will be demonstrated in the later analysis.

3.3. The ℓ∞(0, T ∗; ℓ2) ∩ ℓ2(0, T ∗;H1
h ) error estimate

Taking a discrete ℓ2 inner product of (3.11) with 2en+1 yields

⟨

e
n+1 − e

n, 2en+1
⟩

− ∆t

⟨

∆h,(4)

(4

3
e
n+1 +

5

6
e
n−1 −

1

6
e
n−3

)

, en+1

⟩

=
23

6
∆t

⟨

NLE
n, en+1

⟩

−
8

3
∆t

⟨

NLE
n−1, en+1

⟩

+
5

6
∆t

⟨

NLE
n−2, en+1

⟩

+ 2∆t
⟨

τ
n, en+1

⟩

. (3.19)

The time marching term and the truncation error term can be handled in a straightforward way:

⟨

e
n+1 − e

n, 2en+1
⟩

=


e
n+1





2

2
−



e
n




2

2
+



e
n+1 − e

n




2

2
, (3.20)

2
⟨

τ
n, en+1

⟩

≤




τ
n




2

2
+



e
n+1





2

2
, (3.21)

in which a discrete Cauchy inequality was utilized. For the diffusion part, we see that the diffusion coefficient at tn+1

dominates the other ones, so that the viscosity term can be analyzed in the same way as follows:

−

⟨

∆h,(4)

(4

3
e
n+1 +

5

6
e
n−1 −

1

6
e
n−3

)

, en+1

⟩

=
4

3
∥∇he

n+1∥2
2,(4) +

5

6
⟨∇he

n−1, ∇he
n+1⟩(4) −

1

6
⟨∇he

n−3, ∇he
n+1⟩(4)

≥
4

3
∥∇he

n+1∥2
2,(4) −

5

12
(∥∇he

n−1∥2
2,(4) + ∥∇he

n+1∥2
2,(4)) −

1

12
(∥∇he

n−3∥2
2,(4) + ∥∇he

n+1∥2
2,(4))

≥
5

6
∥∇he

n+1∥2
2,(4) −

5

12
∥∇he

n−1∥2
2,(4) −

1

12
∥∇he

n−3∥2
2,(4), (3.22)

in which the equality (2.17) (in Lemma 2.1) and the estimate (2.19) have been repeatedly applied in the derivation.

For the nonlinear error parts, we focus on the term NLEn; the two other terms could be treated in the same manner.

The nonlinear error expansion (3.12) implies that

⟨NLE
n, en+1⟩ = ⟨|∇h,(4)u

n|
2
e
n, en+1⟩ +

⟨(

∇h,(4)(U
n + un) ⊗ ∇h,(4)e

n
)

Un, en+1
⟩

. (3.23)

7
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The first term could be bounded with the help of the a-priori bound (3.18) (a direct consequence of the a-priori
assumption (3.16)):

⟨|∇h,(4)u
n|

2
e
n, en+1⟩ ≤ ∥∇h,(4)u

n∥2
∞ · ∥en∥2 · ∥en+1∥2

≤ (
4

3
C̃0)

2∥en∥2 · ∥en+1∥2 ≤
8

9
C̃2
0 (∥e

n∥2
2 + ∥en+1∥2

2). (3.24)

The second term could be similarly bounded, with the help of both (3.15) and (3.18):
⟨(

∇h,(4)(U
n + un) ⊗ ∇h,(4)e

n
)

Un, en+1
⟩

≤ (∥∇h,(4)U
n∥∞ + ∥∇h,(4)u

n∥∞) · ∥Un∥∞ · ∥∇h,(4)e
n∥2 · ∥en+1∥2

≤
4

3
C∗(C̃0 + C∗)∥∇h,(4)e

n∥2 · ∥en+1∥2 ≤
20

9
C∗(C̃0 + C∗)∥∇he

n∥2 · ∥en+1∥2, (3.25)

in which the inequality estimate (2.21) has been applied in the last step. Therefore, a substitution of (3.24) and (3.25)
into (3.23) reveals that

23

6
⟨NLE

n, en+1⟩ ≤
92

27
C̃2
0 (∥e

n∥2
2 + ∥en+1∥2

2) +
230

27
C∗(C̃0 + C∗)∥∇he

n∥2 · ∥en+1∥2

≤ C̃1∥e
n∥2

2 + C̃2∥e
n+1∥2

2 +
1

12
∥∇he

n∥2
2, (3.26)

with C̃1 = 92
27
C̃2
0 , C̃2 = 92

27
C̃2
0 + 2302

243
(C∗)2(C̃0 + C∗)2, and the Cauchy inequality has been applied in the last step. Similar

estimate could be derived for the two other nonlinear error parts; the details are skipped for the sake of brevity.

−
8

3
⟨NLE

n−1, en+1⟩ ≤ C̃1∥e
n−1∥2

2 + C̃2∥e
n+1∥2

2 +
1

12
∥∇he

n−1∥2
2, (3.27)

5

6
⟨NLE

n−2, en+1⟩ ≤ C̃1∥e
n−2∥2

2 + C̃2∥e
n+1∥2

2 +
1

12
∥∇he

n−2∥2
2. (3.28)

Subsequently, a substitution of (3.20)–(3.21), (3.22), (3.26)–(3.28) into (3.19) results in



e
n+1





2

2
−



e
n




2

2
+

5

6
∆t∥∇he

n+1∥2
2,(4) −

1

12
∆t∥∇he

n∥2
2,(4) −

1

2
∆t∥∇he

n−1∥2
2,(4)

−
1

12
∆t

(

∥∇he
n−2∥2

2,(4) + ∥∇he
n−3∥2

2,(4)

)

≤ (3C̃2 + 1)∆t∥en+1∥2
2 + C̃1∆t

(

∥en∥2
2 + ∥en−1∥2

2 + ∥en−2∥2
2

)

+ ∆t∥τn∥2
2, (3.29)

in which the preliminary estimate (2.20) has been applied. Consequently, summing in time, applying the discrete Gronwall
inequality and using a simple fact that 5

6
− 3

12
− 1

2
= 1

12
> 0, we get a fixed time O(∆t3 + hm) convergence for the third

order scheme (2.4) in the ℓ∞(0, T ∗; ℓ2) ∩ ℓ2(0, T ∗;H1
h ) norm:

∥en+1∥2
2 +

1

12
∆t

n+1
∑

k=1

∥∇he
k∥2

2 ≤ C̃3

(

∆t3 + hm
)2

, (3.30)

under the a-priori W
1,∞
h assumption (3.16). Again, the preliminary estimate (2.20) has been applied.

3.4. Recovery of the a-priori W
1,∞
h bound (3.16)

Finally, with the help of the ℓ2 error estimate (3.30), an application of the inverse inequality (in 3-D) implies that

∥∇e
n+1∥∞ ≤

C∥en+1∥2

h
3
2

≤
CC̃

1
2
3 (∆t3 + h4)

h
3
2

≤ Ĉ1C̃
1
2
3 (∆t

3
2 + h

5
2 ), (3.31)

∥∇he
n+1∥∞ ≤

C∥en+1∥∞

h
≤

CC̃
1
2
3 (∆t

3
2 + h

5
2 )

h
3
2

≤ Ĉ2C̃
1
2
3 (∆t

1
2 + h

3
2 ), (3.32)

in which we have used the linear refinement ∆t ≤ Ch in the derivation. As a result, we see that the a-priori W
1,∞
h

bound (3.16) is also valid for the numerical error vector en+1 at time step tn+1 provided that

∆t ≤

(

2Ĉ1C̃
1
2
3

)−2

, h ≤

(

2Ĉ2C̃
1
2
3

)− 2
3

, with C̃3 dependent on T ∗. (3.33)

This completes the ℓ∞(0, T ∗; ℓ2) ∩ ℓ2(0, T ∗;H1
h ) convergence analysis, and the proof of Theorem 2.3.

8
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Remark 3.1. Since the leading order Taylor expansion has already resulted in an O(∆t3+h4) accuracy order, it is sufficient
to control the discrete W

1,∞
h bound of the numerical error function, as derived in (3.31), (3.32). As a result, we do not

need a higher order asymptotic expansion in the consistency analysis, in contrast to a few other related works [41–46].

Remark 3.2. It is observed that, the diffusion coefficient at time step tn+1 dominates the rest coefficient sum. This fact
has played a key role in the stability and convergence estimate; also see the related discussions in [26,27]. In fact, to
derive a temporally third order accurate numerical scheme, a direct application of the Adams–Moulton formula at the
nodes tn+1, tn and tn−1 does not give a formula with the stated stability property. This fact highlights the need to choose
an appropriate time-discretization to couple with the fourth order finite difference spatial approximation.

Remark 3.3. For the harmonic mapping flow (1.2), there is a well-known property that, |u(x, t)| = 1 holds for any
t > 0, provided that the initial data satisfies |u(x, t = 0)| = 1 at a point-wise level. However, for the proposed numerical
scheme (2.4), such a property is not valid any more, because of the temporal and spatial discretization. Meanwhile, the
convergence estimate (stated in Theorem 2.3) implies that, although such an identity is not exactly available, the deviation
is always of order O(∆t3 + h4) (in the discrete L2 average sense).

3.5. The fourth order convergence result

For the fourth order accurate (in time) scheme (2.13), the convergence estimate is stated below. It proof follows similar
ideas as in the analysis for Theorem 2.3; the technical details are left to interested readers.

Theorem 3.4. For any time T ∗ > 0, we assume that exact solution ue to the harmonic mapping flow equation (1.2) satisfies
the regularity requirement ue ∈ H4(0, T ;H3) ∩ L∞(0, T ;H6). We denote the u∆t,h as the continuous function as the extension
of the fully discrete numerical solution obtained by (2.13). As ∆t, h → 0 under a linear refinement requirement ∆t ≤ Ch, we
obtain the following result:

∥u∆t,h − ue∥ℓ∞(0,T∗;ℓ2) + ∥u∆t,h − ue∥ℓ2(0,T∗;H1
h
) ≤ C(∆t4 + h4). (3.34)

4. The numerical results

We present some numerical examples in this section, to demonstrate the stability and convergence of the proposed
scheme. An exact profile is artificially constructed. Since the exact solution has the properties that if |u(·, t)| ≡ 1 at any
time t > 0, we construct a two-dimensional (2-D) exact profile as

ue =

[

u

v

]

=

⎡

⎣

cos
(

cos(πx) cos(πy) cos t
)

sin
(

cos(πx) cos(πy) cos t
)

⎤

⎦ , (4.1)

with Ω = [0, 1] × [0, 1]. Notice that the homogeneous Neumann boundary condition is satisfied for the constructed
profile.

As mentioned above, it is obvious that (4.1) is not an exact solution for the original harmonic mapping system (1.2),
so that we have to add an artificial source modification term f to make the PDE exactly satisfied. In more detail, the PDE
system (1.2) is modified as

[

ut

vt

]

−

[

∆u

∆v

]

=

[

(|∇u|2 + |∇v|2)u

(|∇u|2 + |∇v|2)v

]

+

[

f1
f2

]

, (4.2)

and a careful calculation reveals that

f =

[

f1
f2

]

=

[

ut − ∆u − (|∇u|2 + |∇v|2)u

vt − ∆v − (|∇u|2 + |∇v|2)v

]

. (4.3)

In the time evolution on both sides, a three-point Simpson’s integration formula (over the time interval (tn, tn+1)) will
be used for f to minimize the numerical integration error.

4.1. Numerical error in space

To verify the accuracy in space, the time size ∆t must be small enough to ensure that the numerical error is dominated
by the spatial one. We will take the domain [0, 1] × [0, 1] and let T = 1, with a fixed ∆t = 10−3. A sequence of spatial
resolution will be taken: N = 24 : 8 : 96, in this experiment. The expected spatial numerical accuracy assumption e = Chk

indicates that ln |e| = ln C−k lnN , so that we make a log–log plot to demonstrate the spatial convergence order. The fitted
line displayed in Fig. 1 shows an approximate slope of −4, which in turn verifies a nice fourth order spatial convergence
order, in both the discrete ℓ2 and ℓ∞ norms. We also notice that the numerical values of the discrete ℓ2 and ℓ∞ errors
for the component u are almost identical, so that there is no clear difference (between the two errors) on the plot, while
such a difference for the component v becomes more obvious.

9
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Fig. 1. The discrete ℓ2 and ℓ∞ numerical errors vs. spatial resolution N , for N = 24 : 8 : 96, with a fixed time step size ∆t = 10−3 , for both

components u and v.

Fig. 2. The discrete ℓ2 and ℓ∞ numerical errors vs. temporal resolution 100N , for 1 ≤ N ≤ 8, with a fixed time step size h = 10−3 , for both

components u and v.

4.2. Numerical error in time

To demonstrate the accuracy in time, the spatial numerical error has to be negligible. We fix the spatial resolution

as N = 1024 (so that h = 1
1024

), and set the final time T = 1. Naturally, a sequence of time step sizes is taken as

∆t = T
NT

, with NT = 100 : 100 : 800. The expected temporal numerical accuracy assumption e = C∆tk indicates that

ln |e| = ln(CT k) − k lnNT , so that we plot ln |e| vs. lnN to demonstrate the temporal convergence order. The fitted line

displayed in Fig. 2 shows an approximate slope of −3, which in turn verifies a nice third order temporal convergence

order, in both the discrete ℓ2 and ℓ∞ norms. Again, it is observed that the numerical values of the discrete ℓ2 and ℓ∞

errors for the component u are almost identical, so that there is no clear difference (between the two errors) on the plot,

while such a difference for the component v becomes more obvious.

4.3. Numerical accuracy check for the fourth order scheme

In the accuracy test for the fourth order scheme (2.13), we set the time size as ∆t = 1
2
h, with h = 1

N
, so that the fourth

order accuracy in both time and space could be confirmed. Again, the final time set as by T = 1. A sequence of spatial

resolutions are taken as N = 48 : 16 : 192. The expected temporal numerical accuracy assumption e = C(∆t4 + h4)

indicates that ln |e| = ln C − 24 lnN , so that we plot ln |e| versus lnN to demonstrate the convergence order. The fitted

line displayed in Fig. 3 shows an approximate slope of −4, which in turn verifies a perfect second convergence order, in

both time and space.

10
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Fig. 3. The discrete ℓ2 and ℓ∞ numerical errors vs. spatial resolution N , for N = 48 : 16 : 192, with a time step size given by ∆t = 1
2
h, for both

components u and v, computed by the fourth order scheme (2.13).

5. Concluding remarks

In this article, a fully discrete numerical scheme is developed for the harmonic mapping flow (1.2), with the fourth
order spatial accuracy and third order temporal accuracy. The fourth order spatial accuracy is realized via a long
stencil finite difference, and a symmetric boundary extrapolation is applied, based on a higher order Taylor expansion
around the boundary section. In the temporal discretization, a combination of explicit Adams–Bashforth extrapolation
for the nonlinear terms and implicit Adams–Moulton interpolation for the viscous diffusion term is utilized, with third
order accurate integration formula coefficients. This approach preserves the desired temporal accuracy order, while the
numerical stability is assured by the subtle fact that, the diffusion coefficient at time step tn+1 dominates the rest
coefficient sum. In addition, a detailed convergence analysis and error estimate are provided for the proposed numerical
scheme, which gives an optimal O(∆t3 + h4) accuracy order in the ℓ∞(0, T ; ℓ2) ∩ ℓ2(0, T ;H1

h ) norm. A few numerical
examples are also presented in this article, to demonstrate the full accuracy orders.
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