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Abstract—Inspired by swarms in nature, swarm robotics have
been developed to conduct various challenging tasks such as
environmental monitoring, disaster recovery, logistics, and even
military operations. Despite the significant potential impact of the
swarm on society, relatively little attention is given to adversarial
scenarios against swarm robotics.

In this paper, we explore a systematic approach to find logical
flaws of the swarm robotics algorithms that adversaries can
exploit. Specifically, we develop an automated testing system,
SWARMFLAWFINDER, for swarm algorithms. We identify and
overcome various challenges in understanding and reasoning
about the swarm algorithm execution. In particular, we propose
a novel abstraction of robotics behavior, which we call the degree
of causal contribution (DCC), based on the idea of counterfac-
tual causality. Then, we build a feedback guided greybox fuzz
testing system called SWARMFLAWFINDER, leveraging DCC as
a feedback metric. We evaluate SWARMFLAWFINDER with four
swarm algorithms conducting navigating, searching, and rescuing
missions. SWARMFLAWFINDER discovers 42 logic flaws (and
all of them have been acknowledged by the developers) in the
swarm algorithms. Our analysis of the flaws reveals that the
swarm algorithms have critical logic errors/bugs or suffer from
incomplete implementations that can be exploited by adversaries.

I. INTRODUCTION

Swarm robotics revolutionizes how robots can function and

what they can accomplish. It has attracted attention for a

variety of vital missions, such as search and rescue, that are

typically challenging for individual drones to complete. A

swarm is more than just a set of drones performing the same

operations. Robots in a swarm cooperate with others (e.g.,

sharing and distributing intelligence) to accomplish tasks.

A swarm operation is controlled by a swarm algorithm,

which coordinates the actions of multiple robots. The swarm

algorithm’s efficacy determines a swarm operation’s effective-

ness. Logic flaws (i.e., logic bugs or weaknesses) in a swarm

algorithm can result in various failures. Consider a swarm

searching algorithm that coordinates multiple groups of robots,

with robots in the same group sharing information discovered

during the mission. The efficiency of the swarm algorithm

depends on the number of robots in a group. In such a case,

an adversary, who is capable of breaking existing groups into

smaller groups, can lead the swarm to undesirable states,

significantly slowing down the searching. Such undesirable

swarm operations may lead to severe consequences in the wild.

For instance, failures in searching/rescuing missions can result

in casualties. Failure to search/deliver in military missions

can lead to losing a battle. Significantly slowed-down swarm

missions in commercial businesses can cause financial loss.

This paper explores a systematic approach for detecting

logic flaws in swarm algorithms, particularly in drone swarms.

Specifically, we develop a greybox fuzz testing technique for

swarm robotics, called SWARMFLAWFINDER, that overcomes

unique challenges in effectively testing drone swarm algo-

rithms. Given a target swarm algorithm and a swarm mission

definition (e.g., the number of drones and mission objectives),

SWARMFLAWFINDER introduces attack drones to disrupt the

swarm operation. The attack drones aim to interfere with the

swarm, attempting to expose logical weaknesses that lead to

mission failure, rather than launching naive and overt attacks

(e.g., directly crashing into victim drones). A key component

in developing SWARMFLAWFINDER is to design an efficient

metric that abstracts a given test’s effectiveness. Unfortunately,

unlike testing traditional software [1]–[3], coverage-based

metrics (e.g., basic block, branch/edge, or path coverage)

are ineffective in determining a test case’s effectiveness and

guiding the test generation for swarm robotics because robotics

systems are designed to have a relatively less-diverse control

flow but significantly more-diverse data variances at runtime.

To this end, a major challenge in SWARMFLAWFINDER is

to develop a metric for the guided fuzzing process. Inspired

by the idea of counterfactual causality, we propose a new

metric the degree of the causal contribution (or DCC) to

abstract the causal impact of attack drones on the target swarm.

Specifically, SWARMFLAWFINDER creates multiple perturbed

executions (i.e., counterfactual executions) to infer the causal-

ity between attack drones and victim drones’ behaviors. Based

on the inferred causality, we build the DCC to reflect the attack

drones’ impact on the victim swarm and use DCC to direct

the fuzzing process to accelerate the creation of test cases

covering unexercised swarm behaviors. We evaluate SWARM-

FLAWFINDER using four swarm algorithms [4]–[7], finding 42

logic flaws that are all confirmed by the algorithm developers.

Our major contributions are summarized as follows:
• We explore the possibility of exploiting swarm algorithms’

logic flaws to cause swarm mission failures, solving various

technical challenges.

• We propose a concept of the degree of the causal contribu-

tion (or DCC), based on the idea of counterfactual causality,

to abstract the impact of attack drones on a swarm operation.

• We develop a greybox fuzz testing system for drone swarm



algorithms called SWARMFLAWFINDER to systematically

discover logic flaws in swarm algorithms. It uses DCC as

a feedback metric for fuzz testing to mutate the test cases.

• SWARMFLAWFINDER identified 42 previously unknown

logic flaws (all confirmed by the developers) in the four

swarm algorithms, and present analysis results including root

causes and fixes (34 out of 42 fixes are confirmed).

• We publicly release all the developed tools, data, and results,

including SWARMFLAWFINDER, for the community [8].

II. BACKGROUND AND THREAT MODEL

Definition of Swarm Mission and Algorithm. A swarm

mission requires the following definitions: (1) the number of

drones in a swarm and (2) the objectives of a swarm mission

(e.g., the destination or goal). Such definitions can be typically

found in configuration files, swarm algorithm’s code (i.e.,

hardcoded), or the algorithms’ descriptions (e.g., academic

papers or manuals). A swarm algorithm essentially coordinates

individual drones to conduct the mission’s objectives. In this

paper, we consider the swarm algorithms to include logic for

both individual drones and the swarm’s cooperative behaviors.

Challenges in Testing Swarm Algorithms. A swarm is highly

dynamic. During a swarm mission, even a slight impact in

one of those inputs (caused by the environment or attack

drones) can lead to significantly different swarm behaviors. For

instance, assume a moving object is approaching one of the

drones in a swarm. The swarm’s reaction can be significantly

different depending on the approaching angle of the object.

Hence, to test swarms effectively, it is desirable to run tests

under diverse scenarios to cover various swarm behaviors.

However, the swarm’s input space (e.g., angles and coordinates

of objects) is often too large to cover them exhaustively in

practice. To mitigate the large input space, one may try to

identify inputs that may exercise a similar swarm behavior

(i.e., an equivalent class of the behavior) and prune out those,

to improve the testing performance. However, it is challenging

to know which inputs exercise a similar swarm behavior.

In typical software testing, coverage-guided fuzzing [9]–

[11] solves a similar challenge by using various code coverage

metrics (e.g., block or edge). It prioritizes the same class of

test inputs that have increased the coverage, aiming to exercise

diverse program behaviors (i.e., covering diverse execution

paths). However, they are not effective in testing robotics

systems because their execution is highly iterative. Even with

a few tests, majority of the code and branches in robotics

systems are quickly covered, while the tests do not cover

diverse behaviors. Unlike testing traditional software systems,

predicate conditions are not the critical challenges in swarm

algorithm testing. Instead, different behaviors are often caused

by different values of inputs and internal states of drones.

Greybox Fuzz Testing Approach. SWARMFLAWFINDER

chooses to use a greybox fuzz testing approach because

other alternatives, whitebox and blackbox approaches, are

not as effective as the greybox approach for testing swarm

algorithms. Specifically, whitebox approaches [12], [13] often

require expensive analyses (e.g., symbolic analysis) on the

swarm algorithm. Blackbox approaches [14] do not analyze

complex internals of the systems. They rely on correlations

between the inputs and observed outputs which are often too

coarse grained, to decide the test case mutation strategy.

SWARMFLAWFINDER takes the greybox approach, which

monitors an execution (focusing on the poses of drones) to

obtain finer-grained information than the blackbox approaches,

while not requiring expensive analyses.

Efforts in Dependable Swarm Robotics. There is a line

of research on making swarm robotics dependable [15]–[19],

where most of them focus on the modeling of swarms, and

their discussions are at a high level. Specifically, Winfield et

al. [15] define two properties of the swarm systems: liveness

(i.e., exhibiting desirable behaviors) and safety (not exhibiting

undesirable behaviors such as crashes). They present theoret-

ical models to prove the two properties, leveraging Lyapunov

theorems [20]. They also discuss difficulty in testing such as

the large input space. Higgins et al. [17] present various se-

curity threats to swarm robotics including intrusion of foreign

drones to a swarm, which is the same threat model of us (i.e.,

introducing attack drones to disrupt a swarm). Sargeant and

Tomlinson [16] present models of malicious swarms aiming

to make a victim swarm operation inefficient.

Compared to the above work [15]–[17], we aim to identify

concrete logical flaws from real algorithms via testing. In the

context of [15], SWARMFLAWFINDER can find flaws delaying

mission completion and crashing drones in a swarm that can

be considered ‘liveness’ and ‘safety’ violations, respectively.

To the best of our knowledge, SWARMFLAWFINDER advances

state-of-the-art swarm testing, especially in testing efficiency

and quality, mitigating the incompleteness of the testing dis-

cussed in [15]. Note that while [17] presents malicious swarm

models, their models are not concrete. For example, they

describe high-level classes of threats such as ‘mobility’ and

‘controllability’ issues. Instead, we find concrete logic flaws

with root causes. In other words, while some logic flaws we

find can relate to [17]’s definitions (In Table III, C1-5 and

C2-4 can be classified as mobility and controllability issues,

respectively), all the logic flaws we find are previously un-

known, meaning that they are newly discovered. Similarly, [16]

presents an example swarm threat scenario called landmine,

which has a similar objective (i.e., conducting a search) to two

swarm algorithms we evaluate (A2 and A3). We also find logic

flaws that slow down a swarm’s progress (See C2-3, C2-4,

C3-1, and C3-2 in Table III). However, [16]’s discussions are

conceptual and all the discovered flaws we find are new. Note

that the models in [15]–[17] can be used to define additional

mission failure criteria for our testing.

Besides, there are groups of researchers conducting in-depth

analysis in designing and modeling swarm algorithms. Taylor

et al. [18] discuss the effectiveness of adding collision avoid-

ance algorithms to existing swarm algorithms. It concludes that

it is recommended to design swarm algorithms with collision

avoidance in mind, rather than adding the collision avoidance

algorithm later. In our paper, all the four evaluated algorithms

are designed with collision avoidance in mind (i.e., we do
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case with multiple tuples such as {< P1, S1 >,< P2, S2 >, ...,<

P
n
, S

n
>}, where each tuple represents an attack drone. When

there are multiple attack drones in a test, we may observe the

changes of DCC values caused by multiple attack drones. It is

critical to identify which attack drone is effective in exercising

a new behavior of the swarm to choose the mutation strategy

(i.e., mutating significantly or slightly as shown in lines 35

and 37 of Algorithm 1). We apply the mutation for each attack

drone (i.e., each tuple) so that DCC value changes caused by

an attack drone would not mutate the other attack drones.

For each attack drone, SWARMFLAWFINDER identifies all

the victim drones’ DCC values that are affected by the attack

drone. There are two cases of victim drones affected by an

attack drone: directly and indirectly. First, the victim drone

is directly affected when we observe the attack drone’s delta

value in the victim drone’s DCC values. Second, the victim

drone is indirectly affected by the other victim drone that is

directly affected by the attack drone (i.e., a cascading effect).

To this end, we check the DCC values of the victim drones to

identify the drones affected by each attack drone and compute

the NCC values for the identified victim drones. We present

an example scenario with multiple attack drones on [8].

V. EVALUATION

A. Experiment Setup

1) Selection of Target Swarm Algorithms: We search open-

sourced research projects related to swarm robotics for the last

ten years, from 2010 to 2021. We listed 44 academic papers

and 29 public GitHub repositories from the initial search. From

the 44 papers, 17 of them provide source code, resulting in

46 available algorithms. However, 20 out of 46 algorithms are

not executable (e.g., the source code is incomplete and not

compilable) or partially implemented (e.g., only implementing

algorithm logic), leading to 26 runnable algorithms. Finally,

we prune out 22 out of 26 algorithms since they do not

exhibit collective (or cooperative) behaviors or allow external

objects such as our attack drones (hence cannot implement our

approach). Specifically, swarm algorithms that are a collection

of individual drones lacking cooperative interactions between

the neighbor drones [29]–[38] are not considered.
1

To this

end, we choose four runnable algorithms that exhibit collective

swarm behaviors and allow us to introduce external objects.

Details of the selection process can be found in § IX-A.

TABLE I
SELECTED SWARM ALGORITHMS FOR EVALUATION

ID Name SLOC Language Algorithm’s Objective

A1 Adaptive Swarm [4] 3,091 Python Multi-agent navigation
A2 SocraticSwarm [5] 9,920 C# Coordinated search
A3 Sciadro [6] 3,851 Netlogo Distributed target search
A4 Pietro’s [7] 752 Matlab Coordinated search and rescue

Selected Target Algorithms. Table I presents the selected

four swarm algorithms and Fig. 7 shows visualizations of the

swarm algorithms using the Gazebo simulator [39].

1
If a drone in an algorithm does not recognize other drones as cooperating

units (e.g., other drones are considered as obstacles), we exclude the algorithm.

A1. Adaptive Swarm [4] aims to move a swarm of (up to

20) drones, from the current position to a predefined

destination (shown as a yellow path in Fig. 7-(a)) while

maintaining a formation and avoiding obstacles.

A2. SocraticSwarm [5] conducts a swarm searching mission,

where individual drones actively interact with neighbor

drones to share information, as shown in Fig. 7-(b).

A3. Sciadro [6] runs multiple swarms to search targets dis-

tributed over a wide range of areas, as shown in Fig. 7-(c).

Swarm groups can be dynamically changing at runtime,

allowing individual drones joining and leaving a swarm.

A4. Pietro’s algorithm [7] aims to achieve a cooperative

rescue mission. Fig. 7-(d) shows an example mission:

searching and rescuing targets inside various structures.

The process is accelerated with more participating drones.

TABLE II
FUZZ TESTING CONFIGURATIONS

ID
Completion 200% NCC Mutation # of victim Time for

time (sec) Deadline threshold (δ / R) drones testing

A1 189.4 400 0.87 0.4 / 0.8 4 24 hrs
A2 90.11 200 0.82 50 / 100 8 24 hrs
A3 1,756.13 3,500 0.85 25 / 50 10 24 hrs
A4 715.41 1,400 0.75 10 / 5 15 24 hrs

2) Experimental Configurations: Table II shows how we

define mission failures in the four selected swarm algorithms’

missions. We consider a swarm mission failed (1) if it takes

longer than two times of its typical mission completion time

to accomplish its given goals or (2) a drone in the swarm

crashes into an object or another victim drone. Note that we

do not try opportunistic attacks such as blocking the target

point to prevent the mission completion. Similarly, we do

not count attack drones crashing into the victim drone as a

failure. Our attack drones are designed not to crash into victim

drones directly. The third column defines the 200% deadline,

which is essentially the time we consider a mission fails if it

exceeds. They are roughly more than 200% of the completion

times. The fourth column shows the NCC threshold used in

the experiments for each algorithm. To get the typical mission

completion time and NCC threshold for each algorithm, we

run each mission 100 times and get an average completion

time without any interventions (i.e., without attack drones).

We also find the NCC thresholds by taking the lowest NCC

values from the 100 test runs. The fifth column shows the

distance values used to apply slight (δ) and significant (R)

mutation in each algorithm. The sixth column shows the

number of victim drones for each algorithm, varying from

4 to 15 drones. Finally, the last column presents that we run

SWARMFLAWFINDER on each algorithm for 24 hours.

3) Implementation and Setup: We implement prototypes of

SWARMFLAWFINDER for each algorithm in the programming

language that the original algorithm is written in: Python, C#,

Netlogo, and Matlab. Our implementation includes modifica-

tions of existing simulators/emulators. To this end, we write

839, 331, 422, and 230 SLOC for implementing SWARM-

FLAWFINDER for A1∼A4, respectively. Our analysis tool for

NCC and the map of A3 is written in R (820 lines).
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C1-4. Excessive force in APF: A1 uses the artificial potential

field (APF) to make drones’ decisions at runtime. If a drone is

at a location that is very far from the other drones in a swarm,

a force to move toward the swarm becomes excessively strong,

making the detached drone fly directly to the swarm without

considering external objects on the path (e.g., wall). In other

words, the drone decides to fly toward the wall because the

force for rejoining the swarm becomes bigger than the force

preventing the drone from crashing into the wall.

Fix (Confirmed): We define a maximum value for all

forces and assign a much larger value than the maximum

value for the force related to obstacles (e.g., the wall). It

requires changing 6 SLOC. This prevents the drone from

crashing into obstacles but often causing the swarm stuck

as described in C1-5, requiring the fix from C1-5 as well.

C1-5. Naive swarm’s pose measurement: A1 measures the

current pose of the entire swarm by computing the centroid

of all drones. Unfortunately, this often neglects drones to fall

behind significantly, eventually making the swarm unable to

progress. Details are shown in § V-E2.

Fix (Confirmed): We add code snippets (2 SLOC) to con-

sider the drone’s distances from the centroid, and if a drone

is significantly far behind than others (e.g., more than two

times), we make the leader wait for the other drones.

C2-1. Overly-sensitive object detection: Drones are config-

ured to be overly sensitive in avoiding external objects, leading

to crashes to other victim drones to avoid objects.

Fix (Confirmed): We relax the object detection by changing

DEFAULT WEIGHT COSTS to 0.219 (from 0.319) in A2.

C2-2. Indefinite wait for crashed drones: A2 uses a bid-

ding algorithm to distribute tasks to individual drones. The

algorithm has a bug that it does not exclude crashed drones

(hence unusable) from the bidding process. After assigning a

task to an inactive crashed drone, the algorithm waits for the

task completion indefinitely, suspending progress.

Fix (Confirmed): We change the bidding algorithm (10

SLOC) to reclaim tasks from crashed drones.

C2-3. Long deadline for an assigned task: A2’s bidding

algorithm has an internal deadline for each task assigned to

a drone. However, the deadline is too long. When an attack

drone successfully prevents victim drones from completing

tasks, the algorithm keeps waiting for the task.

Fix (Confirmed): We change the deadline (SEARCH

TIMEOUT TIME) shorter in A2. This effectively mitigates

the delays caused by the adversarial drones in our scenario.

C2-4. Drones detaching from a swarm: We observe that

malfunctioning drones are moving outside of the map, de-

taching themselves from the swarm. This is because drones

do not have any tasks to bid (i.e., finished all the tasks) have

no incentive to stay in the swarm. This significantly delays the

swarm’s progress since the algorithm still waits for the task

completion by the malfunctioning drone.

Fix (Confirmed): We increase the individual drone’s incen-

tive value for being a part of the swarm.

C3-1 and C4-1. Naive detouring method: In A3, when a

drone encounters an obstacle, it tries to detour the obstacle

by randomly selecting the alternative direction (i.e., angle) to

fly. Unfortunately, if objects are approaching the drone from

the randomly decided direction, the drone crashes. Moreover,

this method also performs poorly for drones escaping from a

complex structure, delaying the progress significantly.

Fix : For A3, we add more randomness in choosing a

direction for detouring by changing 8 SLOC. For A4, we

find that the randomness in the detouring process overly

affects the decision. Hence, we remove the random values

involved in the process by changing 2 SLOC.

C4-2. Detouring without sensing: In A4, when a drone

avoids an obstacle, it selects an alternative path. Unfortunately,

it does not consider whether there is an obstacle in the

alternative path. If there is an object in the path, the drone

crashes. We present a detailed case study in § V-E3.

Fix : We add 10 SLOC to make a drone sense the surround-

ings when it calculates an alternative path.

Quality of Fixes. To understand the quality of our fixes,

we have applied them to the algorithms, and run SWARM-

FLAWFINDER on the fixed algorithms (for 24 hours per

algorithm). The results show that the logic flaw targeted by

the fix is no longer observed after applying each fix. Hence,

we consider each fix successfully resolves its targeted logic

flaw. Further, we apply all the fixes together (i.e., an integrated

fix) and run SWARMFLAWFINDER to understand whether the

integrated fix can eliminate all the logic flaws. We find that

for A1, the integrated fix fails to resolve C1-2 and C1-6,

because the fixes for C1-2 and C1-6 are conflicting. To solve

this, we manually tune the configuration values (i.e., changing

influence radius to 0.225 and repulsive coef to 300

in the fixes; the original fixes; the original fixes are changing

them to 0.3 and 400), and the tuned integrated fix resolved all

the logic flaws. Details can be found in § IX-D.

Side Effects of Fixes. While the fixes make the algorithms

more robust, they may also cause overhead. We observe 3.9%,

2.5%, 1.2%, and 1.5% average overhead for A1, A2, A3, and

A4, respectively. For the integrated fixes, we observe 11.4%,

9.0%, 2.2%, and 4.7% overhead for A1, A2, A3, and A4,

respectively. Details can be found in [8]. Note that we do not

observe fixes introducing additional logic flaws.

Impact of Flaws. In A1, C1-1∼C1-4 are the most critical bugs

since they will result in crashed drones. C1-5∼C1-6 lead to

mission delays, and the victim drones are intact; hence their

impact is limited. In A2, A3, and A4, the crashes between

drones are less critical than crashes in A1 since there are many

victim drones, and crashing a few drones may not immediately

lead to mission failures. However, since a crash in A2 (C2-

2) can suspend the search progress, it is more critical than

the crashes in A3 and A4. Slow progress type bugs in all

algorithms are less impactful than other types of bugs.
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process, we do not argue that DCC is a direct abstraction of

the swarm behavior. Instead, it is an approximation of the

abstraction. However, we argue that it captures the behavior

differences of swarm algorithms effectively.

VII. RELATED WORK

Testing for Robotics. While systematic testing for robotics

systems helps improve the overall quality and safety of the

systems significantly, testing robots in real-world conditions

is often expensive and unsafe. As a result, simulation-based

approaches have been widely adopted in robotics testing [39]–

[46], and shown to be effective [47]. [44] proposes coverage-

driven verification (CDV) for evaluating the testing progress of

the system under test. CDV and DCC in SWARMFLAWFINDER

share the same goal while CDV is coarse-grained and requires

definitions from developers. [48], [49] apply combinatorial

interaction testing to detect flaws triggered by interactions

of parameters, while they also require definitions of systems’

configuration space. Calò [50] proposes using search-based

approach to generate collision inducing configurations for

autonomous driving systems. [42] integrates dynamic physical

models of the robot to generate physically valid yet stress-

ful test cases. SWARMFLAWFINDER targets swarm robotics,

which is more complex than individual robots. [51] aims to

find faults in a flocking algorithm of on ground vehicle swarms

by using genetic algorithms (GA) [52]. However, they are

not applicable to the non-flocking swarm algorithms, which

require more sophisticated definitions such as fitness functions.

Specifically, their fitness function focuses on handling flocking

algorithms, considering splitting swarms as failures. However,

A3 in our paper dynamically forms and splits swarms to

improve the efficiency of searching. Hence, a perfectly fine

mission of A3 can be considered a failure. The idea of GA

can be applied to SWARMFLAWFINDER.

Formal validation and verification for robotics systems have

been studied [53]–[58]. However, they require fine-grained

definitions of correct behaviors, which typically need to be de-

fined by domain experts. SWARMFLAWFINDER only requires

a high-level failure definition (e.g., 200% of typical deadline).

Fuzz Testing. Fuzz testing has become widely used today

due to its effectiveness. Some of these studies aim to improve

the coverage-driven [9]–[11] fuzzers, while others [1], [59]–

[62] aim to retrieve more advanced information (e.g., code-

and data-flow) to handle systems on new domains/platforms

or improve input mutation strategy. Hybrid fuzzing tech-

niques [1], [63], [64] are proposed to increase testing coverage

using both dynamic and symbolic execution. Conventional

techniques that rely on obvious symptoms of program failures

(e.g., segmentation faults) in detecting bugs and exercising

new unique execution paths are ineffective to swarm robotics

because traditional coverage metrics are not effective for

swarm robotics. SWARMFLAWFINDER proposes and leverages

the degree of the causal contribution (instead of code coverage)

to effectively guide the testing process.

Fuzz Testing for Drones. There are several fuzzers targeting

drones [65]–[70]. However, they are designed to find vulnera-

bilities in a single drone (not from swarm robotics). Note that

they (i.e., fuzzers for a single drone) can replace the adversarial

drone in our approach, and it is complementary to our paper.

Moreover, existing fuzzers [65]–[70] try to find bugs in a

target device’s software (e.g., firmware), assuming a stronger

attack model than ours. Our threat model assumes no direct

access to the drones. Lastly, existing fuzzers have limited

scope in the types of bugs they are targeting. [68]–[70] aim to

detect general type bugs only (e.g., buffer overflow). [67] can

only detect limited types of misbehavior (e.g., finding input

validation bugs). [65] relies on substantial domain knowledge,

which is not designed for swarm robotics. Others [66], [69],

[70] also focus on bugs related to a specific environment, such

as weak ports [66], MAVLink protocol [69], and WiFi [70].

However, our approach can be used to detect a wide range of

bugs in various swarm algorithms unlike those existing spe-

cific environments, general type, and implementation-oriented

bugs. Moreover, SWARMFLAWFINDER can detect logic flaws

without requiring particular domain expertise in drone swarm

fuzz testing, as we use DCC to abstract swarm behaviors.

Attacks and Defences for Drones. As drones are getting

more attention in the research and industry communities,

attacks [71]–[73] and defenses [74]–[80] of drones have gained

significant attention. There are testing tools [81] developed

to run various known attacks (e.g., GPS spoofing, jamming,

and acoustic attacks) against drones. Compared to the pre-

vious work which focuses on individual drones, SWARM-

FLAWFINDER focuses on finding logic flaws in drone swarm

algorithms. To the best of our knowledge, this is the first work

that finds logic flaws of the swarm robotics algorithms.

VIII. CONCLUSION

This paper develops a novel fuzz testing approach for

swarm robotics, SWARMFLAWFINDER, to discover swarm

algorithms’ logic flaws. We propose a novel concept of the

degree of the causal contribution and use it as a feedback

metric for fuzz testing. Our extensive evaluation with four

swarm algorithms shows that SWARMFLAWFINDER is highly

effective, finding 42 unique previously unknown logic flaws

(all of them have been confirmed by the developers). We

release the code and data for future research.
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TABLE V
FUZZ TESTING WITH FIXES FOR A1.

ID Root Cause
Unpatched (Org.) Fix for C1-1 Fix for C1-2 Fix for C1-3 Fix for C1-4 Fix for C1-5 Fix for C1-6 Integrated Fix

# Exec. Uniq. # Exec. Uniq. # Exec. Uniq. # Exec. Uniq. # Exec. Uniq. # Exec. Uniq. # Exec. Uniq. # Exec. Uniq.

A1

Crash btw. victim drones 273 9 152 5 26 4 261 8 271 9 279 9 36 8 0 0
C1-1 86 4 0 0 26 4 79 4 85 4 81 4 14 4 0 0
C1-2 176 4 146 4 0 0 182 4 176 4 181 4 22 4 0 0
C1-3 11 1 6 1 0 0 0 0 10 1 17 1 0 0 0 0
Crash into ext. objects 435 8 324 5 52 3 406 7 418 7 432 8 90 6 0 0
C1-1 88 3 0 0 52 3 77 3 81 3 79 3 44 3 0 0
C1-2 326 3 315 3 0 0 309 3 331 3 331 3 46 3 0 0
C1-3 3 1 5 1 0 0 0 0 6 1 7 1 0 0 0 0
C1-4 18 1 4 1 0 0 20 1 0 0 15 1 0 0 0 0
Suspended progress 671 2 636 2 631 2 683 2 648 2 553 1 453 1 101 2
C1-5 242 1 224 1 317 1 243 1 229 1 0 0 453 1 79 1
C1-6 429 1 412 1 314 1 440 1 419 1 553 1 0 0 22 1
Slow progress 175 1 181 1 112 1 175 1 168 1 240 1 0 0 3 1
C1-6 175 1 181 1 112 1 175 1 168 1 240 1 0 0 3 1

Total: 1,554 20 1,293 13 821 10 1,525 18 1,505 19 1,504 19 579 15 104 3

Green: Fixes resolve targeted flaws, Yellow: Fixes resolve additional non-targeted flaws, Red: Fixes fail to resolve targted flaws.

from the integrated fix. It resolves the flaws from C1-1 to

C1-4. However, it fails to handle C1-5 and C1-6. Our manual

analysis points out that the fixes for C1-5 and C1-6 are

conflicting. Specifically, the fix for C1-5 makes drones move

together, waiting for slower drones if needed. However, the

fix for C1-6 makes drones sensitive in avoiding obstacles. To

this end, when there is an obstacle, the drones try to avoid it

more actively, often making the swarm easily stuck or stalled.

Tuning the Integrated Fix for A1. To make the integrated

fix work, we tuned the fix. Specifically, when we combine

the individual fixes, we tune the fix for C1-2 and C1-6.

The original fixes for C1-2 and C1-6 add 0.15 and 200

to influence radius and repulsive coef, respectively.

We reduce the increment in half: 0.075 and 100, resulting

in the final value of 0.225 (originally 0.15) and 300 (orig-

inally 200) for influence radius and repulsive coef,

respectively. With the tuned fix, SWARMFLAWFINDER was

not able to find logic flaws for 24 hours.

Fixes for Others. For A1∼A4, all individual fixes successfully

resolve targeted logic flaws. The integrated fixes for A2 and

A3 resolved all the logic flaws. For A4, we observe conflicting

fixes when we integrate the fixes. Details can be found in [8].

E. Influence of Moving Obstacles to our Evaluation

In our evaluation (§ V), A1’s mission contains a moving

obstacle. To understand its impact on our experiment results,

we run the experiments again without the moving obstacle.

Table VI shows the result. While there are small differences

in the number of executions, the number of unique mission

failures is mostly identical except for 4 flaws in C1-1 and C1-

2 (marked as yellow and red cells). Those four missing unique

mission failures are either directly caused by the obstacle (i.e.,

crashed into the obstacle; red cells) or indirectly caused (e.g.,

pushed by the dynamic obstacle leading to a crash to other

drones; yellow cells).

F. Root Causes and Potential Fixes

C1-3. Unsupported static movement: A1 and A4 do not

allow a drone’s static movement, meaning that a drone has

to move on every tick, even if it is desirable to maintain the

TABLE VI
INFLUENCE OF MOVING (OR DYNAMIC) OBSTACLES

ID Root Cause
With Dyn. Obj. Without Dyn. Obj.

# of Exec. Uniq. # of Exec. Uniq.

A1

Crash between Victim Drones 273 9 223 7

C1-1 86 4 78 3

C1-2 176 4 132 3

C1-3 11 1 13 1

Crash into external objects 435 8 378 6

C1-1 88 3 53 2

C1-2 326 3 297 2

C1-3 3 1 5 1

C1-4 18 1 23 1

Suspended progress 671 2 622 2

C1-5 242 1 231 1

C1-6 429 1 391 1

Slow progress 175 1 181 1

C1-6 175 1 181 1

same pose. The design of the algorithms does not consider the

static movement, causing crashes in a crowded area.

Fix (Confirmed): We change the constraints that make

drones always moving (8 SLOC).

C1-6, C3-2, and C4-3. Insensitive object detection: A victim

drone’s sensitivity in detecting objects is too low, making the

entire swarm less reactive and sluggish in reacting to external

objects and attack drones. We observe that a single attack

drone can slow down the entire swarm due to this.

Fix (Confirmed for [4], [6]): We change repulsive coef,

sensing radius, and IR dist configuration variables

with the values of 400, 10, and 4 respectively. The devel-

opers of [4], [6] agreed with our analysis and the fix.

G. Supporting a new Algorithm

Our design is general and applicable to other swarm algorithms

while it requires engineering effort. To support a new swarm

algorithm, we need to instrument the algorithm to integrate

SWARMFLAWFINDER (e.g., changing 218, 271, 198, and

166 SLOC for A1, A2, A3, and A4, respectively). In our

evaluation, it took 8∼15 hours (by a graduate student with

moderate experience in drones) to complete this task for an

algorithm. Details including the additional code are on [8].
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