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ABSTRACT

Software systems may contain critical program components such as

patented program logic or sensitive data. When those components

are reverse-engineered by adversaries, it can cause significantly

damage (e.g., financial loss or operational failures).While protecting

critical program components (e.g., code or data) in software sys-

tems is of utmost importance, existing approaches, unfortunately,

have two major weaknesses: (1) they can be reverse-engineered via

various program analysis techniques and (2) when an adversary

obtains a legitimate-looking critical program component, he or she

can be sure that it is genuine.

In this paper, we propose Ambitr, a novel technique that hides

critical program components. The core of Ambitr is Ambiguous

Translator that can generate the critical program components when

the input is a correct secret key. The translator is ambiguous as it

can accept any inputs and produces a number of legitimate-looking

outputs, making it difficult to know whether an input is correct

secret key or not. The executions of the translator when it processes

the correct secret key and other inputs are also indistinguishable,

making the analysis inconclusive. Our evaluation results show that

static, dynamic and symbolic analysis techniques fail to identify the

hidden information in Ambitr. We also demonstrate that manual

analysis of Ambitr is extremely challenging.

CCS CONCEPTS

· Security and privacy→ Software security engineering; Soft-

ware reverse engineering.

KEYWORDS

program translation, software protection, reverse engineering

1 INTRODUCTION

Software systems often contain critical program components such

as classified, sensitive, or proprietary code or data, which we call
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Critical Program Components (or CPC). For example, patented pro-

gram logic is an example of CPC. If an adversary steals or copies a

competitor’s software system’s patented technology, it would cause

significant financial loss. Similarly, in a warfare software system

(e.g., software in a drone), a CPC can be a piece of code containing

its operational procedures, including the targets and plans. Since

an adversary can reverse-engineer a software system to reveal var-

ious critical operational secrets (e.g., targets of the military system

and target operation date) which can be used against the victim,

protecting CPCs is an essential requirement.

There are a few techniques that can be leveraged to hide critical

program components: obfuscation [5, 12, 37, 61], packing [14, 38,

40], and encryption [66, 75]. Code obfuscation techniques syntacti-

cally transform the original program’s code into another form of

code, making it difficult to be analyzed manually. Data obfuscation

techniques [3, 18, 30] change the value of data in a way that does not

change the original semantic of the data while making it difficult to

know the original value. However, both obfuscation techniques pre-

serve critical semantics, meaning that they only delay the analysis

but cannot protect the critical components. A packer compresses

or encrypts the program code and data, and stores them in a data

section of the packer’s loader program. However, it is not suitable

for hiding CPCs because it always decompresses (or decrypts) the

original program code and data at runtime.

To understand the effectiveness of the existing techniques in hid-

ing critical program components, we analyze approaches that can be

used against the obfuscation, packing, and encryption techniques.

Specifically, we observe that obfuscation techniques and packers

can be easily traced and analyzed by dynamic analysis [9, 41, 68].

While encryption-based techniques are challenging to break crypto-

graphically, the execution of the decryption function can be traced

to extract the decrypted data (i.e., the genuine critical program

components). To this end, we conclude that while the techniques

certainly raise the bar in analysis (i.e., making the analysis chal-

lenging), it is practically feasible for a persistent and determined

adversary to obtain the critical program component protected by

existing techniques. More importantly, since there is no ambiguity

in decoding and uncompression processes, the adversary knows

that the CPC is undoubtedly correct when obtained.

In this paper, we propose a novel technique,Ambitr, that aims to

hide critical program components against adversaries with access
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Table 1: Effectiveness of Existing Techniques and Ambitr

against Program Analysis Approaches.

Obfuscators Packers/Crypters Protectors Ambitr

Static Analysis
1 2 2

Symbolic Analysis
1

Dynamic Analysis

Forced Execution

: Ineffective, : Less effective, : Effective (against analyses).

1: Static/symbolic analysis techniques have difficulty handling advanced

obfuscators (with multiple layers of obfuscations) due to state explosion,

while they can handle simple obfuscators.

2: Static analysis may handle known crypto algorithms while it may not

generically handle them (hence half-filled circled, meaning that effective

on some but not all).

2.3.1 Obfuscators. Obfuscation techniques [3, 5, 12, 16, 18, 24,

30, 37, 47, 54, 61, 64, 67, 76] aim to make the original code diffi-

cult to analyze by leveraging techniques including opaque predi-

cates [16, 47, 67], code insertion/replacement [5, 24, 37, 54, 61, 76],

and hardware primitives [12, 64].

Limitations. Obfuscation techniques that transform code into se-

mantically equivalent forms or add non-essential code (e.g., opaque

predicates and dummy code) [5, 16, 24, 37, 47, 54, 61, 67, 76] can be

handled by automatically reverting or removing the modified/added

code via program analysis techniques [33, 44, 49, 53, 80, 81]. De-

pending on the obfuscation techniques used, static and symbolic

analysis may suffer from the complexity of the analysis, meaning

that they might not be always effective, as described in Table 1.

Typically, dynamic analysis (including forced execution [57]) tech-

niques are highly effective in handling the obfuscation techniques.

While data obfuscation techniques [3, 18, 30] change the values of

data, their critical semantics are preserved and can be traced and

identified by both static and dynamic analysis [46, 79].

2.3.2 Packers/Crypters. Packers [14, 38, 40] primarily aim to hinder

static analysis. Specifically, they create a program containing com-

pressed original program as data, that uncompresses and executes

the original program at runtime. Crypters [2, 6, 29] are essentially

advanced packers using crypto techniques to hide the program data

and code. Due to the complexity of compression and encryption,

static and symbolic analysis are not effective as shown in Table 1.

In particular, symbolic analysis suffers from state explosion due to

the complex computations of encryption schemes.

Limitations. Since a packer generated program seamlessly un-

packs and executes the original code at runtime, dynamic analysis

(i.e., executing the binary and extracting the uncompressed pro-

gram) [13, 34, 62] can obtain the original program.

2.3.3 Protectors. Protectors [59, 69, 82, 83] are essentially advanced

packers/crypters equipped with evasive anti-analysis techniques

such as terminating the execution if they detect reverse-engineering

attempts (e.g., running the program with a debugger). Similar to

packers/crypters, since the program itself is compressed and en-

crypted, static and symbolic analyses are not effective, as described

in Table 1. Specifically, symbolic and concolic analyses can be used

to avoid the evasive techniques by extracting and solving the eva-

sive predicate conditions. However, they are difficult to scale to the

programs generated by protectors. Moreover, dynamic analysis is

ineffective because of the evasive techniques.

Limitations. Forced execution techniques [19, 32, 35, 57, 78] aim

to handle evasive techniques by forcibly executing branches regard-

less of the predicate conditions. Most protectors can be handled

by the forced execution techniques. Note that since the forced exe-

cution techniques forcibly execute program code regardless of the

predicate conditions, they may fail to handle an advanced protec-

tor which uses predicate conditions for both evasive techniques

and decryption (i.e., decryption logic is dependent on the predicate

conditions). However, by observing the predicate conditions and

executions of the program, it is straightforward to tune the anal-

ysis technique to handle such advanced protectors (e.g., one can

selectively solve such a critical predicate with symbolic execution

to handle the limitation) [70].

2.4 Desirable Properties

We present four desirable properties of a CPC hiding techniques:

Evasiveness, Complexity, Context-Sensitivity, and Ambiguity.

From Existing Literature. For the first three properties, we iden-

tify and summarize them from existing literature. Note that prior

literature does not explicitly present the properties. They are only

implicitlymentioned individually (e.g., evasiveness in [80], complex-

ity in [5], context-sensitivity in [40, 44]). We systematically studied

prior literature to establish the desirable properties. In particular,

from program analysis papers [33, 44, 80], we mainly focus on the

challenges, e.g., state-explosion caused by complexity, they pointed

out. From anti-program analysis techniques [5, 24, 40, 54, 64], we

pay attention to the approaches proposed by them to hinder the

analysis (e.g., evasive tactics [54]). We believe the four properties

thoroughly cover the core properties across the literature.

New Desired Property: Ambiguity. We introduce a new desir-

able characteristic: Ambiguity (details in Section 2.4.4).

2.4.1 Evasiveness. Programs that are highly evasive (e.g., programs

with a number of evasive predicates) impose significant challenges

to symbolic and dynamic analysis. For dynamic analysis, knowing

a number of concrete inputs that can cover all the evasive predi-

cates is challenging. For symbolic analysis, an excessive number

of predicates and complex predicate conditions cause the scala-

bility problem (i.e., taking too much time making the technique

practically unusable).

2.4.2 Complexity. Static and symbolic analyses have difficulty

analyzing programs with complex operations. Typical examples

are packed/encrypted programs. Static and symbolic analyses can

reverse-engineer the uncompression/decryption process. However,

they fail to scale complex algorithms (e.g., a crypto algorithm).

2.4.3 Context-sensitivity. Some programs have context-sensitive

code, meaning that their behaviors are dependent on a particu-

lar program execution path. Since there are a large number of

program paths, it is common for static analysis to conduct context-

insensitive analysis. Symbolic analysis aims to discover various

execution contexts; hence often suffers from the excessive number

of program execution paths, causing the path explosion. Forced

execution solves the path explosion problem by forcibly executing

code guarded by branches. However, due to the ignored branch out-

comes which lead to incorrect context, the results of the execution

may not be precise.
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5 DISCUSSION

Generality.While we implement our prototype in PHP, the idea is

general and can be implemented in other programming languages.

To support executable CPCs, one needs to implement dynamic

code generation and execution primitives such as eval(). Script

languages such as JavaScript and Python support them by default.

In other programming languages such as C/C++, one may leverage

JIT compilation techniques [11].

Handling Non-ASCII Inputs and Outputs. For better readabil-

ity, we only discuss example cases when inputs and outputs are

ASCII characters. However,Ambitr seamlessly supports non-ASCII

inputs and outputs. Specifically, if the input is out of range of ASCII

characters, Ambitr calculates the distance of provided input and

the state transition’s input without converting them to ASCII code

value. Similarly, Ambitr computes the output directly from the

distance values and state transition output without considering

their ASCII values.

Threats to Validity. The experiments in Section 4.2 are conducted

by two individuals who have sufficient background in computer

science using state-of-the-art open-source tools. Specifically, the

experiment presented in Section 4.3.3 is conducted by a computer

science Ph.D. student with sufficient program analysis and secu-

rity background. The work in Section 4.3.4 is done by an expert in

software engineering and security (holding a Ph.D. in Computer

Science). In addition, two undergraduate students majoring in Com-

puter Science (focusing on computer security) have repeated the

experiments and reached the same conclusions. Note that all partic-

ipants did not know the proposed approach prior to the experiment.

The analysis results may differ depending on the tools’ capability

and the analysts’ expertise.

6 RELATED WORK

Hiding Program Code. There exists a line of work in obfuscation

to hide program code leveraging opaque predicates [16, 47, 67], code

insertion/replacement [5, 37, 54, 61, 76], encryptions [66, 75], hard-

ware primitives [12, 64], and sub-tree embedding [24]. However,

opaque predicates can be detected and removed via advanced pro-

gram analysis techniques [44]. Dummy code snippets inserted into

an existing program can be identified and removed via dependency

analysis such as taint analysis [17, 27, 33, 42, 52, 53, 55, 56, 63, 65, 81].

Anti-analysis Techniques. Recently, [54] presents a systematic

study of multiple methods to hinder symbolic execution techniques.

Specifically, it inserts additional code to increase the number of

feasible paths. Ambitr’s Ambiguous Translator not only increases

the number of feasible paths but also provides many more addi-

tional challenges such as ambiguity via dynamic output translation.

[24] transforms program code snippets into a sub abstract syntax

tree (AST), and injects the tree into the AST of a program. How-

ever, dynamic analysis and symbolic analysis tools can detect such

injected code. Data obfuscations (e.g., encrypting code sections

and decryption them at runtime) are easily handled by dynamic

analysis [9, 41, 68]. Approaches that require particular hardware

support are difficult to be used in real-world program, as many

systems may not satisfy the hardware requirement. Unlike them,

Ambitr is challenging to be analyzed by static, symbolic, and dy-

namic analysis tools as shown in Section 4. It does not require any

particular hardware or software.

7 CONCLUSION

Protecting critical program components (e.g., patented program

logic or sensitive data) is an important requirement in software

systems. In this paper, we present Ambitr, a novel technique that

hides critical program components via a sophisticated state machine

based translator called Ambiguous Translator. It imposes fundamen-

tal challenges to state-of-the-art program analysis techniques by

adding a new dimension of the challenge: ambiguity. Our evaluation

of the comparisonwith a diverse set of state-of-the-art analysis tech-

niques, including dynamic, static, and symbolic execution, shows

that Ambitr is effective in hiding critical program components.
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