
Hiding Critical Program Components via Ambiguous
Translation

Chijung Jung
University of Virginia

Charlottesville, VA

cj5kd@virginia.edu

Doowon Kim
University of Tennessee,

Knoxville, Knoxville, TN

doowon@utk.edu

An Chen
University of Georgia

Athens, GA

ac24057@uga.edu

Weihang Wang
University at Buffalo, SUNY

Buffalo, NY

weihangw@buffalo.edu

Yunhui Zheng
IBM Research

Yorktown Heights, NY

zhengyu@us.ibm.com

Kyu Hyung Lee
University of Georgia

Athens, GA

kyuhlee@uga.edu

Yonghwi Kwon
University of Virginia

Charlottesville, VA

yongkwon@virginia.edu

ABSTRACT

Software systems may contain critical program components such as

patented program logic or sensitive data. When those components

are reverse-engineered by adversaries, it can cause significantly

damage (e.g., financial loss or operational failures).While protecting

critical program components (e.g., code or data) in software sys-

tems is of utmost importance, existing approaches, unfortunately,

have two major weaknesses: (1) they can be reverse-engineered via

various program analysis techniques and (2) when an adversary

obtains a legitimate-looking critical program component, he or she

can be sure that it is genuine.

In this paper, we propose Ambitr, a novel technique that hides

critical program components. The core of Ambitr is Ambiguous

Translator that can generate the critical program components when

the input is a correct secret key. The translator is ambiguous as it

can accept any inputs and produces a number of legitimate-looking

outputs, making it difficult to know whether an input is correct

secret key or not. The executions of the translator when it processes

the correct secret key and other inputs are also indistinguishable,

making the analysis inconclusive. Our evaluation results show that

static, dynamic and symbolic analysis techniques fail to identify the

hidden information in Ambitr. We also demonstrate that manual

analysis of Ambitr is extremely challenging.

CCS CONCEPTS

· Security and privacy→ Software security engineering; Soft-

ware reverse engineering.

KEYWORDS

program translation, software protection, reverse engineering

1 INTRODUCTION

Software systems often contain critical program components such

as classified, sensitive, or proprietary code or data, which we call

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE ’22, May 21ś29, 2022, Pittsburgh, PA, USA

© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9221-1/22/05.
https://doi.org/10.1145/3510003.3510139

Critical Program Components (or CPC). For example, patented pro-

gram logic is an example of CPC. If an adversary steals or copies a

competitor’s software system’s patented technology, it would cause

significant financial loss. Similarly, in a warfare software system

(e.g., software in a drone), a CPC can be a piece of code containing

its operational procedures, including the targets and plans. Since

an adversary can reverse-engineer a software system to reveal var-

ious critical operational secrets (e.g., targets of the military system

and target operation date) which can be used against the victim,

protecting CPCs is an essential requirement.

There are a few techniques that can be leveraged to hide critical

program components: obfuscation [5, 12, 37, 61], packing [14, 38,

40], and encryption [66, 75]. Code obfuscation techniques syntacti-

cally transform the original program’s code into another form of

code, making it difficult to be analyzed manually. Data obfuscation

techniques [3, 18, 30] change the value of data in a way that does not

change the original semantic of the data while making it difficult to

know the original value. However, both obfuscation techniques pre-

serve critical semantics, meaning that they only delay the analysis

but cannot protect the critical components. A packer compresses

or encrypts the program code and data, and stores them in a data

section of the packer’s loader program. However, it is not suitable

for hiding CPCs because it always decompresses (or decrypts) the

original program code and data at runtime.

To understand the effectiveness of the existing techniques in hid-

ing critical program components, we analyze approaches that can be

used against the obfuscation, packing, and encryption techniques.

Specifically, we observe that obfuscation techniques and packers

can be easily traced and analyzed by dynamic analysis [9, 41, 68].

While encryption-based techniques are challenging to break crypto-

graphically, the execution of the decryption function can be traced

to extract the decrypted data (i.e., the genuine critical program

components). To this end, we conclude that while the techniques

certainly raise the bar in analysis (i.e., making the analysis chal-

lenging), it is practically feasible for a persistent and determined

adversary to obtain the critical program component protected by

existing techniques. More importantly, since there is no ambiguity

in decoding and uncompression processes, the adversary knows

that the CPC is undoubtedly correct when obtained.

In this paper, we propose a novel technique,Ambitr, that aims to

hide critical program components against adversaries with access

1





Hiding Critical Program Components via Ambiguous Translation ICSE ’22, May 21ś29, 2022, Pittsburgh, PA, USA

Table 1: Effectiveness of Existing Techniques and Ambitr

against Program Analysis Approaches.

Obfuscators Packers/Crypters Protectors Ambitr

Static Analysis
1 2 2

Symbolic Analysis
1

Dynamic Analysis

Forced Execution

: Ineffective, : Less effective, : Effective (against analyses).

1: Static/symbolic analysis techniques have difficulty handling advanced

obfuscators (with multiple layers of obfuscations) due to state explosion,

while they can handle simple obfuscators.

2: Static analysis may handle known crypto algorithms while it may not

generically handle them (hence half-filled circled, meaning that effective

on some but not all).

2.3.1 Obfuscators. Obfuscation techniques [3, 5, 12, 16, 18, 24,

30, 37, 47, 54, 61, 64, 67, 76] aim to make the original code diffi-

cult to analyze by leveraging techniques including opaque predi-

cates [16, 47, 67], code insertion/replacement [5, 24, 37, 54, 61, 76],

and hardware primitives [12, 64].

Limitations. Obfuscation techniques that transform code into se-

mantically equivalent forms or add non-essential code (e.g., opaque

predicates and dummy code) [5, 16, 24, 37, 47, 54, 61, 67, 76] can be

handled by automatically reverting or removing the modified/added

code via program analysis techniques [33, 44, 49, 53, 80, 81]. De-

pending on the obfuscation techniques used, static and symbolic

analysis may suffer from the complexity of the analysis, meaning

that they might not be always effective, as described in Table 1.

Typically, dynamic analysis (including forced execution [57]) tech-

niques are highly effective in handling the obfuscation techniques.

While data obfuscation techniques [3, 18, 30] change the values of

data, their critical semantics are preserved and can be traced and

identified by both static and dynamic analysis [46, 79].

2.3.2 Packers/Crypters. Packers [14, 38, 40] primarily aim to hinder

static analysis. Specifically, they create a program containing com-

pressed original program as data, that uncompresses and executes

the original program at runtime. Crypters [2, 6, 29] are essentially

advanced packers using crypto techniques to hide the program data

and code. Due to the complexity of compression and encryption,

static and symbolic analysis are not effective as shown in Table 1.

In particular, symbolic analysis suffers from state explosion due to

the complex computations of encryption schemes.

Limitations. Since a packer generated program seamlessly un-

packs and executes the original code at runtime, dynamic analysis

(i.e., executing the binary and extracting the uncompressed pro-

gram) [13, 34, 62] can obtain the original program.

2.3.3 Protectors. Protectors [59, 69, 82, 83] are essentially advanced

packers/crypters equipped with evasive anti-analysis techniques

such as terminating the execution if they detect reverse-engineering

attempts (e.g., running the program with a debugger). Similar to

packers/crypters, since the program itself is compressed and en-

crypted, static and symbolic analyses are not effective, as described

in Table 1. Specifically, symbolic and concolic analyses can be used

to avoid the evasive techniques by extracting and solving the eva-

sive predicate conditions. However, they are difficult to scale to the

programs generated by protectors. Moreover, dynamic analysis is

ineffective because of the evasive techniques.

Limitations. Forced execution techniques [19, 32, 35, 57, 78] aim

to handle evasive techniques by forcibly executing branches regard-

less of the predicate conditions. Most protectors can be handled

by the forced execution techniques. Note that since the forced exe-

cution techniques forcibly execute program code regardless of the

predicate conditions, they may fail to handle an advanced protec-

tor which uses predicate conditions for both evasive techniques

and decryption (i.e., decryption logic is dependent on the predicate

conditions). However, by observing the predicate conditions and

executions of the program, it is straightforward to tune the anal-

ysis technique to handle such advanced protectors (e.g., one can

selectively solve such a critical predicate with symbolic execution

to handle the limitation) [70].

2.4 Desirable Properties

We present four desirable properties of a CPC hiding techniques:

Evasiveness, Complexity, Context-Sensitivity, and Ambiguity.

From Existing Literature. For the first three properties, we iden-

tify and summarize them from existing literature. Note that prior

literature does not explicitly present the properties. They are only

implicitlymentioned individually (e.g., evasiveness in [80], complex-

ity in [5], context-sensitivity in [40, 44]). We systematically studied

prior literature to establish the desirable properties. In particular,

from program analysis papers [33, 44, 80], we mainly focus on the

challenges, e.g., state-explosion caused by complexity, they pointed

out. From anti-program analysis techniques [5, 24, 40, 54, 64], we

pay attention to the approaches proposed by them to hinder the

analysis (e.g., evasive tactics [54]). We believe the four properties

thoroughly cover the core properties across the literature.

New Desired Property: Ambiguity. We introduce a new desir-

able characteristic: Ambiguity (details in Section 2.4.4).

2.4.1 Evasiveness. Programs that are highly evasive (e.g., programs

with a number of evasive predicates) impose significant challenges

to symbolic and dynamic analysis. For dynamic analysis, knowing

a number of concrete inputs that can cover all the evasive predi-

cates is challenging. For symbolic analysis, an excessive number

of predicates and complex predicate conditions cause the scala-

bility problem (i.e., taking too much time making the technique

practically unusable).

2.4.2 Complexity. Static and symbolic analyses have difficulty

analyzing programs with complex operations. Typical examples

are packed/encrypted programs. Static and symbolic analyses can

reverse-engineer the uncompression/decryption process. However,

they fail to scale complex algorithms (e.g., a crypto algorithm).

2.4.3 Context-sensitivity. Some programs have context-sensitive

code, meaning that their behaviors are dependent on a particu-

lar program execution path. Since there are a large number of

program paths, it is common for static analysis to conduct context-

insensitive analysis. Symbolic analysis aims to discover various

execution contexts; hence often suffers from the excessive number

of program execution paths, causing the path explosion. Forced

execution solves the path explosion problem by forcibly executing

code guarded by branches. However, due to the ignored branch out-

comes which lead to incorrect context, the results of the execution

may not be precise.

3

















Hiding Critical Program Components via Ambiguous Translation ICSE ’22, May 21ś29, 2022, Pittsburgh, PA, USA

5 DISCUSSION

Generality.While we implement our prototype in PHP, the idea is

general and can be implemented in other programming languages.

To support executable CPCs, one needs to implement dynamic

code generation and execution primitives such as eval(). Script

languages such as JavaScript and Python support them by default.

In other programming languages such as C/C++, one may leverage

JIT compilation techniques [11].

Handling Non-ASCII Inputs and Outputs. For better readabil-

ity, we only discuss example cases when inputs and outputs are

ASCII characters. However,Ambitr seamlessly supports non-ASCII

inputs and outputs. Specifically, if the input is out of range of ASCII

characters, Ambitr calculates the distance of provided input and

the state transition’s input without converting them to ASCII code

value. Similarly, Ambitr computes the output directly from the

distance values and state transition output without considering

their ASCII values.

Threats to Validity. The experiments in Section 4.2 are conducted

by two individuals who have sufficient background in computer

science using state-of-the-art open-source tools. Specifically, the

experiment presented in Section 4.3.3 is conducted by a computer

science Ph.D. student with sufficient program analysis and secu-

rity background. The work in Section 4.3.4 is done by an expert in

software engineering and security (holding a Ph.D. in Computer

Science). In addition, two undergraduate students majoring in Com-

puter Science (focusing on computer security) have repeated the

experiments and reached the same conclusions. Note that all partic-

ipants did not know the proposed approach prior to the experiment.

The analysis results may differ depending on the tools’ capability

and the analysts’ expertise.

6 RELATED WORK

Hiding Program Code. There exists a line of work in obfuscation

to hide program code leveraging opaque predicates [16, 47, 67], code

insertion/replacement [5, 37, 54, 61, 76], encryptions [66, 75], hard-

ware primitives [12, 64], and sub-tree embedding [24]. However,

opaque predicates can be detected and removed via advanced pro-

gram analysis techniques [44]. Dummy code snippets inserted into

an existing program can be identified and removed via dependency

analysis such as taint analysis [17, 27, 33, 42, 52, 53, 55, 56, 63, 65, 81].

Anti-analysis Techniques. Recently, [54] presents a systematic

study of multiple methods to hinder symbolic execution techniques.

Specifically, it inserts additional code to increase the number of

feasible paths. Ambitr’s Ambiguous Translator not only increases

the number of feasible paths but also provides many more addi-

tional challenges such as ambiguity via dynamic output translation.

[24] transforms program code snippets into a sub abstract syntax

tree (AST), and injects the tree into the AST of a program. How-

ever, dynamic analysis and symbolic analysis tools can detect such

injected code. Data obfuscations (e.g., encrypting code sections

and decryption them at runtime) are easily handled by dynamic

analysis [9, 41, 68]. Approaches that require particular hardware

support are difficult to be used in real-world program, as many

systems may not satisfy the hardware requirement. Unlike them,

Ambitr is challenging to be analyzed by static, symbolic, and dy-

namic analysis tools as shown in Section 4. It does not require any

particular hardware or software.

7 CONCLUSION

Protecting critical program components (e.g., patented program

logic or sensitive data) is an important requirement in software

systems. In this paper, we present Ambitr, a novel technique that

hides critical program components via a sophisticated state machine

based translator called Ambiguous Translator. It imposes fundamen-

tal challenges to state-of-the-art program analysis techniques by

adding a new dimension of the challenge: ambiguity. Our evaluation

of the comparisonwith a diverse set of state-of-the-art analysis tech-

niques, including dynamic, static, and symbolic execution, shows

that Ambitr is effective in hiding critical program components.

ACKNOWLEDGMENTS

We thank the anonymous referees for their constructive feedback.

The authors gratefully acknowledge the support of NSF 1916499,

1908021, 2047980, 1850392, 1853374, 1924777, 2145616, and 2047980.

This research was also partially supported by a Mozilla Research

Award, a Facebook Research Award, and a gift from Cisco Sys-

tems. Any opinions, findings, and conclusions or recommendations

expressed in this material are those of the authors and do not nec-

essarily reflect the views of the sponsor.

REFERENCES
[1] Hiralal Agrawal and Joseph R. Horgan. 1990. Dynamic Program Slicing. SIGPLAN

Not. 25, 6 (June 1990), 246ś256. https://doi.org/10.1145/93548.93576
[2] Christian Ammann. 2012. Hyperion: Implementation of a PE-Crypter.
[3] David E Bakken, R Rarameswaran, Douglas M Blough, Andy A Franz, and Ty J

Palmer. 2004. Data obfuscation: Anonymity and desensitization of usable data
sets. IEEE Security & Privacy 2, 6 (2004), 34ś41.

[4] Gogul Balakrishnan and Thomas Reps. 2004. Analyzing Memory Accesses in x86
Executables. In Compiler Construction, Evelyn Duesterwald (Ed.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 5ś23.

[5] Sebastian Banescu, Christian Collberg, Vijay Ganesh, Zack Newsham, and Alexan-
der Pretschner. 2016. Code Obfuscation against Symbolic Execution Attacks. In
Proceedings of the 32nd Annual Conference on Computer Security Applications (Los
Angeles, California, USA) (ACSAC ’16). Association for Computing Machinery,
New York, NY, USA, 189ś200. https://doi.org/10.1145/2991079.2991114

[6] Cristian Barría, David Cordero, Claudio Cubillos, and Robinson Osses. 2016.
Obfuscation procedure based in dead code insertion into crypter. In 2016 6th
International Conference on Computers Communications and Control (ICCCC).
IEEE, 23ś29.

[7] BDLeet. 2016. GitHub - BDLeet/public-shell: Some Public Shell. https://github.c
om/BDLeet/public-shell.

[8] Bart Blaze. 2019. GitHub - bartblaze/PHP-backdoors: A collection of PHP back-
doors. https://github.com/bartblaze/PHP-backdoors.

[9] David Brumley, Cody Hartwig, Zhenkai Liang, James Newsome, Dawn Song, and
Heng Yin. 2008. Automatically identifying trigger-based behavior in malware.
In Botnet Detection. Springer, 65ś88.

[10] Jerry R Burch, Edmund M Clarke, Kenneth L McMillan, David L Dill, and Lain-
Jinn Hwang. 1992. Symbolic model checking: 1020 states and beyond. Information
and computation 98, 2 (1992), 142ś170.

[11] Juan Manuel Martinez Caamaño and Serge Guelton. 2018. Easy::Jit: Compiler
Assisted Library to Enable Just-in-Time Compilation in C++ Codes. In Conference
Companion of the 2nd International Conference on Art, Science, and Engineering
of Programming (Nice, France) (Programming’18 Companion). Association for
Computing Machinery, New York, NY, USA, 49ś50. https://doi.org/10.1145/3191
697.3191725

[12] Haibo Chen, Liwei Yuan, Xi Wu, Binyu Zang, Bo Huang, and Pen-chung Yew.
2009. Control flow obfuscation with information flow tracking. In Proceedings of
the 42nd Annual IEEE/ACM International Symposium on Microarchitecture. ACM,
391ś400.

[13] Binlin Cheng, Jiang Ming, Jianmin Fu, Guojun Peng, Ting Chen, Xiaosong
Zhang, and Jean-Yves Marion. 2018. Towards Paving the Way for Large-
Scale Windows Malware Analysis: Generic Binary Unpacking with Orders-of-
Magnitude Performance Boost. In Proceedings of the 2018 ACM SIGSAC Con-
ference on Computer and Communications Security (Toronto, Canada) (CCS
’18). Association for Computing Machinery, New York, NY, USA, 395ś411.
https://doi.org/10.1145/3243734.3243771

11



ICSE ’22, May 21ś29, 2022, Pittsburgh, PA, USA Chijung Jung, Doowon Kim, An Chen, Weihang Wang, Yunhui Zheng, Kyu Hyung Lee, and Yonghwi Kwon

[14] Binlin Cheng, Jiang Ming, Erika A Leal, Haotian Zhang, Jianming Fu, Guojun
Peng, and Jean-Yves Marion. 2021. Obfuscation-Resilient Executable Payload
Extraction From Packed Malware. In 30th USENIX Security Symposium (USENIX
Security 21).

[15] Edmund M Clarke, William Klieber, Miloš Nováček, and Paolo Zuliani. 2011.
Model checking and the state explosion problem. In LASER Summer School on
Software Engineering. Springer, 1ś30.

[16] Christian Collberg, Clark Thomborson, and Douglas Low. 1998. Manufacturing
cheap, resilient, and stealthy opaque constructs. In Proceedings of the 25th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages. ACM,
184ś196.

[17] Johannes Dahse and Jörg Schwenk. 2010. RIPS-A static source code analyser for
vulnerabilities in PHP scripts. Retrieved: February 28 (2010), 2012.

[18] Biniam Fisseha Demissie, Mariano Ceccato, and Roberto Tiella. 2015. Assessment
of Data Obfuscation with Residue Number Coding. In Proceedings of the 1st
International Workshop on Software Protection (Florence, Italy) (SPRO ’15). IEEE
Press, 38ś44.

[19] Zhui Deng, Brendan Saltaformaggio, Xiangyu Zhang, and Dongyan Xu. 2015.
iris: Vetting private api abuse in ios applications. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security. 44ś56.

[20] Derick Rethans. 2009. Variable tracing with Xdebug Ð Derick Rethans. https:
//derickrethans.nl/variable-tracing-with-xdebug.html.

[21] Derick Rethans. 2020. Xdebug - Debugger and Profiler Tool for PHP. https:
//xdebug.org/.

[22] dwyl. 2019. A text file containing 479k English words. https://github.com/dwyl/
english-words.

[23] Evi1cg. 2019. GitHub - Ridter/Pentest. https://github.com/Ridter/Pentest.
[24] Aurore Fass, Michael Backes, and Ben Stock. 2019. Hidenoseek: Camouflaging

malicious javascript in benign asts. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security. 1899ś1913.

[25] Daniele Filaretti and Sergio Maffeis. 2014. An executable formal semantics of
PHP. In European Conference on Object-Oriented Programming. Springer.

[26] Maurice Fonk. 2019. GitHub - naneau/php-obfuscator: an "obfuscator" for
PSR/OOp PHP code. https://github.com/naneau/php-obfuscator.

[27] Heilan Yvette Grimes. 2015. Eir - Static Vulnerability Detection in PHP Applica-
tions. (2015).

[28] David Hauzar and Jan Kofroň. 2014. WeVerca: Web Applications Verification for
PHP. In International Conference on Software Engineering and Formal Methods.
Springer, 296ś301.

[29] Cristian Barría Huidobro, David Cordero, Claudio Cubillos, Héctor Allende Cid,
and Claudio Casado Barragán. 2018. Obfuscation procedure based on the inser-
tion of the dead code in the crypter by binary search. In 2018 7th International
Conference on Computers Communications and Control (ICCCC). IEEE, 183ś192.

[30] Imperva. 2021. Data Obfuscation. https://www.imperva.com/learn/data-
security/data-obfuscation/.

[31] Torben Jensen, Heine Pedersen, Mads Chr Olesen, and René Rydhof Hansen.
2012. Thaps: automated vulnerability scanning of php applications. In Nordic
conference on secure IT systems. Springer, 31ś46.

[32] Ryan Johnson and Angelos Stavrou. 2013. Forced-path execution for android
applications on x86 platforms. In 2013 IEEE Seventh International Conference on
Software Security and Reliability Companion. IEEE, 188ś197.

[33] Nenad Jovanovic, Christopher Kruegel, and Engin Kirda. 2006. Pixy: A static anal-
ysis tool for detecting web application vulnerabilities. In 2006 IEEE Symposium
on Security and Privacy (S&P). IEEE, 6śpp.

[34] Min Gyung Kang, Pongsin Poosankam, and Heng Yin. 2007. Renovo: A Hidden
Code Extractor for Packed Executables. In Proceedings of the 2007 ACMWorkshop
on Recurring Malcode (Alexandria, Virginia, USA) (WORM ’07). Association for
Computing Machinery, New York, NY, USA, 46ś53. https://doi.org/10.1145/1314
389.1314399

[35] Kyungtae Kim, I Luk Kim, Chung Hwan Kim, Yonghwi Kwon, Yunhui Zheng,
Xiangyu Zhang, and Dongyan Xu. 2017. J-force: Forced execution on javascript. In
Proceedings of the 26th international conference on World Wide Web. International
World Wide Web Conferences Steering Committee, 897ś906.

[36] Pascal Kissian. 2019. YAK Pro: Php Obfuscator. https://www.php-obfuscator.c
om/.

[37] Byoungyoung Lee, Yuna Kim, and Jong Kim. 2010. binOb+: a framework for
potent and stealthy binary obfuscation. In Proceedings of the 5th ACM Symposium
on Information, Computer and Communications Security. ACM, 271ś281.

[38] Young Bi Lee, Jae Hyuk Suk, and Dong Hoon Lee. 2021. Bypassing Anti-Analysis
of Commercial Protector Methods Using DBI Tools. IEEE Access 9 (2021), 7655ś
7673.

[39] Robert Lie. 2019. Simple online PHP obfuscator: encodes PHP code into random
letters, numbers and/or characters. https://www.mobilefish.com/services/php_o
bfuscator/php_obfuscator.php.

[40] Alessandro Mantovani, Simone Aonzo, Xabier Ugarte-Pedrero, Alessio Merlo,
and Davide Balzarotti. 2020. Prevalence and Impact of Low-Entropy Packing
Schemes in the Malware Ecosystem. In Network and Distributed System Security
(NDSS) Symposium, NDSS, Vol. 20.

[41] Jian Mao, Jingdong Bian, Guangdong Bai, Ruilong Wang, Yue Chen, Yinhao Xiao,
and Zhenkai Liang. 2018. Detecting malicious behaviors in javascript applications.
IEEE Access 6 (2018), 12284ś12294.

[42] Ibéria Medeiros, Nuno F Neves, and Miguel Correia. 2014. Automatic detection
and correction of web application vulnerabilities using data mining to predict
false positives. In Proceedings of the 23rd international conference on World wide
web. ACM, 63ś74.

[43] Microsoft. 2020. Z3Prover/z3: The Z3 Theorem Prover. https://github.com/Z3P
rover/z3.

[44] Jiang Ming, Dongpeng Xu, Li Wang, and DinghaoWu. 2015. Loop: Logic-oriented
opaque predicate detection in obfuscated binary code. In Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security. ACM, 757ś
768.

[45] Ondr̆ej Mirtes. 2019. GitHub - phpstan/phpstan: PHP Static Analysis Tool. https:
//github.com/phpstan/phpstan.

[46] Shoya Morishige, Shuichiro Haruta, Hiromu Asahina, and Iwao Sasase. 2017.
Obfuscated malicious javascript detection scheme using the feature based on
divided url. In 2017 23rd Asia-Pacific Conference on Communications (APCC). IEEE,
1ś6.

[47] Andreas Moser, Christopher Kruegel, and Engin Kirda. 2007. Limits of static
analysis for malware detection. In Twenty-Third Annual Computer Security Appli-
cations Conference (ACSAC 2007). IEEE, 421ś430.

[48] Abbas Naderi-Afooshteh, Yonghwi Kwon, Anh Nguyen-Tuong, Ali Razmjoo-
Qalaei, Mohammad-Reza Zamiri-Gourabi, and Jack W Davidson. 2019. MalMax:
Multi-Aspect Execution for Automated Dynamic Web Server Malware Analysis.
In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communica-
tions Security. 1849ś1866.

[49] James Newsome and Dawn Xiaodong Song. 2005. Dynamic Taint Analysis for Au-
tomatic Detection, Analysis, and SignatureGeneration of Exploits on Commodity
Software.. In NDSS, Vol. 5. Citeseer, 3ś4.

[50] Hung Viet Nguyen, Hoan Anh Nguyen, Tung Thanh Nguyen, and Tien N Nguyen.
2011. Auto-locating and fix-propagating for HTML validation errors to PHP
server-side code. In Proceedings of the 2011 26th IEEE/ACM International Confer-
ence on Automated Software Engineering. IEEE Computer Society, 13ś22.

[51] nixawk. 2018. GitHub - nixawk/fuzzdb: Web Fuzzing Discovery and Attack
Pattern Database. https://github.com/nixawk/fuzzdb.

[52] Paulo Jorge Costa Nunes, José Fonseca, and Marco Vieira. 2015. phpSAFE: A
security analysis tool for OOP web application plugins. In 2015 45th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks.

[53] Oswaldo Olivo. 2016. GitHub - olivo/TaintPHP: Static Taint Analysis for PHP
web applications. https://github.com/olivo/TaintPHP.

[54] Mathilde Ollivier, Sébastien Bardin, Richard Bonichon, and Jean-Yves Marion.
2019. How to Kill Symbolic Deobfuscation for Free (or: Unleashing the Potential
of Path-Oriented Protections). In Proceedings of the 35th Annual Computer Security
Applications Conference (San Juan, Puerto Rico, USA) (ACSAC ’19). Association
for Computing Machinery, New York, NY, USA, 177ś189. https://doi.org/10.114
5/3359789.3359812

[55] OneSourceCat. 2015. GitHub - OneSourceCat/phpvulhunter: A tool that can
scan php vulnerabilities automatically using static analysis methods. https:
//github.com/OneSourceCat/phpvulhunter.

[56] Ioannis Papagiannis, Matteo Migliavacca, and Peter Pietzuch. 2011. PHP Aspis:
using partial taint tracking to protect against injection attacks. In 2nd USENIX
Conference on Web Application Development, Vol. 13.

[57] Fei Peng, Zhui Deng, Xiangyu Zhang, Dongyan Xu, Zhiqiang Lin, and Zhendong
Su. 2014. X-force: force-executing binary programs for security applications. In
23rd USENIX Security Symposium. 829ś844.

[58] PHP. 2019. PHP: Pspell Functions. https://www.php.net/manual/en/ref.pspell.p
hp.

[59] phpencoder 2021. PHP Encoder, protect PHP scripts with SourceGuardian and
bytecode. https://www.sourceguardian.com/.

[60] Pipsomania. 2018. Best PHP Obfuscator. http://www.pipsomania.com/best_php
_obfuscator.do

[61] Igor V Popov, Saumya K Debray, and Gregory R Andrews. 2007. Binary Obfusca-
tion Using Signals. In USENIX Security Symposium. 275ś290.

[62] Paul Royal, Mitch Halpin, David Dagon, Robert Edmonds, and Wenke Lee. 2006.
PolyUnpack: Automating the Hidden-Code Extraction of Unpack-Executing Mal-
ware. In 2006 22nd Annual Computer Security Applications Conference (ACSAC’06).
289ś300. https://doi.org/10.1109/ACSAC.2006.38

[63] Dewhurst Ryan. 2011. Implementing basic static code analysis into integrated
development environments (ides) to reduce software vulnerablitilies. A Report
submitted in partial fulfillment of the regulations governing the award of the
Degree of BSc (Honours) Ethical Hacking for Computer Security at the University of
Northumbria at Newcastle 2012 (2011).

[64] Sebastian Schrittwieser, Stefan Katzenbeisser, Peter Kieseberg, Markus Huber,
Manuel Leithner, Martin Mulazzani, and EdgarWeippl. 2013. Covert computation:
Hiding code in code for obfuscation purposes. In Proceedings of the 8th ACM
SIGSAC symposium on Information, computer and communications security. ACM,
529ś534.

12



Hiding Critical Program Components via Ambiguous Translation ICSE ’22, May 21ś29, 2022, Pittsburgh, PA, USA

[65] Design Security. 2016. GitHub - designsecurity/progpilot: A static analysis tool
for security. https://github.com/designsecurity/progpilot.

[66] Monirul I Sharif, Andrea Lanzi, Jonathon T Giffin, andWenke Lee. 2008. Impeding
Malware Analysis Using Conditional Code Obfuscation.. In NDSS.

[67] Brendan Sheridan and Micah Sherr. 2016. On Manufacturing Resilient Opaque
Constructs Against Static Analysis. In European Symposium on Research in Com-
puter Security. Springer, 39ś58.

[68] Guillermo Suarez-Tangil, Juan E Tapiador, Flavio Lombardi, and Roberto Di Pietro.
2014. Thwarting obfuscated malware via differential fault analysis. Computer 47,
6 (2014), 24ś31.

[69] themida 2021. Oreans Technologies. https://www.oreans.com/Themida.php.
[70] Xabier Ugarte-Pedrero, Davide Balzarotti, Igor Santos, and Pablo Bringas. 2016.

RAMBO: Run-Time Packer Analysis with Multiple Branch Observation. 186ś206.
https://doi.org/10.1007/978-3-319-40667-1_10

[71] Antti Valmari. 1998. The State Explosion Problem. In Lectures on Petri Nets I: Basic
Models, Advances in Petri Nets, the Volumes Are Based on the Advanced Course on
Petri Nets. Springer-Verlag, London, UK, UK, 429ś528. http://dl.acm.org/citation.
cfm?id=647444.727054

[72] Bart van Arnhem. 2017. GitHub - bartvanarnhem/phpscan: Symbolic execution
inspired PHP application scanner for code-path discovery. https://github.com/b
artvanarnhem/phpscan.

[73] Vimeo. 2019. GitHub - vimeo/psalm: A static analysis tool for finding errors in
PHP applications. https://github.com/vimeo/psalm.

[74] VirusShare. 2019. VirusShare.com. https://virusshare.com/.
[75] Zhi Wang, Jiang Ming, Chunfu Jia, and Debin Gao. 2011. Linear obfuscation to

combat symbolic execution. In European Symposium on Research in Computer

Security. Springer, 210ś226.
[76] Zhi Wang, Jiang Ming, Chunfu Jia, and Debin Gao. 2011. Linear Obfuscation to

Combat Symbolic Execution. In Proceedings of the 16th European Conference on
Research in Computer Security (Leuven, Belgium) (ESORICS’11). Springer-Verlag,
Berlin, Heidelberg, 210ś226.

[77] Mark Weiser. 1981. Program Slicing. In Proceedings of the 5th International
Conference on Software Engineering (San Diego, California, USA) (ICSE ’81). IEEE
Press, 439ś449.

[78] JeffreyWilhelm and Tzi-cker Chiueh. 2007. A forced sampled execution approach
to kernel rootkit identification. In International Workshop on Recent Advances in
Intrusion Detection. Springer, 219ś235.

[79] Dongpeng Xu, Jiang Ming, and Dinghao Wu. 2017. Cryptographic function
detection in obfuscated binaries via bit-precise symbolic loop mapping. In 2017
IEEE Symposium on Security and Privacy (SP). IEEE, 921ś937.

[80] Babak Yadegari and Saumya Debray. 2015. Symbolic Execution of Obfuscated
Code. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Com-
munications Security (Denver, Colorado, USA) (CCS ’15). Association for Com-
puting Machinery, New York, NY, USA, 732ś744. https://doi.org/10.1145/281010
3.2813663

[81] Quan Yang. 2019. GitHub - quanyang/Taint-em-All: A taint analysis tool for the
PHP language. https://github.com/quanyang/Taint-em-All.

[82] yodap 2021. Yoda’s Protector. https://sourceforge.net/projects/yodap/.
[83] zendguard 2021. Protect PHP Code With Zend Guard. https://www.zend.com/p

roducts/zend-guard.

13


	Abstract
	1 Introduction
	2 Positioning and Background
	2.1 Definition
	2.2 Positioning
	2.3 Existing Techniques for Hiding CPC
	2.4 Desirable Properties

	3 Design
	3.1 Overview and Intuition
	3.2 Composing Ambitr

	4 Evaluation
	4.1 Applicability
	4.2 Automated Analysis of Ambitr
	4.3 Reverse Engineering Ambitr

	5 Discussion
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

