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ABSTRACT

Software systems may contain critical program components such as
patented program logic or sensitive data. When those components
are reverse-engineered by adversaries, it can cause significantly
damage (e.g., financial loss or operational failures). While protecting
critical program components (e.g., code or data) in software sys-
tems is of utmost importance, existing approaches, unfortunately,
have two major weaknesses: (1) they can be reverse-engineered via
various program analysis techniques and (2) when an adversary
obtains a legitimate-looking critical program component, he or she
can be sure that it is genuine.

In this paper, we propose AMBITR, a novel technique that hides
critical program components. The core of AMBITR is Ambiguous
Translator that can generate the critical program components when
the input is a correct secret key. The translator is ambiguous as it
can accept any inputs and produces a number of legitimate-looking
outputs, making it difficult to know whether an input is correct
secret key or not. The executions of the translator when it processes
the correct secret key and other inputs are also indistinguishable,
making the analysis inconclusive. Our evaluation results show that
static, dynamic and symbolic analysis techniques fail to identify the
hidden information in AMBITR. We also demonstrate that manual
analysis of AMBITR is extremely challenging.

CCS CONCEPTS

+ Security and privacy - Software security engineering; Soft-
ware reverse engineering.
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1 INTRODUCTION

Software systems often contain critical program components such
as classified, sensitive, or proprietary code or data, which we call
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Critical Program Components (or CPC). For example, patented pro-
gram logic is an example of CPC. If an adversary steals or copies a
competitor’s software system’s patented technology, it would cause
significant financial loss. Similarly, in a warfare software system
(e.g., software in a drone), a CPC can be a piece of code containing
its operational procedures, including the targets and plans. Since
an adversary can reverse-engineer a software system to reveal var-
ious critical operational secrets (e.g., targets of the military system
and target operation date) which can be used against the victim,
protecting CPCs is an essential requirement.

There are a few techniques that can be leveraged to hide critical
program components: obfuscation [5, 12, 37, 61], packing [14, 38,
40], and encryption [66, 75]. Code obfuscation techniques syntacti-
cally transform the original program’s code into another form of
code, making it difficult to be analyzed manually. Data obfuscation
techniques [3, 18, 30] change the value of data in a way that does not
change the original semantic of the data while making it difficult to
know the original value. However, both obfuscation techniques pre-
serve critical semantics, meaning that they only delay the analysis
but cannot protect the critical components. A packer compresses
or encrypts the program code and data, and stores them in a data
section of the packer’s loader program. However, it is not suitable
for hiding CPCs because it always decompresses (or decrypts) the
original program code and data at runtime.

To understand the effectiveness of the existing techniques in hid-
ing critical program components, we analyze approaches that can be
used against the obfuscation, packing, and encryption techniques.
Specifically, we observe that obfuscation techniques and packers
can be easily traced and analyzed by dynamic analysis [9, 41, 68].
While encryption-based techniques are challenging to break crypto-
graphically, the execution of the decryption function can be traced
to extract the decrypted data (i.e., the genuine critical program
components). To this end, we conclude that while the techniques
certainly raise the bar in analysis (i.e., making the analysis chal-
lenging), it is practically feasible for a persistent and determined
adversary to obtain the critical program component protected by
existing techniques. More importantly, since there is no ambiguity
in decoding and uncompression processes, the adversary knows
that the CPC is undoubtedly correct when obtained.

In this paper, we propose a novel technique, AMBITR, that aims to
hide critical program components against adversaries with access
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to the target program. Specifically, we hide critical program com-
ponents (e.g., program code or data) by encoding the components
to a complex state-machine. Given a correct secret key, the state-
machine generates the genuine critical program components (e.g.,
program code or data). The key difference between AMBITR and
existing techniques is that AMBITR can take the incorrect secret key
as input and generate legitimate-looking CPCs, making it difficult
to determine whether the given input is the correct secret key or
not. Unlike a typical state-machine, AMBITRs state-machine allows
a transition on any inputs even if it does not match the transition’s
input (i.e., a typical state-machine will raise an error if it does not
match). The differences between the state transition’s input and
the given input are then used to generate output different from the
state transition’s output. This significantly enlarges the input/out-
put space of a state transition in AMBITR. With the state-machine,
AMBITR introduces a unique challenge to the adversary, Ambiguity,
meaning that even if the adversary identifies a legitimate-looking
output from AMBITR, the adversary does not know whether the out-
put is the genuine critical program component. To this end, with
the sophisticated construction of our state-machine, the critical
program component hidden by AMBITR is extremely challenging
to be identified. Moreover, even when some possible outputs are
identified, one cannot know which output is the genuine CPC.

Our contributions are summarized as follows:

e We analyze limitations of existing techniques aiming to hide pro-
gram code, and investigate a possibility of adding a new challenge:
ambiguity.

e We propose AMBITR, which can hide critical program components
(CPCs) through a sophisticated translation technique that accepts
any inputs and generates multiple plausible CPCs that are not
distinguishable from the genuine CPC.

e We perform a thorough evaluation using state-of-the-art dy-
namic, static, and symbolic analysis tools to demonstrate Am-
BITR’s resilience to reverse-engineering attempts.

2 POSITIONING AND BACKGROUND

2.1 Definition

Critical Program Component (CPC). We define Critical Pro-
gram Component as a piece of code or data that contains critical
program logic or information, which is not desirable to be known to
the adversary. It is important to mention that, in our context, while
the adversary knows that there is a CPC hidden in the program,
he or she does not know what the CPC should be. In other words,
given a set of plausible CPC examples, the adversary does not know
which one is the correct CPC. In this paper, we aim to prevent the
adversary from identifying and pinpointing the correct CPC.

2.2 Positioning

Typical Usage Scenario. Figure 1 illustrates how AMBITR oper-
ates under a typical usage scenario of our research. Specifically, in
a target program, we use our Ambiguous Translator to hide a criti-
cal program component. At runtime, it receives an input from an
external source such as network (€)), and feeds it to the ambiguous
translator (@) which generates outputs according to the input. If
the input is the correct secret key, the genuine CPC is generated
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(@). On other inputs, our ambiguous translator still produces valid
outputs without failing. In particular, on certain specialized inputs,
decoy CPCs that are indistinguishable from the genuine CPC are
generated (@). Finally, the outputs (i.e., CPCs) are processed or
executed, if its type is an executable code (@).
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Figure 1: Assumed Scenario and Scope of the Research.

Adversary Model and Scope. In this work, we assume the adver-
sary has access to previous inputs and the target program’s code,
including our ambiguous translator’s logic (@). The adversary can
also run the program with any inputs including the obtained previ-
ous inputs. The goal of AMBITR is to prevent the adversary from
identifying the secret input that can generate the genuine CPC
without a doubt (@)). To achieve the goal, AMBITR can generate
outputs including the genuine CPC and decoy CPCs that are indis-
tinguishable from each other (@). The execution of the ambiguous
translator when it generates the original or decoy CPCs is also
indistinguishable, as well as the processing or execution of the
generated CPCs (@).

We assume that the previous inputs might exist in a network log
and are available to the adversary. However, the adversary does
not know what is the secret input, from the obtained previous
input. Some of the inputs may generate decoy CPCs. We assume
that target program’s behaviors and execution for processing and
executing the CPCs are not distinguishable. Otherwise, the code
can be traced to identify which input generates the genuine CPC. If
the original target program should execute different program code,
such code should be included in the executable CPC. We assume
the adversary can leverage various static and dynamic analysis
techniques to analyze our ambiguous translator. We consider our
approach is successful if the adversary fails to pinpoint the genuine
CPC, even if many (or even all) valid CPCs are identified.

2.3 Existing Techniques for Hiding CPC

A few techniques can be leveraged to hide a CPC in a program.
Specifically, the columns in Table 1 present the techniques while
each row of the table shows program analysis approaches that can
be used to identify CPCs. Symbols represent the effectiveness of
the program analysis approaches against each technique.
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Table 1: Effectiveness of Existing Techniques and AMBITR
against Program Analysis Approaches.

Obfuscators ~ Packers/Crypters Protectors ~AMBITR
2 2

Static Analysis [ J o [ ]
Symbolic Analysis o' [ [ [
Dynamic Analysis o o [ ] [ ]

Forced Execution (6] O o [ ]

O : Ineffective, @ : Less effective, @ : Effective (against analyses).

: Static/symbolic analysis techniques have difficulty handling advanced
obfuscators (with multiple layers of obfuscations) due to state explosion,
while they can handle simple obfuscators.

: Static analysis may handle known crypto algorithms while it may not
generically handle them (hence half-filled circled, meaning that effective
on some but not all).

—_

[\

2.3.1 Obfuscators. Obfuscation techniques [3, 5, 12, 16, 18, 24,
30, 37, 47, 54, 61, 64, 67, 76] aim to make the original code diffi-
cult to analyze by leveraging techniques including opaque predi-
cates [16, 47, 67], code insertion/replacement [5, 24, 37, 54, 61, 76],
and hardware primitives [12, 64].

Limitations. Obfuscation techniques that transform code into se-
mantically equivalent forms or add non-essential code (e.g., opaque
predicates and dummy code) [5, 16, 24, 37, 47, 54, 61, 67, 76] can be
handled by automatically reverting or removing the modified/added
code via program analysis techniques [33, 44, 49, 53, 80, 81]. De-
pending on the obfuscation techniques used, static and symbolic
analysis may suffer from the complexity of the analysis, meaning
that they might not be always effective, as described in Table 1.
Typically, dynamic analysis (including forced execution [57]) tech-
niques are highly effective in handling the obfuscation techniques.
While data obfuscation techniques [3, 18, 30] change the values of
data, their critical semantics are preserved and can be traced and
identified by both static and dynamic analysis [46, 79].

2.3.2  Packers/Crypters. Packers [14, 38, 40] primarily aim to hinder
static analysis. Specifically, they create a program containing com-
pressed original program as data, that uncompresses and executes
the original program at runtime. Crypters [2, 6, 29] are essentially
advanced packers using crypto techniques to hide the program data
and code. Due to the complexity of compression and encryption,
static and symbolic analysis are not effective as shown in Table 1.
In particular, symbolic analysis suffers from state explosion due to
the complex computations of encryption schemes.

Limitations. Since a packer generated program seamlessly un-
packs and executes the original code at runtime, dynamic analysis
(i.e., executing the binary and extracting the uncompressed pro-
gram) [13, 34, 62] can obtain the original program.

2.3.3  Protectors. Protectors [59, 69, 82, 83] are essentially advanced
packers/crypters equipped with evasive anti-analysis techniques
such as terminating the execution if they detect reverse-engineering
attempts (e.g., running the program with a debugger). Similar to
packers/crypters, since the program itself is compressed and en-
crypted, static and symbolic analyses are not effective, as described
in Table 1. Specifically, symbolic and concolic analyses can be used
to avoid the evasive techniques by extracting and solving the eva-
sive predicate conditions. However, they are difficult to scale to the
programs generated by protectors. Moreover, dynamic analysis is
ineffective because of the evasive techniques.
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Limitations. Forced execution techniques [19, 32, 35, 57, 78] aim
to handle evasive techniques by forcibly executing branches regard-
less of the predicate conditions. Most protectors can be handled
by the forced execution techniques. Note that since the forced exe-
cution techniques forcibly execute program code regardless of the
predicate conditions, they may fail to handle an advanced protec-
tor which uses predicate conditions for both evasive techniques
and decryption (i.e., decryption logic is dependent on the predicate
conditions). However, by observing the predicate conditions and
executions of the program, it is straightforward to tune the anal-
ysis technique to handle such advanced protectors (e.g., one can
selectively solve such a critical predicate with symbolic execution
to handle the limitation) [70].

2.4 Desirable Properties

We present four desirable properties of a CPC hiding techniques:
Evasiveness, Complexity, Context-Sensitivity, and Ambiguity.
From Existing Literature. For the first three properties, we iden-
tify and summarize them from existing literature. Note that prior
literature does not explicitly present the properties. They are only
implicitly mentioned individually (e.g., evasiveness in [80], complex-
ity in [5], context-sensitivity in [40, 44]). We systematically studied
prior literature to establish the desirable properties. In particular,
from program analysis papers [33, 44, 80], we mainly focus on the
challenges, e.g., state-explosion caused by complexity, they pointed
out. From anti-program analysis techniques [5, 24, 40, 54, 64], we
pay attention to the approaches proposed by them to hinder the
analysis (e.g., evasive tactics [54]). We believe the four properties
thoroughly cover the core properties across the literature.

New Desired Property: Ambiguity. We introduce a new desir-
able characteristic: Ambiguity (details in Section 2.4.4).

24.1 Evasiveness. Programs that are highly evasive (e.g., programs
with a number of evasive predicates) impose significant challenges
to symbolic and dynamic analysis. For dynamic analysis, knowing
a number of concrete inputs that can cover all the evasive predi-
cates is challenging. For symbolic analysis, an excessive number
of predicates and complex predicate conditions cause the scala-
bility problem (i.e., taking too much time making the technique
practically unusable).

2.4.2 Complexity. Static and symbolic analyses have difficulty
analyzing programs with complex operations. Typical examples
are packed/encrypted programs. Static and symbolic analyses can
reverse-engineer the uncompression/decryption process. However,
they fail to scale complex algorithms (e.g., a crypto algorithm).

2.4.3 Context-sensitivity. Some programs have context-sensitive
code, meaning that their behaviors are dependent on a particu-
lar program execution path. Since there are a large number of
program paths, it is common for static analysis to conduct context-
insensitive analysis. Symbolic analysis aims to discover various
execution contexts; hence often suffers from the excessive number
of program execution paths, causing the path explosion. Forced
execution solves the path explosion problem by forcibly executing
code guarded by branches. However, due to the ignored branch out-
comes which lead to incorrect context, the results of the execution
may not be precise.
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There is only one correct key that can successfully decrypt
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Figure 2: Existing Techniques are NOT Ambiguous.

2.4.4 Ambiguity. When an adversary obtains a successfully de-
coded/decrypted CPC, if the adversary can certainly say the CPC
is genuine, we consider the technique is not ambiguous. In other
words, if the adversary cannot determine whether the CPC is cor-
rect or not, we consider the technique has the ambiguity property.
Specifically, obfuscators do not go through a decoding process,
meaning that executing the obfuscated program would expose the
critical program components. Packers/crypters/protectors typically
store the compression/encryption key for the critical program com-
ponent in the programs. Hence, running the program, without any
particular input, would expose the CPC. Advanced crypters/pro-
tectors often store the key for CPC in a separate place, making
it challenging to decrypt. Similar to AMBITR, an application may
receive the key via the Internet.

Assume that an adversary obtains a few keys from the network
traffic logs, and try them to the program. Figure 2 describes an
example scenario with three different keys, where Key 1 is correct
and Key 2 and 3 are incorrect. Unlike AMBITR, existing crypters/pro-
tectors are not ambiguous, meaning that the decoding/decryption
will be only successful with Key 1 and all other keys (e.g., Key 2
and 3) will result in errors. As a result, observing any successful
decryption with a key implies that the decrypted CPC are genuine.

Table 2: Properties in Existing Techniques and AMBITR.

Obfuscators  Packers/Crypters Protectors AMBITR
Evasiveness O O o' [ ]
Complexity @ @ o ([ ]
Context-Sensitivity @] (@] o’ ([ ]
Ambiguity o O o (]

@ : High, @ : Medium, O : Low, O : No.

1: Protectors have medium evasiveness because while they detect the environment
to avoid (e.g., VM/debugger), their detection is not sophisticated.

2: Obfuscators/Packers/Crypters/Protectors use various encoding/crypto algorithms
with varying complexity, determining the complexity property. Both simple and
complex algorithms are used, leading to the medium.

3: Very few protectors are context-sensitive: e.g., using a (context-sensitive)
variable as a decryption key.

Summary of Desirable Properties. Table 2 shows the de-
sirable properties in existing techniques and AMBITR. As dis-
cussed, none of existing techniques has the ambiguity prop-
erty. Moreover, AMBITR is more evasive, complex, and context-
sensitive than existing techniques.
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3 DESIGN

3.1 Overview and Intuition

AMBITR leverages a specialized state machine to translate input to
CPCs. The state machine is designed to accept any input values and
generate the genuine CPC or decoy CPCs depending on the input.
The state machine achieves Evasiveness and Context Sensitivity
since without knowing the particular secret key (i.e., the secret
input) for the genuine CPC, executing the state machine with other
inputs does not produce the genuine CPC. The state machine con-
tains a number of states for decoy CPCs, achieving Complexity.
Finally, the decoy CPCs and the execution of AMBITR are not dis-
tinguishable to the genuine CPC, achieving Ambiguity.

3.1.1  AmBITR versus a Typical State Machine. A typical state ma-
chine only accepts input that can make state transitions from the
current state. Hence, to understand all possible inputs (and corre-
sponding outputs), one can collect all the state transitions’ inputs
and come up with the permutations of them. Unlike traditional state
machine that should have an accepting state, AMBITR does not have
the acceptation state. It terminates when it has consumed all the
inputs. Note that AMBITR’s output is generated when a transition
happens, not at the accepting state as a traditional state-machine
does.

Figure 3-(a) shows an example state-machine. Circles and ar-
rows represent states and state transitions including input and
output of each transition (‘In’ and ‘Out’). A traditional state ma-
chine can only accept inputs that match the state transitions’ inputs.
For instance, from (@), it only accepts two inputs “blinding” and
“Reference” that make transitions to ®) and (C), respectively. The
restriction on accepted inputs essentially limits the input and out-
put space. Figure 3-(b) shows all possible inputs and outputs of the
traditional state machine from @) to ©) and (€). This can be done
by identifying all possible state transitions and inputs because any
other inputs (e.g., the last row of Figure 3-(b)) result in errors.
Inputs for CPCs is Implicit in AMBITR. Figure 3-(c) shows in-
puts and outputs that can be handled by AMBITR using the state
machine in Figure 3-(a). Note that it can handle all the inputs in
the same way the traditional state machine handles. The first row
shows an example.

AMBITR allows a CPC to be decoded by inputs that do not match
the state transitions’ inputs. The second row shows an example. The
first input “pywudh"” does not match any transition inputs from
@) “blinding” for B) and “Reference” for (C). However, as shown in
the third column, it makes a transition to (), since the distance (in
ASCII code value of each byte) between the given input and the state
transition’s input of (B) is closer than the state transition’s input of
(©. When it produces an output, it also uses the measured distance
between the input and the state transition’s input to compute a
new output value that is different from the state transition’s output.
By doing so, AMBITR’s state machine does not have restrictions on
the inputs it can take, meaning that any inputs can be accepted.
Moreover, outputs that AMBITR’s state machine can produce are
not restricted as well.

The second, third, and fourth rows in Figure 3-(c) show examples
of legitimate-looking decoy CPCs (i.e., meaningful executable code
but not the genuine CPC) from inputs that do not match any state
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(a) State Machine (‘...” represents omitted states)

Input Output State Transitions
blinding control-codes elements extended-code A->B->D
blinding corresponding elements interchanging A>B->E
Reference illustration materials manipulation A>C->E
Reference bell control-codes materials ring extended-code A>C>B->D

A>C>B->E
A - C - <Error>

Reference bell corresponding = materials ring interchanging

Reference Code materials <Error>

(b) Traditional State Machine’s State Transitions

Input Output State Transitions
blinding control-codes elements extended-code A>B->D
pywudh” "VATXf{.AR3R*I system($_GET['xx']); A>B-=>D
rmpjmf" "]c{i4B unlink($file); A>B->D
Re[l $1kb, !*0prm,$h); mail ($to, $t,$msg,Sh); A>C->E

(c) AMBITR’s State Transitions

Figure 3: Traditional State Machine vs. AMBITR.

transitions’ inputs. The three inputs have different sizes, and the
fourth row’s input leads to different state transitions (@) to (©) and
(®) from the other two. Note that many more inputs can generate
legitimate-looking outputs, and one can brute-force inputs (e.g.,
trying all possible strings for input) to enumerate them. We explain
the details of the state machine in Section 3.2.1.

3.1.2  Ambiguity in AMBITR. AMBITR introduces ambiguity in two
aspects: ambiguity in input/output and execution.

Ambiguous Input/Output. The input of AMBITR is ambiguous
because it can take any inputs even if it does not match any state
transition inputs, as shown in Figure 3-(c). When the input does
not match any state transitions, AMBITR finds a transition that has
the closest input to the provided input (in terms of ASCII code
value of each byte of input). Observe that AMBITR’s output can also
differ from the state transition’s output and is dependent on input,
meaning that the output is also ambiguous.

The ambiguity of the outputs makes the analysis inconclusive.

For example, in Figure 3-(c), the second, third, and fourth rows’
outputs are all legitimate executable code. Hence, it is challenging
to conclude which one is the genuine CPC.
Ambiguous Execution. One may use dynamic analysis to trace
the execution of AMBITR to understand whether there are any
execution differences while processing different inputs. If such a
difference exists, it can be used to infer the genuine CPC. As shown
in Algorithm 1 that describes the algorithm of AMBITR’s state ma-
chine (will be explained in Section 3.2.1), there are no predicates
and computations that behave distinctively. Hence, tracing the exe-
cution of AMBITR does not help to identify the genuine CPC.
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Algorithm 1: Algorithm of Ambiguous Translator

Input : InStr: Array of Tokenized Input String.
Output: OutStr: Output String.

1 procedure StateMachine (InStr)
// Assign the Initial State (i.e., INIT).

2 State.,, « INIT
3 while until it consumes all the tokens of InStr; the current token

is InStrq,, do
// Find the matching (or closest) transition from the current state.

4 Statepext, Tran_Inp, Tran_Out « FindTransition
(Statecyy, InStreyy)

// Change the current state

5 Statecy, < Statepex;

6 Out,y, « @

// Compute Output according to the distance between the input and
transition’s input

7 for each byte t; andt, in Tran_Inp and Tran_Out do
L //*+ is a string concatenation operator.

Out oy, < Outeyyr - Round(2, — t;)

9 OutStr « OutStr - Out

10 return OutStr

11 procedure FindTransition(State.,,, InStr,,)

12 MinScore « -1
13 for each transition tr from State.,, do
14 Score < 0
15 trp « @
16 for each byte b, of input of transition tr, and each byte b;
from InStr,, do

17 Score « Score + | by — b; |

// char() converts a number to a string, *-’ concatenates strings.
18 trp < trp - char(b; — b;)

// Finding the matching (or closest) transition.

19 if MinScore is —1 or min > score then
20 MinScore « Score
21 Tran_Inp < tra

| trnext represents the next state of the transition tr
22 Statenexs < trpext

/] troyt represents the output of the transition tr
23 Tran_Out < tryy,
24 return State,e;, Tran_Inp, Tran_Out

3.2 Composing AMBITR

AMBITR consists of two components: (1) Ambiguous Translator,
which is a piece of software that processes input according to the
state machine definition to generate a CPC (Section 3.2.1) and (2)
definition of the state machine that the Ambiguous Translator
operates (Section 3.2.2).

3.2.1 Ambiguous Translator Runtime. The core of AMBITR is the
runtime of Ambiguous Translator. It has two unique characteristics.
First, regardless of the current state and input, it always transits to
another state even the input does not match any transitions (C1).
Note that, in a typical state machine, a state transition only happens
when there is a transition that can accept the current input. Second,
when AMBITR takes inputs that do not match the existing transi-
tions, the output generated by AMBITR is also different from the
transitions’ outputs (C2). Specifically, the final output is computed
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n: “ur ymentbenefit”
In: “unemploymentbenefit
Out: “reassuringinvestors”

@_....

In: “Term/Conditions”
Out: “GenerateOutputs”

(a) Automaton

Input Output State Trans.
'118mibthay.G1'#T < $c->predict([1,2]); A>B
sjwmq_o{""hsP)6 passthru($cmd); A>B
x{pAbZItd&)y $, urldecode($str); A>B
swvqlG#-{ $\hn) fwrite($f,$cnt) A>C
phvw,V#-yIr'5 chroot($dir); A>C
ozhm QhyyYsl"A) bzdecompress(d) A>C
(b) Output Translation Results
u|n|{e|m|p|l|o|ly|/m|e|n|t|ble|n|e|f]i]t
- "J1 1|8 m|i|/blt|hlaly|.|G|1]|"|#|T <

|78] 2 |52[53 3] 3 [13[ 5|54 |-11[70]27]52|71]66]| 18] 73|56
(c) Input Delta Computation
rlelals|/s/u/r | i/njgli|njvje|s|t|lo|r]|s
- |78/ 252[53/ 3] 3 [13[ 5|5/ 4 |-11/70]27]52]71]66]| 18] 73|56

[s[cl-T>[plrfefalifclelcfral, T2]1])
(d) Output Computation

s 5

Figure 4: Examples of Dynamic Output Translation. Compu-
tations, i.e., (b) and (c), are on ASCII Code Values.

based on a concrete input at runtime. This significantly enlarges the
search space of input and output. Algorithm 1 shows its algorithm,
and we will use it to explain the details of the two characteristics.
Making Transitions on Any Inputs (C1). Ambiguous Translator
makes transitions from any states on any inputs. Specifically, for all
next reachable states from the current state, it calculates the distance
(by subtracting values from each byte offset and accumulating the
results as shown in Figure 4) between the current input and the
transitions’ inputs (FindTransition in Algorithm 1). Lines 16-18
in Algorithm 1 essentially compute the distance (Score). Then, it
selects a transition with the smallest distance (if there are multiple
ties, we pick the first one to make it deterministic) as shown in
lines 19-23 in Algorithm 1.

Dynamic Output Translation (C2). When Ambiguous Translator
makes a transition on an input that is not exactly matched with
the transition’s input, it generates output that is different from the
current state transition’s output. Specifically, it computes the new
output by applying the differences between the current input and
the current state transition’s input. This makes the output space
significantly large as the output can vary as much as the input
varies.

In Algorithm 1, one of the return values of FindTransition
(line 4) is Tran_Ina, which represents the distance between the cur-
rent input and the current state transition’s input. FindTransition
also returns the current (i.e., selected) transition’s output as Tran_Out.
Then, at lines 7-8, it computes the new output by subtracting each
byte of Tran_Inp (i.e., t;) from the transition’s output Tran_Out (i.e.,
t,). Note that there is the Round function at line 8, which essentially
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rounds the computed value to be in the visible ASCII code value
range (i.e., 32~126).

Example. Figure 4-(a) shows an automaton of a state machine
where inputs and outputs of transitions are illustrated above and
below the arrows. Figure 4-(c) describes an example computa-
tion of distances (i.e., delta) between the transition’s input (e.g.,
“unemploymentbenefit”) and the given input at runtime (e.g.,
“’118mibthay.G1’#T <”). Specifically, for each character, it sub-
tracts ASCII code values of the characters. The results are shown at
the bottom line of Figure 4-(c). We then subtract the values to the
transition’s output to derive the final output (i.e., “$c->predict (
[1,2]);”) as shown in Figure 4-(d).

Figure 4-(b) presents six examples of input and output pairs from
@ (three for (&) = (®) and the other three for &) = (©). The first
example is the one that is illustrated in Figure 4-(c) and (d). The
second and third examples show inputs for generating function
calls passthru and urldecode. The three examples show that the
same state transition, &) - ®), (with different inputs) can generate
completely different outputs (i.e., CPCs), making the translation
ambiguous.

The next three examples are generated via the transition &) ~
(©. Again, depending on the given input, it generates completely
different outputs, and those outputs are all legitimate executable
code, making it difficult to know which one is the genuine CPC.

3.22 Composing Automaton. AMBITR’s Ambiguous Translator op-
erates on an automaton, where the definition of automaton is not
particularly different from the traditional automaton. The automa-
ton consists of states and transitions between the states, where the
transitions have inputs and outputs.

States and Transitions for the Genuine CPC. We first create
states and transitions that can generate the genuine CPC. Specif-
ically, given a CPC, we tokenize the CPC to obtain a sequence of
short strings (e.g., strings of 5~10 lengths). Then we add a state that
can translate each token, and connect the individual states. The
resulting automaton is the minimum automaton that can generate
a CPC. We choose the input/output of state transitions by using a
dictionary (e.g., an English dictionary). Specifically, we randomly
pick two words for input (Wj,) and output (W) of a transition.
Then, to make sure that the transition can generate a desired token
of CPC (tokenc,,), we obtain an input candidate for CPC by com-
puting (Wj,, — (Woys — tokency,)), which is essentially reversing the
translation process.

Figure 5 shows an example. Given the same state transition used
in Figure 4, we choose input and output from a dictionary. In this
example, we concatenate two words, “unemployment” and “benefit”
for input and “reassuring” and “investors” for output, as shown
in Figure 5-(a). Then, given a token string, to translate shown in
Figure 5-(b), we first compute W,,,; — token,,, as shown in Figure 5-
(c). We compute (W;;, — (Wyy; — tokengy,)) as shown in (d). The
outcome is the secret key that can generate the CPC token string
(tokengy,). Finally, we also run our ambiguous translator to check
whether the secret input can generate the CPC token. Note that due
to the rounding in the translation process (line 8 in Algorithm 1),
some secret keys obtained by the above process cannot generate the
CPC token string. If this happens, we choose another input/output
pair and repeat the process until it succeeds.
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In (W;,): “unemploymentbenefit” -
> .
@ Out (W,,,): “reassuringinvestors” B $e->predict([1,2D);
(b) CPC Token String

(a) Automaton

r‘easls u‘rli‘nlgiln vlels[tlo rls
- [slcl-[>Tplrfeldlilcfefcfrfaf. J2[1])[;]
78] 2 [52/53[ 3] 313554 ]-11/70]27]52]71]66]18]73 56

(c) Delta Computation
u‘nemlpl‘()ly‘m[un[tl)[el]ﬂc[f i[t
- [78] 2[52]53]3[3[13] 5] 5|4 -11]70]27]52]71]66] 18] 73|56
Jrfalsmlilb[cfnlaly Tcla] [#][T] [<

(d) Secret Input Computation

Figure 5: Identifying Secret Key for a CPC Token.

Unnecessary States and Transitions. We then add extra states
and transitions between all states to hinder analysis attempts of
the state machine. Dummy transitions connect all states (not only
dummy states), making AMBITR more difficult to analyze. Note
that the dummy states and transitions are used to translate decoy
(i.e., fake) CPCs. Inputs/outputs of the transitions to the dummy
states are chosen in a way that the inputs of all transitions look
similar, making it challenging to know which transitions are for the
genuine CPC. Specifically, for each newly added transition, its input
is derived by choosing a similar word (i.e., synonyms/antonyms in
dictionaries [22, 58]) to its neighboring transition’s input.

4 EVALUATION

In this section, we present various experimental results to show
the effectiveness of AMBITR in comparison with existing state-of-
the-art techniques and analysis tools. In particular, we evaluate
AMBITR in terms of evasiveness (via dynamic analysis tools in
Section 4.3.1), complexity (via static analysis tools in Section 4.3.2
and Section 4.3.3), and the context-sensitivity (Section 4.3.4).
Implementation. We implement our AMBITR creator in Python
(1,322 LOC). It generates AMBITR, written in PHP (2,314 LOC ex-
cluding lines for the transition inputs and outputs).

Ambiguous Translator Configuration. For the evaluation, Am-
biguous Translator is configured to create binary samples with at
least more than 300 nodes and each node has at least 5 edges.

Table 3: AMBITR Instances Statistics.

Size of #of Avg.Size of Avg. # of Avg. # of
CPCs (Avg.) Samples AMBITR States Transitions
0~10 KB (2.7 KB) 345 27.36 KB 603.6 4,843.4
10~20 KB (14.5 KB) 99 77.72 KB 2,476.1 19,194.7
20~30 KB (24.0 KB) 39 130.15 KB 4,012.8 32,3349
30~40 KB (34.7 KB) 56 175.81 KB 5,671.7 45,659.0
40~50 KB (43.7 KB) 34 209.71 KB 7,209.5 58,124.1

4.1 Applicability

To understand whether AMBITR can be created by various input/out-
put pairs, we collect 573 code snippets and programs from popular
repositories [7, 8, 23, 51, 74]. Note that for AMBITR, those input
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CPCs are simply strings, and values of the inputs do not affect
AMBITR’s performance.

We successfully generate AMBITR instances for all 573 collected
samples as shown in Table 3. Given the secret input, they all suc-
cessfully generate CPCs as expected. We categorize them by the
samples’ sizes (with an interval value of 10 KB). The sizes of Am-
BITR are larger than the original samples (we apply compression,
e.g., gzip, to reduce the size of AMBITR). Except for the first group,
the size of AMBITR is about 5 times larger than the original sample.

4.2 Automated Analysis of AMBITR

We compare AMBITR with state-of-the-art obfuscation/protector
techniques to show AMBITR effectively hides CPCs. In particular, we
use a forced execution technique MalMax [48] as it can effectively
expose CPCs hidden by existing techniques (see Table 1).
Obfuscators/Protectors Selection. Four state-of-the-art PHP ob-
fuscators and two crypters/protectors are chosen based on their
popularity. Obfusactors include PHP Obfuscator [26], YAK Pro [36],
Best PHP Obfuscator [60], and Simple Online PHP Obfuscator [39].
Crypters/protectors include Zend Guard [83] and PHP Encoder [59].
Result. As discussed in Section 1, obfuscators do not require any
particular input or environment to decode and run the genuine CPC.
Even without the forced execution technique (MalMax), we observe
the CPC’s execution by simply running them. For Zend Guard and
PHP Encoder, it requires the encryption key to be accessible via
network. We use MalMax to run the programs protected by Zend
Guard and PHP Encoder, without encryption key access. Initially,
they all fail to execute. Then, we try an incorrect key by creating
another key from Zend Guard and PHP Encoder. The wrong key
is essentially a key for another program. As expected, the wrong
key results in failed executions for all samples because the existing
techniques are not ambiguous (as shown in Figure 2).

Then, we use a correct key (obtained by tracing network com-
munications when it runs without errors). We run MalMax again
with the correct key, and all samples are successfully decrypted
and expose CPCs. As discussed in Section 2.4.4, the fact that it can
successfully execute indicates that the identified CPCs are genuine.

We also use MalMax to analyze AMBITR protected samples. How-
ever, MalMax fails to expose any of CPCs from the samples. This
is because MalMax focuses on executing all statements without
precisely identifying the key secret inputs. Simply executing all
statements of a target is not sufficient for analyzing AMBITR. More-
over, while the execution of AMBITR under MalMax is incorrect,
AMBITR does not cause any errors or observable behavior differ-
ences. Some generated outputs are not valid while there are still
many seemingly valid outputs looks like CPCs, causing ambiguity
in analysis. Even one can observe the genuine CPC (e.g., having a
network trace of the input leading to the genuine CPC), knowing
whether the observed CPC is the original is not verifiable.

4.3 Reverse Engineering AMBITR

We evaluate AMBITR from a reverse-engineer’s perspective in
terms of how difficult to reveal the genuine CPC using various
program analysis tools manually. In the following subsections, we
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1 for($i = 0; $i < ...; $i++) 21 $cur_state = STO;

2 define("sT$i", $i); 22 while(1) { ST1

3 define("CUR_STATE", 0); 23 $tran = find_transition($state_tbl, $cur_state, $input);

4 define("INPUT", H 24 $cur_state = $state_tbl[$tran] [NEXT_STATE]; N1

5 define("OUTPUT", 2); 25 $result .= dynamic_translate( $state_tbl[$tran][INPUT], 9 9

6 define("NEXT_STATE", 3) 26 $state_tbl[$tran][OUTPUT], = 5 & 5
7 27 $input); E SRS IS
8 $state_tbl = array( 28 } §§ g 8;-
9 29 function dynamic_translate($in, $out, $cur_in) { = & oY [
10 30 for( $i = @; $i < strlen($cur_in); $i++) =4 ; B E
11 31 $ret .= chr(ord($out[$i]) - ®© 3'8) &
12 32 (ord($in[$i]) - ord($cur_in[$i]))); & el
13 array(STe, "states", "urdonk", ST1), 33 return $ret; s
14 array(STe, "prince", "drunks", ST2), 34 } In: “costinfisco” 2
15 array(ST1, "celestiala", "7GZ~mp3.es", ST3), 35 function find_transition($state_tbl, $cur_state, $in) {

16 array(ST1, "systematia", "83s|png.ez", ST3), 36 foreach ( $state_tbl[...] as $next_transition ) ST3

Out: “wxp.zwl1*30”
In: “fiscaltable”

17 array(ST3, "costinfisco", "wxp.zwl*3@", ST2), 37 for ( $j = @; $j < strlen($in); $j++ ) - —
18 array(ST2, "fiscaltable", "ubuntu|+@F", ST3), 38 $d[...] += abs(ord($state_tbl[...][$j]) - ord($in[$j])) Out: “ubuntu | +0F
19 ... 39 return index( min( $delta ) );

20 ); 40 } (b) State Machine

(a) Source Code of the Example Ambiguous Translator

(Red arrows are the transitions generate
the genuine CPC. STO is an initial state)

Figure 6: Simplified Source Code of Ambiguous Translator (in PHP).

assume that the reverser obtains a sample of AMBITR without know-
ing the intended input that generates output.

4.3.1 Dynamic Analysis. We assume a scenario that the reverser
attempts to use Xdebug [21] to monitor its execution. Xdebug is a
PHP debugging extension, providing various debugging primitives
such as step-debugging (i.e., single-stepping), variable dumps, and
stack traces. Specifically, it traces variables that are used to compute
outputs from inputs [20], similar to program slicing [1, 77].
Analyzing Executed Statements. The reverser traces all state-
ments that read and write inputs and values that are computed
from inputs (i.e., values that are data dependent on the inputs).
Unfortunately, as a state machine is implemented as a loop that
makes transitions according to the current input (e.g., as shown in
Figure 6-(a)), the resulting traces include most of the statements
regardless of whether the execution delivers an attack or not.
Analyzing Values from Executed Statements. The reverser also
dumps all the values of the variables used in the executed state-
ments. However, as the execution does not deliver the genuine CPC,
analyzing the values does not help.

4.3.2  Static Analysis. Static analysis tools can be used to analyze
AMBITR to identify possible output values that can be generated
by Ambiguous Translator. Specifically, the reverser uses static taint
analysis tools to find out the data flow of Ambiguous Translator.
Further, static analysis tools that can conduct a value-set analysis
(e.g., [4]) are used to infer possible values of a few key variables.
Simplified Source Code of Ambiguous Translator. Figure 6-
(a) shows a simplified version of Ambiguous Translator written in
PHP. Lines 1-6 define constants. Lines 8-20 build a state transition
table that is essentially an array of state transition rules including
current state, input/output of the transition, and next state (line
13-18). It has a loop (lines 22-28) that repeatedly finds a transition
according to the input (line 23), makes the transition (line 24), and
dynamically creates an output according to the input (line 25). The
dynamic translation is done in a function (lines 29-34). The result
is essentially a concatenated string of the dynamic outputs (line
31). Figure 6-(b) shows the ground-truth of Ambiguous Translator
shown in Figure 6-(a). It has four states (STO ~ ST3) and there are
multiple transitions among ST1, ST2 and ST3.

/
$state, tbl[l][O]
$state. lbl[2][0]
$state tbl[3][0]

$state tbl[ .J[o]

$state_tbl[0][2]
$state_tbl[1][2]
$state7tbl[2][2]

$state. th1[3][2]

_$state tbl[...][2]

\ $state_tb[0][3]

$state, tbl[l][3]

$state_tbl[2][3]
$state_tbl[3][3]
$state_tbl[...][3]

Figure 7: Data Dependency Graph by Taint Analysis.

$cur_state

$result

Backward Data Slicing via Taint Analysis. There are several
PHP static analysis tools that support taint analysis: Pixy [33],
Eir [27], Taint’em All [81], and TaintPHP [53]. Note that most of
them do not properly propagate taint tags through array and ar-
ray index operations. Hence, we reimplement Figure 6 without
using arrays so that they can effectively analyze AMBITR. Moreover,
TaintPHP [53] does not support inter-procedure analysis; hence we
inline all functions (e.g., dynamic_translate()) in AMBITR and
feed it to TaintPHP. To this end, the reverser leverages the above
four taint analysis tools to obtain a data dependency graph shown
in Figure 7. It essentially shows that the value of $result is com-
puted by $out that is again dependent on all the variables including
$input, $state_tbl arrays, $tran, and $cur_state. While this
is accurate, the result is too coarse-grained. Specifically, it shows
all the $state_tbl arrays are contributing the value of $result.
It does not provide a particular order of state transitions which is
critical in revealing attack delivering inputs. Note that one may
improve the analysis to better support arrays (i.e., array-sensitive
analysis). However, while array-sensitive analysis can improve the
granularity of the analysis (i.e., identifying data-dependencies at
an element level), it still provides the same information and does
not help identify the real CPC.

Value-set Analysis. The reverser uses three static analysis tools
for PHP: PHPStan [45], Psalm [73], and WeVerca [28]. The tools
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Table 4: Value-set Analysis Result for Key Variables.

Variable Value-Set

$tran {0, 1, 2, 3, ...}

$cur_state {STO, ST1, ST2, ST3, ... }

$ret {"urtonk", "drunks", "7GZ~mp3.gs", "83s|png.gz"
"wxp.zy|*3F", "ubuntul+OF", ... }

$result Combinations of values of $ret

implement a data flow analysis technique that can be used to build
value-set analysis, which identifies a set of possible values a vari-
able can have during the execution [4]. The reverser leverages
them to infer potential values that each variable can hold in the
AMBITR instance shown in Figure 6-(a). Table 4 shows the result
of the value-set analysis on each key variable in Figure 6-(a). In
short, the result is not an effective way to expose the genuine CPC
due to two reasons. First, while the analysis reveals all possible
inputs for $ret and $result, it simply dumps all the outputs of
the transitions in Ambiguous Translator. To analyze Ambiguous
Translator, one has to understand the order of outputs generated
by transitions rather than a set of outputs. Second, even for the
revealed outputs stated in Ambiguous Translator as shown in Ta-
ble 4, they are misleading. Those outputs are not the ones that
will be generated when an attack delivering input is provided. For
instance, the AMBITR instance in Figure 6-(a) can deliver a code snip-
pet unlink(‘/tmp/.found.txt’); when a sequence of inputs
spines, TEA [steam], and aegtconfine are provided. The inputs
dynamically transform the outputs annotated on the transitions
(i.e., urdonk, 7GZ~mp3. es, and wxp.zwl*30) into the code snip-
pets (i.e., unlink, (‘/tmp/.fo, and und.txt’) ; respectively).

4.3.3  Symbolic Execution Tools. In this section, the reverser uses
symbolic execution tools to reverse-engineer the genuine CPC
translation logic of AMBITR. Specifically, four symbolic execution
tools, THAPS [31], PHPScan [72], KPHP [25], and Symex [50] are
used. The tools aim to identify all possible inputs that can lead
to new program execution paths or states. Note that a non-array
version of AMBITR is used, as the symbolic executions fail to support
array properly.

State Explosion. None of the symbolic execution tools we used
finishes the analysis in a week due to state explosion [10, 15, 71].
Specifically, for each state, Ambiguous Translator has multiple tran-
sitions to the next states. Hence, the number of possible transition
paths grows exponentially. For instance, suppose the input has x
words requiring x state transitions, there will be 5 possible tran-
sition paths, leading to state explosion. KPHP [25] crashed after
running 7 hours 17 minutes due to insufficient memory. Further, we
create a simplified version of AMBITR that has a single transition
with a 4-byte input for each transition. The four symbolic execution
tools failed to finish the analysis within a week as well.
Experiments with Enhanced PHPScan. Since the vanilla ver-
sions of symbolic execution tools failed to analyze a very small
instance of AMBITR (with a single transition), we manually opti-
mize PHPScan [72] and use it to analyze AMBITR. Specifically, we
modify PHPScan so that it can (1) cache and reuse solved constraints,
and (2) merge and reduce multiple constraints into fewer constraints.
We use a machine with Intel i7-8550U 4.0 GHz and 16 GB RAM
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to run this experiment. We conduct two experiments. We prepare
AMBITR instances with (1) different numbers of transitions where
each transition will take 3-byte input and (2) a single transition but
with different input lengths.

1) Different numbers of transitions: As the number of transitions
increases, the number of states to explore is increased exponentially.
For instance, with a single additional transition, the number of
states becomes 10 times larger. We prepare simplified versions of
AMBITR that have 4, 5, and 6 transitions where each transition
takes 3 characters long input. We use PHPScan to analyze them. It
takes about 3 hours, 2 days, and 4 weeks to finish the analysis of
Ambiguous Translator with 4, 5, and 6 transitions, respectively. Note
that the input length (currently 3) is a root cause of state explosion.
In this example, we set it 3 for each transition.

2) Different input lengths: Dynamic output translation also causes

the state explosion. To understand its impact on the number of
states during the symbolic execution, we create a simplified version
of AMBITR with input lengths of 6, 7 and 8. Analyzing a single
transition for the input length 6 (i.e., 6 characters input) takes about
15 hours 30 minutes. Input lengths 7 and 8, which are typical lengths
of inputs in our samples, take more than 2.9 days and 13 days to
finish the analysis, respectively. This shows that analyzing even a
single transition is time-consuming.
Optimization Causing Under-approximation. Symbolic anal-
ysis, in practice, uses an optimization strategy that aims to find one
input that drives the execution to a particular point instead of enu-
merating all possible inputs. As a result, even the reverser reaches a
particular state, the identified input is unlikely an attack delivering
input. For example, in Figure 8-(a), the array $fn represents a func-
tion name. Before it’s invoked at line 6, it is constructed at lines
3-5 after satisfying multiple path conditions at line 2. Symbolic
analysis encodes the path conditions and gets one solution shown
in Figure 8-(b) from the underlying constraint solver. The execution
successfully goes into the true branch and invokes the function $£.
However, it invokes function uniqid instead of function unlink
that constitutes the genuine CPC as shown in Figure 8-(c). Given
this branch has been successfully explored, the symbolic analysis
will not try other solutions satisfying the path condition and thus
cannot discover the genuine CPC.

1 $fn = array(...); Variable  Value

2 if ($fn[e] >- 85 && $£n[1] >= 78 8& grnry (85,78,73,81,73, 68}
$fn[2] >= 73 && $fn[3] >= 81 && .
$fn[4] >= 73 && $fn[5] >= 68 ) { 3 unigid

3 foreach($fn as $c) (b) Resolved $fn[] and $f

4 $f = $f.chr($c); -

5 $f = strtolower($f); Variable  Value

6 $F(...); $fn[] {117,110,108,105,110,107}
7

¥ $f “unlink”

(a) Source Code (c) Intended $fn[] and $f

Figure 8: Symbolic Execution Exploring a Single Input.

Describing Constraints. Although the reverser can use symbolic
analysis to model the path predicates as constraints and drive the
execution to a particular program location, it is challenging to
explicitly encode the criteria of the genuine CPC as constraints (e.g.,
constraints that describe the CPC). In other words, he may not
even know what exactly he is looking for and how to describe the
logic in a way the underlying constraint solver can understand. For
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example, it is challenging because any valid statements and function
names can be potentially CPC. As a result, the satisfiable solutions
to the incomplete constraints may lead to a place of interest but
will not reveal the genuine CPC.

Empirical Experiment on the State Explosion. To understand
how difficult to analyze AMBITR with symbolic execution tech-
niques in detail, we run experiments with PHPScan [72] which
uses the z3 solver [43] for constraint solving. Note that the origi-
nal version of PHPScan was too inefficient. It failed to finish the
analysis on a very small AMBITR sample (e.g., a single transition of
4 characters long input/output) in 24 hours. Hence, we manually
improve the PHPScan’s performance by modifying it to (1) cache
and reuse already solved constraints, and (2) merge and reduce
multiple identical constraints into fewer constraints. We run the
enhanced version of PHPScan on a machine with Intel i7-8550U 4.0
GHz and 16 GB RAM.

Table 5 shows the experiment results. As shown in the “Au-
tomaton Size” columns, we created 16 different sizes Ambiguous
Translator. The size is defined as a pair of the length of input char-
acters and the number of the transition. For instance, “6 chars., 1
trans.” means a Ambiguous Translator that has a single transition
between two states, and the transition input/output is 6 characters
long. An example can be a sub state-machine of Figure 9 between
ST_0 and ST_1 (Input: “states”, Output: “urdonk”). The “# Const.”
columns present the number of constraints that should be explored
by PHPScan. The “Time” columns show the required time for the
analysis. Note that as the Ambiguous Translator gets bigger, the
number of constraints increases exponentially. In many cases (i.e.,
the gray cells), the experiments did not finish even after 10 days.
For those cases, we estimate the required time based on the number
of processed constraints and remaining (also estimated) constraints.
Observe that the enhanced version of PHPScan takes more than
10 days to analyze Ambiguous Translator instances with more than
3 transitions of 5 characters input/output (which is much smaller
than typical Ambiguous Translator we generated and used).

Figure 9 consists of 17 transitions and its average input/out-
put size is 9.64, which is much larger than the largest Ambiguous
Translator presented in Table 5 (4 transitions of 7 characters long
input/output). Note that even if the analysis successfully finishes,
the analysis results (e.g., inputs to make all possible transitions) do
not expose the genuine CPC.

Table 5: PHPScan on Different Sizes of AMBITR

Automaton Size #of Automaton Size #of

(Input, Trans.) Const. Time (Input, Trans.) Const. Time
4 chars., 1 trans. 35K 315m 6 chars., 1 trans. 10M 14.8h
4 chars., 2 trans. 386 K 43h 6 chars., 2 trans. 112M 4.7d
4 chars., 3 trans. 6M 8.1d 6 chars., 3 trans. 1.2B 149.3 d
4 chars., 4 trans. 61 M 121d 6 chars., 4 trans. 12B 57y
5 chars., 1 trans. 181 K 29h 7 chars., 1 trans. 4 M 35d
5 chars., 2 trans. 19M 198h 7 chars., 2 trans. 45B 26.3d
5 chars., 3 trans. 31M  37.8d 7 chars., 3 trans. 49B 1.6y
5 chars., 4 trans. 315 M 14y 7 chars., 4 trans. 498 B 20y

Gray cells indicate that the experiments did not finish in 10 days. The times presented
for them are estimated based on the performance measured in the first ten days of
execution.

4.3.4 Source Code and Input Analysis. We aim to show how the
reverser would make manual reverse-engineering attempts to find
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In: “constant-value”
Out: “definite | -tonk”

Out: “discompose’
—1) In: “astronomia”

In: “contingent”
Out: “provisional”

In: “states”

3

E
NS ]
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] s g

In: “costinfisco
Out: “wxp.zwl*30”

Out: “linuxmint |

In: “reality”
Out: “mage [Tv”

Figure 9: Simplified Ambiguous Translator used in the Input
Analysis.

Input Output Transitions
s states celestials cost- urdonk 7GZ~mp3.e ST_0->ST_1>ST_3
otalinpus effective fiscal-year wxp.>nl'%0ive ubuntu5C3; ST 2>ST_3
First Trial realm; celestials cost- sWgmmP 4TZ~mp4.g dekj'mlWl ST 0>ST 5>ST 6
effective fiscal-year ok +i#tskim33azr SST_1>ST 2
.1 province celestials cost-  dr{vql iely}~int boo*jeVWZw\{ ST 0>ST 2>ST 5
Second Trial effective fiscal-year Zaak5ylar >ST_4>ST_1
Third Trial ~ States planetary cost- urdonk 5&avpug,u ios7ofsmsive ST 0->ST_1>ST 2
effective fiscal-year eirMq,iWXu ST 5>ST 4
Fourth Trial  States astronomical urdonk w95.vblabeal prtv-jhpe ST 0->ST_1>ST 4

cost-effective fiscal-year Pive Zcizear >ST_0->ST_2

Figure 10: Inputs used during the Input Analysis.

out the secret input leading to the genuine CPC in AMBITR by
manually inspecting source code and guessing inputs. We assume
the reverser obtained a sample of AMBITR and reverse-engineered
Ambiguous Translator as shown in Figure 9. Then, the reverser
executes the sample and identifies input that the sample retrieves.
The input are shown in the first row of Figure 10 (Initial Input).
As expected, the input does not lead to the genuine CPC. To this
end, the reverser tries to guess inputs leveraging knowledge gained
from manual source code inspection.

The reverser modifies the first input by guessing a possible al-
ternative word. Specifically, realm; is chosen as it is a synonym
for states, the original input. Note that all other inputs remain
unchanged. However, since the first input leads to a different transi-
tion (ST_0—ST_b), all the subsequent transitions (shown in the last
column) are different from the transitions for the initial input, result-
ing in a completely different output. In the second trial, the reverser
changes the first input to province, which is another synonym
for states. Again, the output and the transitions are changed sig-
nificantly, leaving no particular hints for the next trial. From the
third trial, the reverser starts to guess the second input. Specifically,
planetary is used. Observe that the first output word remains the
same, while all the subsequent outputs and transitions are changed.
While this shows that the first input is related to the first output, it
is not useful in reverse-engineering the attack delivering the input.
The fourth trial is similar. Changing a single word in the input leads
to all subsequent output words, and transitions being changed.
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5 DISCUSSION

Generality. While we implement our prototype in PHP, the idea is
general and can be implemented in other programming languages.
To support executable CPCs, one needs to implement dynamic
code generation and execution primitives such as eval (). Script
languages such as JavaScript and Python support them by default.
In other programming languages such as C/C++, one may leverage
JIT compilation techniques [11].

Handling Non-ASCII Inputs and Outputs. For better readabil-
ity, we only discuss example cases when inputs and outputs are
ASCII characters. However, AMBITR seamlessly supports non-ASCII
inputs and outputs. Specifically, if the input is out of range of ASCII
characters, AMBITR calculates the distance of provided input and
the state transition’s input without converting them to ASCII code
value. Similarly, AMBITR computes the output directly from the
distance values and state transition output without considering
their ASCII values.

Threats to Validity. The experiments in Section 4.2 are conducted
by two individuals who have sufficient background in computer
science using state-of-the-art open-source tools. Specifically, the
experiment presented in Section 4.3.3 is conducted by a computer
science Ph.D. student with sufficient program analysis and secu-
rity background. The work in Section 4.3.4 is done by an expert in
software engineering and security (holding a Ph.D. in Computer
Science). In addition, two undergraduate students majoring in Com-
puter Science (focusing on computer security) have repeated the
experiments and reached the same conclusions. Note that all partic-
ipants did not know the proposed approach prior to the experiment.
The analysis results may differ depending on the tools’ capability
and the analysts’ expertise.

6 RELATED WORK

Hiding Program Code. There exists a line of work in obfuscation
to hide program code leveraging opaque predicates [16, 47, 67], code
insertion/replacement [5, 37, 54, 61, 76], encryptions [66, 75], hard-
ware primitives [12, 64], and sub-tree embedding [24]. However,
opaque predicates can be detected and removed via advanced pro-
gram analysis techniques [44]. Dummy code snippets inserted into
an existing program can be identified and removed via dependency
analysis such as taint analysis [17, 27, 33, 42, 52, 53, 55, 56, 63, 65, 81].
Anti-analysis Techniques. Recently, [54] presents a systematic
study of multiple methods to hinder symbolic execution techniques.
Specifically, it inserts additional code to increase the number of
feasible paths. AMBITR’s Ambiguous Translator not only increases
the number of feasible paths but also provides many more addi-
tional challenges such as ambiguity via dynamic output translation.
[24] transforms program code snippets into a sub abstract syntax
tree (AST), and injects the tree into the AST of a program. How-
ever, dynamic analysis and symbolic analysis tools can detect such
injected code. Data obfuscations (e.g., encrypting code sections
and decryption them at runtime) are easily handled by dynamic
analysis [9, 41, 68]. Approaches that require particular hardware
support are difficult to be used in real-world program, as many
systems may not satisfy the hardware requirement. Unlike them,
AMBITR is challenging to be analyzed by static, symbolic, and dy-
namic analysis tools as shown in Section 4. It does not require any
particular hardware or software.
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7 CONCLUSION

Protecting critical program components (e.g., patented program
logic or sensitive data) is an important requirement in software
systems. In this paper, we present AMBITR, a novel technique that
hides critical program components via a sophisticated state machine
based translator called Ambiguous Translator. It imposes fundamen-
tal challenges to state-of-the-art program analysis techniques by
adding a new dimension of the challenge: ambiguity. Our evaluation
of the comparison with a diverse set of state-of-the-art analysis tech-
niques, including dynamic, static, and symbolic execution, shows
that AMBITR is effective in hiding critical program components.
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