
SoftMark: Software Watermarking via a Binary Function
Relocation

Honggoo Kang
Korea University
Seoul, South Korea

honggoonin@korea.ac.kr

Yonghwi Kwon
University of Virginia

Charlottesville, Virginia, USA
yongkwon@virginia.edu

Sangjin Lee
Korea University
Seoul, South Korea
sangjin@korea.ac.kr

Hyungjoon Koo∗

Sungkyunkwan University
Suwon, South Korea
kevin.koo@skku.edu

ABSTRACT

The ease of reproducibility of digital artifacts raises a growing con-
cern in copyright infringement; in particular, for a software product.
Software watermarking is one of the promising techniques to verify
the owner of licensed software by embedding a digital fingerprint.
Developing an ideal software watermark scheme is challenging be-
cause i) unlike digital media watermarking, software watermarking
must preserve the original code semantics after inserting software
watermark, and ii) it requires well-balanced properties of credibil-
ity, resiliency, capacity, imperceptibility, and efficiency. We present
SoftMark, a software watermarking system that leverages a func-
tion relocation where the order of functions implicitly encodes a
hidden identifier. By design, SoftMark does not introduce addi-
tional structures (i.e., codes, blocks, or subroutines), being robust
in unauthorized detection, while maintaining a negligible perfor-
mance overhead and reasonable capacity. With various strategies
against viable attacks (i.e., static binary re-instrumentation), we
tackle the limitations of previous reordering-based approaches. Our
empirical results demonstrate the practicality and effectiveness by
successful embedding and extraction of various watermark values.

CCS CONCEPTS

· Security and privacy→ Software security engineering.

KEYWORDS

Software Watermarking, Watermark, Function Reordering, Func-
tion Relocation, Binary Instrumentation

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ACSAC ’21, December 6ś10, 2021, Virtual Event, USA

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8579-4/21/12. . . $15.00
https://doi.org/10.1145/3485832.3488027

1 INTRODUCTION

Today, a vast usage of digital data makes our life convenient by
sharing them with others due to its trivial reproducibility by na-
ture. However, the ease of both data duplication and distribution
raises unfavorable consequences, that is, copyright infringement
when digital contents (e.g., pictures, movies, TV episodes, software)
are illegally copied, distributed, or publicly presented without the
owner’s permission. The number of disputes over copyrights on pi-
rated materials gradually increases; in particular, software piracy is
a significantly growing concern. According to the survey conducted
by BSA [10], 37% of the whole software around the globe have been
estimated as illegitimate or unlicensed with the commercial value
of $46.3 billion.

Digital watermarking is one of promising techniques for recog-
nizing the originality of digital works. It covertly inserts a unique
digital fingerprint into digital contents such as text, image, audio,
and video so that the ownership of the contents can be identified
by revealing the embedded fingerprint. In a similar vein, software
watermarking is a technique that aims to provide the digital finger-
print of a software product by inserting certain information that
represents its owner or distributor. Then, the identifier of every
software copy offers the traceability because it belongs to a unique
customer upon the purchase of software.

Software watermarking is effective against an adversary who
wants to run a copyrighted program free of charge, revealing nei-
ther the identity of the attacker nor the original owner of the pro-
gram. The adversary may attempt to reverse-engineer a watermark
embedding process as well as unauthorized detection. While it is
nearly impossible to achieve complete prevention against all viable
attacks, a desirable software watermarking scheme should be able to
provide a sufficient level of stealthiness and resilience that renders
such attacks extremely expensive, or severely discourages attackers.
To this end, as with previous work [14, 21, 23, 27, 42, 49, 67], we
identify key properties (requirements) of software watermarking
techniques: Credibility, Capacity, Imperceptibility, Resiliency, Spread,
and Efficiency (See ğ2 in detail).

For the last few decades, diverse software watermarking [23,
28, 70] approaches have been proposed, including reordering-
based [22, 30, 51, 53, 55], graph-based [14, 18, 32, 48, 49, 69],
obfuscated-based [4, 5, 11, 15, 33, 41, 66], and branch-based [26]
approaches. Depending on where/how the watermark is inserted
and verified, software watermarking techniques in the literature

1

can be classified into static [4, 22, 30, 32, 41, 48, 49, 51, 53, 55] or
dynamic [14, 18] approaches. A static watermarking technique
does not need to run a program whereas a dynamic watermark-
ing technique extracts a watermark at runtime. Unfortunately, we
observe that the existing approaches have difficulty in achieving
desirable balances between the properties, particularly resiliency
and imperceptibility.

In this paper, we propose SoftMark, a software watermarking
technique on top of a function relocation scheme. Since reliable re-
location of binary functions is extremely challenging, our technique
is highly resilient against varying attacks including unauthorized
detection, illegal corruption and collusion. Moreover, SoftMark is
implicitly encoded, leveraging the location of pre-selected functions
in a target program; each order of the functions maps into a secret

identifier.
Our watermarking scheme has addressed several drawbacks of

previous reordering based approaches [22, 42] by adopting fruit-
ful strategies that impose significant challenges to watermark-
ing corruption techniques via static binary instrumentation. First,
SoftMark does not introduce any codes, blocks, or subroutines to a
target program, which empirically demonstrates negligible runtime
and space overheads. Second, the presence of a watermark is diffi-
cult to reveal by a statistical analysis or inference unless multiple
instances are collusively collected. Third, SoftMark conveys a rela-
tively high capacity for watermark encoding, which is proportional
to the size of a program (i.e., A set of n functions can represent up to
⌊log2 n!⌋ bits). Fourth, the design of SoftMark shows a reasonable
resiliency even under semantic-preserving code transformation by
inserting multiple watermarks across a broad spectrum of functions.
It is noteworthy mentioning that we select a set of unique functions
with a variety of strategies that make reliable code transformation
challenging. To implement SoftMark, we employ CCR [35], a spe-
cial compiler toolchain that emits metadata for instrumenting a
variant with a watermark.

In summary, we make the following contributions:

• We propose SoftMark, an efficient watermarking system via a
function relocation based encoding, resolving most of the prior
limitations.
• We have designed and implemented a prototype of SoftMark

to meet the requirements of a practical software watermarking
technique against various viable attacks.
• We experimentally evaluate SoftMark with real world appli-
cations, demonstrating the effectiveness and practicality of our
approach.

The source code of SoftMark will be publicly available in the near
future to foster further watermarking research.

2 SOFTWARE WATERMARKING

In this section, we discuss the definition, requirements, existing
approaches and threat model of software watermarking.

2.1 Problem Definition

The objective of software watermarking is to provide a reliable iden-
tification service to be able to claim the ownership of a software
product. In a nutshell, software watermarking consists of two sepa-
rate processes: i) embedding a unique signature and ii) extracting

the signature for verification. Formally, the processes of software
watermarking are defined as follows:

Definition 1. Given an original program (P) and a watermark
(W), software watermarking consists of two functions; i) a water-
mark embedder function is Fembed (P ,W) = PW where PW is a
program with the embedded watermarkW , and ii) a watermark
extractor function, Fextract , extracts the watermarkW ′ from PW

with metadataMv , and verifies the extracted watermarkW ′ with

Fextract (PW ,Mv) =

{

W
′ ifW =W ′ (Valid),
−1 ifW ,W ′ (Invalid)

2.2 Requirements

As with previous work [14, 21, 23, 27, 42, 49, 67] on software wa-
termarking, we informally define six key properties (metrics) to
evaluate the effectiveness of the watermarking scheme. Note that
any watermarking system exhibits a trade-off between these metrics;
a high capacity (data rate) implies low stealth and resilience.

• Resiliency: A watermark must be robust against varying cor-
ruption attempts: waterwark invalidation, tampering, addition
or deletion. Moreover, even when a target software with the
watermark has been altered, an ideal watermark scheme should
maintain its validity or (at least) remain partially recoverable.
• Spread: An ideal watermark should be distributed all over a
program to protect as many parts as possible. A well-distributed
watermark offers probabilistically better resiliency.
• Credibility: A watermark should be reliably recoverable for the
proof of the authorship. A false positive case (i.e., extracting a
watermark from software without a watermark) or false negative
case (i.e., failing to extract a watermark from software with a
watermark) should be minimal.
• Capacity: A watermarking algorithm should be able to convey
a certain amount of information (i.e., data rate) within a target
program. It is desirable to quantitatively compute the maximum
length of the watermark that can be encoded inside the program.
• Efficiency: A watermarking scheme should have a negligible
impact on a target program in terms of performance and space
overhead.
• Imperceptibility: A watermark should be stealthy (like invisi-
ble or inaudible data from video/audio files) enough not to be
detected by an adversary. A program with the watermark must
be indistinguishable from another without the one.

2.3 Threat Model

It is a common belief that, a determined adversary with a suffi-
cient amount of resources will eventually be able to defeat any
watermarking systems. Hence, our objective is to develop a wa-
termarking technique that substantially thwarts every reasonable
effort with feasible resources in practice, rather than building an
unbreakable scheme. With this in mind, in this section, we describe
a threat model with several assumptions, followed by a group of
viable attacks.

Code Signing. A program can be digitally signed to prevent unau-
thorized changes [34]. Code signing involves with a cryptographic
signing process using a public/private key pair that uniquely be-
longs to a program owner where the public key has been certified

2

bits as in Table 1. In principle, an individual watermark has a one-
to-one mapping with a particular order of selected functions; e.g.,
112 can be encoded at the order of F3śF1śF2 in Figure 1 (b).

Table 1: Function Order and Watermark Mapping.

Function Order F1śF3śF2 F2śF1śF3 F2śF3śF1 F3śF1śF2

Watermark Value 002 012 102 112

Watermark Embedding. In our scheme, inserting a watermark
essentially means generating a variant of the original program with
relocated functions where the order of functions representing the
watermark. Such code transformation inherently involves with a
vast number of updating instructions such as immediate operands.
Going back to the example, direct call/jump instructions (e.g., E8 or
E9 in x86) can be trivially updated by recalculating the immediate
operands (A). However, indirect call/jump instructions require
reference updates in a jump table that resides in the data region (B),
which is non-trivial. A runtime error would occur if any exercising
code pointer update were failed. Moreover, successful function
relocation requires a clear function boundary (C) because it may
break the original semantics otherwise.

To exemplify, the values at 0x400998 in (b) in the data section
point to the call instructions at 0x4006FC and 0x400706 that
have been relocated from 0x40089D and 0x4008A7. If any of those
addresses has not been updated properly, the program would cause
a runtime error. Similarly, the function pointers at 0x400210 in
(b) that point to the function 2 and 3 must be appropriately up-
dated according to the functions’ new addresses. This imposes a
non-trivial challenge to those who attempt to compromise our wa-
termark by relocating functions. Moreover, another challenge is
to identify an accurate boundary between code pointers and raw
data. In this example, the values in purple at 0x402040 in (a) and
0x400220 in (b) are scalar data (i.e., not code pointers) between
two jump tables, which are indistinguishable from surrounding
code pointers. To launch a successful attack, an adversary should
be able to differentiate the boundary of code and data, which is
undecidable. SoftMark takes advantage of a special compilation
toolchain [35] that produces metadata for reliable static binary in-
strumentation (e.g., function boundary and jump table), and record
unique information for a watermark when generating a mutation
corresponding to the watermark. Note that the metadata produced
by [35] is critical and kept secret from adversaries (Details in ğ7).

Watermark Extraction. It is straightforward to extract an em-
bedded watermark. We can identify the order of functions with the
recorded information, followed by decoding a watermark according
to Table 1. Ensuring the integrity of a target binary, we discuss the
case when the binary has been compromised in ğ4.4.

4 SOFTMARK DESIGN

This section describes the design of SoftMark that satisfies the
requirements (ğ2.2) against various attacks (ğ2.3) when embedding
and extracting a watermark.

4.1 Overview

Figure 2 depicts aworkflow of SoftMark. First, we employ a special
compiler toolchain [35] to compile a given program from the source

code. During the compilation, the toolchain generates metadata
(e.g., locations of functions) for reliable static binary instrumenta-
tion, required for our watermarking embedding. We call the pair
of the binary and metadata master binary. Second, we analyze the
binary and choose n reorderable function candidates that can repre-
sent k bits of data with different orders of the n functions. Then, we
generate a variant of the target program with a unique fingerprint
via reordering of n functions. We also record the fingerprint and
its associated identifier in a ledger (accessible merely by a product
owner). Third, we extract the watermark from a binary by identify-
ing the function order. Finally, a user associated with the extracted
watermark is identified by looking it up the ledger.

4.2 Benefits of Our Approach

The benefit of a static approach, including SoftMark, is twofold:
i) inexpensive; it can be easily adopted in large-scale applications
at a low cost, ii) robust; a dynamic approach relatively suffers from
watermark corruption as reversing techniques advance.

Advantages over Existing Techniques. We aim to mitigate pre-
vious drawbacks to meet the requirements of software watermark-
ing (ğ2.2). Our function-reordering-based watermark approach of-
fers the following three advantages. First, reordering functions is a
semantic preserving transformation; that is, watermark insertion
does not affect the original program’s semantic because SoftMark

does not introduce any additional code, blocks or subroutines to a
target program. While the relocated functions may change cache
behaviors at runtime, our assessment demonstrates that its impact
on the performance overhead is negligible (ğ6.5.2). Second, intro-
ducing no supplementary structure gives a relatively lower chance
for attackers to recognize the presence of a watermark with a statis-
tical analysis or inference. One conceivable scenario is a collusive
attack that acquires multiple instances with different watermarks,
which may unveil the presence of a watermark (i.e., by identify-
ing the locations of the same functions between the instances).
Nonetheless, our watermark stays resilient against any attempt
of watermark extraction (ğ4.4) because the mapping information
between a watermark and an order is still concealed in a private
ledger. Third, the number of reorderable functions can reach up to
an increasingly large number of encodings (i.e., n!with n functions);
e.g., 10 different functions can produce millions of permutations,
offering a high data-rate encoding as the size of an application (and
typically the number of functions) increases.

Existing Reordering-based Approaches. Reordering-based
techniques are the closest existing approaches to SoftMark. How-
ever, unlike SoftMark, they suffer from three major limitations.
First, they are perceptive; Myles et al. [42]’s approach could be
easily detectable because its implementation relies on inserting a
large number of GOTO statements to maintain the original con-
trol flow. Second, they are forgeable; rearranging a structure can
be accomplished with a trivial effort [52, 53, 55]. Third, they are
fragile; watermarks were not resilient to arbitrary modifications at
the instruction level [28].

4.3 Watermark Embedding

In this section, we develop various techniques used in SoftMark

to enhance the effectiveness of watermark embedding.

4

6.4 Capacity

We compare our approach with the one from Davidson et al. [22]
that is based on basic block reordering in terms of capacity. As
shown in Table 6, the data rate of SoftMark is significantly higher
than that of the Davidson’s approach (up to 15 times for 482.sphinx3).
This is because our approach depends on the number of possible
function candidates, in contrast, Davidson’s approach predomi-
nately relies on the maximum number of basic blocks within a
function. The downside of the latter approach arises from which
the largest number of basic blocks has nothing to do with the size
of a program, which may not be sufficient to represent a watermark.
For example, 403.gcc has 2.5 timesmore functions than 400.perbench,
however, the maximum representable bits is rather 20% smaller. We
discuss the capacities of other watermarking techniques that cannot
be directly compared with SoftMark in ğ7.

Table 6: Comparison of capacity (i.e., maximum number of

representable bits) between SoftMark and Davidson’s ap-

proach [22] that relies on the largest block size in a function.

Program SoftMark Davidson-Myhrvold

Name Size (KB) Functions Bits Basic Blocks Bits

400.perlbench 1,423 895 7,491 683 5,451
403.gcc 3,728 2,206 21,326 534 4,073
433.milc 148 88 446 20 61
445.gobmk 3,923 857 7,119 135 765
456.hmmer 339 237 1,532 46 191
458.sjeng 156 78 382 74 357
464.h264ref 685 259 1,708 160 945
482.sphinx3 210 155 909 20 61

addr2line 1,180 704 5,649 142 815
ar 1,213 739 5,982 142 815
bfdtest1 1,165 686 5,479 142 815
cxxfilt 1,179 705 5,659 142 815
nm-new 1,195 721 5,810 142 815
objcopy 1,410 867 7,217 181 1,101
objdump 2,474 988 8,409 186 1,139
ranlib 1,213 739 5,982 142 815
size 1,180 708 5,687 142 815
strings 1,180 705 5,659 142 815
strip-new 1,410 867 7,217 181 1,101
ctags 1,495 1,150 10,039 178 1,078
lighttpd 195 136 772 85 426
vsftpd 118 143 822 87 439
pscp 713 664 5,273 99 518
psftp 722 671 5,338 99 518
puttygen 391 328 2,273 144 829
cgtest 405 335 2,332 141 808

6.5 Efficiency

6.5.1 Size Overhead. The size of a watermark-inserted binary stays
identical because SoftMark does not introduce additional struc-
tures such as codes, blocks or subroutines to a target program (ğ4.3).
We confirmed that each binary with a watermark for evaluation
does not increase a code size.

6.5.2 Performance Overhead. The rightmost column in Table 4
shows the performance overheads of SPEC CPU2006 binaries af-
ter embedding a watermark with SoftMark. For each binary, we
measured the overall CPU user time for the completion of all in-
ternal tests by taking the average time across five runs, using both
the original and its corresponding variant with a watermark. The

Table 7: Differences in embedding time according to water-

mark values and size changes (related to Figure 7, 8). Embed-

ding time only shows a difference of less than 1 second on

the alteration of a watermark value or size.

Embedding Value (256 bits) Embedding Bits

Name Value #1 Value #2 Value #3 64 128 256

456.hmmer 1.8 1.8 1.8 1.7 2.6 1.8
nm-new 10.0 10.4 10.2 10.3 10.2 10.4
objdump 21.5 21.8 21.5 22.5 22.3 21.7
puttygen 2.1 2.1 2.1 2.1 2.2 2.1

largest overhead is reported with 456.hmmer , 1.1%, which is neg-
ligible. Interestingly, the performance of 400.perlbench, 433.milc,
445.gobmk, and 458.sjeng demonstrates slightly better than their
original (master) binaries. We attribute those speedups in better
caching behavior from a code region due to different code localities
after function relocations, which aligns with the results from [35].

6.5.3 Efficiency of Embedding and Extraction. We evaluate the ef-
ficiency of our watermarking embedding and extraction process.
Recall that we operate two different modes for a watermarking
extraction depending on the assumption of a binary status: i) un-
modified (identical) and ii) modified (compromised). Both cases
refer a bookkeeper to identify the location of every function, but
SoftMark carries out a block search differently; the former em-
ploys a regular expression for performance where the latter em-
ploys a disassembly for deep binary inspection to recognize code
alteration.

Unmodified Binaries. A default watermarking extraction with a
regular expression in Table 4 shows pre-analysis, embedding and
extraction of three different watermarks. A pre-analysis step exam-
ines the property of a function such as its uniqueness and indirect
branches within. 403.gcc takes the longest time; that is, 346, 97, and
5, 5 seconds for pre-analysis, embedding, and extraction, respec-
tively. Except for three programs (403.gcc, 445.gobmk, objdump), an
embedding process takes less than 20 seconds, which is reasonable
in practice. An extraction process takes up to 5.5 seconds where
most of cases can be done within a few seconds.

Modified Binaries. Watermarking extraction with a disassembly
in Table 4 shows that it takes longer time than handling a unmodi-
fied binary. This is mainly due to a substantial analysis to investigate
potential attacks such as code transformation. A pre-analysis time
varies, ranging from 12 seconds for 433.milc to 55.6 hours (220, 270
seconds) for 403.gcc, depending on the size of a program. However,
it is a one-time processing per each binary. The duration of em-
bedding time is quite close to that of a unmodified binary case. An
extraction process also takes longer than embedding, ranging from
5 seconds (vsftpd) to 39 miniutes (gcc).

Different Values. We test three watermark values (Value #1-#3)
by running inserting and extracting them 10 times. Note that each
value can be generated by a software vendor as a secret identifier.
Figure 7 and Table 7 depict the results of four representative pro-
grams’ results by the number of functions including 456.hmmer

(237 functions; small), puttygen (328 functions; small), nm-new (721

9

Constraints on Function Relocation with CCR. To avoid in-
troducing new instructions for binary instrumentation, CCR inher-
ently restricts the positions for relocating functions when the size
of a reference (e.g., operand for a relative jump or call) is not large
enough (e.g., one or two bytes). We obey the same constaint with
CCR, however, the rate of such limited relocations is small (around
1%), which rarely affects the capacity of SoftMark. For example,
403.gcc in our dataset has 51 out of 4,329 functions (1.12%) were
constrained by this limitation.

Capacity of Other Existing Techniques. Along with ğ6.4, we
discuss the capacity of other software watermarking techniques
that cannot be directly compared to SoftMark. Sha et al. [52]
leverages an equation’s operand coefficient to encode a watermark
in Java programs, whose data rate is comparable to SoftMark

because it uses a permutation of the coefficient. A branched-based
technique [26, 43] relies on the number of branch instructions for
embedding a watermark. Although it could hold a higher data
rate even for a small program that contains many branches, the
possible encoding capacity overall may be fluctuating. Meanwhile,
an obfuscation-based approach [68] defines a hard-coded limit of
1,000 different instruction groups (i.e., 1,000 bits), which is difficult
to be expanded. Several other works [18, 20, 21, 57] demonstrate
a scheme that allows one to embed a unlimited watermark in size
by adding additional data or method into a binary. However, such
approaches are highly susceptible to be perceptible and thus easily
eliminated. A graph-based approach [12, 14, 46, 59, 65, 69] generates
a topological structure at runtime when a certain input is given.
While they have unlimited capacity since they explicitly add code
segment for the watermark, they are trivially detectable due to the
added code and data.

8 RELATED WORK

A variety of software watermarking schemes have been proposed
for the last two decades [23, 28, 70]. Software watermark technique
can be classified as either static [4, 22, 30, 41, 51, 53, 55] or dy-
namic [14, 18] according to the way of extraction, that is, a static
watermarking does not need to run a programwhereas dynamic wa-
termarking does because a watermark can be extracted at runtime
(i.e., the execution state of the program). Note that static water-
marking is more common because it is relatively handy. In this
section, we outline a major approaches for software watermarking
techniques and CCR [35], a compiler-rewriter model for our static
binary instrumentation.

Reordering-basedApproach. Diversifying code is one of promis-
ing techniques for securing and protecting software since early
days. The idea of early patents [30, 51] places an identifier into a
pre-determined (and random) location of code or data. Similarly,
Davidson et al. [22] introduces a means of inserting a signature by
relocating a group of pre-selected basic blocks. Shirali-Shahreza et
al. [55] suggest an equation reordering technique that swaps the
safe operands of mathematical equation in source code, and later
FDOS [53] introduces a scheme of function dependency-oriented
sequencing on top of reordering equations. Although the basic idea
of łreorderingž aligns with our SoftMark, the above approaches
are susceptible for i) revealing (resiliency) as it merely relies on lo-
calized piece of code; ii) being removed as a watermark is not widely

spread (i.e., poor part protection), and iii) insufficient data rate as
it depends on the largest component (e.g., number of functions or
operands) that limits encoding bits, and iv) reliable binary instru-
mentation when inserting a watermark at a binary level lacks [22].

Graph-based Approach. Another line of static watermarking
is based on a graph theory [14, 32, 48, 49]. Qu et al. [48] apply a
graph coloring (GC) problem to a register allocation of variables,
which inserts a watermark by adding edges in a given graph of
G (V ,E). Later, Jiang et al. [32] presents a software watermarking
scheme based on public-key cryptograph with GC. However, graph
coloring has no efficient algorithm (known NP complete problem).
Collberg et al. [14] proposed a dynamic watermarking technique
(dubbed CT) that is stored in the execution state of a program (e.g.,
through a graph structure on the heap).

Obfuscation-basedApproach. Balachandran et al. [4] suggest an
obfuscation algorithm that interlaces blocks across functions with
anti-disassembly techniques for concealing them.Monden et al. [41]
demonstrates the insertion of watermark into dummy methods and
opaque predicates in Java programs. Myles et al. [42] carefully an-
alyze the effectiveness between the Davidson’s reordering-based
approach [22] and Monden’s obfuscation-based approach [41] with
actual implementations using the Sandmark tool [13]. Lu et al. [39]
propose an obfuscation-based steganography technique by leverag-
ing ROP gadgets to embed certain information that can be extracted
at runtime by running the ROP gadgets. While steganography has
a slightly different purpose from watermarking, we believe it can
also be used to implement a watermark.

Other Approaches. A spread-spectrum watermarking
scheme [20, 57] has been suggested from the signal detec-
tion model in multimedia watermarking, extracting a vector from
the properties of a running program (e.g., call graph depth). Preda
et al. [21] presents a formal framework for modeling a software
watermarking technique at a semantic level by viewing attackers
as abstract interpreters. Cousot et al. [18] introduces a dynamic
watermark scheme that leverages abstract interpretation to insert
a watermark into values that are assigned to local variables at
runtime. Nagra et al. [44] suggest a precise taxonomy in the area
of software watermarking.

Compiler-assisted Code Randomization. Relocating functions
from a stripped binary is, in general, non-trivial because of impre-
cise disassembly [2], binary function recognition [1, 3, 6, 47, 54, 61],
and varying optimizations at compilation. To this end, we adopt
a compiler-rewriter cooperation approach [35] that allows for ro-
bust and fast code transformation. Simply put, it stores a minimal
set of supplementary information (including a layout, basic block,
and fixup or reference that must be adjusted after function dis-
placement) into a master binary as metadata, enabling us to carry
out static binary instrumentation without recompilation [35, 50]
on demand. The master executable is maintained along with wa-
termarking information by a program owner where those who
purchase the software possess a mutant (i.e., reordered version)
with a watermark alone.

9 CONCLUSION

In this paper, we propose a function reordering-based software wa-
termarking technique, SoftMark. It embeds a watermark, mapping

11

every order of certain functions into a hidden identifier. SoftMark

does not introduce any additional code or data, making it more
stealthier than existing approaches while achieving other proper-
ties including resiliency, capacity and efficiency for a robust water-
mark scheme. Our analysis results show that SoftMark is resilient
to varying attacks while maintaining a negligible performance
overhead and reasonable capacity. Our empirical evaluation on 26
binaries (from eight SPEC CPU2006 programs and 18 real-world
programs) demonstrates that SoftMark is highly practical and
effective in embedding and extracting a watermark.

ACKNOWLEDGMENTS

We thank the anonymous referees and our shepherd Sang Kil Cha
for their constructive feedback. This work was supported by In-
stitute for Information & communication Technology Promotion
(IITP) grant funded by the Korea government (MSIT) (No. 2019-0-
01343, Regional strategic industry convergence security core tal-
ent training business), NSF under awards 1916499, 1908021, and
1850392. Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the authors and do not
necessarily reflect the views of the sponsor.

REFERENCES
[1] Jim Alves-Foss and Jia Sone. 2019. Function Boundary Detection in Stripped

Binaries. In 35th Annual Computer Security Applications Conference (ACSAC ’19).
[2] Dennis Andriesse, Xi Chen, Victor Van Der Veen, Asia Slowinska, and Herbert

Bos. 2016. An In-Depth Analysis of Disassembly on Full-Scale X86/X64 Binaries.
In 25th USENIX Security Symposium (USENIX ’16).

[3] Dennis Andriesse, Asia Slowinska, and Herbert Bos. 2017. Compiler-agnostic
Function Detection in Binaries. In 2017 IEEE European Symposium on Security
and Privacy (EuroS&P ’17). IEEE, 177ś189.

[4] Vivek Balachandran, Ng Wee Keong, and Sabu Emmanuel. 2014. Function Level
Control Flow Obfuscation for Software Security. Proceedings - 2014 8th Interna-
tional Conference on Complex, Intelligent and Software Intensive Systems, CISIS
2014, 133ś140. https://doi.org/10.1109/CISIS.2014.20

[5] Sebastian Banescu, Alexander Pretschner, Dominic Battré, Stéfano Cazzulani,
Robert Shield, and Greg Thompson. 2015. Software-based Protection against
Changeware. CODASPY 2015 - Proceedings of the 5th ACM Conference on Data
and Application Security and Privacy, 231ś242. https://doi.org/10.1145/2699026.
2699099

[6] Tiffany Bao, Jonathan Burket, Maverick Woo, Rafael Turner, and David Brumley.
2014. BYTEWEIGHT: Learning to Recognize Functions in Binary Code. In 23rd
USENIX Security Symposium (USENIX ’14). 845ś860.

[7] Eli Bendersky. 2021. pyelftools. https://github.com/eliben/pyelftools.
[8] Matt Bishop and Carrie Gates. 2008. Defining the Insider Threat. In Proceedings of

the 4th Annual Workshop on Cyber Security and Information Intelligence Research:
Developing Strategies to Meet the Cyber Security and Information Intelligence
Challenges Ahead (Oak Ridge, Tennessee, USA) (CSIIRW ’08). Association for
Computing Machinery, New York, NY, USA, Article 15, 3 pages. https://doi.org/
10.1145/1413140.1413158

[9] Jorge Blasco, Julio Cesar Hernandez-Castro, Juan E Tapiador, and Arturo Rib-
agorda. 2012. Bypassing Information Leakage Protection with Trusted Applica-
tions. Computers & Security 31, 4 (2012), 557ś568.

[10] Business Software Alliance. 2018. Software Management: Security Imperative,
Business Opportunity. Global Software Survey (2018), 24.

[11] Zhe Chen, Zhi Wang, and Chunfu Jia. 2018. Semantic-integrated Software Water-
marking with Tamper-proofing. Multimedia Tools and Applications 77, 9 (2018),
11159ś11178. https://doi.org/10.1007/s11042-017-5373-7

[12] Christian Collberg, Stephen Kobourov, Edward Carter, and Clark Thomborson.
2003. Error-correcting Graphs for Software Watermarking. In Proceedings of the
29th workshop on graph theoretic concepts in computer science. Springer, 156ś167.

[13] C. Collberg, G.R. Myles, and A. Huntwork. 2003. Sandmark-A Tool for Software
Protection Research. IEEE Security & Privacy 1, 4, 40ś49. https://doi.org/10.1109/
MSECP.2003.1219058

[14] Christian Collberg and Clark Thomborson. 1999. SoftwareWatermarking: Models
and Dynamic Embeddings. In Proceedings of the 26th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages - POPL ’99. ACM Press, New
York, New York, USA, 311ś324. https://doi.org/10.1145/292540.292569

[15] C.S. Collberg and Clark Thomborson. 2002. Watermarking, Tamper-proofing,
and Obfuscation - Tools for Software Protection. IEEE Transactions on Software

Engineering 28, 8 (Aug 2002), 735ś746. https://doi.org/10.1109/TSE.2002.1027797
[16] C Collberg, C Thomborson, and D Low. 1997. A Taxonomy of Obfuscating Trans-

formations. Technical Report 148. 36 pages. https://researchspace.auckland.ac.
nz/handle/2292/3491

[17] Standard Performance Evaluation Corporation. 2021. SPEC CPUÂő 2006. https:
//www.spec.org/cpu2006/.

[18] Patrick Cousot and Radhia Cousot. 2004. An abstract interpretation-based frame-
work for software watermarking. In ACM SIGPLAN Notices. 173ś185.

[19] Universal ctags organization. 2021. Universial Ctags. https://ctags.io/.
[20] D. Curran, N.J. Hurley, and M. O Cinneide. 2003. Securing Java through software

watermarking. In Proceedings of the 2nd international conference on Principles and
practice of programming in Java (PPPJ ’03). 145ś148.

[21] Mila Dalla Preda andMichele Pasqua. 2017. SoftwareWatermarking: A Semantics-
based Approach. Electronic Notes in Theoretical Computer Science 331 (2017), 71ś85.
https://doi.org/10.1016/j.entcs.2017.02.005

[22] Robert I. Davidson and Nathan Myhrvold. 1996. Method and System for Gener-
ating and Auditing a Signature for a Computer Program. http://www.google.
com/patents/US5559884

[23] Ayan Dey, Sukriti Bhattacharya, and Nabendu Chaki. 2019. Software Water-
marking: Progress and Challenges. INAE Letters 4, 1 (2019), 65ś75. https:
//doi.org/10.1007/s41403-018-0058-8

[24] Capstone-The Ultimate Disassembly Framework. 2021. Capstone-Engine. https:
//www.capstone-engine.org/.

[25] GNU. 2021. GNU Binutils. https://www.gnu.org/software/binutils/.
[26] Gaurav Gupta and Josef Pieprzyk. 2007. Software watermarking Resilient to

Debugging Attacks. Journal of Multimedia 2, 2 (2007), 10ś16. https://doi.org/10.
4304/jmm.2.2.10-16

[27] Gael Hachez. 2003. A Comparative Study of Software Protection Tools Suited for
E-Commerce with Contributions to Software Watermarking and Smart Cards. Ph. D.
Dissertation. Universite Catholique de Louvain.

[28] James Hamilton and Sebastian Danicic. 2011. A Survey of Static Software Wa-
termarking. In 2011 World Congress on Internet Security (WorldCIS-2011). IEEE,
100ś107.

[29] Hex-Rays. 2021. IDA Pro Disassembler. https://www.hex-rays.com/idapro/.
[30] Keith Holmes. 1994. Computer Software Protection. http://www.google.com/

patents/US5287407
[31] Shohreh Hosseinzadeh, Sampsa Rauti, Samuel Laurén, Jari Matti Mäkelä, Jo-

hannes Holvitie, Sami Hyrynsalmi, and Ville Leppänen. 2018. Diversification
and Obfuscation Techniques for Software Security: A Systematic Literature
Review. Information and Software Technology 104, May 2017 (2018), 72ś93.
https://doi.org/10.1016/j.infsof.2018.07.007

[32] Zetao Jiang, Rubing Zhong, and Bina Zheng. 2009. A Software Watermarking
Method Based on Public-Key Cryptography and Graph Coloring. In 2009 Third
International Conference on Genetic and Evolutionary Computing. 433ś437.

[33] Yuichiro Kanzaki, Akito Monden, Masahide Nakamura, and Ken’ichi Matsumoto.
2006. A Software Protection Method based on Instruction Camouflage. Electronics
and Communications in Japan, Part III: Fundamental Electronic Science (English
translation of Denshi Tsushin Gakkai Ronbunshi) 89, 1 (2006), 47ś59. https:
//doi.org/10.1002/ecjc.20141

[34] Doowon Kim, Bum Jun Kwon, and Tudor DumitraÅğ. 2017. Certified Malware:
Measuring Breaches of Trust in the Windows Code-Signing PKI. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security.
ACM, New York, NY, USA, 1435ś1448. https://doi.org/10.1145/3133956.3133958

[35] Hyungjoon Koo, Yaohui Chen, Long Lu, Vasileios P. Kemerlis, and Michalis
Polychronakis. 2018. Compiler-Assisted Code Randomization. Proceedings - IEEE
Symposium on Security and Privacy 2018-May, 461ś477. https://doi.org/10.1109/
SP.2018.00029

[36] Hyungjoon Koo and Michalis Polychronakis. 2016. Juggling the gadgets: Binary-
level Code Randomization using Instruction Displacement. In Proceedings of the
11th ACM Asia Conference on Computer and Communications Security (ASIACCS).
23ś34.

[37] Platon Kotzias, Srdjan Matic, Richard Rivera, and Juan Caballero. 2015. Certified
PUP: Abuse in Authenticode Code Signing. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security. ACM, New York,
NY, USA, 465ś478. https://doi.org/10.1145/2810103.2813665

[38] Lighttpd. 2021. Lightweight HTTP daemon for security, speed, compliance, and
flexibility. https://www.lighttpd.net/.

[39] Kangjie Lu, Siyang Xiong, and Debin Gao. 2014. RopSteg: Program Steganography
with Return Oriented Programming. In Proceedings of the 4th ACM Conference on
Data and Application Security and Privacy (San Antonio, Texas, USA) (CODASPY
’14). Association for Computing Machinery, New York, NY, USA, 265âĂŞ272.
https://doi.org/10.1145/2557547.2557572

[40] Lannan Luo, Jiang Ming, Dinghao Wu, Peng Liu, and Sencun Zhu. 2020. Egalito:
Layout-Agnostic Binary Recompilation. In Proceedings of the 25th International
Conference on Architectural Support for Programming Languages and Operating
Systems. 133ś147.

12

[41] A. Monden, H. Iida, K. Matsumoto, K. Inoue, and K. Torii. 2000. A Practical
Method for Watermarking Java Programs. In Proceedings 24th Annual Interna-
tional Computer Software and Applications Conference. (COMPSAC 2000). 191ś197.
https://doi.org/10.1109/CMPSAC.2000.884716

[42] Ginger Myles, Christian Collberg, Zachary Heidepriem, and Armand Navabi.
2005. The Evaluation of Two Software Watermarking Algorithms. Software -
Practice and Experience 35, 10 (2005), 923ś938. https://doi.org/10.1002/spe.657

[43] Ginger Myles and Hongxia Jin. 2005. Self-validating Branch-based Software
Watermarking. In International Workshop on Information Hiding. Springer, 342ś
356.

[44] Jasvir Nagra, Clark Thomborson, and Christian Collberg. 2002. A Functional
Taxonomy for Software Watermarking. Aust. Comput. Sci. Commun. 24, 1 (2002),
177ś186.

[45] Vasilis Pappas, Michalis Polychronakis, and Angelos D. Keromytis. 2012. Smash-
ing the Gadgets: Hindering Return-Oriented Programming Using In-Place Code
Randomization. In Proceedings of the 33rd IEEE Symposium on Security & Privacy
(S&P). 601ś615.

[46] Chaofan Peng and Qinglei Zhou. 2013. An IPPCT Dynamic Watermarking
Scheme Based on Chinese Remainder Theorem. In 2013 International Conference
on Computational and Information Sciences. IEEE, 167ś170.

[47] Rui Qiao and R Sekar. 2017. Function Interface Analysis: A Principled Approach
for Function Recognition in COTS Binaries. In 47th International Conference on
Dependable Systems and Networks (DSN ’17).

[48] Gang Qu and Miodrag Potkonjak. 1998. Analysis of Watermarking Techniques
for Graph Coloring. In 1998 IEEE/ACM International Conference on Computer
Aided Design. IEEE, 190ś193.

[49] Gang Qu and Miodrag Potkonjak. 2000. Hiding Signatures in Graph Coloring
Solutions. Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics) 1768 (2000), 348ś367.
https://doi.org/10.1007/10719724_24

[50] Anh Quach, Aravind Prakash, and Lok Yan. 2018. Debloating Software through
Piece-wise Compilation and Loading. In 27th USENIX Security Symposium
(USENIX ’18). 869ś886.

[51] Peter R. Samson. 1994. Apparatus and Method for Serializing and Validating
Copies of Computer Software. http://www.google.com/patents/US5287408A

[52] Zonglu Sha, Hua Jiang, and Aicheng Xuan. 2009. Software Watermarking Algo-
rithm by Coefficients of Equation. 3rd International Conference on Genetic and
Evolutionary Computing, WGEC 2009, 410ś413. https://doi.org/10.1109/WGEC.
2009.18

[53] B. K. Sharma, R. P. Agarwal, and Raghuraj Singh. 2012. An Efficient Software
Watermark by Equation Reordering and FDOS. Advances in Intelligent and Soft
Computing 131 AISC, VOL. 2 (2012), 735ś745. https://doi.org/10.1007/978-81-
322-0491-6_67

[54] Eui Chul Richard Shin, Dawn Song, and Reza Moazzezi. 2015. Recognizing
Functions in Binaries with Neural Networks. In 24th USENIX Security Symposium
(USENIX ’15). 611ś626.

[55] Mohammad Shirali-Shahreza and Sajad Shirali-Shahreza. 2008. Software Wa-
termarking by Equation Reordering. 2008 3rd International Conference on Infor-
mation and Communication Technologies: From Theory to Applications, ICTTA.
https://doi.org/10.1109/ICTTA.2008.4530357

[56] Dannie M. Stanley, Dongyan Xu, and Eugene H. Spafford. 2013. Improved Kernel
Security through Memory Layout Randomization. 2013 IEEE 32nd International
Performance Computing and Communications Conference, IPCCC 2013). https:
//doi.org/10.1109/PCCC.2013.6742768

[57] Julien P Stern, Gaël Hachez, François Koeune, and Jean-Jacques Quisquater.
2000. Robust Object Watermarking: Application to Code. In Information Hiding.
Springer Berlin Heidelberg, 368ś378.

[58] Simon Tatham. 2021. SSH client. https://www.putty.org.
[59] Ramarathnam Venkatesan, Vijay Vazirani, and Saurabh Sinha. 2001. A Graph

Theoretic Approach to Software Watermarking. In International Workshop on
Information Hiding. Springer, 157ś168.

[60] Vsftpd. 2021. A GPL licensed FTP server for UNIX systems. https://security.
appspot.com/vsftpd.html.

[61] Shuai Wang, Pei Wang, and Dinghao Wu. [n. d.]. Semantics-Aware Machine
Learning for Function Recognition in Binary Code. In 33rd IEEE International
Conference on Software Maintenance and Evolution (ICSME ’17).

[62] Shuai Wang, Pei Wang, and Dinghao Wu. 2017. Composite Software Diversifica-
tion. Proceedings - 2017 IEEE International Conference on Software Maintenance
and Evolution, ICSME 2017, 284ś294. https://doi.org/10.1109/ICSME.2017.61

[63] Wikipedia. 2009. Stirling’s approximation. https://en.wikipedia.org/wiki/Stirling’
s_approximation.

[64] Wikipedia. 2021. Stuxnet. https://en.wikipedia.org/wiki/Stuxnet.
[65] Siqing Xue, Chunjiao He, and Jun Song. 2015. An Improved PPCT Based Dynamic

Graph Software Watermarking Scheme. In 2015 Fifth International Conference
on Instrumentation and Measurement, Computer, Communication and Control
(IMCCC). IEEE, 825ś829.

[66] Xinlei Yao, Jianmin Pang, Yichi Zhang, Yong Yu, and Jianping Lu. 2012. A Method
and Implementation of Control Flow Obfuscation using SEH. Proceedings - 2012
4th International Conference on Multimedia and Security, MINES 2012, 336ś339.
https://doi.org/10.1109/MINES.2012.25

[67] Ying Zeng, Fenlin Liu, Xiangyang Luo, and Chunfang Yang. 2010. Robust Software
Watermarking Scheme based on Obfuscated Interpretation. Proceedings - 2010
2nd International Conference on Multimedia Information Networking and Security,
MINES 2010, 671ś675. https://doi.org/10.1109/MINES.2010.146

[68] Ying Zeng, Fenlin Liu, Xiangyang Luo, and Chunfang Yang. 2011. Software
Watermarking through Obfuscated Interpretation: Implementation and Analysis.
Journal of Multimedia 6, 4 (2011), 329ś340. https://doi.org/10.4304/jmm.6.4.329-
340

[69] Jianqi Zhu, Yanheng Liu, and Kexin Yin. 2009. A Novel Dynamic Graph Software
Watermark Scheme. Proceedings of the 1st International Workshop on Education
Technology and Computer Science, ETCS 2009 3, 775ś780. https://doi.org/10.1109/
ETCS.2009.709

[70] William Zhu, Clark Thomborson, and Fei-Yue Wang. 2005. A Survey of Software
Watermarking. 454ś458. https://doi.org/10.1007/11427995_42

13

	Abstract
	1 Introduction
	2 Software Watermarking
	2.1 Problem Definition
	2.2 Requirements
	2.3 Threat Model

	3 Demonstrative Example
	4 SoftMark Design
	4.1 Overview
	4.2 Benefits of Our Approach
	4.3 Watermark Embedding
	4.4 Watermark Extraction

	5 Implementation
	6 Evaluation
	6.1 Resiliency
	6.2 Spread
	6.3 Credibility
	6.4 Capacity
	6.5 Efficiency
	6.6 Imperceptibility

	7 Discussion and Limitation
	8 Related work
	9 Conclusion
	Acknowledgments
	References

