

ESEC/FSE ’21, August 23ś28, 2021, Athens, Greece Chijung Jung, Ali Ahad, Jinho Jung, Sebastian Elbaum, and Yonghwi Kwon

Configuration Bugs. Figure 1 illustrates a high-level concept of

the configuration bug and the Swarmbug’s ultimate objective.

Given the space of all possible scenarios (Sall) of a swarm, there is

a configuration for the swarm (Corg) that can result in a successful

scenario (Ssucc) denoted by 1 . 2 denotes scenarios that can be

successfully covered by Corg . A configuration bug happens when

a swarm operates under a new scenario resulting in a failure Sfail
because it is not covered by Corg .

Challenges. A typical debugging approach for a configuration

bug might be tracking each parameter’s value propagation to the

robot’s decision that caused a faulty scenario. Unfortunately, the

aforementioned complexity of swarm algorithms makes this ap-

proach impractical. For example, parameters often go through a

number of complex computations with other variables, including

matrix multiplications. Precisely tracking a variable’s impact af-

ter those computations is an extremely challenging task. Another

typical approach is trial-and-error. A developer inspects a partic-

ular variable’s value, modifies its value, and tests whether it will

fix the bug. The debugging process typically requires non-trivial

manual effort due to many configurable parameters and complex

dependencies. Without proper guidance on each trial-and-error,

this approach is rather impractical. Moreover, even after the devel-

oper identifies a potential fix (i.e., a new value for a configurable

parameter), testing the fix in various scenarios is time-consuming

and challenging due to the large space of possible swarm behaviors.

Our Approach. This paper proposes Swarmbug, a swarm debug-

ging approach for configuration bugs. As illustrated in Figure 1,

it aims to find a new configuration which we call a fix Cfix that

can cover more scenarios (4). While not guaranteed, Swarmbug

prioritizes Cfix that are close to the Corg , which can potentially

cover some of the scenarios already covered by Corg (2) (as per

the overlapping area of 2 and 4).

In particular, Swarmbug targets bugs that are caused by mis-

configuration of the swarm algorithm or robot’s parameters (i.e.,

configuration variables). It aims to (1) find key variables that caused

a buggy behavior, (2) identify possible fixes for the bug via system-

atic testing, and (3) rank the fixes that preserve the behavior of

the original execution. Swarmbug’s key enabling technique is the

novel concept of the degree of causal contribution (Dcc). It creates

alternative executions with and without critical factors (e.g., ob-

jects) that affect the swarm’s behavior to understand which factors

are causally contributing to the buggy behavior. Swarmbug then

finds variables that can configure swarm algorithms to adjust the

Dcc of the factors. The contributions of this research are as follows:

• We develop a swarm robotics debugger for configuration bugs.

• We propose the concept of Dcc to understand the degree of

causal contribution of each variable to swarm behavior and use

it to precisely pinpoint critical variables that contribute to bugs.

• We evaluate our algorithm on 4 real-world swarm algorithms

and automatically identified 7 valid bug fixes, including physical

flight experiments with real-world drones to empirically show

that the generated fixes are effective in real-world scenarios.

• We have communicated and confirmed all the configuration bugs

and our fixes with the authors of the swarm algorithms.

• We publicly release the source code and data of Swarmbug on

https://github.com/swarmbug/src.

2 MOTIVATING EXAMPLE

We use the Adaptive Swarm [2] algorithm to illustrate Swarmbug’s

operation. We run the algorithm for four drones: one leader and

three follower drones (F1∼F3). The algorithm’s goal is to safely

move the swarm to a destination while maintaining a diamond-

shape formation as shown in Figure 2-(a). The arrows with borders

(either blue or gray) indicate the drone’s flight direction. Orange

arrows are the vectors caused to avoid obstacles (including other

drones). Gray arrows represent the vector to maintain the diamond

formation. When there are multiple vectors considered, the blue

arrows with borders indicate the final flight directions.

Configuration Variables. In this example, there are two types

of configuration variables: environment and swarm configuration

variables. Environment configuration variables represent objects

such as robots and obstacles (e.g., followers[0∼1].sp, self.sp.x , and ob-

stacle[8] in Figure 3). Swarm configuration variables are parameters

for swarm algorithm and robots. For example, circles surrounding

drones visualize a parameter infl_radius that determines the maxi-

mum sensing distance for objects. interrbt_dist is another parameter

that represents the desired distance between drones.

Configuration Bug. Figure 2-(b)∼(e) show such a scenario where

F3 crashes with an obstacle due to a configuration bug. First, the

moving obstacle approaches F1, which is also moving, in (b) and

makes F1 move towards the south-west, leading F1 to get close to

F3. In (c), the obstacle forces F1 and F3 closer. In (d), the obstacle

approaches now F3 which fails to avoid it because the other four

forces come into play: three forces to avoid F1, F2, and obstacles

(oranges), and the force to maintain the formation. This causes F3

to move just slightly from its current position, not enough to avoid

the obstacle, leading to a crash in (e). A cause for the failure is that,

in (d), F3 was too close to adjacent drones which interfere with the

decision of F3 to avoid the obstacle.

Debugging Attempts without Swarmbug. A typical debugging

approach of the given bug is to trace the value propagation from the

obstacle (i.e., the cause of the crash) to the drone to understand how

the obstacle and other variables affect the drone’s faulty decision.

For example, one may use existing program analysis techniques

such as taint analysis [7, 18, 40, 67, 76] to trace obstacle[8] which is

an environment configuration variable (defined as a global variable)

representing the obstacle. Each drone in the swarm reads this vari-

able to determine whether they are close to the moving obstacle

or not. However, tracking the value propagation of the variable is

challenging as it goes through complex computations.

Figure 3 shows a simplified value propagation graph. The arrows

in Figure 3 show the data propagation paths. The source variable

(obstacle[8]) is a 2×4 array and the values of its elements (along

with other variables including followers[0].sp and followers[1].sp

representing other drones) are used to generate each element of

a 500×500 array, d2. Later, each element of d2 is used to create

another 500×500 array repulsive with infl_radius and nu. Then,

each element of repulsive and attractive are added to create total

(a 500×500 array). Finally, it computes a gradient of the matrix to

create gx and gy . Finally, mean values of the gx and gy arrays to

compute x (self.sp.x) and y (self.sp.y) coordinates. At this point,

which part (of bytes) of the x and y coordinates are affected by

the source variable obstacle[8] is challenging to know. Using taint

ESEC/FSE ’21, August 23ś28, 2021, Athens, Greece Chijung Jung, Ali Ahad, Jinho Jung, Sebastian Elbaum, and Yonghwi Kwon

swarm in various positions). To make each test more meaningful in

terms of validating the robustness, Swarmbug measures whether

each run exercises observable new swarm behaviors using Dcc

values. Specifically, for each test, we collectDcc values and compute

MSE scores against previous executions’ Dcc values. The testing is

repeated until it does not observe new swarm behaviors (e.g., MSE

scores of 100 consecutive executions are all smaller than 0.01) or

reached a predefined timeout (e.g., 20 hours). In this example, both

fixes successfully pass the testing, meaning that Swarmbug did not

observe any failures after 20 hours of testing while the fixes with

infl_radius and interrbt_dist successfully finishes 3,880 and 1,211

tests respectively. Hence, both are considered as valid fixes.

(4) Finding Behavior-preserving Fixes: Some fixes may dis-

ruptively change the swarm behavior. For instance, in our example,

changing interrbt_dist results in a bigger diamond formation, mak-

ing the swarm look and behave quite differently. To avoid such

fixes, Swarmbug aims to identify a behavior-preserving fix which

behaves similar to the original swarm. Specifically, we compare the

Dcc values from a fixed execution and the original execution to

measure the differences between the two executions. If two swarm

executions have similar Dcc values, we consider that their behav-

iors are similar. In our example, the Dcc values from the fix with

infl_radius is more similar to the Dcc values from the original run

than the fix with interrbt_dist .

Chosen Fix: Figure 2-(1)∼(5) show the flight with the infl_radius fix.

It maintains the same formation, while individual drone detects and

avoids the obstacle earlier, preventing the situation where multiple

drones get too close (2)∼(4). All the drones, including F3, avoid the

obstacle successfully (5).

3 BACKGROUNDS, GOALS, AND SCOPE

3.1 Mobile Robot Software

Configurable Variables. A typical robot such as the drones we

use in our studies can have hundreds of configurable parameters

and each of the parameters can affect the robot’s behavior signifi-

cantly. A robot’s decision-making process is typically implemented

as a sequence of program statements that continuously and itera-

tively reads inputs from various sensors and computes the robot’s

next state, meaning that it is essentially a closed-loop system [98].

During the computation, the configurable parameters are also taken

into account. As shown in Figure 3, variables in the algorithms are

highly inter-dependent (e.g., most variables in the loop are depen-

dent on their previous iteration’s values), making it difficult to apply

data-dependency analysis techniques.

Field Testing and Simulation-based Testing. Testing robotics

algorithms is challenging because robots interact with the physical

surroundings. While testing robots in the real-world (field testing or

physical testing) is desirable and ultimately required, it is expensive

and dangerous due to the cost of failures. As a result, simulation-

based testing is a common alternative that can reduce development

and validation costs. Still, given the dimension and complexity of

the real-world, simulation-testing must identify what scenarios are

worth validating and attempt to reduce the exploration of equivalent

scenarios that render little value for testing.

3.2 Swarm Algorithms

Centralized and Distributed Swarm Algorithms. There are

two main lines in constructing swarm algorithms [8, 10, 17, 37, 56]:

centralized and distributed. A centralized algorithm [14, 22, 55]

computes all the decisions of individual robots in a swarm in a

centralized system. On the other extreme, a distributed swarm al-

gorithm [6, 45, 94] runs the majority of the algorithm on individual

robots, where robots are communicating via network channels. Ex-

isting approaches such as taint analysis have difficulty handling

distributed algorithms while Swarmbug works well on both cen-

tralized and distributed algorithms.

Local vs Global Goals. Swarm algorithms may have global goals

for the entire swarm and local goals for individual robots at the

same time, leading to conflicting goals. For instance, each robot

may have a local algorithm to avoid obstacles, while a swarm al-

gorithm aims to maintain a specific formation during the flight.

When a robot in the swarm encounters an obstacle, the robot’s

local algorithm may hold back the swarm algorithm’s progress as

it prioritizes its local goal (i.e., avoiding the obstacle). Note that

even if a swarm algorithm includes logic to balance the two goals

(e.g., prioritizing local and global goals based on the current state

and environment), the balancing logic may not be perfect, failing

to balance the conflicting goals.

Complex Dependencies. As a swarm consists of multiple robots,

the complexity of dependencies among variables and configurations

has significantly increased compared to that of a single robot. Dur-

ing our experiments, we observe that the average number of data de-

pendencies (i.e., the number of edges in the data dependence graph)

in drone swarm algorithms [36, 50, 51, 61, 93] is ‘1,693+1,207∗n’

where n represents the number of robots.
1
When n=5, the number

is approximately 3.7 times the average number of dependencies of

algorithms for a single drone which is 2,042 [15, 25, 27, 59, 68] (with

n=10, the swarm algorithms’ dependencies are 6.7 times bigger

than the single drone algorithms). It means that applying the data

dependency analysis to swarm algorithms is ineffective in practice.

Dynamic Behaviors. In a swarm, individual robots’ dynamic be-

haviors are often accumulated and amplified, leading to even more

diverse swarm behaviors. For example, in our motivation example,

Figure 2-(c) and (d) have a chain reaction to the obstacle, which is

different from when an individual drone interacts with an obsta-

cle. Hence, a significant challenge in swarm testing is obtaining

test cases that can effectively cover various swarm behaviors and

prioritizing test cases to cover diverse scenarios.

3.3 Goals and Scope

Goals of Swarmbug. Swarmbug aims to achieve the three major

goals to effectively debug swarm algorithms as follows.
• Goal-1: Developing effective causal analysis capabilities for swarm

algorithms to automatically identify root causes of configuration

bugs and find fixes.

• Goal-2: Developing an effective and efficient testing approach to

validate bug fixes for swarm algorithms by systematically cover-

ing various corner cases.

1
As for ‘1,693’ and ‘1,207’, we use the data-dependency graph using Sourcetrail [75],
with T as the total edges of the swarm algorithm and L as the number of edges for an
individual drone algorithm. ‘1,693’ is the average of the difference between T and L,
and ‘1,207’ is the average of L of all drones.

Swarmbug: Debugging Configuration Bugs in Swarm Robotics ESEC/FSE ’21, August 23ś28, 2021, Athens, Greece

Table 2: Effectiveness of Swarmbug

Algorithm
Behavior causal analysis Fix validation Fix prioritization Dev.

Trend Strategies Profiling
1

Fuzzing
3

MSE score (Rank) cfm.
5

Swarm Configuration Reinforcing Inverting R
2

In
2

Reinforcing Inverting R
2

In
2

w (=20.0) Ë (+20.0) Ë (-18.0) 34 16 1195/4292 (28%) 601/4282 (14%) - - -
xi (=400.0) Ë (-380.0) Ë (+400.0) 100 13 4281/4324 (99%) 477/4333 (11%) 0.024 (2) - Ë

Adaptive Decreasing nu (=1.4E-03) Ë (+1.4E-03) Ë (-1.12E-03) 100 51 4060/4215 (96%) 1858/4424 (42%) 0.031 (3) - Ë
Swarm (robot1.sp) int_dist (=0.7) Ë (+0.7) Ë (-0.56) 88 58 3922/4466 (88%) 2131/4441 (48%) 0.053 (4) - Ë

infl_radius (=0.3) Ë (-0.24) Ë (+0.3) 11 100 411/4190 (10%) 4199/4199 (100%) - 0.022 (1) Ë
drone_vel (=4.0) é Ë (+4.0) - 76 - 3052/4788 (64%) - 0.061 (5) Ë

c_vm (=3.0) ë Ë (-2.4) - 15 - 669/4554 (15%) - - -
b (=5.0) Ë (-4.0) é 22 - 1019/4323 (24%) - - - -

Swarmlab Decreasing r0 (=10.0) Ë (+10.0) é 100 - 4508/4537 (99%) - 0.021 (1) - Ë
(p_swarm.u_ref) c_pm_obs (=5.0) é Ë (-4.0) - 57 - 2311/4661 (50%) - - -

d_ref (=10.0) é Ë (-8.0) - 29 - 1167/4551 (26%) - - -
v_ref (=6.0) Ë (-4.8) é 100 - 3811/4088 (93%) - 0.023 (2) - Ë

Fly-by-logic Decreasing max_vel (=0.8) Ë (+0.8) é 78 - 3776/4896 (77%) - 0.021 (2) - Ë
(obs) max_accl (=1.0) Ë (+1.0) é 60 - 2808/4888 (57%) - 0.025 (3) - Ë

C (=50.0) Ë (+50.0) Ë (-40.0) 100 23 4808/4901 (98%) - 0.015 (1) - Ë

Howard’s Decreasing dist_thresh (=2.0) Ë (+2.0) é 26 - 1444/6281 (23%) - - - -

(wypt) obst_pot_c
4

(=1000.0) Ë (+1000.0) Ë (-800.0) 100 14 5697/6311 (90%) 831/6211 (13%) 0.011 (1) - Ë

1: Data in Profiling column indicates the number of successful mission for 100 tests. 2: R and In indicate Reinforcing and Inverting, respectively. 3: Data in Fuzzing column indicates
the number of successful mission over the number of fuzz testing in given time and success rate. 4: The program has hardcoded constants instead of variables. We assign a
conceptual name to them. 5: Checkbox in this column indicates whether the bugs and fixes are confirmed by developers or not.

are most successful (e.g., more than 90% of them are successful).

We run Adaptive Swarm and Swarmlab longer than the other two

because a single run from the first two algorithms is much slower

than the other two.

5.1.3 Fix Prioritization. As explained in Section 4.3, we obtain MSE

scores of the fixes and rank them according to the scores. The most

promising fixes are ranked the first in all cases. Two fixes are ranked

second: xi and v_ref in Adaptive Swarm and Swarmlab, respectively.

Our manual inspection shows that they are still valid fixes while

they are ineffective compared to the fix ranked first.

However, nu in Adaptive Swarm, which is ranked third, shows

abnormal behavior: it often makes robots stall or even move back-

ward when they recognize obstacles (even if the obstacles are quite

far away from them). Our manual inspection reveals that the fix

prioritizes avoiding obstacles significantly more than other goals.

Confirmation from the Algorithm Authors. Throughout our

research project, we have communicated with the authors of all four

swarm algorithms [2, 16, 60, 88] regarding the configuration bugs

we find. The bugs and fixes for the three algorithms are confirmed

and acknowledged by the authors. The authors also agreed that the

higher-ranked fixes are better than those that are lower-ranked.

5.2 Case Study

5.2.1 Real-world Experiment of a Fix from Swarmbug. To show

that a fix generated and validated by Swarmbug is effective in

real-world environment (e.g., with various noises), we conduct

a physical experiment that uses the fixed configuration (nu) of

Adaptive Swarm to reproduce the same flight.

Setup and Presentation. We use 6 Crazyflies [13] and leverage

CrazySwarm [66] as a controller for swarming. We use a local posi-

tion system (called LPS [12]) supported by Crazyflies to precisely

locate drones’ 3D positions in space. We conduct the experiments in

the lab environment where the space is 3m × 4m × 3m (in width ×

length× height).We use the same trajectory (which includes drones’

poses) from the Adaptive Swarm mission shown in Figure 9-(a).

Figure 10 illustrates the results. Drones start from the right-

bottom side of the map (marked as ‘Start’) and move toward the

left (marked as ‘Goal’), while avoiding obstacles. There is an L-

shape static obstacle which we use two white boxes in our physical

experiment. Moving obstacle (i.e., red symbol) is approaching the

drones from the left to right direction in the upper side of the map.

Thick lines are trajectories computed by swarm algorithms, and

thin lines with jitters are the traces of the real physical drones’

movements from the motion capture system [12]. The physical

aerodynamics and noise may have caused these variations (i.e.,

jitters). Along the trajectories, we visualize instances of drones at

two different time ticks. Circled letters represent drones, where

‘L’ means the leader, and A∼E means follower 1∼5. The symbol is

followed by a number that represents the time tick of the instances.

For instance, ‘L1 and A1∼E1’ represent the drones’ positions at the

time tick 1 while ‘L2 and A2∼E2’ are positions of the same drones at

the time tick 2. The red transparent lines between drones visualize

a group of drones at the same time tick.

Result. Figure 10-(a) shows partial traces of the drones using

Swarmbug’s fix łinfl_radius = 0.6ž (from the original value 0.3),

which safely finishes the mission without crashing. Figure 10-(b)

shows a picture of the physical experiment, while safely passing

the obstacle (the box behind the drones). With the Swarmbug’s fix,

drones maintain a sufficient safe distance. A video of this physical

experiment is available on [82].

Finding a Fix without Swarmbug. To provide a comparison

point for the quality of the fix generated by Swarmbug, we conduct

a small additional experiment that tries to come up with a fix by

manually changing the parameters without Swarmbug. First of all,

it would take a lot of time to pick the right configuration variable

for the fix (i.e., infl_radius), without any guidances such as Dcc

and MSE values used in Swarmbug. Even if we assume that the

desired variable, infl_radius, is chosen, finding a good value for the

fix is difficult. Assume that 0.4 is chosen (the original value is 0.3).

The fix is tested by running the simulations 200 times that are all

successfully finished without any crashes.

To this end, we run a physical experiment with the fix as shown

in Figure 10-(c). Observe that Follower 2 (B2) and Follower 3 (C2)

crash each other, meaning that while it passes the naive testing

(200 times), the fix is not effective in real-world scenarios.

5.2.2 Debugging a Ground Vehicle Swarm. In this case study, we

show how Swarmbug is used to debug a ground vehicle swarm

algorithm’s configuration bug. We use a swarm algorithm [85]

Swarmbug: Debugging Configuration Bugs in Swarm Robotics ESEC/FSE ’21, August 23ś28, 2021, Athens, Greece

hours (by a graduate student with moderate experience in drones)

to complete the two tasks for an algorithm. The effort is non-trivial,

but it is required one time for each algorithm. For example, besides

the four evaluated algorithms, we have applied Swarmbug to Swar-

mathon (see Section 5.2.2), taking about 10 hours (identifying 38

configuration-variables, the 5 thresholds, and changing 152 SLOC

for the integration).

Future Directions. We envision future directions of our paper

along two dimensions: empirical and technical. For the empirical

aspect, applying Swarmbug to more diverse swarm algorithms/sys-

tems (e.g., ground vehicle swarm) and more complicated scenarios

(e.g., drones navigating a city landscape) and analyzing the cost

and benefits of it can be the future work. Also, further analysis

support to complete some of the semi-automated processes such as

identifying key parameters used as inputs in Swarmbug can be the

future work as the technical aspect.

7 RELATED WORK

Testing Autonomous Robotics. Several testing methods are pro-

posed [4, 31, 34] and studied [1] to solve and understand diverse

challenges in testing autonomous robots. To evaluate the explo-

ration of the system under test (SUT), coverage-driven verification

(CDV) guides the testing process with an automated and systematic

aspect; thus developers generate a broad range of test cases [4].

ASTAA [34] proposed an automated system specialized in stress

and robustness testing and then discovered hundreds of bugs. Tim-

perley et al. empirically studied and found that the majority of

bugs in autonomous systems can be reproduced by software-based

simulations [83]. Hildebrandt et al. integrated dynamic physical

models of the robot to generate physically valid yet stressful test

cases [31].

Alternatively, formal validation and verification are rigorously

studied [35, 52] and used to prove properties of the testing programs

such as correctness, functionality, and availability. Bensalem et al.

developed a toolchain for specifying and formally modeling the

functional level of robots [11], and Halder et al. implemented a

system for checking the model of robots. Deeproad [23] validated

inputs for testing autonomous driving systems.

Unlike previous studies, Swarmbug aims to debug swarm algo-

rithms, which is an order of magnitude more complex, by using the

novel concept of the degree causal of contribution (Dcc).

Testing/Debugging Approaches. Delta debugging [97] isolates

the difference between a passing and a failing test case, by running

mutated test cases and observing the execution results. BugEx [69]

and Holmes [39] leverage a similar approach to understand the

cause of bugs. In addition, Coz [19] introduces additional delays

to infer possible optimization opportunities. LDX [46] perturbs

program states at runtime to infer causality between system calls.

Swarmbug uses a similar idea of mutating environment con-

figuration variables to conduct behavior causal analysis. However,

Swarmbug handles swarm algorithms where inputs are essentially

streams of data, while other techniques may need a non-trivial

amount of modifications to handle such input data. Swarmbug also

leverages the Dcc values to create a fuzz testing system.

Researchers leveraged random testing techniques (e.g., fuzzing)

to continually improve the quality of test cases [47, 64, 84]. PySE [43]

used a reinforcement learning-based approach to find a worst-case

scenario. There are also model-based approaches inferring the ac-

tual program state [71, 74] or input types [89].

Automated Program Repair. There is a line of research focused

on fixing buggy programs automatically [28, 30, 41, 48, 90]. In partic-

ular, [48] leverages a genetic programming approach [44] to repair

a buggy program. [30, 90] proposes an automated program repair

technique for programming assignments. While the previous works

and Swarmbug share the same goal of fixing a bug, Swarmbug aims

to fix configuration bugs in complex swarm algorithms running

multiple robots. It fixes bugs by changing the swarm configuration

variables’ values, while the previous works change the program

code to repair. QLOSE [21] leverages program distances to come

up with solutions for program repairing. SemCluster [63] defines a

new metric based on the input data space and uses the metric to

cluster programs. Swarmbug leverages Dcc to guide the analysis

and testing for swarm algorithms.

8 CONCLUSION

We proposed Swarmbug, a debugging approach for resolving con-

figuration bugs in swarm algorithms. Swarmbug automatically

identifies the causes of configuration bugs by creating new execu-

tions with mutated environment configuration variables. It com-

pares the new executions with the original execution to find the

causes of the bug. Then, given the cause, Swarmbug applies four

different strategies to fix the bug by mutating swarm configuration

variables, resulting in fixes for the configuration bugs. Our evalua-

tion shows that Swarmbug is highly effective in finding fixes for

diverse configuration bugs in swarm algorithms.

ACKNOWLEDGMENTS

We thank the anonymous referees for their constructive feedback.

The authors gratefully acknowledge the support of NSF 1916499,

1908021, 1850392, 1853374, and 1924777. Any opinions, findings,

and conclusions or recommendations expressed in this material are

those of the authors and do not necessarily reflect the views of the

sponsor.

REFERENCES
[1] Afsoon Afzal, Claire Le Goues, Michael Hilton, and Christopher Steven Timperley.

2020. A Study on Challenges of Testing Robotic Systems. In 2020 IEEE 13th
International Conference on Software Testing, Validation and Verification (ICST).
96ś107. https://doi.org/10.1109/ICST46399.2020.00020

[2] Ruslan Agishev. 2019. Adaptive Control of Swarm of Drones for Obstacle Avoidance.
Master’s thesis. Skolkovo Institute of Science and Technology, Moscow, Russia.

[3] Javier Alonso-Mora, Stuart Baker, and Daniela Rus. 2015. Multi-robot navigation
in formation via sequential convex programming. In 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). 4634ś4641. https://doi.org/
10.1109/IROS.2015.7354037

[4] Dejanira Araiza-Illan, David Western, Anthony G Pipe, and Kerstin Eder. 2016.
Systematic and realistic testing in simulation of control code for robots in col-
laborative human-robot interactions. In Annual Conference Towards Autonomous
Robotic Systems. Springer, 20ś32.

[5] Ardupilot. 2020. ArduCopter. https://ardupilot.org/copter/docs/introduction.
html.

[6] H. Asama, M. Habib, I. Endo, K. Ozaki, A. Matsumoto, and Y. Ishida. 1991. Func-
tional distribution among multiple mobile robots in an autonomous and de-
centralized robot system. In Proceedings. 1991 IEEE International Conference
on Robotics and Automation. IEEE Computer Society, Los Alamitos, CA, USA,
1921,1922,1923,1924,1925,1926. https://doi.org/10.1109/ROBOT.1991.131907

[7] Mona Attariyan and Jason Flinn. 2010. Automating Configuration Troubleshoot-
ing with Dynamic Information Flow Analysis. In Proceedings of the 9th USENIX
Conference on Operating Systems Design and Implementation (Vancouver, BC,
Canada) (OSDI’10). USENIX Association, USA, 237ś250.

ESEC/FSE ’21, August 23ś28, 2021, Athens, Greece Chijung Jung, Ali Ahad, Jinho Jung, Sebastian Elbaum, and Yonghwi Kwon

[8] Erkin Bahceci, Onur Soysal, and Erol Sahin. 2003. A review: Pattern formation and
adaptation in multi-robot systems. Robotics Institute, Carnegie Mellon University,
Pittsburgh, PA, Tech. Rep. CMU-RI-TR-03-43 (2003).

[9] Boldizsár Balázs, Gábor Vásárhelyi, and Tamás Vicsek. 2020. Adaptive leadership
overcomes persistenceśresponsivity trade-off in flocking. Journal of the Royal
Society Interface 17, 167 (2020), 20190853. https://doi.org/10.1098/rsif.2019.0853

[10] Jan Carlo Barca and Y. Ahmet Sekercioglu. 2013. Swarm robotics reviewed.
Robotica 31, 3 (2013), 345ś359. https://doi.org/10.1017/S026357471200032X

[11] Saddek Bensalem, Lavindra de Silva, Félix Ingrand, and Rongjie Yan. 2013. A
verifiable and correct-by-construction controller for robot functional levels. arXiv
preprint arXiv:1309.0442 (2013).

[12] bitcraze. 2019. A local positioning system. https://www.bitcraze.io/products/loco-
positioning-system/.

[13] bitcraze. 2020. A lightweight, open source flying development platform based on
a nano quadcopter. https://www.bitcraze.io/products/crazyflie-2-1/.

[14] Alexandre Santos Brandão and Mário Sarcinelli-Filho. 2016. On the guidance
of multiple uav using a centralized formation control scheme and delaunay
triangulation. Journal of Intelligent & Robotic Systems 84, 1 (2016), 397ś413.
https://doi.org/10.1007/s10846-015-0300-5

[15] Gino Brunner. 2019. autonomous-drone. https://github.com/szebedy/
autonomous-drone.

[16] Christian Howard. 2020. Algorithms developed to make drone swarm move
together. https://github.com/choward1491/SwarmAlgorithms.

[17] Soon-Jo Chung, Aditya Avinash Paranjape, Philip Dames, Shaojie Shen, and Vijay
Kumar. 2018. A Survey on Aerial Swarm Robotics. IEEE Transactions on Robotics
34, 4 (2018), 837ś855. https://doi.org/10.1109/TRO.2018.2857475

[18] James Clause, Wanchun Li, and Alessandro Orso. 2007. Dytan: A Generic Dy-
namic Taint Analysis Framework. In Proceedings of the 2007 International Sym-
posium on Software Testing and Analysis (London, United Kingdom) (ISSTA ’07).
ACM, New York, NY, USA, 196ś206. https://doi.org/10.1145/1273463.1273490

[19] Charlie Curtsinger and Emery D Berger. 2015. Coz: Finding code that counts
with causal profiling. In Proceedings of the 25th Symposium on Operating Systems
Principles. 184ś197. https://doi.org/10.1145/2815400.2815409

[20] Daniel Wollschlaeger. 2020. Analyzes shooting data with respect to group shape,
precision, and accuracy. https://cran.r-project.org/web/packages/shotGroups/
index.html.

[21] Loris D’Antoni, Roopsha Samanta, and Rishabh Singh. 2016. Qlose: Program
repair with quantitative objectives. In International Conference on Computer Aided
Verification. Springer, 383ś401. https://doi.org/10.1007/978-3-319-41540-6_21

[22] Celso De La Cruz and Ricardo Carelli. 2006. Dynamic modeling and centralized
formation control of mobile robots. In IECON 2006-32nd Annual Conference on
IEEE Industrial Electronics. IEEE, 3880ś3885. https://doi.org/10.1109/IECON.2006.
347299

[23] Ankush Desai, Shaz Qadeer, and Sanjit A Seshia. 2018. Programming safe robotics
systems: Challenges and advances. In International Symposium on Leveraging
Applications of Formal Methods. Springer, 103ś119. https://doi.org/10.1007/978-
3-030-03421-4_8

[24] Marco Dorigo, Dario Floreano, Luca Maria Gambardella, Francesco Mondada,
Stefano Nolfi, Tarek Baaboura, Mauro Birattari, Michael Bonani, Manuele Bram-
billa, Arne Brutschy, et al. 2013. Swarmanoid: a novel concept for the study
of heterogeneous robotic swarms. IEEE Robotics & Automation Magazine 20, 4
(2013), 60ś71. https://doi.org/10.1109/MRA.2013.2252996

[25] Jan Dufek. 2019. Multi-UAV Cooperative Surveillance. https://github.com/jan-
dufek/multi-uav-surveillance.

[26] Francesco. 2016. VRepRosQuadSwarm. https://github.com/merosss/
VRepRosQuadSwarm.

[27] Kshitij Gajapure. 2018. Drone Simulation with realistic controls made using
Unity. https://github.com/Kshitij08/Drone-Simulation.

[28] Claire Le Goues, Michael Pradel, and Abhik Roychoudhury. 2019. Automated
program repair. Commun. ACM 62, 12 (2019), 56ś65. https://doi.org/10.1145/
3318162

[29] Volker Grabe, Heinrich H Bülthoff, and Paolo Robuffo Giordano. 2012. On-board
velocity estimation and closed-loop control of a quadrotor UAV based on optical
flow. In 2012 IEEE International Conference on Robotics and Automation. IEEE,
491ś497. https://doi.org/10.1109/ICRA.2012.6225328

[30] Sumit Gulwani, Ivan Radiček, and Florian Zuleger. 2018. Automated clustering
and program repair for introductory programming assignments. ACM SIGPLAN
Notices 53, 4 (2018), 465ś480. https://doi.org/10.1145/3296979.3192387

[31] Carl Hildebrandt, Sebastian Elbaum, Nicola Bezzo, and Matthew B Dwyer. 2020.
Feasible and stressful trajectory generation for mobile robots. In Proceedings of
the 29th ACM SIGSOFT International Symposium on Software Testing and Analysis.
349ś362. https://doi.org/10.1145/3395363.3397387

[32] Jun S Huang, Siqing Ma, Gao Li, Oliver W Yang, and Chang Shao. 2020. An
Artificial Swan Formation Using the Finsler Measure in the Dynamic Window
Control. Int J Swarm Evol Comput 9 (2020), 186.

[33] Ziyao Huang,WeiweiWu, Feng Shan, Yuxin Bian, Kejie Lu, Zhenjiang Li, Jianping
Wang, and Jin Wang. 2020. CoUAS: Enable Cooperation for Unmanned Aerial
Systems. ACM Transactions on Sensor Networks (TOSN) 16, 3 (2020), 1ś19. https:

//doi.org/10.1145/3388323
[34] Casidhe Hutchison, Milda Zizyte, Patrick E Lanigan, David Guttendorf, Michael

Wagner, Claire Le Goues, and Philip Koopman. 2018. Robustness testing of
autonomy software. In 2018 IEEE/ACM 40th International Conference on Software
Engineering: Software Engineering in Practice Track (ICSE-SEIP). IEEE, 276ś285.
https://doi.org/10.1145/3183519.3183534

[35] Félix Ingrand. 2019. Recent trends in formal validation and verification of au-
tonomous robots software. In 2019 Third IEEE International Conference on Robotic
Computing (IRC). IEEE, 321ś328. https://doi.org/10.1109/IRC.2019.00059

[36] Florida Space Institute. 2020. EZ-RASSOR. https://github.com/FlaSpaceInst/EZ-
RASSOR.

[37] Luca Iocchi, Daniele Nardi, and Massimiliano Salerno. 2000. Reactivity and
deliberation: a survey on multi-robot systems. In Workshop on Balancing Re-
activity and Social Deliberation in Multi-Agent Systems. Springer, 9ś32. https:
//doi.org/10.1007/3-540-44568-4_2

[38] Alex Jinlei. 2018. Autonomous UAVs Swarm Mission. https://github.com/
AlexJinlei/Autonomous_UAVs_Swarm_Mission.

[39] Brittany Johnson, Yuriy Brun, and Alexandra Meliou. 2020. Causal testing:
understanding defects’ root causes. In Proceedings of the ACM/IEEE 42nd Inter-
national Conference on Software Engineering (Seoul, South Korea) (ICSE ’20).
Association for Computing Machinery, New York, NY, USA, 87ś99. https:
//doi.org/10.1145/3377811.3380377

[40] Vasileios P. Kemerlis, Georgios Portokalidis, Kangkook Jee, and Angelos D.
Keromytis. 2012. Libdft: Practical Dynamic Data Flow Tracking for Commodity
Systems. In Proceedings of the 8th ACM SIGPLAN/SIGOPS Conference on Virtual
Execution Environments (London, England, UK) (VEE ’12). ACM, New York, NY,
USA, 121ś132. https://doi.org/10.1145/2151024.2151042

[41] Dohyeong Kim, Yonghwi Kwon, Peng Liu, I. Luk Kim, David Mitchel Perry,
Xiangyu Zhang, and Gustavo Rodriguez-Rivera. 2016. Apex: Automatic Program-
ming Assignment Error Explanation. In Proceedings of the 2016 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems, Languages,
and Applications (Amsterdam, Netherlands) (OOPSLA 2016). Association for Com-
putingMachinery, New York, NY, USA, 311ś327. https://doi.org/10.1145/2983990.
2984031

[42] kitz. 2021. Position controller instability at yaw angles close to 180 degrees.
https://forum.bitcraze.io/viewtopic.php?t=4079.

[43] Jinkyu Koo, Charitha Saumya, Milind Kulkarni, and Saurabh Bagchi. 2019. Pyse:
Automatic worst-case test generation by reinforcement learning. In 2019 12th
IEEE Conference on Software Testing, Validation and Verification (ICST). IEEE,
136ś147. https://doi.org/10.1109/ICST.2019.00023

[44] John R. Koza. 1992. Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press, Cambridge, MA, USA. https://doi.org/10.
1007/BF00175355

[45] C Ronald Kube and Hong Zhang. 1993. Collective robotics: From social insects
to robots. Adaptive behavior 2, 2 (1993), 189ś218. https://doi.org/10.1177/
105971239300200204

[46] Yonghwi Kwon, Dohyeong Kim, William Nick Sumner, Kyungtae Kim, Brendan
Saltaformaggio, Xiangyu Zhang, andDongyanXu. 2016. LDX: Causality Inference
by Lightweight Dual Execution. In Proceedings of the Twenty-First International
Conference on Architectural Support for Programming Languages and Operating
Systems (Atlanta, Georgia, USA) (ASPLOS ’16). Association for Computing Ma-
chinery, New York, NY, USA, 503ś515. https://doi.org/10.1145/2872362.2872395

[47] Xuan-Bach D Le, Corina Pasareanu, Rohan Padhye, David Lo, Willem Visser,
and Koushik Sen. 2019. SAFFRON: Adaptive grammar-based fuzzing for worst-
case analysis. ACM SIGSOFT Software Engineering Notes 44, 4 (2019), 14ś14.
https://doi.org/10.1145/3364452.3364455

[48] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer. 2011.
Genprog: A generic method for automatic software repair. Ieee transactions on
software engineering 38, 1 (2011), 54ś72. https://doi.org/10.1109/TSE.2011.104

[49] Eric Liu. 2019. Crazyflie cannot be stable when take off, it flipped onto the ground.
https://github.com/USC-ACTLab/crazyswarm/issues/150.

[50] Yang Liu. 2019. Swarm formation sim. https://github.com/yangliu28/swarm_
formation_sim.

[51] Yang Liu. 2020. Swarm robot ros sim. https://github.com/yangliu28/swarm_
robot_ros_sim.

[52] Matt Luckcuck, Marie Farrell, Louise A Dennis, Clare Dixon, and Michael Fisher.
2019. Formal specification and verification of autonomous robotic systems: A
survey. ACM Computing Surveys (CSUR) 52, 5 (2019), 1ś41. https://doi.org/10.
1145/3342355

[53] Li Ma, Weidong Bao, Xiaomin Zhu, Meng Wu, Yuan Wang, Yunxiang Ling,
and Wen Zhou. 2020. O-Flocking: Optimized Flocking Model on Autonomous
Navigation for Robotic Swarm. In International Conference on Swarm Intelligence.
Springer, 628ś639. https://doi.org/10.1007/978-3-030-53956-6_58

[54] N Harris McClamroch and Danwel Wang. 1987. Feedback stabilization and
tracking of constrained robots. In 1987 American Control Conference. IEEE, 464ś
469. https://doi.org/10.1109/9.1220

[55] Dejan Milutinović and Pedro Lima. 2006. Modeling and optimal centralized
control of a large-size robotic population. IEEE Transactions on Robotics 22, 6

Swarmbug: Debugging Configuration Bugs in Swarm Robotics ESEC/FSE ’21, August 23ś28, 2021, Athens, Greece

(2006), 1280ś1285. https://doi.org/10.1109/TRO.2006.882941
[56] Yogeswaran Mohan and SG Ponnambalam. 2009. An extensive review of research

in swarm robotics. In 2009 World Congress on Nature & Biologically Inspired
Computing (NaBIC). IEEE, 140ś145. https://doi.org/10.1109/NABIC.2009.5393617

[57] Luong A Nguyen, Thomas L Harman, and Carol Fairchild. 2019. Swarmathon: a
swarm robotics experiment for future space exploration. In 2019 IEEE International
Symposium on Measurement and Control in Robotics (ISMCR). IEEE, B1ś3. https:
//doi.org/10.1109/ISMCR47492.2019.8955661

[58] Reza Olfati-Saber. 2006. Flocking for multi-agent dynamic systems: Algorithms
and theory. IEEE Transactions on automatic control 51, 3 (2006), 401ś420. https:
//doi.org/10.1109/TAC.2005.864190

[59] Ori. 2020. DroneSimLab. https://github.com/orig74/DroneSimLab.
[60] Yash Vardhan Pant, Houssam Abbas, Rhudii A Quaye, and Rahul Mangharam.

2018. Fly-by-logic: control of multi-drone fleets with temporal logic objectives.
In 2018 ACM/IEEE 9th International Conference on Cyber-Physical Systems (ICCPS).
IEEE, 186ś197. https://doi.org/10.1109/ICCPS.2018.00026

[61] Jungwon Park. 2020. Trajectory generation and simulation for multi-agent swarm.
https://github.com/qwerty35/swarm_simulator.git.

[62] Jungwon Park, Junha Kim, Inkyu Jang, and H Jin Kim. 2020. Efficient multi-
agent trajectory planning with feasibility guarantee using relative bernstein
polynomial. In 2020 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 434ś440. https://doi.org/10.1109/ICRA40945.2020.9197162

[63] David M Perry, Dohyeong Kim, Roopsha Samanta, and Xiangyu Zhang. 2019.
SemCluster: clustering of imperative programming assignments based on quan-
titative semantic features. In Proceedings of the 40th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation. 860ś873. https:
//doi.org/10.1145/3314221.3314629

[64] Theofilos Petsios, Jason Zhao, Angelos D Keromytis, and Suman Jana. 2017. Slow-
fuzz: Automated domain-independent detection of algorithmic complexity vul-
nerabilities. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. 2155ś2168. https://doi.org/10.1145/3133956.3134073

[65] Peyje. 2020. SWARMulator. https://github.com/Peyje/SWARMulator.
[66] James A Preiss, Wolfgang Honig, Gaurav S Sukhatme, and Nora Ayanian.

2017. Crazyswarm: A large nano-quadcopter swarm. In 2017 IEEE Interna-
tional Conference on Robotics and Automation (ICRA). IEEE, 3299ś3304. https:
//doi.org/10.1109/ICRA.2017.7989376

[67] Feng Qin, ChengWang, Zhenmin Li, Ho-Seop Kim, Yuanyuan Zhou, and Youfeng
Wu. 2006. LIFT: A Low-Overhead Practical Information Flow Tracking System for
Detecting Security Attacks. Proceedings of the 39th Annual IEEE/ACM International
Symposium on Microarchitecture, 135ś148. https://doi.org/10.1109/MICRO.2006.
29

[68] Nishanth Rao. 2019. ROS-Quadcopter-Simulation. https://github.com/
NishanthARao/ROS-Quadcopter-Simulation.

[69] Jeremias Roβ ler, Gordon Fraser, Andreas Zeller, and Alessandro Orso. 2012.
Isolating failure causes through test case generation. In Proceedings of the 2012
international symposium on software testing and analysis. 309ś319. https://doi.
org/10.1145/2338965.2336790

[70] Dibyendu Roy, Arijit Chowdhury, Madhubanti Maitra, and Samar Bhattacharya.
2018. Multi-robot virtual structure switching and formation changing strategy in
an unknown occluded environment. In 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 4854ś4861. https://doi.org/10.1109/
IROS.2018.8594438

[71] Charitha Saumya, Jinkyu Koo, Milind Kulkarni, and Saurabh Bagchi. 2019.
XSTRESSOR: Automatic generation of large-scale worst-case test inputs by infer-
ring path conditions. In 2019 12th IEEE Conference on Software Testing, Validation
and Verification (ICST). IEEE, 1ś12. https://doi.org/10.1109/ICST.2019.00011

[72] Fabrizio Schiano and Paolo Robuffo Giordano. 2017. Bearing rigidity mainte-
nance for formations of quadrotor UAVs. In 2017 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 1467ś1474. https://doi.org/10.1109/
ICRA.2017.7989175

[73] Melanie Schranz, Martina Umlauft, Micha Sende, and Wilfried Elmenreich. 2020.
Swarm Robotic Behaviors and Current Applications. Frontiers in Robotics and AI
7 (2020), 36. https://doi.org/10.3389/frobt.2020.00036

[74] Yuju Shen, Yanyan Jiang, Chang Xu, Ping Yu, Xiaoxing Ma, and Jian Lu. 2018.
Rescue: Crafting regular expression dos attacks. In 2018 33rd IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE). IEEE, 225ś235.
https://doi.org/10.1145/3238147.3238159

[75] Coati Software. 2020. Sourcetrail. https://www.sourcetrail.com/.
[76] Dawn Song, David Brumley, Heng Yin, Juan Caballero, Ivan Jager, Min Gyung

Kang, Zhenkai Liang, James Newsome, Pongsin Poosankam, and Prateek Saxena.

2008. BitBlaze: A New Approach to Computer Security via Binary Analysis. In
Information Systems Security, R. Sekar and Arun K. Pujari (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 1ś25. https://doi.org/10.1007/978-3-540-89862-
7_1

[77] Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020. SwarmLab: a Matlab
Drone Swarm Simulator. (2020), 8005ś8011. https://doi.org/10.1109/IROS45743.
2020.9340854

[78] Siddharth Swaminathan, Mike Phillips, and Maxim Likhachev. 2015. Planning for
multi-agent teams with leader switching. In 2015 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 5403ś5410. https://doi.org/10.1109/
ICRA.2015.7139954

[79] swarm5. 2020. ESTKALMAN: State out of bounds, resetting. https://github.com/
USC-ACTLab/crazyswarm/issues/259.

[80] swarm5. 2021. The motor has inconsistent performance. https://github.com/USC-
ACTLab/crazyswarm/issues/289.

[81] Swarmathon. 2019. NASA Swarmathon. http://nasaswarmathon.com/.
[82] Swarmbug. 2021. Source Code Release. https://github.com/swarmbug/src.
[83] Christopher Steven Timperley, Afsoon Afzal, Deborah S Katz, Jam Marcos Her-

nandez, and Claire Le Goues. 2018. Crashing simulated planes is cheap: Can
simulation detect robotics bugs early?. In 2018 IEEE 11th International Con-
ference on Software Testing, Verification and Validation (ICST). IEEE, 331ś342.
https://doi.org/10.1109/ICST.2018.00040

[84] Luca Della Toffola, Michael Pradel, and Thomas R Gross. 2018. Synthesizing
programs that expose performance bottlenecks. In Proceedings of the 2018 In-
ternational Symposium on Code Generation and Optimization. 314ś326. https:
//doi.org/10.1145/3168830

[85] Jackson State University. 2018. Swarmathon Code of Team JSU. https://github.
com/BCLab-UNM/Swarmathon-JSU-Public.

[86] Gábor Vásárhelyi, Csaba Virágh, Gergő Somorjai, Tamás Nepusz, Agoston E
Eiben, and Tamás Vicsek. 2018. Optimized flocking of autonomous drones in
confined environments. Science Robotics 3, 20 (2018). https://doi.org/10.1126/
scirobotics.aat3536

[87] Tamas Vicsek. 2019. Autonomous Mission Control of Drone Flocks. Technical
Report. EOTVOS Lorand Tudomanyegetem Budapest Hungary.

[88] Anthony De Bortoli Victor Delafontaine, Andrea Giordano. 2020. A drone swarm
simulator written in Matlab. https://github.com/lis-epfl/swarmlab.

[89] Di Wang and Jan Hoffmann. 2019. Type-guided worst-case input generation.
Proc. ACM Program. Lang. 3, POPL, Article 13 (Jan. 2019), 30 pages. https:
//doi.org/10.1145/3290326

[90] Ke Wang, Rishabh Singh, and Zhendong Su. 2018. Search, align, and repair:
data-driven feedback generation for introductory programming exercises. In
Proceedings of the 39th ACM SIGPLAN Conference on Programming Language
Design and Implementation. 481ś495. https://doi.org/10.1145/3192366.3192384

[91] Shirley Wang, Nicholas Anselmo, Miller Garrett, Ryan Remias, Matthew Trivett,
Anders Christoffersen, and Nicola Bezzo. 2020. Fly-Crash-Recover: A Sensor-
based Reactive Framework for Online Collision Recovery of UAVs. In 2020 Systems
and Information Engineering Design Symposium (SIEDS). IEEE, 1ś6. https://doi.
org/10.1109/SIEDS49339.2020.9106654

[92] William Warke. 2019. Crazyflie 2.1 rotating frantically and crashing at specific
Yaw-Angle. https://github.com/USC-ACTLab/crazyswarm/issues/149.

[93] Frank Willeke. 2021. FlockModifier. https://github.com/FlaSpaceInst/EZ-
RASSOR.

[94] Sean Wilson, Paul Glotfelter, Li Wang, Siddharth Mayya, Gennaro Notomista,
Mark Mote, and Magnus Egerstedt. 2020. The robotarium: Globally impactful op-
portunities, challenges, and lessons learned in remote-access, distributed control
of multirobot systems. IEEE Control Systems Magazine 40, 1 (2020), 26ś44.

[95] Kun Xiao, Lan Ma, Shaochang Tan, Yirui Cong, and Xiangke Wang. 2020. Imple-
mentation of UAV Coordination Based on a Hierarchical Multi-UAV Simulation
Platform. arXiv preprint arXiv:2005.01125 (2020).

[96] Yxiao 2020. SwarmSim. https://github.com/yxiao1996/SwarmSim.
[97] Andreas Zeller and Ralf Hildebrandt. 2002. Simplifying and Isolating Failure-

Inducing Input. IEEE Trans. Softw. Eng. 28, 2 (Feb. 2002), 183ś200. https://doi.
org/10.1109/32.988498

[98] Ganwen Zeng and Ahmad Hemami. 1997. An overview of robot force control.
Robotica 15, 5 (1997), 473ś482. https://doi.org/10.1017/S026357479700057X

[99] Hai Zhu, Jelle Juhl, Laura Ferranti, and Javier Alonso-Mora. 2019. Distributed
Multi-Robot Formation Splitting and Merging in Dynamic Environments. In 2019
International Conference on Robotics and Automation (ICRA). IEEE, 9080ś9086.
https://doi.org/10.1109/ICRA.2019.8793765

	Abstract
	1 Introduction
	2 Motivating example
	3 Backgrounds, goals, and scope
	3.1 Mobile Robot Software
	3.2 Swarm Algorithms
	3.3 Goals and Scope

	4 Design
	4.1 Behavior Causal Analysis
	4.2 Fix Validation
	4.3 Fix Prioritization

	5 Evaluation
	5.1 Effectiveness
	5.2 Case Study

	6 Discussion
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

