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Abstract—Electric transmission power grids are being revamped with the widespread deployment
of GPS-enabled Phasor Measurement Units (PMUs) for real-time wide-area monitoring and control
via precise, time-synchronized measurements of voltage and current. Large, concurrently
produced volumes of noisy data hinder PMU usability, particularly for the analysis of power
oscillation and load fluctuation events in the grid. We examine visualization challenges for events
in the electric power grid and develop PMUVis, a visualization platform that supports scalable
analysis of grid network topology and anomalous events in near-time. PMUVis incorporates a
novel FFT-based approach over raw and temporally aggregated data to examine oscillation event
propagation through the grid network. We validate PMUVis with expert reviews and a case study,
and discuss how visualization can be leveraged to enhance real-time, spatiotemporal grid analysis
by advancing operator capabilities.

Electric power grids are distributed, complex  able energy delivery. Due to congestion, atypical
cyber-physical systems designed to provide reli- power flows, and increasing demand for renewable
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Figure 1: Voltage Magnitude (VPm) of eight
PMUs from the North American power grid over
a 10 minute time period. While basic trends can
be seen with a small number of PMUs as shown
here, raw data quickly becomes noisy as additional
PMUs are added to the display.

energy, power systems have been revamped as
smart grids to combat heightened complexity
and unpredictability, and enhance reliability and
critical real-time decision-making.

Industry stakeholders are increasingly deploy-
ing GPS-synchronized phasor measurement units,
or PMUs, for real-time wide-area monitoring
and control. PMUs provide high speed and high
resolution streaming data (usually 30-120 samples
per second) of the phase/magnitude of voltages
and currents [15]. Using a common time signal (in
most cases provided by GPS), measurements are
synchronized across wide geographical areas. This
provides a clear and precise picture of the grid
state in terms of power flows and power quality
(voltage profile, frequency, etc.).

PMUs can hence capture dynamic subsecond
behaviors that were previously unobservable using
traditional supervisory control and data acquisition
(SCADA) data. However, their usage comes with
several challenges, including the massive scale
of PMU data, and wideband noise [12] which
impacts frequency and rate of change of frequency
estimation in sensor measurements.

Unfortunately, current industry platforms pro-
vide limited flexibility and scalability for visually
investigating grid events. For many operators,
grid event analysis involves manually correlating
network diagrams of the grid topology with
changes in sensor values obtained by tediously
inspecting line charts of PMU data streams (see
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Figure 2: Schematic of a substation that depicts the
interconnections between buses and transformers
within the substation, as well as connections
to other substations and external loads. PMUs
monitoring voltage and current for certain lines
are also present.

Figure 1). This not only limits operator ability to
conduct in-depth analyses for decision-making, but
has also led to the slow and scattered adoption of
PMU-equipped substations (Figure 2) by electric
utilities.

In this paper, we focus on end-to-end, flexible,
and scalable data management and visual analysis
of PMU data. Our research contributions are as
follows: (i) We survey a set of domain experts
who work for U.S. power and electrical companies
to understand current industry challenges and
practices for handling and visualizing PMU data.
(ii)) We identify a set of ‘focus’ tasks required
for effective visualization and analysis of large-
scale PMU data to examine how events propagate
through the grid network. (iii) Based on these
requirements, we implement a software platform
called PMUVis that supports scalable, interactive
analysis of PMU data. (iv) To evaluate PMU Vis,
we conduct a case study and an in-depth expert
review session with domain operators at a regional
U.S. power and electrical company.

Related Work

As cyber-physical systems (CPS), smart grid
power systems closely integrate computation, net-
working, and physical processes, and rely heavily
on real-time monitoring, assessment, and decision
making [10]. Within this context, visualization is
an important technique for understanding the state
of the grid.

Visualizing PMU data streams. Several in-
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dustry and open-source software platforms support
visualizing PMU and SCADA data streams. Real-
Time Dynamics Monitoring System [4], or RT-
DMS, is a platform for real-time grid monitoring
that includes many “traditional” visualizations
that are standard to domain operators. This in-
cludes geographic displays overlaid with the grid
topology to show network state and connectiv-
ity and line charts of raw PMU data streams.
Additionally, odometer-inspired radial dials are
used to represent phase angle separation, voltage
sensitivity, oscillation, and grid stress monitoring.
Other wide area monitoring and control systems
like Cozby et.al. [6] allow the capture and visual-
ization of PMU data streams in real-time. Backend
algorithms to identify anomalous behavior (i.e.,
events) such as oscillations or line faults are
also incorporated. However, their visualization
support is generally not tailored for event analysis.
In contrast, while PMUVis currently supports
historical data analysis, it is specifically designed
to support in-depth event analysis, and can be
adapted to work for real-time data.

Visualizing power grid topologies. A com-
mon approach for visualizing the grid topology is
overlaying a node-link diagram atop a geographi-
cal map. Several industry platforms have extended
this view to encode additional information. For
example, contour maps are commonly utilized
to show bus and line voltage/current profiles
of regions either geographically or within bus
systems [19]. Unfortunately, this approach inter-
polates virtual values in the “blank regions” of
geographic space between disconnected network
nodes. Another approach is showing grid nodes as
3D glyphs [20], which could lead to occlusion, as
the PMUs are highly interconnected and clustered
on subsets of substation lines. Our intention in
noting these issues is not to say existing systems
are wrong (to the contrary, many provide very
robust analysis capabilities), but to emphasize
that PMUVis strives to employ cohesive design
practices. We use effective and expressive channel
encodings, as well as employ well-known visual-
ization techniques, such as heatmaps, in a novel
application for anomaly detection.

Future visual analytic systems for the power
grid can therefore benefit from collaboration with
the visualization community. For example, in-
dustry applications could incorporate state-of-the-
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art dynamic network visualization techniques [2].
Additionally, techniques used in platforms that
visualize a combination of cyber-physical sensor
network data and live human reports, can be
employed. For instance, [16] employ word streams
and radial visualizations for the situational analysis
of earthquakes. [17] incorporate climate sensor
data into a pedestrian (tourist) navigation app
using contour maps and path highlighting, to
account for extreme weather conditions.

Visualizing grid events. Grid events re-
fer to irregularities in power systems such as
line/generation losses, voltage drops, oscillations,
etc. Visual analysis of grid events generally com-
bines backend processes with frontend techniques
that show identified anomalies. For example,
industry platforms such as BTRDB monitor PMU
streams, and will alert operators when monitored
values exceed thresholds, network connectivity
drops between components, or anomalies are
detected using ad-hoc algorithms [7]. However,
current methods require high operator knowledge
and overhead in processing. This regularly results
in flagging of events further downstream where
they can cause significantly more disruption (such
as blackouts), necessitating efficient visualization
methods to streamline event analysis.

When analyzing events, signal processing
methods such as fast Fourier transform, matrix-
pencil, and spectral analysis are a common ap-
proach for characterizing the time evolution of
PMUs that are potentially relevant to an oscil-
lation event. For example, Idehen et.al. [9] use
a matrix-pencil technique to study large scale
oscillation modes. The network’s transient stability
is visualized with line charts, network contour
maps, and a “mode quality cost” function, which
groups modes based on shape and frequency
coherency. Similarly, PMUVis allows users to
interactively apply signal processing to PMU
data to analyze grid events, where selected PMU
streams are decomposed using FFT and autocorre-
lation. In contrast to the above systems, we focus
on egocentric visualization and analysis using a
paired dataset of historical events, though existing
event analysis techniques can be integrated into
the system as future work to support real-time
operations (see Discussion section).
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Requirements for Scalable PMU
Visualization

To better understand current practices and
challenges for visualizing PMU data in the power
grid, we surveyed three industry professionals who
perform research and operations for U.S. power
companies, and have extensive experience in the
grid domain (13, 15, and 32 years). For survey
responses, we note the number of practitioners
who responded affirmatively in parentheses.

Challenges for visualizing PMU data

(3) Retrieving data quickly and efficiently.

(2) Visualizing many PMUs at once.

(2) Linking events to visualized data.

(2) Tracing event propagation through the network.

(2) Isolating anomalous/outlier PMU behavior.

(1) Visualizing PMU data for a long duration.

(1) Identifying missing data.

(1) Streaming PMU data for real-time decision-making.

K S S S S

Table 1: Our survey with power systems pro-
fessionals identified the above items as salient
challenges for visualizing power grid data. We
note the number of users who referenced each
challenge in parentheses. Items addressed by
PMUVis are noted with an asterisk.

Each practitioner utilizes a variety of tools to
visualize power grid data as a part of their job.
Mentioned tools include software specifically de-
veloped for power systems (3: including RTMDS,
SEL Synchrowave, ASPEN, PSS/E, DSATools,
openECA, and OpenPDC), software developed in
house (1), and general-purpose software/scripting
tools/languages (3: mentioned software includes
Excel, MATLAB, and Python). While platforms
such as RTDMS are engineered to capture and
display PMU data streams in real-time, and
support backend modules for identifying anoma-
lous behavior like islanding detection [3], they
lack visualizations specifically tailored for event
analysis.

Common data visualization techniques em-
ployed by the practitioners include line charts for
showing raw PMU streams (3), node-link diagrams
to show the grid network (3), 3D contour maps to
show voltage information (2), line flow charts that
superimpose scaled size arrows on lines in the
network architecture to indicate the direction and
magnitude of power flow (2), and bus schematic
plots with overlaid heatmaps and voltage contour

plots to identify an acceptable system state for the
schema (2).

Table 1 lists the primary challenges the prac-
titioners referenced when visualizing PMU data.
Fast and customizable data retrieval was men-
tioned as a significant challenge by all three
practitioners, though aspects of event analysis
were also highlighted: tracing event propagation
throughout the network (2), isolating anoma-
lous PMU behavior (2), and linking events to
PMUs (2).

Based on discussions and the identified chal-
lenges, many of which deal with event analysis,
we outline a set of five design requirements (DR1-
DRS) for visual analysis of the power grid using
PMU data.

(DR1) Flexible and interactive data retrieval
To enable interactive visualization, systems sup-
port real-time, customizable data retrieval. While
the grid network is largely static—as PMUs
primarily only go offline due to maintenance
or severe unexpected events such as weather-
related line faults—data storage and query can
be primarily tailored around PMU data streams
with different temporal granularities.

(DR2) Familiar techniques for familiar tasks
For “common” operator visualization tasks, such
as show this PMU’s data over time, familiar
techniques already exist. As operators are non-
expert visualization users, techniques should be
straightforward to minimize the learning curve.

(DR3) Scalable PMU visualization for trend
and anomaly analysis While line charts can
show PMU streams over time, this technique
quickly becomes cluttered and noisy as either
(i) more PMUs are added to the chart or (ii) the
temporal duration of the plot increases. Alternative
techniques that enable scalable visualization of
hundreds (or thousands) of PMUs streams over
long time durations will better support pattern,
trend, and outlier analysis, including dropped or
missing data.

(DR4) Link events to PMUs To support event
analysis, especially an understanding of where
events begin and how they evolve throughout the
network, an event’s origin should be sourced to a
specific region within the network topology—such
as to the PMU that is at (or adjacent to) an event’s
source. We refer to this PMU as the “event ego’
PMU for the event.

>

IT Professional

Authorized licensed use limited to: ASU Library. Downloaded on September 05,2022 at 03:36:49 UTC from |IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MCG.2022.3171506, IEEE

Computer Graphics and Applications

(DR5) Support analysis of event propagation
through the network Due to the high sampling
frequency of PMUs, network imbalances and
oscillations can be measured as they propagate
between PMUs in the network using noise and
voltage sequence techniques. Given the short
duration of such events, propagation is difficult
to track effectively when visualizing the raw
data. Therefore, interactive visualization of signal
processing techniques can be tailored specifically
to analyze event evolution. For PMUVis, we
compute the FFT and autocorrelation of the ego
PMU as well as other user-selected PMUs, and
compare the ego and selection against each other
to see how an event affects the surrounding
network.

PMUVis is designed to support these require-
ments; to help ensure this, during development
we iteratively consulted our surveyed experts to
assess the platform’s design and user experience.
In the following sections, we apply and illustrate
how these principles DR1-DRS foster event-
focused analysis of the power grid through the
data management and frontend implementation of
the PMUVis system.

Data Storage and Management

PMUVis is implemented using a historical
PMU dataset from a U.S. gas and electric company
consisting of ~500 PMUs over a three year period.
Each PMU records measurements for 18 attributes
at a 30 Hz frequency. (At our institution, access to
this PMU dataset is provided under non-disclosure
agreement provisions, sO we anonymize certain
features such as PMU IDs and locations.) As this
raw PMU data is very large and noisy (total raw
dataset size is over 70 TB), we describe here the
steps we take to aggregate, store, and retrieve it
(DR1), as well as our use of signal processing for
event analysis.
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Figure 3: The storage format for PMU data. Raw
data is saved into Parquet format (1 file equals 1

PMU attribute for 1 day), allowing fast column-
wise reads for small time durations.
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Storing and Accessing Raw PMU Data

Raw PMU data is saved on our compute
cluster’s servers using the Parquet file format.
Parquet is a columnar storage scheme based on an
algorithm for record shredding and assembly [14],
that supports efficient and flexible compression
and encoding. Blocks in a Parquet file are stored
in the form of row groups, each of which in
turn contains column chunks. In a column chunk,
column values are stored in contiguous memory
locations. As Parquet compression is transparent
and can be adapted in a column-specific manner,
column-wise queries can fetch values with much
higher performance compared to row-wise queries.
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Figure 4: Access times for PMU data stored in
Parquet format. We plot access times for (a) one
PMU and (b) all (~500) PMUs when accessing
two attributes (VPm and IPa). We plot access
times of aggregated (aggr.) PMU data (each line
represents a different aggregation granularity) for
the same two attributes (VPm and IPa) over longer
durations for (¢) one PMU and (d) all PMUs.

In our dataset, each Parquet file stores one
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attribute’s worth of data for all PMUs for one day
(Figure 3). The files are subdivided into 96 fifteen-
minutes groups, such that each group contains 27k
rows. Each column corresponds to one PMU, and
each row is one timestamp. As the PMUs record
measurements at 30 Hz (raw values are 64-bit
floating point values, null values are recorded
during data dropout). Each Parquet file is ~500
columns X 2.592M rows. Since each PMU records
18 attributes, each day contains 18 Parquet files.

Data stored in Parquet files can be compressed
and decompressed on-the-fly using Gzip. Because
of this, the compressed size of our Parquet files
generally varies between attributes. For example,
in compressed format, files for the magnitude at-
tribute are generally between ~1.5-2.5 GB. When
reading data from a Parquet file, uncompressing
a row group results in reading ~20MB of data.
Storage-wise, each day’s set of 18 Parquet files is
~50-70GB.

Figure 4(a—b) shows access times based on the
number of PMUs and the time duration. Access
times quickly become slow, prohibiting interactive
visualization of raw PMU data over long times-
pans. Therefore, to enable interactive analysis
of longer timespans, we utilize a hierarchical
aggregation scheme for computed PMU statistics.

Aggregating PMU Statistics for Fast Querying
Our aggregation approach mimics the Parquet
file structure for the raw data, only now storing
aggregate computed statistics (Figure 5). This
decision to maintain data storage and access via
Parquet files was chosen based on the following
reasons: (i) Aggregated data files can be stored in
the same directory locations as raw data, making
administration straightforward. (ii) APIs previ-
ously developed to access Parquet files storing
raw PMU data can be tweaked to additionally
access Parquet files storing aggregated statistics.
This maintains a consistent data access API for
both raw and aggregate data. (iii) Even when
conducting subsecond analysis (as is done when
examining grid events), PMU measurements are
almost always considered over time ranges as
opposed to a single measurement/timestep snap-
shot. Storing aggregated PMU statistics in column-
wise format in Parquet files optimizes for the
temporal queries. In contrast, SQL/NoSQL/time
series databases would require implementing and
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15

Figure 5: Storage of PMU data at different granu-
larities. To enable long-duration data retrieval with
fast access times, relevant statistics are computed
at successive levels of granularity.
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maintaining indexes with additional overhead,
thus slowing data retrieval. (iv) Besides raw data
aggregation, we are able to compute aggregated
statistics such as signal to noise ratio (SNR) over
a sliding window and its standard deviation for all
attributes, as well as positive and negative voltage
sequences, simultaneously.

We consider four aggregation levels for PMU
data (minute, fifteen minutes, hour, and day)
by averaging over the granularity considered.
Like before, we store each PMU’s data to a
single column, but each row now represents
the respective time granularity considered. For
example, by aggregating over minutes, each day’s
measurements are reduced to 1,440 rows. A
week’s worth of data can be stored to a single file
using the minute granularity, with 10,080 rows and
a size of 30MB. Like the raw data, each attribute
is stored in a separate Parquet file. Figure 4(c—d)
shows how access time increases based on the
time duration and the aggregation level—we note
that minute and day granularities are sufficient to
efficiently conduct multi-year data retrievals (the
hour and fifteen minute granularities performing
equivalently well, with a less than 3 second
difference than minute access time at maximum
duration, i.e., 1 year). In this way, PMUVis uses
data aggregation to support interactive querying
similar to existing platforms for sensor data such
as PingThings (https://www.pingthings.io) and
BTrDB [1].

Despite this approach being straightforward,
it proved successful both for facilitating fast data

retrieval (DR1) as well as the retrieval of many
PMUs for visualization (DR3).
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Linking Event Reports and PMU Data

In addition to the PMU data, we also employ
an auxiliary dataset consisting of historical event
reports created by operators and technicians. These
reports describe events of interest that occurred in
the grid. They consist of unstructured text docu-
ments that do not provide any metadata linking the
report to PMUs, substations, or locations in the
grid (timestamps are the only included metadata).
To link events to PMUs (DR4), these text reports
must be associated to one or more PMUs in the
network.

To do this, we first performed a regex match-
ing between report text and PMU IDs, substa-
tion names (where the PMU is located), and
PMU/substation locations, to identify specific
associations between an event and PMU(s). If an
association was found, the event was considered
to originate from that PMU, or to originate such
that the linked PMU was the closest PMU in
the network. For example, if an event originated
at a substation without any PMUs, the closest
PMU would be the first to identify the event.
Unmatched events were manually reviewed and
either explicitly associated to a PMU or discarded
(generally, these were cases where the event was
irrelevant to PMU or grid analysis). In total, we
generated a collection of 1,169 events that were
matched to a PMU. While using PMUVis, when
events were loaded and analyzed, if seemingly
mis-linked event-PMUs were suspected, the data
was reviewed and, if necessary, updated.

Interface

The PMUVis interface is shown in Figure 6.
It consists of six linked and coordinated panels
(A)—(F) to support the visual analysis of PMU data
according to the design requirements DR1-DRS.

(A) The control panel allows the user to
select events, query for PMU data (specifying
time periods, manual/automatic selection of PMU s,
levels of aggregated statistics, etc.), and update
control settings for individual panels.

(B) The network panel visualizes the power
grid network using a node-link diagram. Edges
indicate power lines connecting substations (green
rectangular nodes); red circular nodes attached to
substations represent PMUs. Nodes and edges can
be styled to indicate voltage/current levels and the
presence/absence of external connections (buses,
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loads, etc.), as shown in Figure 7. Nodes can be
positioned using either a force-directed layout or
the substation’s latitude and longitude coordinates
(overlaid on a map layer). As node-link diagrams
are found in existing grid monitoring systems, it
is considered a “familiar technique” to domain
operators (DR2).

The combination of control and network panels
supports event and PMU selection. Identified
events can be selected from a dropdown in the
control panel; the corresponding ego PMU node
is highlighted in the map. To expand the set of
selected PMUs, the user can either: (i) individually
select/deselect PMUs on the map, or (ii) trigger
an “add hop” functionality, which selects all
neighboring PMUSs to any currently selected PMU.
(Note that a PMU may perform multiple hops
across substations or transformers without PMUs
before encountering its closest neighbor PMU.) In
this way, the map functions both as an overview
visualization and as a mechanism to interactively
select PMUs for further analysis.

(C) Individual PMUs can be plotted in the line
chart panel. Similar to the node-link diagram,
line charts are a familiar technique to domain
operators (DR2). To avoid overplotting, one PMU
attribute is shown in each chart; the user can scroll
to see all charts.

(D) As a third familiar technique (DR2), the
substation panel shows the schematic of an indi-
vidual substation for reference and review. Substa-
tion components, including PMUs, buses, plants,
loads, and two-winding/three-winding transform-
ers, are rendered using a node-link diagram with
component details displayed on hover.

(E) While line charts are suitable for inspecting
individual PMUs, they suffer from several of the
identified challenges listed in Table 1: visualizing
too many PMUs at once and visualizing long
durations has scalability issues, and it is difficult
to isolate anomalous/outlier PMU behavior due to
noise. Therefore, to support analysis of trends and
anomalies (DR3), we utilize a heatmap panel.

Each heatmap row corresponds to one PMU
with the horizontal axis showing time. Each cell
represents an aggregated timestep (minute, hour,
day, etc.), using color to show attribute value.
(PMUVis supports several color palettes.) As rows
can be shrunk to only a few pixels tall and
wide, they provide excellent scalability. PMUVis
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and analyzing grid events. (A) The control

panel supports event selection and interface settings. (B) The graph panel displays the power grid
network. (C) The heatmap panel displays aggregate PMUs over long timespans. (D) The raw time
series of PMUs are shown in the line chart panel, while (E) the ego analysis panel supports egocentric
event analysis based on an “origin” PMU. (F) Finally, the architecture of substations can be reviewed.

supports ordering PMU rows in multiple ways: (i)
by ID, (ii) by hop distance to an ego PMU, and
(iii) based on pairwise PMU similarity, calculated
as cosine similarity of a PMU row with the ego
PMU. This approach is similar to, for example,
visualization of the parameter spaces for large
simulation ensembles [11] for scalable trend and
anomaly analysis.

(F) Finally, the event panel supports propoga-
tion analysis of an event (DRS). It consists of
five visualizations that juxtapose the event’s ego
PMUs with other selected PMUs.

(f1) The FFT chart shows the computed FFT
values based on a user-selectable 2/5/10 second
interval over the voltage magnitudes of the current
PMU selection. For each PMU, we compute its
similarity to the ego PMU based on the Euclidean
distance of its FFT values. Line color is based
on these values: the ego PMU (with a distance of
zero to itself) is dark blue, which shades to green
as PMUs become less similar. These computed
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similarities and color values are also used both
by the other charts in this panel, and by the other
panels (e.g., in Figure 6(C), the PMU in each line
chart is colored this way).

(f2) The autocorrelation chart shows com-
puted autocorrelation values using the same 2/5/10
intervals as the FFT chart, with line colors based
on FFT similarity.

(f3) The ego radar chart shows several
concentric rings. The ego PMU is shown as a dark
blue circle at the center, and other selected PMUs
placed on the surrounding rings based on their
‘hop distance’ from the ego (the path distance
between the PMUs in the network). Position
within the ring is determined based on both the
FFT similarity of PMUs and physical proximity to
other PMUs in the ring (i.e., if PMUs are located
on the same line or substation).

(f4) Below the ego radar plot, the similarity
bar chart shows all selected PMUs ordered and
sized by their FFT similarity to the ego PMU.
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(f5) Finally, the main frequency plot shows
the main frequency, i.e., the frequency at which the
maximum FFT value occurs for every 2/5/10 sec-
ond window considered—as previously selected—
over a five-minute interval for the ego PMU. This
view helps in understanding at a macro-level how
system oscillations increase, decrease, or remain
consistent over long durations.

Case Studies

We now demonstrate how PMUVis can be used
to analyze oscillatory power grid events via two
case studies. Low-frequency oscillations are al-
ways present in large, interconnected transmission
grids [18]. While usually harmless, certain fault
conditions can progressively exacerbate oscilla-
tions such that they grow to a magnitude disruptive
enough to lead to partial or total power system
breakdown. Wide-area system monitoring using
synchrophasor data from PMUs is often used to
control these oscillations using anomaly detection
techniques [5]. System operators must monitor

the system’s ability to damp such oscillations,
and reduce power transfer if required, while
maintaining awareness of relevant events and
information on other parts of the grid not directly
under their control.

Case Study: Forced Oscillation

We first analyze a historical long duration
forced oscillation event. Specific steps are shown
in Figure 7.

(1) Selecting the event in PMUVis’ control
panel highlights its corresponding ego PMU #122
in the network panel. Per the operator report, a ~2
hour-long oscillation was noticed at the Yearling
substation (where PMU #122 is located) with a
beginning timestamp of 20:44. (2) To create a
subgraph suitable for analyzing the oscillation’s
propagation, additional PMUs are selected via
the add hop functionality and manual selec-
tion/deselection. (3) In total, 15 PMUs are selected
within 1-3 hops of PMU #122. In Figure 7, the
graph’s display settings are toggled to highlight

Select additional
PMUs close to

Selecting an event that begins
at 20:44:00 highlights PMU #122

PMU #122 contains 15 PMUs.

aggregates 15 minutes of data and each row is one PMU. The

PMU #122

as the ego node.

@The subgraph of selected PMUs around ] 4 Plotting the SNR of selected PMUs from 19:25-00:40. Each ceII‘J

ego PMU (#122) shows a sharp increase in SNR at 21:40:00.
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Inspecting the raw VPm values of four selected nodes from 21:40:10-21:40:18 shows oscillatory behavior. The ego PMU (#122) has the highest amplitude,
which is closely mirrored one hop away (PMU #1), though the magnitude decreases three hops away (PMU #378). PMU #216, though being only 1 hop from the
ego, displays a smaller magnitude due to being on a lower voltage line (69 kilovolts instead of 345 kilovolts), but the oscillation magnitude/line voltage ratio is
close to that of the ego PMU.
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21:40:10-21:40:12 for the VPm value shows PMU #122 has the (center node) have more FFT similar values. Values can FFT over 15 seconds starting at
maximum FFT peak (left) and the maximum range (right). be explicitly reviewed using the bar charts. 21:40:10. PMU #122 displays an
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Figure 7: In the Forced Oscillation case study, (1) PMU #122 is selected as the event’s ego PMU.
(2-3) After selecting additional PMUs and (4) identifying 21:40 as a timestep for subsequent analysis,
(5-8) additional charts show how the oscillation propagates out from the ego PMU to nearby PMUs.
V: volts, VPm: positive sequence voltage magnitude.
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the subgraph’s equipment specifications (types of
line, loads, etc.).

(4) For an overview of the oscillation, the
heatmap loads a ~4.5-hour time period starting
at the event’s beginning, displaying the signal-to-
noise ratio (SNR) for the VPm attribute (pos-
itive sequence voltage magnitude) of selected
PMUs aggregated into 15-minute blocks. Rows
are ordered based on PMU hop distance and
similarity to the ego PMU #122 (the top row).
Color fluctuations across a row indicates a PMU is
experiencing varying SNR values. Several PMUs
close to PMU #122 have increased fluctuation
in the left half of heatmap (during the ~2 hours
that the oscillation occurred). We select timestep
21:40, which shows a sharp increase in SNR for
PMU #122, as a place for further investigation.

(5) To examine the oscillation with non-
aggregated PMU data, we select four PMUs from
the heatmap and display the raw VPm values in
the line chart panel. Oscillatory behavior is visible
in the ego PMU #122 and in PMU #1 (one hop
away). PMU #378 (three hops away) shows a
reduced oscillation with smaller magnitude. As
PMU #216 is on a lower voltage line, despite being
one hop from PMU #122, it also shows a smaller
magnitude oscillation; however, the ratio between
its oscillation magnitude and voltage rating is close
to that of the ego PMU.

(6) The 15 selected PMUs are loaded into the
ego panel. The FFT chart confirms that PMU #122
has the highest FFT and autocorrelation peaks,
helping to confirm it is at the oscillation’s source.

(7) Comparing the ego PMU to other selected
PMUs using the ego radar chart and similarity
bar charts shows that, generally speaking, PMUs
closer to the ego (i.e., with fewer hops) tend to be
more similar. This importantly demonstrates the
oscillation’s effects lessen as they propagate from
the ego PMU throughout the network. (8) Finally,
the main frequency plot shows a steady main
frequency of ~2.4Hz, indicating the oscillation
at the Yearling substation is indeed a constant,
long-duration event.

Case Study: Damped Transitory Oscillation

The first case study considered a long-duration,
sustained oscillation. Here, we consider a short,
damped transitory oscillation event that was not
included in our dataset of historical operator re-

ports, but was instead discovered while analyzing
the previous case study. Specific steps are shown
in Figure 8.

Plotting the SNR of selected PMUs from 12:48:55-12:49:24.
Each cell aggregates 1 second of data and each row is one PMU.
The ego PMU (#169) shows a sharp increase in SNR at 12:49:03.
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Inspecting the raw IBm values of four selected nodes from
12:49:01-12:49:09 shows oscillatory behavior from 12:49:03-
12:49:05. The ego PMU (#169) has the highest amplitude,
which is reflected with a smaller magnitude one hop away
(PMU #278). PMUs further away (PMU #19) show no
oscillatory behavior.
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at 12:48:33. PMU #169 displays a frequency of 5 Hz at 12:49:03
in the interval.

&

0T T T T T T T 1
0 2 4 € 8 10 12 14

Main Frequency (Hz)

Figure 8: In the Damped Transitory Oscillation
case study, (1) PMU #169 (top row of the heatmap)
experiences a transitory (sub-second) oscillation,
which can be seen in the (2) line charts, (3) the
FFT plot, and (4) the main frequency chart. A:
amperes, IBm: current magnitude of phase B.

While exploring different configurations with
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the heatmap, we noticed that PMU #169 had
an unexplained color fluctuation. (1) Selecting
this PMU as the new ego with a selection of 8
additional PMUs and reloading the heatmap at
a granularity of one-second-per-cell for the IBm
attribute (current magnitude of phase B) shows a
fluctuation for PMU #169 that also seems to affect
PMU #278 (one hop away). (2) This is also seen
in the line charts panel, where the oscillation is
visible in PMU #169 and with a smaller magnitude
in PMU #278. The oscillation is difficult to see
in PMU #19, located three hops away.

Examining the oscillation in the event panel
shows this is a well-damped transitory current
oscillation—one that lasts for approximately 2
seconds. (3) High overlap of FFT values is seen
for immediate neighbors of the ego PMU; on
further analysis, we note that neighboring PMUs
are located on low voltage lines (69kV), and are
connected to step-down transformers, accounting
for the highly localized oscillation (which is also
symmetrical over IAm and ICm). (4) The main
frequency oscillation values for the ego PMU,
calculated over 10 second time windows (for the
time interval chosen to construct raw IBm time
charts), show that the system is almost completely
at rest, with only a momentary sharp increase
in the main frequency of the ego PMU; the
event quickly dies out as the oscillation damps,
with the system returning to an “at rest” state
comprised of very slow oscillations that can be
filtered out using a high-pass filter. Current signals
contain decaying DC components, and exhibit
such damped, transitory power oscillations when
transient events such as “earth faults” occur [13].
These comprise of line/generator tripping or high
load fluctuation.

Feedback from Domain Experts

To further evaluate PMUVis, we conducted a
two-hour demo session with two industry engi-
neers (30+ and 1+ years of experience). These
practitioners regularly conduct data-driven analy-
ses on the same regional power grid network that
constitutes our dataset; thus, they were familiar
with the grid’s topology and could use the raw
(non-anonymized) interface.

While feedback was generally positive, we
focus here on highlighting how PMU Vis differs
from many standard approaches used in industry.

May/June 2019

For example, PMU data storage and processing
is considered a significant industry challenge,
which (despite being relatively straightforward in
PMUVis) is efficiently addressed via aggregated
Parquet storage.

One engineer remarked that plotting PMUs
directly onto substations in the network panel was
appreciated: “A lot of programs, there can be
several PMUs at a substation. .. they don’t even
display them properly. Knowing where the PMU
is located, having a visual is really nice. These
little things can make the analysis so much easier
and faster” Likewise, the “add hop” functionality
was appreciated: “Let’s say there’s a line trip.
You can pick out where the PMU closest to the
event typically is: there’s a strong correlation
between that signal energy and the source. [Then, ]
I'm trying to figure out: what lines tripped? It’s
difficult going back and forth between map and
data, map and data. I really liked seeing that
[hop interaction]. You can start with an ego, and
then just hop around and help you find where the
actual source is.”

Interestingly, though heatmaps are well-known
in the visual analytics community, its usage was
considered quite innovative: “The heatmap is
a really interesting plot. ...The consolidated,
aggregated [aspect] seems really helpful. ... [This
type of view is] not really supported by tools out
there today.

The engineers were particularly excited about
the ego panel as a way to characterize the impact
and evolution of oscillations on both the ego
and surrounding PMUs. “Different locations have
different phasing. [Showing that] is really impor-
tant. ... Autocorrelation, that’s really helpful. You
can tell the phasing between different locations.’
Using FFT values to rank oscillation impacts
across PMUs was considered useful, and an apt
target for future work integrating spectral analysis.
“You could do a sliding FFT signal on that one
signal. Maybe even do a waterfall diagram of the
spectral analysis.” “Spectral analysis comparing
multiple events would be interesting. ...Say you
had 0.01 Hz sampling data superimposed in your
FFT plot for different events for one PMU, now
that would be useful.”

i)
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Discussion and Conclusion

Based on feedback from our expert review
sessions, PMUVis effectively supports DR1-DRS.
In contextualizing PMUVis to the domain chal-
lenges outlined in Table 1, the primary challenge
it does not address is handling streaming PMU
data for real-time decision-making, which is a
significant industry hurdle and one we are pursuing
in future research. Currently, PMUVis supports
ego-centric analysis of events based on historical
data from PMUs, and can be used to develop new
indicators and protocols by experienced operators
to flag events further upstream based on historical
event analysis procedures. Supporting real-time
event analysis requires: (i) algorithmic integration,
such as a modal or spectral analysis that can flag
anomalous behavior in real time, and (ii) backend
support for scalable, on-the-fly data processing,
such as platforms like BTrDB [1].

A significant factor in analyzing real-time grid
data is that events will not be linked to PMUs
a priori. In this case, visual analysis of events
can begin from a “non-egocentric” perspective,
where identifying the ego PMU is a first step.
While anomaly detection algorithms have been
proposed to identify ego PMUSs, recent research
has indicated such approaches are ripe for misclas-
sification [8]. Human-in-the-loop visual interfaces
provide a viable strategy in this scenario, as users
can employ domain expertise to review algorithm
recommendations when determining the source of
an event. The scalability of such an approach is
partly validated in PMUVis by the usage of the
heatmap panel to minimize overhead in identifying
PMUs and time periods of interest during events.
Additional affordances, panels, and interactions
can be tailored for real-time analyses to quickly
identify ego PMUs.

While real-time analytics of power grid data is
a pressing concern, future visual analytics efforts
can also address critical emerging research themes
for the power grid, including ante-mortem event
analysis (prediction, classification, and mitigation)
and cybersecurity forensics and countermeasuring.
Such scenarios presume streaming grid data to
simulate real-time event scenarios that require
time-critical and situational decision making.
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