
Why? Why not? When? Visual Explanations of Agent Behaviour in
Reinforcement Learning

Aditi Mishra* Utkarsh Soni† Jinbin Huang‡ Chris Bryan§

Arizona State University

ABSTRACT

Reinforcement learning (RL) is used in many domains, including
autonomous driving, robotics, stock trading, and video games. Un-
fortunately, the black box nature of RL agents, combined with legal
and ethical considerations, makes it increasingly important that hu-
mans (including those are who not experts in RL) understand the
reasoning behind the actions taken by an RL agent, particularly in
safety-critical domains. To help address this challenge, we intro-
duce PolicyExplainer, a visual analytics interface which lets the
user directly query an autonomous agent. PolicyExplainer visual-
izes the states, policy, and expected future rewards for an agent,
and supports asking and answering questions such as: “Why take
this action? Why not take this other action? When is this action
taken?” PolicyExplainer is designed based upon a domain analysis
with RL researchers, and is evaluated via qualitative and quantita-
tive assessments on a trio of domains: taxi navigation, a stack bot
domain, and drug recommendation for HIV patients.We find that
PolicyExplainer’s visual approach promotes trust and understanding
of agent decisions better than a state-of-the-art text-based explana-
tion approach. Interviews with domain practitioners provide further
validation for PolicyExplainer as applied to safety-critical domains.
Our results help demonstrate how visualization-based approaches
can be leveraged to decode the behavior of autonomous RL agents,
particularly for RL non-experts.

Index Terms: Human-centered computing—Visualization—Visu-
alization techniques—Treemaps; Human-centered computing—
Visualization—Visualization design and evaluation methods

1 INTRODUCTION

Reinforcement learning (RL) has become a widely-used technique
for training autonomous agents. The ability of RL agents to learn so-
phisticated decision-making in uncertain and complex environments
has led to widespread application and success, including in video
gaming, autonomous driving, robotics, healthcare, finance, smart
grids, and education [20].

Unfortunately, as artificial intelligence (AI) and machine learning
(ML) are increasingly deployed in safety-critical domains, there are
emerging legal and ethical concerns due to the black box nature of
models [2, 32]. For example, when a healthcare model recommends
a drug treatment plan for a patient (e.g., [19]), can such recommen-
dations be trusted? In human-robot collaborative environments, a
human’s reasoning for a decision might differ from a model’s. Even
when the same decision is reached, model recommendations are
inherently untrustworthy without sufficient justification or explana-
tion. This problem is well known in the AI/ML community [22],

*e-mail: amishr45@asu.edu
†e-mail:usoni1@asu.edu
‡e-mail:jhuan196@asu.edu
§e-mail:cbryan16@asu.edu

particularly since there exists no common language for a model to
communicate decisions to the human and vice versa [11, 13].

Particularly for RL models that are being applied for decision-
making in safety-critical domains, it is necessary that such agents
are answerable to people who potentially have little or no AI/ML
expertise. This motivates the current work, where we introduce Poli-
cyExplainer, a novel visual analytics system for policy explanation
to RL non-experts.

To our knowledge, PolicyExplainer represents the first visual
analytics system that supports the direct visual querying of and ex-
planation from an RL agent to non-expert users. PolicyExplainer
supports users directly querying an RL agent via three of the most
common RL policy questions [13, 21]: “Why take this action? Why
not take this other action? When is this action taken?” PolicyEx-
plainer is motivated based on a pre-study with AI/ML researchers,
and is intended to be a first step for general-purpose interfaces for RL
agent querying and explanation. In contrast to existing visual analyt-
ics interfaces for RL explanation [14, 17, 23, 30], PolicyExplainer is
model-independent and supports both model-based and model-free
algorithms. To evaluate PolicyExplainer, we conduct an empirical
study with RL non-experts on three domains: the popular Taxi do-
main [9], an HIV drug recommendation domain [3], and a robot
stacking boxes in an industrial environment (StackBot) domain. The
results indicate that PolicyExplainer’s visual explanation approach
for agent question-and-answering is effective, particularly compared
to text-based policy explanations created via a state-of-the-art natural
language generation technique [13].

Succinctly, the contributions of this paper include the following.
(1) We analyze design requirements for RL policy visualization
and explanation for non-experts, based on a pre-study with RL
researchers and reviewing recent AI/ML literature. (2) We define an
explanation generation methodology for visual policy explanation
in the form of Why?, Why not?, and When? questions. (3) We
develop PolicyExplainer, a visual analytics interface that lets a user
interactively query an RL agent and provides visual explanations of
a policy. (4) Based on our experience in creating and extensively
evaluating PolicyExplainer, we discuss how visualization-based
explanations can increase user trust while lessening the cognitive
effort required to understand the decision-making process of an RL
agent, particularly for RL non-experts in safety-critical domains.

2 BACKGROUND ON REINFORCEMENT LEARNING

Reinforcement learning is a technique to train an autonomous agent,
in which the agent interacts with the environment and learns to
achieve some desired goal through trial-and-error. In contrast to
supervised learning, the agent does not require a training set of
labeled examples for the desired behavior; likewise, RL differs
from unsupervised learning by not simply learning patterns from
unlabeled data. Rather, the agent learns the desired behavior using its
own experience interacting with the environment. An agent’s overall
goal can be defined in terms of a special signal called a reward that
the agent gets for taking some action in the environment. Informally,
the agent is tasked with learning a behavior that would maximize
the total amount of reward it receives in the long term. Concretely,
the problem of reinforcement learning can be formalized in terms of
a Markov decision process (MDP).

111

2022 IEEE 15th Pacific Visualization Symposium (PacificVis)

2165-8773/22/$31.00 ©2022 IEEE
DOI 10.1109/PacificVis53943.2022.00020

20
22

 IE
EE

 1
5t

h
Pa

ci
fic

 V
isu

al
iza

tio
n

Sy
m

po
siu

m
 (P

ac
ifi

cV
is)

 |
 9

78
-1

-6
65

4-
23

35
-9

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

PA
CI

FI
CV

IS
53

94
3.

20
22

.0
00

20

Authorized licensed use limited to: ASU Library. Downloaded on September 05,2022 at 03:31:37 UTC from IEEE Xplore. Restrictions apply.

2.1 Markov Decision Process
MDP formulates a sequential decision-making task where, at each
time step, the agent observes the current state of the environment and
decides to take an action. This transitions the environment to its next
state and the agent receives a reward. The agent keeps acting in the
environment until it reaches a terminal state at some time step T . The
reward the agent obtains for each step is discounted with a discount
factor γ . The total reward obtained by the agent for the sequence of
transitions is subsequently defined as the return, G = ∑T

t=1 γt−1Rt

where Rt is the reward obtained for the t th transition.
Formally, a MDP is defined as a tuple 〈S ,A ,T ,R,γ〉 where S

is the set of all possible states of the environment, A is the set of all
possible actions the agent can take at any state, T : S ×A ×S →
[0,1] is the transition function where T (s,a,s′) gives the probability
that the environment will transition to a state s′ when the agent takes
an action a in state s, R : S ×A ×S → R is the reward function
that gives the reward the agent obtains when it takes an action a in
state s causing a transition to state s′, and γ is the discounting factor
applied to the obtained rewards.

Given an MDP, a policy π maps each state to some action a ∈ A .
The value for any state is then the expected return the agent gets
when it follows the policy π starting from the state. The goal of
the agent is to learn a policy, referred to as the optimal policy
π∗, that maximizes the value for each state. Lastly, the Q-value
function, Qπ (s,a) gives the value obtained obtained if the agent
takes the action a in state s and then follow the policy π . If all the
components of the MDP are known to the agent, then it can learn
π∗ as π∗(s) = argmaxa Q∗(s,a), where the Q∗(s,a) is obtained by
solving the following Bellman optimality equation using dynamic
programming algorithms like value iteration or policy iteration [28]
: Q∗(s,a) = ∑s′ T (s,a,s′)[R(s,a,s′)+ γ .maxaQ∗(s′,a)]

2.2 Interpreting State Features
In this work, we assume each state s of the environment can be
expressed as a feature vector 〈 f1, f2, . . . , fn〉 where each feature fi
can be understood by the domain expert that will be using Poli-
cyExplainer (this is in line with the policy explanation technique
presented in [13], where states can be described in terms of binary
features via classifiers). For example, for the HIV drug recommen-
dation domain, states are defined via features like the number of
infected lymphocytes, immune response, etc. PolicyExplainer
provides explanations in terms of these features. For simplicity,
we pick domains where the states were already defined in terms of
features that a human can understand. Hence, the state features that
the agent views during interaction with the environment would be
the same as the one used for explanations. However, this is not a
requirement for our system to work. See Section 9 for discussion
about relaxing this requirement in future work.

2.3 Model-Based and Model-Free Learning
RL algorithms can be classified as either model-based and model-
free [28]. In model-based RL, the agent learns the model of the
environment (specifically, it learns the model components of the
MDP incorporating the environment dynamics) and uses that to
derive the optimal policy. Conversely, model-free RL algorithms do
not require a learned model to obtain the optimal policy.

In this work, we use algorithms from both the classes to train
our agent for different domains. For the model-based approach, we
assume access to the state set S , and employ a simple sampling
strategy to learn the model parameters T and R. With this strategy,
for each state s ∈ S, each action a ∈ A is executed k times. The value
of T (s,a,s′) is then set to k′/k where k′ is the number of times the
environment transitions to state s′ when the agent took the action
a in state s. The value of R(s,a,s′) is set as the average reward
obtained for the transitions 〈s,a,s′〉. Once the model is learned, we
compute the optimal policy using policy iteration.

For the model-free approaches, we use function approximation
based methods that learn the Q-function directly from agent’s ex-
perience. The learning involves the agent interacting with the
environment over several episodes improving its Q-function es-
timate. In each episode, the agent starts at some random initial
state and follows an ε-greedy policy in which the agent chooses
an action that maximizes its Q value with a probability of 1− ε
or chooses to do a random action (uniformly sampled) with prob-
ability ε . The agent collects experience using the ε-greedy pol-
icy and then uses it to approximate the Q-function. For our do-
mains, we used linear function and neural network based approxima-
tions. The former technique represents the Q-function as a weighted
linear function of features fi defined over the state: Qθ (s,a) =
θ1. f1(s)+θ2. f2(s)+ · · ·+θn. fn(s) The weights are updated after
each individual interaction with the environment, where the agent
takes an action a in state s resulting in it transitioning to state s′ get-
ting a reward r, using the following update equation where α is the
learning rate: θi = θi +α ∗ [r+ γ.maxaQθ (s′,a′)−Qθ (s,a)] fi(s)

For the neural network based Q-function approximation, we
trained a fully connected neural network using the same strategy as
the one used to train deep Q-networks (DQN) in [25]. The neural
network given by Q(s,a,θ), where θ represents the weights of the
network, approximates the Q-value function corresponding to the
optimal policy i.e. Q∗(s,a). The agent’s transition at each time
step, 〈s,a,r,s′〉 is stored in a database D. The database is of a fixed
length and stores the most recent transitions. After each action
is executed (which is treated as an iteration i of the training algo-
rithm), the Q-network is trained by optimizing the following loss
function over a mini batch of transitions sampled uniformly from D:
Li(θi) = E(s,a,r,s′)∼D[(r+ γmaxa′Q(s′,a′;θi−1)−Q(s,a;θi))

2].

In PolicyExplainer the Taxi Domain was trained using Model
Based RL, StackBot using Approximate Q-learning and the HIV
Domain using a DQN.

3 RELATED WORK

3.1 Explainability in Reinforcement Learning

As the use of RL continues to expand, there is an increasing interest
in XAI as it applies to RL. In our work, the RL agent is considered
as a black box and PolicyExplainer computes explanations for its
decisions. Our explanation technique is inspired from LIME [27],
which attempts to explain a classifier’s decisions. In contrast to
LIME, which works on one-shot decision making problems, we
investigate if a similar technique can explain the decisions of an
RL agent which solves a sequential decision-making problem. In
addition, we provide functionalities in our interface that not only
answer queries about why the agent took a particular action, but also
answer contrastive queries about why an agent chose a particular
action over an alternative action suggested by the user, and when, in
general, does an agent takes a particular action.

There have been other works specific to explaining RL agent’s
policy, primarily focusing on pixel-based domains. For example,
Greydanus et al. [12] utilized saliency maps to gain insights on how
an agent learns and executes a policy in a 2D video game space. Sim-
ilarly, Yang et al. [34] identified regions of interest by visualizing
pixels of game images. Hayes et al. [13] proposed a set of algo-
rithms to explain agent policies using a common modality of Natural
Language (i.e text). Recent research [29] has explored policy expla-
nation via answering contrastive queries, where an example question
might look like: “Why did the agent go right instead of going left?”
Here, two main entities—a fact and a foil—are contrasted to explain
why the fact was chosen over the foil. PolicyExplainer visualizes
contrastive explanations (the “Why not?” question) among the other
types of questions. (Section 8).

112

Authorized licensed use limited to: ASU Library. Downloaded on September 05,2022 at 03:31:37 UTC from IEEE Xplore. Restrictions apply.

3.2 Visualization for XAI and RL Explainability

For general discussion on the use of visualization for deep learning
and XAI, several recent surveys are available [7, 15, 37]. Here, we
focus on describing recent visualization tools specifically for RL
analysis and explainability, which include the following:

MDPVis [23] is a system designed for debugging and optimiz-
ing MDPs by interacting with an MDP simulator. DQNViz [30]
focuses on analyzing the training of a deep RL agent, from a high-
level overview down to individual epochs. DRLViz [17] visualizes
the internal memory of a deep RL agent as a way to interpret its
decisions. Similarly, DynamicsExplorer [14] is a diagonistic tool
for looking into the learnt policy under different dynamic settings.
Each of the aforementioned systems have significant differences
compared to PolicyExplainer. First, the primary objective of each
tool is to support internal debugging of a trained model, with a
focus on RL expert users. In contrast, PolicyExplainer supports
RL non-experts by promoting the human’s understanding of the
RL agent’s exhibited external behavior. Second, these systems are
highly domain or technique-dependent, which limits their generaliz-
ability. For instance, DQNViz [30] provides a trajectory view that
only supports pixel-based (specifically, Atari) video games. DR-
LViz [17] only supports models trained using RNNs. In contrast,
PolicyExplainer supports both model-based and model-free RL. We
additionally demonstrate PolicyExplainer across three significantly
different types of domains (including a safety-critical HIV domain).

In actuality, PolicyExplainer can support any domain provided
the states can be represented in human-interpretable features. For
complex domains such as Atari games where states are represented
as a collection of pixels (i.e., an image), it is currently a signifi-
cant open problem in the AI community to learn an interpretable
representation of the pixel features that can reasonably capture the
domain’s dynamics. To this end, tools like DRLViz are meant for
RL expert users; they sidestep the issue by showing the state directly.
In Section 9, we provide thoughts on how to approach these types of
problems via concept-based “state abstractions,” but as this is still an
open AI problem, we omit pixel-based domains in the current paper.

4 PRE-STUDY AND DESIGN REQUIREMENTS

To motivate a design for question-based visual explanation of agent
decisions, we conducted a pre-study with three RL experts. Each
had at least four years of research experience in AI/RL explanation
for non-experts. This pre-study consisted of extended email cor-
respondences and completing a survey, all aimed at understanding
the role of explanation and interaction as it relates to RL agents for
non-experts. Additionally, we reviewed recent papers that discuss
issues of RL interpretability and transparency, which therefore pro-
vide motivation for agent explanations (e.g., [4, 8]). Based on the
collected feedback and paper readings, we identified a set of four
high-level design requirements DR1–DR4.

DR1: Provide an overview of the state space and policy in
terms of its diversity and expected future rewards. RL agents
might learn on domains with large state spaces whose dynamics can
be modeled as networks. As these networks scale in complexity, it
quickly becomes difficult for human users to understand them [35].
Multiple pre-study participants noted that the ability to navigate
and explore the state space (and the actions taken in those states)
is necessary for understanding the policy of an RL agent. Further,
being able to show the states and the expected future rewards (given
an optimal policy) helps users identify other states that have either
highly different or highly similar rewards. Visualization can provide
an overview of the policy, with an emphasis on highlighting states
with similar/different expected rewards.

DR2: Provide visualizations for individual states. Pre-study
participants discussed the importance of being able to inspect and
review individual states. To understand a state, it must be represented
or defined in a way that provides semantic meaning. When state

features correspond to a spatiophysical domain, a straightforward
solution is simply showing an image of the state (e.g., DQNViz
visualizes the pixels displayed in Atari video games). However,
this solution does not work if states do not have a physical domain.
Consider a healthcare agent for recommending a patient’s treatment
plan, where state features consist of abstract health metrics. As
opposed to simply providing a tabular representation of the states and
values, visualization can support analysis and comparison across
the potentially thousands of states that make up a policy.

DR3: Let the user ask questions to the agent. While DR1
and DR2 are important to provide generalized information about
the agent’s policy and the individual states in the domain, they do
not provide explanations or justifications for the agent’s decisions.
Ultimately, when a user is examining the actions taken by the agent,
they will focus on questions like, “Why was this action taken? Why
not take this other action? When is this action taken?” To explain the
agent’s decision-making process, visualizations (and interactions)
should be designed to support a question-and-answering dialogue
between the humans and the RL agent.

DR4: Allow users to navigate the explanation space to pre-
vent overloading. Finally, the explanation given by the RL agent
highly depends on the state features. There might be multiple condi-
tions in which a certain action is taken. However, giving the user all
the reasons for an agent’s decision (i.e., identifying every condition)
might prove overwhelming. Instead, being able to identify important
state regions with similar explanations, and letting user interactively
choose the explanation they wish to see, can limit cognitive overhead
and help in better understanding the agent’s reasoning.

5 POLICY EXPLANATION

Lim et al. [21] found that Why? and the Why not? are the types of
questions most commonly asked to intelligent systems. Relatedly,
some of the most cited papers on policy explainability (e.g., [13])
highlight identifying state regions (i.e., When? questions) as an
important task. We thus focus on generating visual explanations
for these three question types. These explanations are used by
PolicyExplainer to support interactive question-and-answer sessions
between the user and RL agent. Informally, explanations are based
on the idea of highlighting the state features that lead to an action
being chosen as the optimal action. This approach has previously
been used for explaining classification decisions [10, 26]; in our
case, we apply this idea to explain optimal policies learned for a
sequential decision making task.

To learn the salient features that effect the agent’s policy, we
first approximate the policy via supervised learning which learns a
decision boundary based on the features that separate classes. We
then extract how the classification algorithm uses these features to
determine the output class. This means the algorithm must itself be
interpretable. Because of this, we use a decision tree classifier to
approximate the policy. A significant advantage of decision trees
is that it is quite easy to track which features (and their ranges of
values) lead to particular classification results.

As explained in Section 2, each state is defined as a feature vector
〈 f1, f2, . . . , fn〉 and the policy π∗ maps each state to its correspond-
ing optimal action. We start by using this complete mapping as a
set of training samples, {(x1,y1),(x2,y2), . . . ,(x|S |,y|S |)}, to train
a decision tree T , where xi represents the state features, and yi is
the optimal action. The decision tree is a binary tree where each
non-leaf node n has some feature f and a corresponding threshold
value θ associated with it. The edge e that connects the node to its
left child represents the condition f < θ while the edge for the right
child represents the condition f ≥ θ . We define the direction of an
edge as left / right if it connects to the left / right child of the node.

Any input state to the decision tree can be mapped to a unique
path in T from the root node to a leaf node by following the edges
that the features of the state satisfy. We denote this unique path cor-

113

Authorized licensed use limited to: ASU Library. Downloaded on September 05,2022 at 03:31:37 UTC from IEEE Xplore. Restrictions apply.

Figure 1: The PolicyExplainer interface, shown here with an HIV treatment domain [3,24], consists of eight main linked sections, which support
(A–C) summarizing the domain and the optimal policy, (D) summarizing state regions and expected rewards, (E–G) detailed analysis of states and
policy, (F) a trajectory to see the agent progression, and (H) an explanation panel to answer Why? Why not? When? questions.

responding to a state s as P(s). The leaf node would be associated
with an action a that should ideally be π∗(s). Any path from the
root to a leaf node in T represents a decision rule of the form “if
condition1 and condition2 . . . conditionK then action” where each
condition corresponds to a unique feature and it gives the range of
values that feature can take for any input state to be classified as
the action, while K is the total number of unique features on the
path. We denote the rule corresponding to a path P as rule(P).
Given a path P , the associated rule can be identified by Algorithm
1. PolicyExplainer answers user queries in terms of these rules as
explained in the remaining parts of this section.

An important note here is, for the domains considered in this
paper, the decision tree for each case is overfitted to generate rules.
This is allowed because, as we have access to the entire state space
and the policy, we do not need to perform any form of testing or
validation, and can focus on achieving the highest training accuracy.
This can also be done if only a partial state space exists along with
its corresponding optimal action. In each case, the fidelity of the
decision tree is >= 99%, which means the explanations generated
by the agent is highly accurate.

Answering Why? Questions. These questions take the form,
“Why would you take {action a} in {state s}?” To answer this query,
we identify the specific conditions under which the action a is exe-
cuted by the agent. This is achieved by identifying the path P(s)
corresponding to the state s and then applying the procedure in Algo-
rithm 1 to compute rule(P(s)). The computed decision rule serves
as the explanation.

Answering Why not? Questions. These are contrastive
queries [29] that take the form, “Why would you take {action a∗} in-
stead of {action a f } in state s?” Here, a∗ is the action chosen by the
policy and a f is the alternate action that the user might prefer to take.
To answer these type of queries, we find a state s f that is closest to
the state s where the agent would execute action a f . The distance
between any two states is calculated as the Euclidean distance be-
tween their corresponding feature vectors. We then compute two
decision rules, rule(P(s)) and rule(P(s f)), that show conditions
when action a∗ and a f are chosen. These rules are presented to the
user as a response to their query. In other words, by comparing the

Algorithm 1 Compute rule(P)

Input: path P , set of all features in the domain F , decision tree T
Output: Rule associated with P

1: relevant features ← {}
2: for f ∈ F do
3: frange ← set of all possible values for f
4: end for
5: current node ← root node of P
6: while current node is not leaf do
7: current edge ← edge connected to current node in P
8: C(f)← feature associated with the current node
9: C(θ)← threshold associated with the current node

10: relevant features ← relevant features∪C(f)
11: if direction of current edge is right then
12: current node range ← [C(θ),∞]
13: else
14: current node range ←[−∞,C(θ)]
15: end if
16: C(f)range ← C(f)range ∩ current node range
17: current node ← node adjacent to current node in P
18: end while
19: return frange ∀ f ∈ relevant features

results of the rules, the user can assess why the policy picks a∗ over
a f . This is similar to [13] where contrastive queries are answered
by comparing features of similar states under which the two actions
are taken except that they use natural language for explanation.

Answering When? Questions. The final question type we sup-
port is of the form, “When would you do take the {action a}?” One
common motivation for this question type is for the user to un-
derstand the most frequent cases where this action is chosen. To
operationalize this, we first identify all the leaf nodes in T whose
label is a. For each leaf node, we find the number of states s ∈ S
whose path P(s) ends in that node. We pick the top three nodes with
the highest number of states, and for each of these nodes, compute
the path P from the root to that node. Finally, we compute rule(P)

114

Authorized licensed use limited to: ASU Library. Downloaded on September 05,2022 at 03:31:37 UTC from IEEE Xplore. Restrictions apply.

Figure 2: PolicyExplainer can answer three types of questions in its
explanation panel. (Why?) Here, the user is asking why the No Drugs
action was taken (action colors map to the key in Figure 1(a1)); there
are four relevant features used in this decision. (Why not?) Here, the
contrastive question being answered is, “Why take the (pink) No Drugs
action instead of the (green) Only Protease action?” While one feature
is shared between both actions, the rest influence the actions based
on their values. (When?) The user is asking when the Only Protease
action is taken. The system gives top three most general reasons for
this action being the optimal one. Currently, the first explanation is
toggled, which shows the influence of three features.

for each path and use that as the response to the query.

6 VISUAL ANALYTICS SYSTEM : POLICYEXPLAINER

PolicyExplainer requires an agent trained using either model-based
or a model-free approach. We extract data from the trained agent—
not just the optimal policy, but also states, features, the Q-values and
rewards for each state-action pair. If the state space is continuous,
we find the most important states based on importance function
defined in [4]. This extracted data is fed into the PolicyExplainer
interface (shown in Figure 1), which consists of eight linked panels
that provide general visual analytics about the policy and states
(DR1–DR2) and lets users interactively ask Why? Why not? When?
questions to the RL agent and receive visual explanations (DR3–
DR4).

(A, B) Action and Reward Summary Panel. The action distri-
bution and the reward distribution bar charts show summary statis-
tics, respectively, of the frequency of actions and rewards which the
agent takes or receives in its optimal policy π∗. (a1, b1) Hovering
on the charts displays a tooltip showing exact values.

(C) Policy Summary Panel. The policy summary panel shows
an overview of the optimal policy and is laid out via dimensionality
reduction based on state features. Each state is encoded as a circle
and the color encodes the optimal action. (c1) Hovering on the
circle displays a tooltip with the state and the action chosen in the
particular state. This panel along with the State value overview panel
(D) is meant to support extracting interesting states for the user to
explore. As seen in (c2), the panel highlights some clusters wherein
states with similar features have the same recommended action.

(D) State & Value Overview. The state value overview pro-
vides a summary of the state values over the state space (DR1).
A horizontal lollipop chart (d1) showcases a set of 50 states ar-
ranged in a descending order of criticality. The vertical y-axis
consists of individual states and the horizontal x-axis represents
the critical values. A state is defined to be more critical if there
is a significant difference of rewards on randomly choosing an
action and the reward gained on doing an optimal action [16].

Mathematically, this is represented with the following equation:

C(s) = maxaQπ∗
(s,a)− 1

Na
∑a Qπ∗

(s,a) where C(s) is the criticality C of

state s, π∗ is the optimal policy, and Q(s,a) is the expected future

reward in state s on taking action a. The red boxes beside each state
(d2) represent the value of the state with labels that ranges from Very
High to Very Low values which are also redundantly encoded using
a sequential color scale, with darker red showing higher rewards
and light orange shade showcasing lower rewards. A fixed-width
brush (d3) can be scrubbed across the state space; this selects a set
of states for further analysis in the state and the policy detail panel.
For exploring and navigating large state spaces, users can scroll or
tab across a page navigator tool (d4).

(E) States Detail View. The states detail view shows a detailed
visualization of states (DR2). (e5) Selected states are shown in a
blue colored panel. Each state is visualized as a line in a parallel
coordinate chart, where each y-axis represents features of the state.
(e1) Hovering on (e5) shows the exact features values for that state.
(e4) Clicking on a state populates the trajectory panel (F). (e3)
For states that can be spatiophysically represented, a toggle can
switch to this view. Apart from selecting brushed states, the user
can also customize the states they wish to see by (e2) clicking on
the customize button and entering their desired states manually.

(F) Trajectory View. This panel summarizes the “trajectory” of
the agent starting from a selected state to an end state (either the
policy goal or a user-defined goal). When a state is selected (via
clicking on (e5)), this panel loads a simple visualization with each
state represented as a circle and the action optimally chosen by the
agent is encoded as the color. Each consecutive state is linked by
a straight line running between them. (f1) Hovering on the circle
shows a tooltip with feature names, its corresponding values, and the
reward gained by the agent upon taking the action. (f2) The space
beside the visualization shows the animation of the trajectory the
agent takes to reach the goal if the spatiophysical rendering exists
(see the demo video in supplemental materials for an example. In
Figure 1 we skip it, since it showcases the HIV domain which lacks
a physical rendering.).

(G) Policy Detail View. When states are loaded in the states
detail view, the policy detail is also populated. The available actions
for each state are represented by a set of rectangular swatches (in
the figure, each state has four available actions) colored by their
Q-values if the agent takes that action. As the number of states
increases, they become arranged into a 2D grid.

(g1) For each state, the swatch corresponding to the state’s opti-
mal action is given a colored border. The border color of this swatch
corresponds to the type of action taken, using the color key from the
action distribution chart in (A). (g2) Hovering on a swatch provides
details about the action and its expected reward i.e it’s Q value.

To support policy explanation, this chart contains three interac-
tions which let the user ask “Why?, Why not? When?” questions to
the agent (DR3). (g3) First, clicking on the optimal action for a state
asks, “Why was this action chosen?” (g4) Similarly, dragging from
the optimal action to another action for a state asks a contrastive
question: “Why not take this other action instead of the optimal
action?” (This interaction adds a stroke on the contrastive action
swatch.) (g5) Finally, clicking the action icons on the left side of
the chart asks, “When is this action taken?” Each of these questions
loads the explanation panel (H) with the respective explanation.

(H) Explanation Panel. Finally, the explanation panel provides
visual explanations for “Why? Why not? When?” questions asked in
the policy detail view (G). Our approach for visual explanation is
inspired from Young and Shneiderman’s work visualizing boolean
queries with flowcharts, where AND operations are represented as
conditions on the same path, and OR conditions are shown with
a forking path [36]. For PolicyExplainer, horizontal dotted lines
map to state features, which are labeled in boxes along with their
corresponding possible feature values appended to the lines. A flow

115

Authorized licensed use limited to: ASU Library. Downloaded on September 05,2022 at 03:31:37 UTC from IEEE Xplore. Restrictions apply.

Figure 3: Gary’s actions taken during the (A) case study #1 and (B) case study #2.

that links across several features (e.g., the green flow in Figure 4(H)
links across five features) represents an action taken based on the
conjunction of several features, akin an AND operation. Links are
colored by their action type using the action key in (A); link thickness
indicates the number of states that satisfy intermediate conditions.
The order of the features matches the feature ordering from other
panels to facilitate comparison of explanations. In contrast to Young
and Shneiderman’s boolean queries, policy explanation does not
include the concept of OR operations. Therefore, forking indicates
contrastive actions during “Why not?” questions, where two actions
might share some features but split on others. The use of differently
colored links to differentiate the actions helps to demonstrate this.
Figure 2 shows example explanations for each question type.

(h1) At the top of this panel, a pie chart shows the number of
states for which the explanation holds; in other words it denotes
the coverage of the explanation. A hover tooltip provides the exact
counts and uses linked highlighting to show these states in (C). (h2)
For each explanation in a state, the subgoal being satisfied by the
agent in the particular state is also identified if present.

7 CASE STUDIES

To illustrate how PolicyExplainer can be used to explore a policy
and question an RL agent, we present two use case scenarios using
the Taxi and the StackBot domains.

7.1 Use Case 1: Reassuring Users of Agent Behaviour.
Taxi Domain. The taxi domain [9] consists of a 5×5 grid (500 states
with 6 actions and 4 features) with walls separating some cells. The
agent is represented as a taxi () which can move around the grid
except through the walls. The grid contains four special locations:
R, G, Y and B. The passenger () and the destination () will be
present at any four of these locations. The agent’s task is to pick
up the passenger and drop them at the destination. Every step the
agent takes entails a reward of -1; on completing the task, the agent
receives a reward of +20.

While relatively straightforward, the Taxi domain is an important
and widely-used domain for demonstrating RL techniques including
explainability. It is thus a good candidate domain for demonstrating
PolicyExplainer’s explanation methodology and user experience.

Gary’s Analysis. Gary, a human who wants to validate his un-
derstanding of the agent behaviour and make sure that the agent’s

understanding of the environment matches with his understanding
of what actions will the agent perform. He uses PolicyExplainer to
query the agent; his specific actions are shown in Figure 3(A).

(a) Gary first loads the Taxi domain from the domain dropdown.
This populates the action, reward summary panel and the states
and values overview panel. (b) He uses the state-value overview
to identify states of interest. He notices and selects a set of states
with low expected cumulative future rewards, but with all states with
the same optimal action (States 13-82). (c) Selecting these loads
them into the state detail view. He finds State 31 to be particularly
interesting, as both the passenger location and the destination are
below the agent’s position. Gary wants to validate his understanding
of the agent behaviour by making sure the agent first performs the
Move South action to pick up the passenger.

(d) Gary hovers over State 31 in the state detail view and real-
izes that nearby states are have only a single feature (Destination)
changing, such as States 28, 29 and 30. These states have a similar
feature: the agent is north of the passenger and the optimal action
in these states is Move South. (e) Gary next looks into the policy
detail view. Hovering over the tiles in the policy detail view shows
an expected future reward. Gary notices that the expected reward for
moving south is higher than moving north or east, but only barely.
He realizes that taking moving north or east in State 31 would re-
quire agent to return back to State 31; thus, though these actions
have high rewards, they are lower than the optimal Move South
action. This reassures Gary that the agent will perform according to
his expectations

Gary then clicks on the background rectangle in state 31 to ask a
Why? question: “Why did the agent perform the Move South action
in State 31?” (f) The explanation panel shows that the agent does
indeed consider both its own position and the passenger’s position
when making decisions. The identified subgoal additionally tells
Gary that the agent is performing the Move South action in State
31 to pick up the passenger.

7.2 Use Case 2: Decoding Unexpected Agent Be-
haviour.

StackBot Domain. The StackBot domain consists of a 4×4 grid
containing 2 boxes (10,368 states with 6 actions and 5 features). The
agent is represented as a robot () which can freely move around

116

Authorized licensed use limited to: ASU Library. Downloaded on September 05,2022 at 03:31:37 UTC from IEEE Xplore. Restrictions apply.

the grid to pick up two boxes (). The robot’s task is to drop these
boxes at the goal location (). The robot has a capacity of two boxes
that it can pick up and hold at a time. However, the agent has been
trained to be cautious, its policy is that it will only pick up and hold
one box at a time. This counter intuitive behavior is not known to
the user. Every step the robot takes gives it a reward of -1, picking
up a box gives +20, and successfully dropping off a box gives +350.
The episode ends when all boxes have been dropped off at the goal
location, which gives a final high reward of +500.

Gary’s Analysis. Gary again wants to understand the RL agent’s
behavior. In contrast to Case Study #1, the StackBot agent behaves in
an unexpected manner (only holding 1 box at a time, despite having
a larger capacity). Gary must resolve his gap of understanding
between how he thinks the agent should act (holding 2 boxes at
a time) and the agent’s actual behavior. His actions are shown in
Figure 3(B); this use case is also shown in the demo video found in
the supplemental materials.

Similar to the previous use case, (a) Gary loads the Stack Bot
domain and reviews the action and reward summary panels, policy
summary panel and the state and value overview panels.

(b) Reviewing these, he notices that some states place have the
same optimal action of Move West. (c) These states have similar
features: the robot column and the second box’s position changing,
but the robot row, first box’s position and the remaining capacity
remains the same. (d) Gary reviews the trajectory of State 268 (i.e.,
the actions taken from here to finish the task) and realizes that the
agent could have picked up a second box but did not (i.e., it was at
that box’s location and had capacity). Instead, it continued moving
to the goal location to drop off the single box it was carrying. (e)
Gary identifies the state where the unexpected action of Going East
happens instead of the expected action Pickup Box as State 4950. (f)
He loads that state into the policy detail view to analyze its Q-values.
The Q-value boxes reveal a minor dip in the expected future reward
if the agent chose to pickup the box, which is counterintuitive to
Gary’s mental model of how the agent is supposed to work.

To gain insight into this unexpected behaviour, Gary asks a con-
trasive question to the agent: “Why did the agent perform action
Move East instead of the action Pickup Box in State 4950?” (g) The
explanation informs Gary that the agent moves east whenever any
one of the box positions is to the left of the goal position (located at
box (3,3)) and the remaining capacity is 1 (i.e., the robot is holding
a box). On seeing this contrastive explanation, Gary notices that
the robot picks up boxes when it is at the same location and its
capacity is 2 (i.e., it is not holding any boxes). Gary wants to see if
this behavior is always true regardless of the location, so he asks a
When? question to the agent: “When does the agent perform action
Pickup Box?” (h) The explanation shows that a pickup happens only
when the robot is not holding a box (specifically, when its remaining
capacity is equal to its maximum capacity). Gary now understands
why the agent dropped of the first box rather than picking up the
second box.

8 EVALUATION

To empirically evaluate PolicyExplainer, we conducted two studies:
a controlled usability study with ten graduate computer science stu-
dents (p1–p10), and extensive usability reviews with three domain
experts who research HIV and vaccinology (e1–e3). Notably, none
of our participants were experts in RL. These evaluations serve two
purposes: (1) To understand how PolicyExplainer’s visual represen-
tations and question-and-answer dialogues support understanding
of a learnt policy by non-experts. (2) To compare PolicyExplainer’s
visual explanation approach against a state-of-the-art text-based
explanation baseline.

8.1 Study #1 Design and Setup
Baseline. As a baseline for comparing against PolicyExplainer’s
visual explanations, we utilize the text-based policy explanation

Figure 4: The baseline interface created for the user studies, which
employs text-based explanations from [13].

technique from [13]. Despite being a relatively recent publication,
this is one of the most cited papers for policy explanation via nat-
ural language generation, and is still considered a state-of-the-art
approach in the community. This technique supports “Why?” and
“Why not?” questions as well as understanding situational behaviour,
making it analogous to our three question types supported by Poli-
cyExplainer. Explanations are based on the software’s control logic
and a user query; the output consists of all possible conditions for
the asked question. Unfortunately, like most text-based explanation
approaches, our assumption is that even for simple domains (like
Taxi) this approach can quickly lead to long run-on sentences that
are cumbersome for humans to parse through (see DR4). One moti-
vation for PolicyExplainer is that visualization can potentially both
improve interpretation and alleviate cognitive load by representing
explanations in easy-to-understand and interactive visual encodings.

We downloaded the GitLab code for this technique [1] and
tweaked the code to obtain answers for the Why?, Why not? and
When? question types discussed in this paper. We then created a
simple frontend interface to support the user interactively querying
an RL agent, shown in Figure 4.

Domains. Three domains were used in Study #1: the Taxi and
StackBot domains described in Section 7, and a safety-critical
HIV drug treatment domain. The HIV domain [3] consists of
an RL agent recommending a drug cocktail for a patient. States
in this domain (568 total) consist of six features: (uninfected
CD4+ T-lymphocytes, infected CD4+ T-lymphocytes, unin-
fected macrophagus, infected macrophagus, free virus, im-
mune response). Four actions are available to the agent: (No
drugs, Only Protease, Only RT, Both Protease and RT). Based
on the consequences of an action in a given state (either positive or
negative), the agent is given a positive or a negative reward.

Design. The study design consisted of five stages:

(1) Interface Assignment and Training Stage. First, the participant
was assigned one of the interfaces. A hands on training was given,
explaining available system features and interactions. Participants
could ask questions and play around with the interface until they felt
comfortable enough to proceed.

(2) Task Stage. For this stage, participants were shown expla-
nations provided by the assigned interface for the three types of
supported questions: Why?, Why not?, and When?. Participants
were tasked to rate the explanations for the question type, which
we refer to as tasks t1, t2, and t3, respectively. In PolicyExplainer
the users could use visualizations from other panels to aid their
understanding of the explanation generated.

Participants completed three trials for each task, or nine total trials.
Tasks were timed; participants were told to notify the administrator if
or when they thought they understood the agent’s explanation for its
decision. For each task, we had pre-selected six states from the Taxi
domain; three were chosen for the participant’s assigned interface
and the others were held out. At the completion of the nine trials,
participants completed a short survey rating the understandability of
the explanations based on a 7-point Likert scale.

117

Authorized licensed use limited to: ASU Library. Downloaded on September 05,2022 at 03:31:37 UTC from IEEE Xplore. Restrictions apply.

(3, 4) Training and Task Stages with the other Interface. After
completing the task stage with an initially-assigned interface, partic-
ipants repeated the training and task stages with the other interface.
Trials in the second iteration of the task utilized the states that were
held out in the first iteration. To minimize potential confounds, the
order of interface assignments, the selection of states for each inter-
face, and the trial ordering was counterbalanced among participants.

(5) Freeform Analysis Stage. Finally, participants opened Policy-
Explainer and could freely explore the three domains. No specific
task was assigned in this stage, but participants were encouraged
to put themselves into the following scenario: They are a super-
visor in a company with autonomous agents employed and were
told to report back any unexpected situations that occur, with their
understanding of the agent’s reasoning. In this stage, we wanted
to understand how PolicyExplainer’s features and overall user ex-
perience support RL interpretability, so the baseline interface was
not used. Participants had ten minutes to complete this stage, and
utilized think aloud protocol to verbalize their cognitive processes.
At the end of the stage, participants completed a short usability
survey and, if desired, could provide additional commentary about
PolicyExplainer and baseline.

Participants and Apparatus. Ten graduate computer science
students were recruited from Arizona State University (average age
= 24.6, SD = 1.42; 7 males, 3 females). Although some of the
graduate students were familiar with AI/ML, all reported little-to-no
experience in RL. Each session lasted between 45–60 minutes.

During study sessions, both interfaces were shown in Google
Chrome in full screen mode at 3840× 2160 resolution. Sessions
were held in a quiet, office-like environment with no distractions.

8.2 Study #1 Results
Where applicable, we report Mann-Whitney U tests to indicate
if there is a statistical difference in explanation understandability
between PolicyExplainer and baseline (using a threshold of p =
0.05) by providing U and p values.

8.2.1 Task Stage Performance
Two types of data points were measured during task stage trials: the
time taken to complete each trial, and ratings from the participant
about the understandability of explanations from each interface.

For PolicyExplainer, the average completion time in seconds
for each task was t1= 39.7, t2= 58.5, and t3= 56.2. Interestingly,
there were several baseline trials where participants gave up halfway
through trying to understand the explanation (for all three question
types), with the justification that the explanations were too verbose
and difficult to understand. Participant e10 succinctly gave a reason
for this: “The text explanations were hard to understand, I felt like
giving up while doing the tasks since it was too much of mental
effort.” Thus, while the text explanation trials took more time on
average (t1= 97.8, t2= 86.9, t3= 55.8), this data is skewed it does
not include the abandoned trials. That said, for completed trials, par-
ticipants described their interpretation of the generated explanation
to the administrator. We found that, for all explanations, participant
interpretations of generated explanations were correct.

Three questions were asked to participant about the understand-
ability of the explanations for the agent behavior, shown in Fig-
ure 5(Qn1–Qn3). For each question, PolicyExplainer performed
significantly better in terms of understanding (U = 0, p < 0.005),
gaining trust (U = 2, p < 0.005) and the cognitive effort required
to understand presented explanations (U = 0, p < 0.005). These
results indicate that participants felt PolicyExplainer’s visual expla-
nations were much easier to understand compared to the baseline’s
state-of-the-art text explanations.

8.2.2 Freeform Stage: User Comments and Survey Ratings
Here, we report comments and feedback collected during and after
the freeform analysis stage. Figure 5(Qn4–Qn13) shows participant

Figure 5: Participants’ ratings about various system aspects after the
Freeform Stage. Median ratings are indicated in gray.

survey feedback about using the system during this stage. Policy-
Explainer’s functionality and interface features were highly rated
by almost all participants. Since the baseline was not used in the
freeform stage, it does not have corresponding ratings for these
questions, though several participants compared the two interfaces
during and after this stage.

Visual explanations were preferred to text-based explana-
tions. All ten participants were able to correctly interpret the visual
explanations generated by PolicyExplainer, and preferred it over the
baseline’s text explanations. One possible reason for this, referenced
by four subjects (p3, p7, p9, p10), is that PolicyExplainer’s visual
explanations were more succinct compared to the verbose text expla-
nations from the baseline. “The text explanations were hard to under-
stand. However, the visual one was better since the . . . explanations
were succinct” (p10). The idea that the text explanations explicitly
required more mental effort was a common theme, stated by three
participants (p4, p9, p10). “The text explanations were hard and
made no sense so I gave up” (p4). “This work on visualizations for
explainability makes more sense than text-based systems because
the mental effort in the latter is too much.” (p9). These comments
echo the Likert score ratings in Figure 5(Qn1–Qn3).

Decoding agent behaviour across panels. PolicyExplainer con-
tains several panels (apart from the explanation panels), which sev-
eral participants mentioned they used to contextualize the agent’s
reasoning better and validate their understanding of the agent be-
haviour. For examples, four participants (p2, p4, p7, p10) found the
Q-values for certain actions intuitive, despite being RL non-experts.
“Like in state 4, its really interesting to see the rewards for move
south and move east are the same, since the agent would complete
the task in the same number of steps, but if you look at the Q value
for move west and north though they are same its a bit lower than
the optimal action because of taking an extra step but still being
in the same location” (p7). “Q values had encoded rewards which
aligned with our expectation of the agent ” (p2).

Two participants (p9, p10) especially liked that the state value
overview arranged states by criticality. “In state 276, the taxi already
had a passenger so doing anything else that takes it away from the
goal position, thus will have a more negative reward than the optimal
action” (p9). Another participant commented how the features
presented in the agent explanation mimic what a human would think
if they were the agent. “Here in this explanation of why the agent

118

Authorized licensed use limited to: ASU Library. Downloaded on September 05,2022 at 03:31:37 UTC from IEEE Xplore. Restrictions apply.

moved south, it’s interesting to see that the agent doesn’t look at the
destination feature before it picks up, it’s just its own position and
passenger position. Once it does, it then looks at the destination
location. This thinking sort of aligns in the way humans would think
which is interesting to see in a robot” (p4).

All ten participants found the state and trajectory visualizations,
along with the subgoal, to be helpful in understanding and validating
the explanations. “The subgoal is easy but interesting to see, since it
tells us what the robot is trying to achieve and I can easily validate
it from the trajectory view. Same goes with the state visualizations,
they are easy to understand and easily help me to understand the
explanation which is way harder in the text based format” (p4).

Making sense of unexpected StackBot behaviour. All ten par-
ticipants used the StackBot domain, and all ten considered it to be
the most interesting domain, since the agent performed counterintu-
itive actions. The system’s explanations helped them to understand
the agent’s reasoning. “The questions I asked in StackBot helped me
see the application of this interface better. It shows a very clear use
of the system. Especially the ‘Why not?’ question” (p1).

On-demand training to improve usability. Though overall of
the users found PolicyExplainer easy to learn, use, and understand
(Figure 5(Qn4–Qn6)), two participants (p3, p4) mentioned that addi-
tional training time could help them more intuitively understand the
system’s functions and improve the user experience. Each suggest
including on-demand user guides and tutorials. “Once you explained
the interface I found the visualizations easy. Some sort of tutorial
is needed though to understand the interface. ” (p3). “Maybe you
could add a tutorial for users for the interface.” (p4). This function-
ality was not necessary during the study, as the administrator was
present to assist participants if they were stuck or confused.

8.3 Study #2: HIV Domain Experts

For Study #2, we evaluated PolicyExplainer with three researchers
(e1-e3) over several weeks. These experts research HIV and vac-
cinology, particularly in low-income countries. Each had at least
four years research experience, but none had technical familiarity
about RL. Communication included emails and videoconference in-
terviews, as well as pair analytic sessions with both PolicyExplainer
and the baseline interface, primarily using the safety-critical HIV
domain (though the other domains were also demoed).

Pair Analytics. Pair analytics [5] is an established method for
visualization evaluation by capturing reasoning processes in visual
analytics. To evaluate an interface such as PolicyExplainer, a visu-
alization expert well-versed with the system functionality “drives,”
while the study participant freely makes analysis and investigative
decisions based on their own expertise and desires. Freeform verbal
discussion between the driver and participant is the basis for under-
standing of the participant’s sensemaking process as well as what
specific insights are uncovered during investigation.

Domain Expert Feedback As hoped, the domain experts pro-
vided several comments about PolicyExplainer’s explanations for
HIV treatment based around their previous clinical experiences. All
the three experts found PolicyExplainer easy to use and understand,
particularly compared to the baseline, and were able to correctly
interpret generated explanations. “The interface is easier to under-
stand” (e1). Likewise another professor noted that, “It’s streamlined
and clean. Very spacious and clear to look at actually” (e2). One
expert particularly liked the policy cluster panel: “There are some
real nice clusters here and State 1 is an outlier. Very interesting.
This cluster does suggest that the agent did learn giving same drugs
to similar patients ”(e2).

Two of the three experts noted that the question-and-answer di-
alogues were helpful in letting them think through and analyze
diverging view points. As one commented, “This interface also
helps ask questions so it actually makes us think and check about
the other possibilities. Especially the Why Not [question] ”(e3).

In terms of expanding PolicyExplainer to work with safety-critical
domains, one participant suggested incorporating user feedback into
the system which updates the policy, thus making the agent adapt
to the patient’s needs. “Can you change the agent behavior and
the agent adapts based on the physician’s response? Not sure how
hard it is but an adaptive interface would be so interesting. This
aligns with something we call as intervention consideration for dif-
ferent patients” (e2). Another expert suggested showing confidence
values instead of Q-values. Another expert also suggested such a
system could be effectively tailored for clinicians in rural and poor
settings: “AI agents and visualizations are not that abundant in
healthcare. This interface can be used as an assistive agent in low
income countries” (e3). In such settings, where users would likely
have less technical proficiency and visualization literacy, additional
narrative cues could be employed: “Adding more annotations to the
visualizations and the interface would be easier for us who don’t
know computer science” (e2).

9 DISCUSSION

Here, we discuss how the process of developing and evaluating Poli-
cyExplainer demonstrates how visualization-based approaches can
be leveraged to decode the behavior of autonomous RL agents, par-
ticularly for RL non-experts. We also discuss some of the system’s
current limitations, and how they can be addressed in the future.

PolicyExplainer effectively showcases real-world and safety-
critical domains. Each of the three tested domains represent rea-
sonable RL problems; the Taxi domain, while simple, is used for
demonstrating RL techniques, and the HIV and StackBot domains
mimic “real world” problems in terms of complexity. In particular,
the HIV domain represents a safety-critical domain where model rec-
ommendations require justification and interpretability to be trusted.
In both studies, participants correctly interpreted the generated ex-
planations from PolicyExplainer and considered them informative,
indicating that systems like PolicyExplainer can effectively promote
trust and interpretability for users who are not experts in RL.

Applicability to RL experts. While PolicyExplainer was de-
signed for RL non-experts users, we believe these types of tools
also have potential applicability for RL experts. For example, when
designing and debugging an agent, PolicyExplainer can be used to
validate if the agent is acting according to human preferences; if not,
the developer can tune and re-train the model (such a usage scenario
falls into the domain of interactive reinforcement learning; for an
overview, see [6]).

Increasing Scalability and Explanatory Robustness in Policy-
Explainer. Based on PolicyExplainer’s current implementation, one
area for future work is scaling to more complex domains, such as
autonomous cars and robot-hand manipulation, where the states,
actions, and even the attributes defining the states might have a
huge (or even continuous) space. One strategy is to generate human-
interpretable abstractions over such large and/or complex state rep-
resentations based on the “concept” techniques presented by Kim
et al. [18]. Such “state abstractions” could significantly reduce the
state/action space while still providing users with explanations of
the domain’s dynamics. Alternatively, aggregation and navigation
techniques such as those from Wang et al. [31] and Wongsupha-
sawat et al. [33] can be adopted for the interface’s explanation and
trajectories as a way to reduce visual complexity.

In a similar manner, we are also exploring ways to increase the
scalability and explanatory robustness of visual designs; such as
increasing the number of actions that can be shown in the Policy
Detail View or sorting how features are presented in the Explanation
View to increase interpretability. However, it is an open question as
to how such modifications can best be done in a way that balances
overall human interpretability and usability while still capturing the
domain dynamics, particularly for RL non-expert users.

119

Authorized licensed use limited to: ASU Library. Downloaded on September 05,2022 at 03:31:37 UTC from IEEE Xplore. Restrictions apply.

10 CONCLUSION

We view PolicyExplainer as a first attempt to make a generalizable
visual interface to support interactive querying and explanation of
an RL agent. By creating visualizations to answer human queries
about agent decision-making, these tools can increase trust in auto-
mated systems particularly for non-expert users. PolicyExplainer
supports both model-based and model-free RL across a variety of
domains, and employs a succinct policy explanation methodology
to visuallly answer Why?, Why not?, and When? questions. A user
study indicates these visual explanations are preferable to text expla-
nations created by natural language generation; visual explanations
were found to increase trust in the decisions given by an RL agent,
including in domain experts for a safety-critical healthcare domain.
Future work will expand on domains that can be handled by visual
analytics approaches, including those with extremely large state and
actions spaces that are not easily human-interpretable.

11 ACKNOWLEDGMENT

This research was supported by the U.S. National Science Founda-
tion through grant OAC-1934766.

REFERENCES

[1] https://gitlab.tue.nl/ha800-hri/hayes-shah.

[2] D. Abel, J. MacGlashan, and M. L. Littman. Reinforcement learning

as a framework for ethical decision making. In AAAI Workshop: AI,
Ethics, and Society, vol. 16, p. 02. Phoenix, AZ, 2016.

[3] B. M. Adams, H. T. Banks, H.-D. Kwon, and H. T. Tran. Dynamic

multidrug therapies for hiv: Optimal and sti control approaches. Math-
ematical Biosciences & Engineering, 1(2):223, 2004.

[4] D. Amir and O. Amir. Highlights: Summarizing agent behavior to

people. In Proceedings of the 17th International Conference on Au-
tonomous Agents and MultiAgent Systems, pp. 1168–1176, 2018.

[5] R. Arias-Hernandez, L. T. Kaastra, T. M. Green, and B. Fisher. Pair an-

alytics: Capturing reasoning processes in collaborative visual analytics.

In 2011 44th Hawaii international conference on system sciences, pp.

1–10. IEEE, 2011.

[6] C. Arzate Cruz and T. Igarashi. A survey on interactive reinforcement

learning: Design principles and open challenges. In Proceedings of the
2020 ACM Designing Interactive Systems Conference, pp. 1195–1209,

2020.

[7] J. Choo and S. Liu. Visual analytics for explainable deep learning.

IEEE computer graphics and applications, 38(4):84–92, 2018.

[8] S. Deshpande, B. Eysenbach, and J. Schneider. Interactive visualization

for debugging rl. arXiv preprint arXiv:2008.07331, 2020.

[9] T. G. Dietterich. Hierarchical reinforcement learning with the maxq

value function decomposition. Journal of artificial intelligence re-
search, 13:227–303, 2000.

[10] F. K. Došilović, M. Brčić, and N. Hlupić. Explainable artificial intelli-

gence: A survey. In 2018 41st International convention on informa-
tion and communication technology, electronics and microelectronics
(MIPRO), pp. 0210–0215. IEEE, 2018.

[11] M. Fox, D. Long, and D. Magazzeni. Explainable planning. arXiv
preprint arXiv:1709.10256, 2017.

[12] S. Greydanus, A. Koul, J. Dodge, and A. Fern. Visualizing and un-

derstanding Atari agents. In International Conference on Machine
Learning, pp. 1792–1801. PMLR, 2018.

[13] B. Hayes and J. A. Shah. Improving robot controller transparency

through autonomous policy explanation. In 2017 12th ACM/IEEE
International Conference on Human-Robot Interaction (HRI, pp. 303–

312. IEEE, 2017.

[14] W. He, T.-Y. Lee, J. van Baar, K. Wittenburg, and H.-W. Shen. Dynam-

icsexplorer: Visual analytics for robot control tasks involving dynamics

and lstm-based control policies. In 2020 IEEE Pacific Visualization
Symposium (PacificVis), pp. 36–45. IEEE, 2020.

[15] F. Hohman, M. Kahng, R. Pienta, and D. H. Chau. Visual analytics

in deep learning: An interrogative survey for the next frontiers. IEEE
transactions on visualization and computer graphics, 25(8):2674–2693,

2018.

[16] S. H. Huang, K. Bhatia, P. Abbeel, and A. D. Dragan. Establishing

appropriate trust via critical states. In 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 3929–3936.

IEEE, 2018.

[17] T. Jaunet, R. Vuillemot, and C. Wolf. Drlviz: Understanding decisions

and memory in deep reinforcement learning. In Computer Graphics
Forum, vol. 39, pp. 49–61. Wiley Online Library, 2020.

[18] B. Kim, M. Wattenberg, J. Gilmer, C. Cai, J. Wexler, F. Viegas, et al.

Interpretability beyond feature attribution: Quantitative testing with

concept activation vectors (tcav). In International conference on ma-
chine learning, pp. 2668–2677. PMLR, 2018.

[19] M. Komorowski, L. A. Celi, O. Badawi, A. C. Gordon, and A. A. Faisal.

The artificial intelligence clinician learns optimal treatment strategies

for sepsis in intensive care. Nature medicine, 24(11):1716–1720, 2018.

[20] Y. Li. Deep reinforcement learning: An overview. arXiv preprint
arXiv:1701.07274, 2017.

[21] B. Y. Lim, A. K. Dey, and D. Avrahami. Why and why not explanations

improve the intelligibility of context-aware intelligent systems. In Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pp. 2119–2128, 2009.

[22] Z. C. Lipton. The mythos of model interpretability: In machine learn-

ing, the concept of interpretability is both important and slippery.

Queue, 16(3):31–57, 2018.

[23] S. McGregor, H. Buckingham, T. G. Dietterich, R. Houtman, C. Mont-

gomery, and R. Metoyer. Interactive visualization for testing markov

decision processes: Mdpvis. Journal of visual languages & computing,

39:93–106, 2017.

[24] J. Miller, C. Hsu, J. Troutman, J. Perdomo, T. Zrnic, L. Liu, Y. Sun,

L. Schmidt, and M. Hardt. Whynot, 2020. doi: 10.5281/zenodo.

3875775

[25] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-

stra, and M. Riedmiller. Playing atari with deep reinforcement learning.

arXiv preprint arXiv:1312.5602, 2013.

[26] C. Olah, A. Mordvintsev, and L. Schubert. Feature visualization.

Distill, 2017. https://distill.pub/2017/feature-visualization. doi: 10.

23915/distill.00007

[27] M. T. Ribeiro, S. Singh, and C. Guestrin. ” why should i trust you?”

explaining the predictions of any classifier. In Proceedings of the 22nd
ACM SIGKDD international conference on knowledge discovery and
data mining, pp. 1135–1144, 2016.

[28] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction.

MIT press, 2018.

[29] J. van der Waa, J. van Diggelen, K. v. d. Bosch, and M. Neerincx. Con-

trastive explanations for reinforcement learning in terms of expected

consequences. arXiv preprint arXiv:1807.08706, 2018.

[30] J. Wang, L. Gou, H.-W. Shen, and H. Yang. Dqnviz: A visual analyt-

ics approach to understand deep q-networks. IEEE transactions on
visualization and computer graphics, 25(1):288–298, 2018.

[31] J. Wang, W. Zhang, H. Yang, C.-C. M. Yeh, and L. Wang. Visual ana-

lytics for rnn-based deep reinforcement learning. IEEE Transactions
on Visualization and Computer Graphics, 2021.

[32] J. Whittlestone, K. Arulkumaran, and M. Crosby. The societal implica-

tions of deep reinforcement learning. Journal of Artificial Intelligence
Research, 70:1003–1030, 2021.

[33] K. Wongsuphasawat, D. Smilkov, J. Wexler, J. Wilson, D. Mane,

D. Fritz, D. Krishnan, F. B. Viégas, and M. Wattenberg. Visualizing

dataflow graphs of deep learning models in tensorflow. IEEE transac-
tions on visualization and computer graphics, 24(1):1–12, 2017.

[34] Z. Yang, S. Bai, L. Zhang, and P. H. Torr. Learn to interpret Atari

agents. arXiv preprint arXiv:1812.11276, 2018.

[35] V. Yoghourdjian, D. Archambault, S. Diehl, T. Dwyer, K. Klein, H. C.

Purchase, and H.-Y. Wu. Exploring the limits of complexity: A sur-

vey of empirical studies on graph visualisation. Visual Informatics,

2(4):264–282, 2018.

[36] D. Young and B. Shneiderman. A graphical filter/flow representation of

boolean queries: A prototype implementation and evaluation. Journal
of the American Society for Information Science, 44(6):327–339, 1993.

[37] Q.-S. Zhang and S.-C. Zhu. Visual interpretability for deep learning: a

survey. Frontiers of Information Technology & Electronic Engineering,

19(1):27–39, 2018.

120

Authorized licensed use limited to: ASU Library. Downloaded on September 05,2022 at 03:31:37 UTC from IEEE Xplore. Restrictions apply.

