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Introduction

Cells can crawl, self-heal, and tune their stiffness due to their remarkably dynamic
cytoskeleton. As such, reconstituting networks of cytoskeletal biopolymers may lead
to a host of active and adaptable materials. However, engineering such materials
with precisely tuned properties requires measuring how the dynamics depend on
the network composition and synthesis methods. Quantifying such dynamics is
challenged by variations across the time, space, and formulation space of composite
networks. The protocol here describes how the Fourier analysis technique, differential
dynamic microscopy (DDM), can quantify the dynamics of biopolymer networks and
is particularly well suited for studies of cytoskeleton networks. DDM works on time
sequences of images acquired using a range of microscopy modalities, including laser-
scanning confocal, widefield fluorescence, and brightfield imaging. From such image
sequences, one can extract characteristic decorrelation times of density fluctuations
across a span of wave vectors. A user-friendly, open-source Python package to
perform DDM analysis is also developed. With this package, one can measure the
dynamics of labeled cytoskeleton components or of embedded tracer particles, as
demonstrated here with data of intermediate filament (vimentin) networks and active
actin-microtubule networks. Users with no prior programming or image processing
experience will be able to perform DDM using this software package and associated

documentation.

The cytoskeleton is a network of protein filaments that
spans across the cytoplasm of eukaryotic cells, connecting
the cell surface to the nucleus. It has unique material

properties, providing mechanical protection against large and

repeated mechanical loads, yet also driving dynamic cell
shape changes1. Reconstituted cytoskeleton networks can
give rise to a range of interesting dynamic behaviors, from

the caging of embedded particles to ballistic motion driven by
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2,3,4,5,6,7,8,9,10,11

molecular motors . Methods to analyze

the dynamics of such networks include tracking the motion of

6,7,12,13,14

embedded tracer microspheres , Iimage analysis

to track the size of protein-dense clusters over time®, dynamic
light scattering15, particle image veIocimetry4’16*17’18'19,
computing the power spectral density of images over
time'?, and kymograph analysis?®. As more studies on
reconstituted cytoskeleton networks are conducted, whether
to understand cellular mechanics or active matter, robust,
unbiased, and reproducible methods for characterizing the
dynamics are increasingly necessary. Differential dynamic

microscopy (DDM)21 22

, a relatively new technique that has
been used to study cytoskeleton dynamics, is one such
technique that efficiently quantifies dynamics with few user-
defined parameters. With the software package described
here, researchers with little experience in programming or
image analysis will be able to leverage DDM for their own

work.

DDM is an image analysis technique to extract a sample's
dynamics. Like particle tracking or particle image velocimetry,
DDM requires a time series of images (often thousands of
images), typically recorded with a microscope. Unlike particle
tracking, individual features or tracer beads do not need to
be localized (or even be localizable) in the image. Unlike
both particle tracking and particle image velocimetry, one
recovers the ensemble dynamics with DDM with relatively few
user-specified parameters. With DDM, images are analyzed
in Fourier space to determine the decay time of density
fluctuations over a range of wavenumbers, q, where q =

2mu, and u is the magnitude of the spatial frequencies,

— 2 2 . . . . .
U =Uz T U One obtains scattering-like information but
with real-space images acquired on a microscope21'22'23.
Therefore, one can take advantage of the various contrast-

generating methods of microscopy, such as widefield

22,24

fluorescence , 25

confocal fluorescence 26 ,

28

, polarize
dark-field?”, or light-sheet fluorescence microscopies.
Furthermore, images used for DDM analysis may be used
for particle tracking or particle image velocimetry to provide

complementary information.

This combination of features from dynamic light scattering
and optical microscopy makes DDM a powerful and
versatile technique. Since its first description by Cerbino
and Trappe in 200821, where DDM was demonstrated
to measure the diffusion of 73 nm colloidal particles,
DDM has been used to measure flowing colloids??,

30,31

colloidal aggregation , the viscoelasticity of nematic

liquid crystalszs, the dynamics of colloidal gels32, coarsening

foams33 34,35,36,37,

, hanoparticles in confined environments
bacterial motility38 139,40.41 ‘tne diffusion of weakly scattering
protein clusters42, capillary waves at fluid interfaces43, and
other systems. Those looking for a more complete listing of
publications employing DDM can refer to thorough review

papers on the subject?2:23.44.45

DDM has also been used to investigate the dynamics
of biological networks. Drechsler et al. used DDM to
measure the dynamics of actin in living Drosophila
oocytes46. Burla et al. quantified the dynamics of tracer
particles in networks of hyaluronan and hyaluronan-collagen
composites47. Several uses of DDM to study the dynamics

of tracer particles in reconstituted cytoskeleton networks?: 19,

48,49’ and

the transport of DNA molecules in such networks
the dynamics of active reconstituted networks have also been
documented?1:90:51 an advantage of DDM in measuring
the dynamics in such systems is that individual particles
or molecules do not need to be localized and tracked. So,

for example, the dynamics of DNA molecules in crowded

environments can be measured with DDM despite the
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difficulty in tracking such small and non-spherical molecules.
Furthermore, with fluorescence microscopy, one can use
multi-color labeling to selectively measure the dynamics of

individual constituents in a complex composite.

To perform DDM, a sequence of images is taken over time,
I(x,y,t). For a given lag time, At, all (or a subset of) pairs of
images separated by that lag time are found. The squared

Fourier transform of the difference of each pair,
Al(x,y,At) = I(x,y, t + At) — I(x, y, 1)

is computed and averaged together. This quantity,

P 2
(181 (qx a5, 82)| e, s radially averaged, provided that the
dynamics are isotropic. This yields the DDM matrix

(also referred to as the image structure function),

—_— 2
D(q,8t) = {|A1(g, 0] )z, This process is shown graphically
in Figure 1. To determine the sample's dynamics from this

DDM matrix, the DDM matrix is assumed to take the form
D(q,At) = A(g)[1 - f(q,A0)] + B(q)

where A is the amplitude, which depends on the details of
the microscope and the structure of the sample, B is the

background, which depends on the noise in the images, and

Record time series of

1(x,0,0)

Dig,.q,.!

A

)

f (g, At) is the intermediate scattering function (ISF), which

21,22

contains information about the dynamics . In simple

cases,
f (g, At) = exp(—(at/1(q)))

where T is a characteristic decay or decorrelation
time. Such an ISF has been used in several studies
employing DDM on ergodic systems like dilute colloidal
suspensions21 124,27,37,40,52 However, other forms of the
ISF can be used to model various types of dynamics. For
example, one may use a cumulant expansion to model the

ISF for polydisperse samples as

f(q, At) = exp(—(At/T(q)))[1 + uAt?/2]

where u is a measure of the polydispersity*2:°3;

if density
fluctuations decay by two separate modes one may use an

ISF like

f(q, At) = @ exp(—(At/71(q))) + (1 — @) exp(—(4t/7,(q)))
26, 54, 55, 56, 57

other ISFs can be used for swimming micro-organisms or

other active particle338*39""0*41 158,59

Fourier transform differcnees of images

te the two-dimensional DM

Increasing g,
g (pm')

0.50

DDM Matrix

T

s
1wt 10?

Lag time (s)

Fit the DDM matrix 1o a model, e.g.,

D(g,4t) = A(g)[1 — exp(—(at/T(g))*")] + B(q)
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Figure 1: Overview of DDM analysis. From the time series of images, the Fourier transform of image differences is

computed to calculate the DDM matrix. The DDM matrix can be fit to a model to determine the time scale of density

fluctuations across a range of g values. Please click here to view a larger version of this figure.

Here, the use of a DDM analysis software package
developed in Python, PyDDM, is described. This software
package builds on the work done by our research labs
and other published studies over the last several years.
Primary motivators for creating this software package
include the need for (1) keeping track of and storing
metadata and parameters used in the analysis; (2) thorough
documentation with detailed examples of analysis from start
to finish; and (3) an easy way to employ different (or
create new) mathematical models for fitting the data (e.g.,
adding ISF models, such as ones recently developed for
active filaments®?, would be straightforward). Other software
packages for DDM analysis also exist, though not all are
well documented and written in an open-source programming
language. For example, there is C++ code with computing
on GPUs (https://github.com/peterlu/ConDDM)25, C++ code
that uses Fourier transforms in time to speed up calculations
(https://github.com/giovanni-cerchiari/diffmicro)61, MATLAB
and Python versions (https://github.com/MathieuLeocmach/
DDM)40, MATLAB code (https://sites.engineering.ucsb.edu/
~helgeson/ddm.htm|)27, and MATLAB code with uncertainty
quantification (https://github.com/UncertaintyQuantification/
DDM-UQ)%2. As this PyDDM package is well documented
and provides a lot of flexibility in how the DDM matrix
is calculated and analyzed, it can hopefully be useful to
researchers looking to implement DDM regardless of their

background in programming or image analysis.

The protocol shows how this software package can be
used to quantify the dynamics of in vitro reconstituted

cytoskeleton networks. This is done by using two distinct

sets of imaging data: (1) images of submicron tracer particles
embedded in a vimentin network taken with brightfield
microscopy and (2) images of fluorescently labeled actin and
microtubule filaments in an entangled composite network
with myosin-driven activity taken with laser-scanning confocal
microscopy. The analyses of these two datasets highlight
notable strengths of DDM, including its ability to analyze
images taken with a variety of imaging modalities (e.g.,
brightfield or confocal fluorescence), to extract dynamics
from either embedded tracers or from labeled filaments, and
to quantify a variety of dynamics (e.g., subdiffusive and

constrained or ballistic).

Protocol

NOTE: A Jupyter Notebook file containing the code to go
along with each step in the following protocol can be found on
the following GitHub repository, https://github.com/rmcgorty/
PyDDM/tree/main/Examples. A PDF of that file is included
in Supplementary File 1. Additionally, a walkthrough of the
code and documentation of each function and class can be

found on the website, https://rmcgorty.github.io/PyDDM/.

1. Software installation

1. To follow along with the example DDM analysis files,
install Jupyter Notebook for running the code. Install
other required common Python packages, including
NumPy and Matplotlib as well. These packages all come
bundled with the Anaconda distribution (see https://

www.anaconda.com/products/individual).
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NOTE: The minimum q is set by 2m/NAx, where

2. Install the Python package xarray63. This package
i . ) the image size (assumed to be square) is N x N
is necessary for organizing and storing metadata

. . pixels with a pixel size of Ax. The maximum q is the
and analysis parameters. If using the Anaconda
o . o minimum of T/Ax and 2 NA/A, where NA is the imaging
distribution, install xarray (along with its recommended
) i objective's numerical aperture, and A is the wavelength
dependencies) using the command:
) of light (for brightfield imaging, one can replace NA with
conda install -¢c conda-forge xarray dask netCDF4
NAobiective + NA /2).
bottleneck (NAobjective condenser)/2)

3. Install the PyYAML package using the command: Next, consider the range of timescales to investigate.
conda install -c anaconda yaml Typically, DDM analysis is done on sequences of at least
This package is necessary for reading metadata about 1000 frames.
the images to analyze and the parameters set by the user 1. To determine the appropriate frame rate, consider
for analysis and fitting. the expected time it will take for features in the

4. |Install the PyDDM package, by downloading from the sample to move a distance on the order of the
GitHub repository or using the git command: minimum resolvable length scale (corresponding to
git clone https://github.com/rmcgorty/PyDDM.qit the maximum ).

2. In considering the upper limit of the range of

2. Planning the imaging sessions

Choose the optimal available imaging modality and
optical settings. As mentioned, DDM can be used with a

number of microscopy methods.

To assist in planning the appropriate objective lens and
image size to use, determine the range of wavenumbers,
q, that will be probed based on the pixel size and total
image size. Confirm that the choice of magnification and
field of view are optimal for the experiment, based on
these calculations. For the images analyzed here, a 60x
1.4 NA objective and an image size of 256 x 256 pixels
with a pixel size of 0.83 um were used for the active actin-
microtubule composite network. For the images of beads
embedded in a vimentin network, a 100x 1.4 NA objective

and an image size of 512 x 512 pixels with a pixel size

timescales probed, recognize that, typically, the
power spectrum of hundreds of image differences
of a given lag time At are averaged together to
provide sufficient statistics to reduce noise. Hence,
acquire image sequences longer than the maximum
timescale probed.

NOTE: If an expected diffusion coefficient, D,
or velocity, v, is known, then one can estimate

expected characteristic decay times using 1 =

1/Dq2 or T = 1/vq along with the range of g, which
was determined based on the field of view and
pixel size. The range of expected 1 values over the
accessible g-range can help guide the choice of

frame rate and the number of frames to acquire.

3. Sample preparation and image acquisition

of 0.13 ym were used.
NOTE: For details of the sample preparation and

imaging settings used for the data presented in the

Copyright © 2022 JoVE Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported jove.com
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representative results section, see previous publications from 3

11,51,64

the authors and Supplementary File 2.

1. Based on the consideration of the time and length scales
to probe, acquire image sequences of, ideally, over 1000
frames.

NOTE: The code will analyze square images or square
regions of interest within the image, so adjust the frame

size accordingly.

2. Save image sequences as a three-dimensional
greyscale TIFF stack. Alternatively, the format used
by Nikon Instruments systems, ND2 format, can be
read by the installed package. If images are saved in
some different format, use ImageJ or another imaging
processing program to convert the images to a TIFF
stack.

NOTE: If using ND2 files, the package nd2reader
from https://github.com/Open-Science-Tools/nd2reader

must be installed.

4. Parameter setup

1. Make a copy of the parameter file
example_parameter_file.yml provided in the PyDDM
code repository under the examples folder. Open this
YAML file with a text editor like NotePad++ or the text
editor in JupyterLab. See Supplementary File 2 for an
example YAML parameters file used in the analysis of

data presented in the representative results section.

2. In the copied YAML file, provide the data directory and
file name corresponding to the image sequence to be
analyzed. Under the metadata section, provide the pixel

size and frame rate.

Under the Analysis_parameters section, provide details
for how the DDM matrix should be calculated. Some

parameters here are optional.

1. At a minimum, provide values for the parameters
number_lag times and last lag time. These
correspond to the number of different lag times
for which to calculate the DDM matrix and the
longest lag time (in frames) to use, respectively.
For the data of tracer beads in vimentin networks
used here, the parameters number_lag_times and
last_lag_time were 60 and 1000, respectively. The
code will compute the DDM matrix for lag times from
1 frame (or some other minimum lag time if the
optional parameter first_lag_time is specified) to the
last_lag_time with logarithmic spacing.

NOTE: If M frames were acquired, one could
calculate the DDM matrix for a lag time as large as
M-1. However, with poor statistics at such a large
lag time, the data is likely to be noisy. The longest
lag time for which to calculate the DDM matrix will
depend on the details of the data, but we suggest
trying around one-third of the total image series

duration.

Provide details for how the DDM matrix or the
intermediate scattering function (ISF) should be fit in the
Fitting_parameters section. Give the name of the model
under the model parameter. Provide the initial guess,
lower bound, and upper bound for each of the fitting
parameters in the chosen model.

NOTE: To display a list of the possible fitting models, run
the function print_fitting_models. The models can also
be found in the online documentation on the PyDDM

website.

Copyright © 2022 JoVE Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported jove.com
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5. Calculating the DDM matrix

Initialize an instance of the DDM_Analysis class. To
do so, provide the metadata and analysis parameters
discussed above by passing the filename, with the full
file path included, of the YAML file to DDM_Analysis.
Alternatively, pass the metadata and parameters as a

Python dictionary data structure.

Run the function calculate_ DDM_matrix to calculate the
DDM matrix. This calculation may take several minutes
or longer depending on the frame size and the number of

lag times. See Figure 2 for typical run times.

Inspect the returned data, which will be in a data structure
from the xarray package known as a Dataset. This data
structure is stored under the attribute ddm_dataset.

NOTE: Not only the DDM matrix but also associated
variables and metadata will be stored in this data
structure. It will also be saved to disk in a Network

Common Data Form (netCDF) format.

Inspect the plots and figures, which will be generated and
displayed. These figures are also saved as a PDF file in

the data directory.

1. See that one of the generated plots shows

the ensemble-averaged squared modulus of the

- 2
Fourier-transformed images, (1,0 as a
function of q. By default, the code uses this to

estimate the background parameter B. Estimate the

- 2
background from {17(@.0)["): by assuming that, in
the limit of large q, it will approach B/2, where B is
the background.

If <|f(q-t)|2)t is not reaching a plateau at
large q, then use another method for estimating
B. To accomplish this, set the parameter
background_method in either the YAML file or
as an optional keyword argument to the function
calculate. DDM_matrix. More details about the

methods for estimating B are presented in the

representative results section.
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Figure 2: Computation time for calculating the DDM matrix. In (A) and (B) the time for calculating the DDM matrix,

D(q, A1) = (|E?(q, At) |2)t, is shown. The data used in all cases is a movie of 5000 frames with an image size of 512 x 512
pixels. The DDM matrix was calculated for 30 lag times, logarithmically spaced between 1 frame (0.01 s) and 1000 frames
(10 s). The code was run on an Intel i7-10700 2.90 GHz desktop computer with 32 GB RAM. In (A), the effect of varying how
many image differences are used in computing the DDM matrix for each lag time is shown. For this, the images are binned
to result in an image size of 256 x 256. For each lag time Af, images separated by that At are subtracted and the resulting
matrix is Fourier transformed. For a given At, all pairs of images separated by that Af can be used (shown in blue), only
non-overlapping image pairs can be used (e.g., frames 1 and 10, 10 and 19, etc.; shown in brown), or 300 image pairs or
fewer can be used for each At. In (B), the effect of changing the image size on the computation time is shown. The images
were binned either by grouping 2 x 2, 4 x 4, or 8 x 8 pixels, resulting in image sizes of 256 x 256, 128 x 128, or 64 x 64,
respectively. For each, about 300 image pairs are used in computing the DDM matrix for each At. (C) From the DDM matrix,
the intermediate scattering function (ISF) can be extracted. This is shown for the three cases in (A). The blue data points
(with no offset) correspond to the ISF when the maximum number of image pairs are used for each At; the brown data points
(with an offset of 0.1) correspond to the ISF when non-overlapping image pairs are used for each Af; and the pink data points
(with an offset of 0.2) correspond to the ISF when at most 300 image pairs are used for each At. The ISF found using non-
overlapping image pairs shows noisiness at long At. For that case, few image pairs are used at long At (e.g., for At of 1000
frames, only 4 image pairs are used). (D) By fitting the ISF to an exponential function, the characteristic decay time, r, for
each wavenumber, g, is determined. In pink, results are shown after binning the original images by 2 x 2, resulting in an

image size of 256 x 256. In gray, results are shown after binning by 8 x 8, resulting in an image size of 64 x 64. By binning
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the data, information about the dynamics at higher wavenumbers is lost, but calculating the DDM matrix for the 64 x 64

images is about 16x faster than for the 256 x 256 images. Please click here to view a larger version of this figure.

NOTE: This function will generate a series of plots, which
6. Fitting the DDM matrix or the ISF

Initialize an instance of the DDM_Fitclass. To do so, pass
to DDM_Fit the filename of the YAML file containing the

image metadata and parameters for fitting.

Decide which model for the DDM matrix or the ISF to use
for fitting the data. List the available models by executing
the function print_fitting_models. Specify the model to be
used in the YAML parameter file or by using the function

reload_fit_model_by_name.

Set the initial guesses and bounds for each parameter
in the chosen model in the provided YAML parameter
file. To change the initial guess for any parameter, use
the function set_parameter _initial_guess. Set bounds for
the parameters with the function set_parameter_bounds.
For example, as seen in Supplementary File 2, for the
data of tracer beads in the vimentin network, the initial
guess for the decay time was 1 s and the bounds on that

parameter were 0.01 s and 2000 s.

Execute the fit with the function fit. Assign a variable to
the output of this function to easily access the results.

NOTE: This function can take many optional arguments.
See the code documentation and provided examples for
a list of such arguments and when to consider setting

them to non-default values.

will also be saved as a PDF. Optional arguments to this

function can be used to modify the plots produced.

Among the generated plots will be a figure with 2 x 2
subplots showing the DDM matrix or ISF (depending
on the chosen fitting model) at four g-values (specified
as an optional argument to fit_report), along with the
calculated DDM matrix or ISF using the model and best
fit parameters. To plot the DDM matrix or ISF along
with the best fit in an interactive way, use the class
Browse DDM_Fits as shown in the provided examples

when the Jupyter Notebook environment is used.

From the plot of the characteristic decay time 1 vs. the
wavenumber q, determine whether the dynamics follow
diffusive, subdiffusive, ballistic, or some other type of
motion. This can be done by looking for the power law
relationship between 1 and q.

NOTE: On the log-log plot of T vs. g generated
by the function fit_report, three lines will be shown,
corresponding to power law fits over a specified range
of g values. The solid black line corresponds to fitting T
vs. g to a power law, T =1/ Kqﬁ, where K and 8 are
free parameters. The dashed line in orange corresponds
to fitting to simple diffusion, 71 = 1 / Dq2, where D
is a diffusion coefficient. The dot-dashed line in blue

corresponds to fitting to 1 = 1/ vq, where v is a velocity.

7. Interpreting the fit results
8. Saving the results
1. Generate plots for inspecting the fits and the g-

dependence of the fit parameters with the function 1. The results of the fit will be saved in a xarray dataset. Use

fit_report. the xarray function to_netcdf or Python's built-in pickle

Copyright © 2022 JoVE Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported jove.com
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module to save this data structure to disk. Use the xarray

function open_dataset to load these netCDF files.

2. Use the function save_fit_results_to_excel to save the fit

results, along with the data, to a worksheet file.

Representative Results

Here, we show examples of the analysis done with PyDDM
from two different sets of experiments. In one set of
experiments, sub-micron tracer beads were embedded in
networks consisting of the intermediate filament protein
vimentin and imaged using a 100x objective lens in
brightfield mode at 100 frames/s (Figure 3A). Vimentin is
expressed in mesenchymal cells and is a key determinant
of the mechanical properties of the cytoplasm65 and the
mechanical stability of the nucleus in cells performing

66,67

confined migration So far, reconstituted vimentin

networks have been studied primarily by macroscopic

64.68.69  \yhereas the dynamics have received

rheology
comparatively little attention3-70:71_ Additional details of
these experiments can be found in Supplementary File
2. In the other set of experiments, active cytoskeleton
networks were prepared with actin, microtubules, and myosin.
Spectrally distinct fluorescent labels allowed the actin and
microtubule filaments to be imaged with a two-color laser-
scanning confocal microscope using a 60x objective lens at
2.78 frames/s (Figure 3B,C). Actin and microtubule filaments
are both important drivers of dynamic cell shape changes,
with their actions coordinated by mechanical and biochemical
interactions’2. Additional details of these experiments can be

found in'". Individual frames from image sequences taken in

these experiments are shown in Figure 3.

Figure 3: Images from the time series analyzed. (A) Brightfield image of 0.6 um beads in a vimentin network. (B,C) Image

of the (B) microtubules and (C) actin in an active actin-microtubule composite taken with a 60x objective on a laser-scanning

confocal microscope, using 561 nm excitation light for the microtubule imaging and 488 nm excitation light for the actin

imaging. Please click here to view a larger version of this figure.

For images of tracer beads in vimentin networks, movies
of 5000 frames with a size of 512 x 512 pixels at 100
frames/s were recorded. From these, the DDM matrix was
computed at 60 logarithmically spaced lag times between

1 and 1000 frames, or 0.01 s and 10 s. To estimate

the background, B, the mean of the squared Fourier-

- 2
transformed images, <|‘I(‘i'-f)| )t, was computed and set

equal to (A(q) +B(q))/255.73  An assumption was made

that, over the largest 10% of g-values, this quantity equals B/2
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and that B is independent of q. This is the package's default
method for estimating B, but other methods are possible
by setting the background_method parameter to a different

value.

With the parameters A(q) and B determined from (|f(q. t) |2)t,
one can extract the intermediate scattering function (ISF) from
the DDM matrix. Example ISFs are shown in Figure 4. In
Figure 4A, the ISF from images of 0.6 ym diameter beads
embedded in a network with a vimentin concentration of 19
MM is shown. In Figure 4B, the ISF for the same type of
beads in a network with a vimentin concentration of 34 uM is
shown. Interestingly, in neither case did the ISF decay to zero.
At large lag times, the ISF should approach zero for ergodic

systems. That is, in such systems, density fluctuations should

(A)
10F
0.8}
W 06F
(]
0.4}
- R
0.0 bt S sl
1072 107! 10° 10!
Lag time (s)

completely decorrelate over large lag times. The fact that
the ISF here did not decay to zero could have resulted from
inaccurate estimates of A(q) and B, which were used to find
the ISF from the computed DDM matrix. Notably, the method
employed here can overestimate B in certain scenarios®2.
However, it is more likely that the dynamics of the tracer
beads are truly nonergodic as the beads have a comparable
size to the network mesh size and may, therefore, become
caged. Other data corroborated the finding of nonergodicity.
Namely, the bead size, 0.6 um, was larger than the calculated
average value for the mesh sizes of 0.4 pm for the 19
MM concentration and 0.3 uym for the 34 uM concentration.
Additionally, the results from single particle tracking of these
tracer beads, which are shown later, also showed confined

motion.

(B)

02Fg=113 9.06 prm !
OD 1 i i aaal i i sl P sl
1077 107t 10° 101
Lag time (s)

Figure 4: Intermediate scattering functions at several wavenumbers for vimentin networks. The ISF is plotted as a

function of lag time for g values from about 1 to 9 pm'1 . (A) The ISF from images of 0.6 ym beads in a vimentin network with

vimentin concentration of 19 uM. (B) The ISF from images of 0.6 ym beads in a vimentin network with vimentin concentration

of 34 uM. The long lag time plateau of the ISF at a value well above zero indicates nonergodicity. Please click here to view a

larger version of this figure.

Given that the dynamics are likely

nonergodic, the ISFs are fit to the form

f(q,At) = [1— C(@)] exp(—(At/T(q))* @) + C(a), where C

is the nonergodicity factor 32. This form of the ISF has

been used in previous studies of non-ergodic dynamics, such

32,74 or tracer particles in actin-

as that of colloidal gels
microtubule networks 0. The dotted black lines in Figure 4

show the fits along with the data. From these fits, one can
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now look at the g-dependence of the decay time, 1, and of the

nonergodicity parameter, C.

10°
L
107 F
a
o lotE —e—
)
E
=
> ]
@ 107
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g g
(m]
10—'. =
1072 =—-—

Wavenumber, g (um—1)

Figure 5: Decay time vs. wavenumber for vimentin networks. From fits to the ISF, the decay time 1 is determined for a

range of g values. For clarity, we are not showing the value of 1 for every q, but just a logarithmically spaced set. In blue (tan)

is the data from images of 0.6 um beads within vimentin networks with a vimentin concentration of 19 yM (34 uM). The error

bars represent the standard deviations in 7 across multiple movies (four movies for the data with the 19 uM network [blue]

and five movies for the data with the 34 uM network [tan]). Red dash-dotted lines mark estimated bounds for our temporal

and spatial resolution, as described in the results. The solid black line shows T % q? scaling, which would indicate diffusive

motion. Neither data set follows this scaling. Rather, beads in the 19 uM network show subdiffusive motion (T a7 with B>

2), and beads in the 34 uM network show confined or caged motion. Please click here to view a larger version of this figure.

The decay times showed a large amount of uncertainty, both
at the low g and high g extremes, as seen in Figure 5. The
error bars on this plot show the standard deviation among
four videos analyzed for the lower vimentin concentration
case or five videos analyzed for the higher concentration.
To understand the source of the large uncertainty at these
extremes, consider both the temporal and spatial resolution.
Approximate limits of the resolution are shown with three red

dash-dotted lines. The two horizontal lines correspond to the

minimum and maximum lag times probed. Given the frame
rate of 100 frames/s and the maximum lag time corresponding
to 1000 frames (20% of the total video duration), accuracy
was lost when measuring dynamics occurring faster than
0.01 s or slower than 10 s. At the lower g-values, the
fitted values for T were greater than 10 s. Therefore, large
uncertainties should be expected in decay times that are
larger than the maximum lag time. At the higher end of

the g-range, the decay time approached the minimum lag
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time of 0.01 s but remained above it. Rather than being
limited by the temporal resolution, at these higher g values,
the spatial resolution may be the limiting factor. Given the
pixel size of 0.13 ym, the largest value for g was about
24 pm'1 . However, the diffraction-limited resolution does not
necessarily allow accurate measurements of the dynamics

at these high spatial frequencies. Approximating the optical

resolution as @max = 27 NA/A |eads to an upper wavenumber
limit of about 16 pm'1, given the objective lens's numerical
aperture, NA, of 1.4 and wavelength of light, A & 550 nm. This
is demarked by the vertical red dash-dotted line in Figure
5. Indeed, the data were noisy at large values of q. Even
before this approximate upper limit of q, increased uncertainty
in T was seen, and this could be from overestimating gmax.
Poorer optical resolution than predicted may be because an
oil immersion lens was used to image beyond the coverslip
into an aqueous sample or because the condenser lens was

imperfectly aligned.

For the 0.6 um beads embedded in the less concentrated
network (19 uM vimentin), it can be observed from the log-
log plot of the decay time vs. wavenumber that the decay
time decreased with wavenumber in a way consistent with a
power law (Figure 5). However, it does not seem to follow

what would be expected for normal diffusive motion, where

T g2 Rather, r decreased more steeply with increasing q.
This is indicative of subdiffusive motion, which often occurs
for beads in crowded environments such as these. Fitting 7(q)
over the range of 1.4 |Jm'1 to 12.3 pm'1 to a power law
of the form 7 = 1/Kqﬁ yields the transport parameters K =
0.0953 me /s and B = 2.2. For those more accustomed
to thinking about normal diffusion vs. subdiffusion in terms
of the mean squared displacement (MSD) of tracer particles
as a function of lag time (i.e., MSD = K' At9), it is helpful to

recognize that the subdiffusive scaling exponent in the MSD

equation, a, is equivalentto a =2/ . In other words, the value
of B = 2.2 is consistent with a subdiffusive scaling exponent
in the MSD equation of a = 0.9. One would set PyDDM to
fit 7(q) over this range of g-values by specifying the indices of
the array of q with either the parameter Good_q_range in the
YAML file or by passing the optional argument forced_gs to
the function generate_fit_report. The range of q from 1.4 pm'1
to 12.3 pm'1 would, for the data here, correspond to indices

of the array of g from 15 to 130.

For the 0.6 um beads in the more concentrated network
(34 puM), the decay time showed little dependence on q.
This is likely due to the nonergodicity of beads in a network
with a smaller mesh size. To probe the nonergodicity in
this system, the nonergodicity parameter, C, should be
plotted as a function of q, as in Figure 6. For the 0.6 ym
beads in the 19 uM vimentin network, C = 0.2 with little
dependence on g (not shown). However, for the network
with 34 uM vimentin and for a network with an even higher
concentration of 49 yM vimentin, the log of C was proportional
to q2 as shown in Figure 6. This relationship between C
and q is expected for confined motion. For beads trapped

within pockets of the network, the MSD is expected to
plateau at long enough lag times (i.e., {ar?(At — ®)) = §2,
where (&r?(At)} is the MSD and &2 is the maximum MSD).
Since the ISF can be expressed in terms of the MSD as
f (g, At) = exp(—q*(Ar?(At))/4), and since the nonergodic
ISF goes to C at long lag times (i.e., f(q, At — @) = C(q)),
the relationship C(q) = exp(—q®8%/4) is obtained32:7°.
Therefore, one can use C(q) to find &2, and this yielded & =
0.017 pm? and 0.0032 pym? for the 34 and 49 uM vimentin

networks, respectively (corresponding to 6 = 0.13 ym and

0.057 pm).
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Figure 6: Nonergodicity parameter vs. wavenumber for vimentin networks. From fits to the ISF, the nonergodicity

parameter C is determined for a range of g values. In tan (red) is the data from images of 0.6 um beads within vimentin

networks with a vimentin concentration of 34 uM (49 uM). The error bars represent the standard deviations in 1 across

multiple movies (five movies for the data with the 34 uM network [tan] and four movies for the data with the 49 uM network

[red]). The y-axis has logarithmic scaling. One observes a g-dependence of C that follows C(q) = exp(—q*8%/4), which

allows for extracting the maximum mean squared displacement, 52. Fits to C(q) = exp(—q*8%/4) are shown with the solid

lines. Please click here to view a larger version of this figure.

One can use other methods to extract the confinement size
0 from the data as well as the subdiffusive exponent found
from examining 7(q) for beads within the 19 uM vimentin
network. Firstly, one can use the method described by
Bayles et al.”® and Edera et al.”’ to extract the MSD from
the DDM matrix. Notably, this method requires no fitting
of the DDM matrix. One only needs to compute the DDM

matrix, D(q, Af), and (|H‘i’-t)|)t (from which A(q) and B

can be determined). Then, to find the MSD, one uses the

2 _ 2 &
(Ar?(an)) = (4/q*)In (q}—n(q.at}w]. Note that

relationship
this method to find the MSD assumes that the distribution

of particle displacements is Gaussian, though previous work

has shown that, in certain cases, MSDs derived from DDM
do agree with MSDs from particle tracking, even when
the displacements are non-Gaussian’3. For this system, as
expected78, there is non-Gaussianity in the distribution of
large displacements, as seen in Figure S1. In the PyDDM

package, the function extract MSD should be executed,

which returns (Ar?(At)). Secondly, one can use single
particle tracking to find the MSD. Though DDM can be
used to analyze images where either the high density of
particles or the limited optical resolution prohibits accurate
particle localization, for the images of 0.6 uym beads in

vimentin networks, we were able to localize and track beads
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using the trackpy software (https://github.com/soft-matter/
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trackpy)’®. This particle tracking software package uses the

algorithms described by Crocker and Grier0.
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Figure 7: Mean squared displacement vs. lag time for vimentin networks. The MSD was determined using two methods.

First, the MSD was computed from the DDM matrix (shown with solid symbols). Next, the MSD was determined by using

single-particle tracking (SPT) to find particle trajectories (open symbols). Error bars are determined in the same way as

described in the previous two figure legends. (A) MSDs for 0.6 um beads in the 19 uM vimentin network indicate subdiffusive

motion, with good agreement between the two methods of finding the MSD. (B) MSDs for 0.6 um beads in the 49 uM

vimentin network indicate caged motion, with good agreement between the two methods of finding the MSD and with the

maximum MSD found from the nonergodicity parameter. Please click here to view a larger version of this figure.

The MSDs vs. lag time for 0.6 ym beads in the 19 uM
vimentin network and in the 49 uM vimentin network are
shown in Figure 7. In both cases, the MSD determined from
DDM agreed well with the MSD found through single-particle
tracking (SPT). Furthermore, for the less concentrated
network, the subdiffusive scaling exponent (a in MSD « At%)

was about 0.9. This is consistent with the 1(q) scaling

of T % 4~*? found by fitting the ISF to determine 1(q) (that is,
2/2.2 = 0.9). For the more concentrated network, the MSD
plateaus at longer lag times. The maximum MSD found by
analyzing the g-dependence of the nonergodicity parameter
(shown in Figure 7B with the horizontal line at 5% =0.0032
pmz) was approximately the same value that the MSDs from
both SPT and DDM seemed to be plateauing toward. There is

adiscrepancy between the longest lag time MSDs determined

from DDM and SPT in Figure 7A. While this may be due to a
limited number of long lag time trajectories, it may also be the
case that further optimizing the range of g values for which

the DDM matrix is used to estimate (A77(At)) for each lag

.76 and Edera et al.””) would

time (as done by Bayles et a
improve our results, and such optimization will be the focus

of future work.

These experiments where image sequences were recorded
of tracer beads embedded in a network of vimentin
intermediate filaments allowed for independent analyses:
DDM (using the package described here) and SPT (using
trackpy). Both analyses can reveal the degree of subdiffusion
and confinement length, allowing one to use two independent

image analysis techniques to provide complementary metrics.

There are additional quantities one can compare from SPT
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and DDM. For example, heterogeneity in the dynamics of the
sample can reveal itself as non-Gaussianity in the distribution
of particle displacements (i.e., the van Hove distribution)
determined from SPT, as well as in an ISF determined from
DDM that fits to a stretched exponential34’35. Figure S1
shows the van Hove distribution for the 0.6 um particles
in vimentin networks and discusses the stretching exponent
found from fitting the ISFs—metrics used in tandem in
previous studies to demonstrate the heterogeneous dynamics

9.10.47 or other

of particles within biomimetic systems
crowded environments 34. As another example, the ISF can
be calculated from particle trajectories measured with SPT
and compared with the DDM-acquired ISFs. While the mean
squared displacements and displacement distributions are

the metrics most often pulled from SPT analysis, one can

also compute the ISF from particle trajectories, AF(A), using

ISF = (exp(—iq - A7(A0))) (see Figure S2). This ISF can
be compared with DDM-generated ISFs and used to reveal

dynamics not apparent in the MSD%9,

While acquiring images of tracer particles within a network
may allow one to use the complementary analysis methods
of SPT and DDM, it is important to note that an advantage
of DDM over SPT is that it does not require images of
beads (or other features) that can be easily localized and
tracked. To demonstrate this point, we next highlight the
analysis of active networks of actin and microtubule filaments,
where fluorescent labeling of actin and tubulin allows for the
imaging of both filament types, distinguished from each other
via different fluorophores, with a multi-color laser-scanning

confocal microscope.

Images were acquired with a laser-scanning confocal
microscope of actin-microtubule networks with activity driven

by myosin (rabbit skeletal muscle myosin II; Cytoskeleton

#MY02). Details of the experiments and results have been
previously described!” , and the representative results shown
here are from the analysis of two movies provided in the
supplemental materials (movies S1 and S4) for'!. Both image

sequences were recorded at 2.78 frames/s for 1000 frames.

To analyze these images, the DDM matrix was calculated
for 50 lag times ranging from 0.4 s to 252 s (1 frame to

700 frames). The DDM matrix was then fit to the model

D(q, At) = A(q)[1 — f(q,At)] + B(q), with the intermediate

scattering function being f(@ At) = exp(—(4t/7(¢))*@),
There are, therefore, four fitting parameters: A, 7, s, and
B. The results of these fits are shown in Figure 8. It was
observed that the DDM matrix for a particular g-value had a
plateau at low lag times, increased with lag time, and then
plateaued (or showed signs of beginning to plateau) at large
lag times. The DDM matrix for the lower values of g did not
reach a plateau at long lag times. One should, therefore,
expect poor accuracy in the measurement of the decay time

for these low g (large length scale) dynamics.

The characteristic decay times, r, from the fits to the DDM
matrix are shown in Figure 9. Results are presented for
an active actin-microtubule composite network (similar to
movie 8111) and for an active actin network (similar to
movie S411 ). Both networks were prepared with the same
concentrations of actin and myosin, but the actin-only network
was created without tubulin, as described in'". For these two

types of active networks, the observed power law relationship

was T X g~ ' This scaling indicates ballistic motion and
that the myosin-driven contraction and flow dominate over
the thermal motion of the filaments. From 71 = (vq)'1, a
characteristic velocity, v, of about 10 nm/s for the active
actin-microtubule network and 75 nm/s for the active actin

network could be found. These values are consistent with
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the particle image velocimetry analysis of the same videos longer than the maximum lag time of the computed DDM

shown in'". The Tt g™} scaling did not hold at the lower

g values for the active actin-microtubule composite network.

matrix. The maximum lag time is indicated with the horizontal

red line in Figure 9, and the decay times deviated from the

This is likely because the true decay times for this actin-  expected T % g™ scaling near these longer times.

microtubule composite network at the lower q values are
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Figure 8: DDM matrix vs. lag time for an active actin-microtubule composite network. The DDM matrix for several

values of q is plotted as a function of lag time from a movie of a composite network composed of 2.9 yM actin monomers, 2.9

MM tubulin dimers, and 0.24 uM myosin. These data show the analysis of just the microtubule channel of a multicolor time

series of images. Please click here to view a larger version of this figure.
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Figure 9: Decay time vs. wavenumber for active actin-microtubule networks. From fitting the DDM matrix, the decay

time, 1, as a function of wavenumber, g, is found. Plotted is r vs g for images of an active actin-microtubule network

(analyzing just the microtubule channel) in brown and for images of an active actin network in green. Both networks have

the same concentrations of actin and myosin (2.9 uM and 0.24 uM, respectively); the actin-microtubule composite has 2.9

MM of tubulin dimers. The decay times for the active actin network are much smaller than the decay times for the active

actin-microtubule network, which indicates faster motion of the active actin network. In both cases, the dynamics are ballistic

as the data follows a T % ¢~ trend. Inset: the plot of the ISFs vs. the lag time scaled by the wavenumber (Af x q) shows a

collapse of the ISFs over a range of g values. This also indicates ballistic motion. The ISFs shown in this inset are from the

active actin network. Please click here to view a larger version of this figure.

For this data of active networks, we chose to fit the DDM

matrix, D(q, At) = A(q)[1 — f(q, At)] + B(q). This contrasts
with what was done for the data of beads in the vimentin
network, where A (q) and B were estimated without any fitting
to isolate the ISF, f(q, Af). In this case, for the active network
data, A and B were left as fitting parameters because the

methods used to estimate B did not result in good fits. The

- 2
default method to estimate B is to compute (|f(‘?- 1L“)| )t and
to assume that, at large q, this goes to B/2. However, this

method overestimated B for this data, which was seen in the

fact that, when calculating the ISFs from B estimated in this
way (not shown), the ISFs were greater than 1 at early lag
times (whereas they should go from a maximum of 1 to either
zero or some nonergodicity parameter with increasing lag
time). One can select other methods for estimating B using the
parameter background_method. One of these other methods
is to estimate B to be the minimum of the DDM matrix at early
lag times (set with background_method=1). A similar method
was used by Bayles et al.’s, though they did not assume B
was constant with q. Another option is to estimate B to be

the average value over all lag times of the DDM matrix at the
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maximum q (set with background_method=2). These different
methods for estimating the background, as well as the results
for allowing B to be a free fitting parameter, are shown in
Figure 10. From those plots, one can see that the amplitude,

A, did not reach zero at the largest q values probed, since

- 2
<|f(‘?- t)| )¢ did not plateau at large g (Figure 10B), and since

D(gmax. At) went from a lower lag time plateau to some higher

(A)

lag time plateau (i.e., at gmax, there was a non-zero A; Figure

- 2
10D). Therefore, neither estimating B as 2<|I(q- t)| )¢ nor

as (D (@max At))ar would be appropriate. One should inspect

- 2
(7@ D[ vs. g and D(gmax, At) vs. At before deciding on

how (or if) to estimate B.
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Figure 10: Background vs. wavenumber for active actin-microtubule networks. From fitting the DDM matrix, one can

find the background, B, as a function of wavenumber, q. Shown is B vs. q for images of an active actin-microtubule network

(analyzing just the microtubule channel) determined from these fits with the purple symbols. The three solid lines in (A)

show estimates of the background found without any fitting. The top, darkest line in (A) shows the estimated background

- 2 - 2
using 2( |f(‘i’max- f)| ), which may be appropriate if <|I(‘i’- f)| )t plateaus to a constant value at large q. From (B), note

- 2
that (|I(q- t)| )t has yet to reach a constant value at the largest q probed. Therefore, using this method overestimates the

background. The bottom line in (A) shows the estimated background using Dmin (@, At). If the DDM matrix shows a low lag

time plateau as shown in (C) with the red line, then this method may be appropriate for estimating the background. The

middle, lightest line in (A) shows the estimated background from (D(qmax A))at. This method may be appropriate if, at

Omax, the amplitude, A, has reached zero. From (D), it is seen that the amplitude is non-zero and, therefore, this method

overestimates the background. Please click here to view a larger version of this figure.
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Supplementary Figure S1: Probability distributions
of particle displacements. Probability distributions of
particle displacements show non-Gaussianity for vimentin
concentrations of 34 uM and 49 uM. Single-particle tracking of
0.6 ym diameter beads was performed in vimentin networks
of different concentrations. Different lag times are shown
in the displacement distributions for the three conditions.
(A) The distribution of particle displacements in a 19 yM
vimentin network are fit with a Gaussian function. The width
of the Gaussian increases with increasing lag time. (B) The
distribution of particle displacements in a 34 yM vimentin
network shows more non-Gaussianity, especially at large
displacements, than for the 19 uM case. (C) The distribution
of particle displacements in a 49 uM vimentin network
also shows non-Gaussianity. Further, the widths of the
distributions do not increase with lag time as significantly as
in the samples with lower vimentin concentrations, indicating
confined motion. Non-Gaussian van Hove distributions (seen
for all vimentin samples but most apparent in the higher
concentrations) are associated with heterogeneous dynamics
as often seen in the transport of particles in crowded and
confined environments. Another indicator of heterogeneous
transport that is determined from DDM analysis is the
stretching exponent used to fit the intermediate scattering

function (the parameter s in the equation for the ISF used

here: f(a,40) = exp(—(at/1(q))*P) + C(q)). The average
stretching exponents over the g-range of 0.4 um'1 to 9.4
pm'1 are, from highest vimentin concentration to lowest, 0.53
+ 0.07, 0.64 + 0.02, and 0.86 + 0.04 (mean + standard

deviation). Please click here to download this File.

Supplementary Figure S2: The intermediate scattering
functions from DDM and SPT. The intermediate scattering
functions (ISF) for five different wavenumbers are shown.

The ISF versus lag time found through DDM is plotted with

circular markers, and the ISF computed from single-particle
trajectories with open squares. Dotted black lines show the fits

to the DDM-acquired ISFs. The ISF is calculated from single-

particle trajectories, A7(AD), using ISF = (exp(—ig - A7(A0)),
In (A), the ISF is shown for 0.6 pym particles in the 19
MM vimentin networks. In (B), the ISF is shown for 0.6 pym
particles in the 34 pM vimentin networks. The discrepancies
in the ISF found from DDM and SPT are likely due to a limited
number of long lag time trajectories. Please click here to

download this File.

Supplementary File 1: Protocol for using DDM. The input
and output of the steps shown in the protocol are presented.

Please click here to download this File.

Supplementary File 2: Details of sample preparation and
example parameter files for vimentin networks. Detailed
steps for sample preparation and image acquisition on
vimentin networks are provided. Additionally, an example
parameters file for the analysis of data presented in the
representative results section on vimentin networks is also

provided. Please click here to download this File.

Discussion

The software package described here uses DDM to analyze
density fluctuations observed in images acquired using an
optical microscope. Representative results from the data of
tracer particles embedded in vimentin networks were first
shown. The analysis of such data can be used to characterize
the mesh size and stiffness of the network similarly to how
single-particle tracking has been used in many past studies of
cytoskeleton networks8-12:13_An advantage of using DDM
over single-particle tracking is that DDM does not require the
particles to be localized. Therefore, even in images where
the particle density is too high or the particles too small to

localize and track, DDM can still determine the dynamics.
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Where single-particle tracking would be advantageous is
when inspecting particle-to-particle variability. With DDM, one
finds the ensemble averaged dynamics whereas, with single-
particle tracking, one may compute both a single particle's
MSD and the ensemble-averaged MSD. However, DDM can
be used to investigate heterogeneous dynamics by analyzing

multiple regions of interest within a large field of view.

Next, representative results from data of fluorescently labeled
filaments in an active network composed of two differently
labeled cytoskeletal filament types were shown'!. With
this data, the ballistic motion was characterized without
needing any localizable features within the image. Since
DDM extracts the ensemble averaged dynamics with few
user inputs, it makes comparing image series acquired with
different conditions straightforward (e.g., comparing samples
with different ratios of actin to microtubules or samples
with different concentrations of myosin, as done in50).
Additionally, using fluorescent imaging, we can investigate
the dynamics of different components of a network using

multicolor labeling. This was done in11.50

, where the
dynamics of actin and of microtubules were separately
analyzed in an active actin-microtubule composite network
using multicolor imaging. In the representative results section
here, just the results from the microtubule channel were

shown, but in previous work, we compared the dynamics of

the microtubule and actin filaments'!.

We note that these representative results showcase either
passive subdiffusion or active ballistic motion. Importantly,
DDM can be used to analyze systems where there is a
crossover in the type of dynamics at intermediate time or
length scales. As examples, Kurzthaler et al. used DDM
with a system of active Janus colloids to explore active

directed motion at short time scales and randomization of

the orientation at longer time scales®®; Giavazzi et al. used
DDM with a coarsening foam and found a crossover in the
dynamics corresponding to the length scale of a bubble33;
and Cho et al. used DDM with colloidal gels and found three
distinguishable regimes at different length scales spanning

from the fractal clusters to the whole network32.

The data included in the representative results section
were acquired with brightfield microscopy and laser-scanning
confocal microscopy. However, as previously noted, DDM
can be used with many imaging modalities. With any
imaging modality, users should consider optical settings
such as the degree of optical sectioning or the depth
of field. A high degree of optical sectioning may reduce
signal from out-of-focus objects, but one will not be able
to accurately measure dynamics over timescales greater
than the timescale for objects to move out of the depth
of field?5:28. A more thorough discussion of how the g-
dependent depth of field affects DDM analysis can be found
in?2 . For brightfield imaging, users may also need to consider
the sample thickness. While for weakly scattering samples,
thicker samples may provide more signal42, turbid samples
may require modifying the analysis to account for multiple
sca’(tering81 . Finally, for imaging methods that are not linear
space invariant (that is, where the intensity recorded by the
camera of an object depends on where that object is in the x-y
sample plane), one may need to account for the linear space

variance, as demonstrated with dark-field DDM?7

For those getting started with DDM, we wish to emphasize the
importance of considering the spatial and temporal resolution.
When inspecting the determined decay times as a function
of wavenumber, it is important to mark the limits of one's
resolution (i.e., the maximum and minimum lag times and the

maximum wavenumber, as done in Figure 5). One should
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think carefully about these limits prior to collecting data so that
the optimal objective lens, image size, frame rate, and movie
duration can be selected. The other important consideration
is how to estimate the background parameter B. Multiple
methods for estimating the background have been used in the
literature, and the effects of over- or underestimating B have
been described in prior publications®2: 77 . As shown in Figure
10, PyDDM allows users to implement different methods for
estimating B, and we suggest new users try these methods

and evaluate which are appropriate to use.

A strength of this package is its thorough documentation
and walkthroughs featuring example data, the storage and
organization of metadata to keep track of how analyses
were performed, and the flexibility in how to analyze the
DDM matrix (various fitting models, multiple methods for
estimating the background parameter B, the ability to find
the MSD). However, there are multiple aspects to this code
that could be improved. Currently, the code has not been
optimized for fast computation speed. Methods for speeding
up the computation have been reported61'62, and these
will be implemented in future releases. Additionally, we plan
to implement recently reported methods to better estimate
uncertainties and to employ simulations for guiding users to
the appropriate ISF model®2. For other improvements, we

hope users will contact us with suggestions.
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