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Abstract

Automatic argument generation is an appeal-
ing but challenging task. In this paper,
we study the specific problem of counter-
argument generation, and present a novel
framework, CANDELA. It consists of a pow-
erful retrieval system and a novel two-step
generation model, where a text planning de-
coder first decides on the main talking points
and a proper language style for each sentence,
then a content realization decoder reflects
the decisions and constructs an informative
paragraph-level argument. Furthermore, our
generation model is empowered by a retrieval
system indexed with 12 million articles col-
lected from Wikipedia and popular English
news media, which provides access to high-
quality content with diversity. Automatic eval-
uation on a large-scale dataset collected from
Reddit shows that our model yields signifi-
cantly higher BLEU, ROUGE, and METEOR
scores than the state-of-the-art and non-trivial
comparisons. Human evaluation further indi-
cates that our system arguments are more ap-
propriate for refutation and richer in content.

1 Introduction

Counter-argument generation aims to produce ar-
guments of a different stance, in order to refute the
given proposition on a controversial issue (Toul-
min, 1958; Damer, 2012). A system that automati-
cally constructs counter-arguments can effectively
present alternative perspectives along with asso-
ciated evidence and reasoning, and thus facilitate
a more comprehensive understanding of compli-
cated problems when controversy arises.
Nevertheless, constructing persuasive argu-
ments is a challenging task, as it requires an appro-
priate combination of credible evidence, rigorous
logical reasoning, and sometimes emotional ap-
peal (Walton et al., 2008; Wachsmuth et al., 2017a;
Wang et al., 2017). A sample counter-argument
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Original post: Death penalty is more rational than life in prison.
...I don't believe murderers and rapists can be successfully integrated...

Counter-argument: [n theory I agree with you. But in reality we
will never have a perfect justice system. Unreliable evidence is
used when there is no witnesses, which could result in wrongful
convictions. In the US, there had been 156 death row inmates
_ﬂ’ho were exonerated since 1973. If we execute them, we can
never undo it. [ hope it can change your view.

The Grim Facts About Lethal Injection

~|..Our justice system is a joke and we are asking other people to...
Source: The New York Times

Source: The Wall Street Journal\\ N\
The problem of innocence in death penalty cases

...The evidence in death penalty cases is not always very strong. |-
After all, in many murders, there are no surviving witnesses...

List of exonerated death row inmates... there had been 156

" | exonerations of prisoners on death row in the United States since 1973...
Source: Wikipedia

Figure 1: Sample counter-argument for a pro-death
penalty statement from Reddit /r/ChangeMyView.
The argument consists of a sequence of proposi-
tions, by synthesizing opinions and facts from diverse
sources. Sentences in italics contain stylistic languages
for argumentation purpose.

for a pro-death penalty post is shown in Figure 1.
As can be seen, a sequence of talking points on the
“imperfect justice system” are presented: it starts
with the fundamental concept, then follows up
with more specific evaluative claim and supporting
fact. Although retrieval-based methods have been
investigated to construct counter-arguments (Sato
et al., 2015; Reisert et al., 2015), they typically
produce a collection of sentences from disparate
sources, thus fall short of coherence and concise-
ness. Moreover, human always deploy stylistic
languages with specific argumentative functions
to promote persuasiveness, such as making a con-
cessive move (e.g., “In theory I agree with you").
This further requires the generation system to have
better control of the languages style.

Our goal is to design a counter-argument gener-
ation system to address the above challenges and
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produce paragraph-level arguments with rich-yet-
coherent content. To this end, we present CAN-
DELA—a novel framework to generate Counter-
Arguments with two-step Neural Decoders and
ExternalL knowledge Augmentation.1 Concretely,
CANDELA has three major distinct features:

First, it is equipped with two decoders: one for
text planning—selecting talking points to cover
for each sentence to be generated, the other for
content realization—producing a fluent argument
to reflect decisions made by the text planner. This
enables our model to produce longer arguments
with richer information.

Furthermore, multiple objectives are designed
for our text planning decoder to both handle con-
tent selection and ordering, and select a proper ar-
gumentative discourse function of a desired lan-
guage style for each sentence generation.

Lastly, the input to our argument generation
model is augmented with keyphrases and passages
retrieved from a large-scale search engine, which
indexes 12 million articles from Wikipedia and
four popular English news media of varying ide-
ological leanings. This ensures access to reli-
able evidence, high-quality reasoning, and diverse
opinions from different sources, as opposed to re-
cent work that mostly considers a single origin,
such as Wikipedia (Rinott et al., 2015) or online
debate portals (Wachsmuth et al., 2018b).

We experiment with argument and counter-
argument pairs collected from the Reddit
/r/ChangeMyView group. Automatic evalua-
tion shows that the proposed model significantly
outperforms our prior argument generation Sys-
tem (Hua and Wang, 2018) and other non-trivial
comparisons. Human evaluation further sug-
gests that our model produces more appropriate
counter-arguments with richer content than
other automatic systems, while maintaining a
fluency level comparable to human-constructed
arguments.

2 Related Work

To date, the majority of the work on automatic
argument generation leads to rule-based mod-
els, e.g., designing operators that reflect strate-
gies from argumentation theory (Reed et al., 1996;
Carenini and Moore, 2000). Information retrieval
systems are recently developed to extract argu-

!Code and data are available at https://xinyuhua.
github.io/Resources/acll9/.

ments relevant to a given debate motion (Sato
et al., 2015). Although content ordering has been
investigated (Reisert et al., 2015; Yanase et al.,
2015), the output arguments are usually a collec-
tion of sentences from heterogeneous information
sources, thus lacking coherence and conciseness.
Our work aims to close the gap by generating elo-
quent and coherent arguments, assisted by an ar-
gument retrieval system.

Recent progress in sequence-to-sequence
(seq2seq) text generation models has deliv-
ered both fluent and content rich outputs by
explicitly conducting content selection and or-
dering (Gehrmann et al., 2018; Wiseman et al.,
2018), which is a promising avenue for enabling
end-to-end counter-argument construction (Le
et al., 2018). In particular, our prior work (Hua
and Wang, 2018) leverages passages retrieved
from Wikipedia to improve the quality of gen-
erated arguments, yet Wikipedia itself has the
limitation of containing mostly facts. By lever-
aging Wikipedia and popular news media, our
proposed pipeline can enrich the factual evidence
with high-quality opinions and reasoning.

Our work is also in line with argument re-
trieval research, where prior effort mostly consid-
ers single-origin information source (Rinott et al.,
2015; Levy et al., 2018; Wachsmuth et al., 2017b,
2018b). Recent work by Stab et al. (2018) in-
dexes all web documents collected in Common
Crawl, which inevitably incorporates noisy, low-
quality content. Besides, existing work treats indi-
vidual sentences as arguments, disregarding their
crucial discourse structures and logical relations
with adjacent sentences. Instead, we use mul-
tiple high-quality information sources, and con-
struct paragraph-level passages to retain the con-
text of arguments.

3 Overview of CANDELA

Our counter-argument generation framework, as
shown in Figure 2, has two main components: ar-
gument retrieval model (§ 4) that takes the input
statement and a search engine, and outputs rele-
vant passages and keyphrases, which are used as
input for our argument generation model (§ 5) to
produce a fluent and informative argument.
Concretely, the argument retrieval compo-
nent retrieves a set of candidate passages from
Wikipedia and news media (§ 4.1), then further
selects passages according to their stances towards
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death penalty

justice system

death row

life in prison
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Keyphrase Memory

®.

Keyphrase Selection

' Input statement:

1
I death penalty is more rational
1 than life in prison...

Figure 2: Architecture of CANDELA. (D Argument retrieval (§ 4): a set of passages are retrieved and ranked based
on relevance and stance (§ 4.1, 4.3), from which Q) a set of keyphrases are extracted (§ 4.2), with both as input
for argument generation. @) The biLSTM encoder consumes the input statement and passages returned from step
1. @ A text planning decoder outputs a representation per sentence, and simultaneously predicts an argumentative
function and selects keyphrases to include for the next sentence to be generated (§ 5.2). 3 A content realization

decoder produces the counter-argument (§ 5.3).

the input statement (§ 4.3). A keyphrase extrac-
tion module distills the refined passages into a set
of talking points, which comprise the keyphrase
memory as additional input for generation (§ 4.2).

The argument generation component first runs
the text planning decoder (§ 5.2) to produce a se-
quence of hidden states, each corresponding to a
sentence-level representation that encodes the se-
lection of keyphrases to cover, as well as the pre-
dicted argumentative function for a desired lan-
guage style. The content realization decoder
(§ 5.3) then generates the argument conditioned
on the sentence representations.

4 Argument Retrieval

4.1 Information Sources and Indexing

We aim to build a search engine from diverse in-
formation sources with factual evidence and var-
ied opinions of high quality. To achieve that, we
use Common Crawl? to collect a large-scale online
news dataset covering four major English news
media: The New York Times (NYT), The
Washington Post (WaPo), Reuters, and
The Wall Street Journal (WSJ). HTML
files are processed using the open-source tool jus-
Text (Pomikélek, 2011) to extract article content.
We deduplicate articles and remove the ones with
less than 50 words. We also download a Wikipedia

http://commoncrawl.org/

Source # Articles  # Passages Date Range
Wikipedia 5,743,901 42,797,543 dump of 12/2016
WaPo 1,109,672 22,564,532 01/1997 - 10/2018
NYT 1,952,446 28,904,549 (9/1895 - 09/2018
Reuters 1,052,592 9,913,400 06/2005 - 09/2018
WSJ_ 2059128 16109392 01/1996 - 09/2018
Total 11,917,739 120,289,416 -

Table 1: Statistics on information sources for argu-

ment retrieval. News media are sorted by ideologi-
cal leanings from left to right, according to https:
//www.adfontesmedia.com/.

dump. About 12 million articles are processed in
total, with basic statistics shown in Table 1.

We segment articles into passages with a slid-
ing window of three sentences, with a step size of
two. We further constraint the passages to have
at least 50 words. For shorter passages, we keep
adding subsequent sentences until reaching the
length limit. Per Table 1, 120 million passages are
preserved and indexed with Elasticsearch (Gorm-
ley and Tong, 2015) as done in Stab et al. (2018).

Query Formulation. For an input statement with
multiple sentences, one query is constructed per
sentence, if it has more than 5 content words
(10 for questions), and at least 3 are distinct.
For each query, the top 20 passages ranked by
BM25 (Robertson et al., 1995) are retained, per
medium. All passages retrieved for the input state-
ment are merged and deduplicated, and they will
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be ranked as discussed in § 4.3.

4.2 Keyphrase Extraction

Here we describe a keyphrase extraction proce-
dure for both input statements and retrieved pas-
sages, which will be utilized for passage ranking
as detailed in the next section.

For input statement, our goal is to identify a
set of phrases representing the issues under dis-
cussion, such as “death penalty” in Figure 1. We
thus first extract the topic signature words (Lin
and Hovy, 2000) for input representation, and ex-
pand them into phrases that better capture seman-
tic meanings.

Concretely, topic signature words of an input
statement are calculated against all input state-
ments in our training set with log-likelihood ratio
test. In order to cover phrases with related terms,
we further expand this set with their synonyms,
hyponyms, hypernyms, and antonyms based on
WordNet (Miller, 1994). The statements are first
parsed with Stanford part-of-speech tagger (Man-
ning et al., 2014). Then regular expressions are
applied to extract candidate noun phrases and verb
phrases (details in Appendix A.1). A keyphrase
is selected if it contains: (1) at least one content
word, (2) no more than 10 tokens, and (3) at least
one topic signature word or a Wikipedia article ti-
tle.

For retrieved passages, their keyphrases are ex-
tracted using the same procedure as above, except
that the input statement’s topic signature words are
used as references again.

4.3 Passage Ranking and Filtering

We merge the retrieved passages from all media
and rank them based on the number of words in
overlapping keyphrases with the input statement.
To break a tie, with the input as the reference, we
further consider the number of its topic signature
words that are covered by the passage, then the
coverage of non-stopword bigrams and unigrams.
In order to encourage diversity, we discard a pas-
sage if more than 50% of its content words are
already included by a higher ranked passage. In
the final step, we filter out passages if they have
the same stance as the input statement for given
topics. We determine the stances of passages by
adopting the stance scoring model proposed by
Bar-Haim et al. (2017). More details can be found
in Appendix A.2.

5 Argument Generation

5.1 Task Formulation

Given an input statement X = {z;}, a set of
passages, and a keyphrase memory M, our goal
is to generate a counter-argument Y = {y;} of
a different stance as X, x; and y; are tokens at
timestamps ¢ and ¢. Built upon the sequence-
to-sequence (seq2seq) framework with input at-
tention (Sutskever et al., 2014; Bahdanau et al.,
2015), the input statement and the passages se-
lected in § 4 are encoded by a bidirectional LSTM
(biLSTM) encoder into a sequence of hidden
states h;. The last hidden state of the encoder is
used as the first hidden state of both text planning
decoder and content realization decoder.

As depicted in Figure 2, the counter-argument
is generated as follows. A text planning decoder
(§ 5.2) first calculates a sequence of sentence rep-
resentations s; (for the j-th sentence) by encoding
the keyphrases selected from the previous times-
tamp 5 — 1. During this step, an argumentative
function label is predicted to indicate a desired lan-
guage style for each sentence, and a subset of the
keyphrases are selected from M (content selec-
tion) for the next sentence. In the second step, a
content realization decoder (§ 5.3) generates the
final counter-argument conditioned on previously
generated tokens and the corresponding sentence
representation ;.

5.2 Text Planning Decoder

Text planning is an important component for natu-
ral language generation systems to decide on con-
tent structure for the target generation (Lavoie and
Rambow, 1997; Reiter and Dale, 2000). We pro-
pose a text planner with two objectives: selecting
talking points from the keyphrase memory M, and
choosing a proper argumentative function per sen-
tence. Concretely, we train a sentence-level LSTM
that learns to generate a sequence of sentence rep-
resentations {s;} given the selected keyphrase set
C(j) as input for the j-th sentence:

sj=f(si-1, > ex) (1
ex€C(J)
where f is an LSTM network, ey, is the embed-
ding for a selected phrase, represented by sum-
ming up all its words’ Glove embeddings (Pen-
nington et al., 2014) in our experiments.

Content Selection C(j). We propose an attention
mechanism to conduct content selection and yield
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C(y) from the representation of the previous sen-
tence s;_1 to encourage topical coherence. To al-
low the selection of multiple keyphrases, we use
the sigmoid function to calculate the score:

Qjm = sigmoid(e,, WPs;_1) 2)

where WP® are trainable parameters,
keyphrases with aj,;, > 0.5 are included in
C(j), and the keyphrase with top attention
value is always selected. We further prohibit a
keyphrase from being chosen for more than once
in multiple sentences. For the first sentence sg,
C(0) only contains <start>, whose embedding
is randomly initialized. During training, the
true labels of C(j) are constructed as follows:
a keyphrase in M is selected for the j-th gold-
standard argument sentence if they overlap with
any content word.

Argumentative Function Prediction yé’ . As
shown in Figure 1, humans often deploy stylis-
tic languages to achieve better persuasiveness, €.g.
agreement as a concessive move. We aim to in-
form the realization decoder about the choice of
style, and thus distinguish between two types of
argumentative functions: argumentative content
sentence which delivers the critical ideas, e.g.
“unreliable evidence is used when there is no wit-
ness”, and argumentative filler sentence which
contains stylistic languages or general statements
(e.g., “you can’t bring dead people back to life”).
Since we do not have argumentative function la-
bels, during training, we use the following rules to
automatically label each sentence as content sen-
tence if it has at least 10 words (20 for questions)
and satisfy the following conditions: (1) it has at
least two topic signature words of the input state-
ment or a gold-standard counter—argument3, or (2)
at least one topic signature word with a discourse
marker at the beginning of the sentence. If the first
three words in a content sentence contain a pro-
noun, the previous sentence is labeled as such too.
Discourse markers are selected from PDTB dis-
course connectives (e.g., as a result, eventually,
or in contrast). The full list is included in Ap-
pendix A.3. All other sentences become filler sen-
tences. In the future work, we will consider uti-
lizing learning-based methods, e.g., Hidey et al.
(2017), to predict richer argumentative functions.

3When calculating topic signatures for gold-standard ar-
guments, all replies in the training set are used as background.

The argumentative function label y? for the j-th
sentence is calculated as follows:

Ply;ly2;, X) =
softmax('wg(tanh (WP°[cj;85])) + by)

C; = Z A jm€m (4)

emEM

3

where a, is the alignment score computed as in
Eq. 2, ¢, is the attention weighted context vector,
wy, WP and b, are trainable parameters.

5.3 Content Realization Decoder

The content realization decoder generates the
counter-argument word by word, with another
LSTM network f“. We denote the sentence id
of the ¢-th word in the argument as J(t), then the
sentence representation s ;) from the text plan-
ning decoder, together with the embedding of the
previous generated token y;_1, are fed as input to
calculate the hidden state z;:

zZy = f“’(zt_l, tanh(W“’sz(t) + Wwwyt—l + bw))
(%)

The conditional probability of the next token
is then computed over a standard softmax, with an
attention mechanism applied on the encoder hid-
den states h; to obtain the context vector ¢}’

P(ytly<t, X, s50)) =

T wo [ W o (6)
softmax (w,, (tanh (W"°[c}’; z¢])) + b°)
|X|
¢’ = Buhi ©)
i=1
Bri = softmax(h; W"%z;) 3

where [3;; is the input attention, WP, W"v,
Wwe, wwae p°, w,,, and b” are learnable.

Reranking-based Beam Search. Our content re-
alization decoder utilizes beam search enhanced
with a reranking mechanism, where we sort the
beams at the end of each sentence by the number
of selected keyphrases that are generated. We also
discard beams with n-gram repetition for n > 4.

5.4 Training Objective

Given all model parameters 6, our mixed objective
considers the target argument (L,r(#)), the argu-
mentative function type (Lsunc(f)), and the next
sentence keyphrase selection (L (9)):

2665



L(0) = Larg(0) + 7+ Ltune(0) + 1 Lsar (0) ©
Lug(0) =~ > log P(Y|X;0) (10)
(X,Y)eD
Ltune(0) = — Z logP(Yp|X;0) (11)
Lse](e) =
[Y”

|
O30S toglagm) Y log(l - ajm))
Yr j=1 e'meC(j) emgc(j)
(12)

where D is the training corpus, (X, Y) are input
statement and counter-argument pairs, and Y? are
the sentence function labels. «;,, are keyphrase
selection labels as computed in Eq. 2. For simplic-
ity, we set v and iy as 1.0 in our experiments, while
they can be further tuned as hyper-parameters.

6 Experimental Setups

6.1 Data Collection and Preprocessing

We use the same methodology as in our
prior work (Hua and Wang, 2018) to collect
an argument generation dataset from Reddit
/r/ChangeMyView.* To construct input state-
ment and counter-argument pairs, we treat the
original poster (OP) of each thread as the input.
We then consider the high quality root replies, de-
fined as the ones awarded with As or with more
upvotes than downvotes (i.e., karma > 0). It is
observed that each paragraph often makes a coher-
ent argument. Therefore, these replies are broken
down into paragraphs, and a paragraph is retained
as a target argument to the OP if it has more than
10 words and at least one argumentative content
sentence.

We then identify threads in the domains of pol-
itics and policy, and remove posts with offensive
languages. Most recent threads are used as test
set. As a result, we have 11,356 threads or OPs
(217,057 arguments) for training, 1,774 (33,318
arguments) for validation, and 1,703 (36, 777 ar-
guments) for test. They are split into sentences
and then tokenized by the Stanford CoreNLP
toolkit (Manning et al., 2014).

Training Data Construction for Passages and
Keyphrase Memory. Since no gold-standard an-
notation is available for the input passages and

*We further crawled 42,649 threads from July 2017
to December 2018, compared to the previously collected
dataset.

keyphrases, we acquire training labels by con-
structing queries from the gold-standard argu-
ments as described in § 4.1, and reranking re-
trieved passages based on the following criteria
in order: (1) coverage of topic signature words
in the input statement; (2) a weighted summation
of the coverage of n-grams in the argument®; (3)
the magnitude of stance score, where we keep the
passages of the same polarity as the argument; (4)
content word overlap with the argument; and (5)
coverage of topic signature words in the argument.

6.2 System and Oracle Retrieved Passages

For evaluation, we employ both system retrieved
passages (i.e., constructing queries from OP) and
KM (§ 4), and oracle retrieved passages (i.e., con-
structing queries from target argument) and KM as
described in training data construction. Statistics
on the final dataset are listed in Table 2.

Training System Oracle

Avg. # words per OP 383.7 373.0 373.0
Avg. # words per argument 66.0 65.1  65.1
Avg. # passage 4.3 9.6 4.2
Avg. # keyphrase 57.1 128.6 56.6

Table 2: Statistics on the datasets for experiments.

6.3 Comparisons

In addition to a Retrieval model, where the top
ranked passage is used as counter-argument, we
further consider four systems for comparison. (1)
A standard Seq2seq model with attention, where
we feed the OP as input and train the model to
generate counter-arguments. Regular beam search
with the same beam size as our model is used for
decoding. (2) A Seq2seqAug model with addi-
tional input of the keyphrase memory and ranked
passages, both concatenated with OP to serve as
the encoder input. The reranking-based decoder in
our model is also implemented for SEQ2SEQAUG
to enhance the coverage of input keyphrases. (3)
An ablated SEQ2SEQAUG model where the pas-
sages are removed from the input. (4) We also
reimplement the argument generation model in our
prior work (Hua and Wang, 2018) (H&W) with
PyTorch (Paszke et al., 2017), which is used for
CANDELA implementation. H&W takes as in-
put the OP and ranked passages, and then uses two

SWe choose 0.5, 0.3, 0.2 as weights for 4-grams, trigrams,
and bigrams, respectively.
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separate decoders to first generate all keyphrases
and then the counter-argument. For our model, we
also implement a variant where the input only con-
tains the OP and the keyphrase memory.

6.4 Training Details

For all models, we use a two-layer LSTM for all
encoders and decoders with a dropout probabil-
ity of 0.2 between layers (Gal and Ghahramani,
2016). All layers have 512-dimensional hidden
states. We limit the input statement to 500 to-
kens, the ranked passages to 400 tokens, and the
target counter-argument to 120 tokens. Our vo-
cabulary has 50K words for both input and out-
put, with 300-dimensional word embeddings ini-
tialized with GloVe (Pennington et al., 2014) and
fine-tuned during model training. We use Ada-
Grad (Duchi et al., 2011) with a learning rate of
0.15 and an initial accumulator of 0.1 as the opti-
mizer, with the gradient norm clipped to 2.0. Early
stopping is implemented according to the perplex-
ity on validation set. For all our models the train-
ing takes approximately 30 hours (40 epochs) on a
Quadro P5000 GPU card, with a batch size of 64.
For beam search, we use a beam size of 5, tuned
from {5, 10, 15} on validation.

We also pre-train a biLSTM for encoder based
on all OPs from the training set, and an LSTM for
content realization decoder based on two sources
of data: 353K counter-arguments that are high
quality root reply paragraphs extended with posts
of non-negative karma, and 2.4 million retrieved
passages randomly sampled from the training set.
Both are trained as done in Bengio et al. (2003).
We then use the first layer’s parameters to initial-
ize all models, including our comparisons.

7 Results and Analysis

7.1 Automatic Evaluation

We employ ROUGE (Lin, 2004), a recall-oriented
metric, BLEU (Papineni et al., 2002), based on
n-gram precision, and METEOR (Denkowski and
Lavie, 2014), measuring unigram precision and re-
call by considering synonyms, paraphrases, and
stemming. BLEU-2, BLEU-4, ROUGE-2 recall,
and METEOR are reported in Table 3 for both se-
tups.

Under system setup, our model CANDELA
statistically significantly outperforms all compar-
isons and the retrieval model in all metrics, based
on a randomization test (Noreen, 1989) (p <

150+ #distinct n-grams per argument

Bl Human BE Seq2seq HW (2018)

MY Retrieval Seq2seqAug & CANDELA
100 y
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N
\
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25

bigram

unigram trigram

Figure 3: Average number of distinct n-grams per ar-
gument.

K

100 500 1000 2000
HUMAN 441 258 185 120
RETRIEVAL 333 260 18.6
SEQ2SEQ 25.0 75 3.2 1.2
SEQ2SEQAUG | 282 9.2 4.6 1.8
H&W (2018) 386 24.0 195 162
CANDELA 300 105 5.3 2.3

Figure 4: Percentage of words in arguments that are
not in the top-K (K = 100, 500, 1000, 2000) frequent
words seen in training. Darker color indicates higher
portion of uncommon words found in the arguments.

0.0005). Furthermore, our model generates longer
sentences whose lengths are comparable with hu-
man arguments, both with about 22 words per sen-
tence. This also results in longer arguments. Un-
der oracle setup, all models are notably improved
due to the higher quality of reranked passages, and
our model achieves statistically significantly better
BLEU scores. Interestingly, we observe a decrease
of ROUGE and METEOR, but a marginal increase
of BLEU-2 by removing passages from our model
input. This could be because the passages intro-
duce divergent content, albeit probably on-topic,
that cannot be captured by BLEU.

Content Diversity. We further measure whether
our model is able to generate diverse content.
First, borrowing the diversity measurement from
dialogue generation research (Li et al., 2016), we
report the average number of distinct n-grams per
argument under system setup in Figure 3. Our
system generates more unique unigrams and bi-
grams than other automatic systems, underscor-
ing its capability of generating diverse content.
Our model also maintains a comparable type-
token ratio (TTR) compared to systems that gen-
erate shorter arguments, e.g., a 0.79 for bigram
TTR of our model versus 0.83 and 0.84 for
SEQ2SEQAUG and SEQ2SEQ. RETRIEVAL, con-

2667



w/ System Retrieval

w/ Oracle Retrieval

B-2 B-4 R-2 MTR #Word #Sent B-2 B-4 R-2 MTR #Word #Sent
HUMAN - - - - 66 22 - - - - 66 22
RETRIEVAL 7.55 1.11 8.64 1438 123 23 10.97 3.05 23.49 20.08 140 21
Comparisons
SEQ2SEQ 6.92 213 13.02 1508 68 15 6.92 213 13.02 15.08 68 15
SEQ2SEQAUG 8.26 224 13.79 1575 78 14 1098 4.41 2297 19.62 71 14
w/o psg 794 228 10.13 1571 75 12 9.89 3.34 14.20 18.40 66 12
H&W (2018) 3.64 092 883 11.78 51 12 851 2.86 18.89 17.18 58 12
Our Models
CANDELA  12.02* 2.99* 14.93* 16.92* 119 22 15.80* 5.00* 23.75 20.18 116 22
w/o psg  12.33* 2.86* 14.53* 16.60* 123 23 16.33* 4.98* 23.65 19.94 123 23

Table 3: Main results on argument generation. We report BLEU-2 (B-2), BLEU-4 (B-4), ROUGE-2 (R-2) recall,
METEOR (MTR), and average number of words per argument and per sentence. Best scores are in bold. *: statis-
tically significantly better than all comparisons (randomization approximation test (Noreen, 1989), p < 0.0005).
Input is the same for SEQ2SEQ for both system and oracle setups.

taining top ranked passages of human-edited con-
tent, produces the most distinct words.

Next, we compare how each system generates
content beyond the common words. As shown
in Figure 4, human-edited text, including gold-
standard arguments (HUMAN) and retrieved pas-
sages, tends to have higher usage of uncommon
words than automatic systems, suggesting the gap
between human vs. system arguments. Among
the four automatic systems, our prior model (Hua
and Wang, 2018) generates a significantly higher
portion of uncommon words, yet further inspec-
tion shows that the output often includes more off-
topic information.

7.2 Human Evaluation

Human judges are asked to rate arguments on a
Likert scale of 1 (worst) to 5 (best) on the fol-
lowing three aspects: grammaticality—denotes
language fluency; appropriateness—indicates if
the output is on-topic and on the opposing stance;
content richness—measures the amount of dis-
tinct talking points. In order to promote consis-
tency of annotation, we provide descriptions and
sample arguments for each scale. For example,
an appropriateness score of 3 means the counter-
argument contains relevant words and is likely to
be on a different stance. The judges are then asked
to rank all arguments for the same input based on
their overall quality.

We randomly sampled 43 threads from the
test set, and hired three native or proficient En-
glish speakers to evaluate arguments generated
by SEQ2SEQAUG, our prior argument generation

Gram. Appr. Cont. Top-1 Top-2

HUMAN 495 423 439 75.8% 85.8%
RETRIEVAL 485 3.04 368 17.5% 55.8%
SEQ2SEQAUG 4.83 2.67 247 17% 22.5%
H&W (2018) 3.86 227 210 1.7% 17.5%
CANDELA 459 297 293* 33% 28.3%

Table 4: Human evaluation on grammaticality (Gram),
appropriateness (Appr), and content richness (Cont.),
on a scale of 1 to 5 (best). The best result among au-
tomatic systems is highlighted in bold, with statistical
significance marked with * (approximation randomiza-
tion test, p < 0.0005). The highest standard deviation
among all is 1.0. Top-1/2: % of evaluations a system
being ranked in top 1 or 2 for overall quality.

model (H&W), and the new model CANDELA,
along with gold-standard HUMAN arguments and
the top passage by RETRIEVAL.

Results. The first 3 examples are used only for
calibration, and the remaining 40 are used to re-
port results in Table 4. Inter-annotator agreement
scores (Krippendorff’s «) of 0.44, 0.58, 0.49 are
achieved for the three aspects, implying general
consensus to intermediate agreement.

Our system obtains the highest appropriateness
and content richness among all automatic sys-
tems. This confirms the previous observation that
our model produces more informative argument
than other neural models. SEQ2SEQAUG has a
marginally better grammaticality score, likely due
to the fact that our arguments are longer, and tend
to contain less fluent generation towards the end.

Furthermore, we see that human arguments are
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ranked as the best in about 76% of the evalua-
tion, followed by RETRIEVAL. Our model is more
likely to be ranked top than any other automatic
models. Especially, our model is rated better than
either HUMAN or RETRIEVAL, i.e., human-edited
text, in 39.2% of the evaluations, compared to
34.2% for SEQ2SEQAUG and 13.3% for our prior
model.

7.3 Sample Arguments and Discussions

We show sample outputs of different systems
alongside human constructed counter-argument in
Figure 5. As can be seen, our system argu-
ments cover many relevant talking points, includ-
ing the idea of “faking care of children” that is
also used by human. It further illustrates the ef-
fectiveness of our retrieval system and the us-
age of keyphrase selection as part of text plan-
ning to guide argument generation. Moreover,
we also observe that our model generation is
able to switch between argumentative content sen-
tence and filler sentence, though better control
is needed to improve coherence. Meanwhile,
SEQ2SEQ frequently echos words from OP, and
both SEQ2SEQ and SEQ2SEQAUG suffer from the
problems of “hallucination” (e.g., the first sen-
tence in SEQ2SEQAUG) and repetition (e.g., the
second and third sentences in SEQ2SEQ).

Nonetheless, there is a huge space for improve-
ment. First, our model tends to overuse negation,
such as “this is not to say that it is unfair..”. It
is likely due to its overfitting on specific stylis-
tic languages, e.g., negation is often observed for
refutation in debates (Wang et al., 2017). Second,
human arguments have significantly better orga-
nization and often deploy complicated argumenta-
tion strategies (Wachsmuth et al., 2018a), which so
far is not well captured by any automatic system.
Both points inspire future work on (1) controlling
of the language styles and corresponding content,
and (2) mining argumentation structures for use in
guiding generation with better planning.

8 Conclusion

We present a novel counter-argument generation
framework, CANDELA. Given an input state-
ment, it first retrieves arguments of different per-
spectives from millions of high-quality articles
collected from diverse sources. An argument gen-
eration component then employs a text planning
decoder to conduct content selection and specify a

OP: The wage gap isn’t about gender. (...) So one factor
definitely the fact that there are some government jobs that
are seriously dominated by women and happen to pay really
low (...)

Human: Children are the first factor. I work in a tradition-
ally male-dominated field, and questions are asked to de-
termine familial status, even though those are illegal. Em-
ployers know single moms have to stay home if their child is
sick. They know single moms can only work during daycare
hours. They know single moms are unavailable for week-
end and late night work. They know single moms cannot
travel. The workplace is very family-unfriendly.

Seq2seq: the problem with this is that there are a lot of
people who do n’t want to hire women . there are plenty
of women who do n’t have the money to pay for it . the
problem is that women do n’t need to pay for their work .
they do n’t have to worry about it . it s a matter of money .

Seq2seqAug: men and women are not 39.5 % of the pay
gap . the problem is not that women are more likely to
be victims of sexism , but rather that they are more natural
good-looking/attractive action . this is not the case .

CANDELA: the problem with this argument is that the
wage gap does not have to do with the gender pay gap .
it is a fact that women are more likely to be able to take
care of their children than their . this
is not to say that it is unfair to assume that women are be-
ing paid less than men , but that does not mean that it is not
the case that . it is not
a matter of the wage gap , it is a matter of opinion . it is
the job of the employer to make sure that the job is not the
same as the other

Keyphrase Memory: wage gap; discrimination; gen-

der pay gaps; raise the child; ; paid

maternity leave;

Figure 5: Sample arguments generated by different
systems along with a sample human argument. For
our model CANDELA, additionally shown are the
keyphrase memory with selected phrases in color, and
argumentative filler sentence in italics.

suitable language style at sentence-level, followed
by a content realization decoder to produce the fi-
nal argument. Automatic evaluation and human
evaluation indicate that our model generates more
proper arguments with richer content than non-
trivial comparisons, with comparable fluency to
human-edited content.
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A Appendices

A.1 Chunking Grammar for Keyhrase
Extraction

In order to construct keyphrase candidates, we
compile a set of regular expressions based on the
following grammar rules, and extract all matched
NP and VP patterns as candidates.

NP: {<DT|PP$>?<JJ|JJIR>+<NN.*|CD|JI>+}
PP: {<IN><NP>}

VP: {<MD>?<VB.x*><NP |PP>}

A.2 Stance Scoring Model

Our stance scoring model calculates the score by
aggregating the sentiment words surrounding the
opinion targets. Here we choose the keyphrases of
input statement as opinion targets, denoted as T.
We then tally sentiment words, collected from Hu
and Liu (2004), towards targets in T, with posi-
tive words counted as +1 and negative words as
—1. Each score is discounted by dT_5, with d ; be-
ing the distance between the sentiment word [ and
the target 7 € T. The stance score of a text psg
(an input statement or a retrieved passage) towards
opinion targets T is calculated as:

Qpsg,T)=>_ > sen(l)-d;]  (13)

7T l€psg

In our experiments, we only keep passages with
a stance score of the opposite sign to that of the
input statement, and with a magnitude greater than
5, ie. |Q(psg,T)| > 5 (determined by manual
inspection on training set).

A.3 List of Discourse Markers

As described in §5.2 in the main paper, we use a
list of discourse markers together with topic sig-
nature words to label argumentative content sen-
tences. The following list of discourse markers are
manually selected from the Appendix B in Prasad
et al. (2008).

e Contrast: although, though, even though, by
comparison, by contrast, in contrast, how-
ever, nevertheless, nonetheless, on the con-
trary, regardless, whereas

o Restatement/Equivalence/Generalization:
eventually, in short, in sum, on the whole,
overall

e Result: accordingly, as a result, as it
turns out, consequently, finally, furthermore,
hence, in fact, in other words, in short, in the
end, in turn, therefore, thus, ultimately
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