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Abstract
The Arctic Ocean is more susceptible to ocean acidification than other marine environments due to its weaker

buffering capacity, while its cold surface water with relatively low salinity promotes atmospheric CO2 uptake. We
studied how sea-ice microbial communities in the central Arctic Ocean may be affected by changes in the carbonate
system expected as a consequence of ocean acidification. In a series of four experiments during late summer 2018
aboard the icebreaker Oden, we addressed microbial growth, production of dissolved organic carbon (DOC) and extra-
cellular polymeric substances (EPS), photosynthetic activity, and bacterial assemblage structure as sea-ice microbial
communities were exposed to elevated partial pressures of CO2 (pCO2). We incubated intact, bottom ice-core sec-
tions and dislodged, under-ice algal aggregates (dominated by Melosira arctica) in separate experiments under approx-
imately 400, 650, 1000, and 2000 μatm pCO2 for 10 d under different nutrient regimes. The results indicate that the
growth of sea-ice algae and bacteria was unaffected by these higher pCO2 levels, and concentrations of DOC and EPS
were unaffected by a shifted inorganic C/N balance, resulting from the CO2 enrichment. These central Arctic sea-ice
microbial communities thus appear to be largely insensitive to short-term pCO2 perturbations. Given the natural,
seasonally driven fluctuations in the carbonate system of sea ice, its resident microorganisms may be sufficiently tol-
erant of large variations in pCO2 and thus less vulnerable than pelagic communities to the impacts of ocean acidifi-
cation, increasing the ecological importance of sea-ice microorganisms even as the loss of Arctic sea ice continues.

Anthropogenic climate change is one of the largest threats
to the marine environment, having negative effects on ecosys-
tem functioning and habitat complexity (e.g., Hoegh-Guldberg
and Bruno 2010). The ocean plays a crucial role to dampen the
effects of global climate change. Since the beginning of the
industrial period, the ocean has absorbed approximately 30%

of the anthropogenically emitted CO2 and stores over 90% of
all heat that has been trapped by increasing greenhouse gases
(Sabine et al. 2004; IPCC 2013). Anthropogenic CO2 inputs
have already reduced average global sea surface pH by � 0.1,
with models projecting a further decrease of 0.3–0.4 by the year
2100 (Caldeira and Wickett 2003; Orr et al. 2005; IPCC 2013).
The Arctic Ocean is particularly vulnerable to rising atmo-
spheric CO2, as its relatively fresh water (mainly due to substan-
tial riverine input) has a low buffering capacity, and the low
water temperature promotes high CO2 solubility. As a conse-
quence, surface waters of the Arctic Ocean are projected to
experience the largest pH decrease in the world in this century
(ΔpH = −0.45), and be the first ocean to exhibit widespread
undersaturation with respect to the carbonate mineral aragonite
(Steinacher et al. 2009). Considering the importance of the Arc-
tic Ocean for climate regulation (Vihma 2014) and the vibrancy
of its ecosystems (Hoegh-Guldberg and Bruno 2010; Post
et al. 2013), investigating the consequences of increased partial
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pressure of CO2 (pCO2) and reduced pH on marine organisms
(i.e., ocean acidification) is essential.

The extensive sea-ice cover in polar seas provides a unique
habitat for microbial assemblages. Sea ice is one of the largest
biomes on the planet, covering 13% of Earth’s surface at its
maximum extent (Lizotte 2001). When sea ice forms and
grows, internal channels containing highly saline water
(brine) establish and create distinct habitats for microbial
communities, which encompass members from multiple tro-
phic levels such as small metazoans, unicellular algae, proto-
zoa, bacteria, fungi, and viruses (Horner et al. 1992; Bowman
et al. 2012; Torstensson et al. 2015a). Various algal assem-
blages generally dominate the biomass of these communities,
particularly during spring and summer seasons, playing
important roles in polar ecology and biogeochemistry (Arrigo
and Thomas 2004; Arrigo 2017). In the central, ice-covered
Arctic Ocean, sea-ice algae account for 57% of the primary
production during summer (Gosselin et al. 1997) and are cru-
cial food sources for many species of fish and invertebrates
(Bluhm et al. 2017), especially during winter and early spring
when the water column does not support significant phyto-
plankton production (Marschall 1988). These communities
can be exposed to a wide range of pCO2 as sea ice transitions
from freeze up to melting. Sea-ice brine becomes oversaturated
with gases, such as CO2, during the formation of the ice as
gases are concentrated in the brine. Convection of dense and
CO2-enriched brine creates a net downward transport of CO2,
referred to as the sea-ice pump (Rysgaard et al. 2011). In spring,
primary production increases and the carbonate system in the
brine equilibrates with the surrounding water and air, causing
CO2 undersaturation in the ice relative to the surrounding
water. As a result, sea-ice microorganisms—especially brine com-
munities in the interior sea ice—experience a much wider range
of CO2 concentrations compared to most planktonic species.

Sea-ice microorganisms also produce large amounts of extra-
cellular polymeric substances (EPS), which are a broad group of
compounds primarily composed of polysaccharides. EPS are
abundant and key compounds in sea ice, having important
roles in microbial acclimation in terms of cryoprotection,
osmoprotection, motility, and adhesion (Deming and
Young 2017). Microbially derived EPS can also alter sea-ice
microstructure by clogging pores and acting to further depress
the freezing point of the brine, which may enhance the habit-
ability of sea ice (Krembs et al. 2011). These polymers are also
known to be a major component of the cloud condensation
nuclei in the high Arctic, and can therefore affect the chemistry
and physics of Earth’s atmosphere (Orellana et al. 2011). In
framing this study, we hypothesized that the exudation of
carbon-rich products, such as EPS and dissolved organic carbon
(DOC), would increase as CO2 levels rise and more inorganic
carbon is consumed, leading to a shifted nutrient balance
(increased inorganic C/N ratios), a process referred to as
carbon overconsumption (Toggweiler 1993). Labile EPS also
create an important link between the photoautotrophic and

heterotrophic communities in sea ice (Deming and
Young 2017), a link that may be altered if EPS production is
enhanced. Overproduction of DOC has previously been
described as a response to ocean acidification in a phytoplank-
ton community in Kongsfjorden, Svalbard (Engel et al. 2013),
but a similar scenario for sea-ice microbial communities is still
unknown.

Although ocean acidification research on sea-ice microor-
ganisms is a relatively new field, some coastal Antarctic studies
have considered the effects of ocean acidification on sea-ice
microorganisms and communities (e.g., McMinn et al. 2014;
Cummings et al. 2019). The impacts of ocean acidification on
Antarctic sea-ice microbial communities appear to be minimal,
although a few studies suggest some species-specific physio-
logical responses that can be either positive or negative
responses (reviewed in McMinn 2017). However, similar
studies on Arctic sea-ice microbial communities are absent,
which is surprising given that ocean acidification is projected
to have the largest impacts in the Arctic Ocean. An ability to
scale and extrapolate between the poles is also limited, as the
seasonality and vulnerability to ocean acidification differs
between the Arctic and Antarctic (Shadwick et al. 2013), as
does sea-ice thickness, snow cover, distribution, and biota
(Arrigo 2017; Haas 2017). For instance, aggregates of the
Arctic-endemic diatom Melosira arctica can reach lengths of sev-
eral meters attached to the underside of Arctic sea ice using
extensive EPS matrix material, playing an important role in car-
bon export in the central Arctic Ocean (Boetius et al. 2013).
These communities are unique to the Arctic and host a diverse
bacterial community, potentially indicating several important
algal–bacterial interactions (Rapp et al. 2018). Still unknown,
however, is how these communities may respond to future
changes in the marine carbonate system.

As sea-ice microbial communities are exposed to a wide range
of co-stressors along with ocean acidification—especially when
the bottom ice community is dispersed into the water column
following sea-ice melt—their response to ocean acidification and
their ability to contribute to polar biogeochemical cycles will
depend on their capacity to cope with changes in other environ-
mental parameters, such as temperature, irradiance, salinity and
nutrient distribution (Boyd and Hutchins 2012). For instance, a
positive effect of elevated pCO2 on carbon fixation rates could
only be detected in a natural phytoplankton community in the
Southern Ocean when the seawater was supplemented with iron
(Hoppe et al. 2013). In addition, an increase in inorganic C/N
ratio can cause imbalance between growth and photosynthesis
in primary producers, leading to exudation of excess organic car-
bon that cannot be used for growth. Carbon overconsumption is
therefore likely to be more noticeable under low nitrate condi-
tions, suggesting that the combination of ocean acidification
and inorganic nutrient depletion may stimulate microbial release
of organic carbon. In this paper, we have studied how sea-ice
microbial communities in the central Arctic Ocean are affected
by changes in the carbonate system expected as a consequence

Torstensson et al. Ocean acidification in Arctic sea ice

S384



of ocean acidification under different nutrient regimes. In a series
of four shipboard experiments, we addressed microbial growth,
production of DOC and EPS, photosynthetic activity, and bacte-
rial assemblage structure and diversity in sea ice at increasingly
elevated CO2 levels.

Methods
Experimental setup

Sea-ice cores and bottom aggregate communities were col-
lected in the central Arctic Ocean at 88–90�N during August
and September of the Oden Arctic Ocean 2018 expedition
(Fig. 1; Table 1). For each experiment, we selected a sea-ice
sampling plot of � 10 m2 and apparently homogeneous thick-
ness. One full ice core was collected at each site, using a
0.09-m diameter Kovacs ice corer, for physicochemical charac-
terization (temperature and bulk salinity) of the sea ice. Tem-
perature in the core was recorded immediately after recovery,
according to Torstensson et al. (2015a). The physicochemical
core was then sectioned into 0.1-m sections, which were
placed in gas-impermeable Tedlar® bags, and the atmosphere
evacuated. After the ice sections melted at room temperature,
bulk salinity was measured using a WTW Cond 3210™ con-
ductivity meter. In addition, 40 experimental ice cores were
taken within the selected plot, where 0.1-m bottom sections
were removed from cores using a custom alloy bow-saw for ice
sectioning. For each experimental unit, two randomly chosen
bottom sections were placed in separate gas-tight Tedlar®

bags. Samples were returned to the ship where 2 L of filtered
(0.2 μm) and chilled (−1.7�C) seawater were added to each
bag, using either surface or deep water (10 or 1000 m, respec-
tively; Table 1) to provide different nutrient concentrations.
The samples were placed upright in water baths tempered to
−1.7 � 0.1�C, and irradiated with 15–18 μmol photons
m−2 s−1 of constant photosynthetically active radiation (PAR)
provided by fluorescent light tubes (Philips MASTER TL-D
Super 80 36 W/865) and left to acclimate to the laboratory
conditions until next day.

Four of the acclimated samples (four bags of two ice sec-
tions each) were thawed directly to serve as the initial time
point. The morning after the acclimation period (Day 0), four
treatments were initiated by injecting CO2-saturated seawater
(0.2 μm filtered, from either 10 or 1000 m, depending on the
experiment; Table 1) into each of the remaining 16 bags to
reach pCO2 of approximately 400, 650, 1000, and 2000 μatm,
with four replicates for each treatment (Fig. 2). These treat-
ments approximately simulate the present-day pCO2

(400 μatm), the atmospheric pCO2 in 50 years derived using
the present rate of increase (650 μatm), the estimate for the
year 2100 (1000 μatm), and an extreme value that has already
been observed in situ in Arctic sea ice during spring (2000
μatm; Geilfus et al. 2012). The amount of CO2-saturated water
needed to reach the different pCO2 levels was calculated using
the seacarb package in R (Gattuso et al. 2018; R Core
Team 2018). The carbonate system and seawater salinity were
monitored throughout the experiments by evacuating

Fig. 1. Arctic sea ice concentration (%) for August 2018, plotted to a southern latitude of 75�N with a gray mask for latitudes above � 89�N. Sample
locations are plotted for experiments 1 (red circle), 2 (green square), 3 (purple diamond) and 4 (yellow triangle). Sea ice concentration data are from the
U.S. National Snow and Ice Data Center (Peng et al. 2013; Meier et al. 2017), plotted using M_Map (Pawlowicz 2019).
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seawater subsamples from the bag’s valve using a syringe and
adjusting as needed (see Tables S1–S4 for specific time points).
After 10 d of incubation, the samples were thawed at tempera-
tures in the range of 4–10�C for 24–48 h, and subsampled
directly after melting for the various biological parameters. For
Experiment 3 (Table 1), a dislodged sea-ice aggregate commu-
nity dominated by M. arctica was collected from a sampling
hole in the ice and used instead of intact sea-ice sections. The
aggregate was homogenized by gentle shaking and inoculated
into Tedlar® bags containing seawater with the different
targeted pCO2 levels (400, 650, 1000, or 2000 μatm), and incu-
bated and subsampled under the same conditions as described
above. This experiment allowed for subsampling over time,
and contained a more homogeneous starting community
compared to the intact cores.

In summary, the four experiments (Table 1) were per-
formed with either intact ice-core sections incubated in seawa-
ter with high initial nutrient concentrations (Experiments
1 and 2), M. arctica aggregates incubated in seawater with high
initial nutrient concentrations (Experiment 3), or intact ice-
core sections incubated in seawater with low initial nutrient
concentrations (Experiment 4). These experiments allowed us
to examine the effects of ocean acidification on different
microbial communities, and under different inorganic nutri-
ent conditions. A separate experiment was performed to verify
that the carbonate system inside the ice sections had been
perturbed, incubated under similar conditions as Experiments
1–4. In this experiment, the ice-core sections were removed
from the seawater-filled bags after 6 d of incubation at the four
pCO2 levels, and thawed separately in atmosphere-evacuated
Tedlar® bags for carbonate system determination.

Bulk community measurements
Samples for biological measurements were collected immedi-

ately after the ice cores had thawed completely, and all were
processed at 4–10�C. Chlorophyll a (Chl a) concentration was
measured using standard fluorometric techniques; subsamples of
thawed materials were filtered through 25-cm Whatman GF/F fil-
ters, placed in 5 mL of 90% acetone (high-performance liquid
chromatography grade), and extracted at 4�C for at least 24 h.
Chl a was quantified on a Turner Designs Trilogy fluorometer
using the nonacidification method (Welschmeyer 1994). The
fluorometer was calibrated prior to the cruise using commercially
purified Chl a (Sigma-Aldrich). Particulate organic carbon and
nitrogen samples were collected by filtering known volumes
through combusted (450�C for 2 h) Whatman GF/F filters
(25 mm), rinsed with 5 mL of weak acid (0.01 N HCl in filtered
seawater), stored in combusted glass vials covered with
combusted aluminum foil, and dried at 60�C. Upon return to the
laboratory, samples were combusted on a Costech 4100 elemen-
tal analyzer (Gardner et al. 2000). Particulate EPS (pEPS) samples
were collected on 0.4-μm nucleopore filters and analyzed using
the phenol–sulfuric acid assay (DuBois et al. 1956). Thawed sub-
samples were also fixed in 2% formaldehyde and stored at −20�CT
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until further processing and counting using epifluorescence
microscopy and the stains 40-60-diamidino-2-phenylindole and
N,N,N0,N0-tetramethylacridine-3,6-diamine (Acridine Orange). Fil-
trate (< 0.2 μm) from Experiments 1 and 3 was collected for anal-
ysis of DOC, frozen at −20�C, and analyzed using a Shimadzu
TOC-Vcsh DOC analyzer; samples for inorganic nutrients were
frozen at −20�C and analyzed using a QuAAtro autoanalyzer.

Variable fluorescence
Subsamples from Experiment 3 were taken for analyzing

photosynthetic performance of the sea-ice algae by rapid light
curves using pulse-amplitude modulated fluorometry (SubPAM;
Gademann Instruments, Wuerzuburg, Germany). Cells were
dark-adapted for a minimum of 60 min before measurements.
The maximum (Fv/Fm) and effective quantum yields (ΦPSII) of
photosystem II (PSII) were measured. Minimum fluorescence
(F0) was determined by applying a low level of light and the
maximum fluorescence (Fm) by exposing the sample to a short
saturation pulse of measuring light (> 3000 μmol photons
m−2 s−1 for 0.8 s). F0

m was determined for nondark-adapted
cells. Variable fluorescence (Fv = Fm− F0) and maximum quan-
tum yield (Fv/Fm) were determined for all samples. Rapid light
curves were performed by measurement of ΦPSII ( F0

m – F
� �

=F0
m )

of quasi-adapted (60 s) cells to stepwise increasing actinic light
levels in the instrument’s measuring unit (0, 25, 45, 66,
90, 125, 190, 285, and 420 μmol photons m−2 s−1). The rela-
tive electron transport rate was then calculated as
rETR = ΦPSII×PAR, where PAR is the photosynthetically active
radiation in μmol photons m−2 s−1. The saturating rapid light
curves were fit using the exponential model from Platt

et al. (1980) so that the light saturation coefficient (Ek), the
PSII efficiency (αPSII), and the relative maximum ETR (rETRmax)
could be calculated using the R package phytotools (Silsbe and
Malkin 2015; R Core Team 2018).

Bacterial assemblage composition
Melted subsamples (455–1480 mL) from Experiments 1 and

3 were filtered through 0.2-μm Sterivex™ filter units or 0.2-μm
polycarbonate filter discs, with the filters kept frozen at −80�C
until processed. DNA was extracted from the filters using DNeasy
PowerWater Kit (Qiagen, Sollentuna, Sweden), and DNA concen-
trations were quantified using PicoGreen (Invitrogen, Paisley,
UK). The bacterial hypervariable regions V3/V4 of the 16S
rRNA genes were amplified using the primer pair 341F
(CCTACGGGNGGCWGCAG) and 805R (GACTACHVGGG
TATCTAATCC), complemented with Illumina adapters. The
amplicons were purified using MagSI beads (AMSBIO, Abingdon,
UK) and amplified a second time using primers with sample-
specific barcodes. After a second purification step and a subse-
quent DNA quantification using Quant-iT dsDNA HS assay
(Invitrogen, Paisley, UK), the normalized DNA libraries were mul-
tiplexed and sequenced by Illumina MiSeq technology using a
2 × 300 bp configuration (National Genomics Infrastructure,
SciLifeLab, Stockholm, Sweden).

Quality filtering, denoising, and removal of potential chi-
meras and nonbacterial DNA sequences from the demultiplexed
sequences were performed using the nf-core/amplicon 1.1.2
pipeline (Straub et al. 2019). In short, raw data were quality-
controlled using FastQC v.011.8 (Andrews 2010), primers were
trimmed using Cutadapt v.2.6 (Martin 2011), data were

Fig. 2. Schematic view of the experimental setup. Bottom sections of sea-ice cores were collected from a 10-m2 sampling plot of homogeneously thick
sea ice, and incubated in filtered seawater in gas-tight bags with four different targeted pCO2 levels (from 400 to 2000 μatm pCO2) for 10 d under con-
stant artificial light. Subsamples for seawater carbonate chemistry determination were evacuated from the bags 5–7 times during the experiments, and
endpoint samples were thawed and subsampled for biological analyses at the end of the experiments. In Experiment 3, dislodged sea-ice algal aggregates
were homogenized by shaking and distributed into bags as described above, instead of using intact ice-core sections.

Torstensson et al. Ocean acidification in Arctic sea ice

S387



imported into QIIME2 v2019.10.0 (Bolyen et al. 2019) where
potential chimeras were removed and amplicon sequencing var-
iants (ASVs) were generated using DADA2 (Callahan et al. 2017)
and classified against the SILVA v.132 database (Quast
et al. 2013). All chloroplast and mitochondria sequences were
removed in DADA2 to enable comparisons between samples.
Archaeal reads (seven reads in total) were removed from the
ASV table, and further statistical analyses were performed in the
R package phyloseq v.1.32.0, including determination of alpha
diversity (Chao1 and Shannon’s indices) (McMurdie and
Holmes 2013; R Core Team 2018). All sequences obtained in
this study have been deposited in the Sequence Read Archive
under BioProject ID PRJNA647311.

Carbonate system
Dissolved inorganic carbon (DIC) concentrations were mea-

sured using an Automated Infra-Red Inorganic Carbon Ana-
lyzer (AIRICA) coupled with a LI-COR LI-7000 CO2/H2O
Analyzer, having a manufacturer precision typical of
1.5 μmol kg−1 (http://www.marianda.com). To initiate the
AIRICA, “junk” seawater was analyzed until a coefficient of
variance (CV) less than 2 μmol kg−1 was obtained. To calibrate
the AIRICA, a certified reference material (CRM, provided by
Andrew G. Dickson, Scripps Institute of Oceanography, CA)
was analyzed to establish a “conversion factor” that was
applied so the following CRMs were within 2 μmol kg−1 of the
certified concentration. A CRM was analyzed every eight sam-
ples and before the AIRICA was turned off to correct for instru-
ment drift, and CRMs and samples were rerun if the CV was
greater than 2 μmol kg−1. For typical junk, CRM and sample
analyses, a total of 10 mL of seawater was drawn to flush the
instrument and analyze 1 mL in triplicate.

Analysis of DIC was always conducted first, followed by pH
and salinity. Syringes were connected directly to the AIRICA’s
intake valve so any exposure to the atmosphere was avoided.
Once an acceptable value was obtained from the AIRICA, the
syringe was opened so that pH could be analyzed promptly.

Seawater voltage and analysis temperature were measured
using a Mettler Toledo SG78 pH electrode, which was calibrated
by a 2-amino-2-hydroxymethyl-1,3-propanediol (TRIS) buffer
(provided by Andrew G. Dickson, Scripps Institute of Oceanogra-
phy, CA) for converting measured voltages to pH on the total
scale (pHT) (DelValls and Dickson 1998). TRIS buffer was mea-
sured at the beginning of every set of samples. To asses electrode
drift, we began measuring TRIS buffer after finishing sample anal-
ysis and/or between experimental analyses on August 29, increas-
ing this frequency to every 4–5 samples for the final 2 d of
analysis on September 16 and 18. Salinity was measured using a
WTW Cond 3210™ conductivity meter.

Following measurement of DIC and pHT, total alkalinity
(TA) and pCO2 were computed using the CO2sys program of
van Heuven et al. (2011), and the carbonic acid dissociation
constants of Roy et al. (1993). Several high-latitude Arctic
studies have addressed the differences in derived carbonate

parameters associated with the choice of the carbonic acid
constant in both sea ice (e.g., Chierici and Fransson 2009; Fra-
nsson et al. 2013) and seawater (Woosley et al. 2017) by inter-
nal consistency checks between the four carbonate system
parameters (i.e., DIC, TA, pH, and pCO2). Following the deter-
mination of Chierici and Fransson (2009) for suitability for
Arctic sea ice, we used the Roy et al. (1993) constants. In the
absence of phosphate and silicate measurements, we used null
values for these two nutrients in the carbonate system compu-
tations. While this approach introduces additional uncertainty
to the computed parameters, the added uncertainty is smaller
than the standard deviation of the computed parameters,
which here is used as an overall estimate of uncertainty.

Statistical analysis
All univariate data were analyzed using one-way ANOVA or

two-way repeated measures ANOVA. Levene’s test was used to test
for heteroskedasticity; if the assumptions for ANOVA were not
met, data were log-transformed. Possible significant effects were
explored using Tukey’s honestly significant difference (HSD) test.
Nonmetric multidimensional scaling of the bacterial composition
was performed using Bray–Curtis dissimilarity, using the phyloseq
package in R (McMurdie and Holmes 2013; R Core Team 2018).
Hypotheses about differences in the structure of bacterial assem-
blages between pCO2 treatments were evaluated using permuta-
tional ANOVA (PERMANOVA) with subsequent pairwise
comparisons, using 999 permutations in the vegan package in R
(R Core Team 2018; Oksanen et al. 2019). Differential abundance
analysis was performed to identify specific ASVs affected by the
experimental treatments, using analysis of composition of
microbiomes (ANCOM) in R (Mandal et al. 2015). The ANCOM
procedure compares the relative abundance of a taxon between
groups by calculating Aitchison’s log-ratio of abundance
(Aitchison 1982) of each taxon relative to the abundance of all
remaining taxa one at a time, resulting in a test constrained to
reduce false discovery rates while maintaining high statistical
power. ASVs representing 90% of the total abundance and with a
total read count > 1000 were included in the ANCOM. A probabil-
ity level (p) of < 0.05 was used for statistical significance in all tests.

Log-response ratios (lnRR) were calculated for every sample
and was used to visualize the responses relative to the mean of
the control treatment (i.e., the 400 μatm treatment). They
were calculated as:

lnRR= ln X� �XC
� �

, ð1Þ

where lnRR is the natural-log proportional change between a
sample value (X) and the mean of the 400 μatm treatment ( �XC).

Results
Environmental and experimental conditions

The physicochemical ice cores had bottom-ice temperatures
that ranged from −1.64�C to −1.31�C, and had bulk salinities
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Table 2. Carbonate system parameters (mean � standard deviation) in the seawater surrounding sea-ice microbial communities over
5–7 time points (four replicates each) during four ocean acidification experiments.

Experiment Targeted pCO2 treatment (μatm) Achieved pCO2 (μatm) pHT DIC (μmol kg−1) Salinity n

1 400 349 � 76 8.051 � 0.090 1987 � 67 32.7 � 1.8 28

650 705 � 183 7.773 � 0.102 2072 � 83 32.9 � 2.0 27

1000 945 � 135 7.639 � 0.056 2092 � 79 32.7 � 1.8 28

2000 1767 � 328 7.382 � 0.089 2179 � 77 32.6 � 2.0 27

2 400 263 � 58 8.163 � 0.079 1936 � 82 30.9 � 1.0 19

650 549 � 129 7.888 � 0.107 2055 � 85 31.1 � 1.4 19

1000 767 � 136 7.736 � 0.068 2097 � 88 31.2 � 1.0 19

2000 1552 � 243 7.434 � 0.066 2180 � 74 30.9 � 1.0 16

3 400 362 � 79 8.070 � 0.088 2169 � 21 34.6 � 0.1 20

650 789 � 185 7.759 � 0.101 2271 � 23 34.6 � 0.2 20

1000 1128 � 272 7.612 � 0.104 2318 � 27 34.6 � 0.2 20

2000 1784 � 388 7.419 � 0.094 2393 � 24 34.6 � 0.2 20

4 400 300 � 48 8.124 � 0.066 2036 � 32 31.2 � 0.5 20

650 524 � 75 7.899 � 0.055 2093 � 45 30.9 � 0.6 20

1000 795 � 147 7.732 � 0.074 2154 � 36 31.2 � 0.6 20

2000 1542 � 204 7.451 � 0.057 2225 � 43 30.7 � 0.6 20

The carbonate system was readjusted to the targeted treatment level after measurement at specific time points (see Tables S1–S4). Achieved pCO2 was
calculated using pHT and DIC.

Table 3. Mean values � standard deviation (n = 4) for chlorophyll a (Chl a) concentration, bacterial abundance (bacteria), dissolved
organic carbon (DOC) and particulate extracellular polymeric substances (pEPS) concentration, particulate organic carbon to nitrogen
ratio (C/N), and inorganic nutrient concentrations in four experiments with sea-ice microbial communities before starting incubation
(initial) and after 10 d under four pCO2 treatments (400, 650, 1000, and 2000 μatm).

Exp

Targeted pCO2

treatment
(μatm)

Chl
a

(μg L−1)

Bacteria
(106

cells mL−1)
DOC

(mg L−1)

pEPS (μg
glu

EQ mL−1)
C/N
(w/w)

NO2 + NO3

(μM) Si (μM) PO4 (μM)

1 Initial 14.1 � 2.0 0.75 � 0.16 0.73 � 0.13 0.32 � 0.05 12.7 � 1.8 28.7 � 6.1 13.5 � 3.8 1.46 � 0.26

400 16.0 � 4.3 1.03 � 0.36 0.46 � 0.11 0.18 � 0.06 8.8 � 1.3 16.8 � 4.2 6.7 � 1.3 0.67 � 0.16

650 22.4 � 5.0 1.28 � 0.53 0.73 � 0.20 0.28 � 0.02 9.8 � 1.1 19.6 � 2.1 7.6 � 0.9 0.90 � 0.07

1000 18.9 � 3.6 1.20 � 0.19 0.58 � 0.04 0.24 � 0.07 9.5 � 1.3 16.1 � 5.0 6.8 � 1.0 0.76 � 0.19

2000 17.7 � 2.9 1.22 � 0.22 0.51 � 0.14 0.24 � 0.06 11.1 � 0.4 13.0 � 2.3 5.8 � 1.1 0.61 � 0.09

2 Initial 5.2 � 1.3 0.61 � 0.19 No data 0.15 � 0.10 19.6 � 3.0 23.1 � 0.6 8.31 � 0.6 1.19 � 0.04

400 22.4 � 2.9 0.80 � 0.12 No data 0.40 � 0.12 11.8 � 1.1 1.3 � 2.2 0.80 � 0.2 0.14 � 0.05

650 21.4 � 4.0 0.77 � 0.19 No data 0.38 � 0.06 12.2 � 1.5 0.3 � 0.1 0.93 � 0.3 0.17 � 0.02

1000 22.4 � 7.5 0.89 � 0.11 No data 0.58 � 0.16 12.8 � 1.9 0.2 � 0.1 0.80 � 0.3 0.14 � 0.04

2000 16.2 � 3.8 0.67 � 0.45 No data 0.46 � 0.17 13.0 � 0.7 0.5 � 0.5 1.37 � 0.8 0.25 � 0.09

3 Initial 4.4 � 0.6 0.12 � 0.01 1.49 � 0.25 0.16 � 0.03 17.1 � 1.3 28.5 � 1.1 8.21 � 0.3 1.56 � 0.07

400 25.3 � 0.7 0.85 � 0.08 1.53 � 0.25 0.26 � 0.04 7.6 � 0.8 0.2 � 0.1 0.52 � 0.2 0.03 � 0.01

650 23.8 � 2.5 0.80 � 0.07 1.66 � 0.21 0.19 � 0.02 8.1 � 1.6 0.1 � 0.02 0.54 � 0.3 0.10 � 0.09

1.000 25.9 � 1.1 0.76 � 0.08 1.45 � 0.25 0.27 � 0.01 8.1 � 0.9 0.2 � 0.03 0.52 � 0.2 < 0.02

2.000 24.9 � 1.6 0.74 � 0.08 1.37 � 0.30 0.21 � 0.03 7.3 � 0.3 0.2 � 0.09 0.55 � 0.1 < 0.02

4 Initial 8.9 � 1.6 0.75 � 0.09 No data 0.28 � 0.09 12.2 � 1.6 1.1 � 0.4 7.3 � 3.2 0.57 � 0.06

400 6.8 � 2.6 0.94 � 0.24 No data 0.51 � 0.11 19.0 � 1.1 1.6 � 0.5 2.8 � 1.0 0.25 � 0.07

650 7.7 � 1.6 0.80 � 0.01 No data 0.53 � 0.08 19.0 � 0.1 2.2 � 1.2 2.8 � 1.0 0.23 � 0.05

1.000 6.8 � 2.1 0.91 � 0.08 No data 0.45 � 0.19 18.6 � 0.9 1.9 � 0.5 3.3 � 0.8 0.24 � 0.02

2.000 7.6 � 0.8 1.02 � 0.19 No data 0.54 � 0.17 16.8 � 2.1 1.3 � 0.5 3.9 � 0.5 0.36 � 0.07
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between 2.1 and 3.1 (Table 1). During the experiments, the
pCO2 in the seawater differed significantly between all treat-
ments in the respective experiment when averaged over all
time points (p < 0.0001, repeated measure ANOVAs; Table 2).
The pCO2 also differed significantly for each specific time
point (p < 0.05, Tukey’s HSD; Tables S1–S4), except between
the 650 and 1000 μatm treatments at Day 0 in Experiment 1
(p = 0.746, Tukey’s HSD) and between the 400 and 650 μatm
treatments at Day 6 in Experiment 4 (p = 0.112, Tukey’s HSD).
However, the pCO2 was typically below targeted values at the
time of sampling (Table 2). The average seawater salinity
decreased in the experiments containing sea-ice sections, from
34.9 to 29.6 in Experiment 1, 32.8 to 29.8 in Experiment 2, and
31.2 to 30.4 in Experiment 4; it remained unchanged through-
out the (ice-free) algal aggregate Experiment 3 (Tables S1–S4).
The inorganic nutrient concentrations were generally high in
the beginning of Experiments 1–3 (sea-ice microbial communi-
ties incubated with deep water), then decreased modestly during

Experiment 1 and substantially during Experiments 2 and
3 (Table 3). In Experiment 4 (ice cores incubated with surface
water), the inorganic nutrient concentrations remained low
throughout the experiment (Table 3).

The mean (� standard deviation) temperature in the water
baths was −1.7 (� 0.1)�C throughout all experiments. Less
melting was apparent in Experiment 4, where the temperature
was closer to the freezing point of the less saline surface sea-
water (10 m), compared to the deep water (1000 m) in Experi-
ments 1–3. The ice-core sections in Experiments 1, 2, and
4 appeared intact with visual filaments of sea-ice algae at the
end of the incubations.

Bulk community responses
The growth of algae (as determined by changes in con-

centration of Chl a) and bacteria (as epifluorescent counts)
was observed in Experiments 1–3, but not in Experiment
4, where the ice-core sections had been incubated with

a b

c d

Fig. 3. Effect sizes of concentrations of chlorophyll a (Chl a), bacterial abundance (bacteria), dissolved organic carbon (DOC), particulate extracellular
polymeric substances (pEPS), and particulate organic carbon to nitrogen ratios (C/N) are expressed as log response ratios (lnRR) relative to the control
treatment (400 μatm pCO2) for each experiment. As a result, the mean lnRRs of the 400 μatm pCO2 treatment always equals zero. The only statistically
significant finding (noted with asterisk) was in Experiment 3 (algal aggregates), where the mean pEPS concentration in the 650 μatm pCO2 treatment
was lower than the mean value the control treatment (400 μatm pCO2). Error bars show standard deviation (n = 4); where not visible, bars were smaller
than the symbol.
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nutrient-poor surface water (Table 3). In Experiment 1, Chl
a concentrations increased moderately in all treatments
from 14.1 to 18.7 μg L−1, whereas in Experiments 2 and
3, they increased substantially from 5.2 to 20.6 and 4.4 to

25.0 μg L−1, respectively. During Experiment 4, the Chl
a concentrations decreased from 8.9 to 7.2 μg L−1. Here,
organic C/N ratios increased during the experiment,
whereas these ratios decreased in Experiments 1–3 (Table 3).

a b

c d

Fig. 4. Time-course evaluation of photosynthetic parameters under four pCO2 treatments (targeting 400, 650, 1000, and 2000 μatm) during Experi-
ment 3. No significant affect was observed for any of the photosynthetic parameters measured: (a) maximum quantum yield (Fv/Fm), (b) maximum rela-
tive electron transport rate (rETRmax), (c) photosystem II efficiency (αPSII), and (d) the light saturation coefficient (Ek). The data were obtained from rapid
light curves using pulse-amplitude modulated-fluorometry. Error bars represent standard deviation (n = 4).
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Fig. 5. Nonmetric multidimensional scaling of bacterial assemblage composition in Experiments 1 (a) and 3 (b), based on Bray–Curtis dissimilarity of
ASV abundance. The color of each sample represents pCO2 treatment.
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Bacterial abundances followed similar patterns as Chl
a concentrations, except for Experiment 2, where Chl
a concentrations increased substantially but bacterial abun-
dances only increased modestly (Table 3). Concentrations of
pEPS decreased during Experiment 1 and increased in Exper-
iments 2–4 (Table 3).

Increased pCO2 did not have any significant effects on
Chl a concentrations, bacterial abundances, DOC concen-
trations or C/N ratios in any of the experiments (p > 0.05,
ANOVA, Fig. 3; Table 3). Concentration of pEPS was
significantly affected by the treatments in Experiment 3
(p = 0.006, F3,11 = 7.3, ANOVA; Fig. 3c; Table 3), where the
650 μatm treatment had lower concentrations than the
control (p = 0.021, Tukey’s test). There was no significant
effect of the treatments on any of the PSII activity and
performance parameters (p > 0.05, repeated measures
ANOVA, Fig. 4).

Bacterial assemblage structure
After sequence processing, 3,799,629 and 1,951,629 partial

16S rRNA gene sequences could be assigned to the bacteria
domain from Experiments 1 and 3, respectively. The total
number of reads per sample ranged from 121,111 to 349,631
in Experiment 1 and from 56,424 to 206,922 in Experiment

3, and could be assigned to 862 and 815 ASVs in Experiment
1 and 3, respectively. Although treatment (including the ini-
tial samples) explained 26.6% of the variation in bacterial ASV
composition in Experiment 1, as summarized by a Bray–Curtis
dissimilarity matrix, the effect of treatment was not significant
(p = 0.155, F4,14 = 1.27, PERMANOVA, Fig. 5a). In Experiment
3, however, the composition was significantly different
between treatments (p = 0.022, F4,12 = 2.9, PERMANOVA,
Fig. 5b) and explained 49% of the variation in the Bray–Curtis
dissimilarity matrix. Pairwise comparison suggests that this
difference was caused by the temporal change in assemblage
composition from the initial to final sampling (p < 0.05, PER-
MANOVA), without any differences between pCO2 levels
(p > 0.05, PERMANOVA). This change is also reflected in alpha
diversity, where the Chao1 index in Experiment 3 was signifi-
cantly affected by treatment (p < 0.001, F4,12 = 14.2, ANOVA,
Fig. 6b). The Chao1 index was reduced in all treatments dur-
ing Experiment 3 (p < 0.003, Tukey’s test), while no other
diversity index was significantly affected by the treatments
(p > 0.05, ANOVA, Fig. 6).

The bacterial assemblages in Experiment 1 and 3 were domi-
nated by ASVs from the classes Bacteroidia, Alphaproteobacteria,
and Gammaproteobacteria (Fig. 7a,b). Gammaproteobacteria
were more prevalent in Experiment 3, where they contributed
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Fig. 6. Bacterial community richness (a,b) and diversity (c,d) in experiments 1 and 3. Asterisks denote statistical significance (p < 0.001), where the
Chao1 index was higher in the initial samples than in any of the treatments after 10 d of incubation.
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by 25.3% of the total abundance, compared to 14.1% in Experi-
ment 1. Although the general assemblage structure remained
unchanged during Experiment 1 (Fig. 5a), the abundance of
Octadecabacter changed during the experiment (p < 0.001,
F4,14 = 5.6, ANOVA, Fig. 7c). Here, members of Octadecabacter
became more abundant in all pCO2 treatments compared to the
initial samples except for the 650 μatm treatment (p < 0.05 and
p = 0.07, respectively, Tukey’s test), although there were no sig-
nificant differences between the pCO2 treatments (p > 0.7,
Tukey’s test). The abundance of ASVs from the Colwellia genus
increased significantly during Experiment 3 (p < 0.001,
F4,12 = 11.1, ANOVA, Fig. 7d), where all treatments had higher
abundances than the initial samples (p < 0.001, Tukey’s test).
However, there were no significant differences between pCO2

treatments (p > 0.13, Tukey’s test). The relative abundance of
Polaribacter also changed during Experiment 3 (p < 0.0001,
F4,12 = 29, ANOVA, Fig. 7d), where all treatments had higher
abundances than the initial samples (p < 0.01, Tukey’s test).
Here, the abundance of Polaribacter in the 1000 μatm pCO2

treatment was also lower compared to the 400 and 2000 μatm
treatments (p = 0.007 and 0.026, respectively, Tukey’s test).

An ANCOM procedure identified only a single bacterial
ASV from Experiment 3 as differing significantly between the
pCO2 treatments (representing 0.11% of total abundance,
W0.7 = 470, ANCOM). BLAST analysis of this sequence
against the NCBI 16S rRNA gene database showed a 98.8%
similarity to Colwellia rossensis strain S51-W. The relative
abundance of this ASV was affected significantly by treat-
ment (p < 0.01, F4,12 = 5.9, ANOVA). This ASV was absent in
the initial samples, but appeared in higher abundance in the
2000 μatm treatment (0.3% � 0.12% of total abundance)
treatment compared to the 650 μatm (0.05% � 0.04% of total
abundance) treatment (p < 0.05, Tukey’s test). No ASVs were
identified as significant in the ANCOM procedure for Experi-
ment 1.

Discussion
The vast majority of ocean acidification studies on sea-ice

microbes have focused on single organisms from Antarctica
(reviewed in McMinn 2017) or the Arctic (Torstensson
et al. 2019; Kvernvik et al. 2020), although microbial
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Fig. 7. Relative abundance of bacterial taxa in each sample, grouped by experimental treatment. The top 15 classes across all samples within Experiment
1 (a) and 3 (b) are color coded, where the lower abundance classes are grouped and shown in gray. The top 14 genera across all samples within Experi-
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communities in Southern Ocean brine and bottom ice have
recently been investigated (McMinn et al. 2017; Castrisios
et al. 2018; Cummings et al. 2019). Our study is the first to
report findings on sea-ice microbial community responses to
ocean acidification in the Arctic Ocean and to consider differ-
ent nutrient regimes. We observed no detectable change in
the bottom-ice communities we examined in terms of biomass
(as expressed by Chl a concentration and bacterial abun-
dance), general bacterial assemblage structure, C/N ratio, pho-
tosynthetic activity, pEPS or DOC concentration after 10 d of
pCO2 treatment up to 2000 μatm (Table 3). Despite differences
between Arctic and Antarctic sea ice and irrespective of the
different inorganic nutrient levels and growth responses, the
general lack of change in response to pCO2 treatment in our
experiments is similar to what has been observed in Antarctic
sea-ice microbial communities, where no significant changes
in photosynthetic activity or algal and bacterial growth were
detected after incubations with pCO2 up to 3700 μatm
(McMinn et al. 2017; Cummings et al. 2019).

The core ecological processes of marine Arctic food webs
appear resilient to climate change according to recent ecologi-
cal modeling efforts (although these did not specifically con-
sider sea-ice algae) (Griffith et al. 2019), and coastal Arctic
phytoplankton from 20 to 50 m appear largely insensitive to
ocean acidification (Hoppe et al. 2018a,b). The Arctic Ocean
has a limited capacity to buffer against decreases in pH
(Shadwick et al. 2013), and salts, microorganisms, and gases
from the water are concentrated in the porous matrix of sea
ice during the freezing process, creating enriched brines
within the ice compared to surrounding waters. Brine trapped
within the sea ice thus becomes oversaturated with CO2 dur-
ing ice formation. In spring, however, primary production
increases in the ice and the carbonate system in the brine
equilibrates with the surrounding water and air, causing CO2

undersaturation, and potentially depletion, in the ice relative
to the surrounding water (Geilfus et al. 2012). As a result,
microorganisms in sea ice experience more extreme seasonal
variation in pCO2 (from 0 to 1800 μatm within a seasonal
cycle; Geilfus et al. 2012) compared to most plankton in sur-
face waters of the Arctic Ocean (normally ranging between
250 and 400 μatm; Yasunaka et al. 2016), suggesting that sea-
ice microorganisms can tolerate large variations in pH, making
them less susceptible to the 0.45 decrease predicted for the
surface Arctic Ocean by 2100 (Steinacher et al. 2009). Not sur-
prisingly, most ocean acidification studies on sea-ice algae
using concentrations of pCO2 to 3700 μatm have reported no
effect, or small positive or negative effect sizes, relative to
other environmental factors related to climate change
(Torstensson et al. 2012; McMinn et al. 2017; Cummings
et al. 2019; Torstensson et al. 2019). However, the growth of
Antarctic sea-ice algal communities appears to be moderately
affected by changes in the carbonate system as pCO2 levels
reach more extreme (up to 6000 μatm) values (McMinn
et al. 2014), suggesting that the tipping point for these

communities is likely much higher than the changes in atmo-
spheric pCO2 that are expected within the century. The pCO2

of Arctic sea ice may reach more extreme values (e.g., up to
1800 μatm pCO2 in early spring) during sea-ice growth
(Geilfus et al. 2012), but extreme values are unlikely for the
bottom-ice community during summer, as in our study.

We tested whether increased CO2 availability may cause
carbon overconsumption (Toggweiler 1993) in sea-ice algal
communities and thus stimulate excretion of organic carbon
from the cells, as observed in phytoplankton from
Kongsfjorden, Svalbard (Engel et al. 2013), and in the sea-ice
alga N. lecointei under nutrient-replete conditions (Torstensson
et al. 2015b). Although slight positive trends were observed in
sea-ice sections incubated under nutrient-replete conditions
(Experiments 1 and 2; Fig. 3), no significant increases in bacte-
rial abundance, DOC or pEPS concentrations were detected in
any of the experiments, suggesting that overproduction of
extracellular organic carbon in response to higher pCO2 was
negligible in the time frame of our experiment. We observed a
significant decrease in pEPS concentration under 650 μatm
pCO2 in Experiment 3, but whether that response represents a
true treatment effect would require further investigation as it
was inconsistent with responses in flanking treatments. DOC
clearance, however, can be rapid in Arctic waters, with signifi-
cant amounts of sea-ice-derived DOC utilized within days by
Arctic bacterioplankton (Niemi et al. 2014). As no significant
changes in bacterial abundances between the pCO2 treatments
were detected in our study, we believe that a masking of
potential differences in DOC excretion by increased DOC
uptake was unlikely.

In the central Arctic Ocean, sea-ice algae have been
reported to excrete large amounts of DOC, possibly stimulated
by the onset of nutrient deficiency in summer (Gosselin
et al. 1997). By end of summer, as in our study, nutrient-
stressed sea-ice algae in the oligotrophic Arctic were already
experiencing low inorganic nitrate levels, and therefore may
have been less likely to be affected by additional DIC
(i.e., initially had a high inorganic C/N ratio). In our experi-
ments, pEPS concentrations followed a different temporal pat-
tern than algal and bacterial growth, with pEPS
concentrations decreasing during Experiment 1, and increas-
ing in Experiments 2–4 (Table 3), with the increase probably
linked to the nitrate depletion that was apparent by the end
of Experiments 2–4. Lower initial inorganic nutrient concen-
trations in Experiment 4 also resulted in increased organic
C/N ratios (Table 3), yet did not stimulate a measurable effect
of pEPS accumulation in response to elevated pCO2 in 10 d,
demonstrating that ocean acidification did not promote car-
bon overconsumption.

Future changes in ocean pCO2 in the central Arctic Ocean
will likely be accompanied by lowered nutrient concentration
due to reduced upward ocean mixing (Randelhoff and Guth-
rie 2016). We investigated the role of inorganic nutrient con-
centration on the microbial response to ocean acidification by
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incubating sea ice in seawater from two different water
masses, which resulted in different growth responses of both
ice algae and bacteria. For instance, no accumulation of Chl
a was observed during Experiment 4, whereas it increased
slightly during Experiment 1 and substantially during Experi-
ments 2 and 3. The differences in growth resulted in a wide
range of organic C/N ratios (from 7.7 to 18.3), enabling us to
test the hypothesis that CO2 affects sea-ice microbial commu-
nities under different nutrient conditions. Although our
experiments were performed under different nutrient regimes,
and the microbial communities developed differently during
the different experiments, the pattern was generally not
affected by pCO2 treatment. Microorganisms adapted to the
variable conditions of sea ice are therefore more likely to be
tolerant of changes in carbonate chemistry than coastal phy-
toplankton assemblages (Hoppe et al. 2018b).

The photophysiology of Antarctic sea-ice algal communi-
ties appears to be somewhat reduced by high reductions of
seawater pH (from 7.66 to 6.39, ΔpH = −1.27) when melted
out of the ice (Castrisios et al. 2018). The photophysiology of
the ice-algal aggregates in our Experiment 3, however, was not
affected by the reduced pH (Fig. 4; Table S3), possibly due to
the more modest pH shift (from 8.07 to 7.42, ΔpH = −0.65)
compared to the latter study. Other studies on natural sea-ice
algal communities have observed no change in Fv/Fm from
pH 8.66 to 7.19 (ΔpH = −1.47; McMinn et al. 2014). Yet, nega-
tive responses to ocean acidification have recently been
reported for both Fv/Fm and rETRmax in sea-ice diatom cul-
tures, probably due to changes in ion homeostasis or due to
oxidative stress (Torstensson et al. 2019; Kvernvik et al. 2020).
The diversity of natural sea-ice algal communities may buffer
against this stress, as the PSII of sea-ice algal communities
appears to be quite robust to pH changes expected in Arctic
surface waters within this century (ΔpH = −0.45). Both Fv/Fm
and rETRmax, however, can remain unchanged in sea-ice algae,
even when growth rate has changed in in response to
increased pCO2, further suggesting that these measurements
may not be sensitive enough to detect the stress responses
expected from ocean acidification in diverse sea-ice algal com-
munities (McMinn et al. 2017). Elevated pCO2 may therefore
be more likely to cause measurable effects in carbon assimila-
tion than PSII performance by natural communities.

The effectiveness of carbon-concentrating mechanisms is
believed to play an important role in the prediction of
changes in microalgal composition as a response to human
activities that affect inorganic nutrient stoichiometry, such as
ocean acidification (Raven et al. 2011). However, most psy-
chrophilic diatoms are known to maintain effective carbon-
concentrating mechanisms and produce high concentrations
of Rubisco (Tortell et al. 2013; Trimborn et al. 2013; Young
et al. 2015a). At the same time, investments in carbon-
concentrating mechanisms are likely less costly for
psychrophiles due to the high solubility of CO2 in cold water
(Young et al. 2015b). Growth of the Antarctic sea-ice diatom

Nitzschia lecointei was only positively affected by increased
pCO2 when combined with elevated temperature (Torstensson
et al. 2013), further supporting that sea-ice diatom growth is
not limited by CO2 at low temperature. As a result, elevated
CO2 levels may have less impact on primary production in
psychrophilic microalgae compared to their temperate coun-
terparts and may explain why the growth of sea-ice algal com-
munities appeared insensitive to ocean acidification in our
study.

The bacterial assemblages in the two experiments exam-
ined (Experiments 1 and 3) were dominated by psychrophilic
and psychrotolerant taxa commonly found in Arctic sea ice,
such as the genera Polaribacter (Bacteroidia), Octadecabacter
(Alphaproteobacteria), and Colwellia (Gammaproteobacteria)
(Boetius et al. 2015), though the communities developed dif-
ferently during the two experiments (Fig. 7). The decrease in
Chao1 richness during Experiment 3 (Fig. 6b) may have been
in response to the algal growth that occurred, which would
have provided DOC and EPS for opportunistic bacterial taxa
to outcompete rare taxa. Gammaproteobacteria were generally
more abundant in Experiment 3 than in Experiment 1, possi-
bly owing to their abilities to exploit various organic com-
pounds excreted by M. arctica (Fernández-Méndez et al. 2014;
Rapp et al. 2018). During Experiment 3, ASVs from the genus
Colwellia, known for its genetic capacity to degrade a wide
range of released organic compounds (Methé et al. 2005),
became noticeably more abundant in all treatments. ASVs
from the genus Polaribacter also became more abundant,
though less so in the 1000 μatm pCO2 treatment compared to
400 and 2000 μatm pCO2 treatments. Because false discovery
rates can be high when comparing relative abundances
directly (Mandal et al. 2015), an ANCOM approach was also
used. This analysis detected only a single ASV (of the
815 ASVs), from the Colwellia genus, that differed between the
pCO2 treatments, indicating that the short-term effect of
ocean acidification on Arctic sea-ice bacterial community com-
position is minor or negligible.

During Experiment 1, the overall bacterial assemblage
structure remained unchanged (Fig. 7a,c). Here, the abun-
dance of Colwellia remained low throughout the experiment,
which may be explained by the slow algal growth and there-
fore, low rates of algal DOM excretion. These results for sea-ice
bacterial communities in the central Arctic Ocean are thus
similar to those of a previous study of coastal Arctic bacter-
ioplankton, which showed negligible effects of ocean acidifica-
tion on bacterial assemblage structure (Roy et al. 2013).
Complex interactions within natural bacterial populations
may make bacterial assemblages more resistant to ocean acidi-
fication, as suggested by Wang et al. (2015), but sea-ice bacte-
ria may be insensitive to the pH reductions applied in our
study because the sea-ice environment naturally confronts
them with large variations in pH and pCO2. The unchanged
bacterial community structure we observed in Experiment
1 probably also reflects unchanged labile DOM abundance
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and composition, given that the bulk algal community was
unaffected by elevated pCO2.

The limited duration of our experiments constrains how
the results may be interpreted and extrapolated, as some
effects of increased pCO2 may not be detected in sea-ice
algae—particularly some diatoms—until after several months
of treatment (Torstensson et al. 2015b). The duration of our
experiments was kept short to keep the ice-core sections intact
throughout the experiments and to reduce bottle effects and
artifacts from nutrient exhaustion. Even at −1.7�C, some ice
melting could be detected after 10 d from the decrease in
salinity over time relative to the more saline water from
1000 m. Nevertheless, intact algal filaments were visually
detected inside the ice at 10 d, confirming the Chl a data that
showed these ice-adapted algae had continued to grow within
their sampled habitat, despite perturbation.

The measured pCO2 levels in our incubations largely fell
below the targeted values of 400, 650, 1000, and 2000 μatm
(Tables 2, S1–S4), so that at time points where CO2 had been
reduced significantly, the carbonate system was readjusted
toward target levels. Remeasuring levels after the CO2 addi-
tions was not possible logistically, nor is determining exact
pCO2 levels in micrometer-scale brine pockets within sea ice
yet feasible. Nevertheless, the average pCO2 that the microor-
ganisms experienced throughout the experiments was likely
closer to the targeted values than indicated by the measured
values, an aspect of our experiments to consider when com-
paring to other studies. With the drawdown and then addi-
tion of CO2, the organisms in our study experienced variable
pCO2 levels, which may be regarded as more ecologically rele-
vant for sea-ice microbial communities than a fixed level.
Drawdown and replenishment occur in situ in sea ice due to
primary production (Gleitz et al. 1995) and microbial respira-
tion (Nguyen and Maranger 2011), as well as to temperature-
driven precipitation and dissolution of ikaite crystals within
Arctic sea ice (beyond the scope of this study, but see Rysgaard
et al. 2011). Even CO2 undersaturation, relative to seawater, is
a realistic scenario for sea ice harboring high algal biomass
(Geilfus et al. 2012; Tortell et al. 2013).

A major challenge with studying sea-ice microbial commu-
nity responses to ocean acidification in shipboard experiments
is the patchiness of sampling plots and limitations on replica-
tion, as also encountered during experiments conducted in
situ (Cummings et al. 2019). To minimize spatial variability,
we sampled duplicate ice-core sections for each experimental
unit (and replicated time points in quadruplicate), from a floe
with apparently homogeneously ice thickness in a relatively
small area. Some degree of patchiness was still evident, given
the observed within-group variability in the experiments
involving intact ice sections (Experiments 1, 2, and 4). In
Experiment 3, the algal aggregate community was homoge-
nized before distribution into the experimental units, which
resulted in lower within-group variability and greater statisti-
cal power. As the overall conclusion—that sea-ice

microorganisms are insensitive to ocean acidification—
remained unchanged with the reduced heterogeneity in
Experiment 3, we doubt that any potential treatment effects
were masked by sample heterogeneity and limited statistical
power in Experiments 1, 2, and 4.

Ocean acidification is occurring simultaneously with other
changing environmental factors, including temperature, irra-
diance and nutrient levels, and we know from other studies
that effects of ocean acidification on primary producers can be
modulated in combination with these stressors
(e.g., Torstensson et al. 2013; Hoppe et al. 2015). For instance,
increased irradiance has been well-studied in combination
with ocean acidification to simulate light conditions that algal
cells will experience in a more stratified ocean, and the combi-
nation of high PAR and increased pCO2 appears to have syner-
gistic impacts on growth and photosynthesis in both
temperate and Antarctic phytoplankton species (Gao
et al. 2012; Hoogstraten et al. 2012; Trimborn et al. 2017). The
primary productivity of the Southern Ocean phytoplankton
species Chaetoceros debilis was reduced by elevated pCO2 only
when the cells were grown under dynamic light conditions,
remaining unchanged under static irradiance (Hoppe
et al. 2015). Given that sea-ice algae are currently low-light-
adapted and will likely experience higher irradiances as a
result of reduced ice thickness and the increasing occurrence
of melt ponds (Arrigo et al. 2012), irradiance may be an impor-
tant co-factor to consider in future studies of ocean acidifica-
tion research on sea-ice algae. The central Arctic sea-ice algae
of our study, however, along with their associated bacterial
assemblages, appeared largely insensitive even to extreme
ocean acidification (up to 2000 μatm pCO2), highlighting the
ecological importance and resilience of these sea-ice microor-
ganisms even as pCO2 continues to increase. We did not find
any evidence of increased excretion of organic carbon (pEPS
or DOC) from sea-ice algae as a response to elevated inorganic
C/N ratios, irrespective of nitrate concentration. It seems that
the greater threat to Arctic sea-ice microbial communities may
be habitat loss caused by the continued reduction of sea-ice
thickness and extent, which affects light penetration through
the thinning sea ice (Arrigo et al. 2012) and can create a mis-
match between the ice algal bloom and zooplankton grazing
that, in turn, will have significant impacts on the whole Arctic
ecosystem (Post et al. 2013).
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