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Abstract—Graph Neural Networks (GNNs) have drawn
tremendous attention due to their unique capability to extend Ma-
chine Learning (ML) approaches to applications broadly-defined
as having unstructured data, especially graphs. Compared with
other Machine Learning (ML) modalities, the acceleration of
Graph Neural Networks (GNNs) is more challenging due to the
irregularity and heterogeneity derived from graph typologies.
Existing efforts, however, have focused mainly on handling
graphs’ irregularity and have not studied their heterogeneity.
To this end we propose H-GCN, a PL (Programmable Logic)
and AIE (AI Engine) based hybrid accelerator that leverages
the emerging heterogeneity of Xilinx Versal Adaptive Compute
Acceleration Platforms (ACAPs) to achieve high-performance
GNN inference. In particular, H-GCN partitions each graph
into three subgraphs based on its inherent heterogeneity, and
processes them using PL and AIE, respectively. To further
improve performance, we explore the sparsity support of AIE
and develop an efficient density-aware method to automatically
map tiles of sparse matrix-matrix multiplication (SpMM) onto
the systolic tensor array. Compared with state-of-the-art GCN
accelerators, H-GCN achieves, on average, speedups of 1.1~2.3x.

I. INTRODUCTION

In the past few years, GNNs have achieved great success
in many applications such as node classification [1], link pre-
diction [2], graph classification [3], and clustering [4]. Among
various kinds of GNNs, graph convolutional network (GCN)
[5], [6] is one category of models that re-define the notion of
convolution for graph data and has attracted substantial efforts
from both the industrial and academic communities due to
their unique ability to extract latent information from graph
data. GCNs have various applications, including citation net-
works [5], social network analysis [7], chemistry [8], computer
vision [9], and natural language processing [10].

Despite the popularity of GCNs, accelerating GCN infer-
ence is still challenging: GCNs inherit the irregular compu-
tational pattern and processing dataflow of graph analytics,
resulting in inefficiency on CPUs and GPUs. This is due es-
pecially to three factors: (1) irregular data access patterns due
to executing on non-Euclidean data, (2) workload imbalance
due to skewed distribution of graph degrees, and (3) hybrid
computation patterns due to diverse features of different GCN
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Fig. 1. Overview of three types of subgraph.

phases. In particular, the Aggregation (or message passing)
phase performs vector additions where vectors are fetched with
irregular strides, while the Combination (or node embedding)
phase can be either dense or sparse-dense matrix multiplica-
tion. We describe these two phases in detail in Section II.

There have been many efforts on GCN acceleration using
both GPUs and FPGAs. Researchers have pointed out that
the irregularity from graph topology, the resulting poor data
locality, and the serious workload imbalance are the problems
[11]. By leveraging FPGA hardware flexibility, existing work
[12], [13] has well addressed these problems. However, we
observe that besides the irregularity, the heterogeneity of graph
structure is also a significant performance limiter. As shown
in Figure 1, a graph can have tightly clustered components,
loosely clustered components, and scattered nodes: it is there-
fore challenging to use a unified hardware architecture/device
to accelerate all parts of the graph computation.

A few works have implemented GCN accelerator on FPGAs
[13], [14]. However, the overall performance is significantly
bounded due to the low frequency of FPGAs compared
to CPUs and GPUs. Also, single-instruction multiple-data
(SIMD) processing in CPUs can provide high frequency and
computation power. Its utility, however, is reduced as the target
computation strays from dense, regular operations. This is also
the case to some extent in the analogous modes in GPUs
and FPGAs. Overall, the heterogeneity of GCN implies that
emerging heterogeneous hardware such as Xilinx ACAP may
provide an opportunity for further acceleration.



To this end, we propose H-GCN, an accelerator designed
to mirror the heterogeneous computing paradigm of GCNs. In
particular, H-GCN leverages the heterogeneity of the Versal
ACAP to efficiently process different types of subgraphs. The
computation of tightly clustered components is mapped onto
dense AIEs to fully utilize their high frequency and paral-
lelism from SIMD and very-long instruction word (VLIW)
processors. The computation of loosely clustered components
is executed on sparse AIEs to reduce computation latency. The
computation of scattered nodes is finished on programmable
logic (PL) to utilize its programming flexibility. Its perfor-
mance is not be bounded by the low frequency since the
proportion of scattered nodes is relatively small.

In contrast with previous efforts using heterogeneous archi-
tectures to process the two GCN phases—Aggregation and
Combination—we focus rather on the heterogeneity in the
graph itself, which is the fundamental problem in large graph
processing. To the best of our knowledge, this is the first work
that implements a GCN accelerator on real-world heteroge-
neous hardware ACAPs and tackles sparse tensor computation
on the Versal AIEs. Our contributions are summarized as:

¢ We propose H-GCN—an ultra-efficient, systolic tensor-
based hardware accelerator—that incorporates the fea-
tures of the PL and AIE for fully utilizing the ACAP’s
heterogeneous compute capability in GCN computation.

« We study the heterogeneity of graphs and heterogeneity-
aware GNN acceleration.

o« We are the first to study the use of the AIE compiler in
graph processing and sparse matrix processing.

o« We design a lightweight grouping strategy to enable
sparse tensor computation on the Versal AlIEs.

« We develop an efficient method to process tiles of a sparse
matrix to enable an automatic mapping of SpMM onto
the systolic tensor array.

o Experimental results show that compared with CPU and
GPU solutions (i.e., PyG-CPU, PyG-GPU, DGL-CPU,
and DGL-GPU), H-GCN achieves up to 155.2x and
36.8x speedups, respectively. Compared with a state-
of-the-art FPGA accelerator, H-GCN achieves 1.1~2.3 x
speedup on the tested graph datasets.

In Section II, we present background about GCN and ACAP.
In Section III, we discuss related work on GCN accelerator
in detail, comparing them and discussing their limitations. In
Section IV, we describe our system architecture. In Section V,
we present the experimental results on various graph datasets.
In Section VI, we conclude and discuss future work.

II. BACKGROUND AND MOTIVATION
In this section, we will introduce some background infor-
mation, including GCNs and Versal ACAPs.
A. Graph Convolutional Networks

GCNs are composed of stacked graph convolutional layers.
Each GCN layer follows the Aggregation and Combination
paradigm. Particularly, the widely used 2-layer GCN model is
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Fig. 2. Xilinx Versal Adaptive Compute Acceleration Platforms (ACAPs).

where W' € Rh' ™" *h" s the weight matrix of the [*" layer and
X' is the feature vector of the [ layer. A=D":.4.D=.
Here A = A 4 I is the self-loop adjacency matrix; D is the
Laplacian matrix with Dj; = Y=, A;j; and o denotes non-
linear activation functions.

As introduced above, the key computation pattern in GCNs
is abstracted into a matrix chain multiplication A-X-W. There
can be two alternative computation orders: Aggregation first
(A-X)-W, or Combination first A-(X -W). Note that previous
works [12], [15] have shown that A is ultra-large and sparse, X
is moderate sparse, and W is generally small and dense, thus
the “Combination-first” approach can better utilize the sparsity
of matrix A to reduce arithmetic computation. Consequently,
our work H-GCN adopts this Combination-first approach.

B. Xilinx Versal ACAP

Figure 2 shows the Xilinx Versal ACAP architecture. ACAP
[16], [17] is a fully software-programmable, heterogeneous
compute platform that combines three components: (1) the
Processor System (PS)—Scalar Engines that include the ARM
processors, (2) Programmable Logic (PL)—Adaptable Engines
that include the programmable logic blocks and memory, and
(3) Artificial Intelligence Engines (AIEs) with leading-edge
memory and interfacing technologies.

The PL kernels can be C/C++ kernels or RTL kernels. Its
programming model is the same as traditional FPGA. Xilinx
AlEs are an array of VLIW processors with SIMD vector units,
which are highly optimized for compute-intensive applications.
The AIE array provides three levels of parallelism: (1) SIMD -
vector registers that allow multiple elements to be computed in
parallel, (2) instruction level - VLIW architecture that allows
multiple instructions to be executed in a single clock cycle, and
(3) multi-core - AIE array where up to 400 AIEs can execute
in parallel. The AIE kernels are C/C++ programs written
using specialized intrinsic calls [18] or AIE APIs [19] for the
VLIW processor. In this work, we mainly use intrinsic calls
to implement our AIE kernels and use the Vitis Al compiler
“AIE” to compile these codes.

In general, if we compare ACAP to a conventional comput-
ing system, the PS plays the role of CPU, the PL implements
all the FPGA functions, and the AIEs are responsible for the
computational acceleration like GPU. Thus, ACAP illustrates
a strong heterogeneity. However, there is no work that takes
advantage of such strong heterogeneity in GCN acceleration.
In addition, intrinsic calls or APIs are designed and optimized



for dense computation, so there is no prior work that optimizes
sparse computation on the AIEs.

III. RELATED WORK

There have been ongoing researches on designing dedi-
cated hardware architecture to accelerate GCNs. For example,
HyGCN [20] designs hybrid architecture with individual mod-
ules for Aggregation and Combination, respectively, to tackle
the hybrid computing pattern of Graph Neural Networks.
AWB-GCN [12] proposes an autotuning strategy to solve
the workload imbalance in GCN acceleration. BoostGCN
[13] uses hardware-aware partition centric feature aggregation
scheme to increase on-chip data reuse. I-GCN [21] reorders
graphs using islandization to improve the data locality so as
to achieve better on-chip data reuse and less off-chip mem-
ory access. Islandization targets low frequency, fine-grained,
high flexible PL devices and requires fine-grained hardware
architecture, which is not suitable for 2D-mesh AIEs. In the
evaluation, we will compare our work with HyGCN, AWB-
GCN, BoostGCN, and I-GCN.

Different from all prior work, our proposed H-GCN can
fully enable the computational power of the emerging hetero-
geneous compute platform—Xilinx Versal ACAP—for GCN
acceleration by leveraging its strong heterogeneity (e.g., ARM
processor, FPGA, and SIMD vector units). To fully explore the
capability of ACAP, we propose to mix sparse/dense systolic
tensor arrays to accelerate the hybrid computing pattern of
GCNs. We will describe our detailed design in Section IV.

In addition, there are a few applications that already lever-
aged Versal ACAPs. For example, Corradi and Jensen [22]
implemented real-time synthetic aperture and plane wave
ultrasound imaging on the AIEs. However, there has been no
work that explores the way to implement and optimize sparse
computation on AIEs.

IV. SYSTEM ARCHITECTURE

In this section, we introduce the architecture of our proposed
H-GCN, followed by the architecture of the sparse tensor
engine for feature aggregation. We then explain the design
of systolic tensor array for feature update in detail.

A. Overview of Our Proposed Architecture

Figure 3 shows the overview architecture of our proposed H-
GCN. It consists of a platform controller in processing system,
a sparse-dense matrix-matrix multiplications (SpMM) unit and
a PL controller in programmable logic, a sparse/dense systolic
tensor array and activation/exponential unit implemented in the
AlEs, an network on chip (NoC), four DDR4 SDRAM. The
platform controller is used to control the whole system, send
instructions to the SpMM unit, PL controller, and sparse/dense
systolic tensor array to control their executions, and collect
their statuses. Specifically, the PL controller controls SpMM
unit to cooperate with the sparse/dense systolic tensor arrays
to perform all GCN computations. It starts the SpMM unit
when it detects that the sparse or dense systolic tensor array
has generated enough data. We were inspired by MatRaptor
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Fig. 3. Overview of our hardware system design.

[23] to design our SpMM unit, which adopts row-wise product
approach. The PL controller also includes a DDR controller
to work with the NoC to perform data reading and writing.
Moreover, the sparse/dense systolic tensor array, which is
interconnected side-by-side in a chain/ring fashion, targets the
acceleration of both dense and sparse matrix addition and
multiplication. It includes both sparse systolic tensor array and
dense systolic tensor array; the sparse systolic tensor array
is designed for sparse-dense matrix-matrix multiplications in
GCNs, while the dense systolic tensor array is mainly for
dense-dense matrix-matrix multiplications in GCNs. In addi-
tion, our system first performs graph reordering (Section IV-B)
to improve the data locality/reuse and then maps different
computations, i.e., dense matrix-matrix multiplication and our
optimized SpMM (Section IV-C and IV-D), onto different
computation engines, i.e., AIEs and PL, based on the matrix
density (will be detailed in Section V-A).

B. Input Graph Reordering

Graph reordering is to optimize both the computation order
and the data layouts (e.g., graph-level data locality [24]) by
modifying the order of vertices. Our goal of reordering is to
group the vertices with more shared neighbors together to im-
prove the data reuse when conducting aggregation reductions.
The reason reordering can provide better data reuse is that real-
world graphs show a “community” structure [25], in which
some vertices may have more common neighbors or have a
closer relationship with each other. Thus, by grouping them
together, the data locality during execution will be significantly
improved. Note that graph reordering does not change the
graph structure but only affects the execution order in the
graph.

In this work, we perform the graph reordering at the training
stage [26] for only once using mt-metis [27]. mt-metis is the
latest release of an OpenMP version of Metis partitioning and
ordering routines. More discussion about this overhead will be
in Section V.



Fig. 4. The effect of reordering on Cora (left) and Pubmed (right) [28].

Figure 4 shows the effect of reordering on the Cora and
Pubmed dataset [28]. It illustrates that most of the vertices
are concentrated in the diagonal area forming relatively dense
rectangular areas (each dense area is marked with an auxiliary
line in the figure). The effect of concentrating vertices in
rectangular areas has three advantages: (1) The potential of
data reuse is increased. (2) The denser the data distribution,
the higher the computational efficiency of the AIEs. (3) The
numbers of vertices in different rectangular areas are relatively
similar, which can effectively avoid the workload-imbalance
issue. After the reordering, to fully utilize the resources of PL
and AIEs, we will map the feature aggregation of the vertices
in the dense rectangular areas and in the remaining areas onto
the AIEs and the PL, respectively. Note that both computations
can be performed completely in parallel.

C. AIE-based Sparse Tensor Engine

As introduced in Section II-A, the computation mode of
GCNs is two-phase matrix multiplication. The essence of ma-
trix multiplication is multiply-accumulate (MAC) operations.
Matrix multiplication can be further decomposed into vector
operations. An AIE provides a floating-point 512 bits SIMD
vector unit, particularly two intrinsic calls, FPMAC and FPMUL,
for vector multiplication and accumulation operations on the
vector unit. FPMAC performs multiplication and accumulation
for single-precision real number real times floating-point vec-
tors. FPMUL does multiplication for single precision real times
real floating-point vectors. Those intrinsic calls are designed
and optimized for dense matrix multiplication.

After the graph reordering, the density of rectangular areas
is still lower than 10% based on our extensive profiling
results. Thus, we propose a lightweight strategy that enables
efficient SpMM on AIEs, which improves the computation ef-
ficiency by avoiding zeros be involved in the computation and
fully utilizes the high-frequency, single-instruction-multiple-
data AIEs. It is worth noting that, without our work, SpMM
on AIEs is much slower than running the corresponding dense
GEMM directly. Besides, we also use the row-wise SpMM
and the traditional sparse storage format CSR to increase the
generality of our sparse tensor engine.

Sparse row-wise product method is all the non-zero ele-
ments from a single row of matrix A are multiplied with
corresponding rows of matrix B, where the row index of
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matrix B is the column index of the non-zero value from
matrix A. The results are accumulated in the corresponding
row of the output matrix (i.e., C[i;:] = Ziv:o Alis k] - Blk;:))
[23]. Note that multiple rows can be computed in parallel.
Figure 5 illustrates an example of row-wise SpMM. The
challenges of implementing row-wise SpMM include: (1) The
number of the innermost loops is not fixed because the number
of non-zeros in each row of matrix A is not fixed. The compiler
cannot use pipeline or loop flatten to optimize such loops with
a variable number of loops, resulting in the final performance
being worse than the dense matrix multiplication with the same
size, even though we have theoretically reduced the amount
of calculations. (2) CSR format leads to random row data
accesses, which causes low memory bandwidth utilization.
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Fig. 5. Row-wise sparse-dense matrix multiplication.

We note that although directly flatten the outermost loop
(each row of A corresponding to a loop) can make the
innermost loop fixed, each AIE has limited programming
space, and direct expansion will cause compilation failures
due to insufficient programming space. To solve this issue, we
design a lightweight strategy (shown in Figure 6) that divides
the outermost loop into multiple loops with fixed number of
innermost loops. This allows the compiler to fully optimize
both loops. We propose to use “moving average” to divide
the rows of matrix A into multiple groups. Our goals include
(1) each group contains as many rows as possible to save
programming space, and (2) each group has as little padding
as possible to reduce unnecessary calculations on zeros.
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Fig. 6. Grouped sparse-dense matrix and corresponding program.

We describe our proposed grouping algorithm in Algorithm
1 in detail. We do not need to calculate the non-zeros of each



Algorithm 1: Proposed grouping algorithm.

Inputs : A: input array; nnzs_rows: non-zeros of each row;
rows: the number of rows of A; 7: threshold of changing
group

Outputs: group_dic: dictionary of group information; density:
density after padding

1 moving_ave < MovingAverage(); group_dic < dict();
idx_g <0

2 for i < 0 to rows — 1 do
3 if not exist(nnzs_rows) then
4 | nnz_row_i + count_nonzero(A[z, :])
5 else
6 | nnz_row_i + nnzs_rowsli]
7 end
8 pre_ave < cur_ave
9 cur_ave <— moving_ave.update(nnz_row_i)
10 if pre_ave == 0 then
11 ‘ pre_ave < cur_ave # Prevent division by 0.
12 end
13 if abs(cur_ave — pre_ave)/pre_ave > 7 then
14 group_diclidr_g] < g; g < [ ] # update group.
15 moving_ave.reset(); moving_ave.update(nnz_row_z)
16 else
17 | g.append(i)
18 end
19 end

20 widensity « calc_density(group_dic)

line if nnzs_rows has already existed (lines 3-7). We use
pre_ave to record the previous moving average, and cur_ave
saves the current moving average (lines 8-9). Moreover, we
also need to prevent dividing by zero since RESET() function
will set cur_ave to zero (line 15). If the change of the moving
average exceeds threshold 7, we put the data from row j to
row ¢ — 1 into a group, and we will pad each row in this group
to ensure the same number of non-zero elements in each row,
where j is the first row of this group (lines 13-18).

D. Sparse Systolic Tensor Array on AIEs

Two-dimensional (2D) systolic array is a pipelined 2D
array of processing elements (PEs). Classical systolic array is
generalized into a family of systolic tensor array by replacing
the traditional scalar PEs with tensor PEs (TPEs). Each TPE
is responsible for processing one tile of tensor or matrix.
When using systolic tensor array to perform matrix operations,
TPEs in the same row are required to perform exactly the
same calculation mode (e.g. MAC) because one tile of data
will flow to each TPE in the same row in turn. It is very
easy to satisfy such requirements when performing dense
matrix multiplication, because each TPE only needs to perform
vector-based MAC operations. But it is difficult to meet such
requirements when performing SpMM using systolic tensor
array, since each tile has a completely different number of
non-zero element and computational model.

To solve this issue, we propose an efficient method to
process tiles of a sparse matrix to enable mapping SpMM
onto the systolic tensor array automatically. Our idea is to pad
the tiles in the same row as little as possible to make them
have the same calculation pattern. Algorithm 2 describes the
simplified workflow of automatic pre-processing of tiles and
corresponding tensor PEs generation. We generate different
sparse or dense codes for the systolic tensor PEs in the same
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Algorithm 2: Proposed automatic tensor PEs genera-
tion algorithm.

Inputs : A: input sparse matrix; rows: the number of rows of A;
cols: the number of columns of A; tile_size: tile size; J:
ratio by which the number of non-zeros changes. p:
coverage percentage; d: density threshold of generating
dense tensor PE.

Sparse or dense code for systolic tensor PEs in the same
TOwW.

Outputs:

cols
tile_size

1 tiles_row = —2%5 _: tiles_col =
tile_size

2 for i < 0 to tiles_row do

3 nnzs_rows < [0] X tile_size

4 for j < O to tile_size do

5 nnzs_row_j < [0] x tiles_col

6 for k < 0 to tiles_col do

7 nnzs_row_jlk] <

count_nonzero(A[i x tile_size + j, k X tile_size :
(k4 1) x tile_size])

8 end

9 ave_nnz < sum(nnzs_row_j)/len(nnzs_row_j)
10 mazx_nnz < max(nnzs_row_j)

11 if MALNNZ > § then

ave_nnz

12 ‘ nnzs_rows[j] < find_nnz(nnzs_row, p)
13 else

14 | nnzs_rows(j] < maz_nnz

15 end

16 end

17 group_dic, density < grouping(nnzs_rows)

18 if density > d then

19 | gen_dense_tensor_PE(z)
20 else

21 \ gen_sparse_tensor_PE(i, group_dic)
22 end
23 end

row as the distributions of non-zeros in different tiles are
different. Specifically, (1) we count the non-zeros of tiles in the
same row (lines 6-8). (2) We calculate the average non-zeros
(ave_nnz) and maximum non-zeros (max_nnz) of all tiles
in the same row (lines 9-10). (3) We attempt to find a suitable
number of non-zeros (line 12) for all tiles in the same row if
the difference between ave_nnz and max_nnz is larger than
the pre-defined ratio d; if we cannot find a suitable number,
we will select max_nnz as ideal non-zeros for all tiles in
the same row (line 14). The purpose of this step is to reduce
padding as much as possible. The function FIND_NNZ is to
find the number of non-zeros which covers p percentage of all
tiles in the same row. The remaining non-zeros are calculated
by SpMM in PL. (4) We use the grouping algorithm described
in Algorithm 1 to group the rows (enable efficient SpMM on
each AIE) after generating the number of non-zeros in each
row (line 17), and obtain the final density after padding. (5) We
directly use dense tensor PE for those tiles if their final density
is larger than d; otherwise, we use sparse tensor PE to process
those tiles (lines 18-22). Based on our profiling experiments,
there is no speedup of using spare tensor PE when density
higher than 50% (shown in Figure 8).
E. Pipelining SpMM Chains

Intra-Layer SpMM Pipelining. As described in Section
II-A and Equation 1, SpMM chains A - (X - W) are executed
on three different hardware, i.e., dense systolic tensor array,

sparse systolic tensor array, and PL for SpMM. Figure 7
illustrates how to map such computation pattern onto the
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Fig. 7. Our proposed computation mapping strategy and pipelining.
AlEs. Note that “:” means all indices along this axis. For
instance, B[:, 0:32] means a slice from B containing 32
columns across all the rows. Note that there are 400 AIEs
distributed in 8 rows and 50 columns. The upper 4 lines of
the AIEs are used to implement the mixed sparse or dense
systolic tensor PEs (STPEs/TPEs) to perform the computation
of A - B. We use Algorithm 2 to automatically generate
corresponding STPEs/TPEs based on the sparsity. According
to our experiment, over 90% of generated systolic tensor
PEs are sparse. The remaining 4 lines of the AIEs are used
to implement the dense systolic tensor PEs to perform the
computation of X - W, where B is the intermediate variable
generated by X - W.

The tile size (i.e., the size of a tile in the blocked matrix-
matrix multiplication) of A-B (SpMM) is 64 x64. The reasons
for choosing this tile size are: (1) A is represented in a CSR
format, so such a tile of A can be completely stored in the on-
chip memory of an AIE. (2) Feeding a large amount of data
can ensure the computation efficiency of the AIE. The tile
size of X - W (dense matrix-matrix multiplication) is 32x32,
which is the maximum size that an AIE can hold after forming
systolic tensor array. The remaining 4 lines of the AIEs will be
reconfigured to STPEs/TPEs after finishing the entire X - W,
maximizing the use of all AIE resources. Note the matrix size
equals the tile size multiplied by the number of tensor PEs.

Note that A is constant during the inference of a certain
graph, once a partial result pp of B is calculated, we can
start the multiplication of pp with A on STPEs/TPEs and PL
for SpMM immediately without waiting for the entire X - W
to finish. Therefore, we can exploit the parallelism between
consecutive SpMMs—X -W and A-(X-W)—in a layer through
fine-grained pipelining, as shown in Figure 7. When generating
a tile (i.e., 32x32) of intermediate data B, we perform A - B
immediately. This pipelining design has two major benefits:
(1) It gains extra parallelism and reduce the overall latency.
(2) It avoid a part of hardware stalls.
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V. EXPERIMENTAL EVALUATION

In this section, we first introduce the experimental setup
and analyze the performance impact of graph reordering and
mapping methodologies. Then, we compare the performance
of H-GCN with the state of the art GCN accelerators.

A. Experimental Setup

Dataset. Our Graph accelerator evaluation covers a widely
used spectrum of mainstream graph datasets [21], [29] includ-
ing Cora [30], Citeseer [30], Pubmed [30], Flickr [31], Reddit
[31], Yelp [31], and AmazonProducts (Amazon) [31]. Details
of these datasets are listed in Table I.

GCN Model. Similar to the previous works [12], [20], we
evaluate our solution on two-layer Vanilla-GCN model [5]
with the hidden dimension of 128.

Our Platform. We use Xilinx Versal VCK5000 (data center
development card) [32] and its development kit for implemen-
tation. VCK5000 features the Xilinx Versal ACAP XCVC1902
device. XCVC1902 device contains 400 AIEs distributed in 8
rows and 50 columns. For PL resources, XCVC1902 device
includes 1,968 DSP engines, 1,799,680 CLB Flip-Flops (FFs),
899,840 LUTs, and 34 MB Block RAM. VCKS5000 board
is equipped with four discrete DDR4 with 72-bit memory
interface. The external memory has 100 GB/s peak memory
bandwidth with four memory channels. Each channel can
provide 25 GB/s peak memory bandwidth. We compile our
design using Vitis unified software platform 2020.2.

Baseline Platforms. We compare our H-GCN with two ad-
vanced, well-optimized geometric deep learning frameworks,
i.e., PyG [33] and DGL [34], on general-purpose processors
(i.e., CPU and GPU) and the state-of-the-art GCN accelerators,
i.e., HyGCN [20], AWB-GCN [12], I-GCN [21], and Boost-
GCN [13]. The CPU platform is equipped with two 28-core
Intel Xeon Gold 6238R @2.2GHz processors with 384 GB
DRAM. The GPU platform is equipped with an NVIDIA RTX
2060 SUPER with 8 GB memory. We denote PyG and DGL
running on CPU and GPU platforms as PyG-CPU, DGL-CPU,
PyG-GPU, and DGL-GPU, respectively. PyTorch version and
CUDA version are 1.11.0 and 11.3, respectively.

Implementation Details. First, we map different partitioned
computations to different engines as follows: (1) when the
density is higher than 50%, we map the computation of tightly
clustered subgraphs onto dense AIEs; when the density is
lower than 50% but higher than 1.0%, we map the computation
of loosely clustered subgraphs onto sparse AIEs; and when
the density is lower than 1.0%, we map the computation of

TABLE I
TEST GRAPH DATASETS.

Dataset # Vertices A’s Density # Features
Cora 2,708 0.14% 1,433
Flickr 89,250 0.011% 500
Citeseer 3,327 0.08% 3,703
Reddit 232,965 0.04% 602
Pubmed 19,717 0.023% 500
Yelp 716,847 0.0027% 300
Amazon 1,569,960 0.011% 200
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Fig. 8. Speedups of sparse tensor engine with different grouping strategies under different matrix sizes.

TABLE II
COMPARISON OF INFERENCE TIMES (T) IN 48 AND ENERGY EFFICIENCY (E) IN GRAPHS/KJ. OOM IS SHORT FOR “OUT OF MEMORY”.

pDataset  PYG-CPU DGL-CPU PyG-GPU DGL-GPU HyGCN AWB-GCN I-GCN BoostGCN | H-GCN (our work)

T E T E T E T E T E T E T E T E T E

Flickr  3.5E5 17.37 | 24E5 2543 1.6E4 351E2 | 1.1E4 5.1E2 N/A N/A N/A N/A N/A N/A | 2.01E4 N/A 1.02E4 1.0E3

Reddit 6.5E6 083 | 54E5 1126 | OoM  N/A | 6.6E4 8707 | 289ES S5.I7E2 | 50E4 15E2 | 46E4 22E2 | 98IE4 N/A | 418E4  246E2

Yelp 59E6 103 | 86E5 7.09 | OoM  NA | 25B5 2302 | NA  NA| NA NA| NA NA | 19E5 NA | 12E5 85.85

Amazon OoM N/A | 29E6 21 | OoM  NA | OoM NA | NA  NA| NA NA| NA NA |794E5 NA | 5I5E5 1993
TABLE III AIE can only hold up to 64 x 64 4+ 64 x 8 floating-point

COMPARISON OF INFERENCE TIMES (T) IN ;S AND ENERGY EFFICIENCY
(E) IN GRAPHS/K]J.

Cora Citeseer Pubmed
Method T E T E T B
PyG-CPU 1.1E4 5.36E2 1.7E4  3.65E2 5.7E4  1.07E2
DGL-CPU 7.5E3 8.08E2 | 2.4E4 2.50E2 2.9E4 2.07E2
PyG-GPU 22E3 2.55E3 2.7E3  2.16E3 3.7E3 1.53E3
DGL-GPU 4.1E3 1.39E3 | 4.6E3 1.23E3 | 496E3 1.15E3
H-GCN 1.1E2 9.18E4 | 29E2 3.56E4 | 1.03E3 9.93E3

scattered nodes onto PL. Second, we follow three steps to
conduct this allocation: (1) we compile the code of AIEs for
the computation of clustered or loosely clustered nodes (after
reordering) using the Vitis Al compiler; (2) we compile the
HLS kernels of PL for the computation of scattered nodes
using the v++ command; and (3) we use the v++ command
to link the compiled objects with the target platform (i.e.,
VCK5000). Third, the frequency of NoC, PL, and AIEs is
800 MHz, 273 MHz, and 1GHz, respectively. The hardware
resource utilization and frequency are obtained from the gen-
erated report by place-and-route. Note that the frequencies of
PL and NoC are defined by our design choice, while AIEs—-
an array of VLIW processors with SIMD vector units—-have
a fixed frequency of 1 GHz. Fourth, the SpMM module only
accounts for 15.3%, 84.6%, 14.7%, and 26.6% of BRAM,
DSP, FFs, and LUTs, respectively. Last, the evaluation results
shown in the following discussion are based on simulations.
Xilinx provides a profiling tool called “Vitis Analyzer” [35],
which can accurately model the execution time of AlIEs.

B. Speedup of Sparse Tensor Engine

First, we evaluate the impact of the grouping algorithm on
the overall speedup. We perform the experiments on different
matrix sizes and densities as illustrated in Figure 8. Since an
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numbers, we test matrix sizes up to 64. Compared to the
original dense algorithm, our grouping algorithm (i.e., CSR-
fixed-nnz) provides 2.9x, 2.1x, and 2.5x speedup over the
original dense method on matrices of size 64, 32, and 16,
respectively, when density is 0.1.

The row-wise SpMM with variable loops (i.e., CSR-
variable-nnz), however, is much slower than the dense method
even though we theoretically avoid computation on zeros. This
is because the Vitis AIE compiler cannot use pipelining or loop
flattening to optimize those variable loops.

The speedup gradually decreases to 1 as the density in-
creases, and the speedup disappears when the density is higher
than 50%. The reasons are the increase in non-zero elements
leads to increases in both the overhead of random access data
and the computational delay. Thus, we switch to dense matrix-
matrix multiplication when the density is higher than 50%.

We also evaluate the impact of sparsity on the effective
FLOPS of an AIE. The effective FLOPS is 7.1 GFLOPS per
AIE for dense matrix multiplication. We calculate the effective
FLOPS based on nonzeros. FLOPS will increase as the density
increases. This is because SpMM needs to convert to dense
vector operations for executing on AIEs. For example, the
effective FLOPS per AIE for SpMM of 32x32 by 32x32 is
1.6 GFLOPS, 2.5 GFLOPS, 3.1 GFLOPS, 3.4 GFLOPS, 3.5
GFLOPS, and 3.7 GFLOPS, when the density is 10%, 20%,
30%, 40%, 50%, and 60%, respectively.

C. Comparison with State of The Art

We evaluate the inference latency, and energy efficiency
of H-GCN and compare it with other approaches (including
software and accelerator solutions).

First, the “T” columns in Table II show that H-GCN
outperforms the best accelerator I-GCN by 1.1x in terms



of inference latency. Moreover, compared with other prior
accelerators, H-GCN provides speedups of 1.5x~2.3x (1.9x
on average) over BoostGCN, 1.2x over AWB-GCN, and 6.9 x
over HyGCN. In addition, H-GCN significantly outperforms
PyG and DGL on both CPU and GPU: it achieves average
speedups of 79.5x over PyG-CPU, 12.2x over DGL-CPU,
1.59x over PyG-GPU, and 1.58x over DGL-GPU.

The performance improvement is because of (1) the better
data locality and hence higher data reuse after the graph
reordering, (2) the full use of AIEs via efficient sparse systolic
tensor computation, and (3) our proposed scheduling approach
for reducing the number of stalls in the overall pipeline.

The “E” columns in Table II show that H-GCN is 1.12x
and 1.64x more energy-efficient than I-GCN and AWB-GCN,
respectively, which were previously the most energy-efficient
solutions. This is due to the ACAP’s more efficient dynamic
power management [36]. Note that we measure the energy
efficiency of H-GCN by using Xilinx Power Estimator [36].

For relatively small graphs, dataflow accelerators such as
I-GCN normally preload the graph data into their on-chip
buffer and thereby avoid off-chip data access achieving lower
inference latency. Therefore, we compare H-GCN with CPU
and GPU platforms for Cora, Citeseer, and Pubmed. Table III
compares inference latency and energy efficiency of relatively
small graphs in CPU and GPU platforms. It achieves average
speedups of 71.1x over PyG-CPU, 59.8x over DGL-CPU,
10.9x over PyG-GPU, and 19.2x over DGL-GPU.

D. Performance Breakdown

To demonstrate that the performance improvement is due to
the proposed method rather than the graph reordering, we map
the computation of dense rectangular areas into AIEs without
the approach (using dense systolic tensor array). The inference
time of Cora, Citeseer, Pubmed, Flickr, Reddit, Yelp, and
Amazon increases by 2.0x, 2.9x, 4.3x, 59x, 1.9x%, 43x,
and 3.9, respectively.

We compare the performance of SpMM (i.e., 64x64 by
64x32) on PL and AIEs with different sparsities. Specifically,
when the densities are 0.1%, 0.5%, 1.0%, 5.0%, and 10.0%,
the run times of PL are 0.18 us, 0.88 us, 1.75 us, 8.41 us,
and 16.82 us, respectively. The run times of AIE are 1.1 us,
2.07 ps, 3.84 us, 7.97 ps, and 10.44 ps, respectively. This
illustrates that SpMM on PL is faster than on AIE when the
density is less than 1.0%. Thus, we propose to use “density”
as our criterion to determine whether to map SpMM onto PL
or AIE.

In addition, we propose to prefetch and cache data through
the PL controller because the theoretical PL-AIE bandwidth
can reach 1.3 TB/s, whereas AIE-NoC bandwidth is only
around 12 GB/s. Our evaluation shows that PL-DDR band-
widths of Cora, Citeseer, Pubmed, Flickr, Reddit, Yelp, and
Amazon are 72.6 GB/s, 71.9 GB/s, 69.3 GB/s, 81.7 GB/s,
79.0 GB/s, 74.5 GB/s, and 75.7 GB/s, respectively. Note that
since Xilinx provides DDR controller IP, we implement our
own DDR controller on PL. To calculate the throughput we
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use RTL simulations to measure the total clock cycles for
transferring the graph data.

E. Overhead of Graph Reordering

Finally, we evaluate the time overhead of the graph re-
ordering, as shown in Table IV. Note that as aforementioned,
the graph reordering can be integrated into the training pro-
cess [26], so we take this overhead as the offline overhead.
The OpenMP version of Metis takes advantage of multiple
cores/threads in the CPU to reorder large graphs in parallel.
For the Amazon dataset with 1,569,960 vertices, the graph
reordering on 56 CPU cores only takes 7.31 seconds.

TABLE IV
GRAPH REORDERING TIME (msS).
Cora Citeseer Pubmed Flickr Reddit Yelp Amazon
11.5 11.2 33.6 193 648 1650 7310

Since graph can evolve dynamically, especially for inductive
GNNs, we will support this online graph reordering in our
future work. Specifically, we plan to use the host’s CPU to
reorder the initial graph offline (by only once) and the ACAP’s
ARM CPU to fine-tune the order online (by multiple times) as
the graph evolves. This will help eliminate the communication
cost of transferring node indices between the host and ACAP.

VI. CONCLUSION AND FUTURE WORK

The heterogeneity of graph structure is a significant factor in
limiting the performance of GCN inference. Moreover, since
typical graphs consist of tightly clustered subgraphs, loosely
clustered subgraphs, and scattered nodes, it is not possible
to use a unified hardware architecture/device to accelerate
all parts of a GCN computation. To solve these issues, we
propose H-GCN, an ultra-efficient, systolic tensor-based hard-
ware accelerator, with heterogeneous computation paradigm
to corresponding to GCNs. We leverage the heterogeneity of
the Xilinx Versal ACAP to process those three types of sub-
graphs efficiently. Our broad experiments have demonstrated
that, compared with a state-of-the-art FPGA accelerator, H-
GCN achieves speedups of 1.1~2.3x. In the future work,
we will address computation of gradually evolving GCNs by
exploiting online graph reordering by leveraging the ARM
processors in the Versal ACAPs.
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