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EXPONENTIAL CONVERGENCE OF SOBOLEV GRADIENT

DESCENT FOR A CLASS OF NONLINEAR EIGENPROBLEMS∗

ZIYUN ZHANG†

Abstract. We propose to use the  Lojasiewicz inequality as a general tool for analyzing the con-
vergence rate of gradient descent on a Hilbert manifold, without resorting to the continuous gradient
flow. Using this tool, we show that a Sobolev gradient descent method with adaptive inner product
converges exponentially fast to the ground state for the Gross-Pitaevskii eigenproblem. This method
can be extended to a class of general high-degree optimizations or nonlinear eigenproblems under cer-
tain conditions. We demonstrate this generalization using several examples, in particular a nonlinear
Schrödinger eigenproblem with an extra high-order interaction term. Numerical experiments are pre-
sented for these problems.
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1. Introduction

The Gross-Pitaevskii eigenproblem, a well-known example of the nonlinear
Schrödinger eigenproblem, seeks λ∈R and v∈H1

0 (Ω) that satisfy the following equation

−∆v+V v+β|v|2v=λv on Ω⊂R
d, (1.1)

where Ω is a bounded region in R
d, V (x)≥0 is an external trapping potential, and

β≥0 is a parameter describing the repulsive interaction between particles. In physics,
this describes the Bose-Einstein condensate when the temperature is close to absolute
zero. The eigenstate v corresponding to the smallest λ describes the ground state
of this system. It has long been studied both in experiments [2] and in numerical
analysis [8, 16, 22, 26].

To find the ground state v is equivalent to solving the following minimization prob-
lem:

min
∥u∥L2=1, u∈H1

0 (Ω)
E(u) :=

∫

Ω

(
|∇u|2 +V |u|2 +

β

2
|u|4

)
dx. (1.2)

The constraint set {u∈H1
0 (Ω) :∥u∥L2 = 1} is the unit sphere in H1

0 (Ω). It can be seen
as an infinite dimensional Hilbert manifold. Such a manifold (with additional L∞(Ω)
constraints) will be denoted as M in subsequent sections. Thus many manifold opti-
mization methods on the Riemannian manifold are readily applicable to this problem,
with diverse techniques and rich theories.

In this paper, we focus on a special manifold gradient descent method named the
Sobolev projected gradient descent (Sobolev PGD), first proposed in [23]. This method
has the following iteration formula:

un+1 =R

(
(1−τn)un +τn ·

(un,un)L2

(Gun
un,Gun

un)aun

Gun
un

)
, (1.3)
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378 EXPONENTIAL CONVERGENCE OF SOBOLEV PGD

where R is the retraction back onto the manifold, τn is the n-th step size, (·, ·)aun
is

an adaptive inner product in the tangent space of M, and Gun
is the Green’s operator

associated with (·, ·)aun
. Their definitions are in Section 3. The main result of this

paper is as follows.

Theorem 1.1 (Main result, informal). If initialized with a positive initial guess u0,
the au-Sobolev gradient descent which is given by (1.3) converges to the ground state of
the eigenproblem (1.1) exponentially fast.

The idea of using a discretized normalized gradient flow (DNGF) to solve Problem
(1.2) can be traced back to [6]. Following this seminal work there have been a number
of variants, see e.g. [12,13,17] and the review paper [4]. The viewpoint of (Riemannian)
manifold optimization has also been explicitly adopted in [13]. Based on those meth-
ods with fixed inner products, the adaptive version of au-Sobolev gradient descent has
recently been proposed in [23]. Despite its popularity, quantitative convergence analy-
sis of the DNGF family has been quite lacking. The convergence rate has been either
unavailable, or only proved for the gradient flow [23]. Another popular choice is the
self consistent field iteration (SCF), see e.g. [10]. Rigorous global convergence rate is
however difficult to establish. There are also second-order methods like the Riemannian
Newton method, but they require second-order information which can be expensive to
obtain.

We highlight the main differences between the current paper and [23]. The authors
of [23] first propose the Sobolev gradient descent method (1.3). They establish the
exponential convergence rate of the time-continuous gradient flow. But the important
question of whether the time-discrete gradient descent also achieves optimal exponential
convergence rate remains open. Our main contribution is to give a confirmatory answer
to this question. We do this by introducing the  Lojasiewicz inequality tool, which is a
general analytical tool that is applicable to a wide class of problems.

Specifically, in Section 2, using the  Lojasiewicz inequality tool, we reveal that the
key to exponential convergence is the quadratic nature of the objective energy functional.
In other words, regarded as a polynomial, the objective functional should behave like a
degree-2 polynomial under the given manifold metric. The  Lojasiewicz inequality has
been widely used in the optimization community, see e.g. [19, 27]. Yet it has scarcely
been applied to the problems of interest in this paper.

Although the degree of polynomial of the objective function in Problem (1.2) is
formally higher than quadratic, Method (1.3) changes the situation by using an adaptive
inner product au(·, ·) instead of a fixed inner product. As a comparison, using a fixed
inner product, the  Lojasiewicz exponent (the θ in Theorem 2.1) calculated in [28] is
1/4; while in this paper, using an adaptive inner product, we have θ= 1/2. The latter
is more desirable according to Theorem 2.1. Thus, in Section 3, using the  Lojasiewicz
inequality tool, we are able to prove the exponential convergence rate of discrete time
gradient descent directly.

The  Lojasiewicz inequality tool also makes the Sobolev gradient descent easily ap-
plicable to general optimization of high-degree objective or eigenvalue problems other
than the Gross-Pitaevskii eigenvalue problem. Its interesting property of making a
high-degree polynomial behave like quadratic is not specific to a certain problem, but
is general. Examples include the biharmonic Schrödinger, the nonlinear Schrödinger
with a different order or extra interaction terms, and potentially some general manifold
optimization problems.

In addition to the necessary regularity conditions, the only essential requirement is
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that the global ground state of the nonlinear problem is also the unique ground state of
its linearized version, what we call the “double ground state” property.1 For Problem
(1.1), this property will be rigorously proved in Section 3.2. For many other problems,
it is either provable, or a reasonable assumption according to numerical evidence. We
summarize this result as the following:

Proposition 1.1 (Generalization of main result, informal). If the objective problem
satisfies the “double ground state” property and necessary regularity conditions, then
with a proper initialization u0, the au-Sobolev gradient descent converges to a minimizer
of this problem exponentially fast.

Specifically, an example of nonlinear Schrödinger eigenproblem from [5] will be
rigorously discussed in Section 5. This example has an extra high-order interaction
term −δ∆(|v|2)v where δ≥0. Classical methods that work for (1.1) could become
inefficient or unstable for this problem. A density function reformulation ρ := |u|2 was
proposed in [7], but it has to treat the lack of continuity of ∇√

ρ near 0+ with extra
regularization. Therefore the adaptive Sobolev gradient descent is advantageous for its
simplicity and fast convergence.

We remark that if the domain is convex, an alternative approach to derive local lin-
ear convergence rate2 of gradient descent methods is to use strong convexity (SC). This
is especially popular in the finite dimensional data science problems [11]. Attempts have
also been made to extend it to nonconvex settings like manifolds. Some works in this
direction can be found in [1,9]. We emphasize that our approach using the  Lojasiewicz
inequality has its advantages over SC, namely it applies to degenerate critical points
where SC could fail, and it allows more freedom in the choice of iterative algorithms
and convergence measures. A more detailed comparison of these two approaches would
be of interest in future research.

The rest of the paper is organized as follows. In Section 2, we introduce the
 Lojasiewicz inequality tool with mixed norms on the Hilbert manifold as an abstract
convergence theorem. In Section 3, we establish the main result on the exponential
convergence of the au-Sobolev gradient descent method applied to the Gross-Pitaevskii
eigenproblem (1.1). Section 4 is devoted to the analysis of spatial discretization. In
Section 5, we introduce several extensions of the Sobolev gradient descent to other non-
linear eigenproblems. Some numerical results are presented in Section 6. Finally, we
make some concluding remarks in Section 7.

2. Abstract convergence theorem using the  Lojasiewicz inequality

In this section, we introduce the  Lojasiewicz inequality tool as an abstract conver-
gence theorem. We show that one can deduce the convergence of an iteration algorithm
from a triplet of conditions (L), (D) and (S). Furthermore, whether the convergence
rate is exponential (linear) or polynomial (sublinear) is determined by the exponent in
the (L) inequality.

Theorem 2.1. Assume that the domain M is a Hilbert manifold. Let ∥·∥X be a
norm on T M, the tangent bundle of M, and ∥·∥Y be a norm in the ambient space
of M which is complete. Here ∥·∥X and ∥·∥Y can be either same or different. Let

1This property is nontrivial. Although an eigenstate of the nonlinear problem is always an eigenstate
of the linearized problem, it is not always the lowest energy eigenstate (i.e., ground state) of the
linearized problem.

2Both exponential and linear convergence refer to the case where errk ≤ ck ·err0 for some 0<c<1.
In this paper we use both terms interchangeably. The term linear convergence is more popular in the
optimization community.
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{un}∞n=0⊂M be a sequence generated by some iterative algorithm. Assume that E(u)
is differentiable on M and let grad E(u) be the manifold gradient of E(u). If E(u) and
{un}∞n=0 satisfy the following conditions for all n∈Z+:

• ( Lojasiewicz Gradient Inequality.) There exists u∗ that is a cluster point of
{un}, and there exists 0<CL<+∞, 0<θ≤ 1

2 , such that for large enough n,

|E(un)−E(u∗)|1−θ≤CL∥grad E(un)∥X ; (L)

• (Descent Inequality.) There exists CD>0 such that for large enough n,

E(un)−E(un+1)≥CD∥grad E(un)∥X∥un+1−un∥Y ; (D)

• (Step-size Condition.) There exists CS >0 such that for large enough n,

∥un+1−un∥Y ≥CS∥grad E(un)∥X . (S)

Then u∗ is the unique limit point of {un}∞n=0 w.r.t. ∥·∥Y . Moreover, {un}∞n=0 converge
to u∗ with the following asymptotic convergence rate:

∥un−u∗∥Y ≲

{
e−cn, if θ= 1

2 ,

n− θ
1−2θ , if θ∈ (0, 12 ),

where c := log(1− CDCS

2C2
L

).

Proof. {E(un)} is monotonically decreasing from Condition (D). Since u∗ is a
cluster point of {un}, E(un)≥E(u∗) for any n. We also have limn→∞E(un) =E(u∗) by
continuity of E(·). Without loss of generality, assume that E(u∗) = 0. By Conditions
(D) and (L), we have

∥un+1−un∥Y ≤ E(un)−E(un+1)

CD∥grad E(un)∥X
≤ CL

CD
(E(un)−E(un+1))E(un)θ−1

≤ CL

CD

∫ E(un)

E(un+1)

yθ−1dy=
CL

θCD
(E(un)θ−E(un+1)θ).

Using a bootstrapping argument, we have that for any m>n,

∥un−um∥Y ≤ CL

θCD
(E(un)θ−E(um)θ)≤ CL

θCD
E(un)θ. (2.1)

Since E(un) is convergent, we deduce that un is convergent, and the limit point is u∗.
To estimate the convergence rate, let rn :=

∑∞
k=n∥uk+1−uk∥Y , then ∥un−u∗∥Y ≤

rn. It suffices to estimate the convergence rate of rn. By Conditions (L) and (S), for
large enough n,

|E(un)−E(u∗)|1−θ≤CL∥grad E(un)∥X ≤ CL

CS
∥un+1−un∥Y .

Since we have made the assumption that E(u∗) = 0, we obtain

E(un)≤
(
CL

CS
∥un+1−un∥Y

) 1
1−θ

. (2.2)
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Thus, we have

rn =
∞∑

k=n

∥uk+1−uk∥Y ≤
∞∑

k=n

CL

θCD
(E(uk)θ−E(uk+1)θ) =

CL

θCD
E(un)θ

≤ CL

θCD

(
CL

CS
∥un+1−un∥Y

) θ
1−θ

=
CL

θCD

(
CL

CS
(rn−rn+1)

) θ
1−θ

,

where the first inequality is due to (2.1) and the second inequality is due to (2.2). This
gives

rn+1≤ rn−Cr
1−θ
θ

n , C :=C
− 1

θ

L (θCD)
1−θ
θ CS .

Note that here 0<C<1, otherwise the sequence would have converged in finite steps.
If θ∈ (0, 12 ), let sn :=s0n

−γ , γ = θ
1−2θ , and s0≥max{r0,(C/γ)−γ}. Then

sn+1 =sn

(
1+

1

n

)−γ

≥sn

(
1− 1

n
·γ
)

=sn

(
1−γs

−1/γ
0 s1/γn

)
≥sn−Cs

γ+1
γ

n =sn−Cs
1−θ
θ

n .

Combining s0≥ r0, rn+1≤ rn−Cr
1−θ
θ

n , and sn+1≥sn−Cs
1−θ
θ

n , by induction,

rn≤sn =s0n
− θ

1−2θ ∀n,

which is polynomial (or sub-linear) convergence.
If θ= 1

2 , then rn+1≤ (1−C)rn, and

rn≤ r0e
cn, c := ln(1−C),

which is exponential (or linear) convergence.

The above result can be seen as a generalization of Theorem 2.3 in [27] to the
Hilbert space/manifold. Another work in this direction is [19]. What is new in our
version is that one has the freedom to choose mixed norms (∥·∥X and ∥·∥Y ), as long
as the conditions (L), (D) and (S) can be satisfied under these norms. One example is
the ∥·∥au

in this paper, which varies with u.
The advantage of the  Lojasiewicz inequality approach is that instead of dealing

with the time discretization of the gradient flow, it gives the convergence of the gradient
descent directly. The triplet of conditions (L), (D) and (S) in Theorem 2.1 all have clear
and intuitive meanings. In fact, it is easier to deduce the convergence property of the
gradient flow from that of the gradient descent, since we only need to take the limit
τ →0+; while the reverse direction from gradient flow to gradient descent can be more
difficult.

An important observation is that the exponent θ in  Lojasiewicz gradient inequality
indicates the degree of polynomial of the objective function. For example, consider
x∈R, let f(x) =xk for a positive integer k, then  Lojasiewicz gradient inequality holds
with θ= 1/k. From this viewpoint, exponential convergence is closely related to certain
quadratic-like behavior of the objective functional. It is thus unusual for a quartic-
quadratic functional E(·) (i.e. a functional which is the sum of nonnegative quartic and
quadratic terms) to have exponential convergence rate. What the Sobolev gradient does
is to force the quartic term to behave like quadratic. This is the idea behind the proof
of Theorem 3.2.
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3. Exponential convergence of Sobolev gradient descent

In this section, we establish the convergence rate of the au-Sobolev gradient descent
for Problems (1.1) and (1.2). In Section 3.1, we introduce the setting of manifold
optimization and derive the au-Sobolev gradient descent method. In Section 3.2, using
the  Lojasiewicz inequality tool from the previous section, we prove the exponential
convergence rate by checking conditions (L), (D) and (S) for this specific method.

3.1. Manifold setting and derivation of au-Sobolev gradient descent.

The following assumptions on Ω, V and β will be required throughout this section.

Assumption 3.1. Let Ω, V and β be chosen such that the following assumptions hold:

• Ω is a bounded domain in R
d, d= 1, 2, or 3, and Ω is either convex Lipschitz

or has a smooth boundary;

• V ≥0 and V ∈L∞(Ω), V is a trapping potential, and β≥0.

Remark 3.1. V is chosen as a trapping potential so that the eigenstates of interest
are localized. It is then natural to impose zero Dirichlet boundary conditions on ∂Ω.
Examples of a trapping potential include the well model in the classical Anderson local-
ization where lim|x|→∞V (x) = +∞, and the fully disordered model with high contrast
and small interaction length.

Define the infinite dimensional Hilbert manifold M as

M :={u∈H1
0 (Ω) :∥u∥L2(Ω) = 1, ∥u∥L∞(Ω)≤M0 for some global constant M0}.

Then M is a submanifold in H1
0 (Ω)∩L∞(Ω). Note that although the original problem

(1.1) allows v(x)∈C, we restrict our search to u(x)∈R, as we will see that the existence
of a real and positive ground state is ensured by Theorem 3.1. We also remark that
∥u∥L∞(Ω)≤M0 is not directly guaranteed by the iterative algorithm, but is rather left
as an assumption. It is a plausible assumption because we will see that the ground state
v is in L∞(Ω) by Hölder continuity in Theorem 3.1. For simplicity we drop Ω in norm
and inner product notations when there is no confusion. The tangent space of M at
point u∈M is defined as

TuM={ξ∈H1
0 (Ω)∩L∞(Ω) : (ξ,u)L2 = 0}. (3.1)

We need an inner product in the tangent space, denoted as (·, ·)X . On the finite dimen-
sional Riemannian manifold, this is dubbed the Riemannian metric. It can be easily
generalized to the infinite dimensional Hilbert manifold.

For u ̸= 0, the retraction of u onto M is given by

R(u) =u/∥u∥L2 .

Note that the retraction operation itself is independent of the choice of the inner prod-
uct (·, ·)X , but its approximation property is not. When the inner product (·, ·)X
is introduced, it is usually required that the retraction is at least first-order, i.e.,
R(z+ξ) = z+o(∥ξ∥X) for z∈M and ξ∈TuM.

Given an inner product (·, ·)X , let G be its associated Green’s operator, i.e.,

(z,Gw)X = (z,w)L2 , ∀z,w∈X.

For an arbitrary element ξ in the ambient space, the projection onto the tangent space
at point u∈M is given by

PTuM(ξ) = ξ− (ξ,u)L2

(Gu,Gu)X
Gu.
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Given a differentiable function E(u) defined on M, the Sobolev gradient of E(u)
with respect to the inner product (·, ·)X is the unique element ∇XE(u)∈X such that

(∇XE(u),w)X = (∇E(u),w)L2 , ∀w∈X.

The manifold gradient of E(u) on M, denoted as gradE(u), is the projection of the
Sobolev gradient onto the tangent space with respect to the inner product (·, ·)X . Thus
we have

grad E(u) =PTuM(∇XE(u)) =∇XE(u)− (∇XE(u),u)L2

(Gu,Gu)X
Gu.

It can be inferred from the above expression that grad E(u) = 0 implies ∇E(u) =λu
for some scalar λ. If E(u) is as in (1.2), then u is an eigenstate of (1.1). This fact is
independent of the choice of inner product (·, ·)X .

The choice of the inner product in the tangent space plays an important role in the
analysis of manifold optimization algorithms as different inner products give different
forms of gradient flow and gradient descent algorithms. Popular choices include L2, H1,
and the a0 inner product defined as follows:

(z,w)a0 :=

∫

Ω

∇z∇w+V zw, ∀z, w∈TuM, u∈M.

All the above inner products are fixed everywhere on the manifold. Things become
interesting when the inner product becomes adapted to u. Specifically, we are interested
in the following inner product

(z,w)au
:=

∫

Ω

∇z∇w+V zw+β|u|2zw, ∀z, w∈TuM, u∈M, (3.2)

and we define

Au :=−∆+V +β|u|2, (3.3)

such that (Auz,w)L2 = (z,w)au
for any z, w. This new inner product (·, ·)au

can be seen
as the linearization of the Gross-Pitaevskii energy functional. A desirable property of
this inner product is that the Sobolev gradient of E(u) is u itself, i.e.,

∇au
E(u) =u. (3.4)

This inner product has the associated Green’s operator Gu whose properties have been
explored in [23].

Lemma 3.1. Under the adaptive inner product (·, ·)au
, the retraction R is second-order.

Proof. For u∈M and for any ξ∈TuM,

∥R(u+ξ)−(u+ξ)∥au

∥u+ξ∥au

=
∥(1−1/∥u+ξ∥L2)(u+ξ)∥au

∥u+ξ∥au

=

∣∣∣∣1−
1

∥u+ξ∥L2

∣∣∣∣ .

Note that ξ is a tangent vector of the manifold at u. By (3.1), ∥u+ξ∥2L2 =∥u∥2L2 +
∥ξ∥2L2 +2(ξ,u)L2 = 1+∥ξ∥2L2 . Thus we have

∥R(u+ξ)−(u+ξ)∥au

∥u+ξ∥au

=
∣∣∣1−(1+∥ξ∥2L2)−1/2

∣∣∣=
1

2
∥ξ∥2L2 +O(∥ξ∥4L2).
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By the Poincaré inequality, when V ≥0 and β≥0,

∥ξ∥2L2 ≤CP ∥∇ξ∥2L2 ≤CP ∥ξ∥2au

for some domain constant CP >0. Thus we have

∥R(u+ξ)−(u+ξ)∥au
=O(∥ξ∥2au

),

where the constant in O(·) is independent of ξ.

Using the inner product (·, ·)au
, the manifold gradient becomes

grad E(u) =u− (u, u)L2

(Guu,Guu)au

Guu. (3.5)

We now have the Sobolev projected gradient descent (Sobolev PGD) as in (1.3):

un+1 =R(un−τn ·grad E(un))

=R

(
(1−τn)un +τn ·

(un,un)L2

(Gun
un,Gun

un)aun

Gun
un

)
.

(3.6)

3.2. Asymptotic convergence and exponential rate. Throughout the rest
of the paper, let v always denote the global minimizer of E(u), i.e. the ground state
of the nonlinear eigenproblem. Let λ always denote its corresponding eigenvalue. We
have the following basic observations about the ground state v.

Theorem 3.1. There is a ground state v that satisfies v(x)>0 everywhere on Ω. It
is the only strictly positive eigenstate of (1.1) up to scaling. Moreover, it is both the
unique ground state of the nonlinear eigenproblem (1.1) and the unique ground state of
the linearized operator Av up to the sign. Moreover, v has Hölder regularity v∈C0,α(Ω̄)
for some 0<α<1.

Proof. This theorem is a consequence of Lemma 2 in [8] and Lemmas 5.3 and 5.4
in [23]. We only outline the main idea of the proof here to make this paper self-contained.

The idea is that the existence of at least one global minimizer v is ensured by
the convexity of E(u). The Hölder continuity of v is ensured by elliptic regularity,
see e.g. [21, Theorem 8.24]. This v can always be chosen to be nonnegative because
E(u) =E(|u|). This nonnegativity can be made into positivity by applying the Harnack
inequality to (Av−λ), see e.g. [21, Corollary 8.21]. Thus, there exists a ground state
of the nonlinear problem that is positive. The same argument shows that the ground
state eigenfunction of the linearized operator Av is also positive and is unique. Since v
is an eigenfunction of Av and is positive, it is exactly that ground state. Thus we have
the “double ground state” property. Finally, the uniqueness of any positive eigenstate
of the original nonlinear eigenproblem can be established by contradiction. This can
be done either by the Picone identity as in [23], or by showing that as long as some u
itself is the ground state of the linearized operator Au, it must be the ground state of
the original problem.

It turns out in subsequent results that v being the “double” ground state in Theorem
3.1 is essential to the exponential convergence rate.

Lemma 3.2. If the initial point u0 of the Sobolev PGD satisfies u0>0 everywhere on
Ω, then {un}∞n=0 generated by the Sobolev PGD with step size τmin≤ τn≤ τmax for some
0<τmin≤ τmax≤1 converges to the ground state v strongly in H1(Ω).
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Proof. The proof is originally developed in [23] and we only outline its main idea
here to make this paper self-contained. The key idea is to show that un(x)≥0 for all n
by induction. Assume that un≥0, we will show that this implies Gun

un≥0, and with
τn≤1 this implies un+1≥0.

Specifically, observe that Gun
un is the unique minimizer of

ϕ(y) := (y,y)aun
−2(y,un)L2 .

Since un≥0, we have that ϕ(|y|)≤ϕ(y) ∀y. This implies that the minimizer of ϕ(·)
is nonnegative because we can always take the absolute value of the variable without
increasing the functional value. Thus, Gun

un≥0. We then use the fact that un+1 is the
scaled weighted average of two nonnegative quantities:

ũn+1=(1−τn)un+τnγnGunun, γn=
(un,un)L2

(Gunun,Gunun)aun

≥0, un+1= ũn+1/∥ũn+1∥L2 .

Thus, we establish that un≥0 implies un+1≥0. Since u0>0, we have that un≥0 for
all n.

The existence of a cluster point u∗ for {un} can be ensured by energy decay. This
convergence to u∗ is in the sense of weak convergence in H1

0 (Ω). From the above
induction, u∗ is nonnegative, and following an argument similar to that in Theorem 3.1
we can show that it is all positive.

Since the step size is lower-bounded, u∗ must be a fixed point of E(u), where
grad E(u∗) = 0. As we mentioned above, grad E(u∗) = 0 implies ∇E(u∗) =λu∗ for some
scalar λ, i.e., u∗ is an eigenstate of the eigenvalue problem (1.1). From the uniqueness
result of positive eigenstate in Theorem 3.1 we know that it could only be the ground
state v. Therefore, {un} converges to v itself.

Finally, the weak convergence in H1
0 (Ω) implies strong convergence in Lp(Ω) for

p<6 by the Rellich-Kondrachov embedding. This would give the convergence of energy
{E(un)}, and consequently strong convergence in H1(Ω).

Before proceeding to the proof of Conditions (L), (D) and (S), we first need some
technical lemmas.

Lemma 3.3 (Norm equivalence). Under Assumptions 3.1, there exist positive con-

stants CE, C̃E depending only on β, M0, V , and the domain Ω, such that

CE∥·∥au
≤∥·∥a0

≤C−1
E ∥·∥au

,

C̃E∥·∥au
≤∥·∥H1 ≤ C̃E

−1
∥·∥au

.

Proof. See Appendix A.1.

In the next two lemmas, let λi and µi be the i-th smallest eigenvalues of Av and Au

respectively, and vi and wi be their corresponding eigenfunctions satisfying ∥vi∥L2 = 1
and ∥wi∥L2 (so that v=v1, λ=λ1). Theorem 3.1 has ensured the uniqueness of the
ground state. The fact that Av only has point spectrum ensures that there is a positive
gap Cv between λ1 and λ2.

Lemma 3.4 (Perturbation of eigenvalues and eigenfunctions). Under Assumptions
3.1, there exists a positive constant C =C(β,V,M0,Ω,λ1,Cv), such that for all u∈M
satisfying ∥u−v∥H1 ≤C, we have that ∥u−w1∥L2 ≤s for some s<1.

Proof. See Appendix A.2.



386 EXPONENTIAL CONVERGENCE OF SOBOLEV PGD

Lemma 3.5 (Condition (L) for the linearized operator). Let A :X→X be a sym-
metric and positive definite linear operator on the Hilbert space with a bounded Green’s
operator G. Let µi denote the i-th smallest eigenvalue of A, and wi be its corresponding
(normalized) eigenfunction. Assume that µ2>µ1. Then for any u such that ∥u∥L2 = 1
and ∥u−w1∥L2 ≤s<1, we have

(u,u)A−(w1,w1)A≤CL

(
(u,u)A− 1

(u,Gu)L2

)

for some constant CL that depends only on s, µ1 and µ2.

Proof. See Appendix A.3.

Using the above technical lemmas, we are now ready to prove the following theorems.
They show that the sequence {un} generated by (1.3) satisfies Conditions (L), (D) and
(S).

The first theorem is on Condition (L) near the ground state v of the nonlinear
eigenproblem. It is the central one of the three theorems.

Theorem 3.2. Under Assumptions 3.1, Condition (L) is satisfied for ∥·∥X =∥·∥au

and θ= 1
2 near the ground state v. In other words, there exists some constant C>0,

such that for any u in {u : u∈M, E(u)≥E(v), ∥u−v∥H1 ≤C}, we have

|E(u)−E(v)|
1
2 ≤CL∥grad E(u)∥au

.

Proof. First notice that for any u in the constraint set of the theorem, E(u)−
E(v)≤au(u,u)−au(v,v). This is because

E(u)−E(v)−((u,u)au
−(v,v)au

) =−β

2

∫

Ω

u4− β

2

∫

Ω

v4 +β

∫

Ω

u2v2

=−β

2

∫

Ω

(u2−v2)2≤0.

Let w1 be the eigenfunction corresponding to the smallest eigenvalue of Au, then

(u,u)au
−(v,v)au

≤ (u,u)au
−(w1,w1)au

.

On the other hand, by (3.5), we have

∥grad E(u)∥2au
=

∥

∥

∥

∥

u−
(u, u)L2

(Guu,Guu)au

Guu

∥

∥

∥

∥

2

au

=

∥

∥

∥

∥

u−
Guu

(u,Guu)L2

∥

∥

∥

∥

2

au

=(u,u)au −
1

(u,Guu)L2
.

It suffices to show that

(u,u)au
−(w1,w1)au

≤CL

(
(u,u)au

− 1

(u,Guu)L2

)
, (3.7)

which only involves the inner product (·, ·)au
.

Using Lemma 3.4, we have that there exists C>0 such that when ∥u−v∥H1 <C,
we have ∥u−w1∥L2 ≤s for some constant s<1. Thus, Lemma 3.5 is applicable to
(·, ·)au

. This gives the above inequality on (·, ·)au
, with a constant CL depending only

on β, V,M0,Ω, λ1, and Cv. The  Lojasiewicz inequality can thus be achieved.

Remark 3.2. The above proof of Condition (L) depends crucially on Lemma 3.5.
Lemma 3.5 can be seen as the version of the  Lojasiewicz inequality with θ= 1

2 for a
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linear operator A. So its primary consequence is the linear convergence rate of the
proposed algorithm to the ground state of a linear operator A.

The key idea of the proof of Theorem 3.2, then, is to reduce it to the inequality
(3.7). The inequality (3.7) only involves the operator Au, which is bilinear. Although
Au formally depends on u, the inequality (3.7) itself is not affected by nonlinearity. So
Lemma 3.5 can be applied to prove (3.7).

Thus, one way to interpret the proof of Theorem 3.2 is to view it as linearizing
the nonlinear eigenproblem (1.1) using the adaptive inner product (·, ·)au

, so that it
preserves the  Lojasiewicz property with θ= 1

2 .

The next theorem is on Condition (D) for the sequence generated by the proposed
algorithm.

Theorem 3.3. Under Assumptions 3.1, Condition (D) is satisfied for ∥·∥X =∥·∥au
,

∥·∥Y =∥·∥a0
if {un} is generated by the Sobolev projected gradient descent with step

size 0<τn≤ τmax for some τmax>0, i.e.,

E(un)−E(un+1)≥CD∥grad E(un)∥aun
∥un−un+1∥a0 .

Proof. It is obvious that ∥un−un+1∥a0
≤∥un−un+1∥aun

. Since {un} is generated
by the Sobolev projected gradient descent algorithm, we have

un+1 =R(un−τn ·grad E(un)) ,

grad E(un) =un−
(un,un)L2

(Gun
un,Gun

un)aun

Gun
un =un−

Gun
un

(un,Gun
un)L2

.

The second-order retraction property implies that

un−un+1 = τn

(
un−

Gun
un

(un,Gun
un)L2

)
+O(τ2n).

Thus, we obtain

E(un)−E(un+1) =
(
un−un+1, ∇aun

E(un)
)
aun

+O(∥un−un+1∥2)

= (un−un+1, un)aun
+O(∥un−un+1∥2)

= τn

(
un−

Gun
un

(un,Gun
un)L2

, un

)

aun

+O(τ2n)

= τn

(
(un,un)aun

− 1

(un,Gun
un)L2

)
+O(τ2n).

On the other hand, we have

∥grad E(un)∥aun
=

(
(un,un)aun

− 1

(un,Gun
un)L2

) 1
2

,

and

∥un−un+1∥aun
= τn

∥∥∥∥un−
Gun

un

(un,Gun
un)L2

∥∥∥∥
aun

+O(τ2n)

= τn

(
(un,un)aun

− 1

(un,Gun
un)L2

) 1
2

+O(τ2n).
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This implies that

∥grad E(un)∥aun
∥un−un+1∥a0

≤ τn

(
(un,un)aun

− 1

(un,Gun
un)L2

)
+O(τ2n).

Therefore, there exists a τmax>0 such that when τ ≤ τmax, there exists CD such that
Condition (D) holds. This CD only depends on τmax, but is independent of un.

Next, we have the theorem on Condition (S) for the sequence generated by the
proposed algorithm.

Theorem 3.4. Under Assumptions 3.1, Condition (S) is satisfied for ∥·∥X =∥·∥au
,

∥·∥Y =∥·∥a0
if {un} is generated by the Sobolev projected gradient descent with step

size 0<τmin≤ τn≤ τmax for some 0<τmin≤ τmax, i.e.,

∥un+1−un∥a0
≥CS∥grad E(un)∥aun

.

Proof. By Lemma 3.3, we have ∥un+1−un∥a0
≥CE∥un+1−un∥aun

for some con-
stant CE . Note that in the previous proof we have shown that

∥grad E(un)∥aun
=

(
(un,un)aun

− 1

(un,Gun
un)L2

) 1
2

and

∥un−un+1∥aun
= τn

(
(un,un)aun

− 1

(un,Gun
un)L2

) 1
2

+O(τ2n).

Therefore, when τmin≤ τn≤ τmax for some 0<τmin≤ τmax, there exists a constant CS

depending only on CE , τmin and τmax, such that

∥un+1−un∥a0
≥CS∥grad E(un)∥aun

.

Finally, we deduce the following results on the exponential convergence.

Theorem 3.5 (Convergence rate of Sobolev PGD). If the Sobolev projected gradi-
ent descent for E(u) converges to the ground state v, and the step size {τn} satisfies
0<τmin≤ τn≤ τmax, then it converges in the a0-norm with an asymptotic exponential
convergence rate.

Proof. The proof follows directly from Theorems 2.1, 3.2, 3.3 and 3.4.

Corollary 3.1 (Global convergence to ground state). If the initial state u0 satisfies
u0≥0 everywhere on Ω, and the step size {τn} satisfies 0<τmin≤ τn≤ τmax, then the
Sobolev projected gradient descent for E(u) converges in the a0-norm to the unique
ground state with an asymptotic exponential convergence rate.

Proof. Since the initial state is nonnegative, Lemma 3.2 ensures the strong con-
vergence of {un} to the ground state v in H1

0 (Ω). By Theorem 3.5, the asymptotic
convergence rate in the a0-norm is exponentially fast.

Note that since the domain Ω is bounded, this convergence rate in the a0-norm
implies the exponential convergence rate in the H1 or L2 norm. We also remark that the
optimal step size with theoretical guarantee depends on the values τmin and τmax, which
in turn depend on some properties of the ground state that is not known beforehand, but
some practical choices of τ are demonstrated in the numerical experiments in Section 6.
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4. Spatial discretization

To solve the eigenproblem numerically using the computational procedure in the
previous sections, we need to discretize the problem in the spatial domain Ω. Let Ωh

be a spatial discretization with grid size h. Note that we only require Ωh to be a
convergent discretization, i.e., the solution to the discrete problem converges to that
of the continuous problem as h→0+, and the following analysis applies to general
discretization schemes. The discretized problem can be written as

min
∥uh∥L2

h
=1, uh∈RN

Eh(uh) :=∥uh∥2Lh
+∥uh∥2Vh

+
β

2
∥uh∥4L4

h
, (4.1)

where

∥uh∥2Lh
=u⊤

h (−Lh)uh ·hd, ∥uh∥2Vh
=

N∑

i=1

Vh(i)uh(i)2hd, ∥uh∥pLp

h

=

N∑

i=1

uh(i)phd.

Here N denotes the total number of grid points, (i) is an indexing of the grid points,
i.e., uh(i) is the i-th entry of the vectorized uh, d is the dimension of the physical space,
and Lh is the discretized Laplacian. The linearized operator Au,h now has a matrix
representation in R

N×N :

Au,h =−Lh +diag{Vh +βu
[2]
h },

where u
[2]
h (i) :=uh(i)2, i.e., u

[2]
h is the componentwise squared vector of uh. The respec-

tive norm is defined as ∥y∥2Au,h
:=y⊤Au,hy. We have the following results.

Theorem 4.1 (Discrete version of Theorem 3.1). There is a ground state vh of
the discretized problem that satisfies vh>0 everywhere on Ωh. It is the unique posi-
tive eigenstate of (4.1). Moreover, it is both the unique ground state of the nonlinear
eigenproblem (4.1) and the unique ground state of the linearized operator Av,h up to the
sign.

Proof. The existence of the ground state follows from the compactness of the
constraint set {uh : uh∈R

N , ∥uh∥L2
h

= 1} and the boundedness of Eh(uh). Thus it suf-
fices to prove its uniqueness and positivity. The proofs for the continuous version, i.e.,
Lemma 2 in [10] and Lemmas 5.3 and 5.4 in [23], need to be slightly modified to suit the
discrete case. This is because the Harnack inequality and the Picone identity are only
valid for continuous functions, and we need to establish their discrete counterparts.

One way to do this is to look at the convergence of the discretized eigenvector to its
continuous counterpart at the small grid size limit h→0+, see e.g. [25]. This is always
possible no matter what kind of discretization we use. We do not present the details
here.

Another way is to observe that the discretized Laplacian, Lh, is an M-matrix3 under
some typical discretizations. Examples include finite difference discretization, and some
P1-finite element discretizations. When Lh is an M-matrix, the proof can be simplified
and the small h constraint can be released. In this case, the proof takes the following
steps:

3An M-matrix is a matrix with nonnegative diagonal entries and nonpositive off-diagonal entries,
with eigenvalues whose real parts are nonnegative.
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(1) For any Au,h, its eigenvector corresponding to the smallest eigenvalue can be chosen
to be all positive, and is unique up to the sign.

Since −Lh has positive diagonals and non-positive off-diagonals, so does Au,h. Let y
be the ground state eigenvector of Au,h, then |y|⊤Au,h|y|≤y⊤Au,hy. This is because
Au,h(i,i)y(i)2 =Au,h(i,i)|y(i)|2 for any 1≤ i≤N , and Au,h(i,j)y(i)y(j)≥Au,h(i,j)·
|y(i)||y(j)| for any i ̸= j. As y is the ground state eigenvector, this implies y= |y|,
i.e., y is nonnegative.

We now show that y is all positive. If this is not true, then y has some positive and
some zero entries. So we can always find a zero entry y(i) that is spatially next to
a nonzero one, say y(j), i.e., y(i) = 0, y(j)>0, and −Lh(i,j)<0. Then

0 =λy(i) = (Au,hy)(i) = (−Lhy)(i)+Vh(i)y(i)+βy(i)3

= (−Lhy)(i) =
∑

k

−Lh(i,k)y(k) =
∑

k ̸=i

−Lh(i,k)y(k)≤−Lh(i,j)y(j)<0,

which is a contradiction. Thus y is all positive and is unique up to the sign.

(2) If uh itself is the smallest eigenvector of Auh,h, then it is also the unique global
minimizer of Eh(u).
For any other wh ̸=±uh, we have

Eh(wh)−Eh(uh) =∥wh∥2Au,h
−∥uh∥2Au,h

+
β

2

N∑

i=1

(
(w

(i)
h )4 +(u

(i)
h )4−2(w

(i)
h )2(u

(i)
h )2

)
hd

=
(
∥wh∥2Au,h

−∥uh∥2Au,h

)
+

β

2

N∑

i=1

(
(w

(i)
h )2−(u

(i)
h )2

)2

hd>0.

Thus uh is the unique global minimizer of Eh(u).

(3) There is a unique positive eigenstate of (4.1), which is the ground state of (4.1) and
the ground state of the linearized operator.

Any positive iteration sequence stays positive with gradient descent iteration. The
compactness of the constraint set ensures the existence of a sub-sequential limit
point vh, which is nonnegative. The fact that vh is the minimizer of Eh(u) implies
that it is an eigenstate of Av,h. By Step (1), this eigenstate is all positive and is thus
the smallest eigenstate of Av,h. By Step (2), it is also the unique global minimizer
of Eh(u).

Theorem 4.2 (Discrete version of Theorem 3.5). If the Sobolev PGD for Eh(u)
converges to the ground state vh, and the step size {τn} satisfies 0<τmin≤ τn≤ τmax,
then it converges with an asymptotic exponential convergence rate.

Proof. Theorem 4.1 ensures that vh is still the “double” ground state of both Eh(u)
and Avh,h. Thus, Theorems 3.2, 3.3, and 3.4 can all be generalized to the discretized
case in the same way. The exponential convergence rate follows from the master theorem
2.1.

Corollary 4.1 (Discrete version of Corollary 3.1). If the initial state u0 satis-
fies u0(i)≥0 ∀i, and the step size {τn} satisfies 0<τmin≤ τn≤ τmax, then the Sobolev
PGD for Eh(u) converges to the unique ground state vh with an asymptotic exponential
convergence rate.
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Proof. The proof follows similarly from the nonnegativity and uniqueness results
of Theorem 4.1 and the exponential convergence result of Theorem 4.2.

5. Generalization to other nonlinear eigenproblems

The Sobolev PGD points out a new direction for first-order fast solvers of nonlinear
eigenproblems and higher (than quadratic) order optimization problems. Its application
is thus well beyond the Gross-Pitaevskii eigenvalue problem. The operator class and
the form of the objective function can be generalized. For example, consider

−∆v+V v+β|v|2αv=λv (5.1)

for general α>0. This ground state equation and the corresponding time-dependent
nonlinear Schrödinger equation are locally well-posed in H1(Rd) as long as 2α+2<

2d
max{d−2,0+} , see e.g. [18] and references therein. The previous Gross-Pitaevskii eigen-

value problem corresponds to the case α= 1.
In general, Theorem 3.5 holds true for any α>0. The adaptive inner product

remains well-posed and the ground state remains a “double” eigenstate. The change of
inner product from av(·) to au(·) in the proof of Theorem 3.2 essentially relies on the
convexity of the last term

∫
| · |2α+2 in the energy functional E(·). Therefore, extensions

of the previous results in both spatially continuous and discretized cases are easy. We
do not present the details here.

It is also common in physics that the diffusion is not homogeneous in all spatial
directions. For example, it can be stronger in two physical directions and weaker in the
third one. More generally, we have

−∇·(A(x)∇v)+V v+β|v|2αv=λv (5.2)

where the coefficient A(x)∈L∞(Ω)d×d, A(x) is symmetric and coercive. An interesting
discrete counterpart to this is the nonlinear Schrödinger equation on metric trees (e.g.
[15]), where the Laplacian is replaced by a graph Laplacian on a tree-graph G.

When restricted to a bounded domain, so that the lowest part of the spectrum
is always point spectrum, our previous arguments still hold. In the elliptic case, the
discretized Ah may or may not be an M-matrix, but one can always turn to the small
grid size limit h→0+ limit when necessary.

For an even broader class of nonlinear eigenproblems or constrained optimization
problems, the Sobolev gradient descent may still be applicable, but it is not clear whether
exponential convergence is still true. It can be seen from previous sections that the
convergence rate relies on the (L) condition, which in turn relies on the ground state
v being the ground state of the linearized operator Av at v, i.e., the so-called “double
ground state” property. This is a nontrivial property in general, although it can be true
for some operators like the biharmonic operator under certain conditions.

We discuss here one specific generalization of nonlinear Schrödinger eigenproblem,
and demonstrate that the Sobolev PGD indeed has the potential of tackling previously
formidable problems. The problem of interest is

−∆v+V v+β|v|2v−δ∆(|v|2)v=λv, (5.3)

where δ≥0. In other words, we add a higher-order interaction term −δ∆(|v|2) to the
Gross-Pitaevskii problem. The corresponding energy functional is

E(u) =

∫
|∇u|2 +V |u|2 +

β

2
|u|4 +

δ

2

∣∣∇|u|2
∣∣2 . (5.4)
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The above eigenproblem and its variational form are analyzed in [5]. Moreover, in [7]
the authors propose to minimize the energy functional (5.4) by reformulating it as

E(ρ) =
∫
|∇√

ρ|2 +V ρ+ β
2 ρ

2 + δ
2 |∇ρ|2, where ρ := |u|2. This reformulation facilitates the

minimization, but it also suffers from the lack of continuity of |∇√
ρ| near ρ→0+. This

has to be treated with extra care, and a regularization term has to be added, which
complicates the analysis. Therefore, instead of replacing |u|2 with ρ, we propose to
minimize E(u) with respect to u directly with the Sobolev PGD.

Assume that Assumptions 3.1 still hold. Define the manifold M with an extra
constraint:

M :=
{
z∈H1

0 (Ω) : ∥u∥L2 = 1, ∥u∥L∞ ≤M0, ∥∇u∥L∞ ≤M1

}
.

Define the adaptive linearized operator and the respective inner products as follows:

(z,w)au
:=

∫

Ω

∇z∇w+V zw+βu2zw+δ∇(uz)∇(uw),

(z,Auw)L2 := (z,w)au
,

(z,w)a0 :=

∫

Ω

∇z∇w+V zw, ∀z, w∈TuM, u∈M.

Then we have the following results.

Lemma 5.1. The ground state v of (5.3) satisfies v>0 everywhere on Ω. It is the
unique positive eigenstate of (5.3). It is also both the unique ground state of (5.3) and
that of the linearized operator Av up to the sign.

Proof. Following the same arguments as in Lemma 2 in [8], the extended E(u) as
in (5.4) still admits a nonnegative minimizer v. According to [5, Theorem 2.2], we know
that v∈C1,1(Ω̄). This implies that v, ∇v∈L∞(Ω). Thus, the nonnegative v can still
be made positive by the Harnack inequality. Also, the linearized operator Av still has
a unique positive ground state, which is exactly the above v. Thus the “double ground
state” property remains true.

We now show that (5.3) has a unique positive eigenstate by a contradiction ar-
gument. Suppose instead that there is a different positive eigenstate ṽ >0 with its

eigenvalue λ̃, and E(ṽ)>E(v). Using the Picone identity,
∫
∇ṽ∇( v2

ṽ )≤
∫

(∇v)2, we
have

λ̃−λ= λ̃(v,v)L2 −(v,v)av = λ̃

(

ṽ,
v2

ṽ

)

L2

−(v,v)av =

(

ṽ,
v2

ṽ

)

aṽ

−(v,v)av

=

∫

∇ṽ ·∇

(

v2

ṽ

)

+V v2+βṽ2v2+δ∇(ṽ2)∇(v2)−

∫

(∇v)2+V v2+βv4+δ(∇(v2))2

≤

∫

(∇v)2+V v2+
β

2
(v4+ ṽ4)+

δ

2

(

(∇(v2))2+(∇(ṽ2))2
)

−

∫

(∇v)2+V v2+βv4+δ(∇(v2))2

=

∫

β

2
ṽ4+

δ

2
(∇(ṽ2))2−

∫

β

2
v4+

δ

2
(∇(v2))2=(λ̃−E(ṽ))−(λ−E(v)),

i.e.,

E(ṽ)≤E(v).

This contradicts our assumption that E(ṽ)>E(v).

The next lemma shows that the eigenvalue and eigenfunction perturbation results
stated in Lemma 3.4 hold similarly for (5.3).
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Lemma 5.2. Let λi and µi be the i-th smallest eigenvalues of Av and Au re-
spectively, and vi and wi be their corresponding eigenvectors (so that v=v1). Let
Cv :=λ2−λ1 denote the eigenvalue gap. Then there exists a positive constant C =
C(β,δ,V,M0,M1,Ω,λ1,Cv), such that for all ∥u−v∥H1 <C, u∈M, we have ∥u−
w1∥L2 ≤s for some s<1.

Proof. See Appendix A.4.

Theorem 5.1. If the initial state satisfies u0≥0 everywhere on Ω, then {un}∞n=0

generated by the Sobolev PGD with step size 0<τmin≤ τn≤ τmax converges to the unique
ground state v of (5.3) with an asymptotic exponential convergence rate.

Proof. First, the Sobolev PGD sequence starting from a positive initial value
remains positive as before, and convexity ensures convergence to a nonnegative local
minimizer of E(u), which must also be the global minimizer and the ground state of
(5.3). This convergence can be proved to be a strong H1 convergence by the Sobolev
embedding and the convergence of energy.

In order to establish exponential convergence, it suffices to show that Conditions
(L), (D) and (S) all hold for {un}∞n=0. The nonnegativity of δ ensures the equivalence
of a0 and au norms. Thus Conditions (D) and (S) hold. Condition (L) follows from
Lemma 5.2 and Lemma 3.5.

The above results establish the exponential convergence of the Sobolev PGD for
problem (5.3) for any δ≥0. Numerical evidence shows that the Sobolev PGD for this
problem converges very well just as the original Gross-Pitaevskii eigenproblem. This is
a demonstration that the Sobolev gradient descent has the potential to be generalized
to study some continuous or discrete high degree optimization problems. We believe
that this method has the potential to be extended to a broader class of problems as
long as certain assumptions are satisfied, which is left for our future work.

6. Numerical experiments

In this section, we demonstrate the convergence of the Sobolev PGD method using
some numerical examples. We show that exponential convergence rate is attained both
for the original eigenproblem (1.1) and for its extension (5.3). We also observe and
discuss some interesting phenomena that one may encounter in numerical experiments.

6.1. Gross-Pitaevskii eigenproblem in 2D. We first look at the Gross-
Pitaevskii eigenproblem (1.1) in two dimensions. Let the domain be Ω = [−1,1]2⊂R

2

with Dirichlet boundary condition. The problems are discretized with P1 Lagrange
finite element method. The grid is a uniform grid with fixed size h= 2 ·2−8 throughout
this section.

The first example is a single well potential V (x) = 1
2 |x|2. It is well known that the

Anderson localization [3] is present in this setting. We set β= 1. The initial guess z0 is
chosen as the eigenvector corresponding to the smallest eigenvalue of A0. It is strictly
positive over the whole domain Ω. The step size is τ = 1.

Figure 6.1a shows the profile of the potential V (x). Figure 6.1b is the profile of the
computed ground state with β= 1. Figure 6.1c displays the log H1-error convergence
log10(∥un−v∥H1/∥v∥H1). It can be seen that the Sobolev PGD converges in just a few
steps with an exponential (linear) convergence rate.

By increasing β, there is a greater nonlinearity in the problem. When β≫1, the
quartic term β

2 |u|4 would dominate the energy functional (1.2). This would be a sig-
nificant barrier to some traditional methods. Yet the Sobolev PGD remains stable and
fast. Figures 6.2a to 6.2d show the log H1-error convergence and the profiles of the
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(a) Single well potential
V (x)= 1

2
|x|2

(b) Ground state when β=1 (c) Log H1-error conver-
gence

Fig. 6.1: Example of (1.1) with single well potential V = 1
2
|x|2 and β = 1.

(a) Ground state when β=10 (b) Convergence when β=
10

(c) Ground state when β=100 (d) Convergence when β=
100

Fig. 6.2: Example of (1.1) with single well potential V = 1
2
|x|2 and β = 10 or 100.

respective ground states with β= 10 and β= 100 respectively. With the Sobolev PGD,
there is only a mild increase in the computational complexity, and the iteration still
converges exponentially fast as predicted.

6.2. Localization under the disordered potential. The second example
is a disordered potential V . Its fully discrete counterpart, the randomized potential
on the lattice Z

d, has been extensively studied for its rich behaviour in spectral gaps,
exponential localization of eigenstates near the bottom of the spectrum, and implications
about the “mobility edge” conjecture in quantum physics and random matrix theory
[14,20].

In our semi-lattice example, the localization of the ground state is also present. In
the experiment, V (x) is generated as follows. The extent of disorder is determined by
a parameter K = 50. This means that the domain Ω is divided into K×K cells. The
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value of V(x) in each cell is either 1 or 1/K2, randomly chosen with equal probability.
Figure 6.3a shows the profile of V (x). Figure 6.3b displays the computed ground

state with β= 0.5. It can be seen that the ground state is concentrated in a small region
whose diameter is about a few times the interaction length of the disorder. Figure 6.3c
shows the convergence rate of the Sobolev PGD iteration for this example.

To facilitate convergence, we have chosen τ = 1.5. Although Corollary 3.1 requires a
small τ , in the numerical experiments we find that choosing τ >1 results in significantly
faster convergence. This is in accordance with the empirical findings of [23].

(a) Profile of the disordered
potential

(b) Profile of the ground state (c) Log H1-error conver-
gence

Fig. 6.3: Example of (1.1) with a disordered potential and β = 0.5.

6.3. Asymptotic escape of Sobolev PGD from saddle states. It is
interesting to look at the asymptotic behaviour of the Sobolev gradient descent method
if starting from a non-positive initial value. Recall that Corollary 3.1 only ensures
exponential convergence to the global ground state from u0≥0. When this condition is
violated, it is a priori unknown what the iteration will converge to. It is possible that
there are other spurious fixed points, including local minimizers and saddle points. The
first-order condition ensures that all these spurious fixed points are eigenstates. But
the convergence rate to such points is unknown.

As for the spatially discretized case, the Hilbert manifold M becomes a Riemannian
manifold, and the spectra of the operators become finite. As is proved in [24] and
references therein, a random initialization almost surely avoids saddles and converges
only to local or global minimizers. It means that if an excited state is a strict saddle
point, then a random initialization is very unlikely to converge to that state. As for the
spatially continuous case, it is reasonable to expect the same phenomenon, although
the analysis could be more difficult due to the infinite dimension of M and the infinite
number of eigenstates.

In the subsequent numerical experiments, we let V (x) = 1
2 |x|2 and β= 100. We will

use an example to show that for an excited state that is a strict saddle, it has a very
thin converging set close to measure zero. Thus, using Sobolev PGD to compute excited
states could be unstable. The accuracy of the computed excited states could be limited.

First, we let the initialization u0 be the second-smallest eigenvector of A0. This u0

is positive on half of Ω and negative on the other half. It is displayed in Figure 6.4a.
We then let Sobolev PGD iterate a few steps. Figure 6.4b displays the computed state
u∗ when the algorithm stops. Figure 6.4c shows the decrease of the log L2 error with
respect to u∗. We also compute the manifold Hessian at u∗ and find that it has at least
one negative eigenvalue. Thus u∗ is a strict saddle state.

Next, we add a small perturbation to u0: we let û0 =u0 +ϵ ·η, where η is a random
noise that is of the same order as u0, and the parameter ϵ controls the magnitude of
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(a) Profile of initial state u0 (b) Profile of computed state
u∗

(c) Log H1-error conver-
gence

Fig. 6.4: Behavior of Sobolev PGD for (1.1) with u0 ̸≥0.

(a) Noise level ϵ=10−2 (b) Noise level ϵ=10−3 (c) Noise level ϵ=10−4

(d) Profile of û0=u0+10−4η (e) Profile of computed state
starting from û0

Fig. 6.5: Asymptotic escape from saddle state under small perturbations. Figures (a)-(c) displays the
distances to the saddle state u∗ starting from û0 =u0 +ϵ ·η.

noise. We let Sobolev PGD start from û0 and trace its evolution. What we observe is
that, as long as there is a small perturbation, Sobolev PGD escapes from the previous
saddle state and converges to the ground state. The parameter ϵ can be chosen as small
as 10−4 and this effect is still present.

Specifically, Figures 6.5a to 6.5c demonstrate the evolution of the log-distance to the
precomputed closest excited state u∗. We choose ϵ= 10−2, 10−3, and 10−4, respectively.
Saddle escape behavior can be observed in all three cases. We can see that the distance
to the excited state first goes down, then goes up. Figure 6.5e shows the computed state
starting from û0, and it is the ground state.

In general, first-order optimization methods, including Sobolev PGD as well as
other methods in the gradient descent family, are not good choices for the computation
of excited states. They rely on a good enough initialization (like the above u0 without
noise) and could suffer from numerical instability issues. One has to resort to other
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methods if the goal is to obtain high accuracy. We will explore this topic in our upcoming
work.

6.4. High order interaction. We now look at Problem (5.3) with an extra
high order interaction term. This adds additional nonlinearity to the problem. Consider
the same domain Ω = [−1,1]2⊂R

2 and spatial discretization size h= 2 ·2−8. Let V (x) =
1
2 |x|2 still be the single well potential. The first example is β= 10 and δ= 1. Figure
6.6a shows the log error convergence. The iteration converges in a few steps and shows
a good convergence rate.

In the second example, we increase δ and look at the problem with strong high
order interaction. We choose β= 100 and δ= 100. Figure 6.6b shows the log error
convergence. The convergence rate is slower but stable.

(a) Convergence when β=10,
δ=1

(b) Convergence when β=
100, δ=100

Fig. 6.6: Examples of (5.3) with different nonlinear effects

7. Conclusion

In this paper, we analyzed the exponential convergence of the au-Sobolev gradient
descent method without resorting to the time-continuous gradient flow. To this pur-
pose, we introduced a general convergence tool using the  Lojasiewicz inequality, and
adapted it to the setting of infinite dimensional Hilbert manifold and mixed norms. By
proving the (L), (D) and (S) conditions for the Sobolev PGD, we were able to unveil the
mechanism behind the good performance of the Sobolev PGD for the Gross-Pitaevskii
eigenproblem (1.1), which was only empirically observed in previous works.

The success of the Sobolev PGD on the Gross-Pitaevskii eigenproblem inspires us
to further explore alternative fast solvers for more general nonlinear eigenproblems and
optimizations with high degree objective functions. Our analysis revealed that the
essential condition is the “double ground state” property, namely the ground state of
the nonlinear problem is also the unique ground state of the linearized operator at that
point. This can be rigorously proved in some cases and seems to be true in a number
of physical applications of interest based on empirical evidence. Specifically, we showed
that this condition is satisfied for a nonlinear Schrödinger eigenproblem with extra high
order interaction term. Thus the Sobolev PGD works well for this problem and has
superiority over previous methods.
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Appendix. Proofs of technical lemmas.

A.1. Proof of Lemma 3.3.

Proof. As for the equivalence between ∥·∥a0
and ∥·∥au

, the second part of the
inequality holds for all 0<CE ≤1 since u2 is nonnegative. For the first part, by Poincaré
inequality, ∥z∥2L2 ≤CP |z|2H1 for some domain constant CP =CP (Ω). Thus, we have

∥z∥2a0
−CE∥z∥2au

= (1−CE)|z|2H1 +

∫

Ω

((1−CE)V −CEβu
2)z2

≥ (1−CE)|z|2H1 −CEβ

∫

Ω

u2z2

≥ (1−CE−CEβM
2
0CP )|z|2H1 , ∀z∈H1

0 (Ω), CE ≤1.

Take 0<CE ≤1/(1+βM2
0CP ), then CE∥z∥2au

≤∥z∥2a0
.

As for the equivalence between ∥·∥au
and ∥·∥H1 , we have

∥z∥2H1 − C̃E∥z∥2au
=∥z∥2H1 − C̃E |z|2H1 − C̃E

∫

Ω

(V +βu2)z2

≥
(

1− C̃E− C̃ECP (∥V ∥L∞ +βM2
0 )
)
|z|2H1 , ∀z∈H1

0 (Ω), C̃E ≤1.

Take 0<C̃E ≤1/(1+CP (∥V ∥L∞ +βM2
0 )), then C̃E∥z∥2au

≤∥z∥2H1 . On the other hand,

C̃E

−1
∥z∥2au

−∥z∥2H1 = (C̃E

−1
−1)|z|2H1 + C̃E

−1
∫

Ω

(V +βu2)z2−∥z∥L2

≥
(
C−1

P (C̃E

−1
−1)+ C̃E

−1
βM2

0 −1
)
∥z∥L2 .

Take 0<C̃E ≤ (1+CPβM
2
0 )/(1+CP ), then ∥z∥2H1 ≤ C̃E

−1
∥z∥2au

. The final choice of C̃E

is the smaller of the two.

A.2. Proof of Lemma 3.4.

Proof. For notational simplicity, we allow the constants C,C ′ to change their
meanings through the proof. We also denote

t :=∥u−v∥H1 .

Using the variational form of the eigenvalues, we have

µ1 = min
z∈H1

0 (Ω),
∥z∥L2=1

(z,z)au
≤ (v,v)au

,

λ1 = min
z∈H1

0 (Ω),
∥z∥L2=1

(z,z)av
≤ (w1,w1)av

,

λ1 +λ2 = min
z1,z2∈H1

0 (Ω),
∥z1∥L2=∥z2∥L2=1,

z1⊥z2

(z1,z1)av
+(z2,z2)av

≤ (w1,w1)av
+(w2,w2)av

.

We will use the above relations to bound the gap between µ1 and λ1, and λ2 and µ2.
First, we have

µ1≤ (v,v)au
= (v,v)av

+

∫

Ω

β(u2v2−v4)
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=λ1 +

∫

Ω

βv2(u+v)(u−v)

≤λ1 +2βM3
0

∫

Ω

|u−v|

≤λ1 +C(β,M0,Ω) · t.

Therefore, there exists C =C(β,M0,Ω) such that when t≤C,

µ1≤λ1 +
1

6
Cv. (A.1)

Next, we note that

λ1 +λ2≤ (w1,w1)av
+(w2,w2)av

= (w1,w1)au
+(w2,w2)au

+

∫

Ω

β(v2−u2)(w2
1 +w2

2)

=µ1 +µ2 +

∫

Ω

β(v+u)(v−u)(w2
1 +w2

2). (A.2)

To estimate ∥w1∥L∞ , note that it is the weak solution of

−∆w1 +V w1 +βu2w1 =µ1w1.

Since V, u∈L∞(Ω), by elliptic regularity, we get

∥w1∥H2 ≤C(β,V,M0,Ω)(∥w1∥H1 +µ1∥w1∥L2)

≤C(β,V,M0,Ω)+C ′(β,V,M0,Ω) ·µ1.

When d≤3, using Sobolev embedding, we obtain

∥w1∥L∞ ≤C(Ω)∥w1∥H2 .

Since we have shown that µ1≤λ1 +C · t, putting them together we have

∥w1∥L∞ ≤C(β,V,M0,Ω,λ1)+C ′(β,V,M0,Ω,λ1) · t.

Similarly, we can prove that4

∥w2∥L∞ ≤C(β,V,M0,Ω,λ1,λ2)+C ′(β,V,M0,Ω,λ1,λ2) · t.

Plugging them back into (A.2), we have

(w1,w1)av
+(w2,w2)av

≤µ1 +µ2 +(C(β,V,M0,Ω,λ1,λ2)+C ′(β,V,M0,Ω,λ1,λ2) · t)2 · t.

Therefore, there exists C =C(β,V,M0,Ω,λ1,λ2), such that when t≤C,

λ1 +λ2≤µ1 +µ2 +
1

6
Cv. (A.3)

Combining (A.1) and (A.3), we have

µ1≤λ1 +
1

6
Cv, µ2≥λ2−

1

3
Cv, µ2−µ1≥

1

2
Cv. (A.4)

4We omit the details of showing µ2≤λ2 +C · t by showing µ1 +µ2≤λ1 +λ2 +C · t using the varia-
tional form.
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Next, note that

λ1≤ (w1,w1)av
= (w1,w1)au

+

∫

Ω

β(v2−u2)w2
1

≤µ1 +C(β,V,M0,Ω)∥w0∥2L∞ · t
≤µ1 +(C(β,V,M0,Ω)+C ′(β,V,M0,Ω) · t)2 · t.

Therefore, there exists C =C(β,V,M0,Ω,λ1) such that when t≤C,

λ1≤µ1 +
1

6
Cv. (A.5)

Equations (A.1), (A.4) and (A.5) contain all the relations between λ1, λ2, µ1, and µ2

that we will need.
Since {wi}∞i=1 forms an orthonormal basis of H1

0 (Ω), in order to estimate ∥u−w1∥L2 ,
it suffices to bound (u,u)au

−µ1. Note that

(u,u)au
−λ1 = (u,u)au

−(v,v)av

= (u,u)au
−(v,v)au

+

∫

Ω

β(u2v2−v4)

≤ (∥u∥au
+∥v∥au

) ·∥u−v∥au
+

∫

Ω

βv2(u+v)(u−v)

≤C(β,V,M0,Ω)(∥u∥H1 +∥v∥H1) ·∥u−v∥H1 +

∫

Ω

βv2(u+v)(u−v)

≤C(β,V,M0,Ω) · t.
The fourth inequality uses the norm equivalence in Lemma 3.3. Thus, there exists
C =C(β,V,M0,Ω), such that when t≤C,

(u,u)au
−λ1≤

1

12
Cv. (A.6)

Combining (A.4), (A.5) and (A.6), we have

(u,u)au
−µ1≤

1

4
Cv ≤

1

2
(µ2−µ1).

Assume that u=
∑∞

i=1 ciwi, where
∑∞

i=1 c
2
i = 1. Then we get

(u,u)au
−µ1 =

∞∑

i=1

c2iµi−µ1≥ c21µ1 +

∞∑

i=2

c2iµ2−µ1 = (1−c21)(µ2−µ1).

Since (u,u)au
−µ1≤ 1

2 (µ2−µ1), we have

1−c21≤
1

2
, |c1|≥

1√
2
.

If c1≤−1/
√

2, we can use −w1 to replace w1. Thus, we always have c1≥1/
√

2. This
gives

∥u−w1∥L2 =
√

2−2c1≤
√

2−
√

2<1.

In other words, s≤
√

2−
√

2. The constant C in the statement of the lemma is the
smallest of all the constants C, C ′ in the proof. Since λ2 =λ1 +Cv, the dependence on
λ2 is the dependence on Cv.
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A.3. Proof of Lemma 3.5.

Proof. Since µ2 is strictly greater than µ1, we can split A and u as

A=A(1) +A(2), A(1) =APw1
, A(2) =AP⊥

w1
,

u=u(1) +u(2), u(1) =Pw1u, u(2) =P⊥
w1

u.

Here Pw1
is the orthogonal projection onto the subspace of w1 under the L2 inner

product, and P⊥
w1

= id−Pw1
. Then A(1)u(1) =µ1u

(1), and (u(2),u(2))A(2) ≥µ2∥u(2)∥2L2

since u(2)⊥w1. By definition of G, (u,Gv)A = (u,v)L2 for any u,v∈X. We have

(u,Gu(1))L2 =µ−1
1 ∥u(1)∥2L2 ,

(u,Gu(2))L2 = (u(1),Gu(2))L2 +(u(2),Gu(2))L2 = (u(2),Gu(2))L2 ,

(u(2),Gu(2))L2 = (Gu(2),Gu(2))A≥µ2∥Gu(2)∥2L2

=µ2∥u(2)∥−2
L2 ·(∥Gu(2)∥2L2∥u(2)∥2L2)≥µ2∥u(2)∥−2

L2 ·(u(2),Gu(2))2L2 ,

i.e., (u,Gu(2))L2 ≤µ−1
2 ∥u(2)∥2L2 .

Therefore, the objective inequality is transformed into

CL

(
(u,u)A− 1

(u,Gu)L2

)
−((u,u)A−(w1,w1)A)

= (CL−1)(u,u)A− CL

(u,Gu)L2

+µ1

= (CL−1)((u(1),u(1))A(1) +(u(2),u(2))A(2))− CL

(u,Gu(1))L2 +(u,Gu(2))L2

+µ1

≥ (CL−1)(µ1∥u(1)∥2L2 +µ2∥u(2)∥2L2)− CL

µ−1
1 ∥u(1)∥2L2 +µ−1

2 ∥u(2)∥2L2

+µ1

= (CL−1)(µ1 +(µ2−µ1)∥u(2)∥2L2)− CLµ1µ2

µ2 +(µ1−µ2)∥u(2)∥2L2

+µ1

= (µ2−µ1)
((CL−1)µ2−CLµ1)∥u(2)∥2L2 −(CL−1)(µ2−µ1)∥u(2)∥4L2

µ2 +(µ1−µ2)∥u(2)∥2L2

.

We look for CL and u such that the above is greater than or equal to 0. In fact, for any
CL>1, if

0≤∥u(2)∥2L2 ≤ (CL−1)µ2−CLµ1

(CL−1)(µ2−µ1)
,

then this is satisfied. Note that ∥u−v1∥L2 ≤s implies ∥u(2)∥2L2 ≤s2. So the requirement
on CL is

CL≥1+
µ2

(µ2−µ1)(1−s2)
.

A.4. Proof of Lemma 5.2.

Proof. The main idea of the proof is the same as that of Lemma 3.4 so we only
point out their differences here. For example, to estimate µ1−λ1, we have

µ1≤ (v,v)au
= (v,v)av

+

∫

Ω

β(u2v2−v4)+

∫

Ω

δ
(
(∇(uv)2−∇(v2)2)

)
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=λ1 +

∫

Ω

βv2(u+v)(u−v)+

∫

Ω

δ(∇(uv)+∇(v2))(∇(uv)−∇(v2)).

The second term is bounded in the same way as the proof of Lemma 3.4. Only the third
term containing high-order interaction is new. To bound the third term, we note that

∫

Ω

δ(∇(uv)+∇(v2))(∇(uv)−∇(v2))

= δ

∫

Ω

(v∇u+u∇v+2v∇v)(v∇u+u∇v−2v∇v)

≤4δM0M1

∫

Ω

|v∇u+u∇v−2v∇v|

= 4δM0M1

∫

Ω

|v(∇u−∇v)+(u−v)∇v|

≤C(δ,M0,M1,Ω)∥u−v∥H1 .

Similar bounds can be obtained in the estimation of (λ1 +λ2)−(µ1 +µ2), λ1−µ1, and
(u,u)au

−µ1. The dependence of the constant C only has two additional dependencies
which are δ and M1.
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