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Abstract— Regular exercise provides many mental and phys-
ical health benefits. However, when exercises are done incor-
rectly, it can lead to injuries. Because the COVID-19 pandemic
made it challenging to exercise in communal spaces, the
growth of virtual fitness programs was accelerated, putting
people at risk of sustaining exercise-related injuries as they
received little to no feedback on their exercising techniques. Co-
located robots could be one potential enhancement to virtual
training programs as they can cause higher learning gains, more
compliance, and more enjoyment than non-co-located robots.
In this study, we compare the effects of a physically present
robot by having a person exercise either with a robot (robot
condition) or a video of a robot displayed on a tablet (tablet
condition). Participants (N=25) had an exercise system in their
homes for two weeks. Participants who exercised with the co-
located robot made fewer mistakes than those who exercised
with the video-displayed robot. Furthermore, participants in
the robot condition reported a higher fitness increase and more
motivation to exercise than participants in the tablet condition.

I. INTRODUCTION

An large number of studies have outlined the benefits of
exercise [23, 24] including improved cardio-respiratory fit-
ness [21], improved mental health [17], and diabetes preven-
tion [4]. Despite the many benefits, there are risks associated
with performing exercises with the wrong body posture or
movement patterns [27, 30]. Studies have shown that weight-
training-related exercises, when performed without supervi-
sion and corrective feedback from a trained professional,
can put one at risk of sustaining musculoskeletal injuries
[22]. Therefore, many choose to exercise with a personal
trainer, who helps them learn correct techniques and tailors
their regime according to their body type and strength levels,
thus mitigating the risks associated with performing weight-
training exercises without supervision [6].

In the COVID-19 pandemic, when access to gyms and per-
sonal trainers became limited, many people resorted to exer-
cising at home with limited access to equipment and exercise
partners [5, 20]. As the pandemic accelerated the growth of
virtual fitness programs, videos created by trainers worldwide
gained popularity among a broader audience. When people
started learning to exercise with trainers virtually, they risked
sustaining exercise-related injuries as they received little to
no feedback on their technique while learning new exercises.

One potential enhancement to virtual fitness training sys-
tems could be robotic coaches. Social robots have been
shown to be effective in providing corrective feedback and
motivation while completing tasks [18]. Therefore, we de-
signed a social robot system (Figure 1) that helps people
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Fig. 1: Participants completed dumbbell exercises with a
robotic coach during a two week in-home study

adhere to an exercise routine while providing corrective
feedback on their form. We deployed this system in homes
over a 14-day study while providing corrective feedback
using a machine learning algorithm. We compare our co-
located robotic coach (robot condition) to a video of the
same robot displayed on a tablet screen (tablet condition). To
the best of our knowledge, this is the first in-home study to
analyze the effects of a robot’s physical presence in helping
people maintain correct exercise techniques.

Our results show that participants in the robot condition
made significantly fewer mistakes while exercising than
participants in the tablet condition. Additionally, our ques-
tionnaire results show that participants in the robot condition
reported finding the workouts less difficult and reported a
higher fitness increase than tablet condition participants. Fi-
nally, participants in the robot condition felt more motivated
to exercise and found the system more entertaining.

II. BACKGROUND
A. Use of Robots in Physical Exercise Training

There have been a growing number of studies that show
robots as personal coaches [1, 14], including assisting during
repetitive, self-directed exercises in rehabilitative therapies
[8, 11]. Other studies have deployed robot systems to engage
the elderly in physical exercise [7, 9].

Several studies show that a robot can effectively help peo-
ple learn correct movement patterns and exercise postures by
providing real-time corrective feedback to the participant [1,
10]. However, most studies in this domain asked the partic-
ipants to perform simple, rehabilitative, or injury-preventive
exercises without external weights. Furthermore, previous
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Fig. 2: (a) The co-located robot as part of the system. (b)
The robot displayed on a tablet screen

robotic coaches were mainly conducted in a controlled lab
setting during one session. For robots to be effective coaches,
they need to operate in unstructured environments for more
extended periods and provide guidance during mainstream
fitness exercises. Thus, we explore the impact of an in-home
co-located robot in helping people practice weight-training
exercises done typically at the gym.

B. Benefits of Physically Present Robots

A robot being physically located with the participant has
many advantages. For example, research has shown that a
physically present robot led to greater compliance [2] and
learning gains [16] than the same robot displayed in a video.
Studies have also shown that corrective feedback provided
by co-located robots is more effective in helping people learn
a given task correctly than video-displayed robots [28].

Therefore, this work studies whether a physically present
robot will also benefit the user when acting as an exercise
coach. Specifically, we aim to investigate if the feedback
provided by a co-located robotic coach would impact the
number of exercise mistakes people would make compared
to people exercising with videos of a robot on a tablet.

III. METHODOLOGY

In our study, participants interacted with a system in their
homes over 14 days, and the participants were expected to do
one coaching session every day. Each coaching session took
between 15-25 minutes, where they completed five upper
or lower body exercises. We compared a co-located robot
(Robot Condition) to the video of same robot displayed on
a tablet screen (Tablet Condition).

We had three hypotheses based on prior work showing
that physically present robots can lead to higher learning
gains [16], may be seen as helpful [28], and can be more
motivating [13] over a video-displayed robot.

Hypothesis 1: Participants will perform fewer exercise
mistakes with the co-located robot than with the video-
displayed robot.

Hypothesis 2: Participants will perceive the co-located
robot as smarter and more helpful than the video-displayed
robot.
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Fig. 3: a) System for the Robot Condition was composed of
a Keepon Robot, a speaker, a RealSense camera, and a tablet
interface. b) System for the Tablet Condition was composed
of a tablet interface, a speaker, and a RealSense camera

Hypothesis 3: Participants will be more motivated to
exercise with the co-located robot than with the video-
displayed robot.

A. Conditions

We compared our exercise system with a physically
present robot (Robot Condition) to a similar system that
displays a video of the same robot on a tablet (Tablet
Condition). The video-displayed robot was recorded using
a high-resolution camera. The physically present robot and
the video-displayed robot appeared to be of similar size
and performed the same exercise movements and utterances
across the two conditions. Figure 2 shows the robots in the
two conditions.

B. Exercises

A professional coach helped design the exercise routine,
including a good sequence of exercises, the number of
repetitions, break times, and common mistakes (Table I). The
number of mistakes varied between the different exercises.
We classified two mistakes for bicep curls and front raises.
We identified one mistake for shoulder presses, single-arm
triceps extensions, squats, and lunges. Calf raises and single-
leg raises had no possible mistakes because of the simplicity
of these exercises. Over a 14-day study period, the system
guided participants through upper-body exercises on odd
days and lower-body exercises on even days. The participants
could choose to use an appropriate dumbbell set, weighing
between 2-10 1bs, or perform the exercises without weights.

C. System Design

We used the MyKeepon robot, a 4-DOF, 15cm tall yellow-
colored desk robot derived from a commercialized robot
called the KeeponPro [15] (Figure 2). The robot can move
up and down, side to side, or front and back during the
exercise to give the participant the appropriate speed for each
repetition. The MyKeepon robot was chosen due to its low
cost and small form factor, making it an appropriate robot
coach in people’s homes.

To deploy the robotic system in participants’ homes in
the Robot Condition, we built a compact 16in x 12in junc-
tion box to house, a mini-computer, a router, and support



equipment as shown in Figure 3a. Outside the box, we had
the MyKeepon robot, a 12-inch tablet, an Intel RealSense
camera [12] to track the participant’s pose while exercising,
and an external speaker. The setup for the participants in the
Tablet Condition was identical, except that the video of the
robot was shown on the tablet instead of the robot being
physically present (Figure 3b). Additionally, in the Tablet
Condition, the same tablet was used to display the video
of the human trainer demonstrating the exercises and the
video of the robot exercising. Notably, when the video of
the human trainer demonstrating the exercise was displayed,
the video-displayed robot was not shown to the participants.

D. Procedure

After delivering the system to the participants’ homes,
they filled out a consent form and a pre-study demographics
questionnaire. The participants were asked to interact with
the system every day for 14 days, with each interaction
taking between 15-25 minutes. Each day a given participant
experienced the following interaction sequence:

1) The participant would turn on the system and start an
application on the tablet.

2) The robot would introduce itself on the first day and
explain how the interaction was expected to proceed
briefly. Each subsequent day, the robot would begin
with a 1-2 minute long motivational greeting.

3) The robot would then guide the person to position
themselves at an appropriate distance from the camera
with the help of prompts on the tablet.

4) The robot would guide the participant through two sets
of exercises, each set containing five exercises. For
each of the exercises:

a) A video of a human trainer performing the exer-
cise was shown on the tablet for 15 seconds for
both conditions.

b) After the participant was prompted to begin ex-
ercising, the robot would either move up and
down, side to side, or front and back indicating
the primary body movement in a given exercise.
The robot would instruct the participant to per-
form the same exercise following the pace of
its movements. During this exercise interval, the
tablet showed a video of the robot performing the
movements in tablet condition, while it displayed
a blank screen in the robot condition.

5) The robot would bid goodbye for the day and shut off
the system automatically.

E. Mistake Correction

During the interaction, the images captured by the cam-
era were used to track the pose of the participant. We
used MoveNet based on TensorFlow.js’s pose detection API.
Given a two-dimensional image, we run inference on a pre-
trained MoveNet model to predict 17 keypoints on the human
body with high accuracy in real-time. These keypoints were
used in two ways:

1) Evaluating the participant’s position with respect to
the camera: To evaluate if the person’s positioning was
valid (i.e., facing the system frontal and about 5m away),
we observed whether all 17 keypoints were present in the
camera’s field of view with high confidence. If the partici-
pant’s position was not valid, they were asked to adjust their
position appropriately until it was valid.

2) Evaluating the participant’s form while exercising:
Participants were given corrective feedback on their form
during most exercises. We designed an algorithm that sepa-
rated the participants’ movements into repetitions and classi-
fied those repetitions according to the pre-defined mistakes in
real-time. Given the predicted keypoints, the algorithm used
the following steps to identify the appropriate feedback:
Preprocessing: We normalized the predicted keypoints to
reduce the dependence of the analysis on the position and
person’s height with respect to the camera. First, we trans-
lated each of the keypoints with respect to the center of the
body, which we defined to be the middle point of the quad-
rangle formed by the shoulder and hip keypoints. Then, we
divided the translated keypoint positions by the body’s torso
length (distance between the shoulder and hip keypoints) to
account for different people’s heights. Afterward, we used
a Kalman filter [29] to smooth out jitters between predicted
keypoints for different frames of the video.

Repetition Detection: To identify when a person had
completed a valid repetition of an exercise, we calculated the
minima and maxima for each movement by analyzing in real-
time the trajectory of a chosen keypoint whose value changed
prominently along the y-axis during a single repetition. We
focused on the value of the wrist keypoint for all upper body
exercises and the nose keypoint for all lower body exercises.
For example, in a correct bicep curl movement, the y-values
of the wrist in the trajectory must first strictly increase, then
strictly decrease in the y-dimension. Therefore, a bicep-curl
repetition is considered valid when a minimum is followed
by a maximum and then another minimum.

Mistake Classification: After a valid repetition has been
detected, we use machine learning classifiers to detect if it
was performed correctly. We detect mistakes for seven of
the ten exercises. For each, we trained a different machine
learning classifier. We collected data from twelve people
under the supervision of a trainer. We asked each person
to perform 10-15 repetitions of each exercise correctly and
an additional 10-15 repetitions purposefully performing each
of the pre-defined exercise mistakes. We experimented with
three different classifiers for each exercise: support vector
classifier (SVC) [19], k-nearest neighbor time series classifier
(KNN) with k£ = 5 [26], and a feedforward neural network
(FNN) [25]. The FNN consisted of two hidden layers, with
64 and 32 neurons respectively. It used a sliding window
approach with a window size of n = 15, and was trained
using cross-entropy loss. Since the focus of this paper was
not a novel algorithm, we tested different classifiers and
chose the one that worked best for each exercise. The chosen
classifier for each exercise and its performance for leave-one-
subject-out cross-validation on the training data is reported



Day Exercise Name Mistakes Reps Mistake Description Classifier Validation Accuracy
Upper Body  Bicep Curls Arm Swinging 12 Arm swings instead of moving SvC 83.7%
only lower arm and keeping
upper arm attached to body
Arm Half-Down Movement doesn’t cover the full
range of the arm’s motion
Front Raises Arm Swinging 12 Arm swings to use momentum FNN 86.2%
instead of controlled movement
Arm Above Shoulder Weights raised above the shoulder
Shoulder Presses Elbows Out 12 Elbows point outward instead of KNN 92.3%
keeping them at shoulder-width
Sipgle-Arm ) Elbows Out 10 Elbows point outward not upward, KNN right: 91.6%
Tricep Extensions upper arm far away from head left: 87.8%
(Right/Left)
Lower Body  Squats Knees Unstable 15 Knees move around or point inward ~ FNN 98.1%
while going down
Lunges Knees Unstable 10 Struggles to keep balance, knee KNN 73.5%
moves around while stepping back
Calf Raises 12

Single-Leg Raises
(Right/Left)

TABLE I: Participants completed upper body exercises on odd days and lower body exercises on even days. Upper body
days had several different mistakes that were classified using our computer vision system. Whereas some lower body days
had mistakes, and other ones did not. Each exercise had an appropriate number of repetitions that were completed according

to the advice of professional coaches.

in Table 1.

Providing Feedback: If the participant performed a given
exercise correctly for at least three repetitions, the robot
would provide a motivating utterance like “Keep going! You
are doing well!”. However, if a specific exercise mistake is
detected twice or more per set, the robot would provide a
corrective utterance to the participant. An example utterance
for the arm swinging mistake during biceps curls was “Don’t
swing your arms so much! Keep your upper arm attached to
the sides of your body”.

F. Measures

We collected both behavioral and questionnaire measures.
Behavioral Measures: Our behavioral measures included
the percentage of days the participant exercised with the
robot and the percentage of exercises performed correctly.
Three people coded the first two days and the last two
days that the system was in each person’s home to measure
correct exercise execution. One person coded front raises and
shoulder presses; one coded right triceps and left triceps; one
coded squats and lunges. Bicep curls were not coded due to
the difficulty of detecting swinging due to the low video
frame rate. The coders were blind to condition. All three
coders coded all exercises done by two participants for the
first and the last two days of system deployment to measure
the coders’ agreement with each other. The three coders had
moderate agreement (Fleiss’ Kappa = 0.44, p < 0.001). The
percentage of correct exercises only relates to the six coded
exercises.

Questionnaire Measures: Our questionnaire measures in-
cluded a demographics questionnaire asking about age,
gender, and exercising habits. We also gave a RoSAS
questionnaire [3], assessing the robot’s perceived warmth,
competence, and discomfort. A post-experiment survey asked

participants to answer the following questions regarding their
perceptions of the interaction using a 1-7 Likert responding
format: How difficult did you find the workouts? Do you
feel an increase in strength and fitness after the last two
weeks? How helpful did you view the instructions the robot
gave you for doing the exercises? How helpful did you view
the exercise corrections the robot gave you while doing the
exercises? How important were the workouts in your daily
routine? Did the robot motivate you to work out? Do you
feel more motivated to continue exercising on a regular basis
after the last two weeks? Did you exercise because the robot
made you feel guilty if you did not?

G. Participants

There were 25 participants in our study. Fourteen partic-
ipants were in the robot condition: five male, eight female,
and one non-binary. Their average age was 21.91 years
(SD=2.84). Eleven participants were in the tablet condi-
tion: four male and seven female. Their average age was
23.56 years (SD=5.85). There were no significant differ-
ences regarding robot familiarity (Robot Condition: M=3.64,
SD=1.96; Tablet Condition: M=3.33, SD=1.00; p=.340).

Participants in the robot condition reported exercising on
average 4.55 (SD = 1.44) hours a week before the system
was in their home, while participants in the tablet condition
reported an average of 2.67 (SD = 3.08). These differences
were statistically significant (p = .044). 81.82% of partici-
pants in the robot condition reported having exercised with
weights before, compared to 55.56% of participants in the
tablet condition. These differences were not significant (p =
0.202). 27.27% of participants in the robot condition and
22.22% 1in the tablet condition had exercised with a personal
trainer before the start of the study. These differences were
not significant (p = 0.80).
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Fig. 4: Participants in the robot condition on average per-
formed the exercises significantly more correctly than par-
ticipants in the tablet condition.

IV. RESULTS
A. Behavioral Results

Participants in the robot condition completed on average
68.65% (SD = 11.41%) of the coded exercises correctly,
while participants in the tablet condition completed 57.46%
(SD = 16.78) of the coded exercises correctly. These differ-
ences were statistically significant ¢(25) = 1.98,p = .03.
On the first two days participants in the robot condition
completed more exercises correctly than the tablet condition
(Robot - M:71.25%, SD:12.82%; Tablet - M:56.90%, SD:
20.54%; t(25) = 2.14,p = .022). Participants in the robot
condition also completed more exercises correctly during the
last two days than the tablet condition (Robot - M:68.11%,
SD:15.25%; Tablet - M:52.90%, SD: 21.15%; t(25) =
2.05,p = .026). These results are presented in Figure 4.

On average, participants in the robot condition exercised
71.74% (SD = 19.79) days out of the days the system was
in their home. Participants in the tablet conditions exercised
on average 66.46% (SD = 23.48) days. These differences
were not significant using a t-test ¢(25) = 0.61, p = 0.273.

B. Post-Experiment Questionnaire

Regarding the RoSAS questionnaire, there were no signif-
icant differences in warmth (Robot: M = 4.56, SD = 0.98;
Tablet: M = 3.82,SD = 1.38;¢(25) = 1.58,p = 0.064),
competence (Robot: M = 4.73,SD = 1.26; Tablet: M =
3.98,SD = 1.36;t(25) = 1.41,p = 0.086), or discomfort
(Robot: M = 1.71,SD = 0.51; Tablet: M = 2.17,5D =
1.30;¢(25) = —1.19,p = 0.123).

On the post-experiment questionnaire, participants in the
robot condition found the exercises less difficult (Robot:
M = 2.43, SD = 1.02; Tablet: M = 3.27, SD = 1.42;
p=0.048) and felt a larger fitness increase (Robot: M = 4.86,
SD = 0.86; Tablet: M = 3.91, SD = 1.51; p=0.030) than
participants in the tablet condition. There were no significant
differences between conditions in how helpful they found
the instructions (Robot: M = 5.57, SD = 1.40; Tablet:
M =473, SD = 1.79; p=0.099) or the corrections (Robot:
M = 3.93, SD = 1.90; Tablet: M = 3.64, SD = 1.86;
p=0.352) given by the robot.

Participants felt more motivated to workout in the robot
condition than the tablet conditions (Robot: M = 4.64,

SD = 1.65; Tablet: M = 3.27, SD = 2.05; p=0.038),
but there were no significant differences in motivation to
continue exercising post-experiment (Robot: M = 5.57,
SD = 1.40; Tablet: M = 4.73, SD = 1.79; p=0.099). Par-
ticipants in the robot condition reported seeing the workouts
as more important in their daily routine (Robot: M = 3.93,
SD = 1.21; Tablet: M = 2.55, SD = 1.29; p=0.006), and
that they felt guiltier when they did not (Robot: M = 5.21,
SD = 2.02; Tablet: M = 2.73, SD = 1.49; p=0.039).

V. DISCUSSION
A. Hypotheses

Participants in the robot condition made fewer total mis-
takes than participants in the tablet condition. Furthermore,
participants in the robot condition made fewer mistakes in
the first two days and the last two days than in the tablet
condition. The in-home systems were not deployed for a
long-enough duration to see any reductions in the number
of mistakes people made in either condition over the study
period. Both conditions were consistent in the number of
mistakes shown across the two weeks. On the questionnaire,
Robot Condition participants reported finding the workouts
less difficult and felt a higher strength and fitness increase.
These results support Hypothesis 1: Participants performed
fewer exercise mistakes with the co-located robot than with
the video-displayed robot.

There were no significant differences regarding compe-
tence, helpfulness of the instructions, or helpfulness of the
exercise corrections. Therefore we do not believe Hypothesis
2 to be true: Participants did not perceive the co-located
robot as smarter and more helpful than the video-displayed
robot.

There were no significant differences between conditions
regarding the percentage of days the participants exercised
with the robot. However, participants in the robot condition
did report feeling more motivated to work out, placed more
importance on exercising with the robot, and felt guiltier
when they did not. Therefore we have partial support for
Hypothesis 3: Participants felt more motivated to exercise
with the co-located robot than the video-displayed robot.

B. Impact of Robot Co-Location on Exercising Mistakes

Having a co-located robot significantly reduced the num-
ber of mistakes people made while exercising. On average,
participants in the tablet condition performed 43% of their
exercises incorrectly. A person exercising with a co-located
robot for two days (one upper-body and one lower-body)
would have completed 61 fewer incorrect repetitions than
a person in the tablet condition. Performing many incorrect
repetitions could lead to injuries and sub-optimal strength
improvements. This was confirmed by questionnaire results
where participants in the tablet condition found the exercises
more difficult and felt lower fitness and strength increase than
participants in the robot condition.

There are multiple reasons why a person would have
performed fewer mistakes with the co-located robot. One
possibility is that they felt more engaged and entertained by



the physically present robot and therefore were paying more
attention to the exercise demonstrations and corrections.
Literature also shows that physically present robots increase
learning gains [16], and therefore people might have learned
more from the robot’s corrections. Lastly, research shows
that co-located robots cause higher amounts of compliance
[2]. Thus, participants in the robot condition could have been
more willing to receive corrections from the robot.

One potential confound of the study is that participants in
the robot condition had more time with the robot. The robot
was temporarily not visible during the exercises in the tablet
condition. However, we do not believe this significantly
impacted the study, as the demonstrations were short, and
the robot was mostly static during them. A second potential
confound is that the movements of the robot representing
repetition speed might have been more visible in 3D than in
2D on the tablet screen. However, this would have a minimal
effect as most exercise speed movements were from left to
right or up and down, which were equally visible in both
conditions. The last potential confound is that participants in
the robot condition had reported exercising more hours per
week than participants in the tablet condition. They might
have had more experience doing exercises and therefore
made fewer mistakes. However, participants in the robot
condition did not report significantly more experience with
weight training nor more experience with personal trainers.

This study shows the great benefits of having a low-cost
co-located robot present when exercising. Even if the robot
cannot demonstrate the exercises themselves, the presence
alone has people making fewer mistakes while exercising.
Reducing errors increases exercise gains and reduces the
potential for injuries.
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