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Abstract— Robot-to-Human handovers are common exercises
in many robotics application domains. The requirements of
handovers may vary across these different domains. In this
paper, we first devised a taxonomy to organize the diverse
and sometimes contradictory requirements. Among these, task-
oriented handovers were not well-studied but important because
the purpose of the handovers in human–robot collaboration
(HRC) is not merely to pass an object from a robot to a
human receiver, but to enable the human receiver to use it in a
subsequent tool-use task. A successful task-oriented handover
should incorporate task-related information – orienting the tool
such that the human can grasp it in a way that is suitable for
the task. We identified multiple difficulty levels of task-oriented
handovers, and implemented a system to generate task-oriented
handovers with novel tools on a physical robot. Unlike previous
studies on task-oriented handovers, we trained the robot with
tool-use demonstrations rather than handover demonstrations,
since task-oriented handovers are dependent on the tool usages
in the subsequent task. We demonstrated that our method
can adapt to all difficulty levels of task-oriented handovers,
including tasks that matched the typical usage of the tool (level
I), tasks that required an improvised and unusual usage of
the tool (level II), and tasks where the handover was adapted
to the pose of a manipulandum (level III). We evaluated the
generated handovers with online surveys. Participants rated our
handovers to appear more comfortable for the human receiver
and more appropriate for subsequent tasks when compared
with typical handovers from prior work.

I. INTRODUCTION AND RELATED WORKS

A robot-to-human handover is a joint action wherein a
robot grasps, presents, and transfers an object held in its
end-effector to a human receiver. It is a common exercise
in numerous applications, including service robots handing
flyers to pedestrians [1], personal assistive robots handing
phones to people with disabilities [2], and factory robots
handing hammers to collaborators [3]. To summarize the
different requirements for handovers, we compiled a robot-
to-humman handover taxonomy (for details, see Section I-
A). The taxonomy serves the following purposes: 1) it helps
to situate our study in the larger picture of robot-to-human
handovers; 2) it helps to organize related work on handovers;
3) it may serve as a guide for future systems designed for
handovers in terms of what requirements may need to be
considered.

This study focused on one specific handover, the task-
oriented handover that is commonly seen in the context of
human-robot collaboration (HRC). However, as mentioned
in recent publications [4], [5], task-oriented handovers have
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Fig. 1: Our taxonomy of robot-to-human handover require-
ments. Bottom to top: the basic, intermediate and advanced
requirements.

not yet gained enough attention in robot manipulations. In
HRC, the purpose of a task-oriented handover typically
is not merely to pass an object to a human, but also to
enable the human to use the object to complete tasks. In
order to maximize efficiency, the task-oriented handover
should allow the human receiver to initiate a subsequent
task with minimum in-hand object adjustment. Consequently,
handovers of this type are dependent on how the tools
should be used. Previous studies on task-oriented handovers
generally demonstrated handovers of certain tools, without
providing information regarding how the tools are used in the
subsequent tasks. As a result, robots’ lack of understanding
of tool-use impedes their ability to generate handovers with
novel tools. Therefore, our study aimed at designing a system
that can generate appropriate task-oriented handovers with
demonstrations of tool-use rather than handovers by inte-
grating existing techniques. Furthermore, we also identified
multiple levels of difficulties in task-oriented handovers and
organized related work accordingly (for details, see Section
I-B).

We built a system that generates task-oriented handovers.
The system learned tool-affordances to allow the robot to
understand the nature of the subsequent task. In our system,
we chose and integrated a tool-affordance learning technique
appropriate for handover tasks. We implemented the system
on a physical robot and the results showed that the system
can handle all difficulty levels of task-oriented handovers. We
also conducted an online survey to evaluate the handovers
executed by the robot. In summary, our contributions are:
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1) We defined a taxonomy of handover requirements.
2) Our system generated handovers based on learned

tool affordances, rather than handover demonstrations,
since task-oriented handovers are dependent on the
subsequent tool-use task.

3) With the understanding of how tools should be used,
our system was able to handle task-oriented handovers
for all three difficulty levels that we identified.

4) Survey participants preferred our handovers and rated
them as appearing to be comfortable for a potential
human receiver and appropriate for the subsequent
tasks.

A. Taxonomy: Handover Requirements

A handover is a complex manipulation with various re-
quirements to satisfy. Therefore, we compiled a taxonomy
of handover requirements and summarized it in Fig. 1. The
requirements at the lower levels should be satisfied first
before a higher-level requirement can be satisfied. In the
taxonomy, the basic requirement is to be complete and safe.
A complete handover refers to the successful delivery of an
object to the receiver [6], [7], [8], [9], [10], [11], [12], [13],
and a safe handover requires that no collision occurs at any
time during the course of delivery [14], [15], [16], [17]. This
is the focus of most handover studies.

Beyond the basic requirement of completeness and safety,
satisfying one or more intermediate requirements will pro-
duce appropriate handovers. Compared with the studies fo-
cused on basic requirements, fewer handover studies focus
on intermediate requirements.

The first intermediate requirement is that handovers should
adapt to social or physical interactions between a human
receiver and a robot (i.e., interaction-oriented). The social
interactions include sending or perceiving various types of
social signals such as eye contact [18], [19], [20], [21], while
the physical interactions involve adjusting where [22], [23] or
when [24] to conduct handovers based on the location or the
physical state (e.g., availability) of a human receiver, or gen-
erating handovers that comply with human ergonomic needs
[25], [26]. Satisfying these interaction–oriented requirements
can help with generating customized handovers that are more
comfortable for the receiver.

The second intermediate requirement is that a han-
dover should abide by various conventions (i.e., convention-
oriented), including professional protocols (e.g., handing
over a surgical tool to a surgeon during a procedure in
the operating room), hygiene concerns (e.g., one should not
grasp the tines of a fork which will touch food), heuristic
rules (e.g., one tend to orient an object horizontally for the
receiver), and social or cultural norms (e.g., handing over a
gift with a single hand is considered disrespectful). Satisfying
convention-oriented requirements can help with generating
handovers that match expectations.

The third intermediate requirement is that handovers
should incorporate information about subsequent tasks (i.e.,
task-oriented) [27], [28], [5], [29], which allows the human
receiver to perform the subsequent tasks more efficiently.
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Fig. 2: Difficulty levels of task-oriented handover. Blue
circles indicate function parts for different tasks.

Our study focus on this third intermediate requirement, task-
oriented handovers, and other requirements are beyond the
scope of this study.

The advanced requirement in our taxonomy is that a
handover should be context-dependent. In other words, one
should choose one or a combination of intermediate require-
ments to meet based on the specific context. The intermediate
requirements may contradict each other, and not all require-
ments can be satisfied simultaneously. For example, during
a convocation, an assistant hands the diploma to a dean in
a way that prioritizes the interaction-oriented requirements
so that the dean can receive the diploma more comfortably.
However, when the dean hands the diploma to a graduate, the
dean will not prioritize the interaction-oriented requirements
as the assistant does, but will prioritize the convention-
oriented requirements and use both hands to show respect.
Therefore, a robot needs to recognize which intermediate
requirements are important in the given context and choose
one or a combination of intermediate requirements to meet
the given context.

B. Task-oriented Handovers

As the objects to be handed over in task-oriented han-
dovers are usually tools, we consider task-oriented handovers
in the context of tool-use, and the object manipulated by a
tool is referred to as manipulandum in this paper.

We identified three levels of difficulties in task-oriented
handovers and organized related work on task-oriented han-
dovers accordingly. Fig. 2 summarizes the difficulty levels
and shows examples of each level. Level I is to properly hand
over a tool to a human to perform a task typically matched
with the tool (e.g., using a screwdriver to drive screws). Since
a tool usually has a default usage, level I handovers could be

1328



achieved by building or learning a dataset to store handovers
[27], [28], [5], and the dataset was learned with handover
demonstrations rather than tool-use demonstrations.

In level II task-oriented handovers, a human receiver may
use tools with their default usages, but may also improvise
tool-use for tasks not generally associated with the tools (e.g.,
using a screwdriver to play a xylophone rather than to drive
a screw). It is more challenging than level I because a pre-
built dataset that can handle level I handovers may not be
able to handle level II handovers due to the nearly limitless
ways any particular tool can be used in different tasks. More
importantly, the dataset may not be able to generalize to
level II handovers due to a lack of understanding of how the
tools should be used. To realize handovers at this level, a
robot should recognize the functional segment of the tool
and understand the usage to determine the handovers. In
other words, learning tool affordance is the key to achieving
level II task-oriented handover. To our knowledge, only one
previous study considered learning tool affordances before
performing handovers [29]. Although only level I handovers
were demonstrated, their system may be capable of level II
handovers. However, the design of this previous study makes
their system impractical to be applied in many HRC scenar-
ios. In this previous study, a human needed to demonstrate
the usage of the novel tool to the robot in order to determine
relevant handover configurations. However, a novel tool to be
handed over is generally out of reach of the human receiver,
so that a demonstration may be impossible without handing
over the tool in the first place.

In addition to level II handover constraints, a robot should
adjust the handover configurations based on the pose of the
manipulandum (i.e., level III handovers). While some tasks
impose consistent orientations irrespective of the tool used
(e.g., stirring a pot of broth always requires a vertical tool
orientation), the usages of tools in other tasks depend on the
pose of the manipulandum (e.g., using a screwdriver to drive
a screw placed either vertically into a tabletop or horizontally
into a wall). This imposes challenges for previous systems
[29] because each task was bound with specific handover
configurations. Therefore, tool affordance may need to be
learned in a different way to allow level III task-oriented
handovers.

Previous studies on tool affordance have learned tool-use
in various ways. However, they may not be appropriate for
task-oriented handovers. Tool affordances were learned as a
distribution of the outcomes [30], [31] instead of the relation-
ship between a movement of a tool and the corresponding
status change of a manipulandum. With tool affordances
learned in this manner, a robot cannot achieve level III
handovers because the relation between specific usages and
specific contexts is unknown. When the abovementioned
relationship was learned in a previous study [32], it learned
in a way that was specific to the learned tools, and it was
unknown whether a robot could generalize the learned tools
to novel tools. It would be tedious to learn to use every
tool prior to handing it over. While parallel Self-Organizing
Maps (SOMs) can help with handling novel tools, novel tools

needed to share similar shapes with the training tools [33],
imposing restrictions on what kinds of novel tools a robot
could hand over. This problem was overcome by using a
large training set [34], [35], [36], which may be impractical
in time-sensitive scenarios to hand over tools.

II. DESIGN AND IMPLEMENTATION
In our system, a robot first learned tool affordances or

how to use a tool. Then in a robot-to-human handover task,
the handovers were calculated based on how a tool should
be used in subsequent tasks, and were then passed on to
standard inverse kinematics and motion planning libraries to
execute the motion. The tools may even be novel such that
the robot never observed their usages in the required task.
In this case, the robot first inferred its usage based on how
the tools were used in the same task, and then generated
corresponding handovers.

A. Object Model Generation
Preliminary 3D models of the objects were scanned by the

robot if possible. A script that utilized MeshLab1 was used
to automatically process the 3D models to smooth, upsam-
ple, recenter, and resurface the point clouds into triangular
meshes. The 3D models of the tools were then segmented
using the shape diameter function (CDF). The objects that
could not be scanned by the robot were obtained manually
with Autodesk Recap Pro2. Detailed procedures for obtaining
3D models can be found in our previous work [37].

B. Vision Module
To obtain the pose of an object in the scene, a partial

point cloud of the object needs to be extracted from the
environment. To isolate the partial point cloud, a background
point cloud without the object and a foreground point cloud
with the object was captured from a depth sensor. Both point
clouds were processed to leave only the workspace, and
the desktop was removed with random sample consensus
(RANSAC). The partial point cloud of the object was ob-
tained by subtracting the processed background point cloud
from the processed foreground point cloud.

After obtaining the partial point cloud of the object, the
pose of the object was retrieved by registering the partial
point cloud with the triangular mesh of the object using a
modified Iterative Closest Point registration (ICP) algorithm.
In this study, the pose of an object was represented with
a 4 × 4 homogeneous transformation matrix T ∈ SE(3)
(superscript: reference frame, subscript: object), and SE(3)
represents the special Euclidean group:

T =

[
R p
0 1

]
where R is a 3× 3 rotation matrix representing the orienta-
tion, and p is a vector representing the position. The pose of
the tool Tworld

tool on desk and the manipulandum Tworld
manipulandum

in the world frame were perceived when they were placed
on the desktop.

1MeshLab: https://www.meshlab.net/
2Autodesk software: https://www.autodesk.com/
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C. Learning Tool Affordances

The system learned tool affordances with the tool-use
framework called TRansferrIng Skilled Tool-use Acquired
Rapidly (TRI-STAR) framework [37]. While other systems
can be used in place of TRI-STAR, we chose this system
because it is flexible with the form-factors of the tools, can
accommodate a wide range of tasks, is data-efficient, and
is able to generalize to novel tools and manipulanda without
extra training. Detailed methods can be found in our previous
work [37].

The tool-use framework includes a tool-use task taxonomy
based on the goal state of the manipulandum in different
frames of reference. It learns how a tool acts upon a
manipulandum in a task using Learning from Demonstration
(LfD). Based on the demonstrations, the framework classifies
the tasks according to the task taxonomy and learns the tool-
use skills or tool affordances accordingly.

In TRI-STAR, the tool affordances include motor skills
and contact poses. Motor skills include kinematics skills,
such as a trajectory that a tool should follow, and dynam-
ics skills which considers the forces. Though TRI-STAR
currently only considers kinematics skills, dynamics skills
are less relevant in handover tasks as the robot may not
need to know the force that needs to be exerted while
the human collaborator using the tool in order to find the
appropriate handover configurations. The other component
of tool affordances, which is the contact pose, include the
grasping pose of the tool and the tool-manipulandum contact
poses while using the tool. The grasping pose is dependent
on the tool-manipulandum contact poses. Each segment
between the demonstrated key points of the trajectories is
represented with exponential representations that parametrize
the segment with a screw axis and an angle. The segments
are then grouped based on similar screw axes. As a result,
the entire trajectory is represented with a series of pairs of a
screw axis and an angle. The contact pose is represented by
a class. Poses in the same class can be obtained by rotating
about an axis. Based on the demonstrations, the framework
needs to calculate the axis, choose one pose as the starting
pose, and decide the range of rotation allowed about the axis.
The range of the rotation depends on the type of task. For
example, a slotted screwdriver may contact a slotted screw
in two ways, while a hammer may approach a nail from
infinitely many directions. Though the representations of the
kinematics skills and contact skills are relatively uniform
across all tasks, the choice of the frames of reference is
dependent on the type of tasks in the task taxonomy.

Given novel tools and manipulanda, the key is to find
how the object should substitute the learned object. In other
words, the system should find the pose of the novel object
in the reference frame of the learned object when using the
objects in the tool-use task. The substitution is calculated
by aligning the source objects and novel objects based on
the global or local geometric features. When aligning the
objects for global features, the point cloud is stretched or
compressed disproportionally along different axes so that

the bounding boxes of the objects match. The point cloud
of the source object and the substitute object is mapped via
modified ICP in order to gain the best matching result. When
aligning the objects for local features, the functional part
of the object is stretched or compressed proportionally so
that the longest edges of the bounding boxes match. The
functional part of the source and substitute object is then
mapped via modified ICP. In this way, two substitutions are
obtained. One optimizes the global shape, and one optimizes
the local feature. The system chooses the substitution with a
better matching result from these two options.

D. Grasping Configurations

The grasping configuration, which is the end-effector pose
Tworld
ee grasp when grasping the tool, includes the orientation

Rworld
ee grasp and the position pworld

ee grasp of the end-effector.
1) Grasping Orientations: The tool to be handed over

was assumed to be resting on the desk for simplicity. The
grippers grasped the tool from above with the fingers per-
pendicular to the desktop. The opening of the gripper should
be perpendicular to the primary axis ~pa of the tool (i.e., the
direction of the longest edge of the minimum bounding box
of the object), which resulted in the orientation Rtool adjusted

ee grasp

of the gripper being unchanged in the adjusted tool frame.
Given the perceived pose of the tool Tworld

tool on desk, the x
axis of the adjusted tool frame Rworld

tool adjusted was defined as
the unit primary axis of the tool, the z axis was defined as
the unit vector opposite to the direction of standard gravity,
and the y axis was calculated using the right-hand rule.
With the adjusted tool frame, the orientation of the end-
effector Rworld

ee grasp was calculated as (where × is matrix
multiplication):

Rworld
ee grasp = Rworld

tool adjusted ×Rtool adjusted
ee grasp

2) Grasping Positions: The grasping position of the end-
effector pworld

ee grasp was initially chosen as the center of the
contact area pworld

tool contact of the tool when used on a manip-
ulandum, because the contact area was the part of the tool
least likely to be the handle. With learned tool affordances,
the TRI-STAR framework calculated the contact area of the
tool based on the manipulandum and the subsequent task.
The center of the contact area pmodel

tool contact was calculated
as the center of the minimum bounding box of the contact
area. The use of a bounding box reduced bias due to the
density of a point cloud. The pworld

tool contact was obtained using
Tworld
tool on desk × pmodel

tool contact. To ensure stable grasping, the
fingers of the grippers should distribute evenly around the
primary axis of the tool. The grasping position needed to be
adjusted by projecting pworld

tool contact onto the primary axis ~pa
to obtain an adjusted grasping position pworld

tool adjusted contact:

pworld
tool adjusted contact =

(pworld
tool contact − pworld

tool center) · ~pa
‖ ~pa‖2

~pa

+ pworld
tool center

where pworld
tool center was the center of the minimum bounding

box of the tool. The grasping position pworld
ee grasp was set to be
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Fig. 3: Handover evaluations on five tool-use tasks. (Top) The system was first trained with how to perform the stirring,
pushing, cutting, knocking, and screw-driving tasks, rather than demonstrations of handovers. (Bottom) The robot was
required to generate handovers for the human receiver to perform subsequent tasks. The handovers were with different
levels of difficulty. The ‘N/A’ either refers to that the tool cannot perform the handover at the difficulty level, or the tool is
inappropriate. Each cell shows a demonstration, which shows the handover generated and how the human used the tool to
perform the subsequent task. The pictures were taken from the view of the human receiver.

pworld
tool adjusted contact and the z was set to be the value where

the gripper just touched the desktop.

E. Presentation Configurations

Presentation configurations are the end-effector poses
when the robot presents the tool to the human collaborator
to grasp it. In order to minimize in-hand tool adjustment, the
orientation of the tool Rworld

tool present should be close to the
orientation when the human receiver started to use the tool
Rworld

tool usage, while the location of the handover pworld
tool present

was pre-set since the human receiver was assumed to be
at a fixed location. Each Tworld

tool present corresponding to a
Tworld
ee candidate was calculated using Tworld

ee candidate×T ee
tool where

T ee
tool = Tworld

ee grasp
−1 × Tworld

tool on desk since the tool was
grasped securely so that T ee

tool was unchanged. Rworld
tool usage

was selected to be the start orientation of the tool trajectory
in the world frame. The start orientation Rmanipulandum

tool usage of
the tool trajectory in the manipulandum frame was generated
from the TRI-STAR framework with learned tool affor-
dances. Rworld

tool usage was obtained using Rworld
manipulandum ×

Rmanipulandum
tool usage .

III. EXPERIMENTS

We implemented and tested our system on a Kuka youBot
robot without the mobile base. A Microsoft Azure RGB-
D camera placed on the side of the workspace was used
to perceive the pose of the tools and manipulanda. The
human receiver was assumed to stand at a fixed location

since adapting to the human location is beyond the scope
of this study. In the training stage, the robot was trained
with twenty demonstraions per tool in simulation to learn
the tool affordances or how to use these tools in five tasks
(i.e., stirring, pushing, cutting, knocking, and driving screws).
The training tools and manipulanda are shown in Fig. 3. No
additional training was needed to perform handovers after
learning the tool affordances. In the testing stage, the robot
was required to hand over novel tools to a human to complete
tasks and it was informed which task that the human receiver
would perform.

A. Robot Validations
We conducted two experiments. Experiment I tested how

the robot handed over a novel tool to complete tasks required
either typical (i.e., level I) or improvised (i.e., level II) usage
of the tool. Experiment II tested how the robot handed over
a novel tool to complete a task with different manipulandum
poses (i.e., level III). In order to show that the system
can generate different handover configurations of a tool for
different subsequent tasks, we chose the same tool to perform
as many tasks as possible in the testing phase rather than
one novel tool in each task. In experiment I, a spoon and a
screwdriver were chosen as the novel tools. As shown in Fig.
3, the human receiver was required to perform the stirring,
pushing, and cutting tasks with the spoon, and to perform
the pushing, knocking, and driving screws tasks with the
screwdriver. A single tool was not required to perform all
tasks because some tasks were inappropriate for the tool.
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Fig. 4: Comparing handover configurations generated by our
system and the typical handovers in previous studies. The
figure includes handovers of level I (top), level II (middle),
and level III (bottom), with the spoon (left) and with the
screwdriver (right) in different tasks. The typical handovers
always grasp the same location on a tool and orient the
handle of a tool horizontally to the human receiver. In
contrast, our configurations are customized to the subsequent
tasks and thus require minimum in-hand tool adjustments for
the human receiver.

In experiment II, even the manipulanda is a novel object, a
xylophone, while the tool is the screwdriver. The xylophone
was placed with two different orientations.

The results showed that the robot was able to handle
level I, level II and level III handovers by adjusting both
the grasping and presentation configurations according to
the tasks. We compared our configurations with the typi-
cal configurations in previous studies as shown in Fig. 4.
While our handover configurations were customized to the
subsequent tasks, typical configurations in previous studies
followed heuristic rules that a robot always selected a fixed
location on the tool to grasp and oriented the handle hori-
zontally towards the human receiver to present it. Therefore,
handovers using our configurations required minimum in-
hand tool adjustments when compared with the handovers
using typical configurations.

B. Survey

To evaluate how naı̈ve end-users perceive handovers gen-
erated by the robot, we conducted a survey on Amazon Me-
chanical Turk. Informed consent was obtained electronically.
We recruited 70 participants, and each was compensated
with $5. Out of the 70 participants, 15 were excluded from
data analysis due to failing sanity-check questions. The data
from the 55 eligible participants (35 males, 20 females) with
an average age of 35.6 years were analyzed. In the survey,
the questions were randomized, as were the options in each
question. We designed multiple-choice questions (MCQ) and
rating questions, which showed pictures or videos of the

handovers and how the human receiver uses the tool in
the subsequent tasks. The pictures and videos were taken
from the view of the human receiver. A sample of the
questionnaire can be found here3. The MCQ responses were
converted to continuous variables and were analyzed with
one-sample t-tests to compare with the chance level. The
ratings were analyzed with paired samples t-tests.

For experiment I, the participants chose our handovers
over the handovers in previous studies 88% of the time
(t(54) = 13.843, p < .001). They were able to predict the
subsequent tasks correctly 79% of the time (t(54) = 11.461,
p < .001) given our handovers. On a five-point Likert scale,
participants rated our configurations (M = 4.38, SD = 0.87)
being more appropriate (t(54) = 5.650, p < .001) for the
subsequent task than the typical configurations (M = 3.04,
SD = 1.23). They also rated our handovers (M = 4.34, SD =
0.91) to be more comfortable (t(54) = 5.751, p < .001) for
the human receiver than the handovers in previous studies (M
= 3.22, SD = 1.13), and the collaboration was perceived to be
more fluent (t(54) = 4.810, p < .001) when the robot used our
handovers (M = 4.31, SD = 0.86) than when using the typical
configurations (M = 3.24, SD = 1.22). For experiment II,
the participants chose preferred handover configurations from
two options. Results showed that the participants preferred
our handovers 82% of the time (t(54) = 7.884, p < .001).

IV. CONCLUSIONS

We compiled a taxonomy of different requirements for
handovers in general, and identified three levels of difficulty
for task-oriented handovers in particular. We also integrated
a system for task-oriented handovers, and showed that the
system was able to handle level I, level II, and level III
task-oriented handovers, and thus made it possible for the
human receiver to complete subsequent tasks more efficiently
with diverse task specifications. Furthermore, the system was
trained with tool affordances, rather than demonstrations
of handovers, allowing the system to understand the tool-
use tasks and generalize the handovers to novel tools. The
online survey results showed that participants preferred our
handovers over the typical handovers in previous studies.

Our system presents a contribution towards task-oriented
handovers. However, we would like to acknowledge the
limitations of the current study. We focused on task-oriented
handovers, while other handover requirements are beyond
the scope of this study. For example, this study focused on
task-oriented handovers and did not consider other aspects
such as adapting to social signals from the human. Moreover,
we acknowledge that the conclusions based on online studies
are limited compared with an in-person study.
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