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a b s t r a c t

Conic optimization is the minimization of a differentiable convex objective function subject to
conic constraints. We propose a novel primal–dual first-order method for conic optimization, named
proportional–integral projected gradient method (PIPG). PIPG ensures that both the primal–dual gap
and the constraint violation converge to zero at the rate of O(1/k), where k is the number of iterations.
If the objective function is strongly convex, PIPG improves the convergence rate of the primal–dual gap
to O(1/k2). Further, unlike any existing first-order methods, PIPG also improves the convergence rate
of the constraint violation to O(1/k3). We demonstrate the application of PIPG in constrained optimal
control problems.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

Conic optimization is the minimization of a differentiable con-
vex objective function subject to conic constraints:

minimize
z

f (z)
subject to Hz � g 2 K, z 2 D,

(1)

where z 2 Rn is the solution variable, f : Rn ! R is a
continuously differentiable and convex objective function, K ⇢

Rm is a closed convex cone and D ⇢ Rn is a closed convex set, H 2

Rm⇥n and g 2 Rm are constraint parameters. With proper choice
of cone K, conic optimization (1) generalizes linear programming,
quadratic programming, second-order cone programming, and
semi-definite programming (Ben-Tal & Nemirovski, 2001; Boyd &
Vandenberghe, 2004). Conic optimization has found applications
in various areas, including signal processing (Luo & Yu, 2006),
machine learning (Andersen et al., 2011), robotics (Majumdar
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et al., 2020), and aerospace engineering (Eren et al., 2017; Liu
et al., 2017; Malyuta et al., 2021).

The goal of numerically solving optimization (1) is to compute
a solution z? 2 Rn that achieves, up to a given numerical toler-
ance, zero violation of the constraints in (1) and zero primal–dual
gap; the latter implies that z? is an optimal solution of optimiza-
tion (1) (Boyd et al., 2011; Chambolle & Pock, 2011, 2016b; He &
Yuan, 2012). To this end, numerical methods iteratively compute
a solution whose constraint violation and primal–dual gap are
nonzero at first but converge to zero as the number of iteration
k increases.

Due to their low computational cost, first-order methods have
attracted increasing attention in conic optimization (Boyd et al.,
2011; Chambolle & Pock, 2016a; Lan et al., 2011; O’Donoghue
et al., 2016; Yu, Elango et al., 2020). Unlike second-order meth-
ods, such as interior point methods (Andersen et al., 2003; Nes-
terov & Nemirovskii, 1994), first-order methods do not rely on
computing matrix inverses. They consequently are suitable for
implementation with limited computational resources.

The existing first-order methods solve optimization (1) by
solving two different equivalent problems. The first equivalent
problem is the following optimization with equality constraints
(Boyd et al., 2011; O’Donoghue et al., 2016; Stellato et al., 2020;
Yu, Elango et al., 2020):
minimize

z,y
f (z)

subject to Hz � y = g, y 2 K, z 2 D.
(2)

In particular, the alternating direction method of multipliers
(ADMM) solves optimization (1) by computing one projection
onto cone K and multiple projections onto set D in each iteration.
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Table 1
Comparison of different first-order methods for conic optimization (1).
Algorithms f is smooth & convex f is smooth & strongly convex

# of proj. per iter. Convergence rates # of proj. per iter. Convergence rates
D K or K� Primal–dual gap Constraint violation D K or K� Primal–dual gap Constraint violation

ADMM O(1/
p

✏) 1 O(1/k) O(1/k) O(ln(1/✏)) 1 O(1/k) O(1/k)
PIPGeq 1 1 O(1/k) O(1/k) 1 1 O(1/k) O(1/k)
PDHG 1 1 O(1/k) N/A 1 1 O(1/k2) N/A
This work 1 1 O(1/k) O(1/k) 1 1 O(1/k2) O(1/k3)

✏ > 0 is a tunable accuracy tolerance in ADMM, K� denotes the polar cone of K.

ADMM ensures that both the constraint violation and the primal–
dual gap converge to zero at rate of O(1/k), where k is the
number of iterations (Boyd et al., 2011; Eckstein, 1989; Fortin &
Glowinski, 2000; Gabay & Mercier, 1976; He & Yuan, 2012; Wang
& Banerjee, 2014). The proportional–integral projected gradient
method for equality constrained optimization (PIPGeq) achieves
the same convergence rates as ADMM, while computing one
projection onto cone K and only one projection onto set D in each
iteration (Yu, Elango et al., 2020). Although variants of ADMM
(Goldstein et al., 2014; Kadkhodaie et al., 2015; Ouyang et al.,
2015; Xu, 2017) and PIPGeq (Xu, 2017; Yu, Elango et al., 2020)
can achieve accelerated convergence rates for strongly convex
objective functions, such acceleration is not possible for optimiza-
tion (2) because the objective function in (2) is independent of
variable y and, as a result, not strongly convex.

Another problem equivalent to optimization (1) is the fol-
lowing saddle-point problem, where K� is the polar cone of K
(Chambolle & Pock, 2011, 2016b):
minimize

z2D
maximize

w2K�
f (z) + hHz � g, wi. (3)

In particular, the primal–dual hybrid-gradient method (PDHG)
solves saddle-point problem (3) by computing one projection
onto cone K� and one projection onto set D in each iteration.
PDHG ensures that the primal–dual gap converges to zero at the
rate of O(1/k) for convex f , and at an accelerated rate of O(1/k2)
for strongly convex f (Chambolle & Pock, 2016a, 2016b). How-
ever, since the constraint Hz�g 2 K is not explicitly considered in
(3), the existing convergence results on PDHG do not provide any
convergence rates of the violation of this constraint (Chambolle
& Pock, 2016a, 2016b).

We compare the per-iteration computation and the conver-
gence rates of ADMM, PIPGeq and PDHG in Table 1. None of
these methods simultaneously have accelerated convergence rates
(i.e., better than O(1/k)) for strongly convex f and guaranteed
convergence rates on the constraint violation. To our best knowl-
edge, whether there exists a first-order method that achieves
both convergence results remains an open question.

We answer this question affirmatively by proposing a novel
primal–dual first-order method for conic optimization, named
proportional–integral projected gradient method (PIPG). By com-
bining the idea of proportional–integral feedback control and pro-
jected gradient method, PIPG ensures the following convergence
results.

(1) For convex f , both the primal–dual gap and the constraint
violation converge to zero at the rate of O(1/k).

(2) For strongly convex f , the convergence rate can be im-
proved to O(1/k2) for the primal–dual gap and O(1/k3) for
the constraint violation.

PIPG generalizes both PDHG with constant step sizes (Chambolle
& Pock, 2016b, Alg. 1) and PIPGeq (Yu, Elango et al., 2020).
Compared with the existing methods, PIPG has the following
advantages; see Table 1 for an overview. In terms of per-iteration
cost, it computes one projection onto cone K� and one projection
onto set D, which is the same as PIPGeq and PDHG, and fewer

times of projections than ADMM. In terms of its convergence
rates, to our best knowledge, the O(1/k3) convergence rate of con-
straint violation has never been achieved before for general conic
optimization. We numerically demonstrate these advantages of
PIPG on several constrained optimal control problems.

The rest of the paper is organized as follows. After some
preliminary results on convex analysis, Section 2 reviews existing
first-order conic optimization methods. Section 3 introduces PIPG
along with its convergence results. Section 4 demonstrates PIPG
via numerical examples on constrained optimal control. Finally,
Section 5 concludes and comments on future work.

2. Preliminaries and related work

This section reviews some results in convex analysis and first-
order conic optimization methods.

2.1. Notation and preliminaries

We let N, R and R+ denote the set of positive integer, real,
and non-negative real numbers, respectively. For two vectors
z, z 0 2 Rn, hz, z 0i denotes their inner product, kzk :=

p
hz, zi

denotes the `2 norm of z, and k·k1 denotes the `1 norm of z,
i.e., the maximum absolute value of the entries of z. We let 1n
and 0n denote the n-dimensional vectors of all 1’s and all 0’s,
respectively. We also let In and 0m⇥n denote the n ⇥ n identity
matrix and the m ⇥ n zero matrix, respectively. When their
dimensions are clear from the context, we omit the subscripts
and simply write vector 1, 0 and matrix I, 0. For a matrix H 2

Rm⇥n, H> denotes its transpose, |||H||| denotes its largest singular
value. For a square matrix M 2 Rn⇥n, exp(M) denotes the matrix
exponential of M , and kzkM :=

p
hz,Mzi for all z 2 Rn. Given

two sets S1 and S2, S1 ⇥ S2 denotes their Cartesian product.
Let z, z 0 2 Rn and f : Rn ! R be a continuously differentiable

function. The Bregman divergence from z to z 0 associated with
function f is given by

Bf (z, z 0) := f (z) � f (z 0) � hrf (z 0), z � z 0
i. (4)

We say function f is µ-strongly convex for some µ 2 R+ if
Bf (z, z 0) > µ

2

��z � z 0
��2 for all z, z 0 2 Rn. If µ = 0, we say function

f is convex. We say function f is �-smooth for some � 2 R+ if
Bf (z, z 0) 6 �

2

��z � z 0
��2 for all z, z 0 2 Rn.

Let D ⇢ Rn be a closed convex set, i.e., D contains all of its
boundary points and � z + (1 � � )z 0 2 D for any � 2 [0, 1] and
z, z 0 2 D. The projection of z 2 Rn onto set D is given by

⇡D[z] := argmin
y2D

kz � yk . (5)

Let K ⇢ Rm be a closed convex cone, i.e., K is a closed convex set
and �w 2 K for any w 2 K and � 2 R+. The polar cone of K is
also a closed convex cone given by

K�
:= {w 2 Rm

|hw, yi 6 0, 8y 2 K}. (6)

2
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2.2. Related work

We briefly review three existing first-order primal–dual conic
optimization methods: ADMM, PIPGeq, and PDHG. In the fol-
lowing, let ↵, �, � denote positive scalar step sizes, and {↵j}j2N,
{� j}j2N, {� j}j2N denote sequences of positive scalar step sizes. For
simplicity, we assume all methods are terminated after a fixed
number of iterations, denoted by k 2 N.

2.2.1. Alternating direction method of multipliers
As a special case of Douglas–Rachford splitting method (Eck-

stein, 1989; Fortin & Glowinski, 2000), alternating direction
method of multipliers (ADMM) solves optimization (1) by solving
the equivalent optimization (2) using Algorithm 1 (Boyd et al.,
2011; Gabay & Mercier, 1976; He & Yuan, 2012).

Algorithm 1 ADMM

Input: k, ↵, z1 2 D, y1 2 K, w1 2 Rm

1: for j = 1, 2, . . . , k � 1 do
2: zj+1 = argmin

z2D
f (z) +

↵
2

��Hz � yj � g + wj
��2

3: yj+1 = ⇡K[Hzj+1 � g + wj]

4: wj+1 = wj + Hzj+1 � yj+1 � g
5: end for

Generally, the minimization in the line 2 of Algorithm 1 can
only be solved approximately up to a numerical tolerance ✏ > 0
using iterative methods. Such methods need to compute at least
O(1/

p
✏) projections onto set D if f is merely convex, and O(ln 1

✏
)

projections if function f is strongly convex; see Nesterov (2018,
Chp. 2) for a detailed discussion.

There has been many variants of ADMM developed in the
literature. However, none of them lead to any significant benefits
for optimization in (2). For example, Ouyang et al. (2015) and
Xu (2017, Alg. 1) simplified the minimization in the line 2 of
Algorithm 1 by approximating function f using its linearization.
However, solving the resulting approximate minimization still
requires multiple projections onto set D. On the other hand,
although the convergence of ADMM can be accelerated when
the objective function is strongly convex (Goldstein et al., 2014;
Kadkhodaie et al., 2015; Ouyang et al., 2015; Xu, 2017), such
acceleration does not apply to the optimization (2). The reason is
because the objective function in (2) is not strongly convex with
respect to (in fact, does not depend on) variable y.

2.2.2. Proportional–integral projected gradient method for equality
constrained optimization

Motivated by applications in model predictive control, the
proportional–integral projected gradient method for equality con-
strained optimization (PIPGeq) solves optimization (1) by solving
the equivalent optimization (2) using Algorithm 2.

Algorithm 2 PIPGeq

Input: k, ↵,�, z1 2 D, y1 2 K, w1 2 Rm.
1: for j = 1, 2, . . . , k � 1 do
2: vj+1 = wj + �(Hzj � yj � g)
3: zj+1 = ⇡D[zj � ↵(rf (zj) + H>vj+1)]
4: yj+1 = ⇡K[yj + ↵vj+1]

5: wj+1 = wj + �(Hzj+1 � yj+1 � g)
6: end for

Unlike line 2 in Algorithm 1, line 3 in Algorithm 2 computes
only one projection onto set D instead of multiple times. As a

result, PIPGeq can achieve the same convergence rates as those
of ADMM while lowering the per-iteration computation cost (Xu,
2017; Yu, Elango et al., 2020).

2.2.3. Primal–dual hybrid gradient method
Motivated by applications in computational imaging, the

primal–dual hybrid gradient method (PDHG) was first introduced
in Chambolle and Pock (2011) and later extended to a three-
operator splitting method (Chambolle & Pock, 2016b). To solve
optimization (1), PDHG solves the equivalent convex–concave
saddle point problem (3) instead. If function f is merely convex,
PDHG uses Algorithm 3. If function f is µ-strongly convex for
some µ > 0, then PDHG uses Algorithm 4 instead.

Algorithm 3 PDHG with constant step sizes

Input: k, ↵,�, z1 2 D, w1 2 K�.
1: for j = 1, 2, . . . , k � 1 do
2: zj+1 = ⇡D[zj � ↵(rf (zj) + H>wj)]
3: wj+1 = ⇡K� [wj + �(H(2zj+1 � zj) � g)]
4: end for

Algorithm 4 PDHG with varying step sizes

Input: k, {↵j, � j, � j}kj=1, µ, z1 2 D, w1 2 K�.
1: for j = 1, 2, . . . , k � 1 do
2: wj+1 = ⇡K� [wj + � j(H(zj + � j(zj � zj�1)) � g)]
3: zj+1 = ⇡D

h
zj � ↵j

µ↵j+1 (rf (zj) + H>wj+1)
i

4: end for

The primal–dual gap converges to zero at the rate of O(1/k)
and O(1/k2) for Algorithm 3 and Algorithm 4, respectively (Cham-
bolle & Pock, 2016b). However, to our best knowledge, there
is no convergence result on the constraint violation for either
Algorithm 3 or Algorithm 4.

3. Proportional–integral projected gradient method

We introduce a novel first-order primal–dual method, named
proportional–integral projected gradient method (PIPG), for conic
optimization (1), and discuss its convergence rates in terms of
the constraint violation and the primal–dual gap.

Algorithm 5 summarizes the proposed method, where k 2 N
is the maximum number of iterations, and {↵j}kj=1 and {� j}kj=1 are
sequences of positive scalar step sizes that will be specified later.
We note that, instead of maximum number of iterations, one can
use alternative stopping criterions, such as the distance between
Hzj � g and cone K reaching a given tolerance.

Algorithm 5 PIPG

Input: k, {↵j, � j}kj=1, z
1 2 D, v1 2 K�.

1: for j = 1, 2, . . . , k � 1 do
2: wj+1 = ⇡K� [vj + � j(Hzj � g)]
3: zj+1 = ⇡D[zj � ↵j(rf (zj) + H>wj+1)]
4: vj+1 = wj+1 + � jH(zj+1 � zj)
5: end for

Later we will show that different convex combinations of
{z1, z2, . . . , zk} computed by ALgorithm 5 guarantee different
convergence rates under different assumptions.

3
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The name PIPG is due to the following observations. First, if
K = {0n}, then K� = Rm and line 2 and line 4 in Algorithm 5
become the following:

wj+1
=vj

+ � j(Hzj � g), (7a)

vj+1
=vj

+ � j(Hzj+1
� g). (7b)

By using (7b) one can show that

vj
= v1

+
Pj

i=2 � i�1(Hzi � g).

Hence vj is a weighted summation, or numerical integration, of
Hzi � g from i = 2 to i = j. Further, (7a) states that wj

adds a proportional term of Hzj � g to vj, hence wj in (7a) is a
proportional–integral term of Hzj�g . Second, if H is a zero matrix,
then line 3 in Algorithm 5 becomes a projected gradient method
that minimizes f over set D (Nesterov, 2018, Sec. 2.2.5). Therefore
Algorithm 5 can be interpreted as a combination of proportional–
integral feedback control and the projected gradient method.
Similar idea has also been popular in equality constrained opti-
mization (Wang & Elia, 2010; Yu & Açıkme≥e, 2020; Yu, Açıkme≥e
et al., 2020; Yu, Elango et al., 2020).

Remark 1. Notice that the wj+1 in (7a) is otherwise identical
to the vj+1 in (7b) except that (7a) uses zj whereas (7b) uses
zj+1. Such a scheme is also known as a prediction–correction
step, which has been popular in many first-order primal–dual
methods, including the extra-gradient and mirror-prox method
(Korpelevich, 1977; Nemirovski, 2004; Nesterov, 2007), the ac-
celerated linearized ADMM (Ouyang et al., 2015; Xu, 2017), the
primal–dual fixed point methods (Chen et al., 2013, 2016; Krol
et al., 2012; Yan, 2018) and the accelerated mirror descent method
(Cohen et al., 2018).

Next, we will show the convergence results of Algorithm 5. To
this end, we will frequently use the following quadratic distance
function to closed convex cone K:

dK(w) := minimize
v2K

1
2 kw � vk

2 , (8)

which is continuously differentiable and convex (Nesterov, 2018,
Lem. 2.2.9). We will also use the following Lagrangian function:

L(z, w) := f (z) + hHz � g, wi. (9)

We make the following assumptions on optimization (1).

Assumption 1.

(1) Function f : Rn ! R is continuously differentiable. There
exists µ, � 2 R+ with µ 6 � such that f is µ-strongly con-
vex and �-smooth, i.e., µ

2

��z � z 0
��2 6 Bf (z, z 0) 6 �

2

��z � z 0
��2

for all z, z 0 2 Rn.
(2) Set D ⇢ Rn and cone K ⇢ Rm are closed and convex.
(3) There exist z? 2 D and w? 2 K� such that L(z?, w) 6

L(z?, w?) 6 L(z, w?) for all z 2 D and w 2 K�.

Under the above assumptions, the quantity L(z, w?)�L(z?, w),
also known as the primal–dual gap evaluated at (z, w), is non-
negative (Boyd et al., 2011; Chambolle & Pock, 2011, 2016b; He
& Yuan, 2012). The following proposition provides a sufficient
condition on z and w under which the primal–dual gap L(z, w?)�
L(z?, w) equals zero and z is an optimal solution of optimization
(1).

Proposition 1. If there exist z 2 D and w 2 K� such that

L(z, w) � L(z, w) 6 0, (10)

for all z 2 D and w 2 K�, then z is an optimal solution of
optimization (1), i.e. Hz � g 2 K and f (z) 6 f (z) for any z 2 D
such that Hz � g 2 K.

Proof. See Appendix A.

The following lemma proves a key inequality for our later
discussions.

Lemma 1. Suppose that Assumption 1 holds and {wj, zj, vj}kj=1 is
computed using Algorithm 5 where ↵j, � j > 0 and ↵j(� + �� j) = 1
for some � > |||H|||

2 and all j = 1, 2, . . . , k. Then

� jdK(Hzj � g) + L(zj+1, w) � L(z, wj+1)

6
⇣

1
2↵j �

µ
2

⌘ ��zj � z
��2

+
1

2� j

��vj � w
��2

�
1

2↵j

��zj+1 � z
��2

�
1

2� j

��vj+1 � w
��2

,

for all z 2 D, w 2 K�, and j = 1, 2, . . . , k.

Proof. See Appendix B.

Equipped with Lemma 1, we are ready to prove the conver-
gence results of Algorithm 5. The idea is to first summing up the
inequality in Lemma 1 corresponding to different value of j, then
using the Jensen’s inequality. We start with the case where µ = 0,
i.e., function f is merely convex.

Theorem 1. Suppose that Assumption 1 holds with µ = 0, and
{wj, zj, vj}kj=1 is computed using Algorithm 5 with ↵j =

1
��+�

and
� j = � and all j = 1, 2, . . . , k, where � > 0 and � > |||H|||

2.
Let z̃k :=

1
k

Pk
j=1 z

j, zk :=
1
k

Pk
j=1 z

j+1, wk
:=

1
k

Pk
j=1 wj+1, and

V 1(z, w) :=
1
2↵

��z1 � z
��2

+
1
2�

��v1 � w
��2 for all z 2 D and

w 2 K�. Then z̃k, zk 2 D, wk
2 K�, and

dK(Hz̃k � g) 6 V1(z?,w?)
�k ,

L(zk, w) � L(z, wk) 6 V1(z,w)
k ,

for all z 2 D, w 2 K�.

Proof. See Appendix C.

If µ > 0, i.e., function f is strongly convex, then we can further
improve the convergence results in Theorem 1 as follows.

Theorem 2. Suppose that Assumption 1 holds with µ > 0 and
{wj, zj, vj}kj=1 is computed using Algorithm 5 with ↵j =

2
(j+1)µ+2�

and � j =
(j+1)µ
2� for some � > |||H|||

2 and all j = 1, 2, . . . , k. Let
z̃k :=

3
k(k2+6k+11)

Pk
j=1(j + 1)(j + 2)zj, zk :=

2
k(k+5)

Pk
j=1(j + 2)zj+1,

wk
:=

2
k(k+5)

Pk
j=1(j + 2)wj+1, and V 1(z, w) :=

µ+2�
4

��z1 � z
��2

+

�
µ

��v1 � w
��2 for all z 2 D and w 2 K�. Then z̃k, zk 2 D, wk

2 K�,
and

dK(Hz̃k � g) 6 12��V1(z?,w?)
µ2k(k2+6k+11) ,

L(zk, w) � L(z, wk) 6 4�V1(z,w)
µk(k+5) ,

for all z 2 D, w 2 K�.

Proof. See Appendix D.

Remark 2. Unlike the results in Chambolle and Pock (2016b),
Theorems 1 and 2 prove not only the convergence of the primal–
dual gap, but also the convergence of the constraints violation.
In addition, if ↵j ⌘ ↵ and � j ⌘ � for j = 1, 2, . . . , k, then one
can show that Algorithm 5 is equivalent to Algorithm 3; in other
words, the results in Theorem 1 also apply to Algorithm 3.

Remark 3. When using varying step sizes, Algorithm 5 differs
from Algorithm 4 in the relation between step sizes and the

4
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iteration number: the one in Algorithm 5 is explicit, whereas the
one in Algorithm 4 is implicitly defined by a recursive formula
(Chambolle & Pock, 2016b, Sec. 5.2). Furthermore, we can prove
the convergence rate of the constraint violation for Algorithm 5,
whereas similar rate for Algorithm 4, to our best knowledge, does
not exist in the literature.

4. Applications to constrained optimal control

We demonstrate the application of PIPG to constrained opti-
mal control problems. In Section 4.1, we show how to formulate
a typical constrained optimal control problem as an instance of
conic optimization (1), and provide examples from mechanical
engineering and robotics. In Section 4.2, we demonstrate the
performance of PIPG via said examples, and compare it against
the existing methods reviewed in Section 2.2.

4.1. Constrained optimal control

We consider the following constrained optimal control prob-
lem:

minimize
{ut ,xt+1}

⌧�1
t=0

1
2

⌧�1X

t=0

(
��xt+1 � x̂t+1

��2
Q +

��ut � ût
��2
R)

subject to xt+1 = Axt + But + h, 0 6 t 6 ⌧ � 1,
kut+1 � utk1 6 � , 0 6 t 6 ⌧ � 2,
Ctxt � at > 0, xt 2 X, 1 6 t 6 ⌧ ,

Dtut � bt > 0, ut 2 U, 0 6 t 6 ⌧ � 1.

(11)

The above optimization minimizes the quadratic distance be-
tween {xt+1, ut}

⌧�1
t=0 and a reference trajectory {x̂t+1, ût}

⌧�1
t=0 , sub-

ject to state, input, and input rate constraints. One can transform
optimization (11) into a special case of optimization (1) using
particular choices of the parameters; see Yu et al. (2021, App. E)
for details.

We will provide two illustrating examples of optimization (11)
from mechanical engineering and robotics applications. Due to
the limit of space, we will only provide the choices of set X and
set U; for the detailed values of the other problem parameters
(e.g., A and B), see Yu et al. (2021, Sec. 4.1) and Yu et al. (2021,
App. F).

4.1.1. Oscillating masses control
We consider the problem of controlling a one-dimensional

oscillating masses dynamical system using external forcing (Jerez
et al., 2014; Kögel & Findeisen, 2011; Wang & Boyd, 2009); see
Fig. 1 for an illustration. The system consists of a sequence of N
masses connected by springs to each other, and to walls on either
side. Each mass has value 1, and each spring has a spring constant
of 1. The state of the system includes the position and velocity
of all masses; The input of the system includes an external force
applied to each mass.

Based on the oscillating masses dynamical system, we formu-
late an instance of optimization (11) as follows. The quadratic
objective function penalizes any nonzero position, velocity, and
external forcing of the N masses. The constraints include interval
constraints on the position, the velocity, the external force and its
change rate (Yu et al., 2021, Sec. 4.1.1). In this case, we have

X = {r 2 RN
| krk1 6 2} ⇥ {s 2 RN

| ksk1 6 2},
U = {u 2 RN

| kuk1 6 2}.
(12)

Fig. 1. The oscillating masses system.

Fig. 2. The quadrotor path planning problem.

4.1.2. Quadrotor path planning
We consider the problem of flying a quadrotor from its initial

position to a target position while avoiding collision with cylin-
drical obstacles; see Fig. 2 for an illustration. For the quadrotor
system dynamics, we consider the point mass model introduced
in Szmuk et al. (2018, 2017). The state of the system includes the
position and velocity of the quadrotor; The input of the system is
the thrust vector provided by the on-board propellers.

Based on the quadrotor dynamical system, we formulate an
instance of optimization (11) as follows. The quadratic objective
function penalizes the deviation from a reference state trajectory
and nonzero inputs. The constraints include direction and mag-
nitude constraints on the thrust input, magnitude constraints on
the velocity, and linear constraints on the position that ensures
collision avoidance with three cylindrical obstacles (Yu et al.,
2021, Sec. 4.1.2). In this case, we have

U =
�
u 2 R3

|kuk cos(⇡/4) 6 [u]3, kuk 6 5
 
,

X ={r 2 R3
| krk1 6 3} ⇥ {s 2 R3

| ksk 6 5},
(13)

where [u]3 denotes the third element in vector u. Note that set U
is convex; it is the intersection of a second order cone (Bauschke
& Combettes, 2017, Ex. 29.12) and a norm ball, both are convex
sets themselves. Furthermore, the projection onto set U can be
computed in closed form Bauschke et al. (2018, Thm.7.1).

4.2. Numerical experiments

We demonstrate the numerical performance of PIPG using the
two examples of optimization (11), namely the oscillating masses
problem and the quadrotor path planning problem discussed in
Section 4.1.

Note that interior point methods (IPM) can also efficiently
solve optimization (11) (Wang & Boyd, 2009). However, compre-
hensive studies have already shown that ADMM outperforms IPM
in solving optimal control problems (O’Donoghue et al., 2013) and
general conic optimization problems (O’Donoghue et al., 2016).
Therefore, we will use ADMM, rather than IPM, as the benchmark
method for PIPG.

The key step of implementing PIPG method is to compute
the projection onto cone K� and set D. These projections can be
computed efficiently for the following reasons. First, projections
onto many common closed convex cones and sets can be com-
puted using simple formulas, see Bauschke and Combettes (2017,
Chp. 29) for some popular examples. Second, let D1 ⇢ Rn1 and

5
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D2 ⇢ Rn2 be closed convex sets, x1 2 Rn1 and x2 2 Rn2 . Then one
can verify the following:

⇡D1⇥D2


x1
x2

��
=


⇡D1 [x1]
⇡D2 [x2]

�
.

Therefore, projections onto sets that are Cartesian products of sets
with simple projection formulas, such as the set X in (12) and
(13), also admit simple formulas.

We compare the performance of PIPG, ADMM, PIPGeq and
PDHG using optimization (11) as follows. We initialize all meth-
ods using vectors whose entries are sampled from the standard
normal distribution. We compare the performance of different
methods using the convergence of the following two quantities:

errorjopt :=

���zj�z?
���
2

kz?k2
and errorjfea :=

dK(Hzj�g)
kz?k2

, where zj 2 D is

the candidate solution computed of optimization (11) at the jth
iteration for j = 2, 3, . . . , k, and z? be the ground truth optimal
solution of optimization (11) computed using commercial soft-
ware Mosek (MOSEK ApS, 2019). In addition, we also consider a
restarting variant of PIPG and PDHG where the iteration number
j is periodically reset to 1. Such restarting scheme is a popular
heuristics for improving practical convergence performance of
primal–dual methods (Su et al., 2016; Xu, 2017).

The convergence results of different methods in terms of ejopt
and ejopt using 100 independent random initializations are illus-
trated in Fig. 3. For ‘‘PIPG + restart’’ and ‘‘PDHG + restart’’, the
iteration number j denotes the total number of iterations (i.e., the
number of times that the algorithm computes a projection onto
cone K�) and not the number of times we restarted. From these
results we can see that PIPG has similar convergence as PDHG
– although the latter does not have guaranteed convergence
rates for the constraint violation – and clearly outperforms the
other methods, especially when combined with the restarting
heuristics. Note that, although the performance of ADMM is close
to PIPG in the oscillating masses example, the per-iteration cost of
ADMM is much higher than PIPG, as shown in Table 1. Therefore,
PIPG still has clear advantage against ADMM.

5. Conclusions

We propose a novel primal–dual first-order method for conic
optimization, named PIPG. We prove the convergence rates of
PIPG in terms of the constraint violation and the primal–dual gap.
We demonstrate the application of PIPG using two examples in
constrained optimal control problems.

However, the current work still leaves several questions open.
First, the convergence of the constraint violation for PDHG is
empirically similar to that of PIPG. Is it possible that PDHG enjoys
similar guarantees as PIPG in terms of the convergence of con-
straint violation? Second, the constant step sizes in Theorem 1 are
different from those in Chambolle and Pock (2016b). What are the
most general class of step sizes for PIPG and PDHG? Third, PIPG
ensures that the constraints violation converges to zero at the rate
of either O(1/k) or O(1/k3). Is it possible to further improve these
rates without compromising the convergence of the primal–dual
gap? Fourth, although PIPG shows some advantages against the
existing first-order methods, it is still unclear whether it can
outperform the state-of-the-art second order solvers, e.g., MOSEK,
in terms of computation time. We aim to answer these open
questions in our future work.

Appendix A. Proof of Proposition 1

First, if (10) holds, then we immediately have

L(z, w) 6 L(z, w) 6 L(z, w) (A.1)

Fig. 3. Comparison of different methods for oscillating masses problem (top
row) and quadrotor path planning problem (bottom row). The shaded region
shows the range of 100 different simulation results using independent random
initializations.

for all z 2 D and w 2 K�. The first inequality above states that
�L(z, w) 6 �L(z, w) for all w 2 K�, which, due to Rockafellar
(2015, Thm. 27.4), implies that

hHz � g, w � wi 6 0 (A.2)

for all w 2 K�. By letting w = 0 and w = 2w in (A.2), we conclude
that

hHz � g, wi = 0. (A.3)

Combining (A.2) and (A.3) gives hHz � g, wi 6 0 for all w 2 K�.
Hence Hz � g 2 (K�)� = K, where the last step is due to
Rockafellar and Wets (2009, Cor. 6.21).

Second, let z be such that z 2 D and Hz�g 2 K. Since w 2 K�,
using (6) we can show

L(z, w) = f (z) + hHz � g, wi 6 f (z). (A.4)

Further, using (A.1) and (A.3) we can show

f (z) = L(z, w) 6 L(z, w). (A.5)

By combining (A.4) and (A.5) we have f (z) 6 f (z). Since z is
otherwise arbitrary except that z 2 D and Hz � g 2 K, the proof
is completed.

Appendix B. Proof of Lemma 1

We start with some basic results that will be useful later. By
using (4), one can verify the following identity:
hrf (z) � rf (z 0), z 00

� zi
= Bf (z 00, z 0) � Bf (z 00, z) � Bf (z, z 0), 8z, z 0, z 00

2 Rn.
(B.1)
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If f = k·k
2, the above identify becomes the following:

2hz � z 0, z 00
� zi =

��z 00
� z 0

��2
�

��z 00
� z

��2
�

��z � z 0
��2

. (B.2)

We now start the main proof. Let z, w, j be an arbitrary element in
set D, cone K�, and set {1, 2, . . . , k}, respectively. We start with
constructing an upper bound for L(zj+1, w) � L(z, wj+1). To this
end, first we use (9) and (4) to show the following identities

L(zj+1, w) � L(z, w)
= Bf (zj+1, z) + hrf (z) + H>w, zj+1

� zi,
(B.3)

L(z, w) � L(z, wj+1) = hHz � g, w � wj+1
i. (B.4)

Second, by applying (Nesterov, 2018, Lem. 2.2.7) to the two
projections in lines 2 and 3 in Algorithm 5 we can show the
following two inequalities

0 6 hwj+1
� vj

� � j(Hzj � g), w � wj+1
i, (B.5a)

0 6 hzj+1
� zj + ↵j(rf (zj) + H>wj+1), z � zj+1

i. (B.5b)

Third, line 4 in Algorithm 5 implies the following

0 = hvj+1
� wj+1

� � jH(zj+1
� zj), w � vj+1

i. (B.6)

Summing up (B.3), (B.4), 1
� j ⇥(B.5a), 1

↵j ⇥(B.5b) and 1
� j ⇥(B.6) gives

the following inequality

L(zj+1, w) � L(z, wj+1)
6 Bf (zj+1, z) + hrf (z) � rf (zj), zj+1

� zi
+

1
↵j hzj+1 � zj, z � zj+1i +

1
� j hw

j+1 � vj, w � wj+1i

+
1
� j hv

j+1 � wj+1, w � vj+1i

+ hvj+1
� wj+1,H(zj+1

� zj)i.

(B.7)

Our next step is to bound the inner product terms in (B.7). First,
we use (B.1) and (B.2) to show the following identities:

hrf (z) � rf (zj), zj+1
� zi

= Bf (zj+1, zj) � Bf (zj+1, z) � Bf (z, zj),
(B.8)

2hzj+1
� zj, z � zj+1

i

=
��zj � z

��2
�

��zj+1
� z

��2
�

��zj+1
� zj

��2
,

(B.9)

2hwj+1
� vj, w � wj+1

i

=
��vj

� w
��2

�
��wj+1

� w
��2

�
��wj+1

� vj
��2

,
(B.10)

2hvj+1
� wj+1, w � vj+1

i

=
��wj+1

� w
��2

�
��vj+1

� w
��2

�
��vj+1

� wj+1
��2

.
(B.11)

Second, by completing the square we can show

2� j
hvj+1

� wj+1,H(zj+1
� zj)i

6
��vj+1

� wj+1
��2

+ (� j)2
��H(zj+1

� zj)
��2

.
(B.12)

Notice that now all inner product terms in (B.7) can be upper
bounded. Finally, we further simplify these upper bounds. To this
end, first we use the item 1 in Assumption 1 and the fact that
|||H|||

2 6 � to show the following

Bf (zj+1, zj) 6 �
2

��zj+1 � zj
��2

, (B.13a)

� Bf (z, zj) 6 �
µ
2

��zj � z
��2

, (B.13b)
��H(zj+1

� zj)
��2 6 �

��zj+1
� zj

��2
. (B.13c)

Second, we let yj :=
1
� j (vj+� j(Hzj�g)�wj+1). Applying (Rockafel-

lar & Wets, 2009, Cor. 6.21) and Bauschke and Combettes (2017,
Thm. 6.30) to the projection in line 2 of Algorithm 5 we can show
that � jyj 2 (K�)� = K. Since K is a cone and � j > 0, we know
yj 2 K. Therefore, using (8) and definition of yj we can show

dK(Hzj � g) 6 1
2

��Hzj � g � yj
��2

=
1

2(� j)2
��wj+1 � vj

��2
. (B.14)

Finally, summing up (B.7), (B.8), 1
2↵j ⇥ (B.9), 1

2� j ⇥ (B.10), 1
2� j ⇥

(B.11), 1
2� j ⇥ (B.12), (B.13a), (B.13b), � j

2 ⇥(B.13c), and � j⇥(B.14),
and using the assumption that ↵j(� + �� j) = 1 we obtain the
desired results.

Appendix C. Proof of Theorem 1

Let z, w, j be an arbitrary element in set D, K� and
{1, 2, . . . , k}, respectively. Let V j(z, w) =

1
2↵

��zj � z
��2

+

1
2�

��wj � w
��2. Since ↵j =

1
��+�

and � j = � , the inequality in
Lemma 1 implies the following:

L(zj+1, w) � L(z, wj+1) + �dK(Hzj � g)
6 V j(z, w) � V j+1(z, w),

for all z 2 D, w 2 K�, and j = 1, 2, . . . , k. Summing up this
inequality for j = 1, . . . , k gives
Pk

j=1
�
L(zj+1, w) � L(z, wj+1) + �dK(Hzj � g)

�

6 V 1(z, w) � Vk+1(z, w) 6 V 1(z, w),
(C.1)

for all z 2 D and w 2 K�, where the last step is because
Vk+1(z, w) > 0. From (8) and item 3 Assumption 1 we know that
dK(Hzj � g) and L(zj+1, w?) � L(z?, wj+1) are non-negative for all
j. Hence (C.1) implies the following
Pk

j=1
�
L(zj+1, w) � L(z, wj+1)

�
6V 1(z, w),

�
Pk

j=1 dK(Hz
j � g) 6V 1(z?, w?),

for all z 2 D, w 2 K�, where the second inequality is obtained by
letting z = z? and w = w? in (C.1).

Finally, applying the Jensen’s inequality (Nesterov, 2018, Lem.
3.1.1) to convex function L(·, w), �L(z, ·), and dK(·) in the above
two inequalities, respectively, we obtain the desired results.

Appendix D. Proof of Theorem 2

Let z, w, j be an arbitrary element in set D,K� and {1, 2, . . . , k},
respectively. Let V j(z, w) =

1
2↵j�1

��zj � z
��2

+
1

2� j�1

��vj � w
��2.

Since ↵j =
2

(j+1)µ+2� and � j =
(j+1)µ
2� , the inequality in Lemma 1

implies the following:

L(zj+1, w) � L(z, wj+1) +
(j+1)µ
2� dK(Hzj � g)

6 1
2 (

1
↵j � µ)

��zj � z
��2

+
1

2� j

��vj � w
��2

� V j+1(z, w),
(D.1)

for all z 2 D, w 2 K�, and j = 1, 2, . . . , k. Let  = �/µ > 1, then
one can verify the following

( 1
↵j � µ)(j + 2) =

1
↵j�1 (j + 2 � 1),

1
� j (j + 2) 6 1

� j�1 (j + 2 � 1).
(D.2)

Hence multiplying (D.1) with (j + 2) then substituting in (D.2)
we can show
(j + 2)(L(zj+1, w) � L(z, wj+1)) +

(j+1)(j+2)µ
2� dK(Hzj � g)

6 (j + 2 � 1)V j(z, w) � (j + 2)V j+1(z, w),

for all z 2 D, w 2 K�, and j = 1, 2, . . . , k. Summing up this
inequality for j = 1, 2, . . . , k gives
Pk

j=1(j + 2)(L(zj+1, w) � L(z, wj+1))

+
Pk

j=1
(j+1)(j+2)µ

2� dK(Hzj � g)

6 2V 1(z, w) � (k + 2)Vk+1(z, w) 6 2V 1(z, w),

(D.3)

for all z 2 D and w 2 K�, where the last step is because
Vk+1(z, w) > 0. From (8) and item 3 in Assumption 1 we know
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that dK(Hzj � g) and `(zj+1, wj+1; z?, w?) are non-negative for all
j. Hence the above inequality implies the following
Pk

j=1(j + 2)
�
L(zj+1, w) � L(z, vj+1)

�
6 2V 1(z, w),

Pk
j=1

(j+1)(j+2)µ
2� dK(Hzj � g) 6 2V 1(z?, w?),

for all z 2 D and w 2 K�, where we used the fact that  > 1, and
the second inequality is obtained by letting z = z? and w = w?

in (D.3).
Finally, applying the Jensen’s inequality (Nesterov, 2018, Lem.

3.1.1) to convex function L(·, w), �L(z, ·), and dK(·) in the above
two inequalities, respectively, we obtain the desired results.
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