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ABSTRACT

Space mission design places a premium on cost and operational efficiency. The search for new science and
life beyond Earth calls for spacecraft that can deliver scientific payloads to geologically rich yet hazardous
landing sites. At the same time, the last four decades of optimization research have put a suite of powerful
optimization tools at the fingertips of the controls engineer. As we enter the new decade, optimization theory,
algorithms, and software tooling have reached a critical mass to start seeing serious application in space vehicle
guidance and control systems. This survey paper provides a detailed overview of recent advances, successes,
and promising directions for optimization-based space vehicle control. The considered applications include
planetary landing, rendezvous and proximity operations, small body landing, constrained attitude reorientation,
endo-atmospheric flight including ascent and reentry, and orbit transfer and injection. The primary focus is
on the last ten years of progress, which have seen a veritable rise in the number of applications using three
core technologies: lossless convexification, sequential convex programming, and model predictive control. The
reader will come away with a well-rounded understanding of the state-of-the-art in each space vehicle control
application, and will be well positioned to tackle important current open problems using convex optimization

as a core technology.

1. Introduction

Improvements in computing hardware and maturing software li-
braries have made optimization technology become practical for space
vehicle control. The term computational guidance and control (CGC)
was recently coined to refer to control techniques that are iterative in
nature and that rely on the onboard computation of control actions (Lu,
2017; Tsiotras & Mesbahi, 2017).

This paper surveys optimization-based methods, which are a subset
of CGC for space vehicles. We consider applications for launchers,
planetary landers, satellites, and spacecraft. The common theme across
all applications is the use of an optimization problem to achieve a
control objective. Generally speaking, the goal is to solve:

min J (x) s.t. (1a)
x €C, (1b)

where J : R" — R is a cost function, C C R" is a feasible set, and
x is an n-dimensional vector of decision variables. Optimization is a
relevant area of study for modern space vehicle control for two reasons:
effectiveness of formulation, and the (emerging) existence of efficient

solution methods.

* Corresponding author.

To answer why an optimization formulation is effective, consider
the physical and operational constraints on the tasks that recent and
future space vehicles aim to perform. Future launchers and planetary
landers will require advanced entry, descent, and landing (EDL) algo-
rithms to drive down cost via reusability, or to access scientifically
interesting sites (Blackmore, 2016). Instead of landing in open terrain,
future landers will navigate challenging environments such as volcanic
vents and jagged blades of ice (Europa Study Team, 2012; Robertson,
2017; San Martin, Lee, & Wong, 2013). Meanwhile, human exploration
missions will likely be preceded by cargo delivery, requiring landings
to occur in close proximity (Dwyer-Cianciolo et al., 2019). Motivated
by the presence of water ice, upcoming missions to the Moon will
target its south pole (NASA Science, 2019), where extreme light-dark
lighting conditions call for an automated sensor-based landing (Robin-
son, 2018). Even for robotic missions, new onboard technology such
as vision-based terrain relative navigation requires the satisfaction of
challenging constraints that couple motion and sensing. Regardless of
whether one achieves the lowest cost (1a) or not, optimization is indeed
one of the most compelling frameworks for finding feasible solutions in
the presence of challenging constraints (Tsiotras & Mesbahi, 2017).

In orbit, foreseeable space missions will necessitate robotic dock-
ing for sample return, debris capture, and human load alleviation
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Section 2.3

Fig. 1. Taxonomy of optimization problems. Going from inside to outside, each class becomes more difficult to solve. Roughly speaking, SOCP is currently the most general class

that can be solved reliably enough to be deployed on a space system in short order.

(Woffinden & Geller, 2007). Early forms of the capability have been
shown on the Japanese ETS-VII, European ATV, Russian Soyuz, US
XSS-11, and US DART demonstrators. Most recently, the human-rated
SpaceX Crew Dragon performed autonomous docking with the ISS,
and the Orion Spacecraft is set to also feature this ability (D’Souza,
Hannak, Spehar, Clark, & Jackson, 2007; Stephens et al., 2013). Further
development in autonomous spacecraft rendezvous calls for smaller and
cheaper sensors as well as a reduction in the degree of cooperation by
the target spacecraft. This will require more flexibility in the chaser’s
autonomy, which is practically achievable using onboard optimization.

The above mission objectives suggest that future space vehicle au-
tonomy will have to adeptly operate within a multitude of operational
constraints. However, optimality usually stipulates operation near the
boundary of the set of feasible solutions. In other words, the vehicle
must activate its constraints (i.e., touch the constraint set boundary) at
important or prolonged periods of its motion. By virtue of the feasible
set C in (1b), optimization is one of the few suitable methods (and is
perhaps the most natural one) to directly impose system constraints
(Mayne, Rawlings, Rao, & Scokaert, 2000).

The benefit of an appropriate formulation, however, is limited if no
algorithm exists to solve Problem (1) efficiently, which means quickly
and utilizing few computational resources. Convex optimization has
been a popular approach for formulating problems since it enables
efficient solution methods. Fig. 1 illustrates a taxonomy of optimiza-
tion problem classes or families, of which convex optimization is a
part. The inner-most class in Fig. 1 is the linear program (LP). Next
comes the quadratic program (QP), followed by the second-order cone
program (SOCP). Troves of detail on each class may be found in
many excellent optimization textbooks (Boyd & Vandenberghe, 2004;
Nocedal & Wright, 1999; Rockafellar, 1970). Roughly speaking, SOCP
is the most general class of problems that state-of-the-art algorithms
can solve with high reliability and rigorous performance guarantees
(Domahidi, Chu, & Boyd, 2013; Dueri, Acikmese, Scharf, & Harris,
2017; Dueri, Zhang, & Acikmese, 2014). Beyond SOCP, the semidefinite
program (SDP) class enables optimization over the space of positive
semidefinite matrices, which leads to many important robust control
design algorithms (Boyd, Ghaoui, Feron, & Balakrishnan, 1994; Sko-
gestad & Postlethwaite, 2005). SDP is the most general class of convex
optimization for which off-the-shelf solvers are available, and many
advances have been made in recent years towards more scalable and
robust SDP solvers (Majumdar, Hall, & Ahmadi, 2020).

Although convex optimization can solve a large number of practical
engineering problems, future space system requirements often surpass
the flexibility of “vanilla” convex optimization. Solving nonconvex
optimization problems will be required for many foreseeable space
vehicles (Carson III et al.,, 2019). Thus, extending beyond SDP, we
introduce three nonconvex problem classes.

First, one can abandon the convexity requirement, but retain func-
tion continuity, leading to the nonlinear program (NLP) class. Here the
objective and constraint functions are continuous, albeit nonconvex.
Alternatively, one could retain convexity but abandon continuity. This
leads to the mixed-integer convex program (MICP) class, where binary
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variables are introduced to emulate discrete switches, such as those of
valves, relays, or pulsing space thrusters (Achterberg, 2007; Achterberg
& Wunderling, 2013; Dueri et al., 2017). Note that the MICP and NLP
classes overlap, since some constraints admit both forms of expression.
For example, the mixed-integer constraint:

xef{0lu{xeR:x>1}, 2)
can be equivalently formulated as a nonlinear continuous constraint:
x(x—=1)>0, x>0. 3

In the most general case, nonlinearity and discontinuity are com-
bined to form the mixed-integer nonlinear program (MINLP) class.
Since integer variables are nowhere continuous and the corresponding
solution methods are of a quite different breed to continuous nonlinear
programming, we reserve MINLP as the largest and toughest problem
class. Algorithms for NLP, MICP, and MINLP typically suffer either from
exponential complexity, a lack of convergence guarantees, or both (Ma-
lyuta & Acikmese, 2020a). Nevertheless, the optimization community
has had many successes in finding practical solution methods even
for these most challenging problems (Achterberg & Wunderling, 2013;
Szmuk, Reynolds, Actkmese, Mesbahi and Carson III, 2019).

This paper stands in good company of numerous surveys on
aerospace optimization. Betts (1998) presents an eloquent, albeit some-
what dated, treatise on trajectory optimization methods. Trélat (2012)
provides a comprehensive survey of modern optimal control theory
and indirect methods for aerospace problems, covering geometric op-
timal control, homotopy methods, and favorable properties of orbital
mechanics that can be leveraged for trajectory optimization. Tsio-
tras & Mesbahi (2017) corroborate the importance of optimization
in forthcoming space missions. Liu, Lu, & Pan (2017) survey the
various appearances of lossless convexification and sequential convex
programming in aerospace guidance methods. Eren et al. (2017) cover
extensively the topic of model predictive control for aerospace appli-
cations, where Problem (1) is solved recursively to compute control
actions. Mao, Dueri, Szmuk and Acikmese (2018) survey three partic-
ular topics: lossless convexification, sequential convex programming,
and solver customization for real-time computation. Shirazi, Ceberio, &
Lozano (2018) provide a thorough discussion on the general philosophy
and specific methods and solutions for in-space trajectory optimiza-
tion. Recently, Song et al. (2020) surveyed optimization methods in
rocket powered descent guidance with a focus on feasibility, dynamic
accuracy, and real-time performance.

This paper contributes the most recent broad survey of convex
optimization-based space vehicle control methods. We consider rockets
for payload launch, rocket-powered planetary and small body landers,
satellites, interplanetary spacecraft, and atmospheric entry vehicles.
However, we do not cover some related topics like guidance of purely
atmospheric vehicles (e.g., missiles and hypersonic aircraft), and con-
trol of satellite swarms, due to sufficiently unique distinctions. For
a start in these areas, we refer the reader to Murillo & Lu (2010),
Palumbo, Blauwkamp, & Lloyd (2010), Tewari (2011) and Zarchan
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(2019) for hypersonic vehicle control, and Morgan et al. (2012), Rah-
mani et al. (2019), Scharf, Hadaegh, & Ploen (2003) and Tillerson,
Inalhan, & How (2002) for swarm control.

From the algorithmic perspective, our focus is on convex
optimization-based methods for solving the full spectrum of optimiza-
tion classes in Fig. 1. The motivation for focusing on convex methods
comes from the great leaps in the reliability of convex solvers and
the availability of flight heritage, which gives convex optimization a
technology infusion advantage for future onboard and ground-based
algorithms (Blackmore, 2016; Dueri et al.,, 2017). We nevertheless
make side references to other important, but not convex optimization-
based, algorithms throughout the text. Lastly, this paper discusses
algorithms at a high level, and chooses to cover a large number of
applications and methods in favor of providing deep technical detail
for each algorithm. The goal, in the end, is to expose the reader to
dominant recent and future directions in convex optimization-based
space vehicle control research.

The paper is organized as follows. Section 2 covers general theory
of important optimization methods used throughout spaceflight appli-
cations. Section 3 then surveys each space vehicle control application
individually. Section 3.1 surveys powered descent guidance for plane-
tary rocket landing. Section 3.2 discusses spacecraft rendezvous and
proximity operations, followed by a discussion in Section 3.3 of its
close cousin, small body landing. Constrained attitude reorientation is
covered in Section 3.4. Section 3.5 surveys endo-atmospheric flight,
including ascent and entry. Last but not least, orbit insertion and
transfer are surveyed in Section 3.6. We conclude the paper with a
perspective on what lies ahead for computational guidance and control.
As such, Section 4 highlights some recent applications of machine
learning to select problems. This final section also tabulates some of
the optimization software tooling now available for getting started in
optimization methods for spaceflight applications.

Notation. Binary numbers belong to the set I £ {0, 1}. Vectors are
written in bold, such as x € R” versus y € R. The identity matrix
is generally written as I/, and sometimes as I, € R™" in order to
be explicit about size. The zero scalar, vector, or matrix is always
written as 0, with its size derived from context. The vector of ones is
written as 1, with size again derived from context. Starred quantities
denote optimal values, for example x* is the optimal value of x. We use
(a; b; ¢) to concatenate elements into a column vector, like in MATLAB.
The symbol ® denotes the Kronecker matrix product or quaternion
multiplication, depending on context. The positive-part function [x]* £
max{0, x} saturates negative elements of x to zero. Given a function
f(x(), ¥(1),1), we simplify the argument list via the shorthand f[7].
Throughout the paper, we interchangeably use the terms “optimiza-
tion” and “programming”, courtesy of linear optimization historically
being used for planning military operations (Wright, 2011). When
we talk about “nonlinear programming”, we mean more precisely
“nonconvex programming”. Convexity is now known to be the true
separator of efficient algorithms, however this discovery came after
linear programming already established itself as the dominant class that
can be efficiently solved via the Simplex method (Rockafellar, 1993).
Finally, “guidance” means “trajectory generation”, while “navigation”
means “‘state estimation”.

2. Background on optimization methods

This section provides a broad overview of key algorithms for space
vehicle trajectory optimization. The main focus is on methods that
exploit convexity, since convex optimization is where state-of-the-art
solvers provide the strongest convergence guarantees at the smallest
computational cost (Boyd & Vandenberghe, 2004; Nocedal & Wright,
1999).

Our algorithm overview proceeds as follows. First, Section 2.1
introduces the general continuous-time optimal control problem. Then,
Section 2.2 describes how the problem is discretized to yield a finite-
dimensional problem that can be solved on a computer. Following this
introduction, Sections 2.3-2.6 overview important algorithms for space
vehicle trajectory optimization.
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2.1. Optimal control theory

Optimal control theory is the bedrock of every trajectory optimiza-
tion problem (Berkovitz, 1974; Pontryagin, Boltyanskii, Gamkrelidze,
& Mishchenko, 1986). The goal is to find an optimal input trajectory
for the following optimal control problem (OCP):

t
min L (x(t,),t,) + / ! L(x(7),u(r), t)drt s.t. (4a)
’f U 0
x(®) = fx®,u@®),1), YVt € [0,1/], (4b)
g(x(®),u(n,1) <0, vVt € [0,7], (40)
b(x(0), x(1 ). 1,) = 0. (4d)

In Problem (4), x 01,1 - R™ is the state trajectory and

[0,t;] - R"™ is the input trajectory, while 7, € R is the final
time (i.e., the trajectory duration). The state evolves according to the
dynamics f : R" x R x R — R"x, and satisfies at all times a set of
constraints defined by g : R"x x R™ xR — R". At the temporal bound-
aries, the state satisfies conditions provided by a boundary constraint
b : R"x x R"x xR —» R". The quality of an input trajectory is measured
by a cost function consisting of a running cost L : R X R XR - R
and a terminal cost L, : R xR — R.

Two aspects differentiate Problem (4) from a typical parameter
optimization problem. First, the constraints encode a physical process
governed by ordinary differential equations (ODEs) (4b). Second, due
to the continuity of time, the input trajectory has an infinite number of
design parameters. This makes Problem (4) a semi-infinite optimization
problem that cannot be directly implemented on a computer. In the fol-
lowing subsections, we provide a brief overview of two approaches for
solving this problem, called the direct and indirect methods. Roughly
speaking, direct methods discretize Problem (4) and solve it as a
parameter optimization problem, while indirect methods attempt to
satisfy the necessary conditions of optimality.

u :

2.1.1. Indirect methods

The maximum principle, developed since the 1960s, extends the
classical calculus of variations and provides a set of necessary con-
ditions of optimality for Problem (4) (Hartl, Sethi, & Vickson, 1995;
Pontryagin et al., 1986). The maximum principle has found numerous
aerospace applications (Longuski, Guzman, & Prussing, 2014).

The indirect family of optimization methods solves the necessary
conditions of optimality, which involves a two-point boundary value
problem (TPBVP) corresponding to the state and costate dynamics and
their boundary conditions. Traditionally, this is solved by a single-
or multiple-shooting method. One limitation of these methods is the
requirement to specify in advance the time intervals over which con-
straint (4c¢) is active (Betts, 1998). Other issues that hinder onboard
implementation include poor convergence stemming from a sensitivity
to the initial guess, and long computation time.

Despite these challenges, the indirect approach is often the only
practical solution method when aspects like numerical sensitivity and
trajectory duration rule out direct methods. Low-thrust trajectory opti-
mization, discussed in Section 3.6, is a frequent candidate for the indi-
rect approach since the low thrust-to-weight ratios and long trajectory
durations (from weeks to years) create extreme numerical challenges
when formulated as a parameter optimization problem.

Most indirect methods in aerospace literature solve only the nec-
essary conditions of optimality for Problem (4). However, nonlinear
optimization problems can have stationary points that are not local
minima, such as saddle points and local maxima. This has prompted
interest in using second-order conditions of optimality to ensure that
the solution is indeed a local minimum (Cesari, 1983). At the turn of
the century, researchers showed how second-order information can be
incorporated in orbit transfer applications (Jo & Prussing, 2000). In the
last decade, further work used second-order optimality conditions for
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orbit transfer and constrained attitude reorientation problems (Caillau,
Daoud and Gergaud, 2012; Picot, 2012).

A promising modern indirect method family relies on homotopy
in order to solve the TPBVP (Di Lizia, Armellin, Morselli, & Bernelli-
Zazzera, 2013; Pan, Lu, Pan, & Ma, 2016; Pan & Pan, 2020; Pan, Pan,
& Lu, 2019; Rasotto, Armellin, & Lizia, 2015; Taheri & Junkins, 2019;
Trélat, 2012). Homotopy aims to address the aforementioned chal-
lenges of slow convergence, initial guess quality, and active constraint
specification. The core idea is to describe the problem as a family of
problems parametrized by a homotopy parameter x € [0, 1], such that
the original problem is recovered for x = 1, and the problem for x = 0 is
trivially solved. For example, consider solving a non-trivial root-finding
problem:

Fy)=0, ()

where y € R” and F : R" — R” is a smooth mapping. A (linear)
homotopy method will have us define the following homotopy function:

I(y,0) 2 xF(y)+(1-x)G(y) =0, (6)

where G : R” —» R” is a smooth function that has a known or easily
computable root y, € R". Popular choices are G(y) = F(y) — F(yy),
called Newton homotopy, and G(y) = y — y,, called fixed-point homotopy.
In nonlinear homotopy, the function I'(y, k) is a nonlinear function of
k, but otherwise similar relationships continue to hold.

The locus of points (y,x) where (6) holds is called a zero curve
of the root-finding problem. Success of the homotopy approach relies
on the zero curve being continuous in « on the interval « € [0,1],
albeit possibly discontinuous in y. Unfortunately, the existence of such
a curve is not guaranteed except for a few restricted problems (Pan,
Pan, & Zhang, 2018; Watson, 2002). In general, the loci of points
satisfying (6) may include bifurcations, escapes to infinity, and limit
points. Furthermore, the solution at x = 1 may not be unique.

Nevertheless, homotopy methods have been developed to success-
fully traverse the x € [0,1] interval when a zero curve does exist.
The essence of the homotopy approach is to judiciously update an
intermediate solution (y,, k) so as to follow a k-continuous zero curve
from y, to yg, where I'(yx,1) = F(yg) 0 and K is the final
iteration counter. At each iteration, some methods use a Newton-based
root finding approach (Pan et al., 2016), while others rely solely on
numerical integration (Caillau, Cots and Gergaud, 2012). For further
details on the homotopy approach, we refer the reader to Pan et al.
(2016).

2.1.2. Direct methods

Direct methods offer a compelling alternative where one discretizes
Problem (4) and solves it as a parameter optimization problem via
numerical optimization. The resulting solution in the convex case is
usually very close to the optimal continuous-time one. As discussed
in the next section, the solution can satisfy (4b) exactly if an exact
discretization method is used (Szmuk, Reynolds, & Acikmese, 2018).
The optimization step is most often performed by a primal-dual interior
point method (IPM), for which a considerable software ecosystem now
exists thanks to 40 years of active development (Forsgren, Gill, &
Wright, 2002; Nocedal & Wright, 1999; Wright, 2005). Some of this
software is listed in Section 4.1.

Thanks to this expansive software ecosystem, and the large research
community actively working on numerical optimization algorithms,
direct methods may be considered as the most popular approach today.
Their ability to “effortlessly” handle constraints like (4c) makes them
particularly attractive (Betts, 1998). In the remainder of this paper, our
main focus is on direct methods that use convex optimization.

Nevertheless, as mentioned in the previous section, indirect meth-
ods are still relevant for problems that exhibit peculiarities such as
extreme numerical sensitivity. It must further be emphasized that some
of the best modern algorithms have resulted from the combined use of
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an indirect and a direct approach. Typically an indirect method, and
in particular the necessary conditions of optimality, can be used to dis-
cover the solution structure, which informs more efficient customized
algorithm design for a direct solution method. We will discuss how
this “fusion” approach was taken for powered descent guidance and
atmospheric entry applications in Sections 2.3 and 3.5.2 respectively.
Last but not least, the maximum principle can sometimes be used
to find the analytic globally optimal solution for problems where no
direct method can do so (e.g., nonlinear problems). In this case, an
indirect method can provide a reference solution against which one
can benchmark a direct method’s performance (Reynolds, Malyuta,
Mesbahi, A¢tkmese and Carson III, 2020; Sundstrom & Guzzella, 2009).
In summary, indirect and direct methods play complementary roles:
the former is a good ground-truth and analysis tool, while the latter
is preferred for real-time onboard implementation.

2.2. Discretization

To be solvable on a computer, the semi-infinite Problem (4) must
generally be reduced to a finite-dimensional problem. This is done by
the process of discretization, where the goal is to convert the differential
constraint (4b) into a finite-dimensional algebraic constraint. This is
especially important for the family of direct methods discussed in
Section 2.1.2, which rely on discretization to solve Problem (4) as a
parameter optimization problem.

Generally, discretization is achieved by partitioning time into a
grid of N nodes and fixing a basis for the state signal, the control
signal, or both (Malyuta et al., 2019). The following subsections discuss
three popular approaches: an exact discretization based on zeroth-
order hold (Section 2.2.2), an approximate discretization based on
the classic Runge-Kutta method (Section 2.2.3), and a pseudospectral
discretization that is either global or adaptive (Section 2.2.4). We frame
the discussion in terms of three salient features: (1) sparsity of the
discrete representation of the dynamics (4b), (2) the mechanics of
obtaining a continuous-time trajectory from the discrete representation,
and (3) the connection, if any, between the discrete solution and the
optimal costates of the original Problem (4) derived via the maximum
principle. Our goal is to give the reader enough insight into discretiza-
tion to appreciate the algorithmic choices for spaceflight applications in
Section 3. For a more thorough discussion, we defer to the specialized
papers (Agamawi & Rao, 2020; Betts, 1998, 2010; Conway, 2011; Kelly,
2017; Malyuta et al., 2019; Phogat, Chatterjee, & Banavar, 2018a; Rao,
2010; Ross & Karpenko, 2012).

2.2.1. Example dynamical system
To ground our coverage of discretization in a concrete application,
let us restrict (4b) to a linear time-invariant (LTI) system of the form:

)

Discretization for (7) is easily generalized to handle linearized
dynamics of a nonlinear system (like (4b)) about a reference state-input
trajectory (%,&) : R - R"x x R". To do so, replace A and B with:

x(t) = Ax(t) + Bu(r).

Ay =V, [, (8a)
B =V, [l (8b)
Fltl = f&@), a@), 1, (8¢)

and add a residual term r(r) = f[f] — A()X(t) — B(t)a(r) to the right-
hand side of (7). Note that in this case, (7) generally becomes a linear
time-varying (LTV) system. While the zeroth-order hold method as
presented in Section 2.2.2 requires linear dynamics, the Runge-Kutta
and pseudospectral methods in their full generality can in fact handle
the unmodified nonlinear dynamics (4b).

As a particular example of (7), we will consider a simple mass—
spring—damper system with », = 2 states and », = 1 input:

) + 20w, (1) + 02r(t) = m™' £ (D), 9
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(a) ZOH (16).

(b) RK4 (22).
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(c) Global CGL (28). (d) Adaptive CGL (30).

Fig. 2. Matrix sparsity patterns for the linear dynamics equation FX = GU for the mass—spring—damper system in Section 2.2.1 using each of the discretization methods discussed
in Section 2.2. A salient feature of the ZOH and RK4 methods is their relative sparsity compared to pseudospectral methods. The adaptive collocation in (d) increases sparsity by
subdividing time into multiple intervals within which separate collocations are applied, and which are coupled only through continuity at their interface (in this figure, at x,). The
non-zero element colors merely serve to visually separate the elements by their value (larger values correspond to warmer colors). (For interpretation of the references to color in

this figure caption, the reader is referred to the web version of this article.)

where r is the position, m is the mass, ¢ is the damping ratio, w, is the
natural frequency, and f is the force (input). We set m =1 kg, £ =0.2,
and w, = 2 rads~!. Furthermore, consider a staircase input signal where
f@=1forte[0,ty,,) and f(t) =0 fort > 1., We shall use ,,, = 1 s.
The initial condition is r(0) = #(0) = 0. The simulation source code for
this example is publicly available.’

The dynamics (9) can be written in the form (7) by using the state

x = (r;7*) € R?, the input u = f € R, and the Jacobians:

- 0 1 - 0
A= B=
[—wﬁ —2cwn] ’ [m*l

2.2.2. Zeroth-order hold

Zeroth-order hold (ZOH) is a discretization method that assumes the
input to be a staircase signal on the temporal grid. ZOH is called an
exact discretization method because, if the input satisfies this staircase
property, then the discrete-time system state will exactly match the
continuous-time system state at the temporal grid nodes. In prac-
tice, ZOH is a highly relevant discretization type because off-the-
shelf actuators in most engineering domains, including spaceflight, out-
put staircase commands (Scharf, A¢ikmese, Dueri, Benito, & Casoliva,
2017).

Optimization routines that use ZOH typically consider a uniform
temporal grid, although the method generally allows for arbitrarily
distributed grid nodes:

k—1
TN

The input trajectory is then reduced to a finite number of inputs
u, € R, k 1,..., N — 1, that define the aforementioned staircase
signal:

(10)

tr, k=1,...,N. an

ut) =ug, Vi €[ty tyy)s k=1,...,N -1 12)

1 Visit https://github.com/dmalyuta/arc_2020_code.
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It then becomes possible to find the explicit update equation for the
state across any [7;,7,,] time interval, using standard linear systems
theory (Antsaklis & Michel, 2006):

X1 = AXy + Buy, (13a)

A, B
A=d(41,,0), B= A/ &(r,0)"'drB, (13b)
0

where A, = 1, — t;, x;, = x(t}) and @(-,1;) : R - R™* is the
state transition matrix. Since we assumed the system to be LTI, we have
@(t,1,) = eA0~) where e is the matrix exponential. If the system is LTV,
the state transition matrix can be computed by integrating the following
ODE:

D, 1) = AP, 1), Dty t,) =1. a4

As it was said before, ZOH is an exact discretization method if the
input behaves according to (12). The reason behind this becomes clear
by inspecting (13), which exactly propagates the state from one time
step to the next. This is different from forward Euler discretization,
where the update is:

Xpp 1 = X + At (Ax; + Buy), (15)

For a general non-staircase input signal, however, there is a subtle
connection between ZOH and forward Euler discretization. The former
does a zeroth-order hold on the input signal, and integrates the state
exactly, while the latter does a zeroth-order hold on the output signal
(i.e., the time derivative of the system state). Thus, unlike in forward
Euler discretization, state propagation for ZOH discretization cannot
diverge for a stable system.

The incremental update Eq. (13a) can be written in “stacked form”
to expose how the discrete dynamics are in fact a system of linear

equations. To begin, note that writing (13a) for k = 1,...,N — 1 is
mathematically equivalent to:
I 0 0 0
X= s X+ |——| U2 AX +BU, (16)
Iy ®A |0 In_,®B
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where X (x13%,;...;xx) € RN™ is the stacked state, U
(upsuy;...;uy_y) € ROV=Dm js the stacked input, and ® denotes
the Kronecker product. Zeros in (16) denote blocks of commensurate

dimensions. Clearly, we can then write the discrete dynamics as:

FX =GU where F2A1 - A, G4B. a7

The sparsity pattern for (17) using the mass—spring—damper system
(9) with N =4 and t;=06s is shown in Fig. 2a. Both F and G consist
largely of zeros, which has important consequences for customizing
optimization routines that exploit this sparsity to speed up computation
(Dueri et al., 2017; Malyuta et al., 2019).

An initial value problem (IVP) using a fixed x, can be solved either
by recursively applying (13a), or by solving (17):

X,, = F] (-Fjx; + GU), (18)

where F; represents the first n, columns of F, F,. represents the re-
maining columns, and X,. = (x,; ... ; xy). We use the left pseudoinverse
of F,. and note that the solution is unique since F,. has a trivial
nullspace. Fig. 3 shows an example of applying (13a) to the mass—
spring-damper system (9) using 7, = 10 s and N = 51. Because the
input step at 7, = 1 s falls exactly at a time node, the discretization is
exact.

To connect ZOH discretization back to Problem (4), it is now pos-
sible to write the problem as a finite-dimensional nonlinear parameter
optimization:

- f N-1
{;I,III}Lf(xN,tf) + N1 ; L(x,uy,t;) s.t. (19a)
FX =GU, (19b)
gxpu, 1) <0, Vk=1,...,N -1, (19¢)
b(x;,xy,ty)=0. (19d)

A few remarks are in order about Problem (19). First, the constraint
(19b) exactly satisfies the original dynamics (4b) under the ZOH as-
sumption. Second, the optimal solution is only approximately optimal
for Problem (4) due to an inexact running cost integration in (19a) and
a finite (N — 1)-dimensional basis with which the ZOH input is con-
structed. Third, the path constraints (4c) are satisfied pointwise in time
via (19c¢), in other words there is a possibility of inter-sample constraint
violation, which can nevertheless sometimes be avoided (Acikmese,
Scharf, Blackmore, & Wolf, 2008). Finally, in many important special
cases Problem (19) is convex, and a multitude of algorithms exploit this
fact, as shall be seen throughout this paper.

2.2.3. Runge-Kutta discretization

The classic Runge-Kutta (RK4) discretization method can be viewed
as an advanced version of the forward Euler method (15). Unlike ZOH,
which explicitly assumes a staircase input signal, RK4 is a general
numerical integration method that can be applied to any state and
control signals. As such, it is an inexact discretization method like
forward Euler, albeit a much more accurate one. In particular, if
we use the uniform temporal grid (11), then the accumulated RK4
integration error shrinks as O(N ~*), whereas forward Euler integration
error shrinks at the much slower rate O(N~!) (Betts, 2010; Butcher,
2016).

Directly from the definition of the RK4 method, we can write the
following state update equation:

Xpp1 = X + Aty (kg +2ky + 2k; + ky) /6, (20a)
k, = Ax; + Buy, (20b)
ky = A(x + 0548, k) + Buyy o, (20¢)
k3 = A(x; +0.548,ky) + Buy ) o, (20d)
k, = A(x; + At ks) + Buy ., (20e)
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Fig. 3. Simulation of a mass-spring-damper system using four discretization types,
whose matrix sparsity patterns are shown in Fig. 2. In each case, the simulation final
time is 7, = 10 s and a temporal grid of N =51 is used. The pseudospectral simulations
are drawn as continuous curves by using (24) to recover a continuous-time trajectory
from a finite set of states at the temporal grid nodes.

where w5 = 0.5(u; +u,). By reshuffling terms in (20), we can write

the state update in a similar form to (13a):
Xpp1 = Axp + B ug + Buy g, (21)

where {A, B-, Bt} are constructed from {I, A, B} according to (20).
Taking inspiration from (16), (21) can be written in stacked form:

L, 0 |o 0
X =|—" X U, 22
[ In 1 ®A [0 ] +[ (In_ ® (B~ BY))E ] (22)

where the matrix E combines columns in order to share the input
values u; for 2 <k < N —1 (i.e., the internal time grid nodes):

Unlike ZOH, RK4 actually uses the input value at the Nth time
node, hence there is one extra degree-of-freedom (DoF) leading to a
slightly larger stacked input, U = (u;;u,; ... ;uy) € RN". By defining A
and B according to (22), the discrete dynamics take the same form as
(17). In this case, the sparsity pattern for the same mass—spring—damper
example, using N = 4 and #, = 0.6 s, is shown in Fig. 2b. Like ZOH,
RK4 yields a sparse representation of the dynamics.

Like ZOH, an IVP using the discretized dynamics can be solved
either by recursively applying (21), or via a pseudoinverse like (18).
An example is shown in Fig. 3. Clearly, RK4 is an inexact discretization
method. In this case, the interpolated input u, )2 in (20¢)-(20d) is
erroneous just after the input step at t,,, = 1 s. Increasing the grid
resolution will quickly decrease the integration error, at the expense of
a larger linear system (17).

When discretized with RK4, Problem (4) looks much like Problem
(19), except uy is an extra decision variable and the user may also
choose RK4 to integrate the running cost in (4a). However, a subtle
but very important difference is that the solution to the discretized
problem generally no longer exactly satisfies the original continuous-
time dynamics. Thus, although RK4 may be computationally slightly
cheaper than ZOH (especially for LTV dynamics, since it does not
require computing integrals like (13b)), it is used less often than ZOH
or pseudospectral methods discussed next.

1
E= blkdiag{ I Iy ® [1] ., (23)
ny
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2.2.4. Pseudospectral discretization

A key property of ZOH discretization from Section 2.2.2 is that
it does not parametrize the state signal. As a result, numerical in-
tegration is required to recover the continuous-time state trajectory
from the solution of Problem (19). In trajectory optimization literature,
this is known as explicit simulation or time marching (Rao, 2010).
An alternative to this approach is to approximate the state trajectory
upfront by a function that is generated from a finite-dimensional basis
of polynomials:

_ S N 5 Ty
x() = Y xi¢,(z0). 1€10.17), 02 [[ —. (24)
i=1 j=1 i J
J#i

where 7 = 27t — 1 and ¢, : [~1,1] — R are known as Lagrange
interpolating polynomials of degree N — 1. Note that the polynomials
are defined on a normalized time interval. Since the temporal mapping
is bijective, we can equivalently talk about either ¢ or 7.

Given a temporal grid, the Lagrange interpolating polynomials sat-
isfy an isolation property: ¢;(z;) = 1 and ¢,(z;) 0 for all j #
i. Hence, the basis coefficients x; correspond exactly to trajectory
values at the temporal grid nodes. Moreover, the trajectory at all
other times is known automatically thanks to (24). This is known as
implicit simulation or collocation. In effect, solving for the N trajectory
values at the temporal grid nodes is enough to recover the complete
(approximate) continuous-time trajectory. Because (24) approximates
the state trajectory over the entire [0,7,] interval, this technique is
known as a global collocation.

Collocation conditions are used in order to make the polynomial
obtained from (24) behave according to the system dynamics (7):

N
x(t)) = 2071 Y %, (v(1)) = Ax(1)) + Bu(t)), Vj € C, (25)
i=1

1
where the prime operator denotes differentiation with respect to = (i.e.,
d¢;/dr) and C C {1,...,N} is the set of collocation points (Malyuta
et al., 2019). Note that we have already seen a disguised form of (25)
earlier for the RK4 method. In particular, the well-known (20b)-(20e)
are essentially collocation conditions.

According to the Stone-Weierstrass theorem (Boyd, 1989), (24)
approximates a smooth signal with arbitrary accuracy as N is in-
creased. To avoid the so-called Runge’s divergence phenomenon, time
is discretized according to one of several special non-uniform distri-
butions, known as orthogonal collocations (de Boor & Swartz, 1973).
In this scheme, the grid nodes 7, are chosen to be the roots of a
polynomial that is a member of a family of orthogonal polynomials.
For example, Chebyshev-Gauss-Lobatto (CGL) orthogonal collocation
places the scaled temporal grid nodes at the roots of (1 —r)zcj\_l(r) =0,
where ¢y () = cos(N arccos(r)) is a Chebyshev polynomial of degree N.
This particular collocation admits an explicit solution:
rk=—cos( k—lﬂ

N -1

A pseudospectral method is a discretization scheme that approximates
the state trajectory using (24), and selects a particular orthogonal
collocation for the collocation points (Kelly, 2017; Rao, 2010; Ross &
Karpenko, 2012). In fact, the choice of collocation points is so crucial
that flavors of pseudospectral methods are named after them (e.g., the
CGL pseudospectral method). Given this choice, if the dynamics and
control are smooth, the approximation (24) will converge spectrally
(i.e., at an exponential rate in N) to the exact state trajectory (Rao,
2010).

Associated with any C is a differentiation matrix D € RI™N such
that D; = ‘l’:,'(fj)' Some collocations (e.g., CGL) admit an explicit
differentiation matrix, while for others the matrix can be efficiently
computed to within machine rounding error via barycentric Lagrange
interpolation (Berrut & Trefethen, 2004). Having D available allows us
to write the collocation conditions (25) in stacked form:

), k=1,....N. (26)

Q' D®1,)X = () ® HX + (I ;¢ ® BIU, @7
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where the stacked state and input have the same dimensions as in
RK4. We may thus write the discrete dynamics in the form of (19b)
by defining:

(28a)
(28b)

F=27'D®I, I ® A4,
G=1I¢®B.

The sparsity pattern for the mass—spring-damper example, using
N 4 and 1, 10 s, is shown in Fig. 2c. This time, due to F
the dynamics constraint is not sparse. This has historically been a
source of computational difficulty and a performance bottleneck for
pseudospectral discretization-based optimal control (Malyuta et al.,
2019; Sagliano, 2019).

Unlike for ZOH and RK4, where an IVP can be solved by recursively
applying an update equation, pseudospectral methods require solving
(27) simultaneously, which yields the state values at the temporal grid
nodes all at once. In general, the solution is once again obtained via
the pseudoinverse (18). However, some pseudospectral methods such
as Legendre-Gauss (LG) and Legendre-Gauss—-Radau (LGR) produce a
square and invertible F,. (furthermore, Fj, 'FL=1® 1, ). This can be
used to write (19b) in an “integral form” that has certain computation
advantages (Francolin, Benson, Hager, & Rao, 2014):

X, =-(1®1I, )x, + F;'GU. (29)

Returning to our example of the mass—spring—damper system, Fig. 3
shows a simulation using CGL collocation. Like RK4, pseudospectral
discretization is an inexact method, and only approaches exactness
as N grows large. In this case, the method struggles in particular
due to the discontinuous nature of the input signal, which steps from
one to zero at fy,, = 1 s. The control trajectory is not smooth due
to this discontinuity, hence the aforementioned spectral convergence
guarantee does not apply. Indeed, it takes disproportionately more grid
nodes to deal with this discontinuity, than if we were to subdivide
the simulation into two segments ¢ € [0,¢,,,) and t € [t,,,?,], where
the pre-discontinuity input applies over the first interval and the post-
discontinuity input applies over the second interval (Darby, Hager, &
Rao, 2010).

This idea is at the core of so-called adaptive, or local, collocation
methods (Darby et al., 2010; Koeppen, Ross, Wilcox, & Proulx, 2019;
Sagliano, 2019; Zhao & Shang, 2018). These methods use schemes such
as hp-adaptation (h and p stand for segment width and polynomial
degree, respectively) in order to search for points like #,,, and to
subdivide the [0,7,] interval into multiple segments according to an
error criterion. We defer to the above papers for the description of
these adaptation schemes. For our purposes, suppose that a partition
of [0,¢,] into .S segments is available. The #th segment has a basis of
N, polynomials, a set of collocation points C,, and is of duration ¢ ,

such that Z;,:l t» = t;. Each segment has its own version of (28):

(30a)
(30b)

Fp=20,D" @1, —Iic, ® A,
G =1Iic, ® B,

where the newly defined F, is not to be confused with the earlier F,
and F,. matrices. The new matrices in (30) are now combined to write
a monolithic dynamics constraint (19b). Doing so is straightforward for
the input, which can be discontinuous across segment interfaces:

G =blkdiag(G,, ..., Gg). (31)

The state trajectory, however, must remain continuous across seg-
ment interfaces. To this end, the same coefficient x; is used in (24) for
both the final node of segment #, and the start node of segment # + 1.
Understanding this, we can write:

F = blkdiag{F,, ..., Fg} E, (32)

where E combines the columns of F in a similar way to (23). The net
result is that the final n, columns of F, sit above the first n, columns
of Fy ;.
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An example of the sparsity pattern for an adaptive collocation
scheme is shown in Fig. 2d using Ny = N, =2, 1| = ty,, = | s, and
1, =10 s. One can observe that a second benefit of adaptive collocation
is that it results in a more sparse representation of the dynamics. This
helps to improve optimization algorithm performance (Darby et al.,
2010; Sagliano, 2019).

Solving an IVP with adaptive collocation works in the same way
as for global collocation. An example is shown in Fig. 3, where two
segments are used with the split occurring exactly at 7. In this man-
ner, two instances of (24) are used to approximate the state trajectory,
which is smooth in the interior of both temporal segments. As such, the
approximation is extremely accurate and, for practical purposes, may
be considered exact in this case.

A final, and sometimes very important, aspect of pseudospectral
discretization is that certain collocation schemes yield direct correspon-
dence to the maximum principle costates of the original optimal control
problem (Problem (4)). This is known as the covector mapping theo-
rem (Gong, Ross, Kang, & Fahroo, 2007). One example is the integral
form (29) for LG and LGR collocation (Francolin et al., 2014). Roughly
speaking, the Lagrange multipliers of the corresponding parameter
optimization Problem (19) can be mapped to the costates of Problem
(4). Note that this requires approximating the running cost integral
in (4a) using quadrature weights {wk}kN=l defined by the collocation
scheme:

N

Z wi L(xy, uy, ).
k=1

t

/ ! L(x(7),u(r), 7)dr ~ (33)
0

This unique aspect of pseudospectral methods is why some of the
optimal control problem solvers in Table 1 at the end of this article,
such as DIDO, GPOPS-II, and SPARTAN, are listed as both direct and
indirect solvers. In fact, they all solve a discretized version of Problem
(4). Nevertheless, they are able to recover the maximum principle
costate trajectories from the optimal solution (Patterson & Rao, 2014;
Ross & Karpenko, 2012; Sagliano, 2019).

2.3. Convex optimization

We now come to the question of how to actually solve a finite-
dimensional optimization problem such as Problem (19). As mentioned
in the introduction, this can be done relatively reliably using well
established tools if the problem is convex. Convexity has pervaded
optimization algorithm design due to the following property. If a
function is convex, global statements can be made from local function
evaluations. The ramifications of this property cannot be understated,
ranging from the guarantee of finding a global optimum (Rockafellar,
1970) to precise statements on the maximum iteration count (Peng,
Roos, & Terlaky, 2002). For the purposes of this review, it is sufficient
to keep in mind that a set C C R” is convex if it contains the line
segment connecting any two of its points:

x,y€C & [x,y], €CVO€[0,1], (34

where [x, y]y £ 0x+(1—0)y. Similarly, a function f : R" — R is convex
if its domain is convex and it lies below the line segment connecting
any two of its points:

x,y € dom(f) & [f([x.yly) < [f(x), f(M]y VO € [0,1]. (35)

Countless resources cover the theory of convex optimization, among
which are the notable books by Boyd & Vandenberghe (2004), Nocedal
& Wright (1999), Rockafellar (1970). After applying a discretization
technique akin to those in Section 2.2, a trajectory design convex
optimization problem takes the following form (which is just another

way of writing Problem (19)):
T(tp) =min J(X,U.1), s.t. (362)

X1 = Ax + Bug +dy, Yk=1,...,N -1, (36b)
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Optimal solution lies
on boundary

Fig. 4. Illustration of the convex relaxation technique used throughout much of lossless
convexification literature for powered descent guidance. Using the maximum principle,
lossless convexification proves that the optimal solution (T*(¢); c*(¢)) lies on the green
boundary of the set U'. (For interpretation of the references to color in this figure
caption, the reader is referred to the web version of this article.)

Xy, 1) <0, Yk=1,...,N -1, (360)

b(x;,xy)=0. (36d)

In Problem (36), J : RNx x RN-Dm w R — R is a convex cost
function, g : R"x x R"» x R — R" defines a convex set of constraints,
and b : R xR - R™ is an affine function defining the trajectory
boundary conditions. If 7, is a decision variable, a sequence of Prob-
lem (36) instances can be solved using a line search that computes
min,f J*(t;) (Blackmore, Acikmese, & Scharf, 2010). The sequence
{Ap, B, d )N ‘11 of matrices of commensurate dimensions represents the
linear time-varying discretized dynamics (4b). In numerous aerospace
applications, including rocket landing and spacecraft rendezvous, the
dynamics are at least approximately of this form (Acikmese & Ploen,
2007; de Ruiter, Damaren, & Forbes, 2013).

The path constraints (36¢) are where nonconvexity appears most
often for a space vehicle trajectory optimization problem. Sometimes
the nonconvexity can be removed by a clever reformulation of the
problem, a process called convexification. If the reformulation is exact,
in other words the solution set is neither reduced nor expanded, the
convexification is lossless. One example of lossless convexification that
has pervaded rocket landing literature is a thrust lower-bound con-
straint. Let T(t) € R? be a thrust vector, then combustion stability and
engine performance dictate the following constraint:

Pmin < ITOlly < Py V1 € (0,11, 37)

The lower-bound is nonconvex, but it was shown that it admits the
following lossless convexification (A¢ikmese & Ploen, 2007):

Pmin £ 00 < paxs 1Tl < 0@), VE€[0,1,]. (38)

The convexification “lifts” the input space into an extra dimension,
as illustrated in Fig. 4. Clearly the lifted feasible set U is convex, and
its projection onto the original coordinates contains the feasible set
defined by (37). The backbone of lossless convexification is a proof via
the maximum principle that the optimal solution lies on the boundary
of U, as highlighted in Fig. 4. Thus, it can be shown that the solution
using (38) is optimal for the original problem which uses (37).

Another example of lossless convexification comes from the con-
strained reorientation problem. Let q(t) € R* with |g(t)|l, = 1 be a
unit quaternion vector describing the attitude of a spacecraft. During
the reorientation maneuver, it is critical that sensitive instruments on
the spacecraft are not exposed to bright celestial objects. This dictates

the following path constraint:
q()"Mq(1) <0, Vr € [0.1], (39

where M € R is a symmetric matrix that is not positive semidefinite,
making the constraint nonconvex. However, when considered together
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Fig. 5. Block diagram illustration of a typical SCP algorithm. The forward path can be
seen as a “predictor” step, while the reverse path that calls the convex optimization
solver can be seen as a “corrector” step. Although the test criterion can be guaranteed
to trigger for certain SCP flavors, the solution may not be feasible for the original
problem.

with the implicit constraint ||q(#)||, = 1, (39) can be losslessly replaced
with the following convex constraint (Kim & Mesbahi, 2004):

q)" (M + ul)g(t) < p, Vi € [0,14], (40)

where u is chosen such that the matrix M + ul is positive semidef-
inite. Instead of the maximum principle, the proof of this lossless
convexification hinges on the geometry of the unit quaternion.

2.4. Sequential convex programming

Sequential convex programming (SCP) is an umbrella name for a
family of nonconvex local optimization methods. It is one of many
available tools alongside nonlinear programming, dynamic program-
ming, and genetic algorithms (Floudas & Pardalos, 2009). If lossless
convexification is a surgical knife to remove acute nonconvexity, SCP
is a catch-all sledgehammer for nonconvex trajectory design. Clearly
many aerospace problems are nonconvex, and SCP has proven to be
a competitive solution method for many of them (Bonalli, Hérissé, &
Trélat, 2017; Liu & Lu, 2014; Szmuk et al., 2018). This section provides
intuition about how SCP algorithms work as well as their advantages
and limitations. The interested reader can find further information in
(Malyuta, Reynolds, Szmuk, Lew, Bonalli, Pavone, & Acikmese, 2021)
which provides a comprehensive tutorial on SCP.

At the core, every SCP algorithm is based on the following idea:
iteratively solve a convex approximation of Problem (4), and update
the approximation as new solutions are obtained. Fig. 5 provides an
illustration and highlights how SCP can be thought of as a predictor—
corrector algorithm. In the forward predictor path, the current solution
is evaluated for its quality. If the quality check fails, the reverse
corrector path improves the quality by solving a subproblem that is a
better convex approximation. Examples of SCP algorithms include cases
where the subproblem is linear (Palacios-Gomez, Lasdon, & Engquist,
1982), second-order conic (Mao, Szmuk, Xu and Acikmese, 2018), and
semidefinite (Fares, Noll, & Apkarian, 2002).

Consider Problem (36) for a simple concrete example of the SCP
philosophy. Assume that g is the only nonconvex element and that 7,
is fixed. At the location () in Fig. 5, the SCP method provides an iterate
in the form of a current trajectory guess {X,, &, } ]1:’:‘11. In its most basic
form, SCP linearizes and relaxes the g function:

_ 08 g
g+ 6_xAxk+ aAuk <ap, Vk=1,...,N -1,

where a; € R" is a virtual buffer zone and we define g 2 g(X,, i, 1),
Ax, £ x; — %, and Au; £ u; — @,. The subproblem solved at location
@ in Fig. 5 is then given by:

(41)

N-1 N-1
wmin  JOGU 1)+ weedT Y (o] +wy Y g s.t. (42a)
o) k=1 k=1
NN -1

290

Annual Reviews in Control 52 (2021) 282-315

X = Ax + By +d;, Ve=1,...,N -1, (42b)
g+ Bax+ B <ay vi=1 N (420)
| Aue]| <mpo VE=1,...,N -1, (42d)
b(xy,xy)=0. (42e)

Problem (42) introduces several new elements. The variables 7,
regulate the size of trust regions around the previous solution, and the
weights w,., wy,. € R are set to large positive values that encourage
convergence and zero constraint violation. The best choice of p-norm
|-]l in (42d) depends on the problem structure. The stopping criterion
used in (® of Fig. 5 may be, for example:

max
€(l,...N-1}

max N n, < e and . 43)

ke(l,...N llee1 || <

where ¢ is a user-chosen convergence tolerance constant that can be
interpreted as a small “numerical error”.

SCP denotes a family of solution methods and, as such, countless
variations of Problem (42) exist. Early versions of SCP for trajec-
tory generation focused on motion kinematics alone (Schulman et al.,
2014) or included dynamics but with few convergence guarantees (Au-
gugliaro, Schoellig, & D’Andrea, 2012). Today, a family of methods is
emerging with stronger convergence guarantees, including SCvx (Mao,
Szmuk et al., 2018), GuSTO (Bonalli, Cauligi, Bylard, & Pavone, 2019;
Bonalli, Lew, & Pavone, 2021), and penalized trust region (PTR)
(Reynolds, Malyuta, Mesbahi, A¢tkmese and Carson III, 2020). Problem
(42) exemplifies the PTR method, where the trust region sizes 5, are
themselves optimization variables that are kept small using a penalty
in the cost (42a). PTR is often the fastest method, but its theoretical
convergence properties are relatively unexplored. In comparison, SCvx
and GuSTO provide a guarantee that the algorithm converges to a
locally optimal solution, albeit with potentially non-zero x, and «.
When these variables are zero, however, the solution is locally optimal
for the original optimal control problem.

The main algorithmic differences across SCP methods lie in how
the convex approximations are formulated, what methods are used to
update the intermediate solutions and to measure progress towards
optimality, and how all of this lends itself to theoretical analysis. For
example, SCvx uses a discrete-time convergence proof while GuSTO
uses the continuous-time maximum principle. The main difference with
the PTR method is that both SCvx and GuSTO update 7, outside of
the optimization problem. Interestingly, the PTR method has been
observed to yield much faster convergence in practice, and a theoretical
explanation recently appeared (Reynolds & Mesbahi, 2020a).

2.4.1. Related algorithms

In the general context of optimization, SCP belongs to the class of
so-called trust region methods (Conn, Gould, & Toint, 2000; Nocedal
& Wright, 1999). However, SCP is not to be confused with another
popular trust region method, sequential quadratic programming (SQP).
First of all, SCP solves its subproblems to full optimality. While this
increases the number of iterations in the reverse path of Fig. 5, it vastly
reduces the number of forward passes. Owing to the growing maturity
of IPM solvers and the advent of solver customization (Domahidi et al.,
2013; Dueri et al., 2014), iterations in the reverse path are relatively
“cheap”, making the trade-off a good one. Second, SCP requires only
first-order problem information, since nonconvexities are handled by
a simple linearization such as in (41). On the other hand, SQP is a
second-order method that requires the factorization of a Hessian. This
raises concerns about matrix positive semidefiniteness and may require
computationally expensive techniques such as the BFGS update (Gill &
Wong, 2011).

Differential dynamic programming (DDP) is another family of algo-
rithms that, like SCP, is built around the idea of linearization (Jacobson,
1968; Mayne, 1966). More precisely, DDP solves a discrete-time op-
timal control problem with an additive cost function like the one in
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(19a). Although DDP falls outside the scope of this survey paper, we
will mention that it has major successful applications in space vehicle
trajectory optimization and provides an interesting variation of the
linearize-and-solve framework of Fig. 5. DDP is particularly popular
for low-thrust orbit transfer trajectory optimization. For example, the
NASA Mystic software used DDP for low-thrust trajectory optimization
of the Dawn Discovery mission to the Vesta and Ceres protoplanets
of the asteroid belt (Whiffen, 2006; Whiffen & Sims, 2001). Other
appearances of DDP include multi-revolution and multi-target orbit
transfer (Lantoine & Russell, 2012a, 2012b), Earth to Moon transfer
with an exclusion zone (Pellegrini & Russell, 2020a, 2020b), and low-
thrust flyby trajectory planning to near-Earth objects (Colombo, Vasile,
& Radice, 2009).

A disadvantage of the original DDP algorithm is that it is an un-
constrained optimization method. This means that while SCP naturally
handles state and input constraints like (36¢), implementing such con-
straints is still an active research area for DDP. Most attempts to
incorporate constraints make use of penalty, barrier, augmented La-
grangian, and active set methods (Tassa, Mansard, & Todorov, 2014;
Xie, Liu, & Hauser, 2017). Most recently, extensions of DDP were
proposed to handle general nonconvex state and input constraints
using a primal-dual interior point method (Aoyama, Boutselis, Patel,
& Theodorou, 2020; Pavlov, Shames, & Manzie, 2020).

Another disadvantage of DDP is that it is a second-order method.
Like SQP, this makes DDP more computationally expensive than SCP
which only requires first-order information. Nevertheless, there is nu-
merical evidence that DDP is faster than SQP (Lantoine & Russell,
2012b). Furthermore, related algorithms have been developed that
only use first-order information, such as the iterative linear quadratic
regulator (iLQR). The ALTRO software is a popular modern trajectory
optimization toolbox based on the iLQR and augmented Lagrangian
methods (Howell, Jackson, & Manchester, 2019).

2.5. Mixed-integer programming

Mixed-integer programming (MIP) solves problems where some de-
cision variables are binary. Consider a concrete example in the context
of Problem (4). Without loss of generality, suppose that the control
input is partitioned into continuous and binary variables:

_v®
un = [ca)

Binary variables naturally encode discrete events such as the open-
ing of valves and relays, the pulsing of space thrusters, and mission
phase transitions (Bemporad & Morari, 1999; Sun, Dai, & Lu, 2019).
Furthermore, binary variables can help to approximate nonlinear grav-
ity, aerodynamic drag, and other salient features of a space vehicle
trajectory optimization problem (Blackmore, Acikmese, & Carson III,
2012; Marcucci & Tedrake, 2019).

To formally discuss how MIP might be relevant for a spacecraft
trajectory optimization problem like Problem (4), consider the space
vehicle to be an autonomously switched hybrid system (Saranathan &
Grant, 2018). In particular, suppose that the vehicle dynamics (4b)
and its constraints (4c) are continuous except for the following extra
“if-then” condition:

e R™, v(t) e R"™7"¢, ¢@) e I's. (44)

q(z) <0 = ¢(z)=0, (45)

where z € R": is some mixture of inputs, states, and time. In this
formulation, the constraint function ¢ : R": — R" is activated if the
trigger function q : R"= — R" maps to the negative orthant RZ%. The
conditional statement (45) can be formulated as the following set of
mixed-integer constraints:

(46a)
(46b)

“GM <q(z)<(1-HM, i=1,..

~(1=0©)M1 < ¢(z) < (1 - 6(Q)) ML,

sHes
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0 2 {zeR"™ :q(z) <0}
C2{zeR" :c(z)=0}

Z 2 {zeR" : z feasible w.r.t.
all other constraints}
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Zn(Quc)Xu(@nc)

z

Fig. 6. A Venn diagram of the sets of solution variables z € R" that satisfy the
trigger condition O, constraint condition C, and all other constraints Z. STCs ensure
that feasible solutions satisfy z ¢ O n C¢ (illustrated by the red set). The feasible set
with an STC is shaded green, and the feasible set with the bidirectional constraint (47)
is shaded in yellow. The sets with bold outlines are padded to help visual separation
only. (For interpretation of the references to color in this figure caption, the reader is
referred to the web version of this article.)

g
o =[]¢ (46¢)

i=1
where M € R is a sufficiently large positive number. The function
o : I" — T is called the activation function, and it imposes the if-
then logic of (45) through (46a)-(46b). When the binary variable ¢;
equals one, the ith trigger is activated. Thus, when ¢({) = 1, the left-
hand side of (45) holds. In fact, g(z) = 0 is also possible, but this case
is irrelevant since an optimal solution will not activate the constraint
function unnecessarily.

Mixed-integer programming can be used to solve Problem (4) in
the presence of the constraints (46). Traditional MIP solvers are based
on the branch-and-bound method (Cook, Cunningham, Pulleyblank, &
Schrijver, 1998; Nemhauser & Wolsey, 1999). At their core is a divide-
and-conquer logic that often, though not always, speeds up the solution
process by eliminating large numbers of possible { combinations. Mod-
ern MIP solvers also improve runtime through methods like pre-solving
(which reduces nC), cutting planes (which introduce new constraints to
tighten the feasible space), heuristics, parallelism, branching variable
selection, symmetry detection, and so on (Achterberg, 2007; Achterberg
& Wunderling, 2013). In the worst case, however, MIP runtime remains
exponential in n,. This is a large hindrance to onboard implementation,
since space vehicle hardware is often not able to support the large
MIP computational demand (Malyuta & Acikmese, 2020a; Malyuta &
Acikmese, 2020b; Malyuta, Reynolds, Szmuk, Acikmese, & Mesbahi,
2020).

As usual in optimization, one can trade the global optimality of MIP
for solution speed by accepting local optimality or by approximating
the precise statement (45) with a more efficient formulation. In the
following subsections, we will introduce two popular approaches that
have recently emerged in both direct and indirect solution methods for
solving MIP problems without introducing integer variables.

2.5.1. State-triggered constraints

State-triggered constraints (STCs) take the direct solution approach,
and are under active study using the SCP framework from
Section 2.4 (Malyuta et al., 2020; Szmuk et al., 2018). Roughly speak-
ing, STCs embed the discrete if-then logic from (45) into a continuous
direct formulation with minimal penalty to the solution time (Reynolds
et al., 2019b). In its most basic form, an STC models (45) for the scalar
case n, = 1 and n, 1. While there are several useful theoretical
connections between STCs and the linear complementarity problem
(LCP) (Cottle, Pang, & Stone, 2009), STCs encode a much larger feasible
space than LCP constraints (Szmuk et al., 2018). Namely, STCs only
encode forward implications, and they are not bidirectional statements
of the following form:

q(z) <0 & c(z)=0. 47
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(a) The RASHS sigmoid (53a).

(b) The CSC sigmoid (53b).

Fig. 7. Comparison of the RASHS and CSC sigmoids, as defined in (53). A sweep is
shown from homotopy parameter x = 1 (lighter colors) to x = 100 (darker colors). The
blue dashed curve shows the alternative sigmoid for x = 1 (i.e., CSC for (a) and RASHS
for (b)). As k increases, the sigmoid quickly converges to an accurate approximation
of the binary activation function in (46c). While the nature of both sigmoids is similar,
for a given « the CSC sigmoid is more localized around the y-axis, and hence is a
closer approximation of a step signal. (For interpretation of the references to color in
this figure caption, the reader is referred to the web version of this article.)

Fig. 6 illustrates the distinction between (45) and (47). The green set
denotes the feasible set with the STC, while the yellow set denotes the
feasible set of the more restrictive constraint (47). Clearly, the feasible
space is larger when using the STC, and this can translate into a more
optimal solution.

Continuing our discussion for the scalar case, it can be shown
that (45) is equivalent to either one of the following two continuous
constraints:

(48a)
(48b)

qz)+06>0,062>0, 6-¢(z)=0, or
—min(0, ¢(2)) - ¢(z) = 0,

where ¢ € R is a slack variable that plays the role of the activation
function from (46c¢). Although both constraints in (48) are nonconvex,
they are readily ingested by the SCP linearization process described in
Section 2.4.

A notable feature of STCs is that they readily extend to the multi-
variable case of (45), and have been shown to handle both AND and OR
combinations of triggers and constraints (Szmuk, Malyuta, Reynolds,
Mceowen and Acikmese, 2019; Szmuk, Reynolds et al., 2019):

ne ne

Na@<0 = Ac@=0 (492)
i=1 i=1

ne ne

\Va@<0 = Ac@=0 (49b)
i=1 i=1

ne ne

Na@<0 = \/c@ =0 (490)
i=1 i=1

ne ne

Va@<0 = \/q@=0. (49d)
i=1

i=1

In the general context of optimization, STCs do for trajectory
optimization what the S-procedure from linear matrix inequalities
(LMIs) does for stability analysis and controller synthesis (Boyd et al.,
1994), and what sum-of-squares (SOS) programming does to impose
polynomial non-negativity over basic semialgebraic sets (Majumdar
& Tedrake, 2017). That is, STCs embed an otherwise difficult logic
constraint into a tractable continuous formulation. In particular, note

that the scalar version of (45) can be written as:
c(z)=0 Vzs.t g(z)<O0. (50)

On the other hand, the S-procedure and SOS programming consider

the following constraints, respectively:
fo@ =0 Vzst fi(z)20, i=1,.. (51a)

(51b)

. Ds
p(z) 20 Vzs.t py(z) =0, pipeq(2) 20,
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where f;, i =0, ..., p, are quadratic functions, while p, Pegs and Dineq aT€
polynomials. Comparing (50) with (51) makes the connection to STCs
clear.

2.5.2. Homotopy methods

Homotopy methods, also known as numerical continuation schemes,
were previously introduced in Section 2.1.1 in the context of solving
standard optimal control problems. It turns out that homotopy can
also be used to encode (45) in a continuous framework, and has been
successfully embedded into recent indirect trajectory optimization algo-
rithms. In this section, we briefly introduce the relaxed autonomously
switched hybrid system (RASHS) and composite smooth control (CSC)
methods (Saranathan & Grant, 2018; Arya, Taheri, & Junkins, 2020;
Taheri, Junkins, Kolmanovsky, & Girard, 2020a).

To begin, let ¢ denote the activation function from (46c¢). Using the
third equation from (48a), we note that (45) is exactly equivalent to

the following constraint:
o(§e(z) = 0. (52)

At the core of the RASHS and CSC methods is an approximation of
the binary function ¢ by a continuous sigmoid function 6 : R — [0, 1]:

K9
RASHS: () = [ (1 + )", (53a)
i=1
ﬂg 1
csc: a9 =] 5 (1 - tanh(xg))), (53b)

i=1
where the latter equation uses the theory of hyperbolic tangent smooth-
ing (Taheri & Junkins, 2018). The homotopy parameter xk € [0, o)
regulates the accuracy of the approximation, with increasing accuracy
as k grows, such that lim__, 6(q) = o({). Fig. 7 illustrates how both
sigmoid functions evolve as k increases. The core idea of RASHS and
CSC is to begin with a small k¥ where the optimal control problem is
continuous and ‘“easy” to solve, and to judiciously increase x to such
a large value that the solution becomes indistinguishable from its MIP
counterpart.

It is worth noting the specific instances of (45) considered by RASHS
and CSC. The former method was developed to compute time- or
state-triggered multiphase trajectories, where vehicle dynamics change
across phases (e.g., stage separation during rocket ascent) (Saranathan
& Grant, 2018). Such a system is also known as a differential automa-
ton (Tavernini, 1987). In this case, we can have m constraints of the
form (45), where the kth constraint is:

g 0 <0 = x() - fAx@),u),n =0, 54

and ¢ : R - ]R"g indicates the time interval where the kth dynamics
apply. Assuming that the time intervals do not overlap, we can sum
the smoothed versions of (54) to obtain a single continuous system
dynamics constraint:

x(1) = [Z &(q"(n)]‘1 > &(q“ ) frin.
k=1 k=1

Note that the new dynamics (55) are a convex combination of the
individual dynamics over the m time intervals. As « is increased, the
approximation becomes more accurate, and the correct f* functions
begin to dominate their respective intervals. Moreover, using (55)
instead of (54) has the algorithmic advantage of replacing a multi-point
BVP with a TPBVP.

The CSC method, on the other hand, considers systems with fixed
dynamics but multiple control inputs or constraints (Taheri et al.,
2020a). In both cases, the overall control input can be expressed as
a function of m “building block” inputs u*, such that:

(55)

4 x@®),u®),n) <0 = u®) =uk@), (56)
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Reference

Optimization
infusion (Inner loops)

Fig. 8. A typical control architecture consists of nested layers of feedforward (FF) and
feedback (FB) elements. The execution frequency increases going from the outermost
to the innermost layers. In particular, elements in the FB path (highlighted in red)
have stricter execution time requirements than FF elements. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of
this article.)

where g @ R x R xR — R"g are mutually exclusive indicators
of when the kth building block input applies. Like for RASHS, the
following equation provides a smooth approximation of the control,
from which CSC derives its name:

u(n = [Z 6(q"m)]“ > (g 1)t o).
k=1 k=1

Clearly, RASHS, CSC, and STCs are all approaching the same prob-
lem of efficiently handling (45) from subtly different angles. It is worth
noting that for the moment, both RASHS and CSC can only handle
the AND combination (49a) of trigger and constraint functions. Most
recently, (Malyuta & Acikmese, 2021) showed that a similar homotopy
framework can handle OR combinations of trigger functions. This opens
up an interesting research avenue to develop a unifying homotopy
method that handles all the logical combinations in (49).

(57)

2.6. Model predictive control

The preceding sections focused on solving one instance of Prob-
lem (4). We now place ourselves in the context of a control system
whose architecture is illustrated in Fig. 8. Two important algorithm
categories that are part of a control system are so-called feedforward
and feedback (Lurie & Enright, 2000), and optimization-based methods
can potentially be applied to both. In the feedback path, the current
state estimate of the system is used to continually update the control
signal, which means that Problem (4) must be re-solved many times.
This is the core idea of model predictive control (MPC).

In its most basic form, an MPC formulation of Problem (36) can be
expressed as follows:

u*l‘ = argmin x]TVQfo + Nzl xZka + uZRuk s.t. (58a)
Uiy =
Xy = Agxp + Boug +d, Vek=1,...,N -1, (58b)
g t) <0, Yk=1,...,N—1, (58¢)
x; =%, b(xy)=0. (58d)

Fig. 9 illustrates how Problem (58) can be used to control a dy-
namical system. Note that Problem (58) is a parametric optimization
problem because it depends on the current state estimate ¥ € R"x.
The first optimal control input u”l‘ for Problem (58) becomes u(t) in
Fig. 8. The weight matrices O > 0 and R > 0 in the running cost
and the terminal weight matrix O, > 0 are chosen to get a desired
response. Together with the terminal constraint (58d), these choices
must ensure stability and recursive feasibility in closed-loop operation
(i.e., the problem must be feasible the next time that it is solved).

The main advantage of MPC is that it is arguably the most natu-
ral methodology for handling system constraints in a feedback con-
troller (Mayne et al., 2000). However, because MPC operates in a
feedback loop, stability and performance are both critical and strongly
dependent on uncertainty robustness and execution frequency (Lurie
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Disturbance

Control input
uj over
telty,te)
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& at time #1

Reference (e.g. 0)

Fig. 9. Block diagram illustration of an MPC controller. At each time step 7,, MPC
computes the optimal control input u; by using a mathematical model of the system
and solving Problem (58), which is a receding horizon optimal control problem. Note
the three states drawn in the diagram: the actual state %, the estimated state %, and
the internally propagated MPC state x. Each state may be slightly different due to
estimation error, model uncertainty, and disturbances.

& Enright, 2000; Skogestad & Postlethwaite, 2005). Troves of infor-
mation have been compiled on the subject, which remains an ac-
tive research area. Numerous surveys on MPC cover general and fu-
ture methods (Mayne, 2014), robustness (Bemporad & Morari, 2007;
Garcia, Prett, & Morari, 1989; Mayne, 2015), computational require-
ments (Alessio & Bemporad, 2009), and industrial applications (Di
Cairano & Kolmanovsky, 2018; Eren et al., 2017; Mao, Dueri et al.,
2018; Qin & Badgwell, 2003). For space vehicle applications in par-
ticular, where onboard computation is limited, we single out so-called
explicit MPC (Bemporad, Morari, Dua, & Pistikopoulos, 2002; Borrelli,
Bemporad, & Morari, 2017; Rawlings, Mayne, & Diehl, 2017). The con-
cept is to pre-compute a lookup table for the solution of Problem (58).
This turns out to be possible to do exactly when the MPC problem is a
QP, and approximately in more general cases up to MICP (Malyuta &
Acikmese, 2020a). When onboard storage and problem dimensionality
permit, explicit MPC yields a much faster and computationally cheaper
algorithm in which onboard optimization is replaced by a static lookup
table.

3. Applications

This section describes the application of optimization methods from
the previous section to state-of-the-art space vehicle control problems.
The following subsections cover the following key areas of spaceflight.
Section 3.1 discusses rocket powered descent for planetary landing. Sec-
tion 3.2 covers spacecraft rendezvous and Section 3.3 covers a closely
related problem of small body landing. Section 3.4 talks about atti-
tude reorientation. Endo-atmospheric ascent and entry are surveyed in
Section 3.5. Last but not least, orbit transfer is discussed in Section 3.6.

3.1. Powered descent guidance for rocket landing

Powered descent guidance (PDG) is the terminal phase of EDL
spanning the last few kilometers of altitude. The goal is for a lander
to achieve a soft and precise touchdown on a planet’s surface by
using its rocket engine(s). PDG technology is fundamental for reduc-
ing cost and enabling access to hazardous yet scientifically rich sites
(Braun & Manning, 2006; Carson III et al., 2019; Europa Study Team,
2012; Jones, 2018; NASA Science, 2019; Robertson, 2017; Robinson,
2018; Starek, Acikmese, Nesnas, & Pavone, 2015; Steinfeldt, Grant,
Matz, Braun, & Barton, 2010). The modern consensus is that iteration-
based algorithms within the CGC paradigm, rather than closed-form
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solutions, are required for future landers (Carson III et al., 2019; Lu,
2017). The survey of applications in this section demonstrates that
optimization offers a compelling iteration-based solution method due
to the availability of real-time algorithms that can enforce relevant PDG
constraints.

To place state-of-the-art PDG into context, let us briefly mention
some key heritage methods. Closed-form algorithms are known as
explicit guidance, which is characterized by directly considering the
targeting condition each time the guidance command is generated (Lu,
2020). Early algorithms sought closed-form solutions to versions of the
following OCP:

t
min / ! a(®) a(t)dr s.t. (59a)
t/,a 0
F(t) = g+ a), (59b)
r(0) =ry, 10)=rFy, r0) =r;, #0)=7#/. (59¢)

Here, r(t) € R? denotes position, a(f) € R? is the acceleration control
input, g € R? is the gravitational acceleration vector and ¢ 7 is the flight
duration. Position and velocity boundary values are fixed. The optimal
solution to Problem (59) is known as the E-Guidance (EG) law (Cherry,
1964; D’Souza, 1997):

a(t) = 6150 ZEM (1) = 2ty ZEV (1), (60)
where t,, £ 1, — 1t is the time-to-go and:

A : 2
ZEM®)2r, - (r(t) + 1go(D) + O.Stgog) , (61a)
ZEV () £ #p — () +1408) » (61b)

are the zero-effort-miss and zero-effort-velocity terms (Furfaro, Selnick,
Cupples, & Cribb, 2011; Song et al., 2020). Nominally, (60) results in an
affine acceleration profile. If instead one allows the acceleration profile
to be quadratic, an additional DoF appears, which is fixed by setting the
terminal acceleration a(t;) = a,. This results in the Apollo guidance
(APG) law, which flew on the historic Lunar missions (Klumpp, 1974):

-2 -
a(t) = 12th ZEM(t) - 6th ZEV(t)+ay. (62)

The concept of an acceleration profile behind EG and APG has
since been extended and generalized, resulting in a polynomial guidance
family of algorithms. Zhang, Guo, Ma, & Zeng (2017) augment the
cost (59a) with a surface collision-avoidance term. Guo, Hawkins, &
Wie (2013) formulate a QP to solve for an intermediate waypoint
that augments collision-avoidance capabilities and enforces actuator
saturation for thrust- and power-limited engines. Lu (2019) develops a
general theory for polynomial guidance laws that contains EG and APG
as special cases. For one of the best modern explanations of polynomial
guidance methods, the reader should consult (Lu, 2020). Unfortunately,
closed-form polynomial guidance is unable to handle many operational
constraints (Lu, 2018) and is not fuel optimal since the cost (59a) rather
penalizes control power.

To overcome these limitations, research has long sought to charac-
terize and eventually solve the more general fuel-optimal PDG problem.
The first milestone towards fuel-optimal PDG was a closed-form single-
DoF vertical descent solution (Meditch, 1964), illustrated in Fig. 12a.
Evidence suggests that Apollo landings came close to this optimum
(Klumpp, 1974; Mindell, 2008). The maximum principle (Pontryagin
et al., 1986) played a key role back then and continues to do so in the
present day.

Seeking to generalize the single-DoF result, Lawden formulated
the necessary conditions of optimality for 3-DoF PDG (Lawden, 1963;
Marec, 1979). However, solving the necessary conditions requires
shooting methods, which are typically too computationally expensive
and sensitive to the initial guess to allow efficient onboard implemen-
tation (Betts, 1998). More recently, (Topcu, Casoliva, & Mease, 2005,
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Fig. 10. Illustration of the basic powered descent guidance solved by Problem (63)
via lossless convexification. The goal is to safely bring the rocket lander to standstill
on the landing pad while satisfying the thrust magnitude constraints and maintaining
a minimum glideslope.

2007) extended the results from (Lawden, 1963) to the case of angular
velocity control, and compared the solution quality of fuel-optimal 3-
DoF PDG to the necessary conditions of optimality. However, the aim
of the work was not real-time onboard implementation, so nonlinear
programming (SQP) was used via the GESOP solver.

After decades of research into problem characterization, a watershed
moment for problem solution came in the mid 2000s with the pa-
pers (Acikmese & Ploen, 2005, 2007). The authors solved the following
3-DoF PDG problem, illustrated in Fig. 10, via the process of lossless
convexification described in Section 2.3:

%1 /0 v T, dr s.t. (63a)
()= g+ TOm®™", (63b)
ORI AGIPR (63c)
Pmin S I TOll2 £ Pmaxs (63d)
(e, > [Ir()ll, cos(yy), (63e)
m(0) = mg, r(0) =rg, FH0)="Fy, r(t;) =0, it;)=0. (63)

Unlike the classical Problem (59), Problem (63) readily handles sev-
eral important operational constraints, including thrust bounds (63d)
and glide slope (63e). Through numerical simulations for a prototype
Mars lander, Acitkmese & Ploen (2007) confirmed that the optimal
thrust has a max-min-max profile as shown in Fig. 11. This profile was
proven to be optimal for 3-DoF PDG in Lawden (1963) and Topcu et al.
(2007).

Over the course of the next decade, the method was expanded to
handle fairly general nonconvex input sets (Acikmese & Blackmore,
2011), minimum-error landing and thrust pointing constraints (Acik-
mese, Carson III and Blackmore, 2013; Blackmore et al., 2010; Carson
I1I, Actkmese and Blackmore, 2011), classes of affine and quadratic
state constraints (Harris & Acikmese, 2013a, 2013b, 2013c, 2014),
classes of nonlinear (mixed-integer) dynamics (Blackmore et al., 2012),
certain binary input constraints (Harris, 2021; Malyuta & Acikmese,
2020Db), fixed time-of-flight problems (Kunhippurayil, Harris, & Jans-
son, 2021), and conservative conic obstacles (Bai, Guo, & Zheng, 2019).

The maturity of a method can be gauged by the availability of a
precise statement of its limits, similar to the role played by the Bode
integral in frequency-domain control (Lurie & Enright, 2000; Skogestad
& Postlethwaite, 2005). Such a characterization appeared for lossless
convexification in the form of constrained reachable or controllable
sets (Dueri, 2018; Dueri, Rakovié, & Acikmese, 2016; Eren, Dueri and
Acikmese, 2015) or “access” conditions (Song et al., 2020). These sets,
obtained numerically and with arbitrarily high precision, define the
boundary conditions for which versions of Problem (63) are feasible.
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Fig. 11. Optimal thrust profiles for several powered descent guidance formulations.
(a) Corresponds to the classical single-DoF result by Meditch (1964); (b) corresponds
to 3-DoF translation-only landing from Acikmese & Ploen (2007) and Lawden (1963);
(c) corresponds to planar landing with rotation from Reynolds & Mesbahi (2020b). The
thrust profile for general 6-DoF PDG with translation and rotation is an open problem.
In particular, there is no theory to guarantee that it should be bang-bang, thus (d)
shows a profile with no clear structure. (For interpretation of the references to color
in this figure caption, the reader is referred to the web version of this article.)

The practicality of lossless convexification-based PDG methods was
demonstrated through a series of flight tests conducted by the NASA Jet
Propulsion Laboratory, Masten Space Systems, and university partners.
In a 3-year 7-flight test campaign, the Masten Xombie sounding rocket
demonstrated that robust onboard real-time optimization is feasible
on spaceflight processors (Acitkmese et al.,, 2013; JPL and Masten
Space Systems, 2012a, 2012b; Scharf et al., 2017, 2014). A number
of publications accompanied this flight test campaign, including a
comparison of lossless convexification to polynomial guidance (Ploen,
Acikmese, & Wolf, 2006), onboard computation time reduction via
time-of-flight interpolation (Scharf, Ploen, & Acikmese, 2015), and
complete off-line lookup table generation (Ac¢ikmese et al., 2008). The
resulting algorithm, G-FOLD (Acikmese, Blackmore and Scharf, 2013;
Acikmese, Casoliva, Carson III, & Blackmore, 2012), solves a tailored
version of Problem (63) using a custom C-language SOCP solver called
Bsocp (Dueri et al., 2014). G-FOLD is able to compute rocket landing
trajectories in 100 ms on a 1.4 GHz Intel Pentium M processor. Further
evidence of real-time performance was presented by Dueri et al. (2017),
where Bsocp ran on a radiation-hardened BAE RAD750 PowerPC.

Despite the significant flight envelope expansion afforded by loss-
less convexification (Carson III, Acikmese, Blackmore and Wolf, 2011;
Ploen et al., 2006; Wolf, Casoliva, Manrique, Acikmese, & Ploen, 2012),
an inherent limitation of 3-DoF PDG is that the computed trajectory
cannot incorporate attitude constraints other than those on the thrust
vector, which serves as an attitude proxy. An extensive simulation cam-
paign is required to validate the 3-DoF trajectory to be executable by
a fundamentally 6-DoF lander system (Carson III et al., 2019; Kamath,
Assadian, & Robinson, 2020). Thus, recent PDG research has sought
6-DoF formulations that are able to incorporate attitude dynamics and
constraints.

The SCP family of methods, discussed in Section 2.4, has emerged as
an effective approach to transition from a fully convex 3-DoF problem
to a 6-DoF problem with some nonconvexity. Some of the popular SCP
algorithms include SCvx (Mao, Szmuk et al., 2018), penalized trust
region (Reynolds, Malyuta, Mesbahi, Acikmese and Carson III, 2020),
and GuSTO (Bonalli et al., 2019, 2021). Some other algorithms based
around similar ideas have also emerged, such as ALTRO which is based
on iterative LQR (Howell et al., 2019).

A vast number of flavors of SCP exist, however, since it is a non-
linear optimization technique that works best when tailored to ex-
ploit problem structure. In certain cases, lossless convexification is
embedded to remove some nonlinearity. Liu (2019) convexifies an
angle-of-attack (AoA) constraint relating to an aerodynamic control
capability, Simplicio, Marcos, & Bennani (2019) solve a version of
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Fig. 12. Progression of PDG problem complexity. The red, green, and blue arrows
denote thrust, torque, and aerodynamic force respectively. The red region denotes the
feasible thrust set. (For interpretation of the references to color in this figure caption,
the reader is referred to the web version of this article.)

Problem (63) in a first step and pass the solution to a second step
involving SCP, while Li, Pang, Wei, Cui, & Liu (2020), Szmuk, Acik-
mese, & Berning (2016) and Wang, Cui, & Wei (2019a) use the classical
convexification result for the thrust magnitude constraint (38).

Since the mid 2010s, SCP technology enabled the expression of
quadratic aerodynamic drag and thrust slew-rate constraints (Szmuk
et al., 2016), attitude dynamics (Szmuk, Eren, & Acikmese, 2017),
variable time-of-flight (Szmuk & Acikmese, 2018), and an ellipsoidal
drag model that allows aerodynamic lift generation along with vari-
able ignition time (Szmuk et al., 2018). Several papers on SCP “best
practices” have also appeared, including thrust input modeling (Szmuk
et al.,, 2017), the effect of discretization on performance (Malyuta
et al., 2019), and using dual quaternions to alleviate nonconvexity in
the constraints by off-loading it into the dynamics (Reynolds et al.,
2019a). Practical details on real-time implementation are also avail-
able (Reynolds, Malyuta, Mesbahi, Acikmese and Carson III, 2020),
where the SCP solution is compared to the globally optimal trajectory
for a planar landing problem (Reynolds & Mesbahi, 2020b). Most
recently, a comprehensive tutorial paper with open-source code was
published, and describes the algorithmic and practical aspects of SCP
methods and of lossless convexification (Malyuta et al., 2021).

Fig. 12 summarizes the dominant directions of PDG development
since 2005. Starting from the classical vertical-descent result by Med-
itch (1964), Fig. 12a, the early breakthrough for practical onboard PDG
solution was achieved in 2007 by Acikmese & Ploen (2007), Fig. 12b.
Since then, 3-DoF PDG methods have been extended and flight tested,
Fig. 12c. In particular, more complicated effects such as aerodynamic
drag force were added by these extensions, which are listed in the
preceding paragraph. Perhaps the biggest modern shift in PDG tech-
nology development has been to consider attitude dynamics, which is
motivated by the inability to impose non-trivial attitude constraints in
a 3-DoF formulation (Carson III et al., 2019). This has led to a family
of so-called 6-DoF PDG algorithms, Fig. 12d, that often rely on SCP
methods. To compare how close SCP comes to the global optimum,
recent work found optimal solutions for “planar” PDG (Reynolds &
Mesbahi, 2020b), Fig. 12e. This work restricts the landing trajectory to
a 2D plane, but does include attitude dynamics. Therefore it represents
both a generalization of Fig. 12b and a restriction of Fig. 12d, and
provides new insight into the 6-DoF PDG optimal solution structure.
Today, PDG research evolves along the following broad directions:
guaranteeing real-time performance, convergence, and solution quality,
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handling binary constraints, and incorporating uncertainty as shown in
Fig. 12f.

One exciting development for SCP in recent years has been the
advent of state-triggered constraints, introduced in Section 2.5.1. This
allows real-time capable embedding of if-then logic into the guidance
problem. To demonstrate the capability, Szmuk et al. (2018) imposed
a velocity-triggered AoA constraint, Reynolds et al. (2019a) imposed
a distance-triggered line-of-sight constraint, Szmuk, Reynolds et al.
(2019) imposed a collision-avoidance constraint, and Reynolds et al.
(2019b) imposed a slant-range-triggered line-of-sight constraint. In
particular, the latter two works develop a theory of compound STCs
that apply Boolean logic to combine multiple trigger and constraint
functions, as shown in (49). The impact of STCs on the ability to
compute solutions in real-time is discussed in Szmuk et al. (2018) and
Reynolds et al. (2019b).

Simultaneously with the development of SCP for PDG, the pseu-
dospectral discretization community has produced a rich body of work
investigating the solution quality benefits of that method. Building
on foundational early work (Fahroo & Ross, 2002; Garg et al., 2010;
Kelly, 2017; Rao, 2010), it was demonstrated for a variant of Problem
(63) that pseudospectral methods yield greater solution accuracy with
fewer temporal nodes (Sagliano, 2018b). However, as discussed in Sec-
tion 2.2.4, pseudospectral methods traditionally yield slower solution
times because they generate non-sparse matrices for the discretized
equations of motion (Malyuta et al., 2019). By using an hp-adaptive
scheme inspired by the finite element method (Darby et al., 2010), it
was shown that this can be somewhat circumvented (Sagliano, 2018a,
2019). Furthermore, it was shown that pseudospectral discretization
within an SCP framework yields solutions up to 20 times faster than
using sequential quadratic programming (Wang & Cui, 2018).

As deterministic PDG algorithms mature, research is becoming in-
creasingly interested in making the trajectory planning problem robust
to various sources of uncertainty. One approach is to design a feedback
controller to correct for deviations from the nominal trajectory, such
that the overall control input is given by:

u(n) = a(t) + K()(x(1) — x(1)), (64)

where x(¢) and a(r) are the nominal state and control respectively,
and K(t) € R%* is a feedback gain matrix. In Ganet-Schoeller &
Brunel (2019) and Scharf et al. (2017), the feedback controller is de-
signed separately from the nominal trajectory. However, incorporating
feedback law synthesis into the nominal trajectory generation problem
can achieve more optimal solutions (Garcia-Sanz, 2019). This “simul-
taneous” feedback—feedforward design was done via multi-disciplinary
optimization in Jiang, Li, & Tao (2018), desensitized optimal control
in Shen, Seywald, & Powell (2010) and Seywald & Seywald (2019),
chance-constrained optimization in Ono, Pavone, Kuwata, & Balaram
(2015), and covariance steering in Ridderhof & Tsiotras (2018, 2019).
Other work in this domain includes open-loop robust trajectory de-
sign via Chebyshev interval inclusion (Cheng, Wen and Jin, 2019),
and a posteriori statistical analysis through linear covariance propa-
gation (Woffinden, Robinson, Williams, & Putnam, 2019) and Monte
Carlo simulation (Scharf et al., 2017).

PDG methods based on lossless convexification and SCP are in most
cases implicit guidance methods. In this setup, the targeting condition
(e.g., soft touchdown on the landing pad) is met by tracking a reference
trajectory that yields the correct terminal state. Functionally, PDG
methods are most often situated in the FF block of Fig. 8, and they
generate a complete trajectory upfront that is tracked by a feedback
controller. From a systems engineering perspective, this has a clear
advantage of allowing heritage control methods to perform the intricate
and critical control of the actual vehicle. However, it was mentioned at
the start of this section and in Section 2.6 that continually re-solving
for the PDG trajectory can offer additional robustness. In contrast
to traditional polynomial guidance, some modern approaches aim to
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leverage this robustness and also satisfy system constraints via model
predictive control.

Cui, Gao, & Cui (2012) show how to leverage MPC for landing with
an uncertain state and variable gravitational field, while Wang et al.
(2019a) show how to ensure recursive feasibility and a bounded guid-
ance error by executing a nominal and relaxed optimization problem
in parallel. In both methods, the full trajectory optimization problem is
solved from the current state to the final landing location, thus the MPC
horizon “shrinks” throughout the PDG maneuver. A more traditional
approach is taken by Lee & Mesbahi (2017), where the prediction
horizon extends for a finite duration beyond the current state. The
authors also show that difficult constraints on sensor line-of-sight and
spacecraft attitude are convex using a dual quaternion representation.
Numerical performance of MPC for PDG on an embedded ARM platform
was documented in Pascucci, Bennani, & Bemporad (2015).

3.2. Rendezvous and proximity operations

Let us now switch contexts from the final stages of planetary landing
to the realm of orbital spaceflight. A key task for a spacecraft in orbit is
to perform rendezvous and proximity operations (RPO). The goal is to
bring an actively controlled chaser vehicle and a passively controlled
target vehicle to a prescribed relative configuration, in order to achieve
mission objectives such as inspection or docking. A detailed overview
of RPO history and technology development can be found in Fehse
(2003), Goodman (2006), Luo, Zhang, & Tang (2014) and Woffinden &
Geller (2007). This section focuses on the challenges and developments
in RPO using convex optimization-based solution methods.

Throughout this section we consider the following RPO trajectory
optimization problem, illustrated in Fig. 13:

1?? /0 v IT®)]l, df s.t. (65a)
(1) = —ullr®ly’ r@) + T@Om@® ™, (65b)
() = —a |[TO|, (65¢)
1Tl < p, (65d)
r(t) & B(), (65€)
Ir(2) = #()lly cos y < (r(t) = #0)) n(0), (650
m(0) = my, r(0) = ry, #0) = iy, (65g)
r(ty) =#ty). F(tp) =#t,), (65h)

where r(f), #t) € R? denote the positions of the chaser and target
spacecraft in the inertial frame. The basic objective in (65a) is to
minimize fuel consumption (Park, Kolmanovsky, & Sun, 2013). Other
choices include sparsification of the control sequence (Hartley, Gallieri,
& Maciejowski, 2013), trading off flight duration with fuel consump-
tion (Hu, Xie, & Liu, 2018), encouraging smoothness of the control
sequence (Li & Zhu, 2018a), and reducing the sensitivity to sensing and
control uncertainties (Jin, Geller, & Luo, 2020). We note that Problem
(65) only characterizes the last phase of RPO. The reader is referred to
Hartley, Trodden, Richards, & Maciejowski (2012) and Sun et al. (2019)
for examples of multi-phase RPO trajectory optimization.

Since the quantity of interest in RPO is the relative motion between
the chaser and the target, it is commonplace to express the dynamics
(65b) in a different reference frame. Examples include the local-vertical
local-horizontal (LVLH) frame centered at the target, or a line-of-sight
polar reference frame (Li & Zhu, 2017). Based on this choice, different
models of relative dynamics have been studied, and are surveyed in
Sullivan, Grimberg, & D’Amico (2017). For near-circular orbits, linear
time-invariant Hill-Clohessy-Wiltshire (HCW) equations are the most
popular model (Clohessy & Wiltshire, 1960). For elliptical orbits, the
linear time-varying Yamanaka—Ankerson (YA) state transition matrix
is the usual choice (Yamanaka & Ankersen, 2002). Perhaps a cleaner
approach is to avoid relative dynamics by working in the inertial frame,
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Fig. 13. Illustration of a basic rendezvous scenario. Roughly speaking, the goal is for
a chaser spacecraft to use the thrust T from its reaction control system to dock with
a target while avoiding debris and respecting constraints such as staying within the
approach cone.

as done in (65b). Lu & Liu (2013) and Liu & Lu (2014) showed that
fast and reliable trajectory optimization is still possible in this case, by
applying the same lossless convexification as in Problem (63) to the
constraints (65c) and (65d) and successively linearizing the dynamics
(65b). Benedikter, Zavoli, & Colasurdo (2019b) further proposed a
filtering technique for updating the linearization reference point to
improve the algorithm robustness. The advantage of this approach is
its compatibility with general Keplerian orbits and perturbations like
J, harmonic and aerodynamic drag.

One key challenge in RPO is to avoid collision with external debris
or part of the target vehicle itself, which is described by constraint
(65e). One approach to enforcing (65e) is to pre-compute a so-called
virtual net of trajectories that allows to avoid obstacles in real-time via
a simple graph search (Frey, Petersen, Leve, Kolmanovsky, & Girard,
2017; Weiss, Petersen, Baldwin, Erwin and Kolmanovsky, 2015). The
pre-computation procedure, however, may be prohibitively compu-
tationally demanding. In comparison, solving Problem (65) directly
can avoid virtual net construction altogether if an efficient solution
method is available. To this end, the keep-out zone 5(r) is usually
chosen to be a polytope, an ellipsoid, or the union of a mix of both
if multiple keep-out zones are considered (Hu et al., 2018). As shall be
seen below, polytope approximation methods yield better optimality,
while ellipsoidal methods yield better computational efficiency. The
distinction goes back to Sections 2.4 and 2.5, because polytope methods
often rely on MIP programming while ellipsoidal methods tend to use
SCP.

For the case where B(r) is a polytope, Schouwenaars, Richards,
Feron, & How (2001) and Richards, Schouwenaars, How, & Feron
(2002) first proposed to write (65¢) as a set of mixed-integer constraints
defined by the polytope facets. The resulting trajectory optimization
can be solved using MIP methods discussed in Section 2.5. Richards &
How (2003a, 2003b, 2006) apply this approach in the context of MPC
with a variable horizon trajectory.

For the case where B(r) is an ellipsoid, (65e) is typically enforced
by checking for collision using a conservative time-varying halfspace
inclusion constraint:

r(t) e H(t) = r(t) & B({), (66)

where H(?) is a halfspace. Three methods belonging to this family have
been used. The first is a rotating hyperplane method, proposed by Di
Cairano, Park, & Kolmanovsky (2012) and Park, Di Cairano, & Kol-
manovsky (2011). Here, (65e) is replaced by a pre-determined sequence
of halfspaces that are tangent to the ellipsoid and rotate around it at a
fixed rate. This approach was first applied to a 2D mission, and later
extended to 3D (Weiss, Baldwin, Erwin and Kolmanovsky, 2015; Weiss,
Kolmanovsky, Baldwin, & Erwin, 2012). A variation was introduced
in Park et al. (2016) and further studied in Zagaris et al. (2018), where
the rotating sequence is replaced by just two halfspaces tangent to
the obstacle and passing through the chaser and target positions. This
method requires pre-specifying which of the two halfspaces the chaser
belongs to at each time instant.
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Fixing the halfspace sequence enables the first two approaches
to retain convexity. However, a third and most natural approach is
to impose (66) directly by linearizing the ellipsoidal obstacle. This
approach is taken in Liu & Lu (2014), and has also been applied
to multiple moving obstacles (Jewison, Erwin, & Saenz-Otero, 2015;
Wang, Wang, & Zhang, 2018). Because convexity is not maintained,
SCP solution methods are used as discussed in Section 2.4. Zagaris et al.
(2018) provide a detailed comparison of the three methods.

Another challenge in RPO is the thrust constraint (65d). This con-
straint allows the thrust magnitude to take any value in the continuous
interval [0, p]. In reality, however, control is often realized by a reaction
control system (RCS) that produces short-duration pulses of constant
thrust. Therefore, in many applications it makes more sense to consider
an impulse constraint of the form:

Av(®) € {0} U [A0,50s AV, 67)

where Au(f) € R approximates the instantaneous change in the chaser’s
velocity following a firing from the RCS jets. Realistic RCS thrusters
have a minimum impulse-bit (MIB) performance metric that governs
the magnitude of the smallest possible velocity change Av;, > O.
Because (67) is a nonconvex disjoint constraint of the form (2), it has
been historically challenging to handle. Indeed, Larsson, Berge, Bodin,
& Jonsson (2006) suggest that MIP is necessary in general, but in
certain cases the LP relaxation Av(r) € [0, dv,,,] of (67) suffices. This
happens, for example, when the velocity measurement noise exceeds
the MIB value.

More recently, it was shown that the impulsive rendezvous prob-
lem can be solved via polynomial optimization (Arzelier, Kara-Zaitri,
Louembet, & Delibasi, 2011; Arzelier, Louembet, Rondepierre, & Kara-
Zaitri, 2013). Using results on non-negative polynomials, Deaconu,
Louembet, & Théron (2015) showed that impulsive rendezvous with
linear path constraints can be solved as an SDP. This formulation was
further embedded in a glideslope guidance framework for RPO (Ariba,
Arzelier, & Urbina-Iglesias, 2018) and in an MPC approach (Gilz,
Joldes, Louembet, & Camps, 2019). Distinct from polynomial optimiza-
tion, Malyuta & Acikmese (2020b) proved that in some special cases the
constraint (67) can be losslessly convexified using techniques similar
to those in Section 2.3. For problems where lossless convexification
is not possible, (Malyuta & Acikmese, 2021) showed that SCP with
a numerical continuation scheme is an effective solution method. Yet
another approach was presented in Wan, Dai, & Lu (2019), where an
alternating minimization algorithm was proposed for the case 4v,;, =
Av.¢, in other words when the control is bang-bang.

The impulsive rendezvous model (67) considers an instantaneous
firing duration. The model’s accuracy can be improved by explicitly
considering the finite firing duration, leading to a representation of the
actual pulse-width modulated (PWM) thrust signal. PWM rendezvous
was first studied in Vazquez, Gavilan, & Camacho (2011, 2014), where
an optimization similar to Problem (65) was first solved, then the opti-
mal continuous-valued thrust signal was discretized using a PWM filter
and iteratively improved using linearized dynamics. This approach was
later embedded in MPC (Vazquez, Gavilan, & Camacho, 2015, 2017).
A subtly different approach is presented in Li, Zhu, & Meguid (2016)
and Li & Zhu (2018b), called pulse-width pulse-frequency modulation
(PWPF). Instead of iteratively refining the thrust signal, PWPF passes
the continuous-valued thrust signal to a Schmitt trigger that converts
it into a PWM signal. It was shown that this can save fuel and that
stability is maintained. However, a potential implementation disadvan-
tage is that the duration of each period in the resulting PWM signal
varies continuously, which conflicts with typical hardware where this
period is an integer multiple of a fixed duration. An SCP approach was
recently used to account for this via state-triggered constraints from
Section 2.5.1 (Malyuta et al., 2020).

Although RPO literature tends to focus on the relative chaser-target
position using a 3-DoF model, relative attitude control also plays an
important role, especially if the target is tumbling (Dong, Luo, Dang,
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& Wei, 2020; Li, Yuan, Zhang, & Gao, 2017). Thanks to advances in
the speed and reliability of optimization solvers as mentioned in Sec-
tion 2.1, there has been an increasing interest to optimize 6-DoF RPO
trajectories with explicit consideration of position-attitude coupling
through constraints such as plume impingement and sensor pointing
(Ventura, Ciarcia, Romano, & Walter, 2017; Zhou, Zhang, & Li, 2019).
The resulting 6-DoF RPO trajectory optimization, however, is much
more challenging to solve due to the presence of attitude kinematics
and dynamics. Nevertheless, a special case with field of view and
glideslope constraints was presented in Lee & Mesbahi (2014), where
6-DoF RPO was solved as a convex quadratically constrained QP by
using a dual quaternion representation of the dynamics, effectively
establishing a convexification.

For more general RPO problems, nonlinear programming software
has been used frequently. For example, Ventura et al. (2017) used
SNOPT (Gill, Murray, & Saunders, 2005) after parameterizing the
desired trajectory using polynomials. A B-spline parametrization was
used in Sanchez, Gavilan, Vazquez, & Louembet (2020), and the re-
sulting nonlinear optimization was solved by the IPOPT software
(Wéchter & Biegler, 2005). MATLAB-based packages were also used
in Malladi, Di Cairano, & Weiss (2019), Volpe & Circi (2019). Recently,
SCP techniques discussed in Section 2.4 were applied to 6-DoF RPO
trajectory optimization. Zhou et al. (2019) considered both collision
avoidance and sensor pointing constraints. Malyuta et al. (2020) further
considered integer constraints on the PWM pulse width in order to
respect the RCS MIB value, and constraints on plume impingement,
by using state-triggered constraints. The algorithm was improved in
(Malyuta & Acikmese, 2021) by making the solution method faster and
more robust. The approach uses homotopy ideas from Section 2.5.2 to
blend the PTR sequential convex programming method with numerical
continuation into a single iterative solution process.

The operation of two spacecraft in close proximity naturally makes
RPO a safety-critical phase of any mission. Thus, trajectory optimiza-
tion that is robust to modeling errors, disturbances, and measurement
noise has been an active research topic. MPC has been a popular
approach in this context, as it allows efficiently re-solving Problem
(65) with online updated parameters using hardware with limited
resources (Goodyear et al., 2015; Hartley & Maciejowski, 2014; Park
et al.,, 2013). Hartley (2015) provides a tutorial and a detailed dis-
cussion. Among the many different approaches that have been devel-
oped to explicitly address robustness, we may count feedback correc-
tions (Baldwin, Erwin, & Kolmanovsky, 2013), the extended command
governor (Petersen, Jaunzemis, Baldwin, Holzinger, & Kolmanovsky,
2014), worst-case analysis (Louembet, Arzelier, & Deaconu, 2015; Xu,
Chen, Huang, Bai, & Chen, 2018), stochastic trajectory optimization
(Jewison & Miller, 2018), chance constrained MPC (Gavilan, Vazquez,
& Camacho, 2012; Zhu, Sun, Wang, Wang, & Shao, 2018), sampling-
based MPC (Mammarella et al., 2020), tube-based MPC (Dong et al.,
2020; Mammarella, Capello, Park, Guglieri, & Romano, 2018), and re-
active collision avoidance (Scharf, Acikmese, Ploen, & Hadaegh, 2006).
In addition to various uncertainties, anomalous system behavior such
as guidance system shutdowns, thruster failures, and loss of sensing,
also poses unique challenges in RPO. In order to ensure safety in the
presence of these anomalies, Luo, Tang and Lei (2007), Luo, Lei and
Tang (2007), and Luo, Tang, & Parks (2008) used a safety perfor-
mance index to discourage collision with the target, and Breger &
How (2008) considered both passive and active collision avoidance
constraints in online trajectory optimization. Zhang, Zhao, Zhang and Li
(2015) considered passive safety constraints together with field of view
and impulse constraints. Aside from optimization-based methods, arti-
ficial potential functions (Dong, Hu, & Akella, 2017; Li, Zhang, Yuan,
& Wang, 2018; Liu & Li, 2019) and sampling-based methods (Starek,
Schmerling, Maher, Barbee, & Pavone, 2017) have also been applied to
achieve safety in RPO.
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Fig. 14. Illustration of a basic small body landing scenario. The basic concept is to
use the thrust T to bring the lander spacecraft to a soft touchdown in the presence of
rotational and gravitational nonlinearities, and operational constraints on glideslope,
plume impingement, and collision avoidance.

3.3. Small body landing

A maneuver similar to RPO is that of small body landing, where the
target spacecraft is replaced by a small celestial object such as an aster-
oid or a comet. Trajectory optimization for small body landing has gath-
ered increasing levels of attention, spurred by recent high-profile as-
teroid exploration missions including Hayabusa (Kawaguchi, Fujiwara,
& Uesugi, 2008), Hayabusa2 (Crane, 2019), and OSIRIS-REx (Berry
et al.,, 2013; Lauretta et al., 2017). Unlike planetary rocket landing from
Section 3.1, small body landing dynamics are highly nonlinear due to
the irregular shape, density, and rotation of the small body (Scheeres,
Ostro, Hudson, DeJong, & Suzuki, 1998; Werner & Scheeres, 1997).
Landing must furthermore ensure a small touchdown velocity, possible
plume impingement requirements, and collision avoidance. These as-
pects pose unique challenges for trajectory optimization. This section
reviews recent developments in convex optimization-based small body
landing algorithms. Alternative trajectory optimization methods have
also been studied for this problem and which we do not cover, such
as indirect methods (Chen, Cai, Wang, Zhang, & Liang, 2019; Yang &
Baoyin, 2015).

The prototypical small body landing OCP is illustrated in Fig. 14
and can be summarized as follows:

mip /0 7Tl dr s, (682)
F(1) = =20 X F(t) — o X (@ X r(1)) + T(Om(®) ™" + g(r@1)), (68b)
m(n) = —a[[T@ll;, (68¢)
Pmin S N1TOIl2 £ Prnaxs (68d)
lr@®) —rsll, cosa < (r(t) - rf)Tn, (68e)
m(0) = mgy, r(0) =ry, H0) =iy, r(t;)=rs, it;)=0. (68f)

Note the similarity between Problems (63), (65), and (68). Com-
pared to Problem (63), small body landing is expressed in the rotating
frame of the target. Thus, the main difference is in the dynamics (68b)
that contain a general nonlinear gravity term g(r(s)) and inertial forces
from the non-negligible angular velocity @ of the small body. The
glideslope constraint (68e) is also shared with the approach cone in
RPO (65f).

Early work by Carson III & Acikmese (2006) and Carson III, Acik-
mese, Murray, & MacMynowski (2008) ignored the mass dynamics
(68c), while (68b) was linearized to solve for acceleration rather than
a thrust profile. The resulting tube MPC algorithm includes a pre-
determined feedback controller optimized using SDP and tracking a
feedforward trajectory from an SOCP in a robust and recursively fea-
sible manner. Some time later, Pinson & Lu (2015) solved for a fixed-
duration trajectory by applying lossless convexification to (68d) and
successive linearization to (68b), resulting in an SCP solution method
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Fig. 15. Illustration of a basic constrained reorientation scenario. The core challenge is
to execute an attitude change maneuver while ensuring that the star vector v remains
outside of the sensor keep-out cone.

consisting of a sequence of SOCP subproblems. Pinson & Lu (2018)
further combine this solution procedure with Brent’s line search method
to solve for the minimum-fuel flight duration, which is similar to the
use of golden-section search in the PDG context (Blackmore et al.,
2010). Cui, Liu, Yu, Zhu, & Shao (2017) combined convexification
with classic Runge-Kutta discretization to improve the solution accu-
racy. Yang, Bai, & Baoyin (2017) showed how to solve the minimum-
time landing problem as a sequence of convex optimization problems.
As a byproduct, they showed that for time-optimal and short-duration
minimum-landing-error versions of Problem (68), the thrust stays at
its maximum value, in which case the lower bound in (68d) can be
removed and (68c) simplified.

Constraint (68e) is the most basic type of collision avoidance con-
straint. The heuristic reasoning behind (68e) is that if the lander stays
above a minimum glideslope, then it will avoid nearby geologic haz-
ards. An alternative two-phase trajectory optimization was introduced
in Dunham, Petersen, & Kolmanovsky (2016) and Liao-McPherson,
Dunham, & Kolmanovsky (2016) by splitting the landing maneuver into
a circumnavigation and a landing phase. During circumnavigation, the
spacecraft is far away from the landing site and (68e) is replaced by
collision avoidance constraint with the small body. In the same manner
as Section 3.2, the small body is wrapped in an ellipsoid and a rotating
hyperplane constraint is used (Dunham et al., 2016; Liao-McPherson
et al., 2016; Sanchez, Gavilan, & Vazquez, 2018). Reynolds & Mesbahi
(2017) introduced an optimal separating hyperplane constraint that
also generates auxiliary setpoints for MPC tracking that converge to the
landing site. Once in close proximity to the landing site, the spacecraft
enters the landing phase where constraint (68e) is enforced to facilitate
pinpoint landing.

Most small body landing work is 3-DoF in the sense that it considers
point mass translational dynamics. However, recently Zhang, Huang,
& Cui (2020) studied a two-phase variable landing duration 6-DoF
problem. The motivation was to impose a field of view constraint
for a landing camera. The resulting nonconvex optimization trajectory
problem was solved using SCP as covered in Section 2.4.

Parameters of the small body, such as @ and g, are often subject to
inevitable uncertainty, requiring judicious trajectory design. As a result,
many aforementioned works use MPC to cope with the uncertainty
in small body landing (Reynolds & Mesbahi, 2017; Sanchez et al.,
2018). Application examples include tube MPC (Carson III & Ac¢ikmese,
2006; Carson III et al., 2008) and input observers to compensate for
gravity modeling errors (Dunham et al., 2016; Liao-McPherson et al.,
2016). Hu, Zhu, & Cui (2016) also proposed to jointly minimize fuel
and trajectory dispersion described by closed-loop linear covariance.
For a detailed discussion on achieving robustness in small body landing,
we refer interested readers to the recent survey (Simplicio, Marcos,
Joffre, Zamaro, & Silva, 2018).

3.4. Constrained reorientation
Scientific observation satellites commonly need to execute large

angle reorientation maneuvers while ensuring that their sensitive in-
struments, such as cryogenically cooled infrared telescopes, are not

299

Annual Reviews in Control 52 (2021) 282-315

exposed to direct sunlight or heat. Famous examples include the Cassini
spacecraft, the Hubble Space Telescope, and the upcoming James Webb
Space Telescope (Downes & Rose, 2001; Long, 2004; Singh et al.,
1997). This section discusses the challenges of constrained reorienta-
tion as a trajectory optimization problem, and focuses on how convex
optimization methods have been leveraged to address these challenges.

A basic constrained reorientation OCP is illustrated in Fig. 15 and
can be formulated as follows:

Itr}%g /0 v lu()ll, dr s.t. (69a)
4 = 240 ® 0, (69b)
Ja(r) = u(®) — o) X (Jo@)), (69¢)
qt) M,q() <0, i=1,....n, (69d)
loDlleo < s N1uDllo < thax (69e)
q(0) = g9, @(0) =@, q(ty) =q;, 0(7) =0;. (69D

The set of constraints (69d) encodes conical keep-out zones for n
stars, similarly to the illustration in Fig. 15 for one star. The parameters
M; € R¥* are symmetric matrices that are not positive semidefinite,
as introduced in Section 2.3. The main challenge of solving Problem
(69) stems from the fact that (69d) and the attitude dynamics (69b)-
(69c¢) are nonconvex. Kim & Mesbahi (2004) were the first to prove
that (69d) can be losslessly replaced by convex quadratic constraints,
provided ||g(#)||, = 1. Based on this observation, Kim & Mesbahi (2004)
proposed to greedily optimize one discretization point at a time instead
of the entire trajectory jointly. The method was further extended to
the case of integral and dynamic pointing constraints in Kim, Mesbahi,
Singh, & Hadaegh (2010).

Although the method of Kim & Mesbahi (2004) is computationally
efficient, it is inherently conservative and may fail to find a feasible
solution to Problem (69) by greedily optimizing one discretization point
at a time. As a result, several attempts have been made to improve its
performance. For example, Tam & Lightsey (2016) propose to replace
constraint (69d) with penalty terms in the objective function in order to
ensure that a feasible trajectory can be found. Binary logical variables
were also introduced in (69d) to account for redundant sensors. Hutao,
Xiaojun, Rui, & Pingyuan (2011) showed how the convexification of
constraints (69d) should be adjusted when optimizing an entire tra-
jectory, rather than a single time step as originally done in Kim &
Mesbahi (2004). Put into an MPC framework, the resulting trajectory
optimization yields less conservative performance. Alternatively, Eren,
Acikmese and Scharf (2015) proposed to first optimize a quaternion
sequence without kinematic and dynamic constraints, and then to
compute the corresponding angular velocity and torque using the re-
sulting quaternions. A hyperplane approximation of the unit sphere
is used during quaternion optimization to ensure dynamic feasibility,
and is imposed via MIP. Recently, McDonald, Grizzel, & Wang (2020)
proposed an SCP method with a line search step that helps convergence,
which provides a potential real-time solution to Problem (69).

Aside from the quaternion representation in Problem (69), which
is the most popular choice, a direction cosine matrix representation of
attitude was also used by Walsh & Forbes (2018) to solve an equivalent
problem. The resulting trajectory optimization can be approximated as
an SDP using successive linearization and relaxing (69d).

Due to its challenging nature, Problem (69) has inspired many
optimization solutions other than those based on convex optimization.
Pseudospectral methods and NLP optimization software have all been
used to solve Problem (69) directly (Lee & Mesbahi, 2013; Xiaojun,
Hutao, Pingyuan, & Rui, 2010). An indirect shooting method was
used in Lee et al. (2017), Phogat, Chatterjee, & Banavar (2018b),
and a differential evolution method was used in Wu, Xu, Zhu, & Cui
(2017) and Wu & Han (2019). Compared with convex optimization
based methods, these methods typically require more computational
resources to achieve real-time implementation.
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Fig. 16. Illustration of a basic ascent scenario. The goal is to find an optimal angle-
of-attack 6 trajectory to transfer the launch vehicle’s payload from the planet’s surface
to orbit, while minimizing fuel and satisfying structural integrity constraints.

3.5. Endo-atmospheric flight

Launching from or returning to a planet with an atmosphere are
integral parts of many space missions. These problems concern launch
vehicles, missiles, and entry vehicles such as capsules, reusable launch-
ers, and hypersonic gliders. Significant portions of launch and entry
occur at high velocities and in the presence of an atmosphere, making
aerodynamics play a large role. Aerodynamics and thermal heating are
indeed the core differentiating factors between endo-atmospheric flight
and PDG from Section 3.1. For the latter problem, small velocities
and thinness of the atmosphere make aerodynamic effects negligible
in many cases (Eren, Dueri et al.,, 2015). This section summarizes
recent contributions to endo-atmospheric trajectory planning using con-
vex optimization-based methods. In particular, Section 3.5.1 discusses
ascent and Section 3.5.2 discusses entry.

3.5.1. Ascent flight

The optimal ascent problem seeks to transfer a launch vehicle’s
payload from a planet’s surface to orbit while minimizing a quantity
such as fuel. Naturally, optimal control theory from Section 2.1 has
found frequent applications in ascent guidance, and we refer the reader
to Hanson, Shrader, & Cruzen (1994) for a survey. Heritage algorithms
date back to the iterative guidance mode (IGM) of Saturn rockets
(Adkins, 1970; Chandler & Smith, 1967; Haeussermann, 1970; Horn,
Chandler, & Buckelew, 1969) and the powered explicit guidance (PEG)
of the Space Shuttle (McHenry, Long, Cockrell, Thibodeau III, & Brand,
1979). A simple yet relevant optimal control problem describing an
orbital launch scenario is known as the Goddard rocket problem (Betts,
2010; Bryson Jr. & Ho, 1975). A version with variable gravity and no
atmospheric drag is stated as follows:

ganl —m(t) s.t. (70a)
() = —p Ir®lly> r@t) + m@ ™' T(@), (70b)
() = —a |TO], . (70¢)
m(0) = my, r(0) =ro, H0) =k, W(r(t,). i) =0. (70d)

Problem (70) models a three-dimensional point mass moving in
a gravity field under the influence of thrust. As such, it also applies
to orbit transfer problems which we discuss later in Section 3.6. The
vector r(t) € R? is the position vector, T(¢) € R? is the thrust vector, and
m(t) € R is the vehicle mass. The vector function y : R® — R¥ imposes
k < 6 terminal conditions. In ascent and orbit transfer applications, y
usually acts to constrain k orbital elements while leaving the other 6—k
orbital elements free.

A key issue when solving Problem (70) using an indirect method
is to resolve the transversality conditions of the resulting TPBVP
(Berkovitz, 1974; Pontryagin et al., 1986):

ptp) = [V (xtp)| v, (71)
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where x(7) 2 (r(t); (1)), p(-) € RO are the costates relating to the position
and velocity, and v, € R* is a Lagrange multiplier vector. Unfortu-
nately, v, has no physical or exploitable numerical interpretation, and
the magnitudes of its elements can vary wildly (Pan, Chen, Lu, & Gao,
2013). This causes a lot of difficulty for the solution process in terms
of numerics, robustness, and initial guess selection. Traditionally, the
problem is overcome by converting (71) into a set of 6 — k so-called
reduced transversality conditions, which are equivalent (Lu, Sun, &
Tsai, 2003):

[Vow(xtp)]yi=0. i=1...

yipit,)=0, i=1,..

(72a)
(72b)

,6—k.

The linearly independent vectors y; € R® are known as the reduced
transversality vectors, and are a function of x(t ) If they are known
analytically, then (72b) can replace (71), which eliminates v, from
the problem and simplifies the solution process considerably. However,
solving for y; symbolically is a difficult task, and the resulting expres-
sions can be complicated (Brown & Johnson, 1967). An alternative
approach was introduced in Pan et al. (2013), where the authors
provide an easy to use “menu” of the 6 — k constraints in (72b) that
are needed. This is achieved by considering Problem (70) specifically
and exploiting the structure offered by the classical orbital elements. It
is only assumed that the terminal constraint function y fixes exactly k
of the 6 orbital elements, and leaves the other orbital elements free.

The Goddard rocket problem in Problem (70) assumes no atmo-
sphere. When there is an atmosphere, a popular classical method is
the gravity turn maneuver, which maintains a low angle-of-attack so as
to minimize lateral aerodynamic loads. However, the general ascent
problem with an atmosphere is complicated due to strong coupling
of aerodynamic and thrust forces (Pan & Lu, 2010). Thus, ascent
is typically performed via open-loop implicit guidance, in the sense
that feedback control is used to track a pre-computed ascent tra-
jectory stored onboard as a lookup table. However, this approach
cannot robustly handle off-nominal conditions, aborts, and contin-
gencies, which motivates research into closed-loop ascent techniques
(Brown & Johnson, 1967; Lu, 2017).

A notable strategy in this context is to include aerodynamics in
an onboard ascent solution via a homotopy method starting from an
optimal vacuum ascent initial guess (Calise & Brandt, 2004; Calise,
Melamed, & Lee, 1998; Gath & Calise, 2001). Another approach was
developed in Lu & Pan (2010), Lu et al. (2003), Lu, Zhang, & Sun
(2005) and Pan & Lu (2010) using indirect trajectory optimization.
Here, a finite-difference scheme is proposed to solve for the necessary
conditions of optimality for ascent with an atmosphere. In particular,
fixed-point formulations were considered (Lu et al., 2005), primer
vector theory was invoked to determine trajectory optimality (Lu &
Pan, 2010), and a generalization to arbitrary numbers of burn and coast
arcs was developed (Pan & Lu, 2010). Finally, indirect methods relying
on control smoothing via trigonometrization have been developed to
address problems with bang-bang input and singular arcs (Mall, Grant,
& Taheri, 2020). The Epsilon-Trig method (Mall & Grant, 2017), which
is an example of such an approach, was applied to the Goddard maxi-
mum altitude ascent problem to obtain its bang-singular-bang optimal
solution. See Section 2.1.1 for a brief description of these approaches.

Modern improvements in convex optimization have made direct op-
timization methods attractive for ascent guidance. To this end, consider
the following illustrative ascent problem for a two-stage launch vehicle,
as shown in Fig. 16:

rtrfng —m(tf) s.t. (73a)
#(t) = —p Ir®ll;> r(t) + m@)~"(T[£] + L[£] + D[1]). (73b)
m(t) = —a||T[t]ll,, (73¢)
0, <0(1) <0, (73d)
PIIFOI < dmaxs (73e)
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I IFOIZ 100)] £ Npag (736)
m(0) = my, r(0) =ry, 0) = ko, W(r(t,).it;) =0, (73g)
m(t7) = m(1]) = my. (73h)

Problem (73) is planar and formulated in an Earth-centered inertial
(ECI) frame. Control is performed using the angle-of-attack 6, which
determines the direction of an otherwise pre-determined thrust pro-
file (Li et al., 2020; Liu & Lu, 2014; Zhang, Yang, & Xiong, 2019). The
major aerodynamic forces are those of lift L and drag D, each of which
may be complex expressions of state and control. Note that in (73b) we
used the shorthand T[¢], L[t], and D[r] from Section 1 to abstract away
the possible state and control arguments. The atmospheric density is
denoted by p, which varies during ascent as a nonlinear function of the
position r. An example is given later in (75c). Important constraints
on the dynamic pressure (73e) and bending moment (73f) are used
to ensure the vehicle’s structural integrity (Lu & Pan, 2010). The
target orbit is prescribed by the vector function y in (73g), which is
the same as in (70d) and specifies some or all of the target orbital
elements. Benedikter, Zavoli, Colasurdo, Pizzurro, & Cavallini (2020)
chose boundary conditions based on the radius and inclination of a
circular target orbit. A final nuance is that if the rocket is assumed
to be a two-stage vehicle, a stage separation event must be scheduled
at a pre-determined time 7, via (73h). At the separation instant, the
mass variable experiences a discontinuous decrease that amounts to the
dry weight of the first stage (Benedikter, Zavoli, & Colasurdo, 2019a;
Benedikter et al., 2020). A related constraint for stage separation
requires 6(t;) = 0 in order to reduce lateral load (Zhengxiang, Tao,
Songyan, & Ming, 2018). Furthermore, the splashdown location of a
burnt-out separated stage can also be constrained (Benedikter et al.,
2020).

Due to the presence of strong nonlinearities, convex optimization-
based solution algorithms for Problem (73) typically use SCP from
Section 2.4. However, several manipulations have been helpful to make
the problem less nonlinear. Conversion of the system dynamics (73b) to
control-affine form, at times by choosing an independent variable other
than time, followed by the use of lossless convexification within an SCP
framework has been a common approach. Zhang et al. (2019) obtained
a control-affine form by assuming the AoA to be small and defining
u; = 0, u, = 62 as the new control variables. This choice makes drag a
linear function of the control, while the constraint u% = u, is relaxed to
u? < u, via lossless convexification. Similarly, Benedikter et al. (2019a,
2020) chose thrust direction as input and losslessly convexified the unit
norm constraint on the thrust direction to a convex inequality. Cheng,
Li, & Zhang (2017) considered a 3D problem with AoA and bank angle
as control inputs, and applied lossless convexification to a constraint
of the form uf + u% + u% = 1. Furthermore, their choice of altitude as
the independent variable simplified the convexification of constraints
involving density, since it renders the density a state-independent
quantity. In particular, during collocation over a known grid within
an altitude interval, the density value is known at each node. This fails
to be the case when collocation is performed over time. The choice of
altitude as independent variable was also explored in Liu, Shen, & Lu
(2016D).

The two-agent launch problem is an interesting and relevant
modern-day extension of Problem (73) (Ross & D’Souza, 2004). In
this case, the launch vehicle first stage is not just an idle dropped
mass, but is a controlled vehicle that must be brought back to Earth.
This is the case for the SpaceX Falcon 9 rocket, whose first stage
is recovered by propulsive landing after a series of post-separation
maneuvers (Blackmore, 2016). It was shown in Ross & D’Souza (2005)
how hybrid optimal control can be used to solve the problem via mixed-
integer programming. More generally, hybrid optimal control has also
found applications in low-thrust orbit transfer using solar sails (Stevens
& Ross, 2005; Stevens, Ross, & Matousek, 2004).
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Fig. 17. Illustration of a basic atmospheric entry scenario. The goal is to find an
optimal bank angle ¢ trajectory to dissipate energy while meeting structural integrity
and targeting requirements.

3.5.2. Atmospheric entry

Atmospheric entry, also known as reentry, is fundamentally a pro-
cess of controlled energy dissipation while meeting targeting and struc-
tural integrity constraints (Lu, 2014). Computer-controlled entry guid-
ance dates back to the Gemini and Apollo projects, and D’Souza &
Sarigul-Klijn (2014) provide a comprehensive survey of existing meth-
ods. Good documentation is available for Mars Science Laboratory’s
entry guidance, which is based on Apollo heritage (Mendeck & Craig,
2011; Steltzner, San Martin, Rivellini, Chen, & Kipp, 2014; Way et al.,
2007).

A large body of work is available on predictor—corrector methods for
entry guidance (Johnson, Braden, Sostaric, Cerimele, & Lu, 2018; John-
son, Lu, & Stachowiak, 2017; Johnson et al., 2020; Lu, 2014; Xue & Lu,
2010) and for aerocapture (Lu, Cerimele, Tigges, & Matz, 2015). These
methods are based on root-finding algorithms, or variations thereof,
and some versions are grounded in solving the necessary conditions
of optimality (Lu, 2018). We refer the reader to Lu (2008) for further
details. In addition to reentry trajectory generation, mission analysis
tools for generating landing footprints have also been developed (Eren,
Dueri et al., 2015; Lu & Xue, 2010).

Guidance schemes based on univariate root-finding, which are near-
optimal for reentry (Lu, 2014) and optimal for aerocapture (Lu et al.,
2015), have also been developed. reentry applications use the quasi-
equilibrium glide condition (QEGC), while aerocapture leverages the
bang-bang nature of the control solution obtained via the maximum
principle. By using the knowledge of where the input switches, univari-
ate root-finding can approximate the optimal solution in each phase
to high accuracy. Such an approach, though based on an indirect
method, avoids directly solving the TPBVP. Recall that lossless convex-
ification, discussed in Section 2.3, is another approach where clever
reformulation of the optimal control problem and application of the
maximum principle yields an efficient solution strategy. This ties back
to the last paragraph of Section 2.1.2, which states that the fusion of
indirect and direct solution methods often yields more efficient solution
algorithms than using any one method in isolation. Because root-
finding algorithms do not involve an explicit call to an optimizer, we do
not survey them here. Instead, this section focuses on contributions by
convex optimization-based methods to the problem of entry trajectory
computation.

Another methodology that simplifies the typical strategy in indirect
methods is the RASHS approach (Saranathan & Grant, 2018). As dis-
cussed in Section 2.5.2, RASHS converts a multi-phase optimal control
problem into a single-phase problem by using sigmoid functions of
state-based conditions to instigate smooth transitions between phases.
As a consequence, the multi-point BVP from Pontryagin’s maximum
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principle is reduced to a TPBVP. The complete entry, descent, and
landing (EDL) problem is one example that can be solved effectively
via this technique.

Consider a basic entry guidance problem illustrated in Fig. 17,
which is formulated as follows:

nbin téﬂ)a}[);JQ'[t] s.t. (74a)
#(t) = —p IrdOll;> r(t) + m™' (L[1] + D[1]), (74b)
lum] < 1, (74¢)
P NFON; < diaxs (74d)
[IL[71+ DI11lly < Amaxs (74€)
r(0) = ry, 70) = ry. (741)

Problem (74) is planar and formulated in an ECI frame like Prob-
lem (73). Aerodynamic forces are governed by the lift, drag, and
atmospheric density, which are expressed as follows:

L[1] = R, jycpplt] |FD I, F(Ou@), (75a)
D[t] = R, cpplt] [[FD, (1), (75b)
plt] = pyexp (=(lr@®)ll, — o)/ hy) - (75¢)

The lift and drag coefficients are given by ¢; and ¢, while p, hg,
and r, denote the reference density, reference altitude, and planet ra-
dius. Ry corresponds to a counter-clockwise rotation by 6 radians. The
control input u(f) = cos(o (1)) is the cosine of the bank angle, and serves
to modulate the projection of the lift vector onto the plane of descent,
known also as the pitch plane. Entry is an extremely stressful maneuver
for much of the spacecraft’s hardware, therefore structural integrity
constraints are placed on dynamic pressure (74d) and aerodynamic load
(74e). The objective is to minimize the peak heating rate, given by
the Detra—Kemp-Riddell stagnation point heating correlation (Detra,
Kemp, & Riddell, 1957; Garrett & Pitts, 1970), which is appropriate
for an insulative reusable thermal protection system (TPS) such as on
the Space Shuttle and SpaceX Starship:

Ol o< /pltl [IFON3" .

Problem (74) is a simple example that gives a taste for the reentry
problem. We now survey variants of this problem that have been
explored in the literature. First of all, many other objectives have
been proposed in place of (74a). These include minimum heat load
(Han, Qiao, Chen, & Li, 2019; Wang & Grant, 2017), minimum peak
normal load (Wang, 2019a, 2019b), minimum time-of-flight (Han et al.,
2019; Wang, Cui, & Wei, 2019b), minimum terminal velocity (Wang
& Grant, 2017), maximum terminal velocity (Wang & Grant, 2019),
minimum phugoid oscillation (Liu & Shen, 2015), and minimum cross-
range error (Fahroo, Doman, & Ngo, 2003a, 2003b). In the problem
of aerocapture, where a spacecraft uses the planet’s atmosphere for
insertion into a parking orbit, minimum velocity error (Zhang, Acik-
mese, Swei and Prabhu, 2015) and minimum impulse, time-of-flight,
or heat load (Han et al., 2019) were studied. Minimizing the total heat
load, which is equivalent to the average heating rate, is particularly
relevant for ablative TPS that work by carrying heat away from the
spacecraft surface through mass loss. This has been the method of
choice for Apollo, SpaceX Crew Dragon, and almost all interplanetary
entry systems, because it can sustain very high transient peak heating
rates (Hicks, 2009).

Problem (74) is expressed in the pitch plane and without regard
for planetary rotation. To account for rotation and aspects like cross-
range tracking, other formulations have been explored. This includes
a pitch plane formulation with rotation (Chawla, Sarmah, & Padhi,
2010), a 3D formulation without rotation (Zhao & Song, 2017), and a
3D formulation with rotation (Han et al., 2019; Liu & Shen, 2015; Liu,
Shen, & Lu, 2015, 2016a; Wang, 2019a; Wang et al., 2019a, 2019b;
Wang & Grant, 2017, 2018a).

(76)
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The two main path constraints present in Problem (74) are on
the dynamic pressure (74d) and aerodynamic load (74e). The heat-
ing rate is also indirectly constrained since (74a) must achieve a
lower value than the maximum heating rate Q,,,,, otherwise the com-
puted trajectory melts the spacecraft. Since these three constraints
are critical for structural integrity, they permeate much of reentry
optimization literature (Han et al., 2019; Liu & Shen, 2015; Liu et al.,
2015, 2016a; Sagliano & Mooij, 2018; Wang, 2019a; Wang et al.,
2019a, 2019b; Wang & Grant, 2017, 2018a, 2019; Zhao & Song, 2017).
Some researchers have also included no-fly zone (NFZ) constraints, as
illustrated in Fig. 17 (Liu et al., 2016a; Zhao & Song, 2017). A bank
angle reversal constraint has also been considered in Han et al. (2019),
Liu et al. (2015, 2016a), Zhao & Song (2017) and Liu & Shen (2015).
This is a nonconvex constraint of the form:

0< Omin < |6(1)| < Omax- (77)

A common approach to handle (77) is to define u,(f) 2 cos(a(t)) and
u,(t) £ sin(a(1)), and to impose:

c08(Opax) < 1 (1) < oSG in) (17 +uy(1)? = 1, (78)

where the nonconvex equality constraint is subsequently losslessly
convexified to u;(H)? + u,(*)*> < 1 (Liu & Shen, 2015; Liu et al., 2015,
2016a).

The bank angle with a prescribed AoA profile is a popular control
input choice for reentry, dating back to Apollo (Rea & Putnam, 2007).
Some works have considered bank angle rate as the input, which
improves control smoothness (Wang, 2019a; Wang et al., 2019a, 2019b;
Wang & Grant, 2017, 2018a, 2019). However, banking is not the only
possible control mechanism for reentry, and several other choices have
been explored. Chawla et al. (2010) use the AoA as input and omit
bank and heading. Fahroo et al. (2003a) use AoA, bank angle, and
altitude, assuming the aforementioned QEGC with a small flight-path
angle between the velocity vector and the local horizontal. Zhao & Song
(2017) use bank angle and a normalized lift coefficient as inputs.

High frequency oscillation in the control signal, known as jitter, is a
common issue in entry trajectory optimization. Several works explicitly
address this issue (Liu et al., 2015, 2016a; Szmuk et al., 2017; Wang &
Grant, 2017). Jitter is believed to be caused by the nonlinear coupling
of state and control constraints (Wang & Grant, 2017), and it appears
to be reduced by a control-affine reformulation of the dynamics (Liu
et al.,, 2016a). Other strategies to remove jitter have been to apply
the reparametrization (78) or to filter the control signal. The latter
approach includes the aforementioned use of bank angle rate as the
control, or using a first-order low-pass filter (Liu et al., 2015).

Aside from fixing jitter, efforts have been devoted to simplifying
the SCP-based solution methods, and to improving their convergence
properties. Reformulating the dynamics using energy as the indepen-
dent variable, in a similar way to how altitude was used for optimal
ascent, is one tactic that achieves the former (Liu & Shen, 2015; Liu
et al, 2015, 2016a; Lu, 2014). Such a parametrization eliminates
the differential equation for airspeed, and instead yields an algebraic
approximation for airspeed in terms of energy. Fahroo et al. (2003a,
2003b) applied a related elimination process by considering energy as a
state variable. Apart from this, it is worth noting the heuristics proposed
for improving the convergence of the SCP-based approaches. Liu et al.
(2015), Wang (2019b) and Wang & Grant (2019) used backtracking
line search at each SCP iteration to reduce constraint violation. It was
found that with the line search, the number of iterations required for
convergence reduced by half (Liu et al., 2015). Zhang, Acikmese et al.
(2015) constrained the SCP iterates to form a Cauchy sequence. Wang
et al. (2019b) proposed a dynamic trust region update scheme that is
tailored for hypersonic reentry. In particular, the trust region update
accounts for the linearization error due to each state instead of the
typical approach of considering the average linearization error.

Aside from using SCP to optimize the entire entry trajectory, another
popular approach for entry guidance is via MPC from Section 2.6. Some
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Fig. 18. Illustration of a basic orbit transfer scenario. The goal is to use thrust T to
transfer the spacecraft state from an initial orbit to a target orbit under the influence
of gravity, while minimizing a quantity such as fuel or time.

important recent MPC-based developments are the dynamic control
allocation scheme (Luo, Serrani, Yurkovich, Oppenheimer and Doman,
2007) and the application of model predictive static programming
(MPSP). The approach by Luo, Serrani et al. (2007) centers around
posing an SQP problem as a linear complimentarity problem, while the
principle behind MPSP is to combine MPC and approximate dynamic
programming though a parametric optimization formulation (Chawla
et al., 2010; Halbe, Mathavaraj, & Padhi, 2010; Halbe, Raja, & Padhi,
2014). van Soest, Chu, & Mulder (2006) and Recasens, Chu, & Mulder
(2005) corroborate the effectiveness of MPC-based approaches by com-
paring the performance of constrained MPC with that of PID control
applied to feedback-linearized reentry flight.

Last but not least, we conclude by discussing pseudospectral dis-
cretization from Section 2.2.4 as a popular methodology in a variety of
reentry problem formulations. The method is appealing for its ability
to yield accurate solutions with a relatively sparse temporal collocation
grid, and recent results on the estimation of costates with spectral accu-
racy provide a strong theoretical connection to optimal control theory
and the maximum principle (Francolin et al.,, 2014; Gong, Ross, &
Fahroo, 2010). Fahroo et al. (2003a, 2003b), Rea (2003) applied direct
Legendre collocation to generate an entry vehicle footprint by solving
a nonconvex NLP. Sagliano & Mooij (2018) used Legendre-Lobatto
collocation and lossless convexification to generate an optimal profile
for the heritage drag-energy guidance scheme. In addition to these
approaches, which rely solely on the direct method, a combination of
direct and indirect methods was discussed in Josselyn & Ross (2003)
for verifying optimality of reentry trajectories using the DIDO solver
(see Table 1). In Tian & Zong (2011), a feedback guidance law through
an indirect Legendre pseudospectral method was developed to track
a reference generated using a direct pseudospectral method. Finally,
akin to explicit MPC, Sagliano, Mooij, & Theil (2017) developed a pre-
computed interpolation-based multivariate pseudospectral technique
that is coupled with a subspace selection algorithm to generate nearly
optimal trajectories in real-time for entry scenarios in the presence of
wide dispersions at the entry interface.

3.6. Orbit transfer and injection

A usual task in a space mission is to attain a certain orbit, or to
change orbits. The goal of the so-called orbit transfer and injection
(OTI) problem is to transport a low-thrust space vehicle from an
initial to a target orbit while minimizing a quantity such as time or
fuel. Unsurprisingly, the problem is as old as spaceflight itself, with
the earliest bibliographic entry dating to the late 1950s (Faulders,
1958). Traditionally, the problem has been solved using optimal control
theory from Section 2.1, and for this we can cite the books (Bryson
Jr. & Ho, 1975; Conway, 2014; Kirk, 1970; Lawden, 1963; Longuski
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et al., 2014). Numerous solution methods have been studied, includ-
ing methods based on primer vector theory (Petropoulos & Russell,
2008; Restrepo & Russell, 2017; Russell, 2007), direct methods based
on solving an NLP (Arrieta-Camacho & Biegler, 2005; Betts, 2000;
Graham & Rao, 2015, 2016; Ross, Gong, & Sekhavat, 2007; Starek &
Kolmanovsky, 2012), and indirect methods (Alfano & Thorne, 1994;
Cerf, 2016; Fernandes, 1995; Gil-Fernandez & Gomez-Tierno, 2010;
Gong, Fahroo, & Ross, 2008; Haberkorn, Martinon, & Gergaud, 2004;
Kechichian, 1995; Pan, Lu, & Chen, 2012; Pontani & Conway, 2013;
Taheri, Kolmanovsky, & Atkins, 2016; Taheri, Li, & Kolmanovsky, 2017;
Zimmer, Ocampo, & Bishop, 2010). Some recent advances for indirect
methods include homotopy methods (Cerf, Haberkorn, & Trélat, 2011;
Di Lizia et al., 2013; Pan & Pan, 2020; Pan et al., 2019; Rasotto et al.,
2015), optimal switching surfaces (Taheri & Junkins, 2019), the RASHS
and CSC approaches from Section 2.5.2 (Saranathan & Grant, 2018;
Taheri et al., 2020a; Taheri, Junkins, Kolmanovsky, & Girard, 2020b),
and simultaneous optimization (also known as co-optimization) of the
trajectory and the spacecraft design parameters (Arya et al., 2020).

In a similar way to the previous sections, improvements in con-
vex optimization technology have prompted an increased interest in
applying the direct family of methods to OTI. For example, Betts &
Erb (2003) solved a minimum-fuel Earth to Moon transfer using a solar
electric propulsion system, which is a complex problem with a transfer
duration of over 200 days. The problem is highly nonconvex, and the
optimization algorithm is based on SQP. This section discusses some
of the recent developments for solving OTI using convex optimization-
based methods, and their extensions to optimal exo-atmospheric launch
vehicle ascent.

A basic optimal OTI problem is illustrated in Fig. 18 and can be
formulated as follows:

g;lf;l /O ! IT @, dt s.t. (792)
) = —u Ir®ON;> rt) + m@) ™' T (@), (79b)
() = —a |TO]l, . (79¢)
1Tl < p. (79d)
m(0) = my, r(0) =ry, #0)=ry, (79¢)
w(r(t,).it,)) = 0. (799

Just like in Problem (70), the vector function y in (79f) describes
the final orbit insertion constraints, usually in the form of orbital ele-
ments. Note that (79b)-(79d) are identical to Problem (65). Naturally,
we may hope that previously developed lossless convexification and
SCP techniques from Lu & Liu (2013) apply for OTL The main novelty
is the nonlinear insertion constraint (79f). Liu & Lu (2014) showed that
(79f) can be linearized with a second-order correction term, and Prob-
lem (79) can be solved via SCP as a sequence of SOCPs. The method is
efficient and reliable, even for extremely sensitive cases like McCue’s
orbit transfer problem (McCue, 1967). Using similar convexification
techniques, a 3D minimum-fuel OTI problem was considered in Wang &
Grant (2018b). Similarly, a 2D minimum-time OTI problem was studied
in Wang & Grant (2018c), where the dynamics were parametrized
by transfer angle (i.e., orbit true anomaly) instead of time as the
independent variable. Both works consider circular orbits, where (79f)
can be linearized using spherical or polar coordinates. Tang, Jiang, & Li
(2018) solved a minimum-fuel orbit transfer problem by combining SCP
with lossless convexification and pseudospectral discretization. Song &
Gong (2019) studied a minimum-time interplanetary solar sail mission,
where the thrust is replaced by solar radiation force, and optimized the
trajectory via SCP as a sequence of SOCP problems.

The above paragraph mentions works that deal mainly with orbit
transfer. A companion problem is that of orbit injection, where the
vehicle is taken from a non-orbiting state to a target orbit. This occurs,
for instance, in the last stage of rocket ascent. Liu & Lu (2014) showed
that Problem (79) can also model the optimal exo-atmospheric ascent
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flight of a medium-lift launch vehicle. In this case, the initial condition
(79e) typically denotes burnout of the launch vehicle’s previous stage.
In Liu & Lu (2014), constraint (79f) denotes the radius and velocity
at the perigee of the target circular orbit. Li, Guan, Wei, & Hu (2019)
considered a similar optimal ascent problem where the thrust magni-
tude is constant, and constraint (79f) describes the orbital elements of
a general elliptical orbit. Using pseudospectral discretization and SCP,
this optimal ascent problem is solved as a sequence of SOCPs. Li et al.
(2020) further considered optimal ascent flight in the case of a power
system fault. In this case, depending on the severity of the fault, (79f)
describes progressively relaxed insertion constraints.

Mission planning often sits one layer above the OTI problem. For
example, a mission plan may consist of a series of planetary flyby and
gravity assist maneuvers. A mission, then, can be viewed as a sequence
of OTI solutions that minimizes an overall objective such as fuel usage
or travel time. A modern approach to mission planning is through
hybrid optimal control, and some methods were already mentioned
at the end of Section 3.5.1 (Ross & D’Souza, 2005; Stevens & Ross,
2005; Stevens et al., 2004). Evolutionary optimization using genetic
algorithms offers an alternative solution for mission planning (Conway,
2014). This approach was used to plan several complex missions: a
Galileo-type mission from Earth to Jupiter, a Cassini-type mission from
Earth to Saturn, and an OSIRIS-REx type mission from Earth to the
asteroid Bennu (Englander, Conway, & Williams, 2012). The Saturn
mission is almost identical to that used by the actual NASA/ESA Cassini
mission, but is obtained fully automatically at a fraction of the time
and cost. The algorithm, known as the evolutionary mission trajectory
generator (EMTG), has been made available by NASA Goddard as an
open-source software package (Englander, 2020).

4. Outlook

This paper surveyed promising convex optimization-based tech-
niques for next generation space vehicle control systems. We touched
on planetary rocket landing, small body landing, spacecraft rendezvous,
attitude reorientation, orbit transfer, and endo-atmospheric flight in-
cluding ascent and reentry. The discussion topics were chosen with a
particular sensitivity towards computational efficiency and guaranteed
functionality, which are questions of utmost importance for spaceflight
control. We conclude by listing in Section 4.1 some of the most popular
optimization software now available to the controls engineer, and
outlining in Section 4.2 future research directions to which the reader
may wish to contribute.

4.1. Optimization software

Success in any computational engineering discipline owes in large
part to the availability of good software. Table 1 lists modern optimiza-
tion software packages that facilitate the implementation of algorithms
discussed in Section 3. This list is by no means complete, and should
be understood to merely indicate some of the popular optimization
software packages that are quite mature and already available today.

4.2. Future directions

We conclude this survey paper by listing some interesting and im-
portant future directions for optimization-based space vehicle control.

4.2.1. Guaranteed performance

When proposing a new control algorithm for a real system, it is
sobering to remember that the vehicle’s survival, along with that of
its occupants, literally hangs in the balance (Stein, 2003). The modern
controls engineer has immense responsibility both to mission success
and to upholding the foundation of trust created by the high reliability
of traditional control methods. If we cannot guarantee an equal or
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greater level of reliability, then new optimization-based control meth-
ods will quite certainly be relegated to a ground support role (Ploen
et al., 2006).

Consequently, a direction of great importance for optimization-
based space vehicle control is to rigorously certify that optimization-
based algorithms converge to solutions that yield safe and robust
operation in the real world. Active research is being done in the area,
but general results are limited and many promising optimization-based
methods lack proper guarantees. Today, researchers are looking at real-
time performance (Malyuta et al., 2020; Reynolds, Malyuta, Mesbahi,
Acikmese and Carson III, 2020), optimality (Reynolds & Mesbahi,
2020b), and convergence rates (Bonalli et al., 2019; Mao, Szmuk et al.,
2018). Perhaps the most important yet difficult guarantee is that the
algorithm terminates in finite time, which is imperative for control.
In the convex setting, algorithms with guaranteed convergence are
available and have been flight-tested (Dueri et al., 2017; Scharf et al.,
2017), so one direction to explore is how to convexify more general
types of nonlinearity (Lee & Mesbahi, 2014; Liu & Lu, 2014; Malyuta
& Acikmese, 2020b). For more difficult nonlinearities that are not
convexifiable, an emerging subject of funnel libraries is being investi-
gated (Agikmese et al., 2008; Majumdar & Tedrake, 2017; Reynolds,
2020; Reynolds, Malyuta, Mesbahi and Acikmese, 2020). The idea, akin
to explicit MPC, is to pre-compute a lookup table of trajectories and
invariant controllers in order to replace onboard optimization with a
search algorithm followed by, in some cases, numerical integration.
This can result in a substantially simpler onboard implementation at
the expense of a higher storage memory footprint.

4.2.2. Machine learning

Impressive advances in machine learning, and particularly in re-
inforcement learning (RL), could not side-step space vehicle control
without due consideration (Tsiotras & Mesbahi, 2017). The main ad-
vantage of RL is that it is able to optimize over a stochastic data
stream rather than assuming a particular description of a dynamic
model (Arulkumaran, Deisenroth, Brundage, & Bharath, 2017; Busoniu,
de Bruin, Toli¢, Kober, & Palunko, 2018). As an optimization tool for
nonlinear stochastic systems, it is not surprising that the RL method is
attractive for aerospace control.

Although RL for space vehicle control is less than a decade old,
a certain amount of literature is now available that addresses almost
all of the applications presented in Section 3. The reader is referred
to Izzo, Martens, & Pan (2019) for a dedicated survey. In powered
descent guidance, Cheng, Wang, & Jiang (2019) use deep RL (DRL)
for lunar landing, Furfaro, Scorsoglio, Linares, & Massari (2020) im-
prove ZEM/ZEV guidance via DRL, and Gaudet & Linares (2019) use
recursive RL for Mars landing. For spacecraft rendezvous, Scorsoglio,
Furfaro, Linares, & Massari (2019) use actor-critic RL (ACRL) in near-
rectilinear orbits, Gaudet, Linares, & Furfaro (2018) consider cluttered
environments, and Doerr, Linares, & Furfaro (2020), Linares & Raque-
pas (2018) use inverse RL to learn the target’s behavior. In reentry
guidance, Shi & Wang (2020) aim for real-time computation by training
a deep neural network (DNN) to learn the functional relationship
between state-action pairs obtained from a high-fidelity optimizer.
Alternatively, Cheng, Jiang, Wang and Li (2020) use a DNN to provide a
numerical predictor—corrector guidance algorithm with a range predic-
tion based on the current vehicle state. This method improves runtime
performance by replacing traditional propagation-based trajectory pre-
diction with a neural network. A different line of work is presented
in Jin, Chen, Sheng, & Liu (2016), where the attitude of a reentry
vehicle with model uncertainty and external disturbances is controlled
by a robust adaptive fuzzy PID-type sliding mode controller designed
using a radial basis function neural network. For small body landing,
Gaudet, Linares, & Furfaro (2019, 2020a, 2020b) use RL meta-learning
for greater adaptability, and Cheng, Wang, Song and Jiang (2020) train
several DNNs to approximate a nonlinear gravity field as well as the
optimal solution obtained using an indirect method. Another interesting
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Table 1

Summary of popular optimization software packages. The columns Direct and Indirect specify which solution method the software uses, as discussed in Section 2.1.
The column Real-time denotes if the software is destined for real-time onboard use. Open-source identifies free-to-download packages with viewable source code.
Pseudospectral identifies software that is compatible with pseudospectral discretization. Class describes the most general class of problems that the software
can solve. Back-end lists which low-level optimizers are used, and Language lists the implementation and front-end interface languages of the package. Certain
classifications that do not apply to the “generic parsers” software category are indicated by an empty cell background.
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. ct Ge o 500 ® vse“‘ifé\ end ag
. RG g - ! g
Name Reference | Diee od* e 0p° ¢ oes® B 1208
Generic parsers
JuMP (Dunning et al., 2017) [ ] MINLP v Julia
CVX (Grant and Boyd, 2008) [ ) MICP I §
YALMIP (Lofberg, 2004) [ ] MINLP ] MATLAB
AMPL (Fourer et al., 1990) MINLP \Y +
Optimal control problem parsers
SCP Toolbox (Malyuta et al., 2021) ° ° NLP I Julia
CasADi (Andersson et al., 2019) ] [} [} o [ ] NLP i A
SPARTAN (Sagliano, 2019) [} [ ] [} NLP i MATLAB
MISER (Jennings et al., 2015) ) [ NLP i MATLAB
GPOPS-II (Patterson and Rao, 2014) [} [ ] [} NLP B MATLAB
DIDO (Ross and Karpenko, 2012) [ ] [} [ ] NLP o MATLAB
HamPath (Caillau et al., 2012) ) o NLP ++ ®
ACADO (Houska et al., 2010) [ ) [ ) ° NLP 1 ok
PSOPT (Becerra, 2010) ° ) ° NLP * (Ctas
EZopt (Shen et al., 2010) [ ] NLP SNOPT ]
GESOP (Topcu et al., 2007) [ ] NLP O A
Generic solvers
COSMO (Garstka et al., 2019) ) ([ ] SDP * Julia
FORCES (Zanelli et al., 2017) [} [ ] NLP IPM C
CVXGEN (Mattingley and Boyd, 2011) [ [ ] ([ ] QP IPM (@
Spaceflight-specific solvers
G-FOLD (Scharf et al., 2017) ‘ [} [ ] SOCP Bsocp C
v ECOS, Gurobi, MOSEK, CPLEX, SDPT3, SeDuMi, IPOPT, SNOPT, COSMO, and more.
| ECOS, Gurobi, MOSEK, CPLEX, SDPT3, SeDuMi, and more. Varies by implementation language.
§ MATLAB (CVX), Python (CVXPY), Julia (Convex.jl), and R (CVXR).
b All from || as well as IPOPT, KNITRO, SNOPT, and more.
vV CBC, CPLEX, FortMP, Gurobi, MINOS, IPOPT, SNOPT, KNITRO, and more.
+ An algebraic modelling language influenced by C and AWK.
+ IPOPT, qpOASES, OOQP, CPLEX, Gurobi, and others.
A Written in C++ with Python, C+ +, MATLAB/Octave interfaces available.
* [POPT, SNOPT.
i Sequential quadratic programing (SQP) solver NLPQL, FFSQP, or NLPQLP.
o Fast, spectral Hamiltonian programming (Ross and Gong, 2008).

+
+

ODE numerical integration and a shooting method.

Written in Fortran 90 with Python and MATLAB/Octave interfaces available.

= &

Internal SQP-type methods as well as interface to external solver qpOASES.

*
*

Written in C++ with a MATLAB interface available.
Written in Fortran 90 with a MATLAB interface available.
SLLSQP, SNOPT, and others.

*>0Om

approach was proposed in Cheng, Wang, Jiang and Li (2020), where
DNNs are used to supply good costate initial guesses, while an accu-
rate trajectory is obtained by a downstream shooting method and a
homotopy process. In orbit insertion and transfer applications, Cheng,
Wang, Jiang and Zhou (2019) develop a multiscale DNN architecture
to approximate the optimal solution for a solar sail mission, Holt,
Armellin, Baresi, Hashida, Turconi, Scorsoglio, & Furfaro (2021) use
ACRL for low-thrust trajectory optimization under changing dynamics,
LaFarge, Miller, Howell, & Linares (2020) use RL for libration point
transfer in lunar applications, and Miller, Englander, & Linares (2019),
Miller & Linares (2019) use proximal policy optimization.

A promising modern direction for spacecraft trajectory RL is to
learn a small number of “behind the scenes” parameters (called so-
lution hyperparameters) that govern the optimal solution, instead of
directly learning the high-dimensional optimal state-input map. Most
importantly, the relationship between these parameters and the control
policy is much more predictable, and hence can be learned more
easily and with less training data. This survey paper makes it clear
that most if not all spaceflight trajectory generation problems can be
formulated as a variant of the optimal control Problem (4). Hence, the
solution hyperparameters are often the maximum principle costates,
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Fortran 77, Ada 95, C, and MATLAB.
Conic operator splitting method (based on ADMM).

or combinations thereof, that completely define the optimal control
policy. Among these, we find aforementioned concepts of a primer
vector (Acikmese & Ploen, 2007; Lawden, 1963; Lu & Pan, 2010),
and switching functions for bang-bang control (Taheri et al., 2020a).
This RL approach was shown to be effective for 3-DoF PDG in You,
Wan, Dai, Lu and Rea (2020) and You, Wan, Dai and Rea (2020),
where the authors learned 10 hyperparameters instead of the map
from a 7D state to a 3D input. Most importantly, only ~ 10’ training
trajectories were required. In comparison, the state-input map learning
approach of Sanchez-Sanchez & 1zzo (2018) also achieved good results,
but required ~ 107 training samples. A slightly different approach was
taken for 3-DoF small body landing in Cheng, Wang et al. (2020),
where homotopy and coordinate transforms were used to learn a 5D
costate vector instead of the map from a 7D state to a 3D input. The
DNN’s output was then used to provide accurate initial guesses and
to improve the convergence of a downstream shooting method. To
summarize, the fact that learning hyperparameters works better than
learning the optimal state-input mapping is just an observation of the
fact that application domain knowledge can go a long way towards
improving learning performance (Tabuada & Fraile, 2020). In the case
of spacecraft trajectory optimization, this knowledge often comes from
applying Pontryagin’s maximum principle.
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As discussed in Section 4.2.1, performance guarantees for an RL-
based controller will have to be provided before serious onboard con-
sideration. This may be harder to achieve for RL, since controllers are
typically based on neural networks whose out-of-sample performance is
still very difficult to characterize. Nevertheless, RL and other machine
learning approaches are appealing for adaptive control systems. Future
research will likely see the aerospace control community search for the
right opportunities where RL can be embedded to improve traditional
control systems.
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