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Abstract

A number of powerful demographic inference methods have been developed
in recent years, with the goal of fitting rich evolutionary models to genetic data
obtained from many populations. In this paper we investigate the statistical
performance of these methods in the specific case where there is continuous
migration between populations. Compared with earlier work, migration signif-
icantly complicates the theoretical analysis and requires new techniques. We
employ the theories of phase-type distributions and concentration of measure
in order to study the two-island and isolation-with-migration models, resulting
in both upper and lower bounds on rates of convergence for parametric esti-
mators in migration models. For the upper bounds, we consider inferring rates
of coalescent and migration on the basis of directly observing pairwise coales-
cent times, and, more realistically, when (conditionally) Poisson-distributed
mutations dropped on latent trees are observed. We complement these upper
bounds with information-theoretic lower bounds which establish a limit, in
terms of sample size, below which inference is effectively impossible.

1 Introduction

Demographic inference-the estimation of past gene flow, migration, and size history
events experienced by a population—is now a significant research area in evolution-
ary biology and mathematical genetics. Stimulated by an ongoing explosion in data
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availability, a series of increasingly sophisticated statistical methods has been de-
veloped to infer rich, highly parameterized demographic models using patterns of
population genetic variation. These methods have seen significant uptake in biology,
with some (e.g., Gutenkunst et al., ; Li and Durbin, ) having been used in
thousands of studies across a wide variety of species.

Formidable mathematical and computational hurdles must be overcome in order
to estimate complex evolutionary models; often, even evaluating the likelihood func-
tion is nontrivial. As a result, research in this area has, to date, tended to focus
on developing efficient inference methods. A much smaller number of authors have
studied the question which interests us here: when is it theoretically (im)possible to
estimate parameters of these models from data?

A starting point in the literature on the theoretical statistical aspects of demo-
graphic inference is Myers, Fefferman, and Patterson ( ), who proved the striking
result that population size history is unidentifiable from the site frequency spectrum.
That is, given an arbitrary size history function, there exists a smooth perturbation
of it which produces exactly the same frequency spectrum in expectation. Subse-
quently, Bhaskar and Song ( ) showed that identifiability can be achieved by
restricting the space of size history functions to be finite dimensional, for example
piecewise constant or piecewise exponential. Terhorst and Song ( ) derived min-
imax lower bounds for demographic inference from the site frequency spectrum, and
showed that there is a fundamental limit in our ability to infer size history for popula-
tions which have experienced a bottleneck. Baharian and Gravel ( ) showed that
even in non-bottlenecked populations, there may be little to no statistical power to
distinguish between different size history hypotheses on the basis of a finite amount
of data. Working in a different setting, J. Kim, Mossel, Récz, et al. ( ) studied
nonparametric estimation of the size history using samples of coalescent times from
pairs of chromosomes, deriving both upper and lower bounds for hypothesis testing
and estimation of the size history function. Johndrow and Palacios ( ) extended
the analysis J. Kim, Mossel, Récz, et al. ( ) to coalescent trees on three samples,
studied the benefit of incorporating ancient samples, and derived exact lower bounds
on the Bayes error rate for distinguishing between population size histories.

All of the above papers consider the case of a panmictic population. Less attention
still has been paid to inference in structured population models. Y. Kim et al.
( ) furthered the analysis of J. Kim, Mossel, Récz, et al. ( ) to the case
where pairwise coalescent data is used to infer population structure, and showed in
particular that the amount of data needed to accurately reconstruct the demography
of a structured population may be exponential in the number of demes. Sousa,
Grelaud, and Hey ( ) showed that the times of migration events in gene trees are



not identifiable under a standard coalescent model.

A related thread concerns reconstructing the phylogeny or “species tree” of a set
of populations tree under a structured coalescent model. Up to this point, coalescent-
based approaches have mostly considered complications arising only from incomplete
lineage sorting, which causes gene trees to have a different topology than the back-

ground species tree (Rannala and Yang, ; Allman, Degnan, and Rhodes, ;
Mirarab et al., ). Although there has been some recent progress on phylogenetic
inference with migration (Hey, Chung, et al., : Flouri et al., ), the focus of

this line of work, species tree estimation, is ultimately different from that of demo-
graphic inference, where we seek to infer distributional parameters from a collection
of latent genealogies.

Despite these many interesting and useful contributions, it is fair to say that our
ability to estimate complex demographic models has far outpaced our theoretical
understanding of those estimators. As noted above, only a handful of theoretical
studies consider inference in the presence of complex population structure. Nev-
ertheless, such models are now routinely fit in practice, often in consideration of
numerous populations and different migration events (e.g., Gutenkunst et al., :
Jouganous et al., ; Kamm, Terhorst, and Song, ; Rodriguez et al., ;
Kamm, Terhorst, Durbin, et al., ). Given that the theoretical results in the
panmictic setting have so far been mainly negative, it seems important to extend the
analysis to other types of structured population models that are becoming prevalent.

In this paper, we address this gap by theoretically analyzing some inference prob-
lems that arise in a structured coalescent model with continuous migration. Although
some of our proof techniques are based on these earlier works (in particular, that
of J. Kim, Mossel, Récz, et al., ), as we will see, migration introduces signifi-
cant, challenges into the analysis, requiring different approaches than have been used
previously. Consequently, we restrict our focus to the simplest non-trivial struc-
tured population model of two islands with continuous migration between them, and
a variant of it known as the isolation-with-migration model. In Section 2, we lay
out our notation. Section 3 formalizes the model and introduces key definitions.
Section 4 derives some eigenvalue bounds for migration transitions and tail bounds
for estimation errors in the two-island model, some of which may be useful more
generally. Section 5 studies moment-based estimation of the key parameters in the
two-island model. Section 6 derives information-theoretic lower bounds on the abil-
ity to distinguish different island models from data. Section 7 concludes with some
discussion.



2 Notation

Throughout the paper, n is used to denote sample size, and we suppress explicit
dependence on it when there is no possibility of confusion. For any r > 0 and
x € R? let B,(x) be the ball of radius r around x, i.e.

B.(x) ={p €R": [lx —p| <7}.

a; = J
J - 2
appears throughout the paper.
Matrices and vectors are denoted in boldface. The L? norm of x is denoted

The constant

Ixll, = (2] + -+ 2f)"7,

and the L>™ norm is denoted ||x||o = max;|z;|. If p is not indicated, then [|x| =
Ixl2 = (22 + - -+ + 22)"/2 is taken to be the L? (Euclidean) norm. If A € R™" is a
matrix, then
Al = sup | Ax],
lIx[lp=1
denotes the induced p-norm, with ||Al| denoting the operator norm. The Frobenius

norm is given by
m,n

2
1Al = > ai
i=1,j=1
where a;; is the ijth entry of the matrix A. If m = n such that A is square, then the
trace and determinant of A are denoted tr A and det A, respectively. The identity
matrix is denoted I. The standard basis vectors are denoted

e, =(1,0,...,0),e; = (0,1,0,...,0),...,e4 = (0,0,...,1) € R,

and the vector of all ones is denoted 1 = (1,1,...,1)7. The dimensionality of I, e;,
and 1 may vary from usage to usage, but will be obvious from context.

In this paper, the dimension of all vector spaces is either 3 or 4, independent of
any other problem-specific quantities. Hence, by equivalence of matrix norms, there
exist universal constants C7, Cy > 0 such that

[All, < Chl[Ally < Col[All,



for all p,q > 0, including p = oo or p = F (Frobenius norm). In particular, for
A € R* we have

AR < [lAf, < 2[All
1
SlAlle < [lAfl, < Z[|Afl -

3 The model

We consider a structured coalescent model with two demes and continuous migration
between them, sometimes referred to as the “two-island” model (Takahata, ;
Notohara, ). The model considers the probability distribution of a genealogy
formed by sampling a pair of chromosomes. The time ¢ = 0 corresponds to the
present while positive ¢ corresponds to t generations in the past. Let m; be the rate
at which an individual migrates from island 2 to island 1, similarly for ms. For any
pair of individuals in the present, the time to their most recent common ancestor is
called the coalescent time. Let ¢; be the corresponding rate of coalescence for the
two individuals if they both live on island 1 and ¢, be the respective rate for island 2.
It is not possible for coalescence to occur for pairs of individuals living on separate
islands.
For any ¢ > 0, the vector

P, = (P12(t), p11(t), P22(t), Peoar(t))

gives a probability distribution on the finite sample space Q = {12,11,22, coal}.
Here, pi2(t) is the probability that a pair of individuals sampled in the present
descend from a pair of individuals separated into the islands 1 and 2 at time t.
Similarly, py1(t) is the probability that they descend from a pair of individuals both
on island 1 at time ¢, with an analogous definition for pas(t). Lastly, peoa(t) is the
probability that they descend from a common ancestor at time t.

The movement of a pair of individuals between these four states is modeled by a
continuous-time Markov chain (CTMC) with state probabilities

Po = (p12(0)7p11(0)7p22(0)7pcoa1(0))

dpy
— t 1
7 = th, > 0, ( )



where is Q is the transition rate matrix

—(ml + m2) my ma 0
. . 2m2 —(2m2 + Cl) 0 C1
Q - Q(C7 l’l’l) - 2m; 0 —(2m1 + 02) Co (2)

0 0 0 0

Recall py is the distribution of the locations for a sampled pair of individuals in the
present. In the present, we sample two individuals assuming they are not coalesced,
SO Peoal(0) = 0. To avoid degeneracies, we assume henceforth that both of the
coalescent rates ¢; and at least one of the migration rates m; are strictly positive.
The solution to (1) is p; = poe®t.

For x > 0 and t > z, the hazard rate of coalescence h(t | ) = h®™(¢ | x) is the
rate of entry into the “coal” state, given that the process has not already done so
up to time x. Viewing x as the present time, conditioning on noncoalescence implies
Peoal(Z|z) = 0. If we define py, to be the density of the coalescence time in each
state at time ¢ > x conditioned on noncoalescence up to time x, then

1
m (p12(2]0), p11(2|0), paz(x]0), 0) (3)

Ptz = pz|ze(t_I)Q-

Pzjz =

The (conditional) hazard rate of coalescence at time ¢ is given by multiplying py,
with the fourth column of Q:

h(t ‘ IE) = clpn(t ’ iL') + Cngg(t ‘ ZL‘) (4)

Suppose n > 2 individuals are sampled at time ¢ = 0 and consider the sequence
of coalescent times 0 = z,,.1 < T, < -+ - < 5 in the genealogy of the sample. For any
J < n, recall that a; = j(j — 1)/2 is the number of ways to choose a particular pair
of individuals from j samples. Any pair of non-coalesced lineages that exist in the
same deme are as likely to coalesce as any other, with that deme’s coalescence rate.
Then, the conditional hazard rate for coalescence time z, given that the (j + 1)th
coalescence time is x;41, is obtained by averaging over the possibilities for sampling
a pair of individuals at time x;,, i.e.

hj(w | 2j41) = aj[crpu(w | 2541) + copoa( | 2541)] - (5)

The conditional density of the j-th coalescent time given the (j + 1)-th coalescent
time is then

fi(x | zj41) = exp <— /x hy(t | wji1) df) hj(z | wj41).

=Tj+1
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From the Markov property, the joint density of the coalescent times x, < ... < xg is
then

f@a, ) = [ fi5 | 2550)
=2

= rIZGXP (- /M hi(t | 1) dt) hi(@; | 2je1)-

t=x;j41

4 Tail bounds

We now collect some results about the two-island model with migration which will
be used below. These results exploit the fact that coalescent times in this model
follow a so-called phase-type distribution. The phase-type distribution of a time-
homogeneous, continuous time Markov chain has a simple closed form expression for
statistics of interest such as the mean, variance, and moment generating function.
With these formulas, we derive quantitative bounds on extreme-event probabilities
involving coalescence times. In particular, we show that estimators of the migration
and coalescence rates are concentrated around the true parameters, meaning the
estimators converge in probability exponentially fast in the number of samples. A
useful reference on these distributions is Asmussen and Albrecher ( ). Hobolth,
Siri-Jegousse, and Bladt ( ) have also recently studied phase-type distributions
in a related setting.

Definition 1 (Phase-type distribution). Let {X;};>0 be a homogeneous, continuous
time Markov chain on a finite state space S with single absorbing state A € S. The
rate matrix of X; may be written in block form as

Q « (%I (S)> c R|$|><|S\’ (6)

where Q' € RUSI-DXUSI=D js the sub-intensity matrix giving the transition rates
between the transient states in S, and s € RISI7! is a column vector giving the
transition rates from each transient state to A. Also, let o € RISl be the distribution
of Xo. The first hitting time ¢ = inf{t > 0: X; = A} is said to be of phase-type with
representation (Q, o). We denote this as

and denote the distribution function of ¢ by P, (¢ < t).

7



Below we will need to simultaneously consider phase-type distributions with mul-
tiple initial distributions ay;, 7, j € {1,2}. This indexing of states is chosen so that
a pair of individuals is in state 45 if one individual is on island ¢ and the other is on
island j. We slightly abuse notation and denote these by (q,;-

An important quantity in the theory of phase-type distributions is the spectrum
of Q. In particular, the long-term behavior of the process is controlled by the size of
the gap between the largest and second-largest eigenvalues (Asmussen and Albrecher,

). Our first result quantifies this gap for the chain defined in (2).

Proposition 2. Let Q = Q(c,m). Then the eigenvalues Xg, ..., A3 of Q are non-
positive and real: A3 < Ag < A1 < Ao =0, with

c1ca(my + ms) + 2(cym? + com3)
C1C2 + 3(m101 + mQCQ) + mice + mocCy + 2 (ml + mg) 2°

lefly + 3lmlly = A | >

(8)
Since only the leading eigenvalue plays a role in the sequel, we define
A= min{|\;| : \; < 0 is an eigenvalue of Q}

for the rest of the paper. The right-hand side of (8) is an explicit bound on the
leading eigenvalue, and this will be used to prove bounds on error in demographic
inference.

The following quantity appears repeatedly in the results to come.

Definition 3. Given a rate matrix Q with leading eigenvalue A, the condition number

of Qis k :=||QJ|/ A

Remark. k differs slightly from the usual definition: it is the ratio of the largest
singular value to smallest (absolute) eigenvalue of Q.

The following Lemma and Corollary establish a Chernoff-type bound on the
phase-type random variable. The proof of the Lemma is given in the Appendix.

Lemma 4. Let M, (r) := Eexp(r(a) be the moment generating function of ¢ in (7).
Then M, (r) is defined for all v < . Furthermore, for any such r,

M., (r) < k.
Corollary 5. For anyt > 0,

P(Co > t) < ke M. (9)



Proof. Apply the previous lemma to the Chernoff-type bound

P((o >t) < inf e "M, (r).

0<r<A
]

The next results pertain to two possibly different island models specified by rate
matrices Q¥ = Q(c”, m®) (cf. equation 2) for i = 1,2, with leading eigenvalues
A® and condition numbers . We let pi‘?ﬁ, hy) (t| x), and f@ refer to the transition
probability, hazard rate, and joint density for the corresponding model.

Definition 6. Given a pair of two-island models QY = Q(c"), mV) and Q® =
Q(c® m®), we say model 2 is 6-close to model 1 if there exist diagonal matrices
D.,D,, with max{||D.||, [|Dy,||} < ¢ such that

c® = (1+D,)c) (10)
m®? = (I+D,,)m®.

By abuse of notation, we also refer to Q® being é-close to QM. Tt follows from the
definition that if Q® is d-close to Q") then

197 = Q¥ <2[|QM = Q| <25 [Q™], < 20[|QV[[. ()

whence

IQ®| < (1 +25) [|Q™]]. (12)

The next bound establishes convergence to zero linearly in . The following result,
due to Mitrophanov ( , Corollary 2.1), is stated in an adapted form below. Its
proof follows from technical convergence results stated and proved in the Appendix.
The proof of this theorem is also given in the Appendix.

Theorem 7 (Mitrophanov ). Let QM and Q@ be as in Proposition 18, and
further suppose that

Py, = Pio- (13)
Then
o2 — o2 < 2650 105 0401 + 2] (1)




5 Upper bounds

In this section, we derive an estimator for the parameters in the symmetric two-
island model, and prove some results about its accuracy on finite samples. Before
presenting our results, we first outline some of the challenges of inference in structured
population models.

In the panmictic setting, J. Kim, Mossel, Racz, et al. ( ) derive a nonpara-
metric estimator of the effective population size function N(t) based on some ideas
from survival analysis. They rely on an explicit expression for the hazard rate func-
tion P(T € [z,x +dx) | T > x,N(t)) of the coalescent time T (see Remark 2.1 in
their paper). This function is then inverted, yielding a histogram-type estimator for
N (t). The simple form of the estimator makes it possible to precisely analyze its
performance on finite samples.

Unfortunately, it does not seem possible to extend their approach to the case of
(even relatively simple) structured population models. The hazard rate function (4)
depends on m and c in a complicated way, and cannot be analytically inverted. Thus,
although classical (asymptotic) guarantees are obtainable, it is difficult to study
the finite-sample behavior of likelihood-based estimators in structured population
models. For simplicity, we restrict attention to the case where the number of leaves
n is equal to 2.

To make progress, we turn to a moment-based estimator instead. Let Ej5 be the
expected time to coalescence for a pair of individuals that live on different islands
and Fjp, Fas be the analogous expectations for pairs living on the same islands. With
Q' defined as in Section 3, we have

E = (B, B, Ep) =E (e, €11, €92) = — (Ql)il 1 (15)
where the initial distribution e;; places all mass on state 77, and the final equality
is a property of phase-type distributions (Asmussen and Albrecher, , Theorem
IX.1.5).

Three parameters may be estimated from the first moments. We thus restrict
our attention to the symmetric two-island model where m; = msy = m, wherefore

8m? + 3m(c; + ¢) + cico

E = 1
12 €1, ¢2) 2m [c1ea + m(eq + o)) (16)
2(co +2m)
En(m,e1,c5) = 17
n(m, e, c2) m(c1 + c2) + cico (17)
Ea(m, 1, c2) = Epi(m, ca,c1). (18)

10



Remark. Note that the expected time to coalescence for two lineages sampled from
the same deme is invariant to m when ¢; = ¢, a special case of Strobeck’s theorem
(Strobeck, : Durrett, ).

For each ij € {12,11,22}, suppose we sample L i.i.d. coalescent trees {Tg(ij)}eL:1
and form the sample version E of E by averaging:

1L
£ — }:T(ij)
L =1 f

By the law of large numbers, E is a consistent estimator of E. Given E, we solve
(16)—(18) for m,c1,cy to obtain the following consistent estimators of the model
parameters:

. 1
MmE) = — (19)
2E112 - Ell - E22
. 4F,, —3E, — E .
CAI(E) _ 12 E 11 22 % ﬁl(E)
11
. 4F, —3Ey — E .
6 (E) = 12 > 22 L ().
22

There is also a convenient formula for the variance of phase-type distributed
random variables. Writing V;; for the variance of 77, we have

2

Via(m, c1, ¢2) = Var(ers) = 2e, (Q) 21 — [el Q)™ 1}

where e; = (1,0,0). The variances Vi;(m,ci,c2) = Var(eq;) and Vas(m, ¢y, ) =
Var(e;y) are computed using the standard basis vectors e; = (0,1,0) and es, respec-
tively. Explicitly, these formulas are

64m* + m*(11c? 4+ 14ci0o + 11c3) + m(4cicn + 4ercd) + el
4m? [creo +m(er + )]
c1 (¢ + bmey + 10m?) +m (3c3 + 10mc? + 16m?)

m [ercs + mley + )]

‘/12(m7 (1, 62) -

Vii(m, c1,¢2) =
Vaa(m, c1, ca) = Vir(m, ca, ¢1).

Using these expressions and the multivariate delta method (e.g., Casella and Berger,

~ ~

), the asymptotic covariance matrix of m(E) and ¢;(E) may also be obtained.

11



5.1 Error analysis

Now we derive bounds on the estimation error of the migration and coalescence
parameters as a function of the number of samples L. Noting that the numerator
and denominator of m and ¢; (we omit discussion of ¢, since it is symmetric to ¢;) are
both homogeneous polynomials in E, this is most easily accomplished by considering
the relative error.

Proposition 8. Suppose that |E;; — EZ]| < dE;; fori,j € {1,2}. Then

im/m — 1| < 3md||E|| + O(6%) (20)
e /ey — 1] < 8 (1 +9m||E|) + O(6?). (21)

Proof. The supposition is equivalent to B =(I+ D)E, where D is a diagonal matrix
with |D|| <. Thus, with a,, = (2, -1, —1)T, we get

m—1‘— @_1 _|fam, @+ D)E)
m | (a,, E) - (an, E)
_|DawE)| - [1Da| N
| (anE) 'S” llm = I < 3mal|E. (22)

Equation (20) follows since |m — m|/m <& = |m —m|/m < § + O(5?).
Similarly, for ¢; and a, = (4,3, —1)T,

(a., T+ D)E) m(E)/Ey,

—1].
<ach> m/Ell

——1
C1

& '

By our assumptions and the relative error bound (22), there exist €, €5 such that

le ] <O By =(1+4e)Ey

lea| < 36||B|jm m(B) = (1 + e)m.

Then

12



(1 + 62) (ac, I+ D)E)m/Ep
1+¢e (ac, EYm/Ey;

-|(58) 0+ ) -
g o)

Sllacl|| E]
(a, E)

_1‘

= 62—€1+

<et+et + O(8%) (23)

Now since ||a.|| < 6 and
<aC,E> = 1/777, + 2(E12 — Ell) > 1/777,,
we have

I
(ac, E)
Inserting (24) into (23) and simplifying yields (21). ]

< 65|[E|m. (24)

Next, we show that E is concentrated around its expectation E. This essentially
follows from the fact that E is the sample average of phase-type distributions (see
equation 15), and the tail bounds we derived in Section 3.

Proposition 9. Let T\ T\ . T be i.i.d. with distribution PH(Q, ;). Then

> Lt) < 2exp {—cmin <Lt2 E) } : (25)

vy

L

P(‘ > 1Y~ By

where
v < (2/N) max {1,log, Kk} .

and ¢ > 0 1s a universal constant.

Proof. By Jensen’s inequality and Lemma 4, for sufficiently small » and any K > 1,

MCaij (T/K) =K [(GTCaij)l/K:| < Mg‘ai (T)I/K < K}I/K_

J

Let
K = max{1,log, x} . (26)

13



Then M, (r/K) < 2. This implies that (a,; has a sub-erponential distribution, in
the sense of Vershynin ( , Proposition 2.7.1), with (see Vershynin, , Definition
2.7.5)

K= ||C04ij Y1 < K/T = QK/)‘v (27)

where || Xy, denotes the Orlicz 1-norm of the random variable X, and we chose
r = \/2 (say). The bound (25) then follows from Bernstein’s inequality (Vershynin,
, Corollary 2.8.3). O

As we have seen, the leading eigenvalue A factors integrally into our convergence
rates. To gain intuition, consider the completely symmetric case where m, = ms = m
and ¢; = ¢o = ¢. Then by (8),

2em(c + 2m)
= (¢c+2m)% +4em’

and we can distinguish a few cases:

o If m < ¢ then X is roughly lower-bounded by 2m. This occurs when there is a
low rate of migration between two islands with small effective population sizes.
We then have log (||c||/\) = log [||c||/(2m)] > 1. The bound (27) degenerates,
such that we cannot rule out £ > 1. In turn, the concentration inequality (25)
degrades and we longer have good control on |[E—E|. This result quantifies the
intuitive statement that inference (in particular, estimation of m) is difficult
when the rate of migration is small.

o If m > ¢, then A = ¢/2. This occurs when there is migration between two
islands with large effective population sizes. Then log (||c||/\) ~ log(2v/2),
so k € O(c) in equation (27). The right-hand side of (25) is essentially
exp(—Lt/c), and the rate of convergence is dominated by the overall rate of
coalescence.

5.2 Poisson hierarchical model

The previous section derives error bounds under the assumption that we could di-
rectly sample pairwise coalescent times within and between demes. In this section, we
relax this unrealistically favorable assumption, and instead consider a model where
the data consist of counts of the number of pairwise mismatches between randomly
sampled genes. Specifically, we suppose

D;; | T;; ~ Poisson(07T;;), (28)
Ty ~ PH(Q, avij) (29)

14



where the initial distribution c;; places all mass on deme ij € {11,22,12}, so that
T;; are (i.i.d.) pairwise coalescent times between two genes sampled from demes i
and j, which may be equal. Here 6/2 is the rate of mutation per unit of coalescent
time, assumed known. This type of model is known in the literature as the Poisson
random field (Sawyer and Hartl, ), and is realistic if there is no recombination
within genes; there is free recombination between genes; and 6 is low such that there
is no recurrent mutation (the so-called infinite sites assumption). It forms the basis
of methods designed to estimate population history from the site frequency spectrum

(e.g., Gutenkunst et al., ; Excoffier et al., ; Bhaskar and Song, ; Kamm,
Terhorst, and Song, ; Jouganous et al., ; Kamm, Terhorst, Durbin, et al.,

), and has had significant impact in applications (e.g., Yi et al., ; Gravel
et al., ; Tennessen et al., ; Gazave et al., ).

For each ij € {11,22,12}, we sample L i.i.d. mutation counts {Déij)}f:1 and
estimate the F) using sample averages:

L
. 1 (i
Ej=_—> D
ToL&= T

Then we use the estimators developed in the previous section.
To get a rate of convergence, we need to extend Proposition 9 to the marginal
distribution of D;; in (28).

Lemma 10. Let Dy; be distributed according to (28)-(29), and let Mp,,/9(s) denote
the moment generating function of D;;/0. Then for all s < 8log(1+ A/6),

MDij/g(S) < K.
Proof. We have

Eexp(sDi;/0) = E [E(exp(sDy;/0) | Tij)]
= Eexp [GTij(es/Q —1)]
= Mcaij [9(65/9 — 1)] s
so the claim follows from Lemma 4. OJ

Remark. Lemma 10 also follows from general results on subexponential mixtures of
Poisson random variables (Schmidli, ), but our earlier results enable a direct
and more quantitative proof.
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Proposition 11. Let Dgij),Déij),...,D(Lij) be i.i.d. with distribution D;; in (28).

Then
Lt* Lt
> Lt> §2exp{—min (—2,—)}, (30)
7

L
(S0,
=1

where
v < max {1, log, H}/(Glog v1+ /\/9>

and ¢ > 0 1s a universal constant.

Proof. As in the proof of Proposition 9, we find that Mp, e(r/K) < 2 for r <
@log(1l + A/6) and the same constant K. Taking r = @log /1 + \/0, we get

v = || Dij /0y, < K.

5.3 Simulations

Using Propositions 8-10, we can bound the accuracy of migration and coalescent
rate estimates in the two-island model from finite amounts of data. For example,
setting ¢t = 0E;; in (30) and finding L such that the right-hand side is less than or
equal to €, we get a bound on the relative error |E” — E;;|/E;; < § that holds with
probability at least 1 — e.

In Figure 1 we consider using sample averages of T;; and D;; to estimate Els,
the average coalescent time for lineages originating in different demes. We set § =
e = 0.1, i.e. < 10% relative error with > 90% probability, and for simplicity we
took ¢; = ¢ = 1. In the simulations of D;;, the mutation rate was set to 0 =
0.1. The area between the shaded blue region contains the .05-.95 quantiles of the
sampling distribution of Elg, obtained over 1,000 independent trials. The red lines
are (1 +0.1)E;2. Based on our theoretical calculations, we found the value of L*
needed to ensure that the blue region was contained between the red lines. Thus,
the sharpness of our bounds is reflected in the gap between the red lines (bounds)
and blue region, with a larger gap indicating that our bounds predicted more samples
were required than were actually necessary.

We see that the bounds are fairly accurate, particularly for using T (direct
sampling of coalescent times) in order to estimate the population means. The actual
number of samples L* is plotted in Figure 2 (left panel). As expected, estimating
E45 with Poisson noise is more difficult, requiring 1-2 order of magnitude more data
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Figure 1: Observed and predicted 90% confidence intervals for the 5 and 95
percentiles of the sample mean. Left panel: directly sampling (7;;). Right panel:
Poisson noise (D;;).

to obtain the same level of accuracy, and estimation requires more data when the
migration rate is low.

Next, we used simulations of D;; to estimate the migration rate m using (19). We
studied the relative error |m/7m — 1| and compared it to the bound (20), where, as
noted above, 0 = 0.1 and m varied across a range of values. (Of course, (22) depends
on the true parameters m and ||E||, so the bound may have limited practical use, but
we can use it to get intuition for how the methods perform on real data.) The results
are shown in the right panel of Figure 2, where we plugged § = 0.1 and relevant
values ¢, co,m and E into (22) to obtain the upper bound. We can see that the
bound is loose by a (large) constant, but has the correct functional dependence in
m. Since Figure 1 showed that the concentration bounds on D;; are accurate, this
imprecision is probably due to the fairly rudimentary bounds employed in the proof
of Proposition 8.

6 Lower bounds

In this section, we prove several lower bounds on parameter estimation in the two-
island migration models. The starting point of our work is the following result
of J. Kim, Mossel, Récz, et al. ( ) on distinguishing between different single-
population coalescent models.

Theorem (J. Kim, Mossel, Racz, et al. , Theorem 3.2). Consider the following
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Figure 2: (Left panel) Number of samples calculated to obtain concentration bounds
in Figure 1. (Right panel) Relative error in estimating m from Poisson-distributed
mutation data.

hypothesis testing problem: H; states that the effective population size during the
interval [0,00) is constant N, while H, states that the population size during the
same interval is the constant (14 n)N for a fixed n > 0. If L i.i.d. coalescent trees
on n individuals are observed from either Hy or Hs, each with prior probability 1/2,
then the Bayes error rate for any classifier is at least (1 — 1)/2, where

<ol (1 B (2_m>> L L=y (31)

2+ 4

In this section, we prove analogous results for population sizes and migration
parameters in the two-island model and the isolation-with-migration model. There
is a limitation in distinguishing between two hypotheses on population history for an
arbitrary period of time with any estimation method, even though simple moment-
based estimators converge quickly to their respective model parameters. Our bounds
are given in terms of the rates of coalescence and migration in the two-island model
model. The form of these results differs slightly from those of J. Kim, Mossel, Racz,
et al., which are stated in terms of (perturbations of) the effective population size N.
In the panmictic setting of their paper, the effective population size and coalescence
rate are inversely related, but such a simple relationship no longer holds here: there
are multiple effective population sizes, and the rate of coalescence has a complicated
expression that depends on all of the model parameters (see Section 3). Thus, it
seems more natural to work with the rates of coalescence and migration directly.
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6.1 Probability metrics and Bayes error rate

The section expands on the discussion in Section 3 of J. Kim, Mossel, Racz, et
al. ( ). Let (Q,F,P) and (Q,F,Q) be two measures defined on a common
probability space, with corresponding probability density functions fp and fg. The
total variation distance between P and () is defined to be

drv(P.Q) = sup|P(A) - Q)| = ; [ I fal.

AeF

By abuse of notation, we may sometimes write drv (fp, fo) to mean the same thing.

Suppose we are given a datum D that has been generated under either P or (), and
are asked to decide which measure was used assuming both choices are equally likely.
The total variation distance between P and () bounds the ability of any classifier
to do so. Indeed, let y € {P,Q} denote the true data generating distribution, and
X(D) € {P,Q} be a classifier. The probability that x correctly classifies D can be

written LT
Pt =x) = ——, (32)

where T > 0 since the error of any binary classifier can be made less than 1/2. Note
that (32) rearranges to

T=Px=x) —P(X#x).

It can be shown (e.g., Devroye, Gyorfi, and Lugosi, ) that the best possible
classification rule is the likelihood ratio: is x = P iff P(D) > Q(D), in which case

Pa=0-PiA0 =3 | [fe+ [ fo= [ 5= [ fo| —arwra).

fr>fo fo>rfp fo>fp fr>fq

This classification rule is said to achieve the minimal or “Bayes” error rate. If multiple
samples are given, say Dy, ..., D, then T = dpy(P®L, Q®L), where P®L denotes
product measure.

In our setting, it is easier to work with a related quantity known as the Hellinger
distance:

(P.Q =3 [ (V- V)
:1_/./fpr. (33)
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It is easily shown that d2,, < 2d%. Furthermore, the Hellinger distance distributes
over product measures: if P = P; X P, and (Q = ()1 X () represent product measures,
then

dy(P,Q) < diy(Pr, Q1) + d3(Pa, Qo). (34)
Hence, given L i.i.d. samples hypothesized to have been generated under either P or
Q, it follows that

T < dpy (P98, Q%) < 2d3 (PPF, Q") < 2Ldj(P,Q). (35)

Going forward, we may abuse notation by identifying @Q; with its corresponding
probability density function f@ and compute dZ(f", f#) and dry (f&, f@).

6.2 Two-island models

In this subsection, we study the ability to statistically distinguish between different
two-island models as a function of how close they are to each other. For ¢ = 1,2, we
suppose that under H; the coalescent times are generated under a two-island model
with rate matrix Q® = Q(c®, m®), and that Q® is close to Q™) in a sense that is
made precise below.

To improve readability, for the remainder of the section we suppress dependence
of the density and hazard functions on x and y when there is no risk of confusion.

Let h = [n\" + hP)/2, H = [*h, and R =h— \/A{"h? > 0. Then

/\/f(l)f@ / (h— R) _1—/ ~HR, (36)

all integrals being over the positive reals. So by (33),

B, 1) < / ¢ R,

If
WY = (14 8)ndY, (37)

then R = [(2+6)/2 — V1 +70] hgl), whence

f 2V1+49 62
-
R=1—- — < —. 38
/ ‘ 2+5 — 8 (38)
This is essentially the bound obtained by J. Kim, Mossel, Récz, et al. ( , The-

orem 3.2).
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Below we extend this result to the two-island model. Theorem 12 covers the
case when the two model hypothesis are d-close in the sense of Definition 6, without
placing any additional assumptions on the relationship between the hypotheses. This
result is general, but as can be seen from equation (39), the bound is on the order
O(0), so it is asymptotically looser than the O(4%) bound indicated by (38). Getting
the O(6?) rate turns out to depend rather delicately on a cancellation of the first-
order coefficients in the Taylor expansion of 24/1+46/(2 + 0). This, in turn, only
seems to happen if the hazard rate function h§-2) is an exact scalar multiple of hgl), as
in (37). When there is more than one population, such an equality no longer holds
even when the parameters of the underlying model differ only by a multiplicative
factor. Currently, we do not know if the difference in rates is an artifact of our proof
technique, or if having data from multiple populations in fact renders the inference
problem quantitatively easier.

Theorem 12. Let H, and H, be hypotheses with corresponding rate matrices QW
and QP such that H, is §-close to Hy. If L i.i.d. pairwise coalescent trees are
sampled under Hy or Hy, each with probability 1/2, then for sufficiently small § > 0,
the Bayes error rate for any classifier is at least (1 — Y)/2, where

T? <2L[Cé+ O(6%)], (39)

where
20xM log(64)

T

The proof actually derives nonasymptotic (in ¢) bounds on T, but to simplify the
exposition we choose to present the result in the form (39). To prove the theorem,
we establish some lemmas that enable upper-bounding the distance between the
probability measures corresponding to H; and H,. For i = 1,2, we suppose that
under H; the coalescent times are generated under a two-island model with rate
matrix Q¥ = Q(c®, m®). We assume that Q® is d-close to Q). By rescaling
coalescent time, we may assume HQ(I)H =1, so that

QW — Q®¥| <25
QP < 1+ 24. (40)

Lemma 13. Let h§1) and h§-2) be the hazard rate functions corresponding to Hy and
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Hy when there are j lineages remaining.

(¢)) ()

h" — W 201+ 26)a,||p Py ~ Py, (41)
h(l) h( W @
< (1+6)h" + (1+ 25)a; ‘ e (42)
Lemma 14. Let hg-l) and h§-2) as above. Then
VI 2 (1= 200" —2(1+ 20)a; ||py) — By |

We prove the Theorem in the case where the number of sampled leaves n equals
2, so the previous Lemmas are applied only in the case where n = j = 2. It follows
from Theorem 7 that the error terms in the above expressions converge to 0 linearly
in 4.

Proof of Theorem 12. The squared Hellinger distance between the two hypotheses is

(f(l) f(2) / \/f(l) (y|0) f(2) (y]0)dy

Recall that the density can be expressed using the hazard rate as
737(510) = B (yl0)e F=o T € (1,23,

Substituting these expressions and applying Lemmas 13 and 14 implies

/ VI 1012y 0)dy

y=0

0 y (1) (2)
= / exp <—/ rp (t10) _; hy (£10) dt) \/hél)(y | 0)hs (y | 0) dy
y t=0

=0

00 Y
> / exp (—(1+5) / rY(t | 0) dt) (43)
Y
X exp (—ﬂ ) ) ‘ dt) (44)

5 o lIPio — Pyo
x [(1—25)@”@\0)— (1+25)] pll) — pgjg]l] dy. (45)
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(Note that in the preceding display, we have a; = ay = 1 since we assume j = 2.)

We combine lines (43) and (44) in the above display to form

1+ 20
Baly 1 0) = (14 ) (| 0) + == B — B

and then subtract (14 ¢)/(1 — 2J) times line (45) from ko to form
~ (1+20)(5+20)
v0) = 5 o)

Ray | @) = v(6) [plfy — pl}

‘1'

This gives us

/ Vi o) <2>y|o>dy

1—25

Pyjo = Pypo 1’

(46)

> 225 e (- [ w10 < bty 10~ Raly | 0]y

Splitting the integral into two pieces, we first have

/y“; op {_ /tyo a(t 0)} Fa(y | 0)dy =

For the other piece, the Chernoff bound (9) gives

] Yy o0 Y
/ exp (— / hV(t | x)dt) dy < / exp (— / hV(t | a:)dt) dy
y=0 t=0 y=0 t=0

00 1)
< sup/ (o >t)dt < —=
a Jit=0 i ) AW~

By Theorem 7,

W _ 50
Pyjo = Pypo

The preceding display and (46) imply

‘ < 265 log [8(1 4 26)] =: w(d).

> / e <‘ / a(t x>dt) Ryly | z)dy > — 200

A

=0
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Putting it together, we have

Expanding z in powers of §, we find that

20kM log(64
1_<3+Lg<>

z = [)\(1)]2

) 5+ 0(5).

The Hellinger distance then satisfies
diy (0, f@) <1- =

As § tends to 0, we eventually have 0 < z < 1. Finally, we have 1 — z < O(0), so we
obtain (39). O

Remark. In the proof above we used Theorem 7 to bound Hp(l)

ylo
(47). This makes use of the assumption that p(% = péi))7 i.e. the starting distributions

under the two hypotheses are the same. If we were to consider sample sizes larger than
two, we would have to control the difference between the conditional distributions
(see equation 3) pz(j; , and pflij, where z; is a (random) time at which the j-th
coalescent event takes place. This turns out to be difficult without placing additional
and somewhat unnatural assumptions on Q™) and Q®, so the result is limited in its
current form to the case n = 2. Note that this difficulty is specific to multi-population

models and does not arise in the single-population analysis.

pf‘()) || in equation

6.3 Isolation-with-migration

In this section, we consider a two-island problem where the two populations were
part of a panmictic ancestral population until time 7 > 0 in the past, sometimes
referred to as the isolation-with-migration (IwM) model (Hey and Nielsen, ).

Let ¢ = (co, c1,c2) be the vector of coalescent rates where € = (¢, ¢y) are for
the islands under the two-island portion of the model and ¢y is for the ancestral
population. We will need

Cmax = mMax(cy, ¢1, ¢2) Cmin = min(co, ¢1, C2)

as well. As in the previous section, we consider the ability to distinguish between

two hypothesized models, so c?, €@, cgl)ax, etc. are defined for i = 1, 2.
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The hazard rate function now depends on ¢ and 7:

a;: e pS (tx) + copS (tx t<r
hj(”x)_{J[lan) 2p22(|) >

a;Co, t>T.

The final result is an analog of Theorem 12 for the case where two IwM models
are compared. The proof is similar to the previous theorem, so it is given in the
Appendix.

Theorem 15. Let Hy and Hs be hypotheses with the same ancestral coalescent rate cqy
and two-island rate matriz Q but different divergence times V) and 7 = (14-6)7W.
Suppose L i.i.d. coalescent trees on n individuals are sampled under Hy or Hs, each
with probability 1/2, then for sufficiently small § > 0, the Bayes error rate for any
classifier is at least (1 —Y)/2, where

T2 <2L{1—(1-78)"""} <14L(n - 1)0.

7 Discussion

In this paper, we studied upper and lower bounds for parameter estimation in the
two-island model with migration. In Section 5 we derived some upper bounds on
estimation error of the migration and coalescence parameters in the symmetric two-
island model, and confirmed by simulations that our theoretical results are accurate
(up to constant factors). In Section 6, we obtained lower bounds on the Bayes
error rate for distinguishing between different two-island and isolation-with-migration
models. Our results have basically the same consistent message: if the “sample size”
Ln is much smaller than 1/6, where § is some measure of relative closeness between
the hypotheses, then no procedure is able to reliably distinguish between them on
the basis of sampled coalescent trees.

It is instructive to compare our results to those of J. Kim, Mossel, Récz, et al.,
which inspired the present work and whose proof techniques we have adapted. Our
results differ by leading order in § (n, in their notation): J. Kim, Mossel, Racz,
et al. obtain T? < O(Lnd?) whereas the bounds in this paper are merely (at worst)
O(Lnd). The bounds have different leading orders, and for small § theirs is tighter.
In the J. Kim, Mossel, Racz, et al. paper, the simplicity of their model implies a
direct relationship between the hazard rates of the original and perturbed models
(see equation 37, above), which leads to a sharp rate via the argument summarized
in Section 6.2. The situation is not as simple when there are multiple populations,
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and we have to settle for bounds (Lemmas 13 and 14) instead of equality to quantify
the relationship between h; and hy. These culminate in the somewhat looser result of
Theorem 12. At present, we do not know whether the difference is due to our proof
method, or whether estimating the coalescent and migration rates may be easier
under a multi-population model. Note that their setting is not technically a special
case of the one we consider here since we need to assume that m # 0 in the definition
of the model (2); if we do not assume this, the condition number k£ — oo and many
of the results in Section 4 become vacuous.

The models we have analyzed here are very basic, consisting of only a few pa-
rameters and at most two populations. Even if this restricted setting, the theoretical
analysis is already cumbersome. Nowadays, significantly larger and more compli-
cated models involving many populations and migration events between them are
routinely estimated from large genetic datasets; there is a large gap between theory
and practice. We have attempted to fill that gap, but there are many possible ex-
tensions and avenues for future work. In particular, we are not able to say anything
about likelihood-based estimation in multi-population models, despite it being by far
the dominant mode of method of estimation in applications. A useful, though seem-
ingly difficult, future direction would be to study the likelihood function of genetic
data under multi-population models with migration.
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8 Appendix

We first provide proofs of the main propositions of Section 4.

Proof of Proposition 2. By the Gershgorin circle theorem, the eigenvalues of Q have
nonpositive real part, and Ay = 0 since Q is a rate matrix. Let Q' be the 3 x 3
leading principal minor of Q. Then v = (vy,vs,v3,v4)7 is an eigenvector of Q with
nonzero eigenvalue if and only if vy = 0 and (v, vo, v3)T is an eigenvector of Q' with
the same eigenvalue.

Defining D := diag(1, \/m1/(2ms), \/ma/(2m1)), we have

—(my +mg)  /2mymy V2mqime
DQID_1 = 2m1m2 —(Cl + 2m2) 0 = A. (48)
2m1m2 0 —(CQ + 2m1)
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Thus, Q' is similar to the Hermitian matrix A, so {1, A2, A3} C R<g. In fact, since
det A = — [2 (clm% + QCng) + ci1e0 (Mg + mg)} <0,

A has no zero eigenvalues: A3 < Ay < A1 < 0. Finally,

< - Z)\l - —tr[(Q’)_l] = —tI‘{A_l],

i=1 "

A1

which yields the lower bound in (8) by direct computation of A~!. Finally, for the
upper bound we have

Az A+ A+ A =tr A = —([lc[l + 3[ml},).
]

Proof of Lemma 4. Let A3 < Ay < A1 < 0 be defined as in Proposition 2. By
Proposition IX.1.8 of Asmussen and Albrecher ( ), P(Co > t) < M as t — oo,
which implies that

/00 e dP((y) < o0

0
for r < |A\1]. Next, by Proposition IX.1.7 of Asmussen and Albrecher,

M (r) = a(-rI - Q) 'c. (49)
With A = diag(Aq, Ag, A3) and 0 < r < |\, we get

[(=rT=Q) | = [T+ A)7
= max |r + ;|
= (min ]’r+/\i])_1
1 1
S
T’—)\l - ‘>\1|

The multiplication of Q with the fourth standard basis vector e; = (1,0, 0,0)7 equals
the fourth column of Q, i.e. c. The result follows from (49) and the facts that

lell = [ Qedll < lIQ (50)

el < ey = 1.

OJ
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We now prove a sequence of results that enter into the proof of Theorem 7.

Proposition 16. For any two initial distributions oy, o, we have
HaletQ — agetQHl < 16Kke M.
Proof. Let Po(X(t) = s) be the sth component of ae!Q. For i = 1,2 define
U = Po, (X (t) = coal) =1 —P((y, > 1)
for (o, defined by (7). Then for s # coal,
Po, (X (t) =s) <1—u;.
By repeated applications of the triangle inequality,

HaletQ — ozzemH1 = Z P, (X(t) = 5) = Pu, (X (t) = 9)|
SES
= |Pq, (X(t) = coal) — Pq, (X (t) = coal)|
+ ) |Pay (X(t) = 5) = P, (X(t) = 5)|
s#coal
= |]P>(Ca1 > t) . P(Caz > t)| + 6max{1 — Uy, 1— u?}
< 8max{l — uj, 1 —us}.

Finally, by Corollary 5,

max{l —ur, 1 —up} < (o]l + [lez)) [QI A e~

Lemma 17. If Q® is §-close to QW) then

|)\(1) _ )\(2)‘ <26 HQ(l)H )

(51)

Proof. As in the proof of Proposition 2, let A® and A be the Hermitian matrices
to which (the upper-left submatrices of) Q") and Q) are similar, cf. equation (48).
By Weyl’s eigenvalue perturbation theorem (e.g., Horn and Johnson, , Theorem

4.3.1)
A AP < A0 - A%
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By the stated assumptions, we have for the entries of A1) and A®,

O _ 4@ < ol

|aij i

which implies that
1A =A@ <5 [[AD] .

Hence,
|AD - AP < [AD — APy < 5]AD]5 < 261 A0 < 26]Q],
where the final inequality is because

[A®]] = sup [[ADV] < sup [|QUv][=[|Q™].
vER3 vER?:

€
lIvi=1 l[vll=1
]

Proposition 18. Suppose QY and Q@ are 6-close for some § < 1/(4xM)). Then
forallt >0,

Proof. By Lemma 17 and the assumptions,

2 (1
pt\a: - pt|x

< 8(1+ 2(5)%(1)6_’\(1)t/2
1 F - )

min{AM, A@} > A0 —25{|QW| > AW /2. (52)

Observing that e, = (0,0,0,1)T is a left eigenvector of €'Q for any ¢ and Q defined
by (2), we have

(2) (1) (2) (1)

[pi2 w2, < {lpii — o], + [les — vl
=[piz - eus” ]+ o - pi2].
< 2 (|1l /AD + @ et/ A@)
<41+ 20) QW] (/AW + XM\ (53)
< 8(1 +26)[|QM [ X2 /AW, (54)

where inequality (53) follows from equations (50) and (12), and inequality (54) follows
from (52) and the fact that x — e~*'/z is decreasing. O
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Proof of Theorem 7. In the notation of Mitrophanov ( ), Proposition 16 implies
b= AY/2 ¢ = 64(1 +2§) > 2 in his equation (2.1), and (13) implies z(t) = 0.
Plugging these constants into Mitrophanov’s equation (2.9) and using (11), we obtain

_ 2]
| <=

(2) (1)

Pis ~ Pua |, log [64(1 + 20)] .

We now give proofs of the two technical lemmas in Section 6.2.

Proof of Lemma 15. Letting P® = diag(0, 01 ,c(l) 0) and recalling equation (10),
we have

—1|4,(1) (2)
a; hj —hj
_ Op@1) _ 2p©)

B (py\wP py\wP )1‘

L

Pyjz
M _ 1)
[ pD, + ( p!)) pylw) (I+Dy)| PV1| (55)
1 2
H (pi1 —pi) PO
&) 2

By equations (50) and (40),
PP, < [[P]| =[], <2[1Q™] <201 +29),
establishing (41). Inequality (42) follows by writing

B !
j i O @ 5
BT L (- ) 56)

and using (41). O

Proof of Lemma 14. Using the identity

=a i —a a
Vab = +\/5+\/E(b ), aAb>0,
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we have

-1, [p 1) (2)
a;j A/ Iy h;

1/2 1/2

(D) p(1) @) p)
Z pWP 1 ’py‘zP Hl
‘ (1‘) (1)”1/2
_ |V p® Py QOp0 | _ [|,Op
= [[PuP 1+ PO 2p) 1/2 (prle H1 prk‘P H1)
|efize H + el
> (1)P(1) _HP1)H (2)
= || Pyl 1 ylw TPy 1
Multiplying both sides by a; implies the result. O

We conclude with the proof of the main result.

Proof of Theorem 15. The proof is along the same lines as that of Theorem 12. Let
hg-l) correspond to 7 and h§2) to 72, We have

RO | @jm) = KO ay) Vg [, 7],

Otherwise,
WO | 2) — hP(t | 2) = (co — [P} Pell)ay.

We quantify the difference in hazard rates by adding and subtracting terms. Let
1{; <4<y be the indicator function that equals 1 whenever M <t < 7@ and
equals 0 otherwise. Then

/y WY (| 2) + hP (¢ | @)
2

dt
v Bt 2) — AWt | 2
:/ h§”t|xdt+/ (o) =hy @) o,
t=x 2
1 (Y 1
S/ RSO (¢ ] @) dt + 2/ Cmaxj (1—C—HP§|22PcH1> L <ory dt
t=x max
1 L[
§/ h (t|x)dt+ 2/ Cmaxajl{q.(mgtg,,.(z)} dt.
t=x
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Now for some « € [0, 1] we have

VA | 2hP(y | 2) = Wy | 2) - anO(y | 2) - K2y | )

> WMy | ) -

2
€ — ||p£|£PEH1 aj1{7<1>§y§7<2)}
1
> hg )(y | l') — chaxaj]'{T(l)SyST@}}'

Combining the preceding displays, we get

[ V1 w17 ) dy

Y 1
> / exp (—/ [h§1)(t | z) + ECmaxajl{T(l)gth@)}] df)
y=x t=x

1
X |:h§1) (y | x) + §Cmaxaj1{7—(1)§y§7.(2)}

— §Cmaxaj1{7_(1)5yg7_(2)} — 3Cmaxaj1{7_(1)gy§7_(2)}:| dy.

The first part integrates to one:
~ PR 1
exp | — hj (t]x)+ §Cmaxaj1{7(1)§t§7(2)} dt
Yy=x t=x
x |hY( \x)+lc a;l dy =1
j y 2 max“y {T(l)SyST@)} y - .
For the other part,

0 y 1
/ exp <—/ [hg,l) (t]x)+ §cmaxa]~1{7(1)§t9(2)}] dt) dy
y=x t=x

S /Oo e—Cmax(lj(y_CL’)/Qdy — 2
Y

=x Cmaxaj
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This implies

— / exp (—/ |:h;1)(t | l‘) + §Cmaxaj1{7_(1)§t§7_(2)}:| dt)
y=x t=x

1
X |:§Cmaxaj1{r(1)<y<q—(2)} + 3Cmaxaj1{7—(1)<y<q—(2)}:| dy

2 1 e
> — |:_Cmaxaj + 3Cmaxaj:| / 1{7—(1)§y§7—(2)}dy
Y

Cmaxaj 2 =x

> —T9.

Putting it together, we have

/ \/f;l)(y | l”)fj@)(y | 2)dy > 1—76

Hence,
di(fO, fP) <1- (@ =78,

giving the first inequality. With 2 := 1—74, we use the bound 1—2""1 < (n—1)(1—2)

to obtain the second inequality.
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