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In a striking result, Louca and Pennell [S. Louca, M. W. Pennell, Nature 580, 502–505
(2020)] recently proved that a large class of phylogenetic birth–death models is statis-
tically unidenti!able from lineage-through-time (LTT) data: Any pair of su"ciently
smooth birth and death rate functions is “congruent” to an in!nite collection of
other rate functions, all of which have the same likelihood for any LTT vector of any
dimension. As Louca and Pennell argue, this fact has distressing implications for the
thousands of studies that have utilized birth–death models to study evolution. In this
paper, we qualify their !nding by proving that an alternative and widely used class of
birth–death models is indeed identi!able. Speci!cally, we show that piecewise constant
birth–death models can, in principle, be consistently estimated and distinguished from
one another, given a su"ciently large extant timetree and some knowledge of the
present-day population. Subject to mild regularity conditions, we further show that
any unidenti!able birth–death model class can be arbitrarily closely approximated by
a class of identi!able models. #e sampling requirements needed for our results to hold
are explicit and are expected to be satis!ed in many contexts such as the phylodynamic
analysis of a global pandemic.

identifiability | birth–death models | phylogenetics | phylodynamics

The birth–death process (1, 2) is a classic model of population growth. Recently, it has also
been used to study speciation and extinction (3–6) and also the evolution of pathogens
(7). Data-driven inquiry in these !elds is inherently challenging, because the majority of
species and pathogens that ever lived have left us with no record of their existence. "us,
we can only make inferences about evolution on the basis of a biased sample of the species
or lineages that happened to survive to the present day (6, 8). Interest in the birth–death
process arises in part from the fact that it provides a principled way of correcting this bias
(9, 10).

Realizations of the birth–death process can be viewed from a phylogenetic perspective
as rooted trees, where each leaf node represents a species that survived until the present,
internal nodes are unobserved species, and edges represent lines of descent. "e shape
of the tree is governed by two nonnegative functions that describe, at any given time t
before the present, the per-capita rates of birth and death. As noted above, a distinguishing
feature of this model is that lineages that died out before the present are not re#ected in
the resulting tree. Given birth and death rates, as well as a third parameter known as the
sampling fraction, we refer to the resulting distribution over random trees as a phylogenetic
birth–death (henceforth, BD) model. (A precise de!nition is given in the next section.)
"e BD model implies a distribution over observed evolutionary data, and given such
data, we can use statistical estimation to make inferences about the model parameters.

BD models have been utilized in thousands of published studies (11–13), despite
possessing known and somewhat troubling limitations. Stadler (14) showed there exist
di$erent birth–death models that have the same likelihood in terms of observable data.
In statistical terms, this implies that the BD model is unidenti!able without further
assumptions. "e models considered by Stadler are highly parsimonious, consisting of
constant birth and death rates that do not change over time. "e problem is made even
more challenging if the rates are time varying (15).

Very recently, Louca and Pennell (16) (cited hereafter as LP) proved that the situation
is actually much worse than was previously realized: For any reasonably smooth birth
and death rate functions, there are in!nitely many other such functions that result in the
same distribution over phylogenetic trees. Although each of these functions represents a
qualitatively di$erent evolutionary scenario, LP’s result shows that it is impossible to tell
which of them produced a given dataset, even if the data were in!nite. In light of the
huge number of times that this model has appeared in the literature, this !nding is highly
worrisome.

Consistent estimation is impossible in an unidenti!able statistical model, so when faced
with one, there are two ways forward: 1) Use a di$erent model, or 2) impose additional
regularity conditions on the parameter space to restore identi!ability. For the BD model,
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Fig. 1. An extant timetree on n + 1 = 3 leaves.

option 1 may be warranted in some settings, but such a debate is
beyond our scope. In this paper, we focus on option 2. Our main
result is to prove that there exists a class of BD models that are
identi!able based on lineage-through-time (LTT) data from an
extant timetree. By identi!able, we mean that, within the space of
rate functions we consider, each distinct BD model corresponds to
one and only one likelihood function, and conversely. In fact, this
space consists simply of piecewise constant rate functions, which
are already widely used to !t BD models in practice.

Our results show that this class is identi!able once there are
enough leaves in the extant tree, and we derive explicit lower
bounds on the requisite number of samples. "ese bounds depend
on a measure of parsimony of the underlying model class: "ey
require that identi!able classes of birth–death rate functions do
not oscillate unnaturally, in a sense that is made precise below. "e
same phenomenon has previously been observed in population
genetics (17, 18), and our proofs are based in part on these earlier
works.

1. Preliminaries

In this section, we de!ne the BD model and introduce some key
de!nitions.

"roughout the paper, n is used to denote the number of
internal branching events, so that n + 1 is the number of leaves.
We assume n ≥ 1 and suppress explicit dependence on it when
there is no risk of confusion. Given n + 1 sampled taxa, an extant
timetree is a bifurcating tree that traces out the ancestry of the
sample. "erefore, the extant timetree has n internal nodes that
denote the times at which various taxa diverged from common
ancestors. "ese are denoted 0 ≤ τn < · · · < τ1, where time runs
backward from the present. As in LP (16), we assume that all
n + 1 samples are collected at time t = 0. "ere is also a root
node referred to as the origin that occurs at height τo < ∞, when
the process is assumed to have started. "e height of the origin
node is not resolvable from character data evolving along the tree
since it is ancestral to the entire sample, so its value is conditioned
on using prior information. An example of an extant timetree with
three leaves is shown in Fig. 1.

Extant timetrees are assumed to be stochastically generated
by a BD process (4, 14). "is process has three parameters: two
positive rate functions λ : R≥0 → R>0 and µ : R≥0 → R>0 and
an initial sampling fraction ρ ∈ (0, 1]. Here λ and µ represent the
instantaneous rate per capita at which lineages are born and die
going forward in time, and each lineage surviving to the present is
sampled independently with probability ρ. Henceforth, we refer

to di$erent BD models by their corresponding parameter triples
(λ, µ, ρ). Under the BD model with parameters (λ, µ, ρ), the
density of an extant timetree is denoted L(λ,µ,ρ)(τ1, . . . , τn). "e
precise form of L(λ,µ,ρ) is not important for what follows, but
can be found in Morlon et al. (ref. 5, equation 1). Note that
the topology of the timetree is uninformative in this model; the
likelihood depends only on the merger times τi .

Turning now to the concept of identi!ability, let Θ be an
arbitrary parameter space, and let Lθ denote a likelihood func-
tion parameterized by θ ∈Θ. "e statistical model LΘ = {Lθ :
θ ∈Θ} is the image of Θ under Lθ, that is, the set of all possible
likelihood functions that can be obtained from the parameter
space Θ. If Θ is a set of BD parameters, we use the notation

BΘ =
{
L(λ,µ,ρ) : (λ, µ, ρ) ∈Θ

}
[1]

to emphasize that we are focusing speci!cally on the BD model.

De!nition 1 (identi!ability): "e statistical model LΘ = {Lθ :
θ ∈Θ} is identi!able if θ &→ Lθ is injective; that is, for all θ1,
θ2 ∈Θ, we have Lθ1 = Lθ2 =⇒ θ1 = θ2.

In the context of the BD model Eq. 1, the statement
“(λ1, µ1, ρ1) = (λ2, µ2, ρ2)” is understood to mean that
ρ1 = ρ2 and that the corresponding rate functions are equal
almost everywhere. Similarly, two density functions Lθ1 ,Lθ2 are
considered equal if they di$er on at most a set of zero Lebesgue
measure.

If di$erent parameters yield the same likelihood function, they
cannot be distinguished using any amount of observable data.
Identi!ability is therefore the most minimal regularity condition
one can place on a statistical model.

2. Results

In this section, we summarize LP’s (16) results, prove that piece-
wise constant BD models are identi!able, and explore some
additional corollaries and conjectures.

A. The Result of Louca and Pennell (16). "e key quantity that
underlies LP’s (16) result is the so-called pulled (birth) rate
function λp , which is de!ned to be the relative slope of the
(deterministic) number of lineages through time. "ey show that
the relative slope is equivalently expressed as

λp = λ · (1 − E ), [2]

where E (t) is the probability that a lineage alive at time t has no
descendants sampled at time 0. "en Eq. 2. shows that the actual
birth rate λ is “pulled” downward to obtain the function λp . "e
antiderivative of λp is denoted

Λp(τ) =

∫ τ

0
λp(u) du.

"e function E satis!es the ordinary di$erential equation

dE

dτ
= µ − (λ + µ) · E + λE 2, [3]

with initial condition E (0) = 1 − ρ. "e solution to Eq. 3. is (5)

E (τ) = 1 − e
∫ τ
0 λ(u)−µ(u) du

ρ−1 +
∫ τ
0 λ(u)e

∫ u
0 λ(v)−µ(v) dv du

. [4]

Note that E is continuous, even if λ and µ are not.
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"e pulled rate function completely characterizes the likeli-
hood of an extant timetree. Speci!cally, by equation 34 of LP (16),

L(λp)(τ1, . . . , τn) ∝ e−Λp(τo)
n∏

j=1

λp(τj )e
−Λp(τj ),

0 ≤ τn ≤ · · · ≤ τ1 < τo .

[5]

By implication, any two BD parameter triples (λ1, µ1, ρ1) and
(λ2, µ2, ρ2) that generate the same λp via Eq. 2 are indistin-
guishable. LP’s (16) contribution is to show that this phenomenon
emerges in a surprisingly general class of models. Restated in our
notation, their main result is as follows:

!eorem (LP). Given an extant timetree on n + 1 taxa with origin
τo , let C1

+[0, τo ] denote the space of all functions that are strictly
positive and continuously di!erentiable on [0, τo ], and let

U =
{
(λ, µ, ρ) : λ, µ ∈ C1

+, ρ ∈ (0, 1]
}

be the set of all BD parameterizations derived from this space. "en
the BD model BU is unidenti#able.

Importantly, "eorem (LP) holds for any number of mergers n
and also if ρ is !xed. LP’s (16) proof is constructive and provides,
for any given BD model, a set of in!nitely many “congruent”
models that all have the same likelihood. As LP (16) argue in their
discussion, this result has disturbing implications for the reliability
of statistical estimates obtained from BD models, which have been
widely reported in phylogenetics, phylodynamics, paleogenetics,
and related !elds.

B. Piecewise Constant Models Are Identifiable. In this section,
we state our main results.

De!nition 2: Let

C⊕K
+ [0, τo ] =

{
K∑

k=1

ak1[tk−1,tk )(t) : a ∈ RK
>0, 0 = t0 < t1 < · · · < tK = τo

}

be the set of all positive piecewise constant functions with K
pieces de!ned on [0, τo ].

Note from the de!nition that C⊕K
+ [0, τo ] encompasses all

possible piecewise constant functions with K breakpoints. "e
location of the breakpoints can vary between models; we do
not assume that all models are de!ned on a set of common
breakpoints.

Next, we de!ne the class of BD parameterizations that forms the
basis of our identi!ability proof. In the de!nition and in what
follows, we assume that the sampling fraction ρ ∈ (0, 1] is a !xed,
known parameter. "is is necessary because if ρ is allowed to vary,
then as noted in the Introduction, Stadler (14) has shown that
even the constant-rates BD model is unidenti!able.

De!nition 3: Let

IK ,ρ =
{
(λ, µ, ρ) : λ, µ ∈ C⊕K

+ [0, τo ]
}

be the space of all piecewise-constant BD parameterizations with
rate functions in C⊕K

+ [0, τo ] and !xed sampling fraction ρ ∈
(0, 1].

"e following is our main result:

!eorem 4. If n > 8K , then the BD model BIK ,ρ is identi#able.

"e proof of "eorem 4 is rather technical and is provided in
Appendix A. Proof of "eorem 4. For the reader’s convenience, we
outline the major steps here:

Sketch of proof. First, we establish (Proposition 7 ) the existence
of a numerical “signature” that is associated with the likelihood
function of an extant timetree in a phylogenetic BD model.
Any two likelihoods that are equal possess the same signature;
conversely, if two models have a di$erent signature, then their
likelihoods are di$erent, and hence they are distinguishable from
one another given in!nite data. Moreover, this signature is de-
termined entirely by the pulled rate function. Next, we show
(Proposition 8) that if there are two pulled rate functions that have
the same signature, then either 1) the pulled rate functions are
equal or 2) the pulled rate functions must oscillate in a certain
way. Finally, we prove (Proposition 10 onward) that, under the
condition n > 8K stated above, the pulled rate function of a
piecewise constant BD model is incapable of oscillating in this way
and moreover that distinct piecewise constant BD models have
di$erent pulled rate functions. "us, any two distinct piecewise-
constant BD models have di$erent signatures. "is implies that
they have di$erent likelihood functions—a fact that does not hold
for the more general model class considered by LP (16). !

Unpacking the result, it asserts that both the positions of the
breakpoints (the vector t in De#nition 2) and the levels of each
piece (the vector a in the de!nition) of both λ(t) and µ(t) are
estimable given su%cient data. "ese breakpoints are not assumed
to be shared between the two rate functions or indeed between any
two functions in the piecewise constant model space considered
by "eorem 4. If, as is common in practice, we do assume that
λ(t) and µ(t) are de!ned on the same set of breakpoints (while
still allowing this set to vary between di$erent parameterizations
in IK ,ρ), then easy modi!cations to the proof show that n > 4K
su%ces for identi!ability.

Several extensions and conjectures follow naturally from "e-
orem 4. Since it is possible to uniformly approximate a regular
function class over a compact set using step functions, identi!able
BD models are in some sense dense in the space of all BD models.
A prototypical result is as follows:

!eorem 5. Let ρ ∈ (0, 1] be #xed, let

F =
{
f ∈ C1

+[0, τo ] : ‖f ′‖∞ < B
}

be the set of positive, continuously di!erentiable functions with
bounded #rst derivative over [0, τo ], and let ΘF ,ρ = {(λ, µ, ρ) :
λ, µ ∈ F} denote the resulting BD parameter space. "en

1) BΘF,ρ is unidenti#able; and
2) "ere exists a set of functions G de#ned over [0, τo ] such that for

any ε > 0,
a) supf∈F inf g∈G ‖f − g‖∞ < ε, and
b) BΘG,ρ is identi#able if n > 8Bτo/ε.

Proof: "e !rst claim follows from LP (16), because their con-
gruence classes include smooth perturbations of constant-rate BD
models. For the second one, if f ∈ F , then
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Fig. 2. Unidentifiable vs. identifiable BDmodels. Top row contains four indistinguishable models exhibited in LP’s (16) figure 1. In Bottom row, we approximated
these models using piecewise constant functions using K = 50 pieces. The models in Bottom row are identifiable given sufficiently many samples. All models
are assumed to have the same ρ.

∣∣∣∣∣

K−1∑

k=0

f (τok/K )1[k/K ,(k+1)/K )(x/τo) − f (x )

∣∣∣∣∣

≤ max
k

sup
x/τo∈[k/K ,(k+1)/K )

|f (x ) − f (τok/K )|

≤ max
k

sup
x/τo∈[k/K ,(k+1)/K )

B |x − τok/K |

= Bτo/K .

Letting K = Bτo/ε yields the claim. !

An obvious caveat to "eorem 5 is that the sample size needed to
have (provable) identi!ability grows rapidly as ε→ 0.

Another possible extension relates to estimating birth–death
models using polynomials. Since constant functions are polyno-
mials of degree zero, it is natural to conjecture that identi!ability
holds for higher degrees as well.

Conjecture 6. Let P (⊕K )
d,+ [0, τo ] be the set of nonnegative, piecewise

polynomials of order d with K − 1 internal knots de#ned over
[0, τo ], and let Θ

P(⊕K)
d,+ ,ρ

[0, τo ] be the corresponding BD parameter
space, again for #xed ρ. "en the BD model BΘ

P
(⊕K)
d,+ ,ρ

[0,τo ] is

identi#able if n > 8K (1 + d).

Conjecture 6 would seem to imply that n grows with d , but
this would be o$set by having to use fewer pieces to obtain a
good approximation. We are unable to prove Conjecture 6 because
substantial di%culties arise when trying to extend our proof
technique to nonconstant functions. Speci!cally, we do not know
how to bound the sign change complexity of spline-based BD
models (see Lemma 13) except when d = 0.

3. Discussion

In this paper, we proved that piecewise-constant BD models are
identi!able from extant timetrees with a su%cient number of tips.
We also showed that, under mild assumptions, unidenti!able BD
models of the type considered by LP (16) can be approximated
to within arbitrary accuracy by identi!able BD models. Based
on these results, we conjecture, but are unable to prove, that
(piecewise) polynomial BD models are similarly identi!able.

In the short time since their publication, LP’s (16) !ndings
have generated considerable discussion (e.g., refs. 19–22), with
some authors concluding that they “will be dispiriting to evo-
lutionary scientists” seeking to understand the factors a$ecting
speciation and extinction (20). Our results may serve to lift those

spirits, while also illustrating potential subtleties that can arise
when reasoning about a limiting concept like identi!ability. For
example, consider the BD models shown in Fig. 2. Fig. 2, Top
row is reproduced from !gure 1 of LP (16) and shows four
color-coded BD models that all have the same pulled birth rate
and hence the same likelihood function. In Fig. 2, Bottom row,
we approximated these functions over the domain [0, 16] using
piecewise constant functions. By "eorem 4, these models can, in
principle, be distinguished given a su%ciently large timetree. Is the
underlying natural process that is modeled in Fig. 2 inferable from
data? "e answer seemingly depends on whether the researcher
believes that the piecewise functions shown in Fig. 2, Bottom
row can faithfully represent this process. If the researcher believes
piecewise functions do faithfully represent the process, then the
answer is yes. If the researcher believes continuous functions are
better, then our methods so far extend only to the conclusions of
"eorem 5. Empirically, we note that it would be nearly impossible
to di$erentiate (using, say, a simple hypothesis test) between
one of the C1

+ models in Fig. 2 and its corresponding C⊕50
+

approximation on the basis of a realistically achievable amount
of data.

An important point concerning our main result ("eorem 4)
is that it establishes only a su%cient condition for identi!ability.
It does not imply that piecewise models are unidenti!able if n
is below the stated bounds; in other words, we do not know
whether this bound is sharp. In our view, the main message is that
piecewise constant models are identi!able if at least O(K ) tips
are sampled. A related point concerns cases where the true model
is piecewise constant with a small number of pieces, say K0, but
the modeler, who does not know the “true” K0, !ts a much larger
model containing K + K0 pieces. Our theory shows that the true
model is identi!able in two senses: First, it can be distinguished
from all other piecewise constant models containing at most
K0 pieces, using at least 8K0 samples; and second, it can be
distinguished from among all models containing at most K pieces,
using n > 8K samples. From an estimation standpoint, there are
clear advantages to the model containing only K0 parameters,
since the resulting estimates would have lower error. However,
if the modeler is unaware of K0 and chooses the number of
pieces to be such that K ≈ n/8, those estimates will necessarily
be noisier, even if the model is technically identi!able. Finally, a
related question of practical importance is a necessary condition
for identi!ability, as some applications might not have enough tips
to have provable identi!ability.

As this example indicates, practitioners should be careful not
to overinterpret a%rmative identi!ability results as conclusive
evidence that high-quality estimates can be obtained on real
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problems. Even in identi!able models, it is often the case that
signi!cant regularization and/or prior information have to be
incorporated to obtain sensible results (7, 19, 23–25). Having
established identi!ability, the next step would be to understand
the !nite-sample accuracy and rate of convergence of piecewise
constant estimators in BD models. "is is a challenging theoretical
problem that will require new ideas and techniques. Fortunately,
since several popular software packages (e.g., ref. 26) already
implement the piecewise constant BD model, there are already
many simulation studies in the literature to help guide the way. We
recommend that researchers utilize simulations to understand the
possibilities and limitations for !tting phylogenetic BD models to
a speci!c dataset.

"e reader may wonder whether our result is somehow a
byproduct of the fact that we consider piecewise constant—
hence discontinuous—rate functions, whereas in LP (16) they are
assumed to be continuously di$erentiable. In our opinion, this
is not the main driver. Indeed, we believe that (cf. Conjecture 6 )
identi!able parameter spaces consisting of smooth functions also
exist. Provisionally, we suspect that these spaces are identi!able
because they are !nite dimensional and have fundamentally lower
complexity (in the sense of De#nition 9) compared to the nonpara-
metric function space considered by LP (16). Were the conjecture
true, it would not contradict LP’s (16) result, because the con-
struction they use to generate their congruence classes (speci!cally,
the operator S [So , f ] de!ned by supplementary equation 75 in
ref. 1) is not closed over simple function spaces like !xed-degree
polynomials. In other words, even f is a spline, and S [So , f ] is
not. "us, while there are in!nitely large congruence classes of
alternative BD parameterizations that are indistinguishable, the
conjecture asserts that the intersection between these classes and
a su%ciently simple function space consists of at most a single
element. LP (16) provide a heuristic argument supporting this
conjecture in section S.3 of their supplement.

In follow-up work, Louca et al. (27) study a more general
model where sampling is allowed to occur over time and show that
similar unidenti!ability results hold in that setting as well. "e
coalescent-based methods we used in this paper, which condition
on a number of lineages sampled at the present, do not readily
extend to this setting, so our results leave open the question
of whether piecewise-constant identi!ability holds in random
sampling models as well. In section S.2.2 of their supplement,
Louca et al. (27) assert that restricting to piecewise constant model
spaces cannot possibly resolve identi!ability issues; however, their
argument is nonrigorous and based only on simulation evidence.
Our results establish that piecewise constant models are in fact
identi!able. Nevertheless, identi!ability is fundamentally a math-
ematical property that may have little bearing on one’s (in)ability
to successfully carry out inference in real-world problems. More
research is needed to better understand the circumstances under
which this is in fact possible.

Appendix A. Proof of Theorem 4

Our proof derives from a general technique developed by Bhaskar
and Song (18) for establishing identi!ability of rate functions in
coalescent-type models. We follow their method closely, reproduc-
ing their results where necessary for completeness of exposition.

To build the necessary connections between the BD and coa-
lescent models, we !rst note that L(λp) in Eq. 5 can be rewritten
as

L(λp)(τ1, . . . , τn) ∝
n∏

j=1

jλp(τj )e
−j [Λp(τj )−Λp(τj+1)], [6]

where we de!ned τn+1 ≡ 0. "is is the likelihood of a coalescent-
type pure death process, where the “e$ective population size” is
1/λp(τ), and where the rate of dying (backward in time) when
there are j remaining lineages in the tree is (j − 1)λp(τ) instead
of the usual

(j
2

)
λp(τ).

Our strategy for establishing identi!ability is to construct a
vector of invariants which, for a su%ciently large sample size,
uniquely identi!es the pulled rate function λp . To that end,
given any pulled rate function λp and sample size n , we form
an associated moment vector c(λp) ∈ Rn , with entries

c
(λp)
j =

∫ τo

0
e−jΛp(τ) dτ , 1 ≤ j ≤ n. [7]

Proposition 7. Suppose that L(λ(1)
p ) and L(λ(2)

p ) are equal almost
everywhere. "en c(λ(1)

p ) = c(λ(2)
p ).

Proof: In this proof we refer to the likelihood function for multiple
sample sizes, so we let L(λp)

n (τn1, . . . , τnn) be the likelihood of an
extant timetree with n + 1 sampled tips, where the merger times
are τo ≥ τn1 ≥ τn2 ≥ · · · ≥ τnn ≥ 0. Expectation of a functional
f : Rn → R with respect to L

(λp)
n is denoted by Eλp f ; by def-

inition, if L
(λ(1)

p )
n = L

(λ(2)
p )

n almost everywhere, then E
λ(1)

p
f =

E
λ(2)

p
f for all measurable f .

We use some results from Kamm et al. (28) on moments
of the truncated coalescent process, replacing each occurrence
of the coalescent rate

(j
2

)
/Ne(τ) with its corresponding

rate in the BD model, (j − 1)λp(τ). "e expected value
Eλp (τo − τn1) = τo − Eλpτn1 is written in their notation as
f τo
n+1(n + 1 | A(λp)

τo = 1), where A(λp)
τ is the birth–death process

analog of the coalescent ancestral process, i.e., a pure death process
on {n + 1, . . . , 1}, which begins at state n + 1 and transitions
from state j + 1 to state j at rate jλp(τ). By formulas 3 and 5 of
Kamm et al. (28), we have

τo − Eλpτn1 = f τo
n+1(n + 1 | A(λp)

τo
= 1)

=
f τo
n+1(n + 1)

Pn+1(A
(λp)
τo = 1)

=
τo −

∑n
k=1

k
n+1 f τo

n+1(k)

Pn+1(A
(λp)
τo = 1)

,

where f τo
n+1(k) is de!ned below. "e quantity Pn+1(A

(λp)
τo = 1)

is the probability that the unconditioned birth–death process
reaches a common ancestor before time τo , meaning it is exactly
the normalizing constant in Eq. 6. Rearranging the preceding
display and de!ning d

(λp)
n = Pn+1(A

(λp)
τo = 1), we obtain

n∑

k=1

k

n + 1
f τo
n+1(k) = τo [1 − d (λp)

n ] + d (λp)
n Eλpτn1. [8]

By lemma 3.3 of Kamm et al. (28), the summands in Eq. 8 are
given by

f τo
n+1(k) =

n+1∑

m=2

W (n+1)
km c

(λp)
m−1, [9]

where the vector c(λp) was de!ned in Eq. 7, and the matrix W(n)

was derived by Polanski and Kimmel (29) in the case of Kingman’s
coalescent. In Appendix B. Computation of the Matrix W (n) for
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the BD Model, we derive a modi!ed form of this matrix that is
appropriate for use with the BD model.

Now from Eq. 5, we have

L(λp)
m (τ1, . . . , τm) ∝ L(λp)

n (τo , . . . , τo , τ1, . . . , τm)

for any 1 ≤ m ≤ n . "us, given any L
(λp)
n , we may use the above

procedure to calculate the moment vector

e(λp) = (Eλpτ11, Eλpτ21, . . . , Eλpτn1)
ᵀ.

De!ne the lower-triangular matrix B = (bij ) ∈ Rn×n to have
entries

bij =
i∑

b=1

b

i + 1
W (i+1)

bj , 1 ≤ i ≤ n, 2 ≤ j ≤ i + 1,

where the second axis of B is indexed in the same manner as
W(n). In Appendix B. Computation of the Matrix W (n) for the
BD Model, we derive a closed-form expression for the entries of
B, which shows in particular that the diagonal entries bi,i+1 =
(−1)i+1. "erefore, B is invertible, so that by Eq. 8,

c(λp) = B−1
(
τo [I − diag(d(λp))] + diag(d(λp))e(λp)

)
.

[10]
Finally, suppose that L

(λ(1)
p )

n and L
(λ(2)

p )
n are two BD model

likelihoods that are equal almost everywhere. "en there exists

0 = t0 < t1 < · · · < tK = τo

such that L
(λ(1)

p )
n − L

(λ(2)
p )

n is continuous on open rectangles of
the form

R = (ti1 , ti1+1) × · · · × (tin , tin+1) ⊂ Rn

and equals zero almost everywhere on each such R. "erefore, the
preimage

(L
(λ(1)

p )
n − L

(λ(2)
p )

n )−1(Rn\{0}) ∩ R

is an open set of zero measure; the only such set is ∅. Hence,

L
(λ(1)

p )
n = L

(λ(2)
p )

n everywhere on R. In particular, this implies
that for all 1 ≤ m ≤ n , the BD likelihoods L

(λp
(i))

m are equal
almost everywhere on Rm . "erefore, the vectors d(λp

(i)) and
e(λp

(i)), which are de!ned entirely in terms integrals of L
(λp

(i))
m ,

1 ≤ m ≤ n , are equal for i = 1, 2. Eq. 10 then implies that
c(λ(1)

p ) = c(λ(2)
p ). !

Contrapositively, if c(λ(1)
p ) 2= c(λ(2)

p ), then L(λ(1)
p ) and L(λ(2)

p )

di$er on a set of positive measure. "e rest of the proof amounts to
showing that if λ(1)

p and λ(2)
p are generated by piecewise constant

BD models, and n is su%ciently large, then they have di$erent
moment vectors.

"e next theorem is restated for completeness.

!eorem (Generalized Rule of Signs) (18, 30). Let f : D → R
be a piecewise-continuous function de#ned on some domain D ⊂ R,
which is not identically zero and has a #nite number σ(f ) of sign
changes. "en the function

G(x ) =

∫

D
f (t)e−tx dt

has at most σ(f ) zeros in R (counted with multiplicity).

Informally, f is said to have a sign change any time it crosses zero,
including by jump discontinuities. For a precise statement, refer
to de!nition 3 of Bhaskar and Song (18).

Given any pulled rate function λp , we de!ne its time-rescaled
rate function

λ̃p(x ) = λp(Λp
−1(x )), 0 ≤ x < Λp(τo).

"is transformation is invertible, since if

Sλ̃p
(t) =

∫ t

0

[
λ̃p(u)

]−1
du = Λp

−1(t),

then λ̃p(S−1
λ̃p

(t)) = λp(t). Hence,

λ̃(1)
p = λ̃(2)

p ⇐⇒ λ(1)
p = λ(2)

p .

"en the entries of c(λp) can be written as

c
(λp)
j =

∫ Λp(τo)

0

[
λ̃p(x )

]−1
e−jx dx .

Proposition 8. Suppose that λ(1)
p and λ(2)

p are two pulled rate func-
tions for which c(λ(1)

p ) = c(λ(2)
p ) ∈ Rn . "en either λ(1)

p = λ(2)
p or

[λ̃(1)
p ]−1 − [λ̃(2)

p ]−1 has at least n − 1 sign changes over the shared
domain of [λ̃(1)

p ]−1 and [λ̃(2)
p ]−1.

Proof: Suppose that λ(1)
p 2= λ(2)

p . "en [λ̃(1)
p ]−1 − [λ̃(2)

p ]−1

is not identically zero. Assume without loss of generality that
Λ(1)

p (τo) ≤ Λ(2)
p (τo) so the shared domain of [λ̃(1)

p ]−1 and
[λ̃(2)

p ]−1 is [0,Λ(1)
p (τo)). Consider the integral transform given

by

G(z ) =

∫ Λ(2)
p (τo)

x=0

[
u1(x ) − 1

λ̃(2)
p (x )

]
e−zx dx ,

where

u1(x ) =

{
[λ̃(1)

p (x )]−1 x ∈ [0,Λ(1)
p (τo))

0 otherwise.

"e supposition implies that G(z ) has zeros at z = 1, . . . ,n . By
the generalized rule of signs, this implies that u1 − [λ̃(2)

p ]−1 has
at least n sign changes on [0,Λ(2)

p (τo)). "ere is at most one sign
change on the interval [Λ(1)

p (τo),Λ(2)
p (τo)), caused by a possible

jump at Λ(1)
p (τo). "is implies that u1 − [λ̃(2)

p ]−1 has at least
n − 1 sign changes on [0,Λ(1)

p (τo)). !

Based on the preceding result, we de!ne the following complexity
measure on BD model spaces. "is is an adaptation of de!nition
4 in Bhaskar and Song (18) to our setting. In the de!nition,
the notation λp

(θ) is used to denote the pulled rate function
corresponding to a particular BD parameterization θ = (λ, µ, ρ).

De!nition 9 (pulled sign change complexity): Let Θ be a set of
BD models, and let G be the set of all functions de!ned by the
condition

g ∈ G ⇐⇒∃θ1, θ2 ∈Θ, a ≥ 0such that

g(x ) =
[
λ̃p

(θ1)
(x )

]−1

−
[
λ̃p

(θ2)
(x − a)

]−1

,
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where the domain of each such function is

dom(g) =
[
max{0, a}, min{Λp

(1)(τo), a + Λp
(2)}

)
.

"e pulled sign change complexity of Θ is de!ned as

Sp = sup{σ(g) : g ∈ G},

where σ(g) denotes the number of sign changes of g .
In the calculation of pulled sign change complexity, we !nd

the number of sign changes for each candidate function g . Each g
consists of the di$erence of two time-rescaled and inverted pulled
rate functions; one of the two pulled rate functions can be shifted
by a units in the positive direction. Having a large number of
sign changes indicates that at least one of the two models has many
increasing and decreasing periods. Bounding the complexity of the
model class Θ is tantamount to requiring that the birth and death
rates do not oscillate in such a way. "is is a sort of parsimony
assumption since, in the extreme, the functions cannot oscillate at
all and must be constant.

Using Proposition 8 and the preceding de!nition, we immediately
have the following sample size criterion for the identi!ability of
BD models:

Proposition 10. Suppose that Sp(Θ) ≤ S and that the mapping
θ &→ λp

(θ) is injective over Θ. "en BΘ is identi#able if n > S +1.

Proposition 10 is a general result that holds for any BD model
class Θ. However, Θ must be chosen so that θ &→ λ(θ)

p is injective
and Sp(Θ) ≤ S for a given S . To prove "eorem 4, it remains
to establish these properties when Θ = IK ,ρ and S = 8K − 1.
Injectivity is shown in Proposition 11, and the sign change com-
plexity is bounded in Lemmas 12 and 13.

Recall that λ̃p(x ) = λp(Λp
−1(x )) for x ∈ [0,Λp(τo)). By

supplemental equation 9 of LP (16),

dλp

dt
= λp

(
1

λ

dλ

dt
− µ + λE

)
.

Hence,

dλ̃p

dx
=

dλp

dt
(Λ−1

p (x )) ×
dΛ−1

p

dx
(x )

=
1

λ

dλ

dt
− µ + λE

∣∣∣∣
t=Λ−1

p (x)

,
[11]

where in the second equality we used

dΛ−1
p

dx
=

1

λp(Λ−1
p (x ))

= [λ̃p(x )]−1.

Now by Eq. 2,

λE |t=Λ−1
p (x) = −λ̃p(x ) + λ(Λ−1

p (x )). [12]

If λ and µ are constant, then dλ/dt = 0, and we obtain from
Eqs. 11 and 12 the !rst-order ordinary di$erential equation

dλ̃p

dx
= λ− µ − λ̃p [13]

λ̃p(0) = ρλ.

"e solution to this di$erential equation is

λ̃p(x ) = (λ− µ)(1 − e−x ) + ρλe−x , x ∈ [0,Λp(τo)).
[14]

More generally, if λ and µ are constant over some interval [t , t ′),
then

λ̃p(x ) = (λ− µ)(1 − e−(x−Λp(t))) + λp(t)e−(x−Λp(t)),

x ∈ [Λp(t),Λp(t ′)).
[15]

Proposition 11. Let θ1, θ2 be two di!erent models in IK ,ρ with
pulled rate functions λ(1)

p and λ(2)
p . "en λ(1)

p 2= λ(2)
p .

Proof: Let (λ1, µ1) 2= (λ2, µ2) be two di$erent models in IK ,ρ.
"en there is a nonempty interval [t , t ′) ⊂ [0, τo ] such that

1) (λ1(s),µ1(s)) = (λ2(s),µ2(s)) for all 0 < s < t ; and
2) λ1, µ1,λ2, µ2 are all constant over [t , t ′) and (λ1(s), µ1(s)) 2=

(λ2(s),µ2(s)) for all t ≤ s < t ′.

(Note that we could have t = 0, in which case condition 1
becomes vacuous.) To show λ(1)

p 2= λ(2)
p , it is su%cient to

show that λ̃(1)
p 2= λ̃(2)

p . We assume that Λ(1)
p (t ′) = Λ(2)

p (t ′),
since if not the conclusion is immediate. By Eq. 15, for all
x ∈ [Λ(1)

p (t),Λ(1)
p (t ′)), we have

λ̃p
(2)

(x ) − λ̃p
(1)

(x ) = c1e
−[x−Λ(1)

p (t)] + c2,

where

c1 = λ(1)
p (t) − λ(2)

p (t) − λ2 + µ2 + λ1 − µ1

c2 = λ2 − µ2 − λ1 + µ1.

Suppose c2 = 0. Let ε = E (1)(t) = E (2)(t) ∈ (0, 1), where the
equality follows from condition 1 and the facts that a) E (0) = ρ
across all models, and b) E (t) is continuous (cf. Eq. 4). "en c1 =

λ(1)
p (t) − λ(2)

p (t) = [λ1(t) − λ2(t)](1 − ε). If c1 = 0, then this
would contradict condition 2. !

Remark: "e preceding result makes crucial use of the fact that all
models in IK ,ρ are constrained to have the same sampling fraction
ρ. Without this assumption, Proposition 11 would not even hold
for K = 1 (14).

Next, we bound Sp(IK ,ρ). First, let

SK =
⋃

ρ∈(0,1]

IK ,ρ

be the space of all K -piecewise constant BD models with un-
constrained sampling proportions. As remarked above, this space
is not identi!able, since in particular Proposition 11 does not
hold for it. Nevertheless, it follows directly from De#nition 9
that Sp(IK ,ρ) ≤ Sp(SK ), so bounding the pulled sign change
complexity of SK is all that is required for our purposes.

We !rst show that Sp(SK ) can be bounded in terms of the
simpler quantity Sp(S1).
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Lemma 12. "e pulled sign change complexity of SK is bounded by
the pulled sign change complexity of S1 as

Sp(SK ) ≤ (4K − 1) + 4KSp(S1).

Proof: Let λp
(i) be the pulled rate function corresponding to

(λi , µi , ρi) for i = 1, 2. According to De#nition 9, we need to
bound all sign changes of

[
λ̃p

(1)
(x )

]−1

−
[
λ̃p

(2)
(x − a)

]−1

[16]

over the domain x ∈ [m,M ), where

m = max{0, a}
M = min{Λp

(1)(τo), a + Λp
(2)(τo)}.

Enlarging the domain of Eq. 16 can only increase the number of
sign changes, and the largest possible domain occurs when a = 0

and Λp
(1)(τo) = Λp

(2)(τo), so we assume these conditions hold
for the rest of the proof.

If λi , µi ∈ C⊕K
+ , then we can place them onto a common set

of 2K breakpoints

0 = t (i)
0 < t (i)

1 < · · · < t (i)
2K = τo .

Let
X =

{
Λp

(i)(t (i)
k ) : 1 ≤ i ≤ 2, 0 ≤ k ≤ 2K

}
,

and sort the points in X to form a partition

0 = x0 < · · · < x4K = Λp
(1)(τo) = Λp

(2)(τo).

Allowing for possible jump discontinuities at x1, x2, . . . , x4K−1,
the number of sign changes of Eq. 16 is at most 4K − 1 plus the
number of sign changes on each interval (xj , xj+1).

For each i and j , there exists an integer 0 ≤ k(i , j ) < 2K such
that

(xj , xj+1) ⊂
(
Λ(i)

p (t (i)
k(i,j )),Λ

(i)
p (t (i)

k(i,j )+1)
)

, i = 1, 2.

"erefore, there exists a BD parameterization θij = (λij , µij , ρij )
∈ S1 such that

λ(θij )
p (s − t (i)

k(i,j )) = λ(i)
p (s), s ∈ (t (i)

k(i,j ), t
(i)
k(i,j )+1);

concretely, the initial sampling fraction is

ρij = 1 − E (i)(t (i)
k(i,j )).

"en
[
λ̃p

(i)
(x )

]−1

=
[
λp(I (i)(x ))

]−1

=
[
λ̃p

(θij )
(
x − Λ(i)

p (t (i)
k(i,j ))

)]−1

, i = 1, 2.

So within (xj , xj+1), the number of sign changes of [λ̃(1)
p (x )]−1 −

[λ̃(2)
p (x )]−1 is at most the number of sign changes of

[
λ̃p

(θ1j )
(
x − Λ(1)

p (t (1)
k(1,j ))

)]−1

−
[
λ̃p

(θ2j )
(
x − Λ(2)

p (t (2)
k(i,j ))

)]−1

,

which is bounded above by Sp(S1). Hence, the number of sign
changes is at most (4K − 1) + 4KSp(S1). !

We conclude the proof by bounding S (S1).

Lemma 13. Let (λ1, µ1, ρ1), (λ2, µ2, ρ2) ∈ S1, with correspond-
ing pulled rate functions λ(1)

p and λ(2)
p , and let

g(x ) =
[
λ̃(1)
p (x )

]−1
−
[
λ̃(2)
p (x − a)

]−1
,

where a ≥ 0 is arbitrary and the domain of g is as indicated in
De#nition 9. "en σ(g) ≤ 1.

Proof: We have

g(x ) =
λ̃(2)
p (x − a) − λ̃(1)

p (x )

λ̃(1)
p (x )λ̃(2)

p (x − a)
,

so the number of sign changes of g is at most the number
of zeros of λ̃(2)

p (x − a) − λ̃(1)
p (x ). By Eq. 14, the function

λ̃(2)
p (x − a) − λ̃(1)

p (x ) has the form c1e−x + c2 for some c1, c2

that depend on λi , µi , ρi , and a . Since this function is always
monotone, λ̃(2)

p (x − a) − λ̃(1)
p (x ) and hence g has at most one

zero. !

By Lemma 13, Sp(S1) ≤ 1, so that by Lemma 12,

Sp(SK ) ≤ 8K − 1.

Finally, "eorem 4 follows from Proposition 10.

Appendix B. Computation of the Matrix W(n) for
the BD Model

In this section we derive the matrix W(n) ∈ Q(n−1)×(n−1) under
the BD model. Starting from equation 1 of Polanski and Kimmel
(29), which originally appeared in Gri%ths and Tavaré (31), we
have

qnb =

∑n
k=2

(n−b−1
k−2 )

(n−1
k−1)

kE(Sk )
∑n

k=2 kE(Sk )

=

(n−b−1)!(b−1)!
(n−1)!

∑n
k=2 k(k − 1)

(n−k
b−1

)
E(Sk )

∑n
k=2 kE(Sk )

, [17]

where Sk is the expected amount of time spent at level K in a
coalescent tree. "e Sk are de!ned as the di$erences Sk = Tk −
Tk+1, where Tk is the height of the K th coalescent event, and
Tn+1 ≡ 0. By equation 5 of Polanski et al. (32),

E(Tk ) =
n∑

j=k

A(n)
kj cj ,

where cj is the expected time to !rst coalescence in a sample of
size j , de!ned in Eq. 7 of the main text for the phylogenetic BD
model, and A(n) is a matrix of combinatorial coe%cients that
have to be modi!ed from their original de!nition (equation 6 of
ref. 29) to re#ect the coalescence rate of the BD process:

A(n)
kj =

n∏

%=k ,% (=j

(− 1

(− j
, 2 ≤ k ≤ j ≤ n,
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and zero otherwise. From the de!nition, we see that

A(n)
k+1,j =

k − j

k − 1
A(n)

kj , k ≥ 2,

and therefore, following equation 51 of Polanski et al. (32), we
have

ESk =
n∑

j=k

A(n)
kj cj −

n∑

j=k+1

A(n)
k+1,j cj

= A(n)
kk ck +

n∑

j=k+1

j − 1

k − 1
A(n)

kj cj .

=
n∑

j=k

j − 1

k − 1
A(n)

kj cj .

Inserting this expression into Eq. 17 and simplifying, we obtain

qnb=

(n−b−1)!(b−1)!
(n−1)!

∑n
k=2 k(k−1)

(n−k
b−1

)∑n
j=k

j−1
k−1A(n)

kj cj .
∑n

k=2 kE(Sk )

=

∑n
j=2(j − 1)cj

∑j
k=2

(n−b−1)!(b−1)!
(n−1)!

(n−k
b−1

)
kA(n)

kj∑n
k=2 kE(Sk )

.

"e matrix W(n) is de!ned to be

W (n)
bj = (j − 1)

j∑

k=2

(n − b − 1)!(b − 1)!

(n − 1)!

(
n − k

b − 1

)
kA(n)

kj .

[18]
c is de!ned so that qnb ∝ W(n)c.

A. Recursion for W(n). Although we do not require it in this
paper, following Polanski and Kimmel (29), we derived a recursion
for computing the entries of W(n). Using Zeilberger’s algorithm
(33), we obtain

W (n)
b,j =

[
(bj − (j − 2)(n + 1)) [(b(j + 3) + j (−2j + n + 6)

−4n − 1]W (n)
b,j−1 − (b − j + 4)(j − n − 2)W (n)

b,j−2

]

/{
(j − 2)

[(
j 2 − 7

)
(n + 1) − b(j − 1)(j + 3)

]}

with base cases

W (n)
b,2 = 2

W (n)
b,3 = n − 3b + 1.

In contrast to the case of Kingman’s coalescent, the denominator
in the above recursion can be zero for certain settings of n ,
b, and j . (For example, n = 15, j = 5, b = 9.) In that case, an
alternative, one-term recurrence is also available:

W (n)
b,j =

(j − b − 3)[j (b − n − 1) + 2(n + 1)]

(j − 2)[b(j − 1) − (j − 3)(n + 1)]
W (n)

b,j−1, j ≥ 3.

(Observe that the denominators of the two recursions are not
simultaneously zero unless j = 2.)

B. The Matrix B. From the binomial identity
m∑

k=0

(
m

k

)/(
n

k

)
=

n + 1

n + 1 − m
,

we obtain for k ≥ 2,
n−1∑

b=1

(n−k
b−1

)
(n−1

b

) =
n−1∑

b=1

(n−k+1
b

)
−
(n−k

b

)
(n−1

b

)

=
n−1∑

b=0

(n−k+1
b

)
(n−1

b

) −
n−1∑

b=0

(n−k
b

)
(n−1

b

)

=
n−k+1∑

b=0

(n−k+1
b

)
(n−1

b

) −
n−k∑

b=0

(n−k
b

)
(n−1

b

)

=
n

n − (n − k + 1)
− n

n − (n − k)

=
n

k(k − 1)
.

Inserting this into Eq. 18 and simplifying, we obtain

n−1∑

b=1

b

n
W (n)

bj = (j − 1)
j∑

k=2

A(n)
kj

k − 1
.

Furthermore,
j∑

k=2

A(n)
kj

k − 1
=

j∑

k=2

∏n
%=k ,% (=j

%−1
%−j

k − 1

=
n∏

%=j+1

(− 1

(− j

j∑

k=2

∏j−1
%=k

%−1
%−j

k − 1

=
n∏

%=j+1

(− 1

(− j



 1

j − 1
+

j−1∑

k=2

(j−2)!
(k−2)! × (−1)j+k

(k − 1)(j − k)!





=
n∏

%=j+1

(− 1

(− j

(
1

j − 1
+

1

j − 1

j−1∑

k=2

(
j − 1

k − 1

)

(−1)j+k
)

=
n∏

%=j+1

(− 1

(− j
× (−1)j

j − 1

=
(n − 1)!

(j − 1)!(n − j )!
× (−1)j

j − 1

=
(−1)j

j − 1

(
n − 1

j − 1

)
.

We conclude that
n−1∑

b=1

b

n
W (n)

bj = (−1)j
(

n − 1

j − 1

)
.
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