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The understanding of nonlinear, high dimensional flows, e.g, atmospheric and ocean flows, is critical to 
address the impacts of global climate change. Data Assimilation (DA) techniques combine physical models and 
observational data, often in a Bayesian framework, to predict the future state of the model and the uncertainty 
in this prediction. Inherent in these systems are noise (Gaussian and non-Gaussian), nonlinearity, and high 
dimensionality that pose challenges to making accurate predictions. To address these issues we investigate the use 
of both model and data dimension reduction based on techniques including Assimilation in the Unstable Subspace 
(AUS), Proper Orthogonal Decomposition (POD), and Dynamic Mode Decomposition (DMD). Algorithms to take 
advantage of projected physical and data models may be combined with DA techniques such as Ensemble Kalman 
Filter (EnKF) and Particle Filter (PF) variants. The projected DA techniques are developed for the optimal 
proposal particle filter and applied to the Lorenz’96 model (L96) and Shallow Water Equations (SWE) to test 
the efficacy of our techniques in high dimensional, nonlinear systems.
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A. Albarakati, M. Budišić, R. Crocker et al. Computers and Mathematics with Applications 116 (2022) 194–211

4.3. Assimilation in the Unstable Subspace (AUS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
5. Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

5.1. Common experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
5.2. Lorenz ’96 equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

5.2.1. Model and parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
5.2.2. Experiment 1 (𝐹 = 3, 8, 𝑀 = 40) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
5.2.3. Experiment 2 (𝐹 = 3, 8, 𝑀 = 400) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
5.2.4. Experiment 3 (𝐹 = 3, 4, 6, 8, 𝑀 = 400) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

5.3. Shallow Water Equations (SWE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
5.3.1. Model, simulation, and parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
5.3.2. Experiment 1 (number of particles) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
5.3.3. Experiment 2 (observation scenarios) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
5.3.4. Experiment 3 (sparse and complete observations) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
5.3.5. Experiment 4 (larger observation error covariances 𝐑) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

6. Discussion and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

1. Introduction

Several important challenges impede the development of Data As-
similation (DA) techniques: nonlinear physical models, high dimen-
sional models and data, and non-Gaussian posterior distributions. Parti-
cle filters and their variants are well suited to handle nonlinearities and 
non-Gaussian distributions, but due to so-called filter degeneracy still 
struggle to make accurate predictions for high dimensional problems, 
especially partial differential equations (PDEs). Variants of particle fil-
ters have been developed to ameliorate this difficulty, including implicit 
particle filters, proposal density methods, the optimal proposal, [1–4]. 
A related set of works analyze the performance of particle filters: [5,6]
show that particle filter degeneracy is induced by a ‘curse of dimension-
ality’ associated with the data and/or model dimension.

Our contribution in this paper is to develop an approach to particle 
filtering based on reduced-dimension physical and data models, em-
ploying projections of the data and model spaces. The crucial benefit of 
this approach is that it directly targets the filter degeneracy induced by, 
for example, simulating some high-dimensional PDEs, while maintain-
ing the Bayesian framework of the particle filter suitable for nonlinear, 
non-Gaussian DA. We build on the substantial development of Assimi-
lation in the Unstable Subspace (AUS) methods (see, e.g., [7–11]), and 
recent work on projected data models for particle filtering [12]. The 
AUS methods are based on state space projections to subspaces spanned 
by Lyapunov vectors corresponding to the dominant Lyapunov expo-
nents of the system dynamics. The AUS state space projections can 
greatly improve Kalman Filter (KF) and variational DA schemes: for 
example, an AUS implementation of 3D-Var works efficiently in high 
dimensions [13]. However for ensemble-based DA schemes, including 
the particle filter, the AUS approach has limited promise as the en-
semble forecast already tends to align with the dominant Lyapunov 
exponents [14]. Here we extend the AUS approach by developing pro-
jections based on other common model reduction techniques, such as 
Proper Orthogonal Decomposition (POD) and Dynamic Mode Decom-
position (DMD), and by considering combinations of projected physical 
and data models. Although our focus here is on particle filters (both the 
standard and optimal proposal forms), the projected models developed 
here are also applicable to KF and variational techniques. We combine 
dimension reduction in both the physical model and the data model 
and compare projections based on AUS, POD, and DMD. Using these 
projected models, we develop projected particle filter algorithms and 
apply them to the Lorenz’96 model (L96) and the Shallow Water Equa-
tions (SWE).

While the present paper is motivated in large part by techniques 
developed using AUS projections, see, e.g., [10,12,15], we are also mo-
tivated by recently developed techniques for localized particle filters. 
Recent work has often focused on the issue of localization, such as [16], 

and currently two localized particle filtering algorithms [17,18] have 
been applied in an operational geophysical framework. In the local-
ized particle filter of [18] observations are projected onto the subspace 
spanned by the ensemble of model forecasts to reduce the dimension 
of the observations. In [19], the authors apply a localized particle filter 
which reduces the number of particles needed for effective assimilation. 
In this scheme, particle weights are updated locally near observations, 
but are preserved away from observations to mimic the covariance lo-
calization in Ensemble Kalman Filter (EnKF). Other techniques such as 
the Dynamically Orthogonal formulation in [20,21] can be interpreted in 
terms of reduced order physical and data models (see [22–24]).

Although the original contribution of this paper is in combining 
data-driven Reduced Order Models (ROM) with particle filters, both 
POD and DMD have been used in concert with other data assimilation 
techniques. Kalman filter assimilation with a DMD-ROM has been used 
to predict wind turbine wakes in [25], while in [26] the DMD was used 
to enhance a Bayesian-optimized Kalman filter to predict events in the 
upper atmosphere.

For medium- to high-dimensional models, POD can be used to de-
termine the dominant energy modes and, by reducing the model to the 
corresponding subspace, exploit a possible low dimensional structure of 
the model space for use in the nonlinear filtering problem [27], with 
EnKF [28], and with the Four-dimensional variational data assimila-
tion (4D-Var) assimilation scheme [29–32]. Likewise, POD, tensorial 
POD, and discrete empirical interpolation have been used in the 4D-Var 
scheme to reduce the state space in application to the shallow water 
equations [33]. In [34], efficacy of assimilation based on merging DMD, 
neural networks, and 4D-Var was evaluated on chaotic dynamical sys-
tems.

While we primarily focus on using DMD and POD to enhance data 
assimilation algorithms, it is interesting to point out that [35,36] used 
data assimilation techniques, specifically the Kalman filter and its vari-
ants, to enhance the computation of DMD, in order to reduce the con-
tribution of system noise and lead to constructing better estimates on 
the eigenvalues corresponding to DMD modes.

In addition, our use of POD and DMD as dimension reduction tech-
niques provides a bridge between techniques developed to assimilate 
coherent structures and the model reduction literature. Methods such 
as those developed in [37] and [38] assimilate coherent structures ex-
tracted from data, but without an explicit form for the likelihood of the 
coherent structures. Instead these works use likelihood-free sequential 
Monte Carlo methods, or an ad hoc perturbed observations approach. In 
this paper we derive an explicit likelihood that corresponds to coherent 
structures extracted by POD or DMD.

In section 2 we present background on data assimilation techniques 
including ensemble Kalman filters and particle filters. In section 3 we 
formulate, using abstract projections, the projected physical and data 
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models and their use in the context of standard and optimal proposal 
particle filters. We outline in section 4 the basics of the POD, DMD, and 
AUS model reduction techniques. Section 5 contains numerical results 
obtained using the algorithms developed to take advantage of these 
projected physical and data models. These methods are applied to two 
nonlinear models: L96 and SWE. Numerical results show the efficacy of 
the techniques that have been developed. In section 6 we summarize 
and analyze our results and outline directions for future research.

2. Background on data assimilation

2.1. Data assimilation: nonlinearity and non-Gaussian posteriors

Data assimilation is a suite of methods commonly used for obtaining 
accurate estimates of states and/or parameters associated with large-
scale geophysical systems such as the climate and atmosphere. DA 
schemes seek to optimally combine the information contained in an ob-
servation 𝒚𝑡, informed by collected data, with that in a forecast 𝒖𝑡, given 
by a mathematical model of the system. The observation and forecast 
naturally contain associated error, due to factors such as instrumenta-
tion error in the observations and model errors or noise in the forecast. 
The key aim of any DA scheme is to propitiously balance these differ-
ent sources of error and the defining characteristic of a particular DA 
scheme is how it does so [39].

We formulate the data assimilation problem in terms of a physical 
model and a data model. Consider the discrete time stochastic model 
with additive noise

𝒖𝑡+1 = 𝐅𝑡

(
𝒖𝑡

)
+𝝎𝑡, (1)

where 𝒖𝑡 ∈ℝ
𝑀 is the model state at time index 𝑡, 𝝎𝑡 ∈ℝ

𝑀 are Gaussian 
errors in the model, 𝝎𝑡 ∼ (0, 𝐐𝑡), and the function 𝐅𝑡 ∶ ℝ

𝑀
→ ℝ

𝑀 is 
the deterministic component of the model. The data model represents 
the measurement of the physical state as observations 𝒚𝑡 given by

𝒚𝑡 =𝐇𝒖𝑡 + 𝜼𝑡, (2)

where 𝜼𝑡 ∈ ℝ
𝐷 are Gaussian errors in the observation, 𝜼𝑡 ∼  (

0,𝐑𝑡

)
, 

while 𝐇 ∶ℝ𝑀
→ℝ

𝐷, 𝐷 ≤ 𝑀 is the matrix1 representing the observation 
operator.

Equation (2) implies, first, that the data 𝒚𝑡 is generated from the 
true (unknown) state by 𝒚𝑡 = 𝐇𝒖truth𝑡 + 𝜼𝑡, and second, that there is a 
framework to convert estimates of the state 𝒖𝑡 into ‘data space’ via 𝐇𝒖𝑡. 
The task for the DA algorithm is to provide the best estimate of the 
state 𝒖𝑡 using the combined information from eqs. (1) and (2). Complete 
observation (𝐇 = 𝐈) is useful in analysis, as it reduces the DA problem 
to removing the influence of observation noise.

We are interested in DA problems in which the model eq. (1) is 
sufficiently nonlinear to pose challenges for DA algorithms that rely im-
plicitly on assumptions of linearity, chiefly the EnKF. In order to expand 
on this criterion, we now formalize the DA problem from a Bayesian 
perspective.

Let us formally write our estimates of the state and data as Prob-
ability Density Functions (PDFs). The distribution of the state evolves 
from time 𝑡 − 1 to time 𝑡, including information from the data at time 𝑡, 
according to Bayes’ theorem

𝑃 (𝒖𝑡|𝒖𝑡−1, 𝒚𝑡) =
𝑃 (𝒚𝑡|𝒖𝑡)𝑃 (𝒖𝑡|𝒖𝑡−1)

𝑃 (𝒚𝑡)
, or

𝑃 (𝒖𝑡|𝒖𝑡−1, 𝒚𝑡) ∝ 𝑃 (𝒚𝑡|𝒖𝑡)𝑃 (𝒖𝑡|𝒖𝑡−1). (3)

The left-hand-side of this equation is the distribution we want to ap-
proximate with a DA algorithm. It is the posterior distribution, of the 

1 In this work we focus only on linear observation operators 𝐇, in order to 
obtain closed equations for the OP-PF algorithm in section 2.3 and the reduced 
data models in section 3.1. In general the observation operator may be nonlin-
ear, and we discuss extensions of our work to this case in section 6.

state at time 𝑡 given (or conditioned on) the past history of the state 
and also given the data collected at time 𝑡. The right-hand-side of eq. 
(3) is a blueprint for the action of a DA scheme. The PDF 𝑃 (𝒖𝑡|𝒖𝑡−1), 
the prior distribution, contains our understanding of the state evolution 
from time 𝑡 − 1 to 𝑡. The second term in the numerator of eq. (3) is 
the likelihood 𝑃 (𝒚𝑡|𝒖𝑡) and can be explicitly evaluated from eq. (2). The 
normalizing constant 𝑃 (𝒚𝑡) in the denominator of eq. (3) is typically 
impossible to calculate directly; however the PF we develop below im-
plicitly calculates 𝑃 (𝒚𝑡) in a discrete setting, by normalizing weights.

The formulation of DA via eq. (3) may appear incomplete (for exam-
ple, we have employed without proof a formulation in which data from 
previous observation times is not used again at time 𝑡), but can be rig-
orously justified with some weak assumptions: [40, §3] provides a clear 
exposition for the standard DA formulation, and [41, e.g.] covers for-
mulations of DA in which the same observations may be assimilated at 
multiple times.

Having set up the DA problem, let us clarify the goal of this paper. 
We are specifically interested in DA problems in which the nonlinearity 
of the model eq. (1), together with factors such as sparse observa-
tions, 𝐷 ≪ 𝑀 , results in a non-Gaussian posterior distribution in eq. 
(3). Standard methods such as the EnKF are inappropriate for strongly 
non-Gaussian posteriors, but the PF described in section 2.2 is suitable. 
The key difficulty, motivated earlier and developed explicitly for PFs in 
sections 2.2 and 2.3, is applying the PF to high-dimensional models and 
data—and the remainder of the paper develops a suite of methods to 
address this difficulty.

2.2. The Standard Particle Filter (PF)

Particle Filters, in their many forms, are one of the most common 
DA methods for nonlinear systems, as they can be proven to reproduce 
the true target posterior in the limit of large particle populations [42]. 
Although this property makes PFs very useful, they also suffer from 
several issues, including particle degeneracy and the curse of dimen-
sionality, which will be discussed in the context of the standard particle 
filter.

The simplest form of particle filter is the Sequential Importance Re-
sampling, or the Standard Particle Filter [43,44, e.g.]. In this method, the 
probability density function for the state is approximated by a weighted 
set of guesses at the state variable. The probability density function for 
the state at time 𝑡 − 1 is

𝑃 (𝒖𝑡−1) =

𝐿∑

𝓁=1

𝑤𝑙
𝑡−1

𝛿
(
𝒖𝑡−1 − 𝒖𝓁

𝑡−1

)
, (4)

where each particle is a state vector 𝒖𝓁
𝑡−1

∈ ℝ
𝑀 , each weight 𝑤𝑙

𝑡−1
≥ 0, 

the sum of all weights 
∑𝐿

𝑙=1 𝑤𝑙
𝑡−1

= 1 and 𝛿(⋅) is the Dirac-delta distribu-
tion. This density function is quite simple to interpret: it says that we 
have 𝐿 guesses for the state, and that each guess is judged to be good 
or bad by its weight.

The Standard PF consists of the following two steps:

• Particle update:
Each particle 𝒖𝓁

𝑡−1
, 𝓁 from 1 to 𝐿, is updated to time 𝑡 by running eq. 

(1). This completes the step, but let us pause to interpret what has 
happened. In the Bayesian formulation of eq. (3), consider the prior 
distribution 𝑃 (𝒖𝑡|𝒖𝑡−1): then eq. (1) implies that for any particular 
𝒖𝓁

𝑡−1

𝑃 (𝒖𝓁𝑡 |𝒖
𝓁

𝑡−1
) ∼ (

𝐅𝑡−1

(
𝒖𝓁

𝑡−1

)
, 𝐐

)
.

Combining this equation with eq. (4), we see the exact prior distri-
bution is a Gaussian mixture, and updating each particle according 
to eq. (1) approximates the exact prior distribution by sampling 
once from each Gaussian distribution in the mixture.

• Weight update:

𝑤𝓁

𝑡 =
1

𝑐
exp

[
−
1

2

(
𝒚𝑡 −𝐇𝒖𝓁𝑡

)⊤
𝐑−1

(
𝒚𝑡 −𝐇𝒖𝓁𝑡

)]
𝑤𝓁

𝑡−1
,

196
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where 𝑐 is a normalization constant such that 
∑𝐿

𝑙=1 𝑤𝑙
𝑡 = 1.

As before this brief description concludes the step, but we pause 
to connect the step to eq. (3). The exponential in the weight up-
date is (up to normalization) precisely the term 𝑃 (𝒚𝑡|𝒖𝓁𝑡 ) (compare 
eq. (2)). The normalization constant 𝑐 implicitly calculates the re-
maining factor from eq. (3), the denominator 𝑃 (𝒚𝑡). That is, the 
weight update multiplies each particle by the precise terms needed 
to complete eq. (3).

Despite the standard PF being suitable for DA in nonlinear sys-
tems, the algorithm suffers from several related issues. The method 
performs badly if one of the particle weights approaches 1. When this 
occurs, all others approach zero and so the posterior distribution is 
effectively being approximated by a single particle. This issue is ad-
dressed in the Standard PF by monitoring the Effective Sample Size 
(ESS), 

∑𝐿
𝓁=1 1∕ 

(
𝑤𝓁

𝑡

)2
, and resampling (for which there are standard al-

gorithms, see for example [45, §3.3.2]) when the ESS drops below some 
threshold to refresh the particle ensemble.

The PF’s tendency to exhibit particle degeneracy is related to what 
is often referred to as the curse of dimensionality, a phenomenon suffered 
by all importance sampling algorithms in which efficiency decreases 
rapidly with increasing dimension of the state space [46]. In high-
dimensional spaces, resampling is insufficient to prevent degeneracy 
and 𝐿 must be very large to give an appropriate estimate of the poste-
rior, decreasing the computational efficiency of the algorithm. In fact, 
it has been shown that the theoretically required sample size to avoid 
particle degeneracy scales exponentially with the state dimension [47]. 
Several methods have been developed to reduce the sample size needed 
to counter particle degeneracy in high dimensions, such as the Optimal 
Proposal Particle Filter (OP-PF).

2.3. Optimal Proposal Particle Filter (OP-PF)

The OP-PF ameliorates the issue of degeneracy in PFs by attempting 
to ensure all posterior particles have similar weights. The idea now is to 
use the data in both, the particle and weight updates—first to nudge all 
particles towards the observations, and then to weight them. The ‘pro-
posal’ in OP-PF refers to the distribution used to update particles from 
one time step to the next. In the standard particle filter the proposal 
density is 𝑃 (𝒖𝓁𝑡 |𝒖

𝓁

𝑡−1
) ∼ (𝐅𝑡−1(𝒖

𝓁

𝑡−1
), 𝐐), as the particles are updated us-

ing the model. Comparatively, in the OP-PF, the proposal distribution 
is conditioned on 𝒚𝑡, as in 𝑃 (𝒖𝓁𝑡 |𝒖

𝓁

𝑡−1
, 𝒚𝑡). Given the additive noise of the 

model (1), the optimal proposal update in each particle is Gaussian with 
𝑃 (𝒖𝓁𝑡 |𝒖

𝓁

𝑡−1
, 𝒚𝑡) ∼ (𝒎𝓁

𝑡 , 𝐐𝑝), and the particle update is

𝒖𝓁𝑡 =𝒎𝓁

𝑡 +𝝋, 𝝋 ∼ (0,𝐐𝑝) (5)

where

𝐐−1
𝑝 =𝐐−1 +𝐇⊤𝐑−1𝐇 (6)

𝒎𝓁

𝑡 = 𝐅𝑡−1(𝒖
𝓁

𝑡−1
) +𝐐𝑝𝐇

⊤𝐑−1
(
𝒚𝑡 −𝐇𝐅𝑡−1(𝒖

𝓁

𝑡−1
)
)

. (7)

Having employed the data in the particle update, the weight update 
must now be adjusted so that the overall scheme obeys Bayes’ law. By 
rearranging eq. (3) it can be shown [3, e.g.] that the 𝓁th particle weight 
drawn from the proposal distribution satisfies 𝑤𝓁

𝑡 ∝ 𝑃 (𝒚𝑡|𝒖𝓁𝑡−1)𝑤
𝓁

𝑡−1
and 

is also Gaussian, so that

𝑤𝓁

𝑡 ∝ exp
[
−
1

2
(𝓁

𝑡 )
⊤(𝐇𝐐𝐇⊤ +𝐑)−1(𝓁

𝑡 )
]
𝑤𝓁

𝑡−1
(8)

where 𝓁

𝑡 ∶= 𝒚𝑡 − 𝐇𝐅𝑡−1(𝒖
𝓁

𝑡−1
) is the innovation vector. Degeneracy as 

characterized by a single particle or a few particles with large weight 
still affects the OP-PF, but less than in many other particle filters. In 
[48] it is shown that among all PF techniques that obtain 𝒖𝓁𝑡 using 𝒖

𝓁

𝑡−1

and 𝒚𝑡, the ‘optimal proposal’ has the minimum variance in the weights 
and suffers the least from weight degeneracy. This was extended in [49]
to any PF scheme that obtains 𝒖𝓁𝑡 using the ensemble at the previous 

time step 𝒖1∶𝐿
𝑡−1

and 𝒚𝑡. The distributions used in the OP-PF are not al-
ways available, as the additive model error and the form of the linear 
observation operator are required to obtain closed forms for particle 
and weight update schemes.

However, in [3] it is shown that the optimal proposal requires an en-
semble size 𝐿 satisfying log(𝐿) ∝ 𝑀 ×𝐷 for a linear model, or will suffer 
from filter degeneracy. Thus, degeneracy is deeply connected to the di-
mension of model and observations, posing a fundamental stumbling 
block to the use of PFs in high dimensional problems.

3. Particle filters with dimension reduction in state and 
observation

3.1. Dimension reduction of state and observation

Consider the physical model (1) and the data model (2). There are 
two routes to dimension reduction using these models, namely physi-
cal model projection and data model projection. Recall that the physical 
state of the system is given by 𝒖𝑡 ∈ ℝ

𝑀 and our observation data is 
given by 𝒚𝑡 ∈ ℝ

𝐷 . As previously discussed, the issue with geophysical 
models is that the dimensions of the physical and data space, 𝑀 and 
𝐷 respectively, can be extremely large. This poses a problem with data 
assimilation methods, for example, particle filters, due to the constant 
need to re-draw and re-weight the particles. In that case, the benefit to 
assimilation is lost. We cannot move forward in time more than a few 
steps without re-sampling the set of particles, which overwrites previ-
ously gained information about the system. Lowering either the physical 
model dimension or the data model dimension helps in mitigating this 
problem. Here, we focus exclusively on linear, projection-based reduc-
tion of order, which amount to techniques for selecting the dimension 
and coordinates for the target subspace on which the models will be 
projected.

Starting with dimension reduction of the state, consider a matrix 
𝐕𝑡 ∈ ℝ

𝑀×𝑀𝑞
whose columns form a time-dependent orthonormal basis 

(𝐕⊤
𝑡 𝐕𝑡 ≡ 𝐈) for the 𝑀𝑞 -dimensional subspace of the state space. Dimen-

sion reduction or, simply, reduction of the state vector 𝒖𝑡 is given by inner 
products with columns of 𝐕𝑡, which can be interpreted as the matrix 
multiplication 𝐕⊤

𝑡 ∶ℝ𝑀
→ℝ

𝑀𝑞
:

𝐯𝑡 =𝐕⊤
𝑡 𝒖𝑡, 𝐯𝑡 ∈ℝ

𝑀𝑞
. (9)

Since typically 𝑀𝑞 ≪ 𝑀 , this operation is not invertible.
The reconstruction 𝐕𝑡 ∶ℝ

𝑀𝑞
→ℝ

𝑀 generates the state 𝐯𝑟
𝑡 correspond-

ing to 𝐯𝑡

𝐯𝑟
𝑡 ∶=𝐕𝑡𝐯𝑡 =𝐕𝑡𝐕

⊤
𝑡 𝒖𝑡 (10)

𝐯𝑟
𝑡 is an element of the full state space ℝ

𝑀 , restricted to the sub-
space spanned by columns of 𝐕𝑡, or the span of 𝐕𝑡. Due to orthog-
onality (𝐕⊤

𝑡 𝐕𝑡 = 𝐈), reducing the reconstruction recovers the reduced 
state 𝐕⊤

𝑡 (𝐕𝑡𝐯𝑡) = 𝐯𝑡, however computing the reconstruction after a re-
duction does not recover the state 𝒖𝑡 itself, since 𝒖𝑡 ≠ 𝐕𝑡𝐕

⊤
𝑡 𝒖𝑡, unless 

the 𝒖𝑡 ∈ span𝐕𝑡 to begin with. In general, (10) computes the element of 
span𝐕𝑡 nearest to 𝒖𝑡

𝐯𝑟
𝑡 = argmin

𝒙∈span𝐕𝑡

‖𝒙− 𝒖𝑡‖2. (11)

The transformation 𝚷𝑝
𝑡 ∶ℝ

𝑀
→ℝ

𝑀 whose matrix is given by

𝚷
𝑝
𝑡 =𝐕𝑡𝐕

⊤
𝑡 , (12)

is the orthogonal projection onto the span𝐕𝑡. In certain applications, 
the projection matrix may be given first, in which case an associated 
reduction matrix 𝐕𝑡 can be computed via Singular Value Decomposition 
(SVD) of 𝚷𝑝

𝑡 .
To evolve reduced states 𝐯𝑡 using the physical model, we first recon-

struct the state to form 𝐕𝑡𝐯𝑡, apply (1) to it, and then reduce the output 
using 𝐕⊤

𝑡 :
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𝐯𝑡+1 =𝐕⊤
𝑡+1

(
𝐅𝑡(𝐕𝑡𝐯𝑡) +𝝎𝑡

)
=𝐕⊤

𝑡+1
𝐅𝑡(𝐕𝑡𝐯𝑡) +𝐕⊤

𝑡+1
𝝎𝑡 ≡ 𝐅

𝑞
𝑡 (𝐯𝑡) +𝝎

𝑞
𝑡 . (13)

Since the orthogonal map of Gaussian random variables results in Gaus-
sian outputs, 𝝎𝑞

𝑡 ∼ (0, 𝐐𝑞
𝑡 ), where 𝐐

𝑞
𝑡 = 𝐕⊤

𝑡+1
𝐐𝑡𝐕𝑡+1. To this evolution, 

in the reduced-dimensional space ℝ𝑀𝑞
, corresponds the evolution in the 

full space ℝ𝑀 :

𝚷
𝑝

𝑡+1
𝒖𝑡+1 =𝚷

𝑝

𝑡+1
𝐅𝑡

(
𝚷

𝑝
𝑡 𝒖𝑡

)
+𝚷

𝑝

𝑡+1
𝝎𝑡. (14)

The observation space can be similarly reduced using another set 
of vectors 𝐔𝑡. Here, we follow [12] in assuming that 𝐔𝑡 is a 𝑀 × 𝐷𝑞

matrix, that is the reduction of the dimension still acts on the state 
space, although we will use it to reduce the observation. This allows 
for the comparison of model-based order reduction methods and data-
driven order reduction methods on an equal footing. In this way, it is 
possible to use the same procedure to derive both 𝐔𝑡 and 𝐕𝑡, although 
this is not necessary.

We start by defining the reduction of the observation space as

𝒛𝑡 ∶=𝐔⊤
𝑡 (𝐇

†𝒚𝑡), (15)

where † denotes the Moore-Penrose pseudoinverse. Working with 𝐇†𝒚𝑡

instead of simply 𝒚𝑡 allows for the use of 𝐔⊤
𝑡 whose input space is the 

state space, as explained above. Since we assume that 𝐇 has a full row-
rank, the pseudoinverse 𝐇† is an injection, so no information is lost in 
the process.

Applying this reduction to observations of states constrained to the 
model-reduced subspace 𝒚𝑡 = 𝐇(𝐕𝑡𝐯𝑡) + 𝜼𝑡 results in the observation 
equation

𝒛𝑡 =𝐔⊤
𝑡 𝐇

†[𝐇(𝐕𝑡𝐯𝑡) + 𝜼𝑡] =𝐔⊤
𝑡 𝐇

†𝐇𝐕𝑡
⏟⏞⏞⏞⏟⏞⏞⏞⏟

𝐇
𝑞
𝑡

𝐯𝑡 +𝐔⊤
𝑡 𝐇

†𝜼𝑡
⏟⏞⏟⏞⏟

𝜼
𝑞
𝑡

(16)

The composition 𝐇†𝐇 = 𝚷𝐇 is the projection on the row (input) 
space of the data operator, that is the observable subspace of the state 
space. The reduced data operator 𝐇𝑞

𝑡 ∶ℝ
𝑀𝑞

→ℝ
𝐷𝑞
,

𝐇
𝑞
𝑡 ∶=𝐔⊤

𝑡 𝚷𝐇𝐕𝑡 (17)

is therefore the composition of the model reconstruction, the projection 
to the observable subspace space, and the data reduction. The reduced 
noise is again Gaussian 𝜼𝑞

𝑡 ∼ (0, 𝐑𝑞
𝑡 ), with 𝐑

𝑞
𝑡 =𝐔⊤

𝑡 𝐇
†𝐑(𝐇†)⊤𝐔𝑡.

The alternative to the state-space based reduction of observations is 
to directly employ a reduction of the observation space, via the matrix 
𝐔𝑡 ∈ℝ

𝐷×𝐷𝑞
, and reduction 𝐔⊤

𝑡 ∶ℝ𝐷
→ℝ

𝐷𝑞
. This avoids the need to first 

pull-back observations into the state space by 𝐇† as in (15), allowing 
for the reduction analogous to (9):

𝒛𝑡 ∶=𝐔⊤
𝑡 𝒚𝑡, (18)

leading directly to the reduced model

𝒛𝑡 =𝐔⊤
𝑡 [𝐇(𝐕𝑡𝐯𝑡) + 𝜼𝑡] =𝐔⊤

𝑡 𝐇𝐕𝑡
⏟⏟⏟

𝐇
𝑞
𝑡

𝐯𝑡 + 𝐔⊤
𝑡 𝜼𝑡

⏟⏟⏟

𝜼
𝑞
𝑡

,

(19)

with the Gaussian reduced noise 𝜼𝑞
𝑡 ∼ (0, 𝐑𝑞), with 𝐑𝑞

𝑡 =𝐔⊤
𝑡 𝐑𝐔𝑡.

In summary, the original state and observation equations eq. (1)
and eq. (2) are replaced by reduced order equations through the use of 
orthogonal system matrices 𝐕𝑡 and 𝐔𝑡,

𝐯𝑡+1 = 𝐅
𝑞
𝑡 (𝐯𝑡) +𝝎

𝑞
𝑡 , 𝐅

𝑞
𝑡 (𝐯) =𝐕⊤

𝑡+1
𝐅𝑡(𝐕𝑡𝐯),

𝝎
𝑞
𝑡 ∼ (

0,𝐐
𝑞
𝑡

)
𝐐

𝑞
𝑡 =𝐕⊤

𝑡+1
𝐐𝑡𝐕𝑡+1,

(20)

𝒛𝑡 =𝐇
𝑞
𝑡 𝐯𝑡 + 𝜼

𝑞
𝑡 , 𝜼

𝑞
𝑡 ∼ (

0,𝐑
𝑞
𝑡

)
, (21)

where the two options for the reduced data model are

𝐇
𝑞
𝑡 =𝐔⊤

𝑡 𝐇
†𝐇𝐕𝑡, 𝐑

𝑞
𝑡 =𝐔⊤

𝑡 𝐇
†𝐑(𝐇†)

⊤
𝐔𝑡, when 𝐔⊤

𝑡 ∶ℝ𝑀
→ℝ

𝐷𝑞
, (22a)

or

𝐇
𝑞
𝑡 =𝐔⊤

𝑡 𝐇𝐕𝑡, 𝐑
𝑞
𝑡 =𝐔⊤

𝑡 𝐑𝐔𝑡, when 𝐔⊤
𝑡 ∶ℝ𝐷

→ℝ
𝐷𝑞

. (22b)

The choice between two options is decided by whether 𝐔⊤
𝑡 is devel-

oped as a model-based reduction, or an observation-based reduction. 
Additionally, the projected optimal proposal particle filter is modified 
to take the reduced state variable 𝐕𝑡 as the input by lifting it to the full 
space and then applying the observation model to it

𝒚𝑡 =𝐇𝐕𝑡𝐯𝑡 + 𝜼𝑡. (23)

The orthonormal bases 𝐕𝑡 and 𝐔𝑡 can be obtained from different 
dimension reduction techniques, in particular, POD, DMD, and AUS, 
described in more detail in section 4. Since AUS is exclusively a model-
based reduction, in this work we employ only the first alternative (22a), 
to allow for a direct comparison between AUS and the others. Regard-
less of how they are computed, the equations (22) are used to formulate 
projected versions of particle filters.

3.2. Projected Particle Filter (Proj-PF)

Using the formulated projected models in the previous section, we 
can now formulate projected versions of the standard particle filter and 
the optimal proposal particle filter. The basic idea is to use either the 
original physical model (1) or the physical model-based projection only, 
(13) together with (23), for the particle update and the full projected 
models (13) and (16) for the weight update. We also will employ a 
projected resampling technique based on both the physical model and 
data model projections. Let 𝐯𝓁𝑡 ∶= 𝐕⊤

𝑡 𝒖
𝓁

𝑡 for 𝓁 = 1, … , 𝐿 denote the 𝓁th 
projected particle at time 𝑡.

The following formulations detail the alterations to the particle up-
date and weight update routines of the particle filter utilized in our 
projected particle filter:

• Particle update: Use (13) to form

𝐯𝓁𝑡 = 𝐅
𝑞

𝑡−1
(𝐯𝓁

𝑡−1
) +𝝎

𝑞
𝑡 , 𝓁 = 1,… ,𝐿. (24)

• Weight update: Using the projected data model (16) or (21), (22a)

𝑤𝓁

𝑡 ∝ exp(−
1

2
(𝓁

𝑡 )
⊤(𝐑

𝑞
𝑡 )

−1(𝓁

𝑡 ))𝑤
𝓁

𝑡−1
, 𝓁 = 1,… ,𝐿, (25)

where 𝓁

𝑡 ∶= 𝒛𝑡 −𝐇
𝑞
𝑡 𝐯

𝓁

𝑡 .

3.3. Projected Optimal Proposal Particle Filter (Proj-OP-PF)

In addition to a projected particle filter, we also employ a projected 
OP-PF. Accordingly, the following formulations detail the alterations to 
the particle update and weight update routines of the OP-PF utilized in 
our projected OP-PF:

• Particle update: Use the optimal proposal particle update (5), (6), 
(7) applied to the projected physical model (13) together with the 
corresponding data model (23) to form

𝐯𝓁𝑡 =𝒎𝓁

𝑡 +𝝋, 𝝋 ∼ (0,𝐐𝑝) (26)

where

𝐐−1
𝑝 =(𝐐

𝑞
𝑡 )

−1 + (𝐇𝐕𝑡)
⊤𝐑−1(𝐇𝐕𝑡) , (27)

𝒎𝓁

𝑡 =𝐅
𝑞

𝑡−1
(𝐯𝓁

𝑡−1
) +𝐐𝑝(𝐇𝐕𝑡)

⊤𝐑−1
(
𝒚𝑡 −𝐇𝐕𝑡𝐅

𝑞

𝑡−1
(𝐯𝓁

𝑡−1
)
)

. (28)

Alternatively, the particle update corresponding to the unprojected 
physical model (𝐕𝑡 ≡ 𝐈) could be employed.

• Weight update: We employ the projected physical model (13)
and either the state space based projected data model (16) or 
the observation space based projected data model (21), (22a), 
their corresponding covariance matrices 𝐐𝑞

𝑡 = 𝐕⊤
𝑡 𝐐𝑡𝐕𝑡 and 𝐑

𝑞
𝑡 =
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𝐔⊤
𝑡 𝐇

†𝐑𝑡(𝐇
†)⊤𝐔𝑡 or 𝐑

𝑞
𝑡 =𝐔⊤

𝑡 𝐑𝑡𝐔𝑡 respectively, and the projected ob-
servation operator, 𝐇𝑞

𝑡 = 𝐕⊤
𝑡 𝐇

†𝐇𝐕𝑡 or 𝐇
𝑞
𝑡 = 𝐔⊤

𝑡 𝐇𝐕𝑡, respectively. 
Form the matrix

𝐙
𝑞
𝑡 ∶= (𝐇

𝑞
𝑡 )𝐐

𝑞
𝑡 (𝐇

𝑞
𝑡 )

⊤ +𝐑
𝑞
𝑡 (29)

and then update the weights as

𝑤𝓁

𝑡 ∝ exp[−
1

2
(𝓁

𝑡 )
⊤(𝐙

𝑞
𝑡 )

−1(𝓁

𝑡 )]𝑤
𝓁

𝑡−1
, 𝓁 = 1,… ,𝐿, (30)

where 𝓁

𝑡 ∶= 𝒛𝑡 −𝐇
𝑞
𝑡 𝐯

𝓁

𝑡 .

We employ an extension of the projected resampling scheme proposed 
in [12]. When the Effective Sample Size (ESS), given by

ESS =

(∑𝐿
𝓁=1

𝑤𝓁

)2

∑𝐿
𝓁=1

(
𝑤𝓁

)2 , (31)

falls below a threshold (e.g., ESS <
1

2
𝐿), then we resample. For a given 

𝛼 ∈ [0, 1], noise of the following form is added to resampled particles

𝐕⊤
𝑡 [𝛼𝐔𝑡𝐔

⊤
𝑡 + (1 − 𝛼)𝐈]𝜼 (32)

with 𝜼 ∼ (𝟎, 𝜔𝐈), where 𝜔 ≥ 0 is a tuneable parameter. The pseudocode 
summary of the algorithm is given in Algorithm 1.

Algorithm 1: Projected Optimal Proposal Particle Filter (Proj-
OP-PF).

𝛼 ← user input;
𝜔 ← user input;
for 𝑡 = 1, … , 𝑇 do

for 𝓁 = 1, … , 𝐿 do
𝐦𝓁

𝑡
= 𝐅

𝑞

𝑡−1
(𝐯𝓁

𝑡−1
) +𝐐𝑝

{
𝐇𝐕⊤

𝑡
𝐑−1[𝒚𝑡 −𝐇𝐕𝑡𝐅𝑡−1(𝐯

𝓁

𝑡−1
)]
}
;

𝐯𝓁
𝑡
←𝐦𝓁

𝑡
+𝝋, 𝝋 ∼ (0, 𝐐𝑝);

𝑤𝓁

𝑡
∝ exp

[
−

1

2
(𝓁

𝑡
)⊤(𝐙

𝑞
𝑡 )

−1(𝓁

𝑡
)
]
𝑤𝓁

𝑡−1
;

end

if ESS <
1

2
𝐿 // Resample if ESS below threshold

then
𝐕⊤

𝑡
[𝛼𝐔𝑡𝐔

⊤
𝑡
+ (1 − 𝛼)𝐈]𝜼, 𝜼 ∼ (𝟎, 𝜔𝐈);

end

end

Significant reductions in computational complexity may be achieved 
via the reduced state space and the observation space dimensions em-
ployed in the Proj-OP-PF algorithm developed here. If the number of 
particles 𝐿 is fixed, then in unprojected OP-PF the innovation vec-
tors 𝓁

𝑡 are multiplied by 𝐐𝑝𝐇
⊤𝐑−1 for the particle updates and by 

(𝐇𝐐𝐑⊤ +𝐑)−1 in the weight update. If these matrices are independent 
of time, then the cost becomes the cost of multiplying the 𝐿 innovation 
vectors by these matrices, operations of order (𝑀𝐷𝐿) and (𝑀2𝐿), 
respectively. Similarly, for Proj-OP-PF if the projections do not de-
pend on time, then the computational cost of the operations is of order 
(𝐷𝑞𝑀𝑞𝐿) and ((𝐷𝑞)2𝐿), respectively. If the projections depend on 
time, as with the AUS projection, then there is an additional cost of 
forming or factoring matrices, e.g., using LU or Cholesky, in addition to 
multiplication by the innovation vectors.

4. Techniques for model reduction

Development of particle filters on a subspace of the state or observa-
tion, detailed in section 3, does not depend on any particular technique 
for computing the dimension reduction matrices 𝐕𝑡 and 𝐔𝑡. In this sec-
tion we outline three techniques for computing these matrices. POD 
and DMD are data-driven (model-free) techniques that only require a 
set of simulation snapshots to calculate the reduction subspace, while 
the Lyapunov Vectors (LV) computation requires access to derivatives 
of the deterministic part of the model update equation 𝐅 (see (1)).

4.1. Proper Orthogonal Decomposition (POD)

Proper Orthogonal Decomposition (POD) is the model-reduction 
technique based on computation of a parsimonious orthogonal basis 
for the state space subspace occupied by a given evolution a dynamical 
system. It is ubiquitous in applied mathematics, and in other contexts 
is known as principal component analysis, Karhunen–Loéve decom-
position, and empirical orthogonal function decomposition. Here, we 
review only the necessary about POD; an excellent short review of the 
main features with a wealth of references can be found in [50, §22.4]. 
In the context of fluid dynamics [51], the orthogonal basis is calculated 
using eigenvectors of the cross-correlation matrix of the simulated data.

Given a recording of evolution of state vectors2 (called snapshots) 
𝒖𝑡 ∈ℝ

𝑀 , over time 𝑡 = 1, … , 𝑇 , stored as a snapshot matrix

𝐗 ∶=
[
𝒖1 𝒖2 … 𝒖𝑇

]
, (33)

POD amounts to a separation-of-variables ansatz

𝒖𝑡 ≈

𝑀∑

𝑚=1

𝝓𝑚𝜎𝑚𝝍 𝑡,𝑚. (34)

Here vectors 𝝓𝑚, 𝑚 = 1, … , 𝑀 , are the normalized “spatial” profiles 
of the state 𝒖𝑡 ∈ ℝ

𝑀 , vectors 𝝍 𝑡,𝑚 ∶=
[
𝜓1,𝑚 𝜓2,𝑚 ⋯ 𝜓𝑇 ,𝑚

]⊤
are the 

normalized time evolutions, while 𝜎𝑚 are the linear combination co-
efficients, i.e., magnitudes. While there are many possible separation-
of-variable decompositions, POD is specified by the requirement that 
{𝝓𝑚}

𝑀
𝑚=1

and {𝝍𝑚}
𝑀
𝑚=1

should be orthogonal sets.
In matrix notation, and over a fixed period of time, this ansatz cor-

responds to Singular Value Decomposition (SVD) of the snapshot matrix 
𝐗

𝐗 =
[
𝝓1 𝝓2 …

] [ 𝜎1
𝜎2

⋱

] [
𝝍1 𝝍2 …

]⊤
. (35)

The rank of the snapshot matrix 𝐗 is equal to the number of nonzero 
singular values, 𝜎𝑚. It is common to order the singular values in de-
creasing values, and refer to those 𝜎𝑚 and vectors 𝝓𝑚 as dominant if 
they have a low index. Furthermore, singular values that are equal to 
zero, and associated singular vectors, are sometimes omitted to form 
the “economy” version of SVD.

To reduce the dimension of 𝐗, while preserving the character of 
dynamics, the reduction matrix 𝐕 (see (9)) is formed,

𝐕(𝑟) =
[
𝝓1 ⋯ 𝝓𝑟

]
, (36)

containing the first 𝑟 < 𝑀 left singular vectors 𝝓𝑚 (spatial profiles). 
By the Eckart–Young theorem [52], the projected snapshot matrix 
𝐕(𝑟)𝐕(𝑟)⊤𝐗 is the best approximation of 𝐗 among all matrices of rank 
𝑟 as measured by the Frobenius norm, i.e., element-wise 𝓁2 norm [53, 
§2.4].

In general, the choice 𝑟 that obtains a parsimonious, yet usable, 
reduced-order approximation can be problem dependent, although 
there are prescriptions of optimal rank in absence of problem-dependent 
guidances [54]. Ideally, a gap or a jump in a singular value plot is an 
indication that there is a sharp change in the approximation error as 
the number of dimensions retained is changed across the gap. In other 
cases, no such gap may be seen, which can be in certain cases traced to 
model-agnostic application of the technique [55, §19.4].

4.2. Dynamic Mode Decomposition (DMD)

Dynamic Mode Decomposition (DMD) [56,57] provides a route to 
order reduction by approximating the evolution of snapshots 𝒖𝑡 by a 
separation-of-variables ansatz in the form

2 If the data-based model reduction is needed, as in (22b), then evolution of 
observations should be used instead.
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Algorithm 2: Data projection using Proper Orthogonal Decom-
position (POD).

𝐗 ←
[
𝒖1 𝒖2 ⋯ 𝒖𝑇

]
// Form snapshot matrix

𝐗 =𝚽𝚺𝚿⊤ // Singular Value Decomposition
𝑟 ← user input
𝐕POD ←

[
𝝓1 𝝓2 ⋯ 𝝓𝑟

]
// Dimension reduction matrix

𝒖𝑡 ≈

𝑀∑

𝑚=1

𝝊𝑚𝑒𝑡𝜔𝑚𝜏𝑀 𝑏𝑚, (37)

where 𝜏𝑀 is the timestep separating adjacent snapshots, 𝝊𝑚 are DMD 
modes, corresponding to a spatial profile of the component of dynam-
ics, 𝜔𝑚 ∈ ℂ are complex-valued DMD frequencies governing growth, 
decay, and oscillation of time evolution, while 𝑏𝑚 ∈ ℂ are linear com-
bination coefficients. For real-valued input vectors 𝒖𝑡, complex-valued 
DMD frequencies and modes come in conjugate pairs.

The primary assumption is that there exists a high-dimensional time-
invariant matrix 𝐀 that relates pairs of snapshots

𝒖𝑡+1 =𝐀𝒖𝑡. (38)

While this assumption does not hold exactly, the Koopman operator 
theory [58–62] asserts that for time-invariant systems, including (1), 
the state 𝒖𝑡 can be embedded in an infinite-dimensional space on which 
the matrix 𝐀 is the linear infinite-dimensional Koopman operator and 
the equation analogous to (37) does hold for expected values of these 
state variables.

If (38) holds and we have access to 𝐀 then modes 𝝊 can be computed 
as eigenvectors of 𝐀

𝐀𝝊𝑚 = 𝜆𝑚𝝊𝑚, (39)

while frequencies 𝜔𝑚 are derived from eigenvalues 𝜆𝑚 by the formula

𝜆𝑚 = exp(𝜔𝑚𝜏𝑀 ), (40)

where 𝜏𝑀 again is the timestep that separates adjacent snapshots 𝒖𝑚. 
As is well-known from linear systems analysis, Re𝜔𝑚 determines the 
rate of exponential decay (Re(𝜔𝑚) < 0) or growth (Re(𝜔𝑚) > 0) of DMD 
modes, while Im(𝜔𝑚) corresponds to the angular frequency of oscil-
lations. Modes with frequencies at the origin 𝜔𝑚 = 0 correspond to 
constant components in the evolution.

Typically, though, we do not have access to 𝐀 directly and we need 
to approximate its eigenvalues and eigenvectors. DMD is a family of 
numerical procedures approximates 𝝊𝑚 and 𝜔𝑚 while avoiding both 
the explicit embedding of (38) in the high-dimensional space, and the 
computation and storage of the full matrix 𝐀, which in practice is pro-
hibitively large, and theoretically infinite. Here we present the so-called 
exact DMD algorithm [59] which is commonly a starting point for the 
DMD analysis.

Regression of the discrete dynamics equation (38) onto the snap-
shots can be solved approximately for all adjacent time steps as an 𝓁2

minimization problem

min
𝐀

𝑇−1∑

𝑡=0

‖𝒖𝑡+1 −𝐀𝒖𝑡‖22 =min
𝐀

‖𝐗2 −𝐀𝐗1‖. (41)

The second formula is the equivalent matrix notation using involving 
two submatrices of the snapshot matrix, 𝐗1 and 𝐗2, formed by re-
spectively erasing the first and the last column of 𝐗. In principle, this 
problem could be solved by a Moore–Penrose inverse as 𝐀DMD ∶=𝐗2𝐗

†

1
,

but this is generally avoided as the size of 𝐀DMD is quadratic in the di-
mension of snapshot vectors, and in practice may be prohibitively large 
store. Furthermore, any numerical errors arising in the process could 
fatally affect the well-posedness of the computation.

As the ultimate goal is not the calculation of 𝐀 but rather a (small) 
subset of its eigenvectors and eigenvalues (39), most variants of DMD 
employ an order reduction step to improve numerical robustness and 

reduce the size of numerical linear algebra calculations. Here, we use a 
POD based order reduction, essentially using section 4.1 as the substep 
of the DMD analysis. Compute SVD of the “left” snapshot matrix

𝐗1 =𝚽𝚺𝚿⊤ (42)

and truncate the involved matrices to 𝑅 dominant vectors, forming 𝚽𝑅, 
𝚺𝑅, 𝚿𝑅. Since the goal of this step is not to perform the full order 
reduction, but merely to numerically stabilize the problem and reduce 
the size of numerical problems solved below, 𝑅 could be fairly large, 
even 𝑅 = 0.9𝑀 .

Using the matrices just computed, form

𝐀𝑅 =𝚽𝑅𝐗2𝚿𝑅𝚺𝑅, (43)

and compute its eigenvalues and eigenvectors 𝐀𝑅𝝊̂𝑚 = 𝜆𝑚𝝊̂𝑚. Matrix 𝐀𝑅

is a 𝑅 ×𝑅 matrix whose eigenvalues are the same as eigenvalues of the 
𝑀 ×𝑀 matrix 𝐀, and whose eigenvectors 𝝊̂𝑚 can be used to reconstruct 
DMD modes by

𝝊𝑚 = 𝜆−1𝑚 𝐗2𝚿𝑅𝚺
−1
𝑅
𝝊̂𝑚. (44)

Depending on the algorithm to compute eigenvectors 𝝊̂, 𝝊𝑚 may need 
to be normalized to unit 𝓁2 norm.

Combination coefficients 𝑏𝑚 can be used to rank the DMD modes by 
importance. They can be solved by regression, that is solving (37) at the 
initial snapshot, or even many steps

𝒃←𝚼†𝒖0, or 𝒃← argmin
𝒙∈ℂ𝑀

𝑇∑

𝑡=0

‖‖‖‖‖‖
𝒖𝑡 −

𝑀∑

𝑚=1

𝝊𝑚𝑒𝑡𝜔𝑚𝜏𝑀 𝑥𝑚

‖‖‖‖‖‖
. (45)

Solving (45) at only the initial state can result in a relative approxi-
mation error that is unevenly spread between growing and decaying 
modes; conversely, using all steps in the regression balances the error, 
but is numerically expensive. As a compromise, implementation used 
below uses five steps equally spaced across all available snapshots.

One advantage of using DMD is in additional information that can 
be used to choose what subset of modes to use for dimension reduction. 
POD modes are ranked solely by their 𝐿2 norms (singular values), there-
fore most approaches simply choose some number of dominant modes. 
A similar effect can be achieved by ranking DMD modes by absolute 
values |𝑏𝑚|, which represent contributions of modes to the initial con-
dition. Alternatively, DMD modes can be ordered by 𝐿2 norms of time 
evolution for each DMD mode

𝑏̄2𝑚 =

𝑇

∫
0

|𝑒𝜔𝑚𝑡𝑏𝑚|2𝑑𝑡 = |𝑏|2
exp(2Re𝜔𝑚𝑇 ) − 1

2Re𝜔𝑚𝑇
, and

𝑏̄2𝑚 ∶= |𝑏|2𝑚 if Re𝜔𝑚 = 0, (46)

which give the same weight to modes that grow and those that decay 
at rates, everything else being the same. In the applications below, we 
rank DMD modes in the descending order of 𝑏̄𝑚, and refer to those with 
large 𝑏̄𝑚 as dominant.

Alternatively, DMD modes can be chosen based on the real or imag-
inary parts of 𝜔𝑚, e.g., if there is a reason to choose only modes corre-
sponding to a certain frequency band. We did not pursue this direction 
further in this paper as we did not suspect that evolutions of either L96 
or SWE were concentrated in a particular frequency band.

Choosing the 𝑀𝑞 dominant DMD modes 𝝊𝑚, the final step is to form 
the orthogonal projection matrix 𝚷DMD. The truncated 𝚼 is not an or-
thogonal projection because DMD modes, unlike POD modes, do not 
form an orthonormal system. Additionally, 𝝊𝑚 are complex-valued, so 
conjugate pairs of columns 𝝊𝑚, 𝝊𝑚+1 = 𝝊∗ should be replaced by their 
real-valued cartesian components Re𝝊, Im𝝊 in 𝚼 matrix. Care should be 
taken to always include either both element of a pair, or neither. Af-
ter these steps that prepare a truncated real-valued basis for a subspace 
of DMD modes 𝚼̂, we compute orthogonal dimension reduction matrix 
𝐕DMD as left singular vectors of 𝚼̂, or state projection matrix 𝚷DMD us-
ing QR decomposition of 𝚼̂.

200



A. Albarakati, M. Budišić, R. Crocker et al. Computers and Mathematics with Applications 116 (2022) 194–211

Algorithm 3: Dynamic Mode Decomposition.

𝐗1 ←
[
𝒖0 𝒖1 ⋯ 𝒖𝑇−1

]
, 𝐗2 ←

[
𝒖1 𝒖2 ⋯ 𝒖𝑇

]
, // Left/Right 

Snapshot Matrix
𝐗1 =𝚽𝚺𝚿⊤ // SVD

𝑅 ← user input // Choice of the DMD problem size 𝑅 < rank𝐗

𝚽𝑅 , 𝚺𝑅 , 𝚿𝑅 // Truncation of SVD matrices
𝐀𝑅 ←𝚽𝑅𝐗2𝚿𝑅𝚺𝑅 // Compressed DMD matrix
𝐀𝑅𝝊̂𝑚 = 𝜆𝑚𝝊̂𝑚 // Eigendecomposition of DMD matrix
𝝊𝑚 ← 𝜆−1

𝑚
𝐗2𝚿𝑅𝚺

−1
𝑅
𝝊̂𝑚 // Computing and normalizing DMD modes

𝒃 = argmin𝒙∈ℂ𝑀

∑𝑇

𝑡=0

‖‖‖𝒖𝑡 −
∑𝑀

𝑚=1
𝝊𝑚𝑒𝑡𝜔𝑚𝜏𝑀 𝑥𝑚

‖‖‖ // DMD coefficients via 𝓁2

regression

𝑏̄2
𝑚
= |𝑏|2[exp(2 Re𝜔𝑚𝑇 ) − 1]∕(2 Re𝜔𝑚𝑇 ) // Rank DMD modes in descending 
order of 𝑏̄

𝑀𝑞
← user input // Choice of size of dimension reduction 
subspace 𝑀𝑞 < 𝑅

𝚼̂←

[
𝚼1 𝚼2 … 𝚼𝑀𝑞

]
// Truncate DMD modes and convert to 

real vectors
𝐕DMD ← SVD(𝚼̂) // Left singular vectors form the dimension 

reduction matrix

4.3. Assimilation in the Unstable Subspace (AUS)

The last of the model reduction methods employed here, which is 
restricted to projecting in physical model space, is based on compu-
tational techniques for Lyapunov exponents and Finite Time Lyapunov 
exponents. Again, calculated modes are used to select which dimensions 
are most dynamically significant and should be retained in the reduced 
basis. In AUS, these modes are determined by employing the discrete 
QR algorithm [63,64]. For the discrete time model 𝒖𝑡+1 = 𝐅𝑡(𝒖𝑡) + 𝝎𝑡

with 𝒖𝑡 ∈ℝ
𝑀 , let 𝐔0 ∈ℝ

𝑀×𝑀𝑞
(𝑀𝑞 ≤ 𝑀) denote a random matrix such 

that 𝐔⊤
0
𝐔0 = 𝐈 and

𝐔𝑡+1𝐓𝑡 =𝐅
′
𝑡(𝒖𝑡)𝐔𝑡 ≈

1

𝜖
[𝐅𝑡(𝒖𝑡 + 𝜖𝐔𝑡) − 𝐅𝑡(𝒖𝑡)], 𝑡 = 0,1,… (47)

where 𝐔⊤
𝑡+1

𝐔𝑡+1 = 𝐈 and 𝐓𝑡 is upper triangular with positive diagonal 
elements. With a finite difference approximation the cost is that of an 
ensemble of size 𝑝 plus a reduced QR via modified Gram–Schmidt to re-
orthogonalize. Lyapunov exponents or finite time approximations can 
be formed and monitored by taking time averages of the natural log-
arithm of the diagonal elements of the upper triangular 𝑝 × 𝑝 matrices 
𝐓𝑡 (see, e.g., [63,64]). Time dependent orthogonal projections to de-
compose state space are given by 𝚷𝑡 = 𝐔𝑡𝐔

⊤
𝑡 and can be employed to 

form both physical model and data model projections. While AUS tra-
ditionally refers to projection/restriction of the physical model onto the 
neutral and unstable subspace, here we use AUS more generally to re-
fer to model-space-based projections using an approximate Lyapunov 
basis: accordingly, our implementation of AUS may include only some 
unstable modes, or may include the entire neutral-unstable subspace 
and some stable modes.

5. Numerical results

To evaluate the performance of Proj-OP-PF, we apply the presented 
techniques to two commonly used models: Lorenz’96 model (L96) and 
a configuration of the Shallow Water Equations (SWE) corresponding to 
a barotropic instability.

The experiments were chosen to evaluate how a particular choice 
of the order reduction technique, and the dimensions of reduced model 
and data dimensions, resp. 𝑀𝑞 and 𝐷𝑞 , influence the accuracy of assim-
ilation, as well as protect the particle filter from weight collapse. In all 
cases, we use the model-based reduction of the observation space (see 
section 3.1) with a full row-rank linear observation operator, which al-
lows for a fair comparison between order reduction techniques.

5.1. Common experimental setup

For both L96 and SWE we use a common setup to evaluate the effec-
tiveness of the data assimilation scheme. We run one simulation of the 

model that serves as the “truth”, 𝒖truth𝑡 . Noisy observations of the “truth” 
are used as inputs into assimilation, and the success of the assimilation 
is measured by how accurately the state of the estimator matches the 
state of the “truth” simulation. In all cases we use Proj-OP-PF as the data 
assimilation scheme, summarized in Algorithm 1. The scheme uses a set 
of 𝐿 particles about the initial condition of the truth 𝒖truth with added 
noise from the same Gaussian distribution employed to simulate noise 
in the physical model. All particles are initialized with equal weights 
(1∕𝐿) and are propagated forward in time using the chosen model. The 
Effective Sample Size (ESS) is then calculated (31) and projected resam-
pling is performed with the spread of particles governed by (32), where 
the proportion of resampling variance inside the projection subspace is 
always taken to be 𝛼 = 0.99, and total resampling variances 𝜔 = 10−2, 
for L96, and 𝜔 = 10−4, for SWE when ESS <

1

2
𝐿.

To evaluate Proj-OP-PF we report on two quantities:

• Root Mean Squared Error (RMSE) between estimate of the state 
and the true state,

RMSE(𝒖truth,𝒖ens) ∶=
‖‖‖𝒖

truth − 𝒖ens
‖‖‖2 ∕

√
𝑀, (48)

where 𝒖truth denotes the truth and 𝒖ens denotes the particle ensem-
ble mean, and

• Resampling Percentage (RES%), which measures the proportion of 
observation times in which the particle population needed to be 
resampled.

The lower each of the quantities are, the better the assimilation scheme 
is performing. We also report in some experiments on the projected 
RMSE,

RMSEq(𝒖truth,𝒖ens) ∶= RMSE(𝐕𝐕⊤𝒖truth,𝐕𝐯ens)

=
‖‖‖𝐕𝐕

⊤𝒖truth −𝐕𝐯ens
‖‖‖2 ∕

√
𝑀𝑞 , (49)

which measures the error in the subspace of the reduced model. A low 
projected RMSE together with a significantly higher “full” RMSE (48)
is an indication that the assimilation is being effective when restricted 
to the subspace of the reduced model, but the projected model does 
not sufficiently resolve the full model. In several of the figures, we will 
compare with the results of the optimal proposal particle filter with no 
model or data reduction and we will use (NON) to denote these results. 
All numerical results are obtained by averaging over 10 randomized 
trials.

5.2. Lorenz ’96 equations

5.2.1. Model and parameters
We first consider Proj-OP-PF applied to the extensively used 

medium-dimensional dynamical system Lorenz’96 model (L96). This 
model, developed by Edward Lorenz [65], represents a nonlinear 
chaotic system that captures some multiscale features of the global hor-
izontal circulation of the atmosphere. L96 has become one of the most 
commonly used test problems in data assimilation since its introduc-
tion.

The model is presented as a system of ordinary differential equations 
(ODEs) in 𝒖 = (𝑢𝑖)

𝑀
𝑖=1

of an arbitrary dimension 𝑀 ,

𝑑𝑢𝑖

𝑑𝑡
=
(
𝑢𝑖+1 − 𝑢𝑖−2

)
𝑢𝑖−1 − 𝑢𝑖 + 𝐹 , 𝑖 = 1,… ,𝑀, (50)

where the value of a constant (typically positive) forcing term 𝐹 deter-
mines qualitatively whether the evolution will be regular or chaotic. In 
its original form, the model was introduced as a variable-order system 
of ODEs, but it can be interpreted as a 2nd order finite-difference dis-
cretization of a viscous Burgers-type equation with periodic boundary 
conditions (see [66] for derivation):

𝜕𝑡𝑢 = −𝑢𝜕𝑥𝑢−
1

3
(𝜕𝑥𝑢)2 −

1

6
𝑢𝜕𝑥𝑥𝑢− 𝑢+ 𝐹 . (51)
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Fig. 1. Solutions 𝑢𝑖(𝑡), 𝑖 = 1, … , 𝑀 ≡ 40 of (50) demonstrating regular and chaotic spatiotemporal patterns in L96 model for various values of forcing 𝐹 . Initial 
condition is a cosine bump in all cases.

In this form, the model has a nonlinear convective term corresponding 
to 𝑢𝜕𝑥𝑢, a diffusive terms, and a dissipative term (−𝑢). Note, how-
ever, that the discretization does introduce nonlinear effects not present 
in the full model [67], so that the ODE–PDE correspondence is not 
straightforward.

To produce the true evolution 𝒖truth𝑡 , the L96 model (50) is evolved in 
time using the Dormand–Prince pair (MATLAB’s ode45), with solution 
resampled at multiples of the fixed time step 𝜏𝑀 = 0.01. Fig. 1 illustrates 
the space-time behavior of typical solutions of L96 ranging from 𝐹 =

3 (regular structure) to 𝐹 = 8 (chaotic structure). For 𝑀 = 40 used in 
most calculations here, the onset of chaos is between 𝐹 = 3 and 𝐹 =

4 [67]; the similar behavior appears to hold for 𝑀 = 400 as well. In 
the numerical experiments, the initial condition is a random vector to 
reduce the burn-in time, and provide some variability between trials.

In the setup used here, all model variables are observed so that 𝐇 = 𝐈. 
The noise is uncorrelated among any two variables of the system (within 
and between state and observation vectors). Moreover, it is uniform for 
all states and for all observation variables, which means that the cor-
relation matrices 𝐐, 𝐑 are scaled identity matrices. We compare several 
levels of such noise in the physical model, yielding 𝐐 = 𝛼 ⋅ 𝐈 with scalar 
variances 𝛼 = 0.1, 1.0. The observation error covariance is always fixed 
to 𝐑 = 0.01 𝐈 resulting in the standard deviation of observation error of 
0.1 which is included for comparison in the figures when reporting on 
RMSE.

The number of particles is fixed with 𝐿 = 20. The observations are 
computed every 5 steps, yielding the effective time step of assimilation 
𝜏𝐷 = 0.05. For the purposes of assimilation, the 4th order Dormand–
Prince integrator is used but with a fixed step size 𝜏𝑀 = 0.01. The 
assimilation is performed over 10, 000 observation times, after 1000 
time steps have elapsed. The average RMSE over time is calculated 
based on the RMSE over the last 5, 000 observation times (see Fig. 5
where the last 5, 000 observation times correspond to the second half of 

Table 1
Lyapunov dimensions for the 𝐿96 model for 
various forcing values and model dimen-
sions 𝑀 , estimated by the Kaplan–Yorke for-
mula (52).

𝐹 3 4 6 8

𝐷𝐿 (𝑀 = 40) 1 3 22 28
𝐷𝐿 (𝑀 = 400) 5 12 224 270

the assimilation window), to more accurately represent the asymptotic 
value of the RMSE. The resampling percentage RES% is computed as 
the proportion of all 10, 000 observation times in which resampling was 
performed.

For the classical values of the L96 system where 𝑀 = 40 and 𝐹 = 8, 
the system is chaotic with 13 positive and 1 neutral Lyapunov exponent. 
The percentage of positive Lyapunov exponents approximately scales 
with the dimension 𝑀 and there are generally a smaller percentage 
of positive Lyapunov exponents for smaller values of 𝐹 . For 𝑀 = 40, 
𝑀 = 400 and 𝐹 ∈ [3, 8] we approximate the Lyapunov dimension by 
Kaplan–Yorke formula 𝐷𝐿 defined for ordered Lyapunov exponents 𝜆1 ≥
𝜆2 ≥⋯ ≥ 𝜆𝑀 given by

𝐷𝐿 = 𝑘+
𝜆1 + 𝜆2 +⋯+ 𝜆𝑘

|𝜆𝑘+1|
(52)

where 𝑘 is the maximum value of 𝑖 such that 𝜆1 + 𝜆2 +⋯ + 𝜆𝑖 > 0. Ap-
proximations are computed over a time interval of length 10, 000 with 
the integer part tabulated in Table 1 and indicates that for smaller val-
ues 𝐹 the dynamics can be thought of as inherently low dimensional as 
𝐷𝐿∕𝑀 ≪ 1, but for larger values of 𝐹 this is not the case.

To determine suitable POD and DMD modes for L96, we simulate 
the model with a random initial condition (different from those used 
to compute the “truth”), over the entire time interval over which the 
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Fig. 2. Singular values and DMD eigenvalues spectra for L96 model with 𝑀 = 400. Lower values of 𝐹 , associated with more-regular behavior, demonstrate a faster 
decay of the singular values, and clustering of DMD frequencies. Higher values of 𝐹 , associated with disordered behavior, have a slower decay of the singular values 
and more evenly distributed spectrum.

assimilation is performed at the model time step 𝜏𝑀 = 0.01. Since the 
model evolution is largely in a steady state, both POD and DMD modes 
from such simulation can be used for the assimilation process. This set-
ting can be justified in cases where the model evolution is largely in a 
steady state, that is, not undergoing a regime change. A more realistic 
setup could employ decompositions of assimilated data over some mov-
ing interval, which is something we will explore in future work. For L96 
the POD and DMD projections are computed separately for each of the 
10 trial using snapshots obtained from a random initial condition.

Order reduction techniques are effective when the dynamics can be 
reproduced by a relatively small number of modes. For POD, this is 
indicated by jumps (“gaps”) in the singular value spectrum. Addition-
ally, sharp changes in slope between segments of the singular values 
plot indicate the presence of mechanisms evolving at different scales. 
Fig. 2 demonstrates that the regular 𝐹 = 3 evolution results in an “el-
bow” around subspace of dimension 70, while for 𝐹 = 8 there is no 
discernible boundary between system scales (elbows in Fig. 2a).

The duration of the time window over which POD and DMD are 
computed depends on the type of dynamics. For regular steady-state 
behavior, the time window should be large enough for the trajectory 
to trace out the orbit at least once. For irregular steady-state behavior, 
e.g., chaotic attractors, the time window should be long enough so that 
the points in the trajectory sample the attractor well. All parameters 𝐹
considered for L96 lead to steady state behavior, although we leave the 
investigation of the effects of window duration for future work.

For transient behavior, e.g., trajectories shadowing heteroclinic or-
bits between two invariant sets, the duration of the window has to 
be chosen carefully. In those cases, a common strategy is to employ a 
sliding-window computation of POD or DMD [68,69], leading to time-
varying reduction/projection matrices. The choice of the duration of 
the window leads to delicate effects, further explored in [70]. Theoret-
ical connection between sliding window DMD and the stability theory 
of time-varying dynamical systems has been developed in [71–73]. A 
follow-up publication will investigate how time-varying projection ma-
trices perform in particle filters, and we plan to explore these matters 
in more detail.

For DMD, regular steady-state dynamics are indicated by DMD fre-
quencies 𝜔𝑚, see (40), concentrated along the vertical axis, and by a 
“peaked” graph of combination coefficients 𝑏 against the frequency. 
Fig. 2 shows the singular values and DMD spectrum for the range of 
forcing parameters 𝐹 distinguishing between DMD spectrum with pos-
itive and negative real parts for 𝐹 = 3 in Fig. 2b. It is evident that we 
can expect a better performance of order reduction techniques for lower 
values of 𝐹 , which are associated with regular behavior of the spa-
tiotemporal evolution.

Table 2
Parametrization of experiments used to test Proj-OP-PF for L96. In all cases, we 
set observation noise covariance to 𝐑 = 0.01 𝐈, number of particles 𝐿 = 20, and 
observe all model variables 𝐇 = 𝐈.

Exp. 𝐹 𝑀 = 𝐷 𝐐 Reduction 𝑀𝑞 𝐷𝑞

1 3,8 40 0.1 𝐈,1.0 𝐈 AUS, POD, DMD 5 – 40 5
2 3,8 400 0.1 𝐈 POD 100 1 – 100
3 3,4,6,8 400 0.1 𝐈,1.0 𝐈 POD, DMD 10–400 5

To evaluate the performance of Proj-OP-PF we conduct three ex-
periments with the intent of comparing how three reduction schemes 
performed over a range of parameters. Details of experiments are given 
in Table 2.

5.2.2. Experiment 1 (𝐹 = 3, 8, 𝑀 = 40)
Using AUS for reducing the order of the datamodel was investigated 

in [12,74]; here we investigate the efficacy when AUS is used for the 
reduction of both the physical and data models. Additionally, we com-
pare AUS with order reductions derived using POD and DMD. Fig. 3
shows the mean RMSE and RES% trends with increasing model projec-
tion rank for the three projection methods. For all projection types the 
RMSE does not approach the observation noise until the rank of the 
projections are at least 35 although the RMSEs for POD and DMD are 
slightly lower than for AUS. With 𝐐 = 1.0 𝐈 the RES% are much smaller 
than for 𝐐 = 0.1 𝐈 since the optimal proposal particle filter with larger 
model error covariance leads to greater particle diversity and hence 
smaller RES%. We focus on dimension reduction using POD and DMD 
for the remaining experiments.

5.2.3. Experiment 2 (𝐹 = 3, 8, 𝑀 = 400)
We set the model dimension to 𝑀 = 400 and fix 𝑀𝑞 = 100, then 

vary 𝐷𝑞 between 1 and 100. The results are shown in Fig. 4. The RMSE 
and projected RMSE are both relatively constant over the range of data 
dimensions. The projected RMSE is at the level of standard deviation of 
observation noise, which indicates that the assimilation is effective in 
the states 𝒖 belonging to the subspace of the reduced model. The higher 
value of the “full” RMSE indicates that this is not sufficient to constrain 
the full state, meaning that the projected model does not sufficiently 
resolve the full model.

The proportion of time steps in which particle resampling was per-
formed, RES%, increases steadily with the dimension of the projection 
of the data space. This indicates that the primary effect of 𝐷𝑞 is to 
mitigate the weight collapse of the particle filter, without significantly 
affecting the accuracy of the assimilation. This is a confirmation of the 
effectiveness of using data-driven order reduction techniques, POD and 
DMD, instead of the model-based AUS, as detailed in [12].
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Fig. 3. Experiment 1 for the L96 model with 𝑀 = 40, Proj-OP-PF using DMD, POD, and AUS for physical and data models with fixed data projection dimension 
𝐷𝑞 = 5 and varying the rank of the physical model projection dimension (𝑀𝑞 = 5, 10, … , 𝑀 = 40). Standard deviation of the observation noise (𝐑 = 0.01 𝐈) is given 
by the dash-dot line in RMSE panels. NON corresponds to Proj-OP-PF with the identity projection (𝑀𝑞 = 𝑀 and 𝐷𝑞 = 𝐷) or equivalently no reduction of both the 
model and the data. See section 5.2.2 for further details.

Fig. 4. Influence of the reduction of order of the observation space for assimilation of L96 model with 𝐹 = 3 and 𝐹 = 8 for the experiment 2 (see Table 2). Assimilation 
was performed using Proj-OP-PF with POD projection of physical and data models 𝑀 = 𝐷 = 400 with fixed physical projection dimension 𝑀𝑞 = 100 and varying the 
data model projection with rank 𝐷𝑞 = 1, 2, … , 𝑀𝑞 = 100. See section 5.2.3 for further details.
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Fig. 5. Time evolution of RMSE for Proj-OP-PF using POD for the L96 model in regular 𝐹 = 3 and chaotic 𝐹 = 8 regime. Covariances 𝐐 = 0.1 𝐈, 𝐑 = 0.01 𝐈, and the 
remaining parameters as in Experiment 3 (see Table 2). Horizontal line at 0.1 =

√
0.01 denotes the standard deviation of the observation noise, while vertical line at 

𝑡 = 250 indicates the start of the period used to compute mean RMSE in Fig. 4 and Fig. 6.

5.2.4. Experiment 3 (𝐹 = 3, 4, 6, 8, 𝑀 = 400)
Next we consider L96 system with 𝑀 = 400 and varying values of 

the forcing term 𝐹 and focus on time-independent POD and DMD based 
projections. We revert to 𝐷𝑞 = 5. As before, we average the results over 
10 trials with randomized initial conditions and noise realization.

Time evolution of RMSE shown in Fig. 5 for 𝐷𝑞 = 5 shows two rep-
resentative cases of reduced-order assimilation in regular 𝐹 = 3 and 
chaotic 𝐹 = 8 regimes. For 𝐹 = 3, the dynamics are regular, and evolve 
in lower-dimensional subspace of the state space, as indicated by the 
calculation of singular values and Lyapunov dimensions mentioned in 
Section 5.2.1. Consequently, fewer models, likely between 𝑀𝑞 = 50

and 𝑀𝑞 = 100 are needed for accurate data assimilation, as indicated 
by the RMSE converging to, or below, standard deviation of observa-
tion error once sufficiently many modes are selected. Increasing the 
reduced model dimension 𝑀𝑞 > 100 gives only a slight improvement in 
the asymptotic RMSE and in reducing the time to reach the asymptotic 
value.

In contrast, 𝐹 = 8 evolution has no similar low-dimensional struc-
ture, in addition to being chaotic, in which case only small improve-
ments are seen in RMSE as more modes are added, but even for fairly 
large 𝑀𝑞 = 350, the RMSE remains an order of magnitude larger than 
the observation error. Fig. 6 shows trends in dependence of RMSE and 
RES% across more values of forcing 𝐹 , and additionally compares POD 
and DMD model reduction. In all cases, RMSE shown is a time-average 
of values in the second half of the assimilation period, after the tran-
sient (to the right of the vertical dashed line in Fig. 6).

We see that for larger values of 𝐹 the results are of the order of the 
observation error only for projection ranks near the underlying model 
dimension 𝑀 = 400. However, for 𝐹 = 3 and 𝐹 = 4 we obtain RMSE less 
than one for relatively small physical model projection ranks and RMSE 
of less than 0.25 for POD for physical model projections with ranks of 
approximately 50 and higher. Overall, as with 𝑀 = 40 and 𝐹 = 8, we 
observe little gain in reduction of the physical model for 𝑀 = 400 and 
𝐹 = 6, 8. On the other hand, for 𝐹 = 3, 4 we observe plateauing (𝐹 = 4) 
and a minimum (𝐹 = 3) as a function of the reduced model dimension 
𝑀𝑞 .

5.3. Shallow Water Equations (SWE)

5.3.1. Model, simulation, and parameters
The SWE are frequently used in science and engineering applica-

tions to model free-surface flows where the depth is small compared 

to the horizontal scale(s) of the domain. Successful applications of the 
SWEs include modeling dam breaks, hurricane storm surges, tsunamis 
and atmospheric flows [75]. Motivated by this wide utility, our second 
example features SWE on a rectangular domain, configured to approxi-
mate a barotropic instability. Detailed derivation of SWE model can be 
found in standard textbooks on geophysical fluid dynamics, e.g. [76, 
§3].

The governing equations for this system are

𝜕𝑢

𝜕𝑡
=

(
−

𝜕𝑢

𝜕𝑦
+ 𝑓

)
𝑣−

𝜕

𝜕𝑥

(
1

2
𝑢2 + 𝑔ℎ

)
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𝜕𝑥
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𝜕

𝜕𝑦
((ℎ+ ℎ)𝑣).

(53)

Here 𝑢 and 𝑣 are the 𝑥- and 𝑦-components of the velocity field. The 
total height of the water column is ℎ + ℎ, where ℎ is the height of the 
wave, and ℎ is the depth of the ocean, although we employ the flat 
orography ℎ ≡ 0. The parameter 𝑔 is the gravitational constant, 𝑓 is 
the Coriolis parameter, 𝑐𝑏 the bottom friction coefficient, and 𝜈 is the 
viscosity coefficient.

The initial value problem for (53) is solved using R. Hogan’s finite 
difference code [77]. The three fields 𝑢, 𝑣, ℎ are evaluated at a grid of 
254 ×50 points in the (𝑥, 𝑦) plane, resulting in 𝑀 = 38100 state variables. 
Solutions are approximated using a standard finite difference scheme in 
space and a Lax–Wendroff finite-difference scheme in time with a fixed 
time step of 𝜏𝑀 = 1 min = 1∕60 h so that the Courant–Friedrichs–Lewy 
condition is satisfied. We let the system evolve in time over a total of 
96 h. Fig. 8a shows an example of the non-assimilated simulation output 
showing the barotropic instability with the flat orography.

For SWE we consider both complete observations with all model 
variables observed (𝑝 = 100%) or sparse observations with every 100th 
variable observed (𝑝 = 1%). We additionally consider three basic obser-
vation scenarios for experiments (see [78]):

(i) only 𝑢 and 𝑣 variables are observed, so 𝐷 =
2

3
𝑝𝑀 ,

(ii) all variables are observed, so 𝐷 = 𝑝𝑀 , and
(iii) only ℎ variable is observed, so 𝐷 =

1

3
𝑝𝑀 .

Since in all cases the observed variables are not transformed in any 
other way, the 𝐇 amounts to an identity matrix with a portion of the 
rows removed.

205
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Fig. 6. Experiment 3 using L96 model with 𝐹 = 3, 4, 6, 8 and 𝑀 = 400, Proj-OP-PF using DMD, and POD for the physical model and the data model with fixed data 
projection dimension 𝐷𝑞 = 5 and varying the rank of the physical model projection 𝑀𝑞 = 10, 20, … , 400. Columns correspond to two different model noise correlations 
𝐐. NON corresponds to the optimal proposal particle filter with no reduction of the model and the data. In the case of no reduction (NON), there is little difference 
between 𝐹 = 3 and 𝐹 = 4 ((a) and (b)) and similarly between 𝐹 = 6 and 𝐹 = 8 ((c) and (d)). The displayed RMSE is a time average after the initial transient (second 
half of the assimilation period shown in Fig. 5). Standard deviation of the observation noise is fixed and given in the dash-dot line in RMSE panels. See section 5.2.4
for further details.

As with L96, model and observation error noise are uncorrelated 
and affect all variables equally, so correlation matrices 𝐐, 𝐑 are chosen 
to be scaled identity matrices. Specifically, we employ error covariance 
matrices 𝐐 = 1.0 𝐈, 0.1 𝐈 and 𝐑 = 0.01 𝐈 and subsequently (see 5.3.5) 
observation error covariance matrices 𝐑 = 1.0 𝐈, 0.1 𝐈.

Although we will not employ AUS projections with SWE, we calcu-
lated the approximate Lyapunov spectrum for the version of SWE we 
are employing. In particular, the largest computed approximate Lya-
punov exponents over the 4 day time interval are relatively smaller 
than those for L96 and of the order 10−3 min−1. We found ≈ 30 positive 
exponents and a computed Kaplan–Yorke dimension of ≈ 110. For POD 
and DMD type projections, Fig. 7 shows the spectrum of singular val-
ues and DMD frequencies. Changes in the slope of the graph of singular 
values are sometimes used as a indicator of an inherent dimensionality 
of the problem, with the assumption that different component phenom-
ena, such as multiscale oscillations or noise sources, may have different 
slopes of variance associated with them. For SWE the POD and DMD 
projections are obtained using a fixed reference solution (the truth) for 
each of the 10 trials.

The DMD coefficients 𝑏𝑖 do not show many isolated peaks, suggest-
ing that the dynamics is not prominently low-dimensional. The same 

conclusion can be drawn from a lack of jumps or gaps in the spectrum 
of singular values. Nevertheless, we can evaluate how well the reduced-
order assimilation performs for various choices of 𝑀𝑞 .

With the projection matrices computed, we assimilate using Proj-
OP-PF starting at 𝑡 = 48 h and continuing for the next 24 h, with obser-
vations performed and assimilated with the timestep of 𝜏𝐷 = 60 min (as 
compared to a one-minute observational time scale in [78]). This effec-
tively discards the first day as transient between the initial condition 
and the development of coherent structures.

The time scales, from the length of the simulation down to the obser-
vation timescale, were chosen to allow for an efficient proof-of-principle 
demonstration of the use of data-driven model reduction with data as-
similation. We make no claim here that the same choices should be 
made in general when the SWE is used as the model. In general, the 
parametrization of the model, the broader context in which DA is used, 
and the variation of the computed projection matrices with respect to 
the duration and start of the window would all be driving the choice 
of the chosen timescales. We expect to further explore these issues in 
future work.

Fig. 8 shows the true state of the model at the end of the assimila-
tion period (𝑡 = 72) and the assimilation error at the same time. Here 
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Fig. 7. Singular values and DMD eigenvalues spectra for SWE model between 𝑡 = 24 h and 48 h.

Fig. 8. “Truth” for the state variables ℎ, 𝑢, 𝑣 of the SWE models, and the spatial structure of the assimilation error at the end of assimilation period (𝑡 = 72). 
Observation operator included all state variables at 1% of spatial nodes. Particle filter used 5 particles with error covariances 𝐐 = 0.1 𝐈, and 𝐑 = 0.01 𝐈. Reduction 
performed using POD with 𝑀𝑞 = 20, and 𝐷𝑞 = 10.

Fig. 9. SWE model, Proj-OP-PF using DMD for the physical and data models with fixed data projection dimension 𝐷𝑞 = 10 and varying the physical model projection 
from 𝑀𝑞 = 10 to 𝑀𝑞 = 100. Observation scenario (ii) with number of particles 𝐿 = 5, 15, 20, 30. In (b) the mean scaled ESS (ESS/𝐿) is plotted against the reduced 
model dimension 𝑀𝑞 (error bars correspond to a single standard deviation) and against time.
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Fig. 10. SWE model, Proj-OP-PF using POD for both the physical and data models with fixed data projection rank 𝐷𝑞 = 10 and varying the rank of the physical 
model projection 𝑀𝑞 . In all cases, assimilation uses 𝐿 = 5 particles.

Table 3
Parametrization of experiments used to test Proj-OP-PF for SWE.
Exp. Obs. scenario 𝑝 𝐐 𝐑 Reduction 𝑀𝑞 𝐷𝑞 𝐿

1 (ii) 100% 0.1 𝐈 0.01 𝐈 DMD 10 – 100 10 5,15,20,30
2 (i), (ii), (iii) 1% 0.1 𝐈, 1.0 𝐈 0.01 𝐈 POD 10 – 50 10 5
3 (ii) 1%,100% 0.1 𝐈, 1.0 𝐈 0.01 𝐈 POD, DMD 10 – 100 10 5
4 (ii) 1% 0.1 𝐈, 1.0 𝐈 0.1 𝐈,1.0 𝐈 POD, DMD 10 – 100 10 5

we used POD to reduce the dimension of the model space to 𝑀𝑞 = 20

and the data space to 𝐷𝑞 = 10. We observed 𝑝 = 1% of spatial nodes, 
used 𝐿 = 5 particles, and employed error covariances of 𝐐 = 0.1 𝐈 and 
𝐑 = 0.01 𝐈. The magnitude of error in both components several orders of 
magnitude smaller than the value of the state, indicating that the assim-
ilation was successful. The ideal error fields would show no structure, 
since the observation noise was homogeneous across all spatial nodes. 
However, the error field in Fig. 8b shows a striated pattern which is 
likely related to the structure of the first POD mode removed from the 
model. The peaks in the pattern are concentrated along the midline, 
where the state variables change rapidly, which is expected as sensitiv-
ity to the spatial location above/below the midline would likely result 
in different assimilation particles taking different values of state vari-
ables at those spatial nodes.

For a systematic evaluation of OP-PF across ranges of parameters, 
we performed experiments in which the quality of assimilated state was 
measured by RMSE and RES%, as explained in section 5.1. Details of the 
setup of each experiment are given in Table 3. The RMSE and RES% are 
calculated based on hourly observations in the 24 h observation win-
dow. We also tested the dependence on the projected data dimension 
(𝐷𝑞) similar to what we illustrated in Fig. 4 for L96. For example, for 
SWE with 𝑀𝑞 = 40 with 𝑝 = 1% spatial nodes observed in scenario (ii) 
with 𝐐 = 0.1 𝐈 and 𝐑 = 0.01 𝐈 we found little variation in the RMSE and 
RES% as the projected observation dimension 𝐷𝑞 varied from 1 to 40. In 
particular, with 𝐿 = 5 particles we found a mean Effective Sample Size 
(ESS) of nearly 4, no resampling, and mean RMSE of 0.0465 in model 
space and mean RMSE of 0.0250 in the projected model space.

5.3.2. Experiment 1 (number of particles)
In Fig. 9, we vary the number of particles 𝐿 and find that we ob-

tain similar results for 𝐿 = 5, 15, 20, 30 particles. Fig. (9a) represents the 
RMSE and RES% where we obtain minimum RMSE for reduced model 
dimension of 𝑀𝑞 = 60. Fig. (9b) shows the scaled ESS (ESS/𝐿) where 
the left graph is showing the mean and standard deviation of 20 trials 
for 𝑀𝑞 = 10, 20, … , 𝑀 . Note that although the scaled ESS is in general 

larger for 𝐿 = 5 particles, in an absolute sense for 𝐿 = 15, 20, 30 the ESS 
is much larger than with 𝐿 = 5. The right graph is showing the mean of 
ESS of 20 trials over time for 𝐿 = 5, 15, 20, 30. For the remaining exper-
iments with SWE we employ 𝐿 = 5 particles since it is computationally 
more efficient.

5.3.3. Experiment 2 (observation scenarios)
Fig. 10, illustrates the performance of OP-PF on SWE where POD is 

used to derive the reduced order physical and data models. It shows the 
mean RMSE the resampling parentage for each of the three scenarios 
considered here. Scenarios (ii) and (iii), in which variables 𝑢,𝑣 and/or 
ℎ are observed, can be seen to have a lower RMSE than the case of 
scenario (i), in which just 𝑢 and 𝑣 are observed.

5.3.4. Experiment 3 (sparse and complete observations)
Figs. 11 and 12 compare the RMSE and RES% for the case when all 

variables (𝑢, 𝑣, ℎ) are observed at only a fraction of spatial nodes, 𝑝 =
1% and 𝑝 = 100% of nodes observed, and implying that the dimension 
of the observation space scales as 𝐷 = 𝑝𝑀 . In all cases the minimum 
RMSE obtained over 10 trials occurs for reduced model dimension 𝑀𝑞 =

60. Both RMSE and RES% are much smaller compared to the optimal 
proposal particle filter with no model and data reduction (NON) in all 
cases. The resampling percentage RES% is lower for 𝑝 = 100% as are the 
calculated RMSE.

5.3.5. Experiment 4 (larger observation error covariances 𝐑)
In Fig. 13, POD and DMD are employed to reduce the dimension of 

the model space to 𝑀𝑞 = 10, 20, ..., 100 and the data space to 𝐷𝑞 = 10. 
We observe 𝑝 = 1% of spatial nodes and use 𝐿 = 5 particles. We com-
pare POD and DMD with error covariance matrices 𝐐 = 1.0 𝐈 and 0.1 𝐈
and 𝐑 = 0.1 𝐈 and 1.0 𝐈. We observe a plateauing of the RMSE starting 
from approximately 𝑀𝑞 = 60 with model error covariance 𝐐 = 0.1 𝐈 and 
a minimum at 𝑀𝑞 = 20 for 𝐐 = 1.0 𝐈. The resampling percentages are 
relatively constant as a function of 𝑀𝑞 with larger values for 𝐐 = 1.0 𝐈
and 𝐑 = 0.1 𝐈.
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Fig. 11. SWE model, Proj-OP-PF using POD for the physical and data models with fixed Data projection 𝐷𝑞 = 10 and varying the physical model projection from 
𝑀𝑞 = 10 to 𝑀𝑞 = 100. NON corresponds to the optimal proposal particle filter with no reduction of the model and the data. All variables (𝑢, 𝑣, ℎ) are observed 
(observation scenario (ii)) at each observation time but at varying percentages 𝑝 = 1% and 𝑝 = 100% of spatial nodes.

Fig. 12. SWE model, Proj-OP-PF using DMD for the physical and data models with fixed Data projection 𝐷𝑞 = 10 and varying the physical model projection from 
dimension 𝑀𝑞 = 10 to 𝑀𝑞 = 100. NON corresponds to optimal proposal particle filter with no model and no data reduction. All variables (𝑢, 𝑣, ℎ) are observed 
(observation scenario (ii)) at each observation time but at varying percentages 𝑝 = 1% and 𝑝 = 100% of spatial nodes.

Fig. 13. Influence of larger observation error covariances on assimilation for the SWE model.
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6. Discussion and conclusions

In this paper, we have derived a projected bootstrap and optimal 
proposal Particle Filters for physical and data models used in a stan-
dard data assimilation framework. Our focus is on state space based 
projections formed using Assimilation in the Unstable Subspace (AUS), 
Proper Orthogonal Decomposition (POD), or Dynamic Mode Decompo-
sition (DMD). This framework provides a basis for employing Particle 
Filters for high dimensional nonlinear problems, and extensively tests 
a projected optimal proposal particle filter algorithm, Projected Op-
timal Proposal Particle Filter (Proj-OP-PF), that combines projected 
and unprojected models. It is shown that stable assimilation results 
are obtained for the Lorenz’96 model (L96) model and Shallow Wa-
ter Equations (SWE) in terms of Root Mean Squared Error (RMSE) and 
resampling percentage. The results are particularly promising for the 
SWE, where Proj-OP-PF with minimal tuning provides good results for 
severely truncated physical models and low dimensional observation 
operators from full to sparse observations. That is, we have success-
fully applied a Particle Filter to a 38, 100-dimensional multi-component 
physical system. Essentially, the methods developed here perform effec-
tively when either the physical model or the observational data have a 
lower effective dimension. If these effective dimensions are sufficiently 
small, then the resampling percentage is low due to working with lower 
dimensional projected models. When there is sufficient resolution in 
the reduced dimensional physical model solutions and in the reduced 
dimensional data, then RMSEs are obtained on the order of the obser-
vation error.

There are several interesting avenues for further exploration. These 
include the application of more sophisticated ocean, atmosphere, and 
coupled models. Extension to nonlinear observation operators would re-
quire a suitable linearization of the nonlinear observation operator be 
obtained, to employ in the projected data models. Incorporating local-
ization techniques for particle filters is theoretically trivial (although we 
have not yet tried it), as the projected approach is phrased as a Bayesian 
problem suitable for any data assimilation algorithm: a projected, local-
ized Particle Filter would illustrate the value of these techniques in a 
more realistic context. Another avenue we are planning to explore is to 
develop time dependent POD and DMD modes using appropriately sized 
moving windows of snapshots and an updating/downdating procedure. 
We also plan to explore observation space projections using windowed 
snapshots of the observations.
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[62] I. Mezić, Analysis of fluid flows via spectral properties of the Koopman operator, 
Annu. Rev. Fluid Mech. 45 (1) (2013) 357–378.

[63] L. Dieci, E. Van Vleck, Lyapunov and Sacker-Sell spectral intervals, J. Dyn. Differ. 
Equ. 19 (2007) 265–293.

[64] L. Dieci, E. Van Vleck, Lyapunov exponents: computation, in: B. Engquist (Ed.), 
Encyclopedia of Applied and Computational Mathematics, Springer-Verlag, 2015, 
pp. 834–838.

[65] E.N. Lorenz, Predictability - a problem partly solved, in: T. Palmer, R. Hagedorn 
(Eds.), Proceedings of Seminar on Predictability, vol. 1, UK ECMWF, Cambridge 
University Press, Reading, 1996, pp. 1–18.

[66] R. Blender, J. Wouters, V. Lucarini, Avalanches, breathers, and flow reversal in a 
continuous Lorenz-96 model, Phys. Rev. E 88 (1) (2013) 013201.

[67] D.L. van Kekem, A.E. Sterk, Travelling waves and their bifurcations in the Lorenz-96 
model, Physica D 367 (2018) 38–60, https://doi .org /10 .1016 /j .physd .2017 .11 .008.

[68] J.N. Kutz, X. Fu, S.L. Brunton, Multiresolution dynamic mode decomposition, SIAM 
J. Appl. Dyn. Syst. 15 (2) (2016) 713–735, https://doi .org /10 .1137 /15M1023543.

[69] B.W. Brunton, L.A. Johnson, J.G. Ojemann, J.N. Kutz, Extracting spatial–temporal 
coherent patterns in large-scale neural recordings using dynamic mode decompo-
sition, J. Neurosci. Methods 258 (2016) 1–15, https://doi .org /10 .1016 /j .jneumeth .
2015 .10 .010.

[70] J. Page, R.R. Kerswell, Koopman mode expansions between simple invariant solu-
tions, J. Fluid Mech. 879 (2019) 1–27, https://doi .org /10 .1017 /jfm .2019 .686.
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Acronyms

4D-Var: Four-dimensional variational data assimilation
AUS: Assimilation in the Unstable Subspace
DA: Data Assimilation
DMD: Dynamic Mode Decomposition
EnKF: Ensemble Kalman Filter
ESS: Effective Sample Size
KF: Kalman Filter
L96: Lorenz’96 model
LV: Lyapunov Vectors
ODE: ordinary differential equation
OP-PF: Optimal Proposal Particle Filter
PDE: partial differential equation
PDF: Probability Density Function
PF: Particle Filter
POD: Proper Orthogonal Decomposition
Proj-OP-PF: Projected Optimal Proposal Particle Filter
Proj-PF: Projected Particle Filter
RES%: Resampling Percentage
RMSE: Root Mean Squared Error
ROM: Reduced Order Models
SVD: Singular Value Decomposition
SWE: Shallow Water Equations
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