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1. Introduction

Several important challenges impede the development of Data As-
similation (DA) techniques: nonlinear physical models, high dimen-
sional models and data, and non-Gaussian posterior distributions. Parti-
cle filters and their variants are well suited to handle nonlinearities and
non-Gaussian distributions, but due to so-called filter degeneracy still
struggle to make accurate predictions for high dimensional problems,
especially partial differential equations (PDEs). Variants of particle fil-
ters have been developed to ameliorate this difficulty, including implicit
particle filters, proposal density methods, the optimal proposal, [1-4].
A related set of works analyze the performance of particle filters: [5,6]
show that particle filter degeneracy is induced by a ‘curse of dimension-
ality’ associated with the data and/or model dimension.

Our contribution in this paper is to develop an approach to particle
filtering based on reduced-dimension physical and data models, em-
ploying projections of the data and model spaces. The crucial benefit of
this approach is that it directly targets the filter degeneracy induced by,
for example, simulating some high-dimensional PDEs, while maintain-
ing the Bayesian framework of the particle filter suitable for nonlinear,
non-Gaussian DA. We build on the substantial development of Assimi-
lation in the Unstable Subspace (AUS) methods (see, e.g., [7-11]), and
recent work on projected data models for particle filtering [12]. The
AUS methods are based on state space projections to subspaces spanned
by Lyapunov vectors corresponding to the dominant Lyapunov expo-
nents of the system dynamics. The AUS state space projections can
greatly improve Kalman Filter (KF) and variational DA schemes: for
example, an AUS implementation of 3D-Var works efficiently in high
dimensions [13]. However for ensemble-based DA schemes, including
the particle filter, the AUS approach has limited promise as the en-
semble forecast already tends to align with the dominant Lyapunov
exponents [14]. Here we extend the AUS approach by developing pro-
jections based on other common model reduction techniques, such as
Proper Orthogonal Decomposition (POD) and Dynamic Mode Decom-
position (DMD), and by considering combinations of projected physical
and data models. Although our focus here is on particle filters (both the
standard and optimal proposal forms), the projected models developed
here are also applicable to KF and variational techniques. We combine
dimension reduction in both the physical model and the data model
and compare projections based on AUS, POD, and DMD. Using these
projected models, we develop projected particle filter algorithms and
apply them to the Lorenz’96 model (L96) and the Shallow Water Equa-
tions (SWE).

While the present paper is motivated in large part by techniques
developed using AUS projections, see, e.g., [10,12,15], we are also mo-
tivated by recently developed techniques for localized particle filters.
Recent work has often focused on the issue of localization, such as [16],

and currently two localized particle filtering algorithms [17,18] have
been applied in an operational geophysical framework. In the local-
ized particle filter of [18] observations are projected onto the subspace
spanned by the ensemble of model forecasts to reduce the dimension
of the observations. In [19], the authors apply a localized particle filter
which reduces the number of particles needed for effective assimilation.
In this scheme, particle weights are updated locally near observations,
but are preserved away from observations to mimic the covariance lo-
calization in Ensemble Kalman Filter (EnKF). Other techniques such as
the Dynamically Orthogonal formulation in [20,21] can be interpreted in
terms of reduced order physical and data models (see [22-24]).

Although the original contribution of this paper is in combining
data-driven Reduced Order Models (ROM) with particle filters, both
POD and DMD have been used in concert with other data assimilation
techniques. Kalman filter assimilation with a DMD-ROM has been used
to predict wind turbine wakes in [25], while in [26] the DMD was used
to enhance a Bayesian-optimized Kalman filter to predict events in the
upper atmosphere.

For medium- to high-dimensional models, POD can be used to de-
termine the dominant energy modes and, by reducing the model to the
corresponding subspace, exploit a possible low dimensional structure of
the model space for use in the nonlinear filtering problem [27], with
EnKF [28], and with the Four-dimensional variational data assimila-
tion (4D-Var) assimilation scheme [29-32]. Likewise, POD, tensorial
POD, and discrete empirical interpolation have been used in the 4D-Var
scheme to reduce the state space in application to the shallow water
equations [33]. In [34], efficacy of assimilation based on merging DMD,
neural networks, and 4D-Var was evaluated on chaotic dynamical sys-
tems.

While we primarily focus on using DMD and POD to enhance data
assimilation algorithms, it is interesting to point out that [35,36] used
data assimilation techniques, specifically the Kalman filter and its vari-
ants, to enhance the computation of DMD, in order to reduce the con-
tribution of system noise and lead to constructing better estimates on
the eigenvalues corresponding to DMD modes.

In addition, our use of POD and DMD as dimension reduction tech-
niques provides a bridge between techniques developed to assimilate
coherent structures and the model reduction literature. Methods such
as those developed in [37] and [38] assimilate coherent structures ex-
tracted from data, but without an explicit form for the likelihood of the
coherent structures. Instead these works use likelihood-free sequential
Monte Carlo methods, or an ad hoc perturbed observations approach. In
this paper we derive an explicit likelihood that corresponds to coherent
structures extracted by POD or DMD.

In section 2 we present background on data assimilation techniques
including ensemble Kalman filters and particle filters. In section 3 we
formulate, using abstract projections, the projected physical and data
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models and their use in the context of standard and optimal proposal
particle filters. We outline in section 4 the basics of the POD, DMD, and
AUS model reduction techniques. Section 5 contains numerical results
obtained using the algorithms developed to take advantage of these
projected physical and data models. These methods are applied to two
nonlinear models: L96 and SWE. Numerical results show the efficacy of
the techniques that have been developed. In section 6 we summarize
and analyze our results and outline directions for future research.

2. Background on data assimilation
2.1. Data assimilation: nonlinearity and non-Gaussian posteriors

Data assimilation is a suite of methods commonly used for obtaining
accurate estimates of states and/or parameters associated with large-
scale geophysical systems such as the climate and atmosphere. DA
schemes seek to optimally combine the information contained in an ob-
servation y,, informed by collected data, with that in a forecast u,, given
by a mathematical model of the system. The observation and forecast
naturally contain associated error, due to factors such as instrumenta-
tion error in the observations and model errors or noise in the forecast.
The key aim of any DA scheme is to propitiously balance these differ-
ent sources of error and the defining characteristic of a particular DA
scheme is how it does so [39].

We formulate the data assimilation problem in terms of a physical
model and a data model. Consider the discrete time stochastic model
with additive noise

(€Y

where u, € RM is the model state at time index , ®, € RM are Gaussian
errors in the model, @, ~ N'(0,Q,), and the function F, : RM —» RM is
the deterministic component of the model. The data model represents
the measurement of the physical state as observations y, given by

u =F, (ut) + @y,

(2

where 7, € RP are Gaussian errors in the observation, 7, ~ N (0,R,),
while H: RM - RP, D < M is the matrix' representing the observation
operator.

Equation (2) implies, first, that the data y, is generated from the
true (unknown) state by y, = Hu™" + 7, and second, that there is a
framework to convert estimates of the state u, into ‘data space’ via Hu,.
The task for the DA algorithm is to provide the best estimate of the
state u, using the combined information from egs. (1) and (2). Complete
observation (H =1) is useful in analysis, as it reduces the DA problem
to removing the influence of observation noise.

We are interested in DA problems in which the model eq. (1) is
sufficiently nonlinear to pose challenges for DA algorithms that rely im-
plicitly on assumptions of linearity, chiefly the EnKF. In order to expand
on this criterion, we now formalize the DA problem from a Bayesian
perspective.

Let us formally write our estimates of the state and data as Prob-
ability Density Functions (PDFs). The distribution of the state evolves
from time 7 — 1 to time ¢, including information from the data at time ¢,
according to Bayes’ theorem

P(y;lut)P(uflurfl)
P(y,) ’
P(uxlux—lv yx) “P(yrlut) P(utlut—l)' (3)

The left-hand-side of this equation is the distribution we want to ap-
proximate with a DA algorithm. It is the posterior distribution, of the

y.=Hu, +n,

P(uxluy—l’ yx) =

1 In this work we focus only on linear observation operators H, in order to
obtain closed equations for the OP-PF algorithm in section 2.3 and the reduced
data models in section 3.1. In general the observation operator may be nonlin-
ear, and we discuss extensions of our work to this case in section 6.
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state at time ¢ given (or conditioned on) the past history of the state
and also given the data collected at time . The right-hand-side of eq.
(3) is a blueprint for the action of a DA scheme. The PDF P(u,|u,_,),
the prior distribution, contains our understanding of the state evolution
from time 7 — 1 to ¢. The second term in the numerator of eq. (3) is
the likelihood P(y,|u,) and can be explicitly evaluated from eq. (2). The
normalizing constant P(y,) in the denominator of eq. (3) is typically
impossible to calculate directly; however the PF we develop below im-
plicitly calculates P(y,) in a discrete setting, by normalizing weights.

The formulation of DA via eq. (3) may appear incomplete (for exam-
ple, we have employed without proof a formulation in which data from
previous observation times is not used again at time ¢), but can be rig-
orously justified with some weak assumptions: [40, §3] provides a clear
exposition for the standard DA formulation, and [41, e.g.] covers for-
mulations of DA in which the same observations may be assimilated at
multiple times.

Having set up the DA problem, let us clarify the goal of this paper.
We are specifically interested in DA problems in which the nonlinearity
of the model eq. (1), together with factors such as sparse observa-
tions, D < M, results in a non-Gaussian posterior distribution in eq.
(3). Standard methods such as the EnKF are inappropriate for strongly
non-Gaussian posteriors, but the PF described in section 2.2 is suitable.
The key difficulty, motivated earlier and developed explicitly for PFs in
sections 2.2 and 2.3, is applying the PF to high-dimensional models and
data—and the remainder of the paper develops a suite of methods to
address this difficulty.

2.2. The Standard Particle Filter (PF)

Particle Filters, in their many forms, are one of the most common
DA methods for nonlinear systems, as they can be proven to reproduce
the true target posterior in the limit of large particle populations [42].
Although this property makes PFs very useful, they also suffer from
several issues, including particle degeneracy and the curse of dimen-
sionality, which will be discussed in the context of the standard particle
filter.

The simplest form of particle filter is the Sequential Importance Re-
sampling, or the Standard Particle Filter [43,44, e.g.]. In this method, the
probability density function for the state is approximated by a weighted
set of guesses at the state variable. The probability density function for
the state at time 7 — 1 is

L

P,_)=Y w_6(u_—ul).
=1

4

where each particle is a state vector uf_ | €RM, each weight wﬁ_ 1 20,
the sum of all weights ZIL= | wﬁ_l =1 and §(-) is the Dirac-delta distribu-
tion. This density function is quite simple to interpret: it says that we
have L guesses for the state, and that each guess is judged to be good
or bad by its weight.

The Standard PF consists of the following two steps:

« Particle update:
Each particle utf_l, ¢ from 1 to L, is updated to time 7 by running eq.

(1). This completes the step, but let us pause to interpret what has

happened. In the Bayesian formulation of eq. (3), consider the prior

distribution P(u,|u,_,): then eq. (1) implies that for any particular
¢

U

P(uflu,f_]) ~N (F,_, (utt'—l) Q).

Combining this equation with eq. (4), we see the exact prior distri-
bution is a Gaussian mixture, and updating each particle according
to eq. (1) approximates the exact prior distribution by sampling
once from each Gaussian distribution in the mixture.

Weight update:

1 1 -
wf = Lexp [ (v~ ) R (3, 1) e,
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where c¢ is a normalization constant such that Z1L= Jwh=1.

As before this brief description concludes the step, but we pause
to connect the step to eq. (3). The exponential in the weight up-
date is (up to normalization) precisely the term P(y,luf ) (compare
eq. (2)). The normalization constant ¢ implicitly calculates the re-
maining factor from eq. (3), the denominator P(y,). That is, the
weight update multiplies each particle by the precise terms needed
to complete eq. (3).

Despite the standard PF being suitable for DA in nonlinear sys-
tems, the algorithm suffers from several related issues. The method
performs badly if one of the particle weights approaches 1. When this
occurs, all others approach zero and so the posterior distribution is
effectively being approximated by a single particle. This issue is ad-
dressed in the Standard PF by monitoring the Effective Sample Size
(ESS), Z{;z 1/ (wf )2, and resampling (for which there are standard al-
gorithms, see for example [45, §3.3.2]) when the ESS drops below some
threshold to refresh the particle ensemble.

The PF’s tendency to exhibit particle degeneracy is related to what
is often referred to as the curse of dimensionality, a phenomenon suffered
by all importance sampling algorithms in which efficiency decreases
rapidly with increasing dimension of the state space [46]. In high-
dimensional spaces, resampling is insufficient to prevent degeneracy
and L must be very large to give an appropriate estimate of the poste-
rior, decreasing the computational efficiency of the algorithm. In fact,
it has been shown that the theoretically required sample size to avoid
particle degeneracy scales exponentially with the state dimension [47].
Several methods have been developed to reduce the sample size needed
to counter particle degeneracy in high dimensions, such as the Optimal
Proposal Particle Filter (OP-PF).

2.3. Optimal Proposal Particle Filter (OP-PF)

The OP-PF ameliorates the issue of degeneracy in PFs by attempting
to ensure all posterior particles have similar weights. The idea now is to
use the data in both, the particle and weight updates—first to nudge all
particles towards the observations, and then to weight them. The ‘pro-
posal’ in OP-PF refers to the distribution used to update particles from
one time step to the next. In the standard particle filter the proposal
density is P(uf |uf’_ D~ N(F,_, (uf_l),Q), as the particles are updated us-
ing the model. Comparatively, in the OP-PF, the proposal distribution
is conditioned on y,, as in P(uf |uf_l ,¥,). Given the additive noise of the
model (1), the optimal proposal update in each particle is Gaussian with
P(ufluf_ pYo~ N (mf ,Q,), and the particle update is

u =m{ + ¢, @~N(©0.Q,) ©)
where

Q,'=Q'+H'R'H (©6)
m! =F,_ ' )+QH' R (y,—HF,_ @’ ). @)

Having employed the data in the particle update, the weight update
must now be adjusted so that the overall scheme obeys Bayes’ law. By
rearranging eq. (3) it can be shown [3, e.g.] that the #th particle weight

drawn from the proposal distribution satisfies w! « P(y,|u’_)w’ | and
is also Gaussian, so that

1 _
w! xexp [-E(If’ )T(HQHT +R)~ (I )] wl | ®

where If =y, - HF,_I(uf_I) is the innovation vector. Degeneracy as
characterized by a single particle or a few particles with large weight
still affects the OP-PF, but less than in many other particle filters. In
[48] it is shown that among all PF techniques that obtain uf using uf_l
and y,, the ‘optimal proposal’ has the minimum variance in the weights
and suffers the least from weight degeneracy. This was extended in [49]

to any PF scheme that obtains uf using the ensemble at the previous
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time step utl_lL and y,. The distributions used in the OP-PF are not al-

ways available, as the additive model error and the form of the linear
observation operator are required to obtain closed forms for particle
and weight update schemes.

However, in [3] it is shown that the optimal proposal requires an en-
semble size L satisfying log(L) x M x D for a linear model, or will suffer
from filter degeneracy. Thus, degeneracy is deeply connected to the di-
mension of model and observations, posing a fundamental stumbling
block to the use of PFs in high dimensional problems.

3. Particle filters with dimension reduction in state and
observation

3.1. Dimension reduction of state and observation

Consider the physical model (1) and the data model (2). There are
two routes to dimension reduction using these models, namely physi-
cal model projection and data model projection. Recall that the physical
state of the system is given by u, € RM and our observation data is
given by y, € RP. As previously discussed, the issue with geophysical
models is that the dimensions of the physical and data space, M and
D respectively, can be extremely large. This poses a problem with data
assimilation methods, for example, particle filters, due to the constant
need to re-draw and re-weight the particles. In that case, the benefit to
assimilation is lost. We cannot move forward in time more than a few
steps without re-sampling the set of particles, which overwrites previ-
ously gained information about the system. Lowering either the physical
model dimension or the data model dimension helps in mitigating this
problem. Here, we focus exclusively on linear, projection-based reduc-
tion of order, which amount to techniques for selecting the dimension
and coordinates for the target subspace on which the models will be
projected.

Starting with dimension reduction of the state, consider a matrix
V, € RMXM? whose columns form a time-dependent orthonormal basis
(VIV, =D for the M4-dimensional subspace of the state space. Dimen-
sion reduction or, simply, reduction of the state vector u, is given by inner
products with columns of V,, which can be interpreted as the matrix
multiplication V] : RM — RM?:
v, =V,Tu,, v, € RM?,

(€)]
Since typically M9 < M, this operation is not invertible.

The reconstruction V, : RM? — RM generates the state v, correspond-
ing to v,

V=V, =V, V] y, (10)

v/ is an element of the full state space RM, restricted to the sub-
space spanned by columns of V,, or the span of V,. Due to orthog-
onality (V,TV, =1), reducing the reconstruction recovers the reduced
state V] (V,v,) =v,, however computing the reconstruction after a re-
duction does not recover the state u, itself, since u, # V,V]u,, unless
the u, € spanV, to begin with. In general, (10) computes the element of

span V, nearest to u,

vy = argmin ||x —u,|,. 11)
x€Espan'V,;

The transformation II” : RM — RM whose matrix is given by

mw=v,yvy, (12)

is the orthogonal projection onto the spanV,. In certain applications,
the projection matrix may be given first, in which case an associated
reduction matrix V, can be computed via Singular Value Decomposition
(SVD) of IT’.

To evolve reduced states v, using the physical model, we first recon-
struct the state to form V,v,, apply (1) to it, and then reduce the output
using V]
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Vi1 =V, (FOVv)+e,) =V FVyv)+ V] 0 =F )+

13)

Since the orthogonal map of Gaussian random variables results in Gaus-
sian outputs, o ~ N'(0,QY), where Qf = V,THQ,V, +1- To this evolution,
in the reduced-dimensional space R, corresponds the evolution in the
full space RM:

=1

t+1 (14)

P 4 4
I, u,, F, (u,) + 1| @,.

The observation space can be similarly reduced using another set
of vectors U,. Here, we follow [12] in assuming that U, is a M x D?
matrix, that is the reduction of the dimension still acts on the state
space, although we will use it to reduce the observation. This allows
for the comparison of model-based order reduction methods and data-
driven order reduction methods on an equal footing. In this way, it is
possible to use the same procedure to derive both U, and V,, although
this is not necessary.

We start by defining the reduction of the observation space as

z, :=UH'y)), (15)

where + denotes the Moore-Penrose pseudoinverse. Working with Hy,
instead of simply y, allows for the use of U] whose input space is the
state space, as explained above. Since we assume that H has a full row-
rank, the pseudoinverse H' is an injection, so no information is lost in
the process.

Applying this reduction to observations of states constrained to the
model-reduced subspace y, = H(V,v,) + g, results in the observation
equation

z,=UTH'[H(V,v)+n,] =UHHY,v,+UHrp,

—— N~——
q q
H; '1,

(16)

The composition H'H = Iy is the projection on the row (input)
space of the data operator, that is the observable subspace of the state
space. The reduced data operator HY : RM? — R?*,

H! :=UMyV, a7

is therefore the composition of the model reconstruction, the projection
to the observable subspace space, and the data reduction. The reduced
noise is again Gaussian 5! ~ A'(0,R?), with RY = UTH'RH")TU,.

The alternative to the state-space based reduction of observations is
to directly employ a reduction of the observation space, via the matrix
U, € RP*P? and reduction U] : RP — RP’. This avoids the need to first
pull-back observations into the state space by H' as in (15), allowing
for the reduction analogous to (9):

z,:=Uy, (18)
leading directly to the reduced model
z,=UJ[H(V,v)+n,]=U'HV,v,+ Uy,

—_—— = (19)

q q
H; L

with the Gaussian reduced noise 5 ~ N'(0,R?), with R? = UTRU,.

In summary, the original state and observation equations eq. (1)
and eq. (2) are replaced by reduced order equations through the use of
orthogonal system matrices V, and U,,

v =F ) +e!, Flw=V] FV,v), 0
a);] ~N (0’ Q?) Q:] = V1T+1Qtvt+1v

z,=Hlv, +7!, n'~N (O,RY), (21)
where the two options for the reduced data model are

H'=UTH'HV,, R!=UTH'RH") U, when UT : RM - R,  (22a)

or
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H!=U/HV,, R!=U'RU, when U : R? - R"". (22b)

The choice between two options is decided by whether U,T is devel-
oped as a model-based reduction, or an observation-based reduction.
Additionally, the projected optimal proposal particle filter is modified
to take the reduced state variable V, as the input by lifting it to the full
space and then applying the observation model to it

y.=HV,v +n,. (23)

The orthonormal bases V, and U, can be obtained from different
dimension reduction techniques, in particular, POD, DMD, and AUS,
described in more detail in section 4. Since AUS is exclusively a model-
based reduction, in this work we employ only the first alternative (22a),
to allow for a direct comparison between AUS and the others. Regard-
less of how they are computed, the equations (22) are used to formulate
projected versions of particle filters.

3.2. Projected Particle Filter (Proj-PF)

Using the formulated projected models in the previous section, we
can now formulate projected versions of the standard particle filter and
the optimal proposal particle filter. The basic idea is to use either the
original physical model (1) or the physical model-based projection only,
(13) together with (23), for the particle update and the full projected
models (13) and (16) for the weight update. We also will employ a
projected resampling technique based on both the physical model and
data model projections. Let v/ :=V/u? for #=1,..., L denote the #th
projected particle at time 7.

The following formulations detail the alterations to the particle up-
date and weight update routines of the particle filter utilized in our
projected particle filter:

« Particle update: Use (13) to form

vi=F (v )+e], ¢=1,.. L 24

« Weight update: Using the projected data model (16) or (21), (22a)

w’ cxexp(—%(If)T(Rj’)*l(lf’))wf_l, £=1,...,L, (25)

where 17 :=z, —HIV’.
3.3. Projected Optimal Proposal Particle Filter (Proj-OP-PF)

In addition to a projected particle filter, we also employ a projected
OP-PF. Accordingly, the following formulations detail the alterations to
the particle update and weight update routines of the OP-PF utilized in
our projected OP-PF:

« Particle update: Use the optimal proposal particle update (5), (6),
(7) applied to the projected physical model (13) together with the
corresponding data model (23) to form

Vi=ml+9, @~N(©0Q, (26)
where

Q,' =)™ +HV)'RT'HV)), @27)
m! =F? (v )+Q,HV)'R™! (y, ~HV,F! (v/ ). (28)

Alternatively, the particle update corresponding to the unprojected
physical model (V, =1I) could be employed.

Weight update: We employ the projected physical model (13)
and either the state space based projected data model (16) or
the observation space based projected data model (21), (22a),
their corresponding covariance matrices QY = V/Q,V, and R} =
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UTH'R,(H)TU, or R? = UTR,U, respectively, and the projected ob-
servation operator, H/ = VTH'HV, or H! = UTHV,, respectively.
Form the matrix

Z! :=HHQ!H/)T +R! (29
and then update the weights as

1 -
S exp[—E(If)T(Zf) 'anw’ . ¢=1,..L (30)

where I¢ :=z, — HIV/.

We employ an extension of the projected resampling scheme proposed
in [12]. When the Effective Sample Size (ESS), given by

(B

falls below a threshold (e.g., ESS < %L), then we resample. For a given

a € [0, 1], noise of the following form is added to resampled particles

VI [aU U] +(1 - o)lly (32)

with 7~ N'(0,wl), where w > 0 is a tuneable parameter. The pseudocode
summary of the algorithm is given in Algorithm 1.

Algorithm 1: Projected Optimal Proposal Particle Filter (Proj-
OP-PF).

a < user input;

< user input;
forr=1,...,T do

for/=1,...,L do
m =F_ v/ )+Q, {HV/R [y, ~HV/,F,_,(v_)1};
vViem! +9,  @~N(©,Q,));
wf sexp |4 @@ @D| wl s

end

if ESS < %L // Resample if ESS below threshold

then

| VI[aUUT +(1 - o), 1~ N(©0,0l);
end
end

Significant reductions in computational complexity may be achieved
via the reduced state space and the observation space dimensions em-
ployed in the Proj-OP-PF algorithm developed here. If the number of
particles L is fixed, then in unprojected OP-PF the innovation vec-
tors I7 are multiplied by Q,H'R™! for the particle updates and by
(HQRT +R)~! in the weight update. If these matrices are independent
of time, then the cost becomes the cost of multiplying the L innovation
vectors by these matrices, operations of order (M DL) and O(M?L),
respectively. Similarly, for Proj-OP-PF if the projections do not de-
pend on time, then the computational cost of the operations is of order
O(DMIL) and O((D?)*L), respectively. If the projections depend on
time, as with the AUS projection, then there is an additional cost of
forming or factoring matrices, e.g., using LU or Cholesky, in addition to
multiplication by the innovation vectors.

4. Techniques for model reduction

Development of particle filters on a subspace of the state or observa-
tion, detailed in section 3, does not depend on any particular technique
for computing the dimension reduction matrices V, and U,. In this sec-
tion we outline three techniques for computing these matrices. POD
and DMD are data-driven (model-free) techniques that only require a
set of simulation snapshots to calculate the reduction subspace, while
the Lyapunov Vectors (LV) computation requires access to derivatives
of the deterministic part of the model update equation F (see (1)).
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4.1. Proper Orthogonal Decomposition (POD)

Proper Orthogonal Decomposition (POD) is the model-reduction
technique based on computation of a parsimonious orthogonal basis
for the state space subspace occupied by a given evolution a dynamical
system. It is ubiquitous in applied mathematics, and in other contexts
is known as principal component analysis, Karhunen-Loéve decom-
position, and empirical orthogonal function decomposition. Here, we
review only the necessary about POD; an excellent short review of the
main features with a wealth of references can be found in [50, §22.4].
In the context of fluid dynamics [51], the orthogonal basis is calculated
using eigenvectors of the cross-correlation matrix of the simulated data.

Given a recording of evolution of state vectors® (called snapshots)
u € RM  over time t =1, ..., T, stored as a snapshot matrix

X::[ul u, uT], (33)
POD amounts to a separation-of-variables ansatz

M
U= Z DPnOnWim- (34)

m=1
Here vectors ¢,, m=1,...,M, are the normalized “spatial” profiles
of the state u, € RM, vectors y,,, := [w1,, o y/T,m]T are the
normalized time evolutions, while o,, are the linear combination co-
efficients, i.e., magnitudes. While there are many possible separation-
of-variable decompositions, POD is specified by the requirement that
{¢n 1M and {w,,}  should be orthogonal sets.

In matrix notation, and over a fixed period of time, this ansatz cor-
responds to Singular Value Decomposition (SVD) of the snapshot matrix
X
(35)

X=[¢1 123 --][6102.._][11’1 v ]T

The rank of the snapshot matrix X is equal to the number of nonzero
singular values, o,,. It is common to order the singular values in de-
creasing values, and refer to those ¢, and vectors ¢,, as dominant if
they have a low index. Furthermore, singular values that are equal to
zero, and associated singular vectors, are sometimes omitted to form
the “economy” version of SVD.

To reduce the dimension of X, while preserving the character of
dynamics, the reduction matrix V (see (9)) is formed,
VO =[¢,

é.]. (36)

containing the first r < M left singular vectors ¢,, (spatial profiles).
By the Eckart-Young theorem [52], the projected snapshot matrix
VOVOTX is the best approximation of X among all matrices of rank
r as measured by the Frobenius norm, i.e., element-wise #> norm [53,
§2.4].

In general, the choice r that obtains a parsimonious, yet usable,
reduced-order approximation can be problem dependent, although
there are prescriptions of optimal rank in absence of problem-dependent
guidances [54]. Ideally, a gap or a jump in a singular value plot is an
indication that there is a sharp change in the approximation error as
the number of dimensions retained is changed across the gap. In other
cases, no such gap may be seen, which can be in certain cases traced to
model-agnostic application of the technique [55, §19.4].

4.2. Dynamic Mode Decomposition (DMD)
Dynamic Mode Decomposition (DMD) [56,57] provides a route to

order reduction by approximating the evolution of snapshots u, by a
separation-of-variables ansatz in the form

2 If the data-based model reduction is needed, as in (22b), then evolution of
observations should be used instead.
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Algorithm 2: Data projection using Proper Orthogonal Decom-
position (POD).

X« [ul u, u,-] // Form snapshot matrix
X=®X¥' // Singular Value Decomposition
r < user input

(¢ o

Viop < ¢,] // Dimension reduction matrix

M
~ 1w, T
u,Nvae mM b,

m=1

37)

where 7;, is the timestep separating adjacent snapshots, v,, are DMD
modes, corresponding to a spatial profile of the component of dynam-
ics, w,, € C are complex-valued DMD frequencies governing growth,
decay, and oscillation of time evolution, while b,, € C are linear com-
bination coefficients. For real-valued input vectors u,, complex-valued
DMD frequencies and modes come in conjugate pairs.

The primary assumption is that there exists a high-dimensional time-
invariant matrix A that relates pairs of snapshots

U, =Au,. (38)

While this assumption does not hold exactly, the Koopman operator
theory [58-62] asserts that for time-invariant systems, including (1),
the state u, can be embedded in an infinite-dimensional space on which
the matrix A is the linear infinite-dimensional Koopman operator and
the equation analogous to (37) does hold for expected values of these
state variables.

If (38) holds and we have access to A then modes v can be computed
as eigenvectors of A
Av,, = 4,0 (39

m>

while frequencies w,, are derived from eigenvalues 4,, by the formula

Ay = EXP(@,Tpp)s (40)

where 7,, again is the timestep that separates adjacent snapshots u,,.
As is well-known from linear systems analysis, Rew,, determines the
rate of exponential decay (Re(w,,) < 0) or growth (Re(w,,) > 0) of DMD
modes, while Im(w,,) corresponds to the angular frequency of oscil-
lations. Modes with frequencies at the origin w,, = 0 correspond to
constant components in the evolution.

Typically, though, we do not have access to A directly and we need
to approximate its eigenvalues and eigenvectors. DMD is a family of
numerical procedures approximates v,, and »,, while avoiding both
the explicit embedding of (38) in the high-dimensional space, and the
computation and storage of the full matrix A, which in practice is pro-
hibitively large, and theoretically infinite. Here we present the so-called
exact DMD algorithm [59] which is commonly a starting point for the
DMD analysis.

Regression of the discrete dynamics equation (38) onto the snap-
shots can be solved approximately for all adjacent time steps as an 2
minimization problem

T-1
n}in; [ —Au,||§=n£n X, — AX, ||. (41)
The second formula is the equivalent matrix notation using involving
two submatrices of the snapshot matrix, X; and X,, formed by re-
spectively erasing the first and the last column of X. In principle, this
problem could be solved by a Moore—Penrose inverse as Apyp = XZXI,
but this is generally avoided as the size of Apy is quadratic in the di-
mension of snapshot vectors, and in practice may be prohibitively large
store. Furthermore, any numerical errors arising in the process could
fatally affect the well-posedness of the computation.

As the ultimate goal is not the calculation of A but rather a (small)
subset of its eigenvectors and eigenvalues (39), most variants of DMD
employ an order reduction step to improve numerical robustness and
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reduce the size of numerical linear algebra calculations. Here, we use a
POD based order reduction, essentially using section 4.1 as the substep
of the DMD analysis. Compute SVD of the “left” snapshot matrix

X, = oz’ (42)

and truncate the involved matrices to R dominant vectors, forming ®,
Xy, Wg. Since the goal of this step is not to perform the full order
reduction, but merely to numerically stabilize the problem and reduce
the size of numerical problems solved below, R could be fairly large,
even R=09M.

Using the matrices just computed, form

Ap =D X, ¥WiZp, (43)

and compute its eigenvalues and eigenvectors Az, = 4,,0,,. Matrix Ag
is a R x R matrix whose eigenvalues are the same as eigenvalues of the
M x M matrix A, and whose eigenvectors d,, can be used to reconstruct
DMD modes by

0, = A X,WRE LD, (44)

Depending on the algorithm to compute eigenvectors o, v, may need
to be normalized to unit #2> norm.

Combination coefficients b,, can be used to rank the DMD modes by
importance. They can be solved by regression, that is solving (37) at the
initial snapshot, or even many steps

T
or b« argmin Z u, — Z v, M x,

xeCM 1=,

b« Y'u,, (45)
Solving (45) at only the initial state can result in a relative approxi-
mation error that is unevenly spread between growing and decaying
modes; conversely, using all steps in the regression balances the error,
but is numerically expensive. As a compromise, implementation used
below uses five steps equally spaced across all available snapshots.

One advantage of using DMD is in additional information that can
be used to choose what subset of modes to use for dimension reduction.
POD modes are ranked solely by their L? norms (singular values), there-
fore most approaches simply choose some number of dominant modes.
A similar effect can be achieved by ranking DMD modes by absolute
values |b,,|, which represent contributions of modes to the initial con-
dition. Alternatively, DMD modes can be ordered by L? norms of time
evolution for each DMD mode

/le"’m’b |2dt =

= b2 if Rew,, =0,

|b|2 exp(2Rew,T) -
2Rew, T

(46)

which give the same weight to modes that grow and those that decay
at rates, everything else being the same. In the applications below, we
rank DMD modes in the descending order of b,,, and refer to those with
large b,, as dominant.

Alternatively, DMD modes can be chosen based on the real or imag-
inary parts of w,,, e.g., if there is a reason to choose only modes corre-
sponding to a certain frequency band. We did not pursue this direction
further in this paper as we did not suspect that evolutions of either L96
or SWE were concentrated in a particular frequency band.

Choosing the M? dominant DMD modes v,,, the final step is to form
the orthogonal projection matrix Ilpyp. The truncated Y is not an or-
thogonal projection because DMD modes, unlike POD modes, do not
form an orthonormal system. Additionally, v, are complex-valued, so
conjugate pairs of columns v,,v,,,; = 0* should be replaced by their
real-valued cartesian components Re v, Imv in Y matrix. Care should be
taken to always include either both element of a pair, or neither. Af-
ter these steps that prepare a truncated real-valued basis for a subspace
of DMD modes Y, we compute orthogonal dimension reduction matrix
Vpup as left singular vectors of Y, or state projection matrix My, us-
ing QR decomposition of Y.
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Algorithm 3: Dynamic Mode Decomposition.

X, —[uy u up Xy < [uy wy up|,// Left/Right
Snapshot Matrix

X, =®I¥" // svD

R < user input // Choice of the DMD problem size R<rankX

Dy, Xp, Wi // Truncation of SVD matrices

Ap « ®X, WX, // Compressed DMD matrix

Agd, =1,0, // Eigendecomposition of DMD matrix

v, « 21X, ¥ 2!, // Computing and normalizing DMD modes

J—_ 1 T M
b=argmin,ccn Y,_, ||uy =2

regression
b2 =|b|*[exp2Re®,T) - 1]/2Rew,T) // Rank DMD modes in descending
order of b

ume““w’Mxm” // DMD coefficients via #?

M7 « user input // Choice of size of dimension reduction
subspace M?<R
Y[y, 1,

real vectors

YMq] // Truncate DMD modes and convert to

Vpup < SVD(Y) // Left singular vectors form the dimension
reduction matrix

4.3. Assimilation in the Unstable Subspace (AUS)

The last of the model reduction methods employed here, which is
restricted to projecting in physical model space, is based on compu-
tational techniques for Lyapunov exponents and Finite Time Lyapunov
exponents. Again, calculated modes are used to select which dimensions
are most dynamically significant and should be retained in the reduced
basis. In AUS, these modes are determined by employing the discrete
QR algorithm [63,64]. For the discrete time model u,,, = F,(u,) + o,
with u, e RM, let Uy € RM*M? (M4 < M) denote a random matrix such
that UJ U, =T and

1
U T, :F;(ur)Ux ~ E[Fz(ux +eU) —-F,@w)l, t=0,1,... (47)

where U’T_HU, +1 =T and T, is upper triangular with positive diagonal
elements. With a finite difference approximation the cost is that of an
ensemble of size p plus a reduced QR via modified Gram-Schmidt to re-
orthogonalize. Lyapunov exponents or finite time approximations can
be formed and monitored by taking time averages of the natural log-
arithm of the diagonal elements of the upper triangular p x p matrices
T, (see, e.g., [63,64]). Time dependent orthogonal projections to de-
compose state space are given by II, = U,U] and can be employed to
form both physical model and data model projections. While AUS tra-
ditionally refers to projection/restriction of the physical model onto the
neutral and unstable subspace, here we use AUS more generally to re-
fer to model-space-based projections using an approximate Lyapunov
basis: accordingly, our implementation of AUS may include only some
unstable modes, or may include the entire neutral-unstable subspace
and some stable modes.

5. Numerical results

To evaluate the performance of Proj-OP-PF, we apply the presented
techniques to two commonly used models: Lorenz’96 model (L96) and
a configuration of the Shallow Water Equations (SWE) corresponding to
a barotropic instability.

The experiments were chosen to evaluate how a particular choice
of the order reduction technique, and the dimensions of reduced model
and data dimensions, resp. M4 and DY, influence the accuracy of assim-
ilation, as well as protect the particle filter from weight collapse. In all
cases, we use the model-based reduction of the observation space (see
section 3.1) with a full row-rank linear observation operator, which al-
lows for a fair comparison between order reduction techniques.

5.1. Common experimental setup

For both L96 and SWE we use a common setup to evaluate the effec-
tiveness of the data assimilation scheme. We run one simulation of the
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model that serves as the “truth”, ufmth. Noisy observations of the “truth”
are used as inputs into assimilation, and the success of the assimilation
is measured by how accurately the state of the estimator matches the
state of the “truth” simulation. In all cases we use Proj-OP-PF as the data
assimilation scheme, summarized in Algorithm 1. The scheme uses a set
of L particles about the initial condition of the truth u™"" with added
noise from the same Gaussian distribution employed to simulate noise
in the physical model. All particles are initialized with equal weights
(1/L) and are propagated forward in time using the chosen model. The
Effective Sample Size (ESS) is then calculated (31) and projected resam-
pling is performed with the spread of particles governed by (32), where
the proportion of resampling variance inside the projection subspace is
always taken to be a = 0.99, and total resampling variances w = 1072,
for L96, and @ = 10~*, for SWE when ESS < 1 L.
To evaluate Proj-OP-PF we report on two quantities:

* Root Mean Squared Error (RMSE) between estimate of the state
and the true state,

ens

utruth —u

RMSE(utImh,uenS) = )

L/ VM.

where u™ denotes the truth and u®™ denotes the particle ensem-
ble mean, and

Resampling Percentage (RES%), which measures the proportion of
observation times in which the particle population needed to be
resampled.

(48)

The lower each of the quantities are, the better the assimilation scheme
is performing. We also report in some experiments on the projected
RMSE,

RMSEI(@™®, 4°) := RMSE(VV ™, yyers)
2/ V.M,

which measures the error in the subspace of the reduced model. A low
projected RMSE together with a significantly higher “full” RMSE (48)
is an indication that the assimilation is being effective when restricted
to the subspace of the reduced model, but the projected model does
not sufficiently resolve the full model. In several of the figures, we will
compare with the results of the optimal proposal particle filter with no
model or data reduction and we will use (NON) to denote these results.
All numerical results are obtained by averaging over 10 randomized
trials.

— ”VVT ptruth _ yyens (49)

5.2. Lorenz 96 equations

5.2.1. Model and parameters

We first consider Proj-OP-PF applied to the extensively used
medium-dimensional dynamical system Lorenz’96 model (L96). This
model, developed by Edward Lorenz [65], represents a nonlinear
chaotic system that captures some multiscale features of the global hor-
izontal circulation of the atmosphere. L96 has become one of the most
commonly used test problems in data assimilation since its introduc-
tion.

The model is presented as a system of ordinary differential equations
(ODEs) in u = (ui)f‘i . of an arbitrary dimension M,

du;
dr
where the value of a constant (typically positive) forcing term F deter-
mines qualitatively whether the evolution will be regular or chaotic. In
its original form, the model was introduced as a variable-order system
of ODEs, but it can be interpreted as a 2nd order finite-difference dis-
cretization of a viscous Burgers-type equation with periodic boundary
conditions (see [66] for derivation):

=(u —w o) u_ —uw+F, i=1,....M, (50)

O = —ud u— %(axu)2 - éudxxu —u+F. (51)
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Fig. 1. Solutions (1), i =1,..., M =40 of (50) demonstrating regular and chaotic spatiotemporal patterns in L96 model for various values of forcing F. Initial

condition is a cosine bump in all cases.

In this form, the model has a nonlinear convective term corresponding
to ud.u, a diffusive terms, and a dissipative term (—u). Note, how-
ever, that the discretization does introduce nonlinear effects not present
in the full model [67], so that the ODE-PDE correspondence is not
straightforward.

To produce the true evolution ut““th, the 1L96 model (50) is evolved in
time using the Dormand-Prince pair (MATLAB’s ode45), with solution
resampled at multiples of the fixed time step z,, =0.01. Fig. 1 illustrates
the space-time behavior of typical solutions of L96 ranging from F =
3 (regular structure) to F =8 (chaotic structure). For M =40 used in
most calculations here, the onset of chaos is between F =3 and F =
4 [67]; the similar behavior appears to hold for M =400 as well. In
the numerical experiments, the initial condition is a random vector to
reduce the burn-in time, and provide some variability between trials.

In the setup used here, all model variables are observed so that H=1.
The noise is uncorrelated among any two variables of the system (within
and between state and observation vectors). Moreover, it is uniform for
all states and for all observation variables, which means that the cor-
relation matrices Q, R are scaled identity matrices. We compare several
levels of such noise in the physical model, yielding Q = « - I with scalar
variances « =0.1,1.0. The observation error covariance is always fixed
to R=0.011 resulting in the standard deviation of observation error of
0.1 which is included for comparison in the figures when reporting on
RMSE.

The number of particles is fixed with L =20. The observations are
computed every 5 steps, yielding the effective time step of assimilation
7p = 0.05. For the purposes of assimilation, the 4th order Dormand-
Prince integrator is used but with a fixed step size 7, = 0.01. The
assimilation is performed over 10,000 observation times, after 1000
time steps have elapsed. The average RMSE over time is calculated
based on the RMSE over the last 5,000 observation times (see Fig. 5
where the last 5,000 observation times correspond to the second half of
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Table 1

Lyapunov dimensions for the 296 model for
various forcing values and model dimen-
sions M, estimated by the Kaplan-Yorke for-

mula (52).
F 3 4 6 8
D; (M =40) 1 3 22 28
D, (M =400) 5 12 224 270

the assimilation window), to more accurately represent the asymptotic
value of the RMSE. The resampling percentage RES% is computed as
the proportion of all 10,000 observation times in which resampling was
performed.

For the classical values of the L96 system where M =40 and F =8,
the system is chaotic with 13 positive and 1 neutral Lyapunov exponent.
The percentage of positive Lyapunov exponents approximately scales
with the dimension M and there are generally a smaller percentage
of positive Lyapunov exponents for smaller values of F. For M = 40,
M =400 and F € [3,8] we approximate the Lyapunov dimension by
Kaplan-Yorke formula D; defined for ordered Lyapunov exponents 4, >
Ay > -+ > Ay given by

A+ Ay 4 Ay

Dy =k+ (52)

[ g1l
where k is the maximum value of i such that A; + 4, + --- + 4, > 0. Ap-
proximations are computed over a time interval of length 10,000 with
the integer part tabulated in Table 1 and indicates that for smaller val-
ues F the dynamics can be thought of as inherently low dimensional as
D; /M <1, but for larger values of F this is not the case.

To determine suitable POD and DMD modes for L96, we simulate
the model with a random initial condition (different from those used
to compute the “truth”), over the entire time interval over which the
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(a) Singular values

modes.
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associated with POD (b) DMD eigenvalues in the complex plane.
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Im(w,,)

(c) DMD coefficients (45).

proportional to the frequency of oscillations.

Fig. 2. Singular values and DMD eigenvalues spectra for L96 model with M =400. Lower values of F, associated with more-regular behavior, demonstrate a faster
decay of the singular values, and clustering of DMD frequencies. Higher values of F, associated with disordered behavior, have a slower decay of the singular values

and more evenly distributed spectrum.

assimilation is performed at the model time step r,, = 0.01. Since the
model evolution is largely in a steady state, both POD and DMD modes
from such simulation can be used for the assimilation process. This set-
ting can be justified in cases where the model evolution is largely in a
steady state, that is, not undergoing a regime change. A more realistic
setup could employ decompositions of assimilated data over some mov-
ing interval, which is something we will explore in future work. For L96
the POD and DMD projections are computed separately for each of the
10 trial using snapshots obtained from a random initial condition.

Order reduction techniques are effective when the dynamics can be
reproduced by a relatively small number of modes. For POD, this is
indicated by jumps (“gaps”) in the singular value spectrum. Addition-
ally, sharp changes in slope between segments of the singular values
plot indicate the presence of mechanisms evolving at different scales.
Fig. 2 demonstrates that the regular F =3 evolution results in an “el-
bow” around subspace of dimension 70, while for F =8 there is no
discernible boundary between system scales (elbows in Fig. 2a).

The duration of the time window over which POD and DMD are
computed depends on the type of dynamics. For regular steady-state
behavior, the time window should be large enough for the trajectory
to trace out the orbit at least once. For irregular steady-state behavior,
e.g., chaotic attractors, the time window should be long enough so that
the points in the trajectory sample the attractor well. All parameters F
considered for L96 lead to steady state behavior, although we leave the
investigation of the effects of window duration for future work.

For transient behavior, e.g., trajectories shadowing heteroclinic or-
bits between two invariant sets, the duration of the window has to
be chosen carefully. In those cases, a common strategy is to employ a
sliding-window computation of POD or DMD [68,69], leading to time-
varying reduction/projection matrices. The choice of the duration of
the window leads to delicate effects, further explored in [70]. Theoret-
ical connection between sliding window DMD and the stability theory
of time-varying dynamical systems has been developed in [71-73]. A
follow-up publication will investigate how time-varying projection ma-
trices perform in particle filters, and we plan to explore these matters
in more detail.

For DMD, regular steady-state dynamics are indicated by DMD fre-
quencies w,,, see (40), concentrated along the vertical axis, and by a
“peaked” graph of combination coefficients b against the frequency.
Fig. 2 shows the singular values and DMD spectrum for the range of
forcing parameters F distinguishing between DMD spectrum with pos-
itive and negative real parts for F =3 in Fig. 2b. It is evident that we
can expect a better performance of order reduction techniques for lower
values of F, which are associated with regular behavior of the spa-
tiotemporal evolution.

Table 2

Parametrization of experiments used to test Proj-OP-PF for L96. In all cases, we
set observation noise covariance to R = 0.011I, number of particles L =20, and
observe all model variables H=1.

Exp. F M=D Q Reduction M1 D1

1 3,8 40 0.11,1.0I  AUS, POD, DMD 5-40 5

2 3,8 400 0.11 POD 100 1-100
3 3,4,6,8 400 0.1L,1.0I  POD, DMD 10-400 5

To evaluate the performance of Proj-OP-PF we conduct three ex-
periments with the intent of comparing how three reduction schemes
performed over a range of parameters. Details of experiments are given
in Table 2.

5.2.2. Experiment 1 (F =3,8, M =40)

Using AUS for reducing the order of the data model was investigated
in [12,74]; here we investigate the efficacy when AUS is used for the
reduction of both the physical and data models. Additionally, we com-
pare AUS with order reductions derived using POD and DMD. Fig. 3
shows the mean RMSE and RES% trends with increasing model projec-
tion rank for the three projection methods. For all projection types the
RMSE does not approach the observation noise until the rank of the
projections are at least 35 although the RMSEs for POD and DMD are
slightly lower than for AUS. With Q = 1.01I the RES% are much smaller
than for Q =0.11 since the optimal proposal particle filter with larger
model error covariance leads to greater particle diversity and hence
smaller RES%. We focus on dimension reduction using POD and DMD
for the remaining experiments.

5.2.3. Experiment 2 (F =3,8, M =400)

We set the model dimension to M =400 and fix M7 = 100, then
vary D7 between 1 and 100. The results are shown in Fig. 4. The RMSE
and projected RMSE are both relatively constant over the range of data
dimensions. The projected RMSE is at the level of standard deviation of
observation noise, which indicates that the assimilation is effective in
the states u belonging to the subspace of the reduced model. The higher
value of the “full” RMSE indicates that this is not sufficient to constrain
the full state, meaning that the projected model does not sufficiently
resolve the full model.

The proportion of time steps in which particle resampling was per-
formed, RES%, increases steadily with the dimension of the projection
of the data space. This indicates that the primary effect of D7 is to
mitigate the weight collapse of the particle filter, without significantly
affecting the accuracy of the assimilation. This is a confirmation of the
effectiveness of using data-driven order reduction techniques, POD and
DMD, instead of the model-based AUS, as detailed in [12].
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5.2.4. Experiment 3 (F =3,4,6,8, M =400)

Next we consider L96 system with M =400 and varying values of
the forcing term F and focus on time-independent POD and DMD based
projections. We revert to D7 =5. As before, we average the results over
10 trials with randomized initial conditions and noise realization.

Time evolution of RMSE shown in Fig. 5 for D? =5 shows two rep-
resentative cases of reduced-order assimilation in regular F =3 and
chaotic F = 8 regimes. For F =3, the dynamics are regular, and evolve
in lower-dimensional subspace of the state space, as indicated by the
calculation of singular values and Lyapunov dimensions mentioned in
Section 5.2.1. Consequently, fewer models, likely between M7 = 50
and MY =100 are needed for accurate data assimilation, as indicated
by the RMSE converging to, or below, standard deviation of observa-
tion error once sufficiently many modes are selected. Increasing the
reduced model dimension M7 > 100 gives only a slight improvement in
the asymptotic RMSE and in reducing the time to reach the asymptotic
value.

In contrast, F =8 evolution has no similar low-dimensional struc-
ture, in addition to being chaotic, in which case only small improve-
ments are seen in RMSE as more modes are added, but even for fairly
large M7 =350, the RMSE remains an order of magnitude larger than
the observation error. Fig. 6 shows trends in dependence of RMSE and
RES% across more values of forcing F, and additionally compares POD
and DMD model reduction. In all cases, RMSE shown is a time-average
of values in the second half of the assimilation period, after the tran-
sient (to the right of the vertical dashed line in Fig. 6).

We see that for larger values of F the results are of the order of the
observation error only for projection ranks near the underlying model
dimension M =400. However, for F =3 and F =4 we obtain RMSE less
than one for relatively small physical model projection ranks and RMSE
of less than 0.25 for POD for physical model projections with ranks of
approximately 50 and higher. Overall, as with M =40 and F =8, we
observe little gain in reduction of the physical model for M =400 and
F =6,8. On the other hand, for F =3,4 we observe plateauing (F =4)
and a minimum (F = 3) as a function of the reduced model dimension
M.

5.3. Shallow Water Equations (SWE)
5.3.1. Model, simulation, and parameters

The SWE are frequently used in science and engineering applica-
tions to model free-surface flows where the depth is small compared

to the horizontal scale(s) of the domain. Successful applications of the
SWE:s include modeling dam breaks, hurricane storm surges, tsunamis
and atmospheric flows [75]. Motivated by this wide utility, our second
example features SWE on a rectangular domain, configured to approxi-
mate a barotropic instability. Detailed derivation of SWE model can be
found in standard textbooks on geophysical fluid dynamics, e.g. [76,
§3].

The governing equations for this system are

ou_(_ou _9(lp 2,

0t_< ay+f>v 6x<2u +gh)+vVu cpu,

v __(9v _9 (Ll 2, 53
i (ax+f)u ay<2U +gh)+vVU cp0, (53)
oh a d

L —_Z(h+ hu) - Z((h+ hv).

ot 0x(( hu) ay(( hv)

Here u and v are the x- and y-components of the velocity field. The
total height of the water column is 4 + h, where 4 is the height of the
wave, and & is the depth of the ocean, although we employ the flat
orography h = 0. The parameter g is the gravitational constant, f is
the Coriolis parameter, ¢, the bottom friction coefficient, and v is the
viscosity coefficient.

The initial value problem for (53) is solved using R. Hogan’s finite
difference code [77]. The three fields u,v,h are evaluated at a grid of
254 x50 points in the (x, y) plane, resulting in M = 38100 state variables.
Solutions are approximated using a standard finite difference scheme in
space and a Lax-Wendroff finite-difference scheme in time with a fixed
time step of ), =1 min = 1/60 h so that the Courant-Friedrichs-Lewy
condition is satisfied. We let the system evolve in time over a total of
96 h. Fig. 8a shows an example of the non-assimilated simulation output
showing the barotropic instability with the flat orography.

For SWE we consider both complete observations with all model
variables observed (p = 100%) or sparse observations with every 100th
variable observed (p = 1%). We additionally consider three basic obser-
vation scenarios for experiments (see [78]):

(i) only u and v variables are observed, so D = % pM,
(ii) all variables are observed, so D =pM, and
(iii) only h variable is observed, so D = % M.

Since in all cases the observed variables are not transformed in any
other way, the H amounts to an identity matrix with a portion of the
rows removed.
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for further details.

As with L96, model and observation error noise are uncorrelated
and affect all variables equally, so correlation matrices Q,R are chosen
to be scaled identity matrices. Specifically, we employ error covariance
matrices Q = 1.0 L,0.1 I and R =0.01 I and subsequently (see 5.3.5)
observation error covariance matrices R=1.0 1,0.1 L.

Although we will not employ AUS projections with SWE, we calcu-
lated the approximate Lyapunov spectrum for the version of SWE we
are employing. In particular, the largest computed approximate Lya-
punov exponents over the 4 day time interval are relatively smaller
than those for .96 and of the order 10~ min—'. We found ~ 30 positive
exponents and a computed Kaplan-Yorke dimension of = 110. For POD
and DMD type projections, Fig. 7 shows the spectrum of singular val-
ues and DMD frequencies. Changes in the slope of the graph of singular
values are sometimes used as a indicator of an inherent dimensionality
of the problem, with the assumption that different component phenom-
ena, such as multiscale oscillations or noise sources, may have different
slopes of variance associated with them. For SWE the POD and DMD
projections are obtained using a fixed reference solution (the truth) for
each of the 10 trials.

The DMD coefficients b; do not show many isolated peaks, suggest-
ing that the dynamics is not prominently low-dimensional. The same

conclusion can be drawn from a lack of jumps or gaps in the spectrum
of singular values. Nevertheless, we can evaluate how well the reduced-
order assimilation performs for various choices of M4.

With the projection matrices computed, we assimilate using Proj-
OP-PF starting at r =48 h and continuing for the next 24 h, with obser-
vations performed and assimilated with the timestep of z;, = 60 min (as
compared to a one-minute observational time scale in [78]). This effec-
tively discards the first day as transient between the initial condition
and the development of coherent structures.

The time scales, from the length of the simulation down to the obser-
vation timescale, were chosen to allow for an efficient proof-of-principle
demonstration of the use of data-driven model reduction with data as-
similation. We make no claim here that the same choices should be
made in general when the SWE is used as the model. In general, the
parametrization of the model, the broader context in which DA is used,
and the variation of the computed projection matrices with respect to
the duration and start of the window would all be driving the choice
of the chosen timescales. We expect to further explore these issues in
future work.

Fig. 8 shows the true state of the model at the end of the assimila-
tion period (+ = 72) and the assimilation error at the same time. Here
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Table 3

Parametrization of experiments used to test Proj-OP-PF for SWE.

Exp. Obs. scenario p Q R Reduction M D1 L
1 (ii) 100% 0.11 0011 DMD 10-100 10 5,15,20,30
2 (1), (), (iii) 1% 0.1L10I 0011 POD 10-50 10 5
3 (i) 1%,100% 015101 0.011 POD, DMD 10 - 100 10 5
4 (ii) 1% 0.1L101I 0.1L10I POD, DMD 10-100 10 5

we used POD to reduce the dimension of the model space to MY =20
and the data space to DY = 10. We observed p = 1% of spatial nodes,
used L =5 particles, and employed error covariances of Q =0.11 and
R =0.01I. The magnitude of error in both components several orders of
magnitude smaller than the value of the state, indicating that the assim-
ilation was successful. The ideal error fields would show no structure,
since the observation noise was homogeneous across all spatial nodes.
However, the error field in Fig. 8b shows a striated pattern which is
likely related to the structure of the first POD mode removed from the
model. The peaks in the pattern are concentrated along the midline,
where the state variables change rapidly, which is expected as sensitiv-
ity to the spatial location above/below the midline would likely result
in different assimilation particles taking different values of state vari-
ables at those spatial nodes.

For a systematic evaluation of OP-PF across ranges of parameters,
we performed experiments in which the quality of assimilated state was
measured by RMSE and RES%, as explained in section 5.1. Details of the
setup of each experiment are given in Table 3. The RMSE and RES% are
calculated based on hourly observations in the 24 h observation win-
dow. We also tested the dependence on the projected data dimension
(DY) similar to what we illustrated in Fig. 4 for L96. For example, for
SWE with M4 =40 with p = 1% spatial nodes observed in scenario (ii)
with Q=0.1T and R =0.011 we found little variation in the RMSE and
RES% as the projected observation dimension DY varied from 1 to 40. In
particular, with L =5 particles we found a mean Effective Sample Size
(ESS) of nearly 4, no resampling, and mean RMSE of 0.0465 in model
space and mean RMSE of 0.0250 in the projected model space.

5.3.2. Experiment 1 (number of particles)

In Fig. 9, we vary the number of particles L and find that we ob-
tain similar results for L = 5,15,20,30 particles. Fig. (9a) represents the
RMSE and RES% where we obtain minimum RMSE for reduced model
dimension of M7 = 60. Fig. (9b) shows the scaled ESS (ESS/L) where
the left graph is showing the mean and standard deviation of 20 trials
for M7 =10,20,..., M. Note that although the scaled ESS is in general

larger for L =5 particles, in an absolute sense for L = 15,20,30 the ESS
is much larger than with L =5. The right graph is showing the mean of
ESS of 20 trials over time for L =5, 15,20, 30. For the remaining exper-
iments with SWE we employ L =5 particles since it is computationally
more efficient.

5.3.3. Experiment 2 (observation scenarios)

Fig. 10, illustrates the performance of OP-PF on SWE where POD is
used to derive the reduced order physical and data models. It shows the
mean RMSE the resampling parentage for each of the three scenarios
considered here. Scenarios (ii) and (iii), in which variables u,v and/or
h are observed, can be seen to have a lower RMSE than the case of
scenario (i), in which just u and v are observed.

5.3.4. Experiment 3 (sparse and complete observations)

Figs. 11 and 12 compare the RMSE and RES% for the case when all
variables (u,v, h) are observed at only a fraction of spatial nodes, p =
1% and p = 100% of nodes observed, and implying that the dimension
of the observation space scales as D = pM. In all cases the minimum
RMSE obtained over 10 trials occurs for reduced model dimension M4 =
60. Both RMSE and RES% are much smaller compared to the optimal
proposal particle filter with no model and data reduction (NON) in all
cases. The resampling percentage RES% is lower for p = 100% as are the
calculated RMSE.

5.3.5. Experiment 4 (larger observation error covariances R)

In Fig. 13, POD and DMD are employed to reduce the dimension of
the model space to M7 = 10,20,...,100 and the data space to D7 = 10.
We observe p = 1% of spatial nodes and use L =5 particles. We com-
pare POD and DMD with error covariance matrices Q = 1.0I and 0.11
and R=0.11 and 1.0I. We observe a plateauing of the RMSE starting
from approximately M7 = 60 with model error covariance Q =0.11 and
a minimum at MY =20 for Q = 1.0I. The resampling percentages are
relatively constant as a function of M9 with larger values for Q = 1.01
and R=0.11
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(observation scenario (ii)) at each observation time but at varying percentages p = 1% and p = 100% of spatial nodes.
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Fig. 13. Influence of larger observation error covariances on assimilation for the SWE model.

209



A. Albarakati, M. Budisié, R. Crocker et al.

6. Discussion and conclusions

In this paper, we have derived a projected bootstrap and optimal
proposal Particle Filters for physical and data models used in a stan-
dard data assimilation framework. Our focus is on state space based
projections formed using Assimilation in the Unstable Subspace (AUS),
Proper Orthogonal Decomposition (POD), or Dynamic Mode Decompo-
sition (DMD). This framework provides a basis for employing Particle
Filters for high dimensional nonlinear problems, and extensively tests
a projected optimal proposal particle filter algorithm, Projected Op-
timal Proposal Particle Filter (Proj-OP-PF), that combines projected
and unprojected models. It is shown that stable assimilation results
are obtained for the Lorenz’96 model (1.96) model and Shallow Wa-
ter Equations (SWE) in terms of Root Mean Squared Error (RMSE) and
resampling percentage. The results are particularly promising for the
SWE, where Proj-OP-PF with minimal tuning provides good results for
severely truncated physical models and low dimensional observation
operators from full to sparse observations. That is, we have success-
fully applied a Particle Filter to a 38, 100-dimensional multi-component
physical system. Essentially, the methods developed here perform effec-
tively when either the physical model or the observational data have a
lower effective dimension. If these effective dimensions are sufficiently
small, then the resampling percentage is low due to working with lower
dimensional projected models. When there is sufficient resolution in
the reduced dimensional physical model solutions and in the reduced
dimensional data, then RMSEs are obtained on the order of the obser-
vation error.

There are several interesting avenues for further exploration. These
include the application of more sophisticated ocean, atmosphere, and
coupled models. Extension to nonlinear observation operators would re-
quire a suitable linearization of the nonlinear observation operator be
obtained, to employ in the projected data models. Incorporating local-
ization techniques for particle filters is theoretically trivial (although we
have not yet tried it), as the projected approach is phrased as a Bayesian
problem suitable for any data assimilation algorithm: a projected, local-
ized Particle Filter would illustrate the value of these techniques in a
more realistic context. Another avenue we are planning to explore is to
develop time dependent POD and DMD modes using appropriately sized
moving windows of snapshots and an updating/downdating procedure.
We also plan to explore observation space projections using windowed
snapshots of the observations.
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Acronyms

4D-Var: Four-dimensional variational data assimilation
AUS: Assimilation in the Unstable Subspace
DA: Data Assimilation

DMD: Dynamic Mode Decomposition
EnKF: Ensemble Kalman Filter

ESS: Effective Sample Size

KF: Kalman Filter

L96: Lorenz’96 model

LV: Lyapunov Vectors

ODE: ordinary differential equation

OP-PF: Optimal Proposal Particle Filter
PDE: partial differential equation

PDF: Probability Density Function

PF: Particle Filter

POD: Proper Orthogonal Decomposition
Proj-OP-PF: Projected Optimal Proposal Particle Filter
Proj-PF: Projected Particle Filter

RES%: Resampling Percentage

RMSE: Root Mean Squared Error

ROM: Reduced Order Models

SVD: Singular Value Decomposition

SWE: Shallow Water Equations
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