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ABSTRACT Measurements of protein-mediated DNA looping reveal that in vivo conditions favor the formation of loops shorter
than those that occur in vitro, yet the precise physical mechanisms underlying this shift remain unclear. To understand the extent
to which in vivo supercoiling may explain these shifts, we develop a theoretical model based on coarse-grained molecular simu-
lation and analytical transition state theory, enabling us to map out looping energetics and kinetics as a function of two key bio-
physical parameters: superhelical density and loop length. We show that loops on the scale of a persistence length respond to
supercoiling over a much wider range of superhelical densities and to a larger extent than longer loops. This effect arises from a
tendency for loops to be centered on the plectonemic end region, which bends progressively more tightly with superhelical den-
sity. This trend reveals a mechanism by which supercoiling favors shorter loop lengths. In addition, our model predicts a complex
kinetic response to supercoiling for a given loop length, governed by a competition between an enhanced rate of looping due to
torsional buckling and a reduction in looping rate due to chain straightening as the plectoneme tightens at higher superhelical
densities. Together, these effects lead to a flattening of the kinetic response to supercoiling within the physiological range for
all but the shortest loops. Using experimental estimates for in vivo superhelical densities, we discuss our model’s ability to
explain available looping data, highlighting both the importance of supercoiling as a regulatory force in genetics and the addi-
tional complexities of looping phenomena in vivo.
SIGNIFICANCE How living cells are able to form DNA loops significantly shorter than those that occur in vitro represents
a long-standing conundrum in molecular biophysics. Our theoretical model quantifies the extent to which DNA supercoiling
is responsible for this discrepancy while also revealing a structural explanation for this effect. This work provides key
physical insights into the loop formation process and sets the stage for future modeling aimed at more fully describing
genome dynamics in vivo. Finally, our quantitative predictions guide the use of both superhelical density and loop length as
control parameters in synthetic genetic systems.
INTRODUCTION

The formation of a DNA loop, in which a protein physically
bridges two DNA sites along the same double helix, is a
ubiquitous event in genetics with central roles in transcrip-
tional control, recombination, replication, and chromosome
organization (1,2). The dependence of looping efficiency on
loop length is an extensively studied topic, and measure-
ments of this dependence have led to key insights into the
Submitted September 13, 2021, and accepted for publication April 6, 2022.

*Correspondence: ajspakow@stanford.edu

Editor: Wilma K. Olson.

https://doi.org/10.1016/j.bpj.2022.04.009

� 2022 Biophysical Society.
physical factors that govern loop formation (3). For
example, short, stiff DNA loops display oscillations in loop-
ing efficiency as a function of loop length, with the period
equal to the helical repeat of DNA (�10.5 bp)—a reflection
of the energetic cost associated with twisting DNA into he-
lical alignment with its protein binding sites.

Across longer length scales, the mechanics of DNA
bending control the looping process. Bare DNA in vitro is
well described by the wormlike chain (WLC) model, which
treats DNA as a continuous thread subject to a quadratic
bending penalty and thermal fluctuations. Using the widely
accepted bending persistence length lpz 50 nm z 150 bp
for double-stranded DNA (dsDNA), the WLC model
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predicts that loops in the �400–500 bp range form most
readily, with shorter and longer loops being relatively less
probable due to enthalpic and entropic costs, respectively
(4,5). This prediction is supported by a number of in vitro
looping assays (6–9).

On the other hand, in vivo measurements show that the
peak loop length is shifted toward shorter values (7,9,10),
demonstrating that in vivo looping is governed by physical
factors beyond those captured by the WLC model with
lp ¼ 50 nm. In contrast to purified DNA in vitro, genomic
DNA in living cells contains topological domains and bound
architectural proteins, and can undergo active processes
driven by molecular motors, all of which can have signifi-
cant consequences on the looping reaction. However, the
precise factors responsible for the in vitro-in vivo looping
shifts are not fully understood.

In the face of such complexity, a quantitative dissection of
each factor in isolation is one route toward unifying the
observed looping data, with the added advantage that phys-
ical principles we reveal provide a basis for new levels of
control over synthetic genetic circuits, many of which
already utilize DNA looping systems (11–15). In this article
we specifically model the effect of supercoiling on loop for-
mation kinetics, with a focus on parameters relevant to living
cells.

Though multiple analytical theories treat the looping ki-
netics of linear chains (16–18), analytical theories for
supercoiled DNA have been more challenging to develop.
A handful of so-called ‘‘repton’’ models have been pro-
posed to account for the quasi-one-dimensional reptation
that is thought to limit loop formation in supercoiled
DNA (19–21), yet such models ignore the three-dimen-
sional nature of real DNA and do not distinguish between
varying levels of supercoiling. For a more accurate struc-
tural representation, many groups have relied on coarse-
grained simulation. Monte Carlo simulations based on a
discretized WLC model have already established that
supercoiling boosts the equilibrium probability of adopting
a loopable DNA configuration by roughly two orders of
magnitude (22).

Brownian dynamics (BD) simulations have been espe-
cially powerful in modeling loop formation kinetics
because three-dimensional polymer motions subject to hy-
drodynamic friction are explicitly represented as a function
of time (21,23–27). Using BD to simulate DNA at low ionic
strength, Jian et al. report a roughly 100-fold increase in the
loop formation rate due to supercoiling, with a slightly
larger effect on sites separated by 300 bp than by 600 bp,
hinting at a role for supercoiling in shortening the optimal
loop length (23). Yet in a subsequent BD study at physio-
logical ionic strength, Huang et al. predict a negligible ef-
fect of supercoiling on loop formation rates due to slowed
internal motions of a tightly interwound superhelix (24). A
pair of BD studies by Klenin et al. also evaluate loop for-
mation timescales in supercoiled DNA although, lacking
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a comparison with relaxed DNA, implications for shifts
in the length dependence of looping are unclear (25,26).
Nonetheless, all BD studies agree that for sites separated
by at least 300 bp, loop formation takes place on a time-
scale of milliseconds.

Despite their ability to accurately represent polymer dy-
namics, BD simulations entail extreme computational
costs which have limited studies to particular superhelical
densities and loop lengths. Notably, none of the aforemen-
tioned studies have systematically explored the supercoil-
ing dependence of loop formation kinetics down to the
biologically important scale of sub-persistence length
loops. On this shorter length scale, and especially
in relaxed or weakly supercoiled DNA, bending rigidity
drastically suppresses the loop formation rates such that
looping events occur rarely over timescales typically acces-
sible with BD.

Here, we present a theoretical model for loop forma-
tion kinetics that combines coarse-grained equilibrium
structural simulations with a simplistic analytical treat-
ment of polymer dynamics, enabling computationally
efficient kinetic predictions across a wide physiological
range of superhelical densities and loop lengths. Our
treatment of polymer dynamics is an extension of analyt-
ical theory introduced by Szabo, Schulten, and Schulten
(SSS), in which loop formation is simplified to one-
dimensional diffusion along the site-to-site distance reac-
tion coordinate R (17). This approach to dynamics relies
on certain assumptions regarding polymer relaxation
timescales, and we discuss the range of validity for these
assumptions in relation to the parameters we model. Our
model starts with Monte Carlo simulations of a discre-
tized WLC representation of supercoiled DNA, leading
to looping free energy profiles over R that reflect the
full diversity of supercoiled structures. These free energy
profiles then define the reaction landscape over which
loop formation dynamics are modeled. Our calculations
reveal a complex interplay between superhelical density
and loop length in controlling loop formation kinetics.
We provide structural and energetic interpretations for
the trends we observe and discuss their implications for
DNA looping in vivo.
MATERIALS AND METHODS

Coarse-grained model of supercoiled DNA

We model a circular DNA molecule as a discrete shearable, stretchable

wormlike chain (dssWLC) modified to include a twist-deformation energy

and topological constraints, as described previously (28). In this coarse-

grained model, the structure of DNA is represented by a string of beads

with spatial positions~ri and tangent orientation vectors~ui. The total contour
length of the circular chain Lcircle along with the number of beadsm define a

discretization length D ¼ Lcircle=m. The chain conformations are governed

by three energetic terms: the conformational free energy of a dssWLC

Echain, the quadratic twist-deformation energy Etwist, and the steric energy

to capture DNA’s self-repulsion Eself .
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The conformational free energy is given by
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where ~Ri ¼ ~ri � ~ri� 1 and ~R
t

i ¼ ~Ri � ~Ri,~ui� 1. Each term in the sum

represents one of the three elastic modes captured by the dssWLC—

bending, stretching, and shearing—and εb, εk, and εt are their respective

coarse-grained moduli. Additionally, Dg is the equilibrium contour length

of a single segment and h is a bend-shear coupling parameter, describing the

tendency of a chain to bend in the direction that it shears. For a chosen dis-

cretization length D, the dssWLC model (29) provides a procedure to map

the desired persistence length lp (50 nm in this study) onto these coarse-

grained elastic parameters. This model exhibits quantitative agreement

with the exact results for the WLC model over the range of discretization

lengths D (29–31), resulting in a model that is adaptable to varying degrees

of coarse graining.

We model DNA as having a local twist rate u, which describes the num-

ber of times each single-strand DNA winds around the other per unit con-

tour length. For relaxed DNA, u0 ¼ (1 turn)/(10.5 bp). We introduce a

quadratic penalty for deformations Du ¼ u � u0 away from the relaxed

twist state, given by

Etwist

kBT
¼ lt

2
#dsðDuÞ2 ¼ ð2pÞ2ðDTwÞ2lt

2L
; (2)

where lt is the twist persistence length, s tracks the chain contour, L is the

total chain length in nm, and DTw ¼ ðLDuÞ=ð2pÞ is the total twist defor-
mation of the chain in units of turns. We use lt ¼ 70 nm, which agrees with

measurements of DNA’s torsional rigidity based on topoisomer distribu-

tions of small DNA rings generated by ligation (32), but is slightly smaller

than the value ltz100 nm measured using a single-molecule rotor bead

assay (33). Other methods lead to an even wider range of values, with esti-

mates as low as ltz30 nm and as high as ltz120 nm based on fluorescence

polarization anisotropy (34) and cyclization kinetics (35), respectively.

For a given chain conformation, we compute DTw implicitly using the

fact that twist and writhe are mathematically linked for a closed circular

chain according to DLk ¼ DTwþWr. For a particular simulation, DLk

is a fixed value denoting the difference in linking number between the simu-

lated chain and a chain with no superhelicity. The writheWr is a geometric

quantity that intuitively represents the number of times the dsDNA chain

winds about itself, and is computed for a given chain conformation using

Method 1b from Klenin and Langowski (36).

Finally, we include a self-repulsive energy to prevent steric overlap of the

chains and to roughly model the effect of varying ionic conditions. Our en-

ergy is defined for a given pair of non-neighboring bead-to-bead segments

ði;jÞ, and depends on the distance of closest approachDij between these seg-

ments. For a given conformation, we sum this energy over all pairs of bead-

to-bead segments. As in (28), we utilize a standard hard-core Lennard-Jones

repulsive interaction, leading to
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The Heaviside step function HðlHC �DijÞ dictates that instances where
Dij < lHC contribute to Eself , and the contribution is 0 otherwise. The param-

eters VHC and lHC define the strength and length scale of the interactions,

respectively. For all simulations, we use VHC ¼ 1. Simulations in the

main text take lHC as the bare diameter of DNA (2 nm), approximating
conditions of high ionic strength where electrostatic repulsion is largely

screened. In Fig. S5, we present results using lHC ¼ 5 nm, which better de-

scribes the conformations of DNA at physiological ionic strength

(�150 mM monovalent salt) (37). Overall, we reach similar conclusions

for both of these simulation conditions, suggesting our conclusions are

robust to salt concentrations within the physiological range of conditions.
Monte Carlo simulation procedure

Our Monte Carlo approach for generating supercoiled DNA conformations

has been described previously in (28). In brief, we implement a Metropolis

algorithm based on two types of structural moves: local chain moves (sub-

chain crankshafts and translations) and full chain exchanges between neigh-

boring topological replicas. The amplitudes and windows of the local chain

moves are adapted to achieve 50% move acceptance. In addition, we reject

any local move that leads to a conformation whose Alexander polynomial

differs from 1, indicating the formation of a knot (38).

We initiate a series of parallel simulations (replicas) each defined by a

unique value for DLk, chosen from a list that evenly spans a chosen range

of biologically relevant superhelical densities s ¼ DL=Lk0z0:00 to �
0:12, where Lk0 is the linking number of the relaxed plasmid. We note

that our model is symmetric with respect to positive and negative super-

coiling. Thus, despite the fact that simulations utilized s% 0, our ener-

getic and kinetic results depend only on the absolute value of s. Monte

Carlo trajectories are generated by performing 103 local move trials on

each replica, after which neighboring replicas are probabilistically swap-

ped according to a modified Metropolis criterion (39). Each time five

replica-exchange trials pass, the conformations are saved. Including

replica exchange moves reduces correlations between consecutive saves,

especially for the higher DLk ensembles, which are prone to conforma-

tional frustration.

The bulk of our study is based on 31 parallel simulations of a 2686 bp

(913 nm) plasmid represented by 100 beads (performed for lHC ¼ 2 nm

and lHC ¼ 5 nm). Each simulation possesses a unique DLk ranging from

0 to � 30, which corresponds to sz0:00 to � 0:12 for a plasmid of this

size. We exclude the most supercoiled replica from our analysis due to

its inferior sampling statistics, since this replica experiences half the

number of replica-exchange trials relative to replicas with neighbors

on both sides. Following a burn-in period containing 106 local move tri-

als, simulations are run until 200,000 conformations are saved per DLk

replica.

We performed additional sets of simulations in which we either doubled

the number of beads or halved the total chain length (or both). We also

simulated a 10,000 bp plasmid represented by 300 beads. In all cases, we

ran 31 parallel simulations, each defined by a DLk value from a range cor-

responding to sz0:00 to � 0:12. For 200-bead simulations, we saved

50,000 conformations per DLk replica. For the 300-bead simulation, we

saved 25,000 conformations per DLk replica. In Figs. S6 and S7, we present
a comprehensive view of kinetic results from the Lcircle ¼ 2; 686 bp,

200-bead simulation and Lcircle ¼ 10; 000 bp, 300-bead simulation, which

respectively provide access to shorter and longer loop lengths than the

featured simulation in the main text. In Fig. S9, we use these additional sim-

ulations to evaluate the effect of discretization length D and total chain

length Lcircle on our results.
J-factor calculation

For a given s and L, the J factor, which expresses the concentration of one

site with respect to the other in units of molarity, is computed directly from

the simulated distribution of the site-to-site distance R using the formula

Js;L ¼ 1024

NA

3Ps;LðR<RTÞ
4pR3

T

; (4)
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where Ps;LðR <RTÞ is the number of loops of length L sampled from the s

simulation having R<RT , divided by the total number of loops Ntotal

sampled from that simulation. In this study, we use RT ¼ 10 nm.
Looping free energy calculation

To construct free energy profiles, we start by computing binned distribu-

tions of site-to-site distance (R) for each superhelical density (s) and

loop length (L) according to

Ps;LðRiÞ ¼ NRi �DR=2%R<RiþDR=2

NtotalDR
; (5)

where the numerator is the number of samples with site-to-site distances

contained in the bin centered on Ri, Ntotal is the total number of samples,

and DR is the bin width. Unless otherwise stated, we use 0.04 for DR (in

units of fractional extension R=L) when constructing free energy profiles

for subsequent kinetic analysis, and 0.02 when visualizing free energy

profiles, as in Fig. 3. For a given loop length, each saved conformation

contains as many measurements of this loop’s site-to-site distance as

there are beads. Thus, for 100-bead simulations in which 2� 105

structures are saved, each site-to-site distance distribution contains

Ntotal ¼ 102 � 2� 105 ¼ 2� 107 samples. We transform these distribu-

tions into binned free energy profiles using

Fs;LðRiÞ ¼ � kBT log ðPs;LðRiÞÞ: (6)

These free energy profiles serve as input for the mean first passage time

calculations described in the following section.
Mean first passage time for loop formation
calculation

The kinetics of loop formation within polymers is a subject of intense

theoretical interest, studied both analytically and through simulation.

Here, we develop a hybrid approach that extends the SSS analytical

theory, in which loop formation is modeled as one-dimensional diffu-

sion across an effective free energy profile along the site-to-site dis-

tance reaction coordinate R (17), by providing supercoiling- and

loop-length-dependent free energies from coarse-grained simulation.

The physical simplicity of the SSS theory leads to a mathematically

tractable formula for the mean first passage time for loop formation

CTD that depends only on the free energy profile Fs;LðRÞ and an effec-

tive diffusion coefficient D, but its usage relies on the assumption of

local equilibrium, which states that all internal polymer modes relax

on timescales significantly shorter than those associated with loop for-

mation (18,40–42). Though invalid for sufficiently long and flexible

polymers due to slow relaxation dynamics, such an assumption is ex-

pected to hold for the relatively short, semiflexible chains considered

in this study. In the discussion, we draw upon previous theoretical

work to support our assumption of local equilibrium, even under con-

ditions of supercoiling.

In this work, we use the following formula for the mean first passage time

for loop formation (for complete derivation, see supporting material):

CTDs;L ¼ 1

DZ

ZL

RT

dR

ZR

RT

dR0

�
ZL

R0

dR00e� bFs;LðRÞþbFs;LðR0Þ � bFs;LðR00Þ;

(7)
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where Z ¼
ZL

RT

e�bFs;LðRÞdR is the unlooped state partition function and RT

is the site-to-site distance of the transition state, such that R<RT states are

considered ‘‘looped’’ and RT <R<L states are considered ‘‘unlooped.’’ This

formula assumes that the system starts off unlooped and becomes looped

upon its first encounter with the transition state.

We have previously used this formalism to model LacI-mediated loop

formation kinetics measured using a tethered particle assay (see Eq. S92

in (43) and Eq. 12 in (44)). Our expression for the mean first passage

time of loop formation is identical to those from (43) and (44) except

that, instead of using exact analytical formulas for the free energies of linear

WLCs subject to binding interactions, we generate s- and L-dependent free

energy profiles through exhaustive Monte Carlo simulation of circular

dssWLCs, allowing us to map out CTD as a function of these two parameters.

We assume that the loop formation time is dominated by the free energy

profile, such that D is independent of superhelical density and loop length,

and therefore our results are not affected by a particular choice of D. Am-

biguity regarding an appropriate parameterization of D is a limitation of our

model that prevents rigorous inclusion of solvent-mediated hydrodynamics

and the reporting of results in real units of time. Consequently, we report CTD
in units of the dimensionless time l2p=D. In the discussion, we consider prior

experimental and theoretical work to estimate the impact of ignoring hydro-

dynamics on our conclusions and to estimate approximate looping time-

scales predicted by our model in real units.

For each value of s and L in our analysis, we numerically compute the

triple integral in Eq. 7 using custom code in MATLAB. Instead of using

the binned free energy profiles Fs;LðRiÞ, we construct continuous versions

Fs;LðRÞ using linear interpolation. For loops larger than roughly a few

persistence lengths, states near full extension are entirely absent from our

simulations. In these cases, we replace L in Eq. 7 with Ri of the rightmost

sample-containing bin.
RESULTS

Overview of the theoretical model

In this work, our goal is to quantify the effect of DNA super-
coiling on loop formation rates and to understand the extent
to which loop length controls this effect. To this end, we pre-
sent a model for the DNA loop formation process based on
coarse-grained polymer simulation and analytical transition
state theory, enabling us to map out the average loop forma-
tion time CTD (the inverse of the average rate) across a wide
range of superhelical densities (s) and loop lengths (L).
Fig. 1 depicts our computational workflow for two particular
pairs of s and L.

First, we simulate equilibrium structural ensembles of a
2686 bp circular DNA plasmid across a physiologically rele-
vant range of superhelical densities (sz0:000 to � 0:110).
As detailed in materials and methods, our simulations model
DNA as a discretized WLC using the dssWLC model (29),
and we use a replica-exchange Monte Carlo sampling algo-
rithm (28) to achieve highly refined sampling across the full
range of parameters we explore.

Next, we compute looping free energy profiles F for each
(s; L) by choosing the site-to-site distance R for a loop of
contour length L to be the looping reaction coordinate.
States for which R>RT are considered ‘‘unlooped’’ and
states for which R<RT are considered ‘‘looped,’’ with RT



FIGURE 1 Overview of computational approach. First, Monte Carlo simulations are used to generate ensembles of coarse-grained plasmids across a range

of superhelical densities s. For a given (s; L), distributions of the site-to-site distance R (expressed in fractional units, i.e. R=L, and encoded in color) are

tabulated and transformed into free energy profiles. The average loop formation time CTD is then computed using Eq. 7, which treats loop formation as a

diffusive process along the free energy profile, with a reflecting boundary at R=L ¼ 1 (solid vertical line) and an absorbing boundary at the transition state

(dashed vertical line).

Modeling of DNA supercoiling and looping
defining the location of the transition state. We choose
RT ¼ 10 nm in this study to reflect the size of a typical pro-
karyotic looping transcription factor.

Finally, we define the average loop formation time CTD as
the mean first passage time from unlooped to looped states,
which is computed using Eq. 7. Following the approach
introduced by SSS (17), this kinetic analysis utilizes a Fok-
ker-Planck equation to model the looping reaction as a
diffusive process, and therefore, Eq. 7 considers the entire
free energy profile and not just the height and curvature of
the transition state, as is done in Kramers’ theory (45).

Both the kinetics of looping and the equilibrium probabil-
ity that DNA adopts a looped configuration may be relevant
to regulatory functions in the dynamic context of the cell.
We also report DNA looping probabilities based on our sim-
ulations (represented as J factors, following common prac-
tice in the literature) in Figs. 5, S1, and S10. The rate of
formation of a protein-mediated loop is frequently assumed
to be proportional to the J factor (6,43). This relation re-
quires that looped DNA configurations are sampled a large
number of times before being captured. BD studies predict
that looped DNA configurations emerge on a timescale of
milliseconds (23–26), yet in vitro studies of LacI-mediated
looping dynamics based on tethered particle motion
(TPM) report looping on a timescale of tens of seconds
(9,46–48), supporting the use of the J factor as a kinetic
parameter for this system. The loop-based transcriptional
activator NtrC may also function in this regime (49), yet
the generality of this assumption across loop lengths, loop-
ing systems, and experimental contexts (e.g., in vivo) re-
mains unclear.

In the main text, we focus primarily on the mean first pas-
sage time for loop formation CTD. Overall, CTD and J predict
qualitatively similar trends with respect to supercoiling and
loop length, although quantitative differences are discussed
in the supporting material and in our conclusions.
Coarse-grained structures of supercoiled DNA

Before assessing the full scope of kinetic trends predicted by
our model, we focus on particular structural snapshots from
our coarse-grained simulations to provide a basic physical
intuition for how supercoiling modulates loop formation.
In Figs. 2 and S2, we show plasmids at three superhelical
densities. Our structures reflect a transition from loose,
open rings at s ¼ 0.000 toward plectonemic structures
that grow progressively tighter as jsj is increased. Each
box in Fig. 2 contains two structures at the specified s,
both depicting two sites separated by the specified loop con-
tour length L (134 bp, top; 510 bp, bottom). On the left the
sites are in an unlooped configuration, and on the right the
sites are looped.

It is immediately clear that plectonemic structures contain
many more pairs of sites in close contact than non-super-
coiled structures. Indeed, loops of length 134 bp and
510 bp both experience an increase in loop formation rate
(a decrease in CTD) as jsj is increased beyond 0.000.
Yet the precise effect of supercoiling appears to depend

strongly on loop length. Between s ¼ 0.000 and s ¼ �
0:090, CTD for a 134 bp loop decreases more than
100-fold, yet for a 510 bp loop this factor is less than 5.
Furthermore, we observe that supercoiling actually de-
creases the loop formation rate between s ¼ � 0:035 and
s ¼ � 0:090 for a 510 bp loop, in stark contrast to a
134 bp loop, which shows an increase in rate with supercoil-
ing across the full range of s presented in Fig. 2.
Biophysical Journal 121, 1949–1962, May 17, 2022 1953



FIGURE 2 Monte Carlo simulation snapshots for six (s, L) pairs. For each ring structure, colored beads represent the two reactive DNA sites and the inter-

vening colored segment represents a subchain of contour length L. The left and right structures within each box depict unlooped and looped states, respec-

tively. We also report our model prediction CTD for each (s, L) in dimensionless units.

Starr et al.
The remainder of this article presents a detailed and
comprehensive analysis of these kinetic trends based on
the energetics of large-scale structural rearrangements
driven by supercoiling. We show that the differential effect
of supercoiling originates from an interplay between the
loop length and the size scale of plectonemic end loops,
on which loops tend to be centered (see looped structures
in Fig. 2, boxes (ii), (iii), (v), and (vi)). Because of this posi-
tioning preference, loop length controls whether the two
DNA sites come together within the end loop region or
deeper within the plectonemic stem, and it is the distinct
structural responses of these two regions to changes in
supercoiling that underlie the kinetic trends predicted by
our model.
Looping free energy profiles

While the individual snapshots in Fig. 2 assist in developing
a visual interpretation of our results, the looping free energy
profiles shown in Fig. 3 depend on thoroughly sampled equi-
librium ensembles of simulated structures and, therefore,
reveal additional quantitative insights into the physics of
loop formation. As in Fig. 1, the vertical black lines define
looped and unlooped states for our mean first passage
time calculation (Eq. 7), with the dashed line at
RT ¼ 10 nm representing an absorbing boundary at the tran-
sition state and the solid line at R ¼ L representing a re-
flecting boundary at full extension. The six curves in
Fig. 3 correspond to the six (s, L) pairs depicted in Fig. 2.

Fig. 3 A shows that the primary effect of supercoiling on a
134 bp loop is to lower the transition state free energy, which
1954 Biophysical Journal 121, 1949–1962, May 17, 2022
decreases by�4 kBT betweens¼ 0.000 and � 0:035, and by
another �3 kBT between s ¼ � 0:035 and � 0:090. In
contrast, a 510 bp loop only experiences a significant drop
in the transition state free energy between s ¼ 0.000
and � 0:035 (Fig. 3 B), with a comparatively small change
in this value between s ¼ � 0:035 and � 0:090.

These differing energetic trends can be understood in
terms of the large-scale structural changes to circular
DNA that occur within the two intervals of s considered.
Increasing jsj from 0.000 to 0.035 triggers torsional buck-
ling, leading to the initial emergence of plectonemic struc-
tures that feature extended, interwound stem regions
capped by bent end loops (compare structures for
s ¼ 0:000 with those for s ¼ � 0:035 in Figs. 2 and
S2). DNA sites in relaxed plasmids rarely exist in close con-
tact due to the energetic cost of bending the intervening
DNA and entropic cost of forming a loop, but in supercoiled
plasmids this cost is reduced by the inherent presence of
bent end loops, which tend to increase the chance of adopt-
ing a looped configuration regardless of length. This effect
drives the increase in loop formation between s ¼ 0.000
and � 0:035 for both loop lengths.

Beyond jsj ¼ 0.035, the basic plectoneme has already
formed, and increasing jsj further has two primary effects
on plasmid structure. First, end loops grow tighter and
more severely bent (compare end loops for s ¼ � 0:035
with those for s ¼ � 0:090 in Figs. 2 and S2). It is this ef-
fect that drives the additional decrease in the transition state
free energy (and the additional increase in loop formation
rate) between s ¼ � 0:035 and � 0:090 for a 134 bp loop,
whose two sites tend to reside at the edge of the tightening



FIGURE 3 Looping free energy profiles. (A) L ¼ 134 bp. (B) L ¼ 510

bp. The solid, dashed, and dotted curves represent s ¼ 0.000, � 0:035,

and � 0:090, respectively. The black vertical dashed line denotes the tran-

sition state location RT ¼ 10 nm, and the black vertical solid line denotes

the fully extended contour length R ¼ L. The inset in (B) is a zoom of

the boxed region below.
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end loop. This structural change has a negligible effect on a
510 bp loop, whose sites reside deeper within the plectone-
mic stem.

Second, the stem region also tightens, but this is accom-
panied by a net straightening of chain contours, which facil-
itates additional writhed crossings that relax twisting energy
(again, compare supercoiled structures in Figs. 2 and S2).
This straightening manifests as an increase in the free en-
ergy of intermediate R states (compare dotted and dashed
lines in Fig. 3, A and B), indicating the appearance of addi-
tional energy barriers to loop formation at higher jsj. This
effect is more pronounced for a 510 bp loop than for a
134 bp loop, which already has a tendency to remain straight
regardless of s. Indeed, the free energy minimum for a
510 bp loop shows a considerable shift toward larger R
when s changes from � 0:035 to � 0:090 (Fig. 3 B, inset),
while the minimum for a 134 bp loop does not.

For a 134 bp loop, the decrease in the transition state free
energy going from s ¼ � 0:035 to � 0:090 outweighs the
emergence of an energy barrier at intermediate R, so the
loop formation rate continues to increase. Yet for a 510 bp
loop, this energy barrier is responsible for the increase in
CTD across the same range of s.

It is essential to note that for shorter values of L, our sim-
ulations contain a non-negligible fraction of apparently
overextended loops, with R>L (see Fig. 3 A, curves to the
right of the solid black line). This is a known discretiza-
tion-dependent artifact of the dssWLC model stemming
from a quadratic stretch energy that fails to enforce inexten-
sibility. However, a comparison of the s ¼ 0:000 energy
profile with the energy profile of an ideal linear WLC
(Fig. S3 A) for L ¼ 134 bp indicates that our simulated en-
ergies remain accurate in the range of intermediate to low R.
Additionally, we show through numerical means that cor-
recting this artifact near R � L has a negligible impact on
our kinetic results (Fig. S4). Thus, we relegate the develop-
ment of an inextensibility correction for the dssWLC model
to future work.
Kinetic trends as a function of s and L

Using 134 bp and 510 bp loops as examples, we have shown
that the effect of supercoiling on looping energetics and ki-
netics depends critically on loop length, with the shorter
loop responding to s more strongly and over a wider range
due to its similarity in size to the plectonemic end loop. In
this section, we present kinetic results across a fuller range
of parameters than previously discussed, providing a
comprehensive assessment of whether s and L may be ex-
ploited by living cells to achieve particular gene expression
outcomes.

The results in Fig. 4 are based on simulations of a 2686 bp
plasmid utilizing lHC ¼ 2 nm. Our model predictions are
nearly identical with lHC ¼ 5 nm, which better approxi-
mates physiological ionic conditions, reflecting a weak ef-
fect of ionic strength on the coarse-grained conformational
properties of supercoiled DNA (Fig. S5). In Fig. S7, we pre-
sent kinetic results for a 10,000 bp plasmid whose length
matches experimental estimates for the size of topological
domains within the Escherichia coli chromosome (50).

Fig. 4 A shows how CTD responds to supercoiling for eight
particular loop lengths. Although we have already described
extreme quantitative differences in this response between a
134 bp and a 510 bp loop, the curves shown here reveal a
qualitative universality across loop lengths, reflecting com-
mon underlying physics. Namely, as jsj increases, all loop
lengths initially exhibit a reduction in the loop formation
time toward a local minimum for CTD, at which point further
increases to jsj cause CTD to increase. We see that loop
length determines both the overall magnitude of these
Biophysical Journal 121, 1949–1962, May 17, 2022 1955



FIGURE 4 Loop formation time CTD versus superhelical density s and loop length L. (A) CTD versus s curves for particular values of L. The annotated data

points correspond to the (s, L) pairs analyzed in Figs 2 and 3. (B) Location of the local minima in (A) as a function of L. (C) CTD versus L curves for particular s

values. (D) Location of the local minima in CTD versus L curves as a function of s for 100-bead (darker curves) and 200-bead (lighter curves) simulations.

Sample CTD versus L curves for the 200-bead simulation are shown in Fig. S6 B. For all curves in (D), the large data point toward the right denotes the

largest jsj for which we observe a local minimum. In (B) and (D), minima are determined by fitting a parabola to the minimum data point and its two nearest

neighbors.
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changes and the superhelical density smin for which CTD is
minimized (Fig. 4 B).

For all loop lengths, the non-monotonic kinetic response
stems directly from the two competing structural effects
described in the previous section: supercoiling-driven site
concentration, which reduces loop formation time by
lowering the transition state free energy, and supercoiling-
driven chain straightening, which decreases loop formation
rate by suppressing intermediate R states along the reaction
pathway. For a particular loop length in Fig. 4 A, the location
of the minimum is the value of s at which these offsetting
effects cancel. We point out that in an earlier modeling
study, these specific large-scale structural effects (torsional
buckling followed by chain straightening) were also shown
to underlie a non-monotonic response of a plasmid’s hydro-
dynamic radius to supercoiling (28).

Fig. 4 B shows that for loops longer than � 2lp, smin is in-
dependent of loop length and roughly equal to � 0:035, in
accord with the notion that loops in this length range expe-
rience site concentration primarily during the initial buck-
ling transition. Shorter loops, however, experience site
1956 Biophysical Journal 121, 1949–1962, May 17, 2022
concentration over wider ranges of s due to tightening of
the end loops, and therefore, smin takes on higher absolute
values.

A number of in vitro and in vivo biophysical studies spe-
cifically measure the length dependence of looping. To
compare our model predictions with these data, Fig. 4 C pre-
sents an alternative view of the data set shown in Fig. 4 A,
with the abscissa and legend variables swapped to now
emphasize loop length trends at constant s.

These curves also tend to have local minima, with the
location of these minima (plotted in Fig. 4 D) representing
the length of the most readily forming loop at a particular
s. For s ¼ 0:000, Lmin equals 492 bp, which closely agrees
with our prediction for Lmin of simulated linear chains (see
Fig. S8), reflecting similarities in the conformational prop-
erties of linear chains and those embedded within relaxed
plasmids. Initially, increasing jsj primarily shifts CTD versus
L curves downward, without having a major effect on Lmin.
Then, beyond the initial buckling transition (jsjR 0:015),
Lmin decreases nearly linearly with s. Past jsjz0:066, CTD
versus L curves for the 100-bead simulation no longer
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show local minima, presumably because these minima
occur below 134 bp, which is the shortest loop we analyze
for this discretization length. However, CTD versus L curves
for the 200-bead simulation allow us to resolve local
minima for slightly higher values of jsj (see Fig. S6 B,
which leads to the pale curves in Fig. 4 D), confirming
that the linear relationship continues toward shorter
loop lengths. This trend has major implications for DNA
looping in vivo, where chromosomes are known to be
supercoiled.
DISCUSSION

The length dependence of looping in vitro
and in vivo

Our model reveals a clear mechanism by which supercoiling
shifts the optimal loop length toward shorter values—
namely, shorter loops display an enhanced acceleration
due to supercoiling because of the proximity of their reac-
tive sites to the plectonemic end loop. In Figs. 5 and S10,
we directly compare our predictions for the loop length
dependence of the average looping rate CTD� 1

with various
measurements of DNA looping efficiency as a function of
loop length both in vitro and in vivo. Our goal is not to sug-
gest that our model fully captures the in vivo mechanical
environment of DNA, which includes architectural proteins
(51–59) and non-Brownian ATP-driven fluctuations (60,61).
Moreover, BD simulations have revealed that an increased
loop capture radius can shorten the optimal loop length,
FIGURE 5 Comparison of loop length dependence predictions with experimen

10,000 bp, s ¼ 0:000 simulations (solid and dashed black curves) compared wi

(blue circles) are recombination percentages from Fig. 2 D ([FLP] ¼ 12 nM da

associating the average TPM J factors from Fig. 10, A and B of (8) with the

combining these data with the TPM J-factor data in Fig. 5 E of (9) (600, 900

Lcircle ¼ 10,000 bp, s ¼ � 0:060 simulations (solid and dashed black curves) c

series of data (blue circles) are reporter/reference recombination ratios taken from

ratios from Fig. 3 B of (10). The l CI series of data (green circles) are in vivo J fac

mediated loops with lengths no shorter than 242 bp, but we have omitted them f

curves or series of data, values are normalized to the maximum to facilitate com
demonstrating that multiple distinct mechanisms may
contribute to these effects (41). Instead, we wish to simply
explore when the isolated effects of supercoiling on the
length dependence of looping are sufficient to explain
experimental trends.

To best illustrate shifts in the loop length dependence
across a diverse set of assays and loop formation metrics,
all data sets and model predictions in Figs. 5 and S10 are
normalized to their respective maxima. We additionally
plot J versus L predictions from the same simulations
as our CTD� 1

predictions. Recall that CTD� 1
determines

the rate of stable loop formation when a stable loop
forms the first time the DNA visits a looped configura-
tion, while J controls this rate when looped DNA config-
urations are visited numerous times before a stable loop
is formed. Thus, depending on which of these kinetic sce-
narios better describes a particular looping reaction,
either CTD� 1

or J may accurately capture trends in looping
efficiency.

In Fig. 5 A, we observe a close correspondence between
the in vitro data, which are acquired under conditions of
no supercoiling, and our predictions at s ¼ 0:000 for
both CTD� 1

and J, with clear peaks in the vicinity of
500 bp. We display results from our Lcircle ¼ 10; 000 bp
simulations in Fig. 5 to enable experimental comparisons
across a wider range of loop lengths. Due to the larger dis-
cretization length in this simulation relative to ones with
shorter rings, our resolution in determining the location
of the peak loop length is diminished, especially when
this length is shortened due to supercoiling. However,
tal looping data. (A) CTD� 1
versus L and J versus L predictions from Lcircle ¼

th in vitro looping data (colored circles). The FLP recombinase series of data

ta) of (7). The Lac repressor series of data (red circles) was generated by

average lengths plotted in each figure (94 and 305 bp, respectively), and

, 1200, and 3200 bp). (B) CTD� 1
versus L and J versus L predictions from

ompared with in vivo looping data (colored circles). The FLP recombinase

Fig. 7 C of (7). The Lac repressor series of data (red circles) are repression

tors from Fig. 4 of (9). We note that (9) also reports in vivo J factors for Lac-

rom this figure because these data fail to display a maximum value. For all

parisons of looping peak locations.
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we show in Fig. S10 that for both CTD� 1
and J, the location

of the peak loop length is only weakly sensitive to Lcircle.
In contrast to the in vitro looping data, Fig. 5 B shows that

the in vivo looping data, which peak at shorter loop lengths,
are better described by our CTD� 1

predictions for s ¼ �
0:060, a value we have chosen to approximate superhelical
densities in living cells. The closer match between these
data and our model’s predictions for s ¼ � 0:060 relative
to s ¼ 0:000—especially for the assays based on FLP
recombination in human cells and l CI-mediated repression
in E. coli cells—supports the notion that the effect of super-
coiling on loop formation rates at least partially explains the
shifts in loop length dependence in vitro versus in vivo.
However, we emphasize that this correlation does not rule
out alternative explanations for these shifts. The fact that
the LacI-based assay shows a different peak (�71 bp) versus
the l CI-based assay (�250 bp), despite both occurring
within E. coli, reveals a limitation of our model, and may
reflect constraints due to protein geometry (62–64) or a
role for architectural proteins such as HU, HMGB, and Fis
(51–59,64).

Interestingly, our analysis reveals that although CTD� 1

versus L curves experience a significant shift toward shorter
optimal loop lengths due to supercoiling, J versus L curves
do not (compare dashed curves between Fig. 5, A and B).
This observation suggests that for looping systems that favor
shorter loop lengths in vivo, regulatory function may be
limited by the rate at which DNA can adopt a looped config-
uration rather than only the equilibrium looping probability.

Exact comparisons based on in vivo estimates for s are
challenging because in vivo supercoiling is organism
dependent, highly dynamic, and partially constrained
through stable protein-DNA interactions (65). Measure-
ments on plasmids extracted from E. coli show s ranging
from � 0:040 to � 0:080 (66–70), depending on growth
conditions; about half of the supercoils in E. colimay be un-
constrained (71,72). In one study, reported estimates for the
unconstrained superhelical density generated by transcrip-
tion in eukaryotic cells were in the range of � 0:060
to � 0:070 (73). Considering a wide range of potentially
physiologically relevant superhelical densities from �
0:020 to � 0:080, Fig. 4 D predicts peak loop lengths
from �100 to a few hundred basepairs.
Supercoiling as a kinetic control knob

Through evolution over many generations, genomes utiliz-
ing loop-based regulation can adjust the distance between
looping sites to achieve particular regulatory outcomes.
However, within a single generation loop length is not
adjustable, and it is more likely that cells would utilize
supercoiling to modulate looping over these shorter time-
scales. Supercoiling is highly dynamic in vivo, with a
wide range of phenomena having large transient effects on
in vivo superhelical densities, including transcription,
1958 Biophysical Journal 121, 1949–1962, May 17, 2022
nucleosome assembly and disruption, and topoisomerase ac-
tivity. Indeed, supercoiling has been described as a ‘‘second
messenger,’’ transmitting information about environmental
cues such as osmolarity, nutrient availability, pH, and tem-
perature to genetic regulatory networks within the cell
(74,75).

Our model allows us to quantitatively assess how dy-
namic changes in supercoiling affect the looping process.
All loop lengths depicted in Fig. 4 A display a significant in-
crease in loop formation rate as the initial supercoiled struc-
ture is formed (i.e., between s ¼ 0:000 and � 0:015).
Starting from a relaxed state, even a modest pulse of super-
coiling is predicted to increase the formation rate of short
loops by more than an order of magnitude, while for longer
loops this increase caps out at around fivefold.

Yet, for higher values of jsj—while still remaining within
the physiologically relevant range—the supercoiling
response tends to flatten out. Though changing s from
� 0:035 to � 0:090 has an inverted effect on short versus
long loops, none of the loop lengths plotted in Fig. 4 A expe-
rience larger than a fivefold change in CTD across this inter-
val, with the modulation not even reaching twofold for loops
longer than� 200 bp. Thus, it appears that the mechanics of
DNA bending and twisting may actually serve to buffer
large effects of supercoiling on loop formation at intermedi-
ate superhelical densities for all but the shortest of loops.

Although we wish to understand supercoiling’s impact on
looping in the context of a living genome, in vitro experi-
ments on artificial but supercoiled DNA substrates lack
additional complexities encountered in vivo, and may pro-
vide better tests of our model. In vitro transcription assays
with the glnAp2-NtrC promoter-enhancer on 7649 bp plas-
mids reveal that supercoiling (sz � 0:070) enhances for-
mation of 110 bp and 2500 bp loops roughly 2-fold and
50-fold, respectively (76). Although our model captures
the supercoiling-induced acceleration for both loop lengths,
it also predicts a significantly larger acceleration for 110 bp
than the enhancement observed experimentally. For this sys-
tem, the protein complex that bridges the enhancer and pro-
moter contains multiple NtrC activators, the kinase NtrB,
s54, and RNA polymerase and may approach the size of a
110 bp DNA loop itself. Thus, sliding- or oligomerization-
based mechanisms may facilitate high transcriptional acti-
vation even in the absence of supercoiling, potentially
explaining deviations from our theory for this loop length.

In a follow-up study, Polikanov et al. analyze the 2500 bp
loop using BD simulations, concluding that the J factor bet-
ter accounts for the magnitude of the observed supercoiling
response than the looping rate (49). Our J factor and rate
calculations are in qualitative agreement with these BD re-
sults (including a non-monotonicity in the rate’s response to
supercoiling), lending support to their conclusion. Our
model provides an additional test: if the glnAp2-NtrC sys-
tem does indeed operate in kinetic regime governed by J,
then the optimal loop length will be roughly 500 bp, with
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a negligible dependence on supercoiling (compare dashed
curves in Fig. 5, A and B).

Though not an exact comparison because of linearized
and extended DNA substrates, in vitro magnetic manipula-
tion experiments also support our prediction that supercoil-
ing accelerates loop formation (46,77,78). However, these
studies have not explored the loop length dependence of
this effect, so their ability to challenge our model remains
limited.

The supercoiling dependence of LacI-mediated looping in
E. coli has been measured using growth phase and topoisom-
erase mutants to probe different in vivo superhelical den-
sities. Studying the natural operon, which supports three
loops of lengths 92 bp, 401 bp, and 493 bp, Fulcrand et al.
report a threefold decrease in b-galactosidase repression (a
measure of looping) between early and late exponential
phases, accompanied by a decrease in superhelical density
from sz � 0:076 to sz � 0:062 (70). Using the natural
operon and a series of single loop operators with
lengths near 80 bp, Mogil et al. observe a similar trend, re-
porting two- to threefold increases and decreases in b-galac-
tosidase repression for, respectively, topoisomerase-deficient
(sz � 0:07) and gyrase-deficient (sz � 0:04) mutants
relative to the wild-type strain (sz � 0:05) (69). Together,
these data indicate a slight repressive effect of additional
negative supercoiling within the physiological range, which
accords with our prediction for sub-persistence length loops,
although the presence of longer loops in the natural operon
complicates an exact comparison.

For loop lengths larger than �500 bp, Priest et al. report
that looping J factors for LacI are roughly 10- to 20-fold
larger in vivo than in vitro, without a significant dependence
on loop length (9). Our predictions for CTD and J capture this
comparison as long as we assume that the in vivo superhe-
lical densities exceed jsjz0:035. If we compare our
model’s CTD versus L curve for s ¼ 0:000 (red curves in
Figs. 4 C, S6 B, and S7 B) with the cluster of curves at
higher jsj (bluer curves in Figs. 4 C, S6 B, and S7 B), we
see that supercoiling reduces loop formation time roughly
10-fold, with almost no dependence on either loop length
or superhelical density. J factors also show a minimal
dependence on loop length and superhelical density in this
range, although the predicted enhancement due to supercoil-
ing is closer to 100-fold (compare red with bluer curves in
Fig. S1 B).
Assumptions underlying the SSS approach

The SSS treatment of loop formation as diffusion along the
single reaction coordinate R relies on an assumption of local
equilibrium that internal polymer modes relax on timescales
shorter than those associated with loop formation. For poly-
mer chains comprising many flexible elements, slow relax-
ation dynamics invalidate this assumption, requiring use of
the more complex theory of Wilemski and Fixman (WF),
which solves the three-dimensional diffusion equation in
the presence of sink functions that promote site-to-site con-
tact (16,79). Yet semiflexible polymers such as dsDNA are
rigid on length scales associated with loop capture
(LKuhn >RT), and as long as the total number of effective
Kuhn lengths is not exceedingly large, local equilibrium is
expected to hold (18,40–42). In support of this notion, BD
simulations of linear WLCs comprising an intermediate
number of effective Kuhn lengths (� 1 � 5) exhibit the
CTD � L3=2 scaling predicted by SSS (41), in contrast to
the CTD � L2 scaling predicted by WF (16,79).

Our model predicts shorter loop formation timescales in
supercoiled WLCs, calling into question whether local equi-
librium persists under such conditions. Unlike for linear
WLCs, we lack analytical results that can be compared
with BD simulations to test for local equilibrium, but simu-
lations of supercoiled WLCs still allow us to explicitly
compare relaxation timescales associated with relevant
configurational modes. For moderately supercoiled DNA
with ring lengths in the 3 kbp range, loop formation occurs
on a timescale of 1–10 ms (23–26). Writhe relaxes on a
timescale of 1–10 ms (23,80,81), radius of gyration on a
timescale of 10–100 ms (23,24,81), and the number of super-
helix branches on a timescale of 1 ms (24). Thus, branching
appears to be the only process with a rate as slow as loop for-
mation, but for rings shorter than 3 kbp, roughly 80% of
structures are unbranched (25), and collisions between sites
on separate branches account for at most 20% of looping
events (24). For longer ring lengths, including the 10 kbp
ring analyzed in Fig. S7, slow branch relaxation is more
likely to cause violation of local equilibrium under condi-
tions of supercoiling.

A major limitation of our kinetic model is its reliance on a
single parameter D to describe diffusive motion along R for
all loop lengths and superhelical densities in our analysis.
The three-dimensional nature of polymers obscures an exact
physical interpretation of D, but it should roughly capture
hydrodynamic effects that limit timescales of motion
through the solvent. Basic hydrodynamics necessitate that
D decreases with loop length L, although single-molecule
measurements of DNA’s translational diffusion coefficient
(not an exact proxy for internal motions along R) reveal a
relatively weak dependence Dtrans � L� 0:58, with a negli-
gible dependence on topological state. Similar consider-
ations lead us to conclude that D ought to depend weakly
on R due to the coupling between this reaction coordinate
and the relative site-to-site orientation. The dependence of
D on superhelical density s is particularly difficult to judge,
with studies providing varying evidence on this matter.
Certain BD simulations report a slowing of internal dy-
namics upon supercoiling (24) while fluorescence correla-
tion measurements of internally labeled plasmids report an
acceleration (82,83). By assuming that D is independent
of L and s, our calculations specifically model the effect
of L- and s-dependent conformational energetics on loop
Biophysical Journal 121, 1949–1962, May 17, 2022 1959
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formation kinetics. As these matters become clearer, it will
be straightforward to modify our approach based on L- and
s-dependent diffusion coefficients.

Despite ambiguity in parameterizing D, it is easier to
believe that a one-dimensional model along R may accu-
rately capture dynamics for supercoiled DNA, which as-
sumes a quasi-one-dimensional plectonemic structure,
than for linear DNA. Simulating a 1.5 kbp plasmid at
jsjz0:056 using BD, Wedemann et al. estimate that the
contour position of the plectonemic end loop diffuses ac-
cording to Dz2:5� 106 nm2/s (84). Roughly interpreting
this value as an estimate for D (and using lp ¼ 50 nm),
our model predicts that most loops form on a timescale of
milliseconds, consistent with direct estimates from BD
simulation (23–26,85).
Additional model simplifications

Our model does not address the potential effect of supercoil-
ing on loop dissociation rates, which could also be relevant
in vivo. Dissociation rates of protein-mediated loops are
often assumed to be independent of loop geometry and
external stress with the justification that molecular dissoci-
ation rates are local phenomena defined primarily by prop-
erties of the intermolecular interface. In support of this view,
BD simulations of a 3 kbp plasmid containing two mutually
attractive sites situated on opposite sides of the ring predict
that supercoiling primarily increases loop formation rates by
facilitating rapid rebinding, having virtually no effect on
dissociation rates (27). Yet, for short (�100 bp) DNA loops
stabilized by LacI, experimental dissociation rates were
found to decrease with the J factor (43), indicating that me-
chanical stresses within the DNA loop can drive loop break-
down. Whether this holds true for longer lengths or other
looping systems remains unclear.

Finally, our model makes no distinction between positive
and negative superhelicity, even though it is well estab-
lished that DNA has differing mechanical responses to
these two types of forces (33). In particular, negative
torsional stress drives the sequence-dependent formation
of alternative DNA conformations such as Z-DNA,
strand-separated DNA, and cruciform DNA (86–88). At a
given superhelical density, these transitions will compete
with plectoneme buckling and extension, buffering the ef-
fect of superhelicity on the unconstrained supercoiling
that facilitates looping within our model. As a result, higher
negative superhelical densities may be needed to achieve
the same effect on looping as a given positive superhelical
density. To further complicate the matter, alternative
forms of DNA may lead to localized defects in structural
or mechanical properties (e.g., kinks or soft spots), with
significant consequences on loop formation (89,90). Incor-
porating these additional complexities into future models
will be valuable to our overall understanding of looping
phenomena.
1960 Biophysical Journal 121, 1949–1962, May 17, 2022
CONCLUSION

In this article, we present a detailed analysis of the effect of
supercoiling on DNA looping kinetics, with the intention of
elucidating the extent to which this effect drives observed
shifts in looping behavior in vitro versus in vivo. Enabled
by a methodology that permits us to predict kinetics over
a broad range of biophysical variables, we report a rich
interplay between superhelical density and loop length in
determining loop formation rates, and we interpret this
interplay on the basis of large-scale conformational changes
in supercoiled DNA. We show that physiological levels of
supercoiling do in fact contribute to the apparent preference
for shorter loops in vivo. We emphasize that our model
makes no reference to any particular organism or looping
system, and thus the insights we provide are relevant in a
wide range of scenarios. On the other hand, it is clear that
system-specific details such as protein geometry need to
be considered in future models in order to achieve precise
quantitative agreement with experimental data. Finally,
our model predicts a non-monotonic kinetic response to
supercoiling that is tuned by loop length, enabling us to
quantify some limits of a cell’s ability to modulate looping
behavior through dynamic supercoiling.

To summarize, our work provides quantitative physical
insight into existing measurements of DNA looping, reveals
physical principles that will inform future efforts to both
study and utilize the link between supercoiling and loop for-
mation, and establishes a computational framework that can
be augmented to capture additional system-specific com-
plexities pertinent to the looping process.
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Length in DNA Looping Kinetics

Charles H. Starr, Zev Bryant, and Andrew J. Spakowitz

1 Derivation of mean first passage time formula based on SSS theory

We treat loop formation as a diffusive process across the site-to-site distance reaction coordinate R under the influence
of the free energy function F (R). We choose a particular site-to-site distance RT as the location of the transition
state, such that states for which R < RT are ”looped” and states for which RT < R < L are ”unlooped”. We assume
that the system starts off unlooped, and becomes looped upon its first encounter with the transition state.

For such a system, the Green function GR(R′, t|R, 0), which denotes the probability of transitioning from a
starting site-to-site distance R at time t = 0 to a site-to-site distance R′ at time t, is described by the following
Fokker-Planck/Kolmogorov equation: (

∂

∂t
− ΓR

)
GR(R′, t|R, 0) = 0, (1)

where

ΓR = D

(
∂2

∂R2
− ∂βF

∂R

∂

∂R

)
. (2)

In Eq. 2, D is the effective diffusion coefficient along the free energy profile F (R).
Next, we define the survival probability S(R, t) as the probability of remaining in any unlooped state R′ ∈ (RT , L]

at time t after starting from a particular unlooped state R ∈ (RT , L]

S(R, t) =

∫ L

RT

dR′(R′)2GR(R′, t|R, 0). (3)

By performing this same integration on Eq. 1, we see that the survival probability follows a similar dynamic equation
as the Green function GR, given by (

∂

∂t
− ΓR

)
S(R, t) = 0. (4)

Taking the Laplace transform of this equation from t to the Laplace variable s leads to

sS̃(R, s)− S(R, t = 0)− ΓRS̃(R, s) = 0. (5)

Because survival is guaranteed if no time has passed, S(R, t = 0) = 1. Then, we set s = 0 and recognize that
S̃(R, s = 0) =

∫∞
0
dtS(R, t) defines the average time T (R) spent in the unlooped state before reaching the transition

state RT . Thus, we have a second-order differential equation for T (R)

ΓRT (R) = D

(
∂2

∂R2
− ∂βF

∂R

∂

∂R

)
T (R) = −1. (6)

We define an absorbing boundary condition at the transition state [i.e. T (RT ) = 0] and a no-flux boundary condition
at full extension [i.e. ∂T (L)/∂R = 0].

Our task is now to solve this equation for T (R) and to then compute the mean first-passage time as a Boltzmann-
weighted average of T (R) over the unlooped domain. By setting Φ = ∂T

∂R , we transform Eq. 6 into a first-order
differential equation. We then multiply by an integrating factor I = e−βF , leading to

e−βF
(
∂

∂R
− ∂βF

∂R

)
Φ = −e

−βF

D
. (7)

Next, we integrate Eq. 7, recognizing the left-hand side as

∂

∂R
(e−βFΦ). (8)
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The no-flux boundary condition Φ(L) = 0 lets us write

Φ(R) =
eβF (R)

D

∫ L

R

e−βF (R′′)dR′′ (9)

We integrate once again to obtain T (R). The absorbing boundary condition T (RT ) = 0 gives us

T (R) =
1

D

∫ R

RT

dR′
∫ L

R′
dR′′eβF (R′)−βF (R′′) (10)

Finally, we arrive at the mean first passage time from the unlooped state to the transition state by computing a
Boltzmann-weighted average of T (R) over all initial unlooped positions, such that

〈T 〉 =
1

DZ

∫ L

RT

dR

∫ R

RT

dR′

×
∫ L

R′
dR′′e−βF (R)+βF (R′)−βF (R′′)

(11)

where Z =
∫ L
RT

e−βF (R)dR is the unlooped state partition function.
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2 Supplementary Figures

Superhelical density σ Loop length L (bp)

J 
(M

)

J 
(M

)

A B

Figure S1: J-factor versus superhelical density σ and loop length L. These graphs are based on the same
simulations (Lcircle = 2, 686 bp, 100 beads, lHC = 2 nm) used to compute the 〈T 〉 values of Figures 4A and 4C in
the main text . (A) J versus σ curves for particular L values. (B) J versus L curves for particular σ values.

Overall, the response of the J-factor to supercoiling follows the same trend as the loop formation time 〈T 〉.
Supercoiling accelerates loop formation, mostly during the initial buckling transition with the response flattening out
at higher superhelical densities. Shorter loops continue to accelerate with supercoiling even at higher superhelical
densities. However, we observe subtle differences between J and 〈T 〉 with respect to their supercoiling and loop
length dependencies. For all loop lengths, the magnitude of the supercoiling-driven acceleration in looping is larger
for J than for 〈T 〉. In addition, J and 〈T 〉 predict qualitatively different loop length dependencies at the highest |σ|
values we analyze. At σ = −0.090, for example, J predicts a minor acceleration in loop formation as loop length
increases from the scale of one persistence length, while 〈T 〉 predicts a minor deceleration (Figure 4C, blue curve).
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σ = −0.035 σ = −0.090σ = 0.000

Figure S2: Randomly-chosen plasmid structures from our main simulation (Lcircle = 2, 686 bp, 100 beads,
lHC = 2 nm) at three superhelical densities. Comparing structures from the center column to those in the right
column, we see that plectonemic end loops become tighter and plectonemic stems become straighter as σ goes from
−0.035 to −0.090.
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Figure S3: Looping free energy profiles for σ = 0.000. Colored curves represent F (R) at σ = 0.000 from our
main simulation (Lcircle = 2, 686 bp, 100 beads, lHC = 2 nm) and an identical simulation with double the number
of beads for four loop lengths (A,B,C,D: 5, 10, 19, and 40% of the total ring length, respectively). The black curve
is the theoretical free energy of an ideal linear wormlike chain, computed using F (R) = −kBT log(R2G(R)), where
G(R) is the probability of the two chain ends being a distance R apart. We use an exact result for G(R) derived in
Ref. (5). The vertical dashed and solid lines denote the transition state location (R = 10 nm) and the fully-extended
contour length (R = L), respectively.

Extensibility artifacts (states with R > L) are visible in Figures A-C, and it is clear that this artifact becomes
less apparent for longer chain lengths and as the discretization length decreases. We do not expect a perfect match
between simulations and theory because our simulations account for the additional energetic effects of self-repulsion
and DNA’s ring topology. However, at σ = 0.000, these effects are minor, especially for loops significantly shorter
than the total ring length. Therefore, the close correspondence between simulation and theory across most of the R
range in Figures A-C validates the accuracy of our simulations. In Figure D, the chain is 40% of the total ring length,
and in this case, the simulation is biased towards shorter R relative to theory due to the topological constraint of ring
closure.
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Figure S4: Extensibility artifact has a negligible effect on computed loop formation times. Many of our
simulations contain over-extended loop conformations due to the lack of a finite extension constraint in the dssWLC
model. As a result, we were forced to decide whether to use Rmax = L as the reflecting boundary in Eq. 7 (main text),
whether to use R of the rightmost sample-containing bin, or whether a correction would be necessary. To determine
the numerical effect of these choices, we look at loops spanned by 5 bead-to-bead segments (a coarsely-discretized
loop for which the extensibility artifact is extreme) from two simulations of the Lcircle = 2, 686 bp plasmid. Figures A
and B display results from our main simulation (100 beads), in which 5 segments represent 134 bp, and Figures C and
D display results from a 200-bead simulation, in which 5 segments represent 67 bp. (A) A rough correction procedure
to enforce inextensibility for the 100-bead simulation. The dashed vertical line towards the left denotes the absorbing
boundary at RT = 10 nm, and the solid vertical line towards the right denotes R = L. The solid lines show simulated
and uncorrected free energy surfaces of the 134 bp loop. The distribution of simulated R values clearly extends into
the R > L range. To correct this behavior, we plot the theoretical free energy surface for a continuous chain of
equivalent contour length, and we locate a ”crossover point” as the point of intersection between the simulated and
continuous free energy surfaces occurring to the right of the continuous free energy minimum. The corrected free
energy surface then substitutes the continuous chain energies for the simulated energies for all R values to the right
of the crossover point. (B) Loop formation time results for each of the choices depicted in A. The close match
between curves demonstrates that free energies in the low- and intermediate-R range most strongly determine 〈T 〉.
We also show that 〈T 〉 computed using the energy surface of the continuous linear chain closely matches our results
for σ = 0.000. These energy surfaces differ dramatically near R ∼ L, but are otherwise nearly identical. This confirms
that the extensibility artifact has a minor numerical effect on kinetic results. (C) An identical correction procedure
used to enforce inextensibility for the 200-bead simulation. (D) Loop formation time results for each of the choices
depicted in C. Though we still observe a close match between curves, there is now a minor discrepancy between the
σ = 0.000 data points and the linear WLC theory. To more accurately model loop lengths on this short scale, a more
finely-discretized simulation would be required. However, such simulations require larger numbers of beads, reducing
Monte Carlo sampling speed. Thus, in practice there is a lower limit to the length of a loop that can be accurately
modeled using discretized simulations.
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Figure S5: Effect of the hard-core radius lHC on loop formation times. (A) 〈T 〉 versus σ curves for particular L
values from simulations with Lcircle = 2,686 bp, 100 beads, and lHC = 5 nm. The bold curves denote the two loop
lengths featured in Figure E. (B) Location of the local minima in (A) as a function of L. (C) 〈T 〉 versus L curves
for particular σ values from the same simulations as in (A). (D) Location of the local minima in (C) as a function of
σ. (E) Comparison of 〈T 〉 versus L curves between lHC = 2 nm and lHC = 5 nm simulations for two loop lengths. In
(B) and (D), minima are determined by fitting a parabola to the minimum data point and its two nearest neighbors.

Though the effect of lHC is minor overall, it is most pronounced for the shorter loop at higher superhelical
densities.
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Figure S6: Loop formation time 〈T 〉 versus superhelical density σ and loop length L for a 2,686 bp ring
simulated with 200 beads and lHC = 2 nm. (A) 〈T 〉 versus σ curves for particular L values. (B) 〈T 〉 versus L
curves for particular σ values.

For 〈T 〉 versus L curves showing local minima, we plot the locations of these minima as pale lines in Figure
4D of the main text. The additional spatial resolution gained in doubling the number of beads used to represent the
ring allows us to resolve local minima at higher superhelical densities than in the 100-bead simulation of the main
text. The leftmost data point in each curve (L = 67 bp) appears to deviate from the overall trend with respect to L,
and therefore, we exclude these points when determining minima. This deviation likely results from an underestimate
in 〈T 〉 due to the extensibility artifact described in Figure S4C and S4D. This deviation may also reflect the fact that
〈T 〉 must approach zero as L→ RT . Local minima are determined by fitting a parabola to the minimum data point
and its two nearest neighbors.
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Figure S7: Loop formation time 〈T 〉 versus superhelical density σ and loop length L for a 10,000 bp ring
simulated with 300 beads and lHC = 2 nm. (A) 〈T 〉 versus σ curves for particular L values. (B) 〈T 〉 versus L
curves for particular σ values. For this larger plasmid, site-to-site distances can greatly exceed RT = 10 nm, making
a reduction in binwidth necessary to ensure the existence of at least one bin below RT when constructing free energy
surfaces. These kinetic results were constructed using a binwidth of R/L = 0.01.
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Figure S8: Comparing kinetic results for simulated rings at σ = 0.000 to simulated and theoretical linear
chains. The red line depicts results from our main simulation (Lcircle = 2, 686 bp, 100 beads, lHC = 2 nm). The
orange line depicts results from a simulation with Lcircle = 10, 000 bp, 300 beads, and lHC = 2 nm. Linear simulations
are performed using the same parameters and procedure as our main ring simulation, except topological constraints
and twist energetics are ignored. 〈T 〉 predictions for the analytical WLC theory are computed by applying Eq. 7 from
the main text to F (R) = −kBT log(R2G(R)), where G(R) is the probability of the two chain ends being a distance
R apart. We use an exact result for G(R) derived in Ref. (5).

We display 〈T 〉 versus L for loop lengths up to half the total length of the shorter ring (i.e. up to Lcircle/2 = 1, 343 bp).
For L < 500 bp, 〈T 〉 for the ring simulations are nearly equivalent to 〈T 〉 for both simulated and theoretical linear
chains, reflecting the minor effect of embedding short chains within rings. As L approaches half the total length of
the shorter ring, the ring closure constraint biases energy surfaces towards smaller R (see Figure S3D), leading to
slightly smaller 〈T 〉 values. The loop lengths plotted here are small compared to half the total length of the longer
ring (i.e. Lcircle/2 = 5, 000 bp), and therefore, 〈T 〉 values for these simulations deviate less from our simulated and
theoretical results for linear chains.
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Figure S9: Effect of ring length and discretization on loop formation times. (A) 〈T 〉 versus σ curves for L =
134 bp. (B) 〈T 〉 versus σ curves for L = 510 bp. For the Lcircle = 10, 000 bp simulation, the chosen loop lengths do
not correspond to an integer number of beads, so values are linearly-interpolated from the two nearest loop lengths
available.

For each loop length L, we show curves for 3 ring lengths Lcircle, with two levels of discretization shown for
each of the two shorter rings (Lcircle = 1, 343 bp and Lcircle = 2, 686 bp). For the two shorter Lcircle simulations,
there is a negligible dependence of our results on the discretization length, justifying our use of a 100-bead simulation
in the main text. Near σ = 0.000, all curves cluster near the same 〈T 〉. However, at higher |σ|, our model
predicts a slight dependence on Lcircle. Aside from minor deviations (due in part to sampling error), 〈T 〉 values for
Lcircle = 10, 000 bp agree closely with those for Lcircle = 2, 686 bp. However, 〈T 〉 values for Lcircle = 1, 343 bp
tend to be roughly two-fold smaller than for either of the longer Lcircle curves. This result differs from the L2

circle

and L3
circle scaling of 〈T 〉 predicted by Ref. (20) for branched and unbranched plectonemic structures, respectively.

However, unlike the model in Ref. (20), our model captures the effect of supercoiling-driven shifts in the equilibrium
distribution of structures on looping kinetics, without considering the explicit kinetic mechanism by which structures
rearrange themselves. In theory, Brownian dynamics simulations capture both of these effects, though inefficient
sampling relative to our Monte Carlo approach places practical limits on the span of loop lengths and superhelical
densities that can be analyzed using these methods.
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Figure S10: Ring length has a small effect on the location of the peak loop length for 〈T 〉−1 and J . In this
figure, we display results from 100-bead simulations with lHC = 2 nm for Lcircle = 1, 343 bp and Lcircle = 2, 686 bp.
(A,C) 〈T 〉−1 versus L curves for three values of Lcircle. In (A), we display results from σ = 0.000 simulations
overlayed on experimental data points from in vitro looping assays. In (C), we display results from σ = −0.060
simulations overlayed on experimental data points from in vivo looping assays. (B,D) J versus L curves for three
values of Lcircle. In (B), we display results from σ = 0.000 simulations overlayed on experimental data points from in
vitro looping assays. In (D), we display results from σ = −0.060 simulations overlayed on experimental data points
from in vivo looping assays. As in Figure 5 of the main text, each series of data points or curve is normalized to its
maximum to facilitate comparisons of looping peak locations.
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