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28, 4, 5]; see Figure 1(a)–(c). Following the pioneering
of Kermack and McKendrick [21], the unifying thread in
all of these models is that members of the population
are categorized depending on their infection status, e.g.,
susceptible (S), infected (I), and recovered (R), and the
dynamic evolution of each individual’s status is modeled
either as a stochastic or purely deterministic process. In
agent based models this consists of providing rules for the
movement of individual agents as well as the transmis-
sion of infection between susceptible and infected agents.
In network models infection between individuals occurs
along undirected edges of an underlying static contact
network. Finally, in compartment models the state vari-
ables consist of fractions of the total population with a
given infection status and the disease evolves according
to a differential equation.
For reference, the standard compartment models are

the SIR model given by

Ṡ = −βSI,

İ = βSI − γI,

Ṙ = γI,

and the SIS model given by

Ṡ = −βSI + γI,

İ = βSI − γI,

where β is the per capita infection rate and γ the re-
covery rate [16]. The SIR model is often used to study
the spread of diseases that confer lifelong immunity while
the SIS model is commonly used to study the spread of
sexually transmitted diseases.
The network and compartment approaches can be

linked by Kurtz’s theorem which is essentially a law of
large numbers which states that the average dynamics of
the Markov process at the network level limits to the dy-
namics of the deterministic differential equations at the
compartment level as the size of the network N → ∞
[24, 30]. Such a limit we will refer to as a continuum
limit.
The benefit of adopting a compartment modeling ap-

proach is that they are amenable to mathematical analy-
sis since standard tools from dynamical systems such as
bifurcation theory can be used to precisely quantify con-
ditions under which the number of infected individuals
grows in time. These conditions are often given in terms
of the basic reproduction number R0 > 0 which is the
number of individuals a single infected individual infects
in a fully susceptible population [16, 8, 40, 28]. Specif-
ically, when R0 > 1, the infected population will grow
causing an epidemic while if R0 < 1 the disease will be
eliminated. In the classic SIR and SIS compartment
models R0 can be explicitly calculated and is given by

the ratio R0 = S0β/γ, where S0 is the initial susceptible
population [16].

Classic compartment models such as SIR and SIS are
useful models in predicting the spread of a disease on
short timescales but they have a number of drawbacks
that limit their efficacy on larger timescales. Namely,
such models assume i) a constant population size, ii) a
low number of states, iii) a well mixed population and
iv) there is no feedback between human behavior and the
spread of the disease [30]. The first two drawbacks can
be addressed by incorporating population growth into the
classic models as well as introducing additional compart-
ments, e.g. exposed (E), treatment (T ), quarantine (Q)
and vaccinated (V ) [40, 22, 17]. The third drawback is
equivalent to the assumption that the underlying contact
network is given by a complete graph. The fourth draw-
back can be heuristically addressed by introducing new
compartments or by allowing parameters like the infec-
tion and recovery rates to depend on the state variables.
However, problems with introducing a large number of
new compartments include the system might become in-
tractable to analysis and the introduction of a large num-
ber of parameters could obscure the physical mechanisms
which govern the spread of the disease. Moreover, by
allowing parameters like the infection rate in a compart-
ment model to depend on the state of the disease, it is not
clear that such a model could be obtained in a continuum
limit from an underlying network model.

1.2 Background on adaptive networks

With the prior discussion serving as a backdrop, we now
discuss adaptive network models for the spread of infec-
tious diseases that more naturally incorporate human be-
havior; see for instance [14, 35, 27, 36, 39, 37, 34, 18]. The
key idea in such models is that individuals can change the
topology of the network depending on the infection sta-
tus of their contacts. For example, susceptible individuals
could replace contacts with infected individuals with con-
nections to susceptible individuals as in [14, 27], or delete
contacts with infected individuals as in [39, 37, 18]. In this
framework, in addition to the infection status of individ-
ual nodes, the edges themselves are also given a status
depending on the infection status of the nodes connected
by the edge. For example, for an SIS model on a network
the three states of the edges are given by [SS], [SI] and
[II] denoting the status of an edge connecting two sus-
ceptible nodes, an infected and susceptible node, and two
infected nodes respectively. Figure 1(d) illustrates the
nine state variables, i.e. six edge states and three node
sates, for an SIR model on a network placed within this
framework. The adaptive network model then typically
assumes that edges with an infected component, i.e. an
[SI] edge, will change its status with some probability to
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While the compartment model slightly overestimates the
dynamics of the disease, the edge dynamics agree remark-
ably well and moreover the parameter conditions in which
an epidemic occur are in agreement. To further probe
the conditions under which an epidemic occurs, we inves-
tigate parameter regimes in our compartment model in
which state changes including not only the sign of İ(0)
but also Ï(0) and S̈(0) occur. Through these calculations
we replicate the standard value of R0 as well as identify
the following critical edge deactivation rates:

p∗1 = β

(
⟨k⟩

2
−

3

2

)
− γ,

p∗2 = p∗1 − γ +
γ2

β⟨k⟩
.

(3)

Specifically, if the deactivation rate p satisfies p > p1
then limI(0)→0 I(0)

−1S̈(0) > 0 and if p > p∗2 then

limI(0)→0 I(0)
−1Ï(0) < 0. We provide numerical evidence

that if R0 > 1 but the deactivating rate is above these
thresholds then the the disease will still initially spread
but the total number of infected individuals is drastically
reduced. This provides additional criteria beyond R0 < 1
for controlling the spread of an infectious disease.
We conclude in Section 4 with a discussion of our key

results, the implications of our results that elucidate the
connection between human behavior and the spread of a
disease, and avenues for further work.

2 Models

This work uses two models to investigate temporary link
deactivation on an SIR disease model. The first is a net-
work model which applies system changes including infec-
tion, recovery and edge deactivation as probabilities while
tracking the states of all individual nodes and edges. We
determine appropriate values for the number of Monte-
Carlo simulations M , the temporal spacing ∆t, and net-
work size N to ensure convergence of our simulations for
the mean field dynamics. Using the determined parame-
ter values, we consider the network model to be a proxy
for reality since all dynamics are tracked on an individual
scale. The second model is an ODE model with com-
partments for each node and edge type. This model ap-
proximates the network behavior on a macro scale while
applying system changes as rates applied to the compart-
ments. By developing an ODE model that reflects the
network model behavior, we can more efficiently simulate
and more robustly analyze the system behavior.

2.1 Network model

For the network model, we study disease spread on a pop-
ulation represented by a graph, G = {V,E}, where V de-

notes the set of N vertices (i.e., nodes) and E denotes the
set of edges. The graph used is a Watts-Strogatz model
which creates a realistic model of human connections re-
ferred to as a small-world network [42]. Specifically, this
graph has a large number of nodes, short average path
lengths and tightly knit groups of nodes as measured by
a high clustering coefficient. This graph is created by first
generating a ring lattice of average node degree ⟨k⟩. Note,
the degree sum formula from graph theory states the sum
of the degrees of each node is equal to twice the number

of edges and thus N̄ ≈ ⟨k⟩N
2 where N̄ is the total number

of edges in our system [9]. A portion, α, of the edges are
then randomly rewired. This preserves the average node
degree and total number of edges but creates the desired
characteristics of a small world network including more
tightly clustered nodes. From the graph, we generate an
adjacency matrix which is a symmetric, N × N matrix,
A, defined by Ai,j = 1 if node i is connected to node j
and is 0 otherwise.

We model an SIR type disease progression on this net-
work in which individuals move from susceptible (S) to
infected (I) to recovered (R) corresponding to three pos-
sible node states {S, I, R}. Letting i index nodes and k
index time, we define V k

i ∈ {S, I, R} as the state of node i
at time k∆t where ∆t > 0 is the temporal spacing. Based
off of the status of V k

i we define another set of vectors
Sk
i , I

k
i , R

k
i with the ith entry equal to 1 if V k

i = S, I, R
respectively and 0 otherwise. We define β∆t as the prob-
ability of infection applied based on edges between a sus-
ceptible and infected node and γ∆t as the probability of
recovery applied to infected nodes. Finally, we apply a
temporary deactivation assumption to the edges of the
graph by storing deactivated edges in another symmet-
ric, N ×N adjacency matrix, D, which is initialized with
all zeros.

The probability a node satisfying V k
i = S becomes in-

fected at the next time step is equal to β∆t times the
number of active connections between that susceptible
node and other infected nodes. The number of such con-
nections is found by taking the difference between the
adjacency matrix, A, and the current deactivated matrix,
D, isolating the ith node’s connections by right multi-
plying by the standard basis vector ei and summing the
number of infected connections by left multiplying by the
transpose of the vector Ik. The probability that a suscep-
tible node remains susceptible is then 1 minus the above
calculated probability. The probability a node satisfy-
ing V k

i = I recovers at the next time step is equal to
γ∆t while the probability that the same node remains
infected is 1 − γ∆t. Finally, the probability a node sat-
isfying V k

i = R remains recovered is equal to 1 since we
assume the recovered class is immune and cannot return
to susceptible or infected states. This gives the infection
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probabilities

P(V k+1
i = S | V k

i = S) = 1− β∆t · (Ik)T (A−D)ei,

P(V k+1
i = I | V k

i = S) = β∆t · (Ik)T (A−D)ei,

P(V k+1
i = I | V k

i = I) = 1− γ∆t,

P(V k+1
i = R | V k

i = I) = γ∆t,

P(V k+1
i = R | V k

i = R) = 1.

For the link deactivation assumption, since infection
can be passed by connections between infected and sus-
ceptible nodes, we apply a temporary deactivation prob-
ability, p∆t, to any such edges. That is, if at time k∆t,
Ai,j = 1, Dk

i,j = 0, Sk
i = 1, and Ikj = 1 then with proba-

bility p∆t, Dk+1
i,j and Dk+1

j,1 become 1. When deactivated

edges Dk
i,j = 1 are no longer potentially infectious, i.e. i, j

indices correspond to susceptible to recovered and recov-
ered to recovered edges, they are reactivated with prob-
ability r∆t. That is, if at time k∆t, Dk

i,j = 1, Rk
i = 1

and Sk
j = 1 then with probability r∆t, Dk+1

i,j and Dk+1
j,i

become 0. Similarly, if at time k∆t, Dk
i,j = 1, Rk

i = 1

and Rk
j = 1 then with probability r

2∆t, Dk+1
i,j and Dk+1

j,i

become 0. Note this probability is halved to account
for the symmetry of R to R edges. These assumptions
preserve the original graph structure as created by the
Watts-Strogatz model by never updating the adjacency
matrix A. This gives the following edge transition prob-
abilities:

P(Dk+1
i,j = 1 | Sk

i = Ikj = Ai,j = 1, Dk
i,j = 0) = p∆t,

P(Dk+1
i,j = 0 | Rk

i = Sk
j = Dk

i,j = 1) = r∆t,

P(Dk+1
i,j = 0 | Rk

i = Rk
j = Dk

i,j = 1) =
r

2
∆t,

where transitions made to Dk+1
i,j are made symmetrically

to Dk+1
j,i for all i and j.

Figure 2 depicts an example progression of the Watts
Strogatz network states through a disease simulation be-
fore, during, and after the infectious event. In all simula-
tions, the network was initialized with 10% of nodes ran-
domly selected to be infected. The network simulations
were completed using Matlab and the code is available
upon request from the corresponding author.

2.2 Convergence of network model

To ensure the consistency of conclusions drawn from the
statistics of Monte-Carlo (MC) simulations of our network
model we need to test for convergence in the number of
simulations M , time step ∆t and network size N . For
all convergence analysis, we will use the L2 norm as our
diagnostic for convergence. Specifically, to compute an
error for M simulations we will generate two sets of data

of M simulations each assuming one of these sets is a
proxy for the converged statistics. On each set of M
simulations we compute the average number of infected
nodes at time step k and denote these computed values
by Jk and J̄k respectively. The relative error is then
computed using the L2 norm and is given by

E(M,N,∆t, p) =

(∑
k

(
Jk − J̄k

)2) 1

2

(∑
k (J

k)
2
) 1

2

,

where we have also included p as a variable to empha-
size that the deactivating rate could influence the con-
vergence. Note, this definition of the error is equivalent
to estimating the variance of the Monte-Carlo estimator
[33].

First, we investigate the convergence on a 100 node
network over a range of deactivation rates and time step
sizes between two sets of 20 MC simulations. Specifically,
we compute E(20, 100,∆t, p) for ∆t values from 0.1 to
0.0001 and p values ranging from 0 to 2.5. Figure 3(a)
shows the value of our error is below our cut off value of
0.1 for ∆t = 0.01 and all tested p values. Note, while
this cut off value was chosen for convenience, the error
did not decrease significantly for smaller ∆t values. This
indicates that averaging 20 simulations with 100 nodes
and ∆t = 0.01 gives sufficient convergence for any p ∈
[0, 2.5].

Next, in order to compare the network model to a com-
partment model, we consider the continuum limit of the
system as the number of nodes N → ∞. We compute
E(20, 200, 0.01, p) for p values ranging from 0 to 2.5. The
results shown as circles in Figure 3(b) shows 20 MC simu-
lations is also sufficient for the 200 node network to meet
our 0.1 cut off for the relative error. Again, this cutoff
was chosen for convenience but we found that with a lower
cutoff significantly more MC simulations were needed to
ensure convergence.

For our final convergence analysis, we need a different
definition of error. This error will compare the results
between a set of simulations with 100 nodes and a set with
200 nodes. We compute the average number of infected
nodes from each set of simulations at time step k and
denote these computed values from the 100 node network
by Jk and from the 200 node network by Lk. This relative
error is again computed using the L2 norm and is given
by

F (M,N1, N2,∆t, p) =

(∑
k

(
Jk − Lk

)2) 1

2

(∑
k (J

k)
2
) 1

2

.

We compute F (20, 100, 200, 0.01, p) for p values rang-
ing from 0 to 2.5. The results shown as asterisks in Fig-
ure 3(b) demonstrate convergence of the results from the
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(a) Initial State (b) Intermediate State (c) Final State

Figure 2: Snapshots of the dynamics of the SIR network model with link deactivation at (a) time t = 0, (b) an
intermediate time, and (c) the final network state. Black lines correspond to active edges while cyan are temporarily
deactivated edges. Susceptible nodes are blue, infected red, and recovered green. The initial conditions consisted of
10 randomly selected infected nodes and the parameters were given by β = 0.1, γ = 0.2, p = 0.8, and r = 0.9.

(a) 100 Node Convergence (b) 200 Node Convergence

Figure 3: Numerically computed error of the average number of infected individuals for MC simulations of the
network model. (a) 100 node network with 20 MC simulations for various values of ∆t and p. (b) 200 node network
with 2 sets of 20 MC simulations (circles) and 200 vs 100 node network (asterisk) for various p and ∆t = 0.01.

Table 1: Parameter values used in MC simulations of the network model.

Parameter Definition Value

α Watts-Strogatz rewiring 0.2
⟨k⟩ average node degree 12

β infection rate [0, 1]
γ recovery rate 0.2
p deactivation rate [0, 2.5]
r reconnecting rate 0.9

∆t temporal spacing 0.01
N number of nodes 100
N̄ number of edges 600
M number of MC simulations 20
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200 to the 100 node network. Altogether, this analysis
gives us confidence that our 100 node network simulated
with time step ∆t = 0.01 for p ∈ [0, 2.5] has converged
sufficiently to compare results to a compartment ODE
model. Table 1 summarizes the parameters previously
defined and provides the values used in this study. Other
than the values determined to be needed for convergence,
i.e. ∆t, N , and M , all parameter values were chosen to
generically represent an infectious disease with R0 > 1
and a network with approximately constant node degree
and short average path lengths. Alternative values could
be used for all of these parameters or fit to data. More-
over, the reconnection rate was chosen arbitrarily but we
emphasize that it has no effect on the dynamics of the dis-
ease since disease cannot propagate along recovered nodes
anyway.

2.3 Proposed ODE model

In order to facilitate system analysis, we approximate the
network with a system of ordinary differential equations
using a mean-field approach. The following system of
differential equations describes the change in the number
of each type of node:

Ṡ =− β[SI],

İ =β[SI]− γI,

Ṙ =γI,

(4)

and the number of each type of edge:

˙[SS] =− β[SSI],

˙[SI] =β[SSI]− β([SI] + [ISI])− γ[SI]− p[SI],

˙[SR] =− β[ISR] + γ[SI] + r[ŜR],

˙[II] =β([SI] + [ISI])− 2γ[II],

˙[IR] =2γ[II]− γ[IR] + β[ISR],

˙[RR] =γ[IR] + r[R̂R],

˙
[ŜI] =p[SI]− γ[ŜI]− β[IŜI],

˙
[ŜR] =γ[ŜI]− r[ŜR]− β[IŜR],

˙
[ÎI] =β[IŜI]− 2γ[ÎI],

˙
[ÎR] =2γ[ÎI] + β[IŜR]− γ[ÎR],

˙
[R̂R] =γ[ÎR]− r[R̂R],

(5)

where X denotes the expected number of nodes of each
type and [XY ] and [X̂Y ] denote the number of active and
deactivated edges respectively between nodes in state X
and Y with X ∈ {S, I, R}. The notation [XŶ Z] repre-

sents triple connection between an [XY ] edge and an [Ŷ Z]
edge centered at a Y type node. For ease of presentation

we wrote the above equations with the triple link states
but these equations were closed using Equation (2).

The transitions in the ODE model reflect the behav-
ior of the previously defined network model and utilize
the same parameters. The state transitions are depicted
in Figure 4 with the node states, active edge states, and
deactivated edge states shown in the first, second and
third columns respectively. The node state transitions
include susceptible nodes being infected at rate β pro-
portional to [SI] edges and I nodes recovering at rate γ.
Edge state transitions involve the parameters p, r, β,
and γ. The deactivation parameter p is applied only to
[SI] which become [ŜI]. The reconnecting parameter r

is applied to both [ŜR] and [R̂R] which return to their
equivalent active edge compartments. Edge states involv-
ing the infection of an S node transition at rate β. For
active edges, these transitions include [SS] becoming [SI]
through [SSI] triples, [SI] becoming [II] through both
[SI] and [ISI] triples, and [SR] becoming [IR] through
[ISR] triples. Deactivated edges involve some of the same

transitions including [ŜI] becoming [ÎI] through [IŜI]

triples and [ŜR] becoming [ÎR] through [IŜR] triples.
Notably, the deactivated edges do not include a parallel
[SS] transition because [ŜS] does not exist nor do they in-

clude [ŜI] becoming [ÎI] directly through [ŜI] since these
deactivated edges cannot pass infection. Finally, the re-
covery rate γ facilitates the transition of edges involved
in the recovery of an I node. The transitions include [SI]
becoming [SR], [II] becoming [IR] at twice the recovery
rate for each I node involved, and [IR] becoming [RR].
The same transitions occur in the equivalent deactivated
edge compartments.

For all later simulations, we use ode45 in Matlab[29].
These equations become unstable as S → 0 since the
moment closure approximation divides by S. To account
for this instability in our simulations, we set all moment
closure approximations equal to 0 when S < 0.001. The
system is initialized with S = 90, I = 10 and R = 0 for
the nodes. For the edges, we averaged the initial number
of each edge type from 100 network simulations giving
initial values [SS] = 485, [SI] = 110, [II] = 5 and 0
for everything else. These initial conditions preserved the
total number of nodes, edges and average node degree
used in the network simulations.

3 Results

3.1 Infected population convergence

The size and duration of an infectious event, as measured
through the infected population, are key components to
understanding the severity of an outbreak. Similarly, the
infected nodes and the I compartment are characteristic
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(a) Network Model

(b) Compartment Model

(c) Absolute Difference

Figure 5: Plots of infected population proportions as
functions of time and β for various values of p for (a)
network model, (b) compartment model and (c) absolute
difference between models.

the limit as the initial infected population, I(0) = I0,
goes to zero at time t = 0. To compute this limit, we
approximate [SI](0) as ⟨k⟩I0 given that it is expected all
edges from the initially infected nodes will be connected
to susceptible nodes as I0 → 0. This gives the calculation

lim
I0→0

1

I0
İ(0) = lim

I0→0

1

I0
[β⟨k⟩I0 − γI0] = β⟨k⟩ − γ.

Setting this equation equal to 0 produces the formula

R0 =
β⟨k⟩

γ
. (6)

Substituting in the parameters ⟨k⟩ = 12 and γ = 0.2
we find a critical value β∗ = 1

60 corresponding to R0 = 1
for our simulations. For values of β < 1

60 , we expect the
disease to die off immediately since the infected compart-
ment is shrinking. For β > 1

60 , we know that the infected
compartment does not decrease immediately but we can-
not assume anything else about the system behavior.

From Figure 5(b) it is clear that the severity of the
disease depends on both β and p parameter values while
from the above calculation R0 does not. Given this limi-
tation and the otherwise limited information provided by
the standard R0 calculation, we extend our analysis to the
[SI] edges. Since [SI] is a key component of the İ equa-
tion, we hypothesize that the growth of this compartment
may further exemplify system behaviors. We mirror the
same calculations as done above on the İ equation to the
[ṠI] equation as shown in Equation (5). Writing out the
moment closure approximation, this equation becomes

˙[SI] = β

((
⟨k⟩ − 1

⟨k⟩

)
[SS][SI]− [SI]2

[S]
− [SI]

)

− (γ + p)[SI].

Note that [SS](0) + [SI](0) = N̄ and, as used above,
[SI](0) ≈ ⟨k⟩I0. Additionally, as noted previously, N̄ ≈
⟨k⟩N
2 . With these substitutions, we have

˙[SI](0)

I0
= β

((
⟨k⟩ − 1

⟨k⟩

) ⟨k⟩2N
2 − 2⟨k⟩2I0

N − I0
− ⟨k⟩

)

− (γ + p)⟨k⟩.

Therefore,

lim
I0→0

1

I0
[ṠI](0) = β

(
⟨k⟩2

2
−

3

2
⟨k⟩

)
− (γ + p)⟨k⟩. (7)

Setting this equal to 0 and solving for p gives [ṠI(0)] = 0
when

p∗1 = β

(
⟨k⟩

2
−

3

2

)
− γ =

γ

2⟨k⟩
(R0(⟨k⟩ − 3)− 2⟨k⟩) .
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(a) Node States (b) Edge States

Figure 6: Average proportions in SIR model of (a) node states and (b) edge conditions over time with β = 0.2,
γ = 0.2, r = .9, p ranging from 0 to 2.5 and I0 = 10. Solid lines correspond to results from the network model and
dashed correspond to results from the compartment ODE model.

Since S̈ = −β ˙[SI], it follows that p∗1 is also the critical
transition for the concavity or acceleration of the S com-
partment. Note, necessary and sufficient conditions for p∗1
to exist in the sense that it is a positive number are that
⟨k⟩ > 3 and R0 > 2⟨k⟩/(⟨k⟩ − 3). That is, the network
has to on average have a sufficiently large number of con-
nections and the disease has to be sufficiently contagious
for deactivating edges to be necessary.
To find an equivalent critical value for the concavity of

the I compartment, we have

lim
I0→0

1

I0
[Ï](0) = lim

I0→0

(
β[ṠI](0)− γİ(0)

)
.

Substituting in the previously computed limit for [ṠI](0)
as found in Equation (7) and solving for p gives the critical
value

p∗2 = p∗1 − γ +
γ2

β⟨k⟩
= p∗1 − γ

(
1−

1

R0

)
(8)

for the concavity or acceleration of the I compartment.
Note, necessary and sufficient conditions for p∗2 to be a
positive number are that p∗1 > 0, which implies that R0 >
1, and γ < p∗1R0/(R0 − 1). That is, the disease has to be
sufficiently contagious and the recovery rate must be not
too large for deactivating edges to be necessary.
To investigate the influence of these critical values on

system behavior, we consider the cumulative proportion
of the population which was infected over the course of the
infectious event. In an SIR model, this is equivalent to
calculating the ending recovered population proportion,

R(tf ). Figure 7 plots the log of the ending recovered pop-
ulation proportion for 0 ≤ β ≤ 0.5 and 0 ≤ p ≤ 2.5. For
these simulations, an I0 = 10−10 was used in correspon-
dence with the analytic assumption of I0 → 0. The other
compartments were then initialized with S(0) = 100− I0,
SI(0) = ⟨k⟩I0, SS(0) = N̄ − ⟨k⟩I0 and all others equal
to 0. Additionally, on Figure 7, β∗ corresponding to
R0 = 1 is plotted as a solid white line, p∗1 is a dashed
white line and p∗2 is a dashed-dotted white line.

These critical transitions partition Figure 7 into four
regions. In Region I, R0 < 1, İ(0) < 0, S̈(0) > 0 and
Ï(0) < 0. In this region the disease quickly dies out and
the dynamics are equivalent to the standard SIR model
with R0 < 1. In Region II, R0 > 1, İ(0) > 0, S̈(0) > 0
and Ï(0) < 0. In this region even though İ(0) > 0 the
total number of infections is still low since the rate of
change of infections is decelerating. In Region III, R0 > 1,
İ(0) > 0, S̈(0) < 0 and Ï(0) < 0. While the rate of change
of infections is still decelerating, S̈(0) < 0 leading to a
more rapid loss of susceptible individuals. This causes a
still relatively low number of infections but worse condi-
tions than in Region II. In Region IV, R0 > 1, İ(0) > 0,
S̈(0) < 0 and Ï(0) > 0. Consequently, in Region IV the
number of infections is orders of magnitude higher than
in regions I–III and the dynamics is similar that of a stan-
dard SIR model with R0 > 1. It is interesting to note
that the existence of Regions II and III are unique to
compartment models that include edge dynamics.
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Figure 7: Contour plot of the log of the total recovered
proportion of the population for the compartment model
for ranging β and p. The solid white line corresponds to
β = β∗. The dashed white line is p∗1 and the dashed-
dotted line is p∗2.

4 Discussion

In this work we developed and analyzed a mathematical
model for the spread of an SIR type infectious disease on
an adaptive network with temporary link deactivation.
The approach taken was to develop a system of four-
teen differential equations for not only the node states
but the edge states as well. This mean field approach
agreed well with Monte-Carlo simulations of small sized
networks. Through an analysis of these equations we not
only recovered the standard calculation of R0 but iden-
tified two new parameters p∗1, p

∗
2 which also control the

severity of the epidemic. Specifically, while the value of
R0 controls whether the infection is growing in time, if
the deactivation rate p is below p∗2 then the initial number
of infections is accelerating leading to a severe epidemic,
i.e. Region IV in Figure 7. This is in contrast with the
standard SIR model in which R0 = 1 is the condition in
which both İ(0) and Ï(0) changes sign. Indeed, one naive
approach to understanding the dynamics caused by the
deactivating of connections is to assume that deactivating
edges is equivalent to lowering the value of β in the stan-
dard SIR model. Our model shows that this approach
will not adequately capture the nonlinear interactions be-
tween the node and edge dynamics which are necessary
to model the spread of the disease.
It is important to note that while the dynamics of the

ODE model captures the mean field dynamics of the edge

states it overestimates the severity of the disease as com-
pared to the network model. The cause for this discrep-
ancy is at least three fold. First, the moment closure
assumed that the average excess degree ⟨k⟩ex was equal
to ⟨k⟩−1. However, the random variables k and kex have
different distributions and the relationship between their
averages is an inequality called the “friendship paradox”
where ⟨k⟩ex ≥ ⟨k⟩ + 1 [10]. In particular, in graphs in
which there is a significant variance in the degree distri-
bution, it is not clear if a set of differential equations for
the various compartments can be derived in the contin-
uum limit [19]. Second, in the derivation of the moment
closure, higher order information about the topology of
the network such as clustering and the number of trian-
gles were ignored. Third, the truncation of the system
at the level of nodes and edges excludes the dynamics
of higher order links which depending on the structure of
the graph could be relevant. Many of these challenges can
be addressed by more carefully approximating the condi-
tional distributions that arise in the moment closure ap-
proximation; see for instance [39, 37]. Nevertheless, since
the ODE models provide overestimates for the severity of
the disease, the critical deactivation rates given by Equa-
tion (3) are still useful in that they provide upper bounds
for the critical deactivation rates in the realized network
dynamics.

We propose that the general approach of introducing
compartments for the edge dynamics discussed in this pa-
per is the more natural approach when modeling adaptive
networks. Specifically, when considering the spread of in-
fectious diseases in which there is human behavior in the
form of quarantining, contact tracing, reconnecting, etc.
it is important to consider the dynamics of the connec-
tions themselves, i.e. the edges. The alternative approach
of introducing new node states as compartments does not
capture how the topology of the connections themselves
changes during the epidemic. This discrepancy is cap-
tured in our model due to the existence of parameters in
addition to R0 which depend nonlinearly on the average
node degree and also govern the severity of the epidemic.

Finally, we would like to note that initial estimates for
the COVID-19 pandemic placed the value of R0 between
1.5 to 6.68 with a mean of 3.28 and a median of 6.68 [26].
While R0 is proportional to the contact rate and thus will
vary according to the local situation, these estimates in-
dicate that without deactivation of nodes during the early
stages of the pandemic COVID-19 would lie in Region IV
in Figure 7. Our work indicates that during the critical
period of the pandemic when vaccines were not available,
the deactivation of nodes through lockdown orders and
social distancing was necessary to ensure movement from
Region IV to II in Figure 7 and thus mitigate the severity
of the pandemic.
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Appendix

In this appendix we briefly derive the moment closure
given by Equation (2) following the derivation given on
page 124 of [23]. First, in a network with a average
node degree ⟨k⟩, it follows that ⟨k⟩B is equal to the ex-
pected number of edges containing a node of status B
and thus [AB]/(⟨k⟩B) and [BC]/(⟨k⟩B) correspond to
the expected proportion of edges which start at a sta-
tus B node that are of type [AB] or [BC] respectively.
Therefore, if we are given that a node B is connected
to two other nodes then the probability that the three
nodes forms a triple link of type [ABC] is approximately
given by [AB][BC]/(⟨k⟩B)2. Therefore, since the number
of ways to choose the edges connecting to B is given by
⟨k⟩(⟨k⟩ − 1), it follows that the probability that a triple
link a node status of B at its center is of type [ABC]
is equal to ⟨k⟩(⟨k⟩ − 1)([AB][BC])(⟨k⟩[B])2. Finally, we
calculate the expected value of [ABC] triples by multiply-
ing by the proportion of B nodes to obtain the following
moment closure approximation:

[ABC] ≈
⟨k⟩ − 1

⟨k⟩

[AB][BC]

B
.
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