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Abstract

The spread of an infectious disease depends on intrinsic properties of the disease as well
as the connectivity and actions of the population. This study investigates the dynamics
of an SIR type model which accounts for human tendency to avoid infection while also
maintaining preexisting, interpersonal relationships. Specifically, we use a network model
in which individuals probabilistically deactivate connections to infected individuals and later
reconnect to the same individuals upon recovery. To analyze this network model, a mean
field approximation consisting of a system of fourteen ordinary differential equations for
the number of nodes and edges is developed. This system of equations is closed using a
moment closure approximation for the number of triple links. By analyzing the differential
equations, it is shown that, in addition to force of infection and recovery rate, the probability
of deactivating edges and the average node degree of the underlying network determine if an
epidemic occurs.

Keywords: SIR model, adaptive network model, moment closure approximation, epidemic,

Ry, temporary link deactivation

1 Introduction

The COVID-19 pandemic has had a profound impact on
society. In response, the mathematics and broader scien-
tific community has focused considerable research efforts
to understand the spread of the virus and its impact not
only on physical health [13] but on mental health [43], the
economy [43, 3], policy [11, 31], climate [41], distribution
networks [3], equitable distribution of vaccines [2], and
racial disparities [25, 6, 44] to name but a few. Despite a
tremendous volume of research in this area, there is still
considerable effort devoted to developing and analyzing
improved mathematical models that address aspects of
the above issues. In particular, there is a clear need for
epidemiological models that incorporate human behavior.

In this paper we propose and study a model for the
spread of an infectious disease on an adaptive network
in which individuals can temporarily deactivate connec-
tions with infected individuals and then reconnect upon
recovery. Such a situation could arise, for example, in
an office setting in which infected employees reduce their
work hours or stay at home all together and thus lower
their average number of contacts in a day. The problem
we address in our model is the determination of a mini-
mal deactivating rate needed to eliminate the spread of
the disease as a function of the average node degree of
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the network, the force of infection, and the recovery rate
of the disease.

Naturally, in an adaptive network the spread of the
disease can be eliminated by deleting or isolating all con-
nections with infected individuals. However, for realistic
human networks the implementation of such a process
through stay at home orders or lockdown of businesses
could be infeasible for a variety of reasons, e.g. the work
force comnsists of essential workers, compliance may not
be absolute, the economic impact would be too extreme
[3], etc. Instead, by implementing an intermediary de-
activation rate the network can still be productive since
some connections are maintained while the spread of the
disease is mitigated.

1.1 Background and drawbacks of classic
models

Before beginning a discussion of modeling the spread of
infectious disease on adaptive networks, we first step back
and discuss classic models for the spread of infectious dis-
eases. There are a large number of mathematical models
for the spread of infectious diseases whose efficacy and
validity vary over a wide range of spatial and tempo-
ral scales. Typical mathematical models consist of agent
based models at the microscale [32, 12, 20, 38], to net-
work models at the mesoscale [14, 15, 30, 7, 23], to finally
mean-field compartment models at the macroscale [16, 1,
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28, 4, 5]; see Figure 1(a)—(c). Following the pioneering
of Kermack and McKendrick [21], the unifying thread in
all of these models is that members of the population
are categorized depending on their infection status, e.g.,
susceptible (5), infected (I), and recovered (R), and the
dynamic evolution of each individual’s status is modeled
either as a stochastic or purely deterministic process. In
agent based models this consists of providing rules for the
movement of individual agents as well as the transmis-
sion of infection between susceptible and infected agents.
In network models infection between individuals occurs
along undirected edges of an underlying static contact
network. Finally, in compartment models the state vari-
ables consist of fractions of the total population with a
given infection status and the disease evolves according
to a differential equation.

For reference, the standard compartment models are
the STR model given by

S =—pBSI,
I =B8I—~I,
R=n1I,

and the SIS model given by

S = —BSI+~I,
I =BSI—~I,

where [ is the per capita infection rate and v the re-
covery rate [16]. The STR model is often used to study
the spread of diseases that confer lifelong immunity while
the SIS model is commonly used to study the spread of
sexually transmitted diseases.

The network and compartment approaches can be
linked by Kurtz’s theorem which is essentially a law of
large numbers which states that the average dynamics of
the Markov process at the network level limits to the dy-
namics of the deterministic differential equations at the
compartment level as the size of the network N — oo
[24, 30]. Such a limit we will refer to as a continuum
limit.

The benefit of adopting a compartment modeling ap-
proach is that they are amenable to mathematical analy-
sis since standard tools from dynamical systems such as
bifurcation theory can be used to precisely quantify con-
ditions under which the number of infected individuals
grows in time. These conditions are often given in terms
of the basic reproduction number Ry > 0 which is the
number of individuals a single infected individual infects
in a fully susceptible population [16, 8, 40, 28]. Specif-
ically, when Ry > 1, the infected population will grow
causing an epidemic while if Ry < 1 the disease will be
eliminated. In the classic SIR and SIS compartment
models Ry can be explicitly calculated and is given by

the ratio Ry = So83/7, where Sy is the initial susceptible
population [16].

Classic compartment models such as STR and SIS are
useful models in predicting the spread of a disease on
short timescales but they have a number of drawbacks
that limit their efficacy on larger timescales. Namely,
such models assume i) a constant population size, ii) a
low number of states, iii) a well mixed population and
iv) there is no feedback between human behavior and the
spread of the disease [30]. The first two drawbacks can
be addressed by incorporating population growth into the
classic models as well as introducing additional compart-
ments, e.g. exposed (F), treatment (T'), quarantine (Q)
and vaccinated (V') [40, 22, 17]. The third drawback is
equivalent to the assumption that the underlying contact
network is given by a complete graph. The fourth draw-
back can be heuristically addressed by introducing new
compartments or by allowing parameters like the infec-
tion and recovery rates to depend on the state variables.
However, problems with introducing a large number of
new compartments include the system might become in-
tractable to analysis and the introduction of a large num-
ber of parameters could obscure the physical mechanisms
which govern the spread of the disease. Moreover, by
allowing parameters like the infection rate in a compart-
ment model to depend on the state of the disease, it is not
clear that such a model could be obtained in a continuum
limit from an underlying network model.

1.2 Background on adaptive networks

With the prior discussion serving as a backdrop, we now
discuss adaptive network models for the spread of infec-
tious diseases that more naturally incorporate human be-
havior; see for instance [14, 35, 27, 36, 39, 37, 34, 18]. The
key idea in such models is that individuals can change the
topology of the network depending on the infection sta-
tus of their contacts. For example, susceptible individuals
could replace contacts with infected individuals with con-
nections to susceptible individuals as in [14, 27], or delete
contacts with infected individuals as in [39, 37, 18]. In this
framework, in addition to the infection status of individ-
ual nodes, the edges themselves are also given a status
depending on the infection status of the nodes connected
by the edge. For example, for an S1.5 model on a network
the three states of the edges are given by [SS], [SI] and
[II] denoting the status of an edge connecting two sus-
ceptible nodes, an infected and susceptible node, and two
infected nodes respectively. Figure 1(d) illustrates the
nine state variables, i.e. six edge states and three node
sates, for an STR model on a network placed within this
framework. The adaptive network model then typically
assumes that edges with an infected component, i.e. an
[SI] edge, will change its status with some probability to
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Figure 1: Ilustration of mathematical frameworks for modeling the spread of infections diseases in which the status
of each individual is either susceptible (5), infected (I), or recovered (R). (a) Agent based model coupling spatial
dynamics with the spread of the disease. Arrows indicate the direction of motion of each individual in the system.
(b) Static network with the spread of the disease propagating along edges. (¢) Compartment model with the disease
spreading between the various population densities. (d) Adaptive network in which the population and edge densities

are incorporated into compartment models.

reduce the spread of the disease amongst nodes, e.g. an
[SI] edge rewires to different nodes to create an [SS] edge
with some probability.

The average dynamics on an adaptive network can
also be approximated by the dynamics of a compartment
model in an appropriate continuum limit. For example,
on a static network, the governing equations for an SIS
model incorporating edge dynamics is given by

S =—B[SI] +1,

I =B[SI] -1,
[SS] = ~[ST] - B[SSI],
[ST] = B([SST] — [S1] — [IST)) — v ([ST]) — 2[1T]),
[I1) = B([ST) + [181)) — 2[11],

(1)

where [ABC] denotes the density of triple links with a
given sequence of states A, B,C € {S,I} [14, 23]. The
first two equations model the infection and recovery of
nodes while the remaining equations correspond to the
conversion of various edge types as nodes are infected or
recover. The state variables in the above equations are
implicitly understood to correspond to the expected val-
ues of the node and edge densities, however the notation
E for expectation is suppressed. If we assume further that
E ([SI]) = E(S)E(), i.e. assume a well mixed population,
we obtain the standard SIS model. However, the benefit
of retaining the dynamics of the edges is that human be-
havior can now be incorporated directly into Equation (1)
by modifying the dynamics of [SS], [SI], and [II] while
retaining the same dynamics on S and I.

The drawback of the continuum limit presented in
Equation (1) is that it does not form a system of closed
equations. Specifically, the dynamics of the triple links
must be specified resulting in the need for equations gov-
erning the quartic links and so on. In order to close the
system at the level of the dynamics for the edges, the
number of triple links must be approximated by using a

process called a moment closure. The simplest moment
closure can be derived by assuming a homogeneous degree
distribution and applying a counting argument. This mo-
ment closure is given by

(k) — 1 [AB][BC]
(k) B

[ABC] ~ 2)

where (k) is the average degree of a node [23]; see the Ap-
pendix for a derivation. More sophisticated moment clo-
sures that account for inhomogeneities in the degree dis-
tribution arising from the friendship paradox, existence of
triangles, a high clustering coefficient, etc. can be derived

based on the topology of the network; see for instance
[39, 37, 27].

1.3 A roadmap

We conclude the Introduction with a roadmap for the pa-
per. In Section 2 we present mathematical models for the
spread of an infectious disease on adaptive small world
networks at both the network and compartment level.
Our models are built on the work of Shaw et. al. in
[39, 37] in which an SIS model was implemented on an
adaptive network with temporary link deactivation. Net-
work assumptions such as those used by Gross et al. in
[14], prioritize maintaining the original connectedness, or
average node degree, of a network and reflects some as-
pects of human interactions by disconnecting potentially
infectious connections and creating new, safer links. On
an interpersonal scale, however, we know this to be incon-
sistent with human behavior. To address this concern,
our adaptive network model preserves known relation-
ships throughout the course of the disease while allowing
individuals to protect themselves from infection by tem-
porarily deactivating potentially infectious interactions.
In Section 3 we present the primary results of our work.
We first numerically study the convergence between the
network and compartment models in the continuum limit.

WWW.sporajournal.org
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While the compartment model slightly overestimates the
dynamics of the disease, the edge dynamics agree remark-
ably well and moreover the parameter conditions in which
an epidemic occur are in agreement. To further probe
the conditions under which an epidemic occurs, we inves-
tigate parameter regimes in our compartment model in
which state changes including not only the sign of I (0)
but also 7(0) and S(0) occur. Through these calculations
we replicate the standard value of Ry as well as identify
the following critical edge deactivation rates:

p’IZﬂ(@—;)—%

2 (3)
P =Dy — 7+ B(k)’

Specifically, if the deactivation rate p satisfies p > py
then limyg)_oZ(0)7*S(0) > 0 and if p > pj then
limy 0y I(0)~*1(0) < 0. We provide numerical evidence
that if Ry > 1 but the deactivating rate is above these
thresholds then the the disease will still initially spread
but the total number of infected individuals is drastically
reduced. This provides additional criteria beyond Ry < 1
for controlling the spread of an infectious disease.

We conclude in Section 4 with a discussion of our key
results, the implications of our results that elucidate the
connection between human behavior and the spread of a
disease, and avenues for further work.

2 Models

This work uses two models to investigate temporary link
deactivation on an SIR disease model. The first is a net-
work model which applies system changes including infec-
tion, recovery and edge deactivation as probabilities while
tracking the states of all individual nodes and edges. We
determine appropriate values for the number of Monte-
Carlo simulations M, the temporal spacing At, and net-
work size N to ensure convergence of our simulations for
the mean field dynamics. Using the determined parame-
ter values, we consider the network model to be a proxy
for reality since all dynamics are tracked on an individual
scale. The second model is an ODE model with com-
partments for each node and edge type. This model ap-
proximates the network behavior on a macro scale while
applying system changes as rates applied to the compart-
ments. By developing an ODE model that reflects the
network model behavior, we can more efficiently simulate
and more robustly analyze the system behavior.

2.1 Network model

For the network model, we study disease spread on a pop-
ulation represented by a graph, G = {V,E}, where V de-

notes the set of N vertices (i.e., nodes) and E denotes the
set of edges. The graph used is a Watts-Strogatz model
which creates a realistic model of human connections re-
ferred to as a small-world network [42]. Specifically, this
graph has a large number of nodes, short average path
lengths and tightly knit groups of nodes as measured by
a high clustering coefficient. This graph is created by first
generating a ring lattice of average node degree (k). Note,
the degree sum formula from graph theory states the sum
of the degrees of each node is equal to twice the number
of edges and thus N = @ where N is the total number
of edges in our system [9]. A portion, «, of the edges are
then randomly rewired. This preserves the average node
degree and total number of edges but creates the desired
characteristics of a small world network including more
tightly clustered nodes. From the graph, we generate an
adjacency matrix which is a symmetric, N x N matrix,
A, defined by A; ; = 1 if node 4 is connected to node j
and is 0 otherwise.

We model an SIR type disease progression on this net-
work in which individuals move from susceptible (S) to
infected (I) to recovered (R) corresponding to three pos-
sible node states {S, I, R}. Letting ¢ index nodes and k
index time, we define V}¥ € {S, I, R} as the state of node i
at time kAt where At > 0 is the temporal spacing. Based
off of the status of V¥ we define another set of vectors
Sk IF RE with the ith entry equal to 1 if V¥ = S I R
respectively and 0 otherwise. We define At as the prob-
ability of infection applied based on edges between a sus-
ceptible and infected node and yAt as the probability of
recovery applied to infected nodes. Finally, we apply a
temporary deactivation assumption to the edges of the
graph by storing deactivated edges in another symmet-
ric, N x N adjacency matrix, D, which is initialized with
all zeros.

The probability a node satisfying V¥ = S becomes in-
fected at the next time step is equal to SAt times the
number of active connections between that susceptible
node and other infected nodes. The number of such con-
nections is found by taking the difference between the
adjacency matrix, A, and the current deactivated matrix,
D, isolating the i*" node’s connections by right multi-
plying by the standard basis vector e; and summing the
number of infected connections by left multiplying by the
transpose of the vector I*. The probability that a suscep-
tible node remains susceptible is then 1 minus the above
calculated probability. The probability a node satisfy-
ing V¥ = I recovers at the next time step is equal to
~vAt while the probability that the same node remains
infected is 1 — vAt. Finally, the probability a node sat-
isfying V¥ = R remains recovered is equal to 1 since we
assume the recovered class is immune and cannot return
to susceptible or infected states. This gives the infection
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probabilities

P(VF =8| VF=8)=1-pAt- (I")T(A - D)e,,

PV = 1| VF=5) =pAt- (1% (A= D)e,

PV =1V =1)=1-9At,
(
(

N

N

P(VF = R |V} =1)=~At,
P(VF'=R|VF=R)=1.

K3

N

For the link deactivation assumption, since infection
can be passed by connections between infected and sus-
ceptible nodes, we apply a temporary deactivation prob-
ability, pAt, to any such edges. That is, if at time kAt,
Ay =1, Dﬁj =0, Sf =1, and I]’-C = 1 then with proba-
bility pAt, ijl and ijl become 1. When deactivated
edges Dl’-fj = 1 are no longer potentially infectious, i.e. i, j
indices correspond to susceptible to recovered and recov-
ered to recovered edges, they are reactivated with prob-
ability rAt. That is, if at time kAt Dﬁj =1, RF =1
and S]’?C = 1 then with probability rAt, ijl and ijl
become 0. Similarly, if at time kAt, Df,j =1, RF =1
and R¥ =1 then with probability At, DjT" and DT
become 0. Note this probability is halved to account
for the symmetry of R to R edges. These assumptions
preserve the original graph structure as created by the
Watts-Strogatz model by never updating the adjacency
matrix A. This gives the following edge transition prob-
abilities:

P(DfT =1|8F =1 = A;; =1,DF; =0) = pAt,
P(DIT' = 0| R} = S§ =D}, =1) =rAt,

k+1 _ k_ pk_ pnk _ 1\ _ T
P(DiT'=0| Ry =Rf =Dj,; =1) = At

where transitions made to ij-l are made symmetrically

to ijl for all ¢ and j.

Figure 2 depicts an example progression of the Watts
Strogatz network states through a disease simulation be-
fore, during, and after the infectious event. In all simula-
tions, the network was initialized with 10% of nodes ran-
domly selected to be infected. The network simulations
were completed using Matlab and the code is available
upon request from the corresponding author.

2.2 Convergence of network model

To ensure the consistency of conclusions drawn from the
statistics of Monte-Carlo (MC) simulations of our network
model we need to test for convergence in the number of
simulations M, time step At and network size N. For
all convergence analysis, we will use the Lo norm as our
diagnostic for convergence. Specifically, to compute an
error for M simulations we will generate two sets of data

of M simulations each assuming one of these sets is a
proxy for the converged statistics. On each set of M
simulations we compute the average number of infected
nodes at time step k and denote these computed values
by J* and J* respectively. The relative error is then
computed using the Ly norm and is given by

(S (5= 792)°
(Ze?)*

where we have also included p as a variable to empha-
size that the deactivating rate could influence the con-
vergence. Note, this definition of the error is equivalent
to estimating the variance of the Monte-Carlo estimator
[33].

First, we investigate the convergence on a 100 node
network over a range of deactivation rates and time step
sizes between two sets of 20 MC simulations. Specifically,
we compute F(20,100, At,p) for At values from 0.1 to
0.0001 and p values ranging from 0 to 2.5. Figure 3(a)
shows the value of our error is below our cut off value of
0.1 for At = 0.01 and all tested p values. Note, while
this cut off value was chosen for convenience, the error
did not decrease significantly for smaller At values. This
indicates that averaging 20 simulations with 100 nodes
and At = 0.01 gives sufficient convergence for any p €
[0,2.5].

Next, in order to compare the network model to a com-
partment model, we consider the continuum limit of the
system as the number of nodes N — oco. We compute
E(20,200,0.01,p) for p values ranging from 0 to 2.5. The
results shown as circles in Figure 3(b) shows 20 MC simu-
lations is also sufficient for the 200 node network to meet
our 0.1 cut off for the relative error. Again, this cutoff
was chosen for convenience but we found that with a lower
cutoff significantly more MC simulations were needed to
ensure convergence.

For our final convergence analysis, we need a different
definition of error. This error will compare the results
between a set of simulations with 100 nodes and a set with
200 nodes. We compute the average number of infected
nodes from each set of simulations at time step k& and
denote these computed values from the 100 node network
by J* and from the 200 node network by L*. This relative
error is again computed using the Lo norm and is given
by

E(M,N,At,p) =

S

(0 (75 = £97)
(Ze @)’

We compute F(20,100,200,0.01,p) for p values rang-
ing from 0 to 2.5. The results shown as asterisks in Fig-
ure 3(b) demonstrate convergence of the results from the

F(M7N17N23Atap) =
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Figure 2: Snapshots of the dynamics of the STR network model with link deactivation at (a) time ¢ = 0, (b) an
intermediate time, and (c) the final network state. Black lines correspond to active edges while cyan are temporarily
deactivated edges. Susceptible nodes are blue, infected red, and recovered green. The initial conditions consisted of
10 randomly selected infected nodes and the parameters were given by g = 0.1, v = 0.2, p = 0.8, and r = 0.9.

05 051
* p= O 200 node MC
5 0.4r o p=05 5 04 * 100 vs 200 node
@ o3t “ p= & 03f
s p=15
E 0.2+ o p=2 E 0.2F
< o =25 )
R 5 b 8 R0t . .
g § 8 ¢ : ° ° o g
0 ! ! 0 ‘ . ‘ ‘ ;
10 1073 1072 107" 0 0.5 1 15 2 2.5
At p
(a) 100 Node Convergence (b) 200 Node Convergence

Figure 3: Numerically computed error of the average number of infected individuals for MC simulations of the
network model. (a) 100 node network with 20 MC simulations for various values of At and p. (b) 200 node network
with 2 sets of 20 MC simulations (circles) and 200 vs 100 node network (asterisk) for various p and At = 0.01.

Table 1: Parameter values used in MC simulations of the network model.

Parameter Definition Value
o Watts-Strogatz rewiring 0.2
(k) average node degree 12
B infection rate 0, 1]
¥ recovery rate 0.2
D deactivation rate [0, 2.5
r reconnecting rate 0.9
At temporal spacing 0.01
N number of nodes 100
N number of edges 600
M number of MC simulations 20
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200 to the 100 node network. Altogether, this analysis
gives us confidence that our 100 node network simulated
with time step At = 0.01 for p € [0,2.5] has converged
sufficiently to compare results to a compartment ODE
model. Table 1 summarizes the parameters previously
defined and provides the values used in this study. Other
than the values determined to be needed for convergence,
i.e. At, N, and M, all parameter values were chosen to
generically represent an infectious disease with Ry > 1
and a network with approximately constant node degree
and short average path lengths. Alternative values could
be used for all of these parameters or fit to data. More-
over, the reconnection rate was chosen arbitrarily but we
emphasize that it has no effect on the dynamics of the dis-
ease since disease cannot propagate along recovered nodes
anyway.

2.3 Proposed ODE model

In order to facilitate system analysis, we approximate the
network with a system of ordinary differential equations
using a mean-field approach. The following system of
differential equations describes the change in the number
of each type of node:

[ =B[SI] =1, (4)
Rz'y[,

and the number of each type of edge:

—

=vy[IR] + r[RR],

[S1] =p[S1] — ~4[ST] - BIST],
[SR] =[S1] - r[SR] - BIISR),
[T1) =BlIST) — 2A(11),

[TR) =2+[T1) + B[ISR] - A[IR),
[RR) =|IR] - r[RR),

where X denotes the expected number of nodes of each
type and [XY] and [XY] denote the number of active and
deactivated edges respectively between nodes in state X
and Y with X € {S,I, R}. The notation [XY Z] repre-
sents triple connection between an [XY7] edge and an [Y Z]
edge centered at a Y type node. For ease of presentation

we wrote the above equations with the triple link states
but these equations were closed using Equation (2).

The transitions in the ODE model reflect the behav-
ior of the previously defined network model and utilize
the same parameters. The state transitions are depicted
in Figure 4 with the node states, active edge states, and
deactivated edge states shown in the first, second and
third columns respectively. The node state transitions
include susceptible nodes being infected at rate 8 pro-
portional to [SI] edges and I nodes recovering at rate ~.
Edge state transitions involve the parameters p, r, (3,
and 7. The deactivation parameter p is applied only to
[SI] which become [SI]. The reconnecting parameter r
is applied to both [5/”1\%] and [}/%R] which return to their
equivalent active edge compartments. Edge states involv-
ing the infection of an S node transition at rate 5. For
active edges, these transitions include [S'S] becoming [ST]
through [SSI] triples, [SI] becoming [I1] through both
[SI] and [ISI] triples, and [SR] becoming [IR] through
[ISR] triples. Deactivated edges involve some of the same
transitions including [SI] becoming [I1] through [IS]]
triples and [57—2] becoming [I/]\ﬂ through [I,S/’R] triples.
Notably, the deactivated edges do not include a parallel
[SS] transition because [SS] does not exist nor do they in-
clude [5/'\1 ] becoming [ﬁ] directly through [S’\I ] since these
deactivated edges cannot pass infection. Finally, the re-
covery rate -y facilitates the transition of edges involved
in the recovery of an I node. The transitions include [ST]
becoming [SR], [II] becoming [IR] at twice the recovery
rate for each I node involved, and [IR] becoming [RR].
The same transitions occur in the equivalent deactivated
edge compartments.

For all later simulations, we use ode45 in Matlab[29].
These equations become unstable as S — 0 since the
moment closure approximation divides by S. To account
for this instability in our simulations, we set all moment
closure approximations equal to 0 when S < 0.001. The
system is initialized with S = 90, I = 10 and R = 0 for
the nodes. For the edges, we averaged the initial number
of each edge type from 100 network simulations giving
initial values [SS] = 485, [SI] = 110, [[I] = 5 and 0
for everything else. These initial conditions preserved the
total number of nodes, edges and average node degree
used in the network simulations.

3 Results

3.1 Infected population convergence

The size and duration of an infectious event, as measured
through the infected population, are key components to
understanding the severity of an outbreak. Similarly, the
infected nodes and the I compartment are characteristic
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Figure 4: Flow chart depicting edge and node dynamics
in the ODE model.

of overall model dynamics. In Figure 5, we plot the pro-
portion of the population that is infected over time and
B for p values of 0, 0.5, 1, 1.5, 2, and 2.5 in each subplot.
Figure 5(a) has results for the network model. Striations
on the plot are a result of the coarseness of simulations
on a 100 node network. This plot demonstrates the in-
fluence of the deactivation rate as the contours appear to
shift upward, towards higher § values, for higher p val-
ues. With p = 0, the infected proportion remains less
than 0.2 for all time for only 8 < 0.05. Conversely, with
p = 2.5, the infected proportion is less than 0.2 for all
time for 8 < 0.2. The difference in 3 values correspond-
ing to infected populations of the same size indicates that
the deactivation rate lowers the effective infection rate as
we would expect.

Figure 5(b) repeats the same plots described above
for the compartment model. These plots appear to be
roughly the same as those shown for the network model
indicating convergence of our compartment model to the
network model. The compartment model plots also show
a “tail” where the infected population is non-zero for
an extended period of time for a particular 8 value in
each p value subplot. Below this tail, the infection has
a lower peak and shorter duration than in simulations
above the tail. This tail corresponds to a  and p com-
bination in which the recovery rate is approximately bal-

anced by the effective infection rate causing a prolonged
infectious event as the infected population proportion re-
mains roughly constant. This behavior is hard to detect
in the network model given the small, finite number of
nodes used in simulations.

Finally, to justify the convergence of the network model
to the compartment model, Figure 5(c) shows the abso-
lute difference between the results shown in Figures 5(a)
and 5(b). Note, the scale for the infected proportion only
ranges from 0 to 0.5 in this plot. This figure demonstrates
remarkable consistency between the infected proportions
in the network and the compartment model simulations.
The maximum difference in value is less than 0.2 across
all plotted values and most inconsistencies are in the the
peak value of the infected proportion and along the tail
seen in the compartment model.

3.2 Comparison of nodes and edges
over time

While the previous section analyzed the convergence of
the infected population between our models, it is also
important to consider the consistency in the other node
and edge proportions between the models. Figure 6 plots
the proportion of (a) node types and (b) edge types over
time for 8 = 0.2 and p € [0,0.5,1,1.5,2,2.5]. Overall,
Figure 6(a) show consistency between the network and
compartment model. The most notable discrepancy is an
over estimate of the infected population by the compart-
ment model. These plots also demonstrate the influence
of the p value in the proportion of the population that
is in the recovered category after the disease has died
off. Since an STR model assumes immunity, the ending
recovered population proportion is equivalent to the cu-
mulative proportion of the population which was infected
over the course of the epidemic. This factor is signifi-
cant to assessing the severity of an outbreak and will be
revisited in the following subsection.

Figure 6(b) demonstrates remarkable consistency in the
proportion of edges deactivated over time between the
network and compartment model. This is also a key
indicator that the compartment model we constructed
matches the assumptions made in the network model
and strengthens our use of the compartment model for
broader system analysis.

3.3 Epidemic severity analysis

Traditionally, the basic reproduction rate, Ry, is used to
assess the severity of an outbreak. Since this value quan-
tifies the conditions under which the number of infected
individuals grows in time, the rate of growth of the in-
fected compartment can be used to calculate a formula
for Ry. Using the I equation from Equation (4), we take
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Figure 5: Plots of infected population proportions as
functions of time and S for various values of p for (a)
network model, (b) compartment model and (c) absolute
difference between models.

the limit as the initial infected population, I(0) = Iy,
goes to zero at time ¢ = 0. To compute this limit, we
approximate [ST](0) as (k)Iy given that it is expected all
edges from the initially infected nodes will be connected
to susceptible nodes as Iy — 0. This gives the calculation

(6)

Substituting in the parameters (k) = 12 and v = 0.2
we find a critical value g* = % corresponding to Ry = 1
for our simulations. For values of 8 < 6—10, we expect the
disease to die off immediately since the infected compart-
ment is shrinking. For § > &, we know that the infected
compartment does not decrease immediately but we can-
not assume anything else about the system behavior.

From Figure 5(b) it is clear that the severity of the
disease depends on both 8 and p parameter values while
from the above calculation Ry does not. Given this limi-
tation and the otherwise limited information provided by
the standard Ry calculation, we extend our analysis to the
[ST] edges. Since [SI] is a key component of the I equa-
tion, we hypothesize that the growth of this compartment
may further exemplify system behaviors. We mirror the
same calculations as done above on the I equation to the
[ST] equation as shown in Equation (5). Writing out the

moment closure approximation, this equation becomes

. — _ 2
[SI]_B<<<1€> 1)[55][5& [S1] [SI]>

(k)
— (v +p)[ST].

Note that [SS](0) + [SI](0) = N and, as used above,

[SI](0) =~ (k)Ip. Additionally, as noted previously, N =
"N “TWith these substitutions, we have

[S1)(0) (k) =1\ SE —2(k)°1,
Iy :ﬂ<( (k) ) N -1y _<k>>

— (v +p) (k).

Therefore,

lim i[S'I}(O) =8 <<k2> - §<k>> —(y+p)(k). (7)

In—0 I

Setting this equal to 0 and solving for p gives [SI(0)] =0
when

=5 (G- 3) - = g0 (Rl - ) - 20,
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Figure 6: Average proportions in SIR model of (a) node states and (b) edge conditions over time with § = 0.2,
v =0.2, r =.9, p ranging from 0 to 2.5 and Iy = 10. Solid lines correspond to results from the network model and
dashed correspond to results from the compartment ODE model.

Since § = —p[S1], it follows that p* is also the critical
transition for the concavity or acceleration of the S com-
partment. Note, necessary and sufficient conditions for p}
to exist in the sense that it is a positive number are that
(k) > 3 and Ro > 2(k)/({k) — 3). That is, the network
has to on average have a sufficiently large number of con-
nections and the disease has to be sufficiently contagious
for deactivating edges to be necessary.

To find an equivalent critical value for the concavity of
the I compartment, we have

1 .
lim —|/ =1
Iglino IO[ 1) 10H—>no

(81S11(0) = +1(0))
Substituting in the previously computed limit for [ST](0)
as found in Equation (7) and solving for p gives the critical
value

* * '72 * 1
Py =P F g = 7(1 Ro) (8)
for the concavity or acceleration of the I compartment.
Note, necessary and sufficient conditions for p3 to be a
positive number are that pj > 0, which implies that Ry >
1, and v < pjRo/(Ro — 1). That is, the disease has to be
sufficiently contagious and the recovery rate must be not
too large for deactivating edges to be necessary.

To investigate the influence of these critical values on
system behavior, we consider the cumulative proportion
of the population which was infected over the course of the
infectious event. In an STR model, this is equivalent to
calculating the ending recovered population proportion,

R(ty). Figure 7 plots the log of the ending recovered pop-
ulation proportion for 0 < 8 < 0.5 and 0 < p < 2.5. For
these simulations, an Iy = 107'° was used in correspon-
dence with the analytic assumption of Iy — 0. The other
compartments were then initialized with S(0) = 100 — Iy,
SI1(0) = (k)Io, SS(0) = N — (k)Io and all others equal
to 0. Additionally, on Figure 7, g* corresponding to
Ry = 1 is plotted as a solid white line, pj is a dashed
white line and p3 is a dashed-dotted white line.

These critical transitions partition Figure 7 into four
regions. In Region I, Ry < 1, 1(0) < 0, $(0) > 0 and
1(0) < 0. In this region the disease quickly dies out and
the dynamics are equivalent to the standard SIR model
with Ry < 1. In Region II, Ry > 1, 1(0) > 0, 5(0) > 0
and 1(0) < 0. In this region even though I(0) > 0 the
total number of infections is still low since the rate of
change of infections is decelerating. In Region III, Ry > 1,
1(0) >0, 5(0) < 0and I(0) < 0. While the rate of change
of infections is still decelerating, S(0) < 0 leading to a
more rapid loss of susceptible individuals. This causes a
still relatively low number of infections but worse condi-
tions than in Region II. In Region IV, Ry > 1, I(0) > 0,
S(0) < 0 and I(0) > 0. Consequently, in Region IV the
number of infections is orders of magnitude higher than
in regions I-I1I and the dynamics is similar that of a stan-
dard SIR model with Ry > 1. It is interesting to note
that the existence of Regions II and III are unique to
compartment models that include edge dynamics.
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Figure 7: Contour plot of the log of the total recovered
proportion of the population for the compartment model
for ranging 8 and p. The solid white line corresponds to
B = p*. The dashed white line is pj and the dashed-
dotted line is p3.

4 Discussion

In this work we developed and analyzed a mathematical
model for the spread of an SITR type infectious disease on
an adaptive network with temporary link deactivation.
The approach taken was to develop a system of four-
teen differential equations for not only the node states
but the edge states as well. This mean field approach
agreed well with Monte-Carlo simulations of small sized
networks. Through an analysis of these equations we not
only recovered the standard calculation of Ry but iden-
tified two new parameters p}, p5 which also control the
severity of the epidemic. Specifically, while the value of
Ry controls whether the infection is growing in time, if
the deactivation rate p is below p3 then the initial number
of infections is accelerating leading to a severe epidemic,
i.e. Region IV in Figure 7. This is in contrast with the
standard STR model in which Ry = 1 is the condition in
which both 7(0) and I(0) changes sign. Indeed, one naive
approach to understanding the dynamics caused by the
deactivating of connections is to assume that deactivating
edges is equivalent to lowering the value of § in the stan-
dard STR model. Our model shows that this approach
will not adequately capture the nonlinear interactions be-
tween the node and edge dynamics which are necessary
to model the spread of the disease.

It is important to note that while the dynamics of the
ODE model captures the mean field dynamics of the edge

states it overestimates the severity of the disease as com-
pared to the network model. The cause for this discrep-
ancy is at least three fold. First, the moment closure
assumed that the average excess degree (k)ox was equal
to (k) — 1. However, the random variables k and k.x have
different distributions and the relationship between their
averages is an inequality called the “friendship paradox”
where (k)ex > (k) + 1 [10]. In particular, in graphs in
which there is a significant variance in the degree distri-
bution, it is not clear if a set of differential equations for
the various compartments can be derived in the contin-
uum limit [19]. Second, in the derivation of the moment
closure, higher order information about the topology of
the network such as clustering and the number of trian-
gles were ignored. Third, the truncation of the system
at the level of nodes and edges excludes the dynamics
of higher order links which depending on the structure of
the graph could be relevant. Many of these challenges can
be addressed by more carefully approximating the condi-
tional distributions that arise in the moment closure ap-
proximation; see for instance [39, 37]. Nevertheless, since
the ODE models provide overestimates for the severity of
the disease, the critical deactivation rates given by Equa-
tion (3) are still useful in that they provide upper bounds
for the critical deactivation rates in the realized network
dynamics.

We propose that the general approach of introducing
compartments for the edge dynamics discussed in this pa-
per is the more natural approach when modeling adaptive
networks. Specifically, when considering the spread of in-
fectious diseases in which there is human behavior in the
form of quarantining, contact tracing, reconnecting, etc.
it is important to consider the dynamics of the connec-
tions themselves, i.e. the edges. The alternative approach
of introducing new node states as compartments does not
capture how the topology of the connections themselves
changes during the epidemic. This discrepancy is cap-
tured in our model due to the existence of parameters in
addition to Ry which depend nonlinearly on the average
node degree and also govern the severity of the epidemic.

Finally, we would like to note that initial estimates for
the COVID-19 pandemic placed the value of Ry between
1.5 to 6.68 with a mean of 3.28 and a median of 6.68 [26].
While Ry is proportional to the contact rate and thus will
vary according to the local situation, these estimates in-
dicate that without deactivation of nodes during the early
stages of the pandemic COVID-19 would lie in Region IV
in Figure 7. Our work indicates that during the critical
period of the pandemic when vaccines were not available,
the deactivation of nodes through lockdown orders and
social distancing was necessary to ensure movement from
Region IV to IT in Figure 7 and thus mitigate the severity
of the pandemic.
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Appendix

In this appendix we briefly derive the moment closure
given by Equation (2) following the derivation given on
page 124 of [23]. First, in a network with a average
node degree (k), it follows that (k)B is equal to the ex-
pected number of edges containing a node of status B
and thus [AB]/({k)B) and [BC]/({k)B) correspond to
the expected proportion of edges which start at a sta-
tus B node that are of type [AB] or [BC| respectively.
Therefore, if we are given that a node B is connected
to two other nodes then the probability that the three
nodes forms a triple link of type [ABC] is approximately
given by [AB][BC]/({k)B)?. Therefore, since the number
of ways to choose the edges connecting to B is given by
(k)((k) — 1), it follows that the probability that a triple
link a node status of B at its center is of type [ABC]|
is equal to (k)((k) — 1)([AB][BC])({k)[B])?. Finally, we
calculate the expected value of [ABC] triples by multiply-
ing by the proportion of B nodes to obtain the following
moment closure approximation:

(k) —

[ABC] =~ W B
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