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ABSTRACT. In this paper, we propose and analyze a second order accurate in time, mass lumped
mixed finite element scheme for the Cahn-Hilliard equation with a logarithmic Flory-Huggins energy
potential. The standard backward differentiation formula (BDF) stencil is applied in the temporal
discretization. In the chemical potential approximation, both the logarithmic singular terms and the
surface diffusion term are treated implicitly, while the expansive term is explicitly updated via a second-
order Adams-Bashforth extrapolation formula, following the idea of the convex-concave decomposition
of the energy functional. In addition, an artificial Douglas-Dupont regularization term is added to
ensure the energy dissipativity. In the spatial discretization, the mass lumped finite element method
is adopted. We provide a theoretical justification of the unique solvability of the mass lumped finite
element scheme, using a piecewise linear element. In particular, the positivity is always preserved for
the logarithmic arguments in the sense that the phase variable is always located between -1 and 1. In
fact, the singular nature of the implicit terms and the mass lumped approach play an essential role in
the positivity preservation in the discrete setting. Subsequently, an unconditional energy stability is
proven for the proposed numerical scheme. In addition, the convergence analysis and error estimate
of the numerical scheme are also presented. Two numerical experiments are carried out to verify the
theoretical properties.
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1. INTRODUCTION

The Cahn-Hilliard equation plays an important role in materials science and biological applications.
It was constructed by Cahn and Hilliard [9] as a conserved gradient flow with respect to the free
energy of an isothermal, isotropic fluid. Usually, the evolution of the system is driven by the gradient
of the singular Flory-Huggins free energy and describes phase separation processes with respect to the
concentration ¢. Phase separation can be observed, e.g., when a binary alloy is cooled down sufficiently.
One then may observe spinodal decomposition, whereby the material quickly becomes inhomogeneous,
forming a fine-grained structure in which each of the two phases appears in a more or less alternating
pattern. In the second stage, which is called coarsening, and which occurs at a slower time scale, the
average size of phases in the microstructure grows with time. Such phenomena play an essential role
in the structural and mechanical properties of the material [4,17,38]. The equation is flexible, allowing
several variants — based on the choices of mobility and free energy density — which are relevant in
different contexts and for disparate physical and biological processes in which phase separation and
coarsening/clustering processes can be observed (see [34,37]).

There have been a lot of theoretical analyses and numerical approximations for these gradient flows
in the two-phase case. The existence of solutions and attractors to the Cahn-Hilliard equation with
degenerate mobility and logarithmic nonlinearities has been proved in [24, 36,44, 45]. For the time
integration, several numerical techniques have been applied to design the energy dissipative schemes for
gradient flows [2,5,6,10,15,29,54], including convex splitting [25,55,57], stabilization [29,49], auxiliary
variable approaches [1] (such as invariant energy quadrature method [60,64] and scalar auxiliary variable
version [16,46-48]). In particular, the convex splitting method has been widely used to solve various
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phase field equations by virtue of its theoretical advantages [11, 13,26, 30, 31,50, 52]. Meanwhile, the
IEQ and SAV approaches can be used to design linear and energy stable numerical schemes, which
can improve the computational efficiency of many relatively complex problems [41, 43,48, 51, 56, 61],
and have been rapidly developed in recent years. And also, the stabilization method turns out to
be a useful tool to extend the above methods to a higher-order accuracy of time [28, 29, 48, 58, 59].
These numerical techniques possess two main features: mass conservation and energy dissipativity
(conditionally /unconditionally).

Meanwhile, most above-mentioned works have been focused on the physical model with a polyno-
mial approximation in the energy potential expansion. For the Cahn-Hilliard equation with the original
Flory-Huggins logarithmic energy potential, a theoretical justification of the positivity-preserving prop-
erty for the logarithmic arguments has always been an essential difficulty, at both the analytic and
numerical levels. There have been quite a few works on the positivity-preserving analysis of the nu-
merical solutions for the Cahn-Hilliard equation with logarithmic free energy. In [18], a finite element
scheme was proposed, based on the backward FEuler temporal discretization for the Flory-Huggins-Cahn-
Hilliard equation, and the positivity-preserving property of the numerical solution was proven under a
constraint on the time step. In fact, such a time step constraint comes from the explicit treatment of
the concave expansive term, so that the monotone property of the implicit parts is not automatically
ensured. To overcome this shortcoming, Chen et al. [14] applied the convex splitting approach to the
equation, combined with finite difference spatial discretization, in which the singular logarithmic terms
and the surface diffusion part are computed implicitly, while an explicit update is applied to the explicit
part. In turn, both the unconditionally unique solvability and positivity-preserving feature have been
theoretically justified for the numerical scheme, and an optimal convergence estimate has been derived
in the ¢>° (0,75 H=') N ¢*(0,T; H') norm. Following similar theoretical framework, more positivity-
preserving numerical schemes have been proposed and analyzed for a variety of the Cahn-Hilliard type
equations with singular energy potential, with finite difference spatial discretization; see the related
works [12,19-21,32,33,40,42,62,63] and the reference therein. It is noticed that these approaches have
been based on the implicit treatment of the singular logarithmic terms, due to their convexity. On the
other hand, there have also been some works of positivity-preserving numerical schemes for certain gra-
dient flows with logarithmic energy potential, such as [27] for the Poisson-Nernst-Planck system, based
on the Lagrange multiplier method. The energy functional has to be modified in this work, because of
the scalar auxiliary variable (SAV) method used.

In fact, most existing numerical works of positivity-preserving analysis for gradient flows with sin-
gular energy potential have been focused on the finite difference spatial discretization, because of its
simplicity in the numerical representation. In comparison with the finite difference approximation,
the finite element (FEM) method allows for flexible, adaptive meshes and has a systematic theoretical
framework. Inspired by the scientific idea in [14], we would like to extend the theoretical framework
of positivity preserving scheme to the fully discrete finite element scheme. However, a direct extension
to the FEM method would face a serious difficulty in the numerical analysis. It is well-known that the
standard-conforming FEM fails to satisfy the discrete maximum principle, thus it is a great challenge
to derive the rigid theoretical analysis of positivity preserving in the finite element framework. The
main contribution of this paper is that we propose a second order accurate in time, mass-lumped FEM
numerical scheme for the Cahn-Hilliard equation with logarithmic free energy. In more details, the
standard backward differentiation formula (BDF) stencil is applied in the temporal discretization. In
the chemical potential approximation, both the logarithmic singular terms and the surface diffusion
term are treated implicitly, while the expansive term is explicitly updated via a second-order Adams-
Bashforth extrapolation formula, following the idea of the convex-concave decomposition of the energy
functional. In addition, an artificial Douglas-Dupont regularization term is added to ensure the energy
dissipativity. Meanwhile, as mentioned earlier, a direct application of the positivity-preserving analysis
techniques for the finite difference method, as reported in [14], is not available to the standard FEM
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method, due to the difficulty to ensure the point-wise positivity of the numerical solution in the standard
FEM because of the non-diagonal mass matrix. Instead, a lumped mass FEM is chosen to diagonalize
the mass matrix, that is, the diagonal elements are the row sums of the original mass matrix [53].
With the mass lumped FEM approximation, the positivity-preserving analysis of the numerical scheme
could be theoretically justified, with the help of the singular nature of the logarithmic terms as the
phase variable approaches the singular limit values of 1 and -1. A modified energy stability of the pro-
posed mass-lumped FEM will be proven, with the help of the artificial Douglas-Dupont regularization
term. In addition, the convergence analysis and error estimate will be theoretically established, in the
£ (O,T; H_l) N ¢2 (O,T; Hl) norm.

The rest of this article is organized as follows. In Section 2, we review the Sobolev spaces and the
corresponding weak form, as well as the mass lumped FEM method. In Section 3, we propose the fully
discrete numerical scheme, demonstrate the positivity-preserving property of the numerical solutions.
The modified energy stability analysis and the optimal rate convergence analysis are provided in Section
4. Finally, this paper ends with some concluding remarks in the last section.

2. THE WEAK FORMULATION

In this section, we provide a review on the basic property of the Cahn-Hilliard equation with the
logarithmic potential, as well as the corresponding weak formulation. To this end, we consider the
following (total) free energy:

2
B(0) = [ 1(6)+ FIVoPax o

0o
F(@) = (1+¢)In(1+¢)+ (1 - ¢)In(l - ¢) — 6%,
where ¢ is the phase variable and f(¢) is a double-well logarithmic potential, often approximated by a
smooth polynomial function, with minimums located at the two attraction points that represent pure

phases ¢ = £1, and ¢, 0y are positive constants associated with the diffuse interface width. In turn,
the Cahn-Hilliard equation with respect to the energy functional (2.1) is defined as

Op =V - (M(9)Vp), (2.2)
subject to the initial condition
6(x,0) = do(x), x€Q. (2.3)

For simplicity, we are using periodic boundary conditions on square area 2 = [0, L]?. The variable y is
the chemical potential

pi=0u,E =In(1+ @) —In(1 — @) — O — 2 Ag. (2.4)

M(¢) > 0 1is the mobility function, which is often taken to be either constant [22,23,39] or of degenerate
type [3,4,8,14,24]. Equation (2.2) has been proposed to model phase separation in a binary mixture
composed of two species which is quenched into an unstable state. It can be regarded as a type of H !
(conserved) gradient flow with respect to the energy functional (2.1), satisfying the following properties:

e mass conservation
/ d(x,t)dx = / o(x,0)dx, vt > 0,
Q Q

e energy dissipation

d

GEO0) = = [ M@)Vaax <o
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Now, we use standard notation for the function spaces and norms. In particular, we denote the
standard norms for the Sobolev spaces W™P(Q) by || - [|m,p. When p =2, W™2(Q) is a Hilbert space
denoted by H™ () with the norm | - ||,,. Let C22.(f2) be the set of all restrictions onto  of all

per

real-valued, L-periodic, C*°(2)-functions on R?. For each integer ¢ > 0, let HS, .(Q) be the closure
of Cpe,.(€2) in the usual Sobolev norm || - ||, and H,%(€2) be the dual space of Hf,.,.(2). Note that

er er
HSQ:EQ) = L?(2), and denote by (-,-) the L? inner—pfoduct on domain €, which, naturally induces the
L? norm | - ||.
The mixed weak formulation of Cahn-Hilliard equation (2.2) is defined as follows: find (¢, pu) €
L? (O,T; H;ET(Q)), with ¢, € L? (O,T; Hp_elr(Q)) , satisfying

(¢tvv) + (M((b)v/" V’U) =0, Vv e H;er(Q)’
(/va) = (g(¢) - 00¢7 U}) + 52(v¢7 V’IU), Vw e H;er(Q)ﬂ

(2.5)

for almost every ¢ € [0,T], where g(u) = In(1 + u) — In(1 — w).
Let 7, = K be a quasi-uniform, shape-regular triangulation of €, with mesh size h. By h. we
denote the diameter of each triangle e € 7;,. The symbol A, denotes the the area of e. Then, as usual,

2
h = maxeeT;, he. Since the mesh is shape regular, we can assume that Z‘; is uniformly bounded by one
2
constant C : Ze < Cr.

Based on the quasi-uniform triangulated mesh 7y, the finite element space is defined as

Sp = {UEH‘;

() | v is piecewise linear on each e € T, } =span{y; | j =1,--- , Ny},

Eer

where x; € Sy is the j*" Lagrange nodal basis function, which has the property X;j(P;) = 6;,j. Define
Sy i= S, N LE(Q), with L2(Q) = {ve L*(Q) | (v,1) = 0} the function space with zero mean in L?(£2) .

The standard mixed finite element scheme of (2.5) will lead to a theoretical difficulty with regard
to justifying the positivity-preserving property. To overcome this difficulty, we apply a mass lumped
FEM instead, which is a modification of standard FEM for solving parabolic equations. It simplifies the
computation for the inverse of mass matrix and overcomes the shortcoming of the standard FEM that
it cannot preserve the maximum principle for homogeneous parabolic equations. In more details, let
P, k=1,2,3, be the three vertices of triangle e. The construction of the lumped mass inner product
can be carried out as follows: we first introduce the quadrature formula on e,

Qu(f) == Qclf), VfeC(R), (2.6)
e€Th

where

A, S
Qu(f) = 3‘Zf(Pe,k)z/fdx.
k=i €

It is straightforward to confirm that Qx(x;jx%) = 0, for k # j, so that @, has the following diagonal-
ization property:

Qn(xixk) = 0;kQn(X3), Jk=1,...,N,. (2.7)
Furthermore,
1
Qh(X?) = Z Qe (X?) =3 area (D;), Dj:=supp(x;)- (2.8)
e€Th

We may now define an approximation of the canonical inner product on S, by

(W, m)q = Qn(¥n), VY,n€ Sh. (2.9)
Likewise, we define ||n|lq := \/(n,n)¢q for any n € S;. This norm is observed to be equivalent to the
standard | - ||z norm on S, by considering each triangle separately.

To facilitate the analysis below, we have to modify the definition of the discrete Laplacian operator
and the discrete H ! norm. In fact, the primary difference is in the integral definition.
3



Definition 2.1. The discrete Laplacian operator Ay : S, — Sy, is defined as follows: for any vy, € Sh,
Apvp € Sy, denotes the unique solution to the problem

(Ahvh’x)Q =—(Vu,,Vx), VxE€Sh

It is straightforward to show that, by restricting the domain, Ay : Sy = Sy is invertible, and for
any v € Sp, we have

(v (7Ah)71 Uh, VX) = (vha)()Q ) VX € Sh.
Definition 2.2. The discrete H™' norm || - | -1,q, is defined as follows:
lonll-ro = \/(vn. (A1) "1on)g,  Von € S (2.10)

3. THE FULLY DISCRETE NUMERICAL SCHEME

In this section, we propose the fully discrete scheme based on the lumped mass FEM, and establish
the positivity-preserving property, energy stability and convergence analysis at the theoretical level. For
simplicity, we consider the mobility M(¢) = 1, and propose the following second order accurate in time,
fully discrete finite element numerical scheme for the Cahn-Hilliard equation (2.5): given ¢}, Zfl € Sh,
find ¢y, it € Sy, such that

n41

3 _oum 1 n—1
(A2 )+ (Vi T =0, Yo € Sh.

(it wn)g = (9(p ™) = 008 wn) o, +€2(Vo) ™, V) (3.1)
+AT(V (o) — 1), Vy), Ywy, € Sh,
where (;32“ = 2¢7 — ¢Z‘1. Obviously, the scheme requires an initialization step for n = 0. To this end,
we introduce the Ritz projection operator Ry, : H;GT(Q) — Sp, satisfying
(V(Rpu—u),Vx)=0, Vx€Sn (Rypu—u,1)=0. (3.2)

The initial data are chosen so that ¢! = R;¢".
If a solution to the proposed numerical scheme (3.1) exists, it is clear that, for any n € N,

(Z)(F)L = |Q‘_l (¢2a 1)@ = ‘Q|_1 (qﬁ}lm l)Q == |Q‘_1 (¢Z71)Q = (2)27

with |¢7f| < 1. Thus we expect (¢} — ¢, 1) o = 0. In addition, the following technical lemmas are
needed in the positivity-preserving analysis.

The following lemma is one finite element version of Lemma 2.8 in [14] where the Fourier analysis
was used, here we use the discrete Gagliard-Nirenberg inequality.

Lemma 3.1. Suppose that &,,& € S, with (& — &,1) = 0, that is, £ — & € Sy, and assume that
l€lloe < 1, [[€]lcc < M. Then, we have the following estimate:

[=A1 & — &), <O, (3.3)
where Cy > 0 depends only upon M and Q2. In particular, Cy is independent of the mesh spacing h.

Proof. By the discrete Gagliard-Nirenberg inequality (for example, see Theorem 2.8 in [35]): if Q is
convex and polyhedral, then for any ¥;, € Sj,

4 3(4—d)

1Zh] e < CIARDA[IZE=D [[@h]| 5~ + Cl[hll o, (d=2,3).

Now combining with the following LP interpolation inequality
1 2
1@nllzs < I@all* ¥allfe »
and by simple calculations, we have another discrete Gagliard-Nirenberg inequality:

da 1—4
@]l < CIARER| " [|¥]|"* + Cl[@]l,  (d=2,3). (3.4)
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It is obvious that &1 — & € S’;,, let ¥y, := fA,jl(fl — &), we directly obtain
= AL (& = &)~ < Cllér — &lle < Ol + [[all~) < C(M +1) := Cy,
where the estimate || — A, ' (& — &)|| < C||& — &|| is used. O

Lemma 3.2. For any ¢ € Sy and any piecewise linear Lagrange nodal basis element x;, we have

Z d(P..;) (3.5)

(V6,Vx;) < Z

ecD;

on Ty, with mesh size he.

Proof. Let P; = (x;,y;) (i = 1,2,3) be the three vertex points of e, then

0 1
o = 5 O(PO (2 — ) + P s — 12) + S(Ps) w1 — 12).
%j = 226 (@(P1)(xs — x2) + ¢(P2) (21 — 3) + ¢(Ps) (w2 — 71)),
which implies
09 Ox; | 09 0x; R
(V6. Vx;) Vo Vyjdx = 90X gy < S(P.).  (3.6)
J eezﬁ/ / GEZD /81’ oz 8y dy GEZDj 24 Zl
The proof is finished. O

The positivity-preserving property of the proposed numerical scheme (3.1) is stated in the following
theorem.

Theorem 3.1. Given ¢f € Sp, with ||¢¥||cc < M,k =n,n— 1, for some M >0 and |¢}| = |<EZ_1| <1,
there exists a unique solution ¢} € Sy, to (3.1), with ¢yt — g Eg’h and ||¢7 | < 1.

Proof. In fact, the numerical solution of (3.1) is a minimizer of the following discrete energy functional
2

TD) =o |50 - 260+ 5017 | +(L+ o1+ 9))g + (1 - 6.l — 9))g
R -1.Q (3.7)
A .
FEEAT 19013 + (6, ArAR) — (0071, 0),

over the admissible set

Ap = {(15 € Sh ‘ ol <1, (6= hi1)o = } CRY.

Observe that J" is a strictly convex function over this domain.
To facilitate the analysis below, we transform the minimization problem into an equivalent one.
Consider the functional
F () :=T" (¢ + 1)
2
1 3 70 1 —1
=37 H2 (o +dh) — 205 + 5952

] e ) ) (3.8)
(1+§0+¢231n(1+¢+¢2))Q+(17907(;527111(1*50*(1)2))62
A - . _
+ ST VI + (4 3 ArAdR) — (g + ),

defined on the set
folh = {(pGSh ‘ —17$2§¢§1—$2}CRN3.
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If ¢ minimizes F", then ¢ := ¢ + (52 € Aj, minimizes J", and vice versa. Next, we prove that there
exists a minimizer of F™ over the domain Aj. The following closed domain is taken into consideration,
for § € (0,1/2):

/ih’(;::{goesh‘5—1—&2§¢§1—$2—5}CRN§, (3.9)

Since /ihﬁ is a bounded, compact, and convex set in the subspace §h, there exists a (not necessarily
unique) minimizer of F™ over folh,(;. The key point of the positivity analysis is that such a minimizer
could not occur on the boundary of fih,z% if § is sufficiently small. To be more explicit, by the boundary
of Ay, 5, we mean the locus of points 1 € Ay, 5 such that [|¢ + #9 |l = 1 — 6, precisely.

To get a contradiction, suppose that the minimizer of F", call it ¢* occurs at a boundary point
of Ay 5. There is at least one grid point P, = (ig,jo) such that |¢*|a, + @9 = 1—4. First, let us
assume that ¢*|,, + @9 = § — 1, so that the grid function ¢* has a global minimum at ag. Suppose that
P,, = (i1,71) is a grid point at which ¢ achieves its maximum. By the fact that ¢*, it is obvious that

1-62>¢"a, + &) = G-
Since F™ is smooth over jlh s, for all 1 €S}, the directional derivative becomes

dsF" (¢ + 5¢)| ;oo = (In (1 +¢" + 7)) —n (1= 9" = 8) . ¥),

+ (ATA¢27 w) - 00 (¢n+17 1/))Q + (52 + AT) (VQO*, V’l/i) (310)
1 (3, ., - no 1o
o (AT S (e ) — 200 + 5ok ) v )
T 2 2
This time, due to 7 + sy € folh,57 let us pick the direction
area(D,,)
— _ = 707 11
w 6110 026(11; CQ area(Dal)’ (3 )
where d,, and d,, are the basis functions on oy and ay, Dy, and D, are the support of d,, and 6, ,
respectively.
For simplicity, now let us write ¢* := ¢* + ¢9. Since ¢*|o, = —1 + 0 and ¢*|o, > @), we have
3
In(1+¢") —In(l—6"),¢d)g=Y. AeZm1+¢> In (1= ¢"))9(Pe,;)
eeT;L j=1
1
= area(Doy ) (I (14 6%) — In (1= %) L, (312
—(In(1+¢") —In(1—-¢"))la,)
1 ) 1+ 69
§§ area(Dqy, ) (In 55 —1In = ¢O)

Furthermore, an application of Lemma 3.2 gives the following estimate

(AQSZ, ZZJ) = (V¢Z7 VW = _(V(ZSZ? V(;ao) + 02(V¢Z7 V5a1)

2 3 3
Z h Z¢Z ez +CQ Z ZQSZ(PCJ)
€€Dq, eeDal Ae i=1 (3.13)
3Mh? 3Mh2 _ 3MC
<= X 2n, O 2 oh, = 2 =z

where Cy := CT(EeeDao 1le + Cs EGGDM 1|¢). For the numerical solution @5, k = n,n — 1, at the
previous time steps, the a priori assumption ||¢f |l < M yields
—2M < d)mao - ¢;CL|041 < 2M7 (314)
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so that

2M6,
3

3
0
(B8 ) g =00 3 580 D" 650 (Peg) = "2 area(Day) (¢hlas — ol < area(Da,)-  (3.15)
J=1

ecTh

This in turn leads to the estimate for the third term in (3.10):

—6M area(D,,) < (VZHJ/))Q < 6M area(Dg,). (3.16)
For the fourth term, we easily obtain

(Vo*, Vi) = (V* ,Via,) — Co (V*,Viy,) <0. (3.17)

For the last term, an application of Lemma 3.1 reveals that
- 3 * n 1 n—
(o (50 -2+ 307) )
Q

-y :{)A}_j (a7 (G o) -0+ goi ) wiry) (3.8

eE’Th

1 1/(3 1 1 /(3 1
—garea(Da) (-7 (36— 20+ 301 Y lay — (<80 (S0~ 208 + 500 ) I
< 5C5 ar(;a(DaO) '

Subsequently, a substitution of (3.13)-(3.18), (3.12) and (3.17) into (3.10) yields the following bound
on the directional derivative:

N 1. &6 1. 1+ 5C3\  3ATMCr
dsF" (¢* + sv)|,_, < area(Dy,) <3 In 35 3 In . +6M6, + = e (3.19)
We denote r; = —1In igg’ + 18 MOy + 5C37~ 1 + %(area(Dao))_l. Note that r; is a constant for
h

a fixed 7, though it becomes singular as 7 — 0. However, for any fixed 7, we may choose § € (0,1/2)
sufficiently small so that

In

5
55t < 0. (3.20)
This in turn shows that, provided § satisfies (3.20) such that

dsF" (9" + s9)| o < 0. (3.21)

As before, this contradicts the assumption that 7™ has a minimum at ¢*, since the directional derivative
is negative in a direction pointing into the interior of /clh,(;.

Using very similar arguments, we can also prove that the global minimum of F" over folh,(; could
not occur at a boundary point ¢* such that ¢*|,, + @) = 1 — &, for some ay, so that the grid function
©* has a global maximum at agp. The details are left to interested readers. A combination of these two
facts shows that, the global minimum of 7" over /olh15 could only possibly occur at interior point

(p € interior (Ah,(;) C interior (Ah) .

We conclude that there must be a solution ¢ = ¢ + ¢° € A, that minimizes J" over Ay, which is
equivalent to the numerical solution of (3.1). The existence of the numerical solution is established.
In addition, since J" is a strictly convex function over Ay, the uniqueness analysis for this numerical
solution is straightforward. a



4. THE ENERGY STABILITY AND CONVERGENCE ANALYSIS

In this section, we derive the discrete energy stability of the proposed numerical scheme (3.1), as
well as the convergence analysis. The discrete energy is defined as

2
BW(6) = (1+6,n(1+))g + (1 - 6,1~ 6))g + 5 V6l — Dol (11)

Now, We will establish a modified energy stability for the numerical algorithm (3.1), provided that
A > . This result is stated in the following theorem.

Theorem 4.1. We have the stability analysis of the following modified energy functional for the proposed
numerical scheme (3.1):

En (6, 00) < Bn (o3, 0p7Y), if A= %, (4.2)
with
By (631, 01) = B (¢5) + ||¢"+1—<z>h|| ety % Jlgpt - apl? (4.3)

Proof. In (3.1), by choosing v = (—Ah)_l(qﬁZ“ — @) and w = ¢} — ¢, we could derive the following
inequalities:

Soptl—2¢n+ien ! - +1
( T} 2%Pn 7(_Ah) ( n (bn))

= gl =il g — 3 (0 — o AT @ o) (44)
L lon =l g = llen o771 0)

v

( n+1 d)h, ( n+1))Q :( n+1 ¢ In (1 +¢n+1) —1In (1 o Z+1))Q
Z (1 +¢n+1 In (1 +¢n+l)) ( ¢n+1 ln( _ ¢Z+l))Q (45)
—(1+¢pIn(1+65))g — (1 —op,In(1—93))g .

— (O (R = 0h)) g = — (205 — & ( "“—%))

>~ (615~ 1612) — 5 168 — 617 (4.6)

1
(Ver, v (en = en) = 5 (VeI = IVanll® + |V (6 = i) ) 47)
(Vi = 80). V(07 = 0h) = V(o5 — o). (4.8)

Meanwhile, an application of Cauchy inequality indicates the following estimate:

loptt = 681 o + AT (65— o = 2472 6 — pll, (4.9)

Therefore, a combination of (4.4)-(4.9) yields

B (677) = Bn (90) + = ([0 = 0nl” 1o — llon — 4271171 )

) n+1 n—1|2 1/2 4 0 n+1 2 (4.10)
+% (loptt = axlly - llop — on7[15) < (—242 + %) [l - oz, <0,

2
provided that A > f—%. Therefore, by denoting a modified energy as given by (4.3), we get the energy
estimate (4.2). O



Next, we will provide a convergence analysis for the proposed numerical scheme (3.1), in the
£ (O,T; Hil) N ¢? (O,T;Hl) norm. We denote the exact solution as ¢" = ¢(x,t,) at t = t,. As
usual, a regularity assumption has to be made in the error analysis, and we denote all the upper bounds
for the exact solution as Cy. The following estimates hold for Ritz projection [7]:

[1Brellyp < Cllelhy, V1 <p < oo, (4.11)

lp = Rugll, +hllo = Baelly ,, < ChHpllgarp, V1 <p < oo (4.12)
Suppose that ¢ € L>(0,T;W'P(Q2)). By combining (4.11) and the Sobolev imbedding theorem:
WhP(Q) — L%°(Q), for d < p < oo, there are constants C3, Cy > 0, such that

16"l < Cllé"lp < Cs [1RA9" g < CIRu6" ], < C 671, < C. (4.13)

Lemma 4.1. If ¢ € H%(Q) where Q € R, and ||@||p~ < 1—8 where § > 0, then there exists 0 < hg < 1
such that for any h < hg,

[Rropllre <1— %6. (4.14)
Proof. For any vy, € Sy,
1RnlLe < [Rng = vnllie + [[vnllzee < Ch™ | Rnep — va]l + [[vnl| o~
We can choose v, as the standard Lagrange linear interpolation, and
lonllze < I8l and [lon — 8]l < CR[]me.

By the approximation of Ry, (see (4.12)),

IRkl Lo < [[6]lLoe + Ch2~5||@]| 2.
For d = 2,3, we can choose hj such that Ché [l 2 < &, then |Rpdflp~ <1— 3. O

By (¢, 1) we denote the exact solution to the weak formulation (2.5). We say that the solution pair
belongs to regularity of class C? if and only if

¢ € W3 (0,T; L2,,.(Q)) N Wh (0,T; HZ,.())

per per
peL>®(0,T;HZ,. ().
On the other hand, the solution of (3.1) is also mass conservative at the discrete level:
gl =g =¢""1, VneN (4.15)
Lemma 4.2. [53] Let kp(-,-) = (-,-) — (+,-)q denote the quadrature error in (2.6). We then have
|k (.01 < CR2|IVY VX, V9, x € S (4.16)
Lemma 4.3. Suppose g(-) € W2>*(R) and kn(g(-),") = (9(-),") — (g(-),")q, then we have
[ (g(¥), )| < CsR* (VY Za Xl + IVEUIIVXD, Y, x € Sh, (4.17)
where Cs = Cmax{||g"||L=, ||¢'||L=} is independant of h.

Proof. Since the quadrature formula (2.6) is exact for f linear we have, by transformation to a fixed
reference triangle eg and using the Bramble-Hilbert lemma and the Sobolev inequality ||fl|ze(ey) <
C”fHWlZ(eo)a that

<CR Y D fll ey »

|a]=2

’Qe(f) - [ rx




After application to f = g(¢)x this implies, that

‘Qe(g(w)x) - [ty

€

< Ch? Z D (g(¥)X) 11 e -

laf=2
Next, we will continuous to expand every term in the right hand of the above: if a = (1,0), then
D*(g()x) = g'vhaX + gXa
since both 1 and x are linear in e, a = (2,0) implies that
D*(g()x) = ¢"¥3x + 29" buXa.
Then
1Dl = [ a"vixdx+2 [ g

< g [lzoe () [¥elZa o) 1l L2 (e) + 2019 | Lo (@) 192l L2 () X | 22 o) -
Similiarly, for & = (1,1) , then
1D*(g(¥)x) L1 (e) < N1g" Izoe e)llV2tyllL2e) X L2(e)
19" | oo o) (12l L2 () Ixw 1 L2 (e) + 1yl L2 () lIX2 ] L2 (e))s
and o = (0, 2)
ID*(9() ) L1 (e) < 19" Lo (o) 1y 174y X L2 ey + 2019 Lo (o) 18yl L2 (o) Il 2 ey -

Here we have at once

Qelg()y) - / g($)xdx

€

< CR2(llg" o= e IVl e X £2(e) + 19 ILoe (@ IV |20 IV X 22 e))-

Then, we conclude that

[k (g(9), )| < Ch* D~ (9" lpoe () IV N1y x| 2(e) + 19 o0 (o) [Vl 2() 1V X 226
e€Th

< CR2(llg" L= IV I Za Il + llg' Lz VIV X1
< Csh? (VI Xl + IVl VX,
where Cs5 = C max{||g"| L, ||¢’||L=} is independant of h. O

Before proceeding into the convergence analysis, we introduce a new norm from [59]. Let p =
[u,v]T € [LQ(Q)]Q, where ) represents an arbitrary bounded domain. Define the G-norm to be a
weighted inner product

1
IplZ = (p.G(-A)'p)g, CG=| ?

Since G is symmetric positive definite, the norm is well-defined. Moreover,

i -1 5 -1 00
G= = + =:G; + Ga.
-1 2 -1 2 0o 1
By the positive semi-definiteness of Gp, we immediately have
_ _ 1
IpllE = (P, (Gi + G2) (=AR)7'P) g = (P, Ga(~A4)"'p) , = §||v||31,Q~ (4.18)
For any v; € H,,,.(2),i = 0,1,2, the following equality is valid:

3 1 1 — 201 + vo||”
(Boa 20+ Junn o) =3 (Il - Itl3) + 22T g
Q
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where p? = [v1, 0], p! = [vo, v1]", especially, when vg = 0, |[p'[|& = 5llv1]|2, . Subsequently, the

convergence result is stated in the following theorem.

Theorem 4.2. Suppose that the exact solution pair (¢, ) is in the regularity class Co, for the fized

final time T > 0. Let ¢" = ¢(t,) and @) be the solution at time t =t,
1), forl<n<N,withN-t=T
the error estimate

16" = op 10 + <T€2 DIVt - ¢Z+1)I2>
0

for some constant C(T,e) > 0 that is independent of T and h.

scheme (3.

2

< O(T,e) (7% + h?).

Proof. We define ¢! = ¢ntl
equation could be derived:

(6:6" T vp)g + (V™ Vy,)

_ ¢’Z+1 and nn-‘,—l — un+1 _ MZ+1-

(Rn+ (A —/ﬂh((s ¢ ntl ’Uh)

(" wn) g + k(™ wn) = (9(¢" ) = g(op ™), win) g + Kn(g(@™ ), wh)
— O0(Ry™ w) g — Oo(Ti wi) g — Bokn (¢, wh)
+e2(VETE Vwy,) + (VT V) + (R wy),
where
3t gy 4t n>1
5Tvn+1 — ) . 27 - R;H_l — at¢n+1 o 5T¢n+1,
v ;’U , n = O7
n n—1 n+1 n
R;H_l — ¢n+1 _ 20" — ¢ , n=1, Rgz-i—l — ATA (¢ —¢ ) , n=>1,
¢07 n = I 07 n = 0,
Tt = S Tt = A —-¢"), nx1,
60 n= 0) 07 n=0.
By the Cauchy-Schwarz inequality, we have the following estimate (see [59]):
9 tn41 5 tnt1 5
||R?+1H S 327'3/ Ham(bH dt S 32’7’3/ ||8ttt¢|| dt, if n 2 1,
n—1 tnfl

nt1))2 T h 2 2 2 .
Ry < 3 [0 ||” dt < §”¢HW2’°°(O,T;L2) < Cot*, ifn=0.
0

An analogous estimate is available for the second remainder term:

3273 t"“ 8 Vol Pdt, n>1,

|vRg|f

1077, n=

In fact, the estimate for n = 0 is based on the fact that

IVE;||* = [V (¢!

per

ty

OV <7 [ 10Telat < rollwrsomin, o < Cror®
to

For the third remainder term, we obtain the estimate

A28 [T |, AP dt, mo> 1,

1112
17257
0, n =0.

11

to the fully discrete numerical
, provided that T and h are sufficiently small, then we have

The following error evolutionary

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)



Using the definitions of Ritz projection and combining the lumped version definition of the discrete
Laplacian operator, it holds that (Apvs, x)g = —(Von, Vx), for V vp, x € Sh,

(V" T, V) = (VT = VRyp ™, Vo) + (VRyp™ ™ — Vit V)

(7 (R ). )
= (Rpp"t" — ppt, Ahvh)Q (4.25)
(,um_1 pp Tt Ryt — —Ahvh)Q
(77n+1 Ahvh)Q (//H'l — Rppt, —Ahvh)Q )
Denote p”+1 "t — Ryont!, UZ = Rp¢" !t — ¢ taking wy, = Apvy, in (4.20) and using (4.25),

we have
(6TU;L+1, Up)Q — EQ(VUZH, V(Ahvh))
= —(R{M " on) 4 (9(8"1h) — g(op ™), Anvn)g — Bo(RET, Apvn) g — 6o(T7 T, Anvn)g
+ Ry, Apon) + (1 — Rup™ = Apvn) g — £n(6:0™ 1 vp) (4.26)
— (" Apon) + wa(g(@™ ), Apon) — ok (6", Apon)
+ (VT3 V(Apvn)) — (5Tpg+1, UR)Q-

! "+ , the equation (4.26) can be written as follows

In turn, taking v, = (=Ap)~
(0rop ™ =A ol g + e (vag“, Vouth) + (VI3 Vot
=— (By™, —A o ) = (9(6" ™) — g(65 ), 05 o + 190(Rn+1 75 )
+00(TP o g + (W = Rup™ 0l g — kn(6-¢" = A ol M) + ki (T oY) (4.27)
_ Hh(g(¢n+1) n+1) + Goﬁh((bn-i_l n+1) (6Tp:g+1 —A 1 n+1) _ (R;)Hrl ZJrl)
=h+b+JI3+dy+Js+Jg+Jr+ Js+ Jg + Jig + Ji1 = J.

Now look at the left-hand side of (4.27). From (4.19), we have

n 2 n 2 n n—
= (oo = Ipmle) + & [lost =203+ 037, L mz1,
St _AT1gntl _ 1,Q
% 75 % ), 1 1|2 ol? Ll ol?
F bl g o2l )+ F =t o
(4.28)
where pFt! [Ug, a(’;fl] Using the equality (3.2) indicates that
(VI Vol th) = Ar(V(E - "), Vo)
= AT(V( nl 0%)s VO'ZH_l) + Ar(V(o g“ —04)s VGZH)
> SAT(|Vog 2 = Vo). (4.29)
Meanwhile, the estimate for the term associated with the surface diffusion is straightforward:
(VJZ+1 VU”H) = 52||V0"+1||2. (4.30)

A combination with of (4.28), (4.29)and(4.30) reveals that, the left-hand side of (4.27) is bounded from
below:

(” n+1||G p" IIG)+ AT <HVon+1H HV"Z||2)+€2

Observe that ag =0 for n = 0, and we know that A = 0. As a result, we get

2
’wg“” <J, forn>1 (431

1 1
5= (l512 10 = llog121q + llog = a3l121.0) + 2 IIVoyl® < J. - -lloglig + & Vogll* < 7. (4.32)
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Next, we study the eleven terms on the right-hand side of (4.27). Employing the (4.21) and Young
inequality reveals that

647 [ 0| dt + 1 |

n—',—lH

-Le (4.33)

J1 <R Cgllof -1 <
U;’H , n = 0.
-1,Q

2Co73 + &

For the nonlinear term J,, we begin with an application of the mean value theorem:

2(¢n+1 _ Rh¢n+1)

g(¢n+1) - g(Rh(anrl) = 1— (An+1)2 ;

where A"*t1 € G}, is between ¢"t! and Rj,¢"t!. Moreover, from the positivity analysis, suppose there
exists a constant § > 0, ||¢"T!||p < 1—6. In turn, we get [|Rp¢" |~ < 1— 18 if h is small enough,
by Lemma 4.1. Therefore,

2 2 .

< = (k.
” 1— (>\"+1)2 ” - 1= (1 _ %5)2 8 (4'34)

Moreover, the convex nature of logarithmic term implies the following results:
(9(Rrg"™ ™) — g(epth),05™) > 0. (4.35)
Immediately, using the above inequality and Poincare’s inequality yields the following result
Jy =—(g(¢" ) —g(p ™), 00 e
= —(g(¢""") = g(Rnd" ), 00 g — (9(Rnd™") — g(eh 1), 05 e
< Golli o3 1 < Gyl Vo (4.36)

CgC’h . .
< 16"+ 13 + = HV%“II2

where Cg = (CCg)?.
The standard finite element approximation estimate could be applied to handle the term J5:
Js = (1" = Ryt "“)Q < (I = R -0l Vay ™|

40 : § (4.37)
< — "l + *HVU .

By Lemma 4.2, we have

Jo = —rn (00", = A oy ™) < CR2 Vo " [V (AL op |

2Ch* (4.38)
< CR?||Va¢" [lop -0 < / 10,V ||*dt + - HU"HII2 1.Q
Similarly, the following bounds could be derived:
n 4Ch* "
Jr = th(’un—&-l’ U¢+1> < 572||VM"+1||2 HVU +1||27 (439)
" " 4Ch*032 n g2 n
Jg = GOHh((b +1,U¢+1) S TOHV(ﬁ +1||2 + E||VU¢+1”2. (440)

Moreover, an application of Lemma 4.3 yields

s < ka(g(@™ ), 00t < CoR* (V™[ Zallod ™ || + V6™ [ Vo )

8(CC! 2 N N 62 N (4.41)
SOGII (196m 1t + 196 +12) + Va2

13



The term J1g could be analyzed in a similar manner:

Jio = = (005 = A o g < 1600 rallop -1

n n 2C0h* [trt " (4.42)
< 2||5rp¢+1||21Q+*||0 g < / 1e0||%dt + - HU |
For the J3 term, we see that
646373 [ 0uV oI di + & | "+1H L n>1,
I3 < 0ol VR [llog ™ -1 < —he (4.43)
203C1073 + o= a(})H ) n=0.
-1,Q

For the J4 term, we define T”+1 =20 — py Vand 77 = 205 — 0271. It is obvious that 77" =
Tl’f;rl + Tlnzl, so that the followmg bound is valid:

i =0o(T7 03 g = 06(T14 05 g + 00 (T3, 05 g

< ol T7a -1l Vog ™ + 0ol 775 1,0l Vg ™|

2 402 Ch _ 462 -
SIve | + o™132 + 6™ Mlaz) + 2 @logl2 o + lop 21 0), n>1,

<
- 2 202Ch*
%HVUHZJF 052 ||¢O||H2a n=0.

Lastly, repeating a similar process as in (4.24) gives an estimate for Ji; as follows

Ju = (B3 0f ) = AT<V<¢>"+1 = ¢"), Vo) < Ar||V (6" = ¢")[|[[ Vot

2A27’3 tn41
<2 [ lawera + SIveyte
t

n

Substituting these estimates into (4.27), and multiplying by 27 on both sides, we have, for n > 1,

2 2
(1 = o71) + 47 (w3 —erf) -

ot CuCli'r
< rllo g+ 1257 [ ol de+ S5
1

tno

tn+1
1672 + 128627 / 10,V 6|2 dt
tn—1
802CHAT . 8027
+ BT g2 + 167 ) + 20

Aloglziq +llog ™ 2 1e) (4.44)

8Ch T 8C'h T

tnt1
+ STl e acnt [ 1000l +

tn

16(]5Ch T

IV + N

SCh T
+

tnt1 4A2 4 n41
(6 + 23 [Tem P ot [ ool + L[ jowalra

tn tn

For n = 0, a similar inequality could be derived:

CgCh T 4900h T SC’h T

*H%Il21Q+ IIV oll* <

16°1 %= +
16C2 C’h4

——— "7 +
8Ch T

<z llobll o+ =

IVRH* +

t1
+4Ch4/ 10, Vo|?dt +

to

Vo' |14
8Ch T

t1
(02 + 202)| Vo' ||2+40h4/ 1910||2dt + 4Cor + 462Cro ™,
to
14



or equivalently,

BCgCh T 2090011 T

16° 1%

4OCh T
IVit)?

5 Te2 5T
§||U<}>||31,Q + THVUéHQ < > ”UéH_LQ o 72 +

A0Ch*r
+ g2

t1
Hu1||2+200h4 / 10,V 6|dt +
to

80C2Ch* 40Ch* (4.45)
T T
+ ——— V" |7s + 7(92 +2C3)|IVe'|?

t1
+20Ch* / 10:0||2dt + 20CyT* + 2002C107?,

to
in which ||p!||% = %HU;)H%LQ and |[p"TZ > 2||0'¢+1||2 1.g- Summing (4.44) from k=1to k=n+1,
adding (4.45), keeping in mind of (4.18) (the relationship between G-norm and H~!-norm), we arrive
at the following estimate for n > 1:

e PR Sl e B A L R L |

5 4002 &
ot G G e e

where

A0Ch T & A0Ch T & ’ g
Ro= DTS I s+ g S IR 1287t [ fawolar 65 [ vl
k=0 k=0

4 4 2 4 2 50 2 k1 SOCh T k+14
+20CRY ([ ||6:VolPdt+ [ |0k dt) + L(Cs +862) ZII¢ %2 + ZIIW (A
0 0

k=0
4A7'

4OC’h T
+ (63 +2C3) Z [V*FHJ* +

/ [0:Vo|I*dt +20(Cy + 05C10)7* < C(T,e)(7* + h*),
k=0

where C(T,¢) is independent of 7 and h, under a technical assumption
1
0<1< 1 = T. (4.46)

Finally, an application of the discrete Gronwall inequality leads to the desired convergence result

log 121 g +e TZ IVogt|? < C(T,e)(7* + hY).
k=0
which completes the proof. O

Remark 4.1. Here the restriction condition (4.46) is simple and does not depend on e, which may
be different if the L? norm estimates are considered. This comes from the convexity property of the
nonlinear term is used in H~' norm analysis.

5. NUMERICAL RESULTS

In this section, we present some numerical simulation results using the proposed scheme (3.1) to
verify the theoretical results. We demonstrate, in particular, the positivity of the numerical solutions.
In the numerical test, we use a slightly different formulation of the Cahn-Hilliard equation, which
allows for a comparison with the so-called obstacle potential. Specifically, we will use the standard
Ginzburg-Landau free energy E[¢] = [, { F(6) + §|V¢|2} dx, where f(6) = fo(¢) — f.(¢) and
£d) = 5 (1= OInl =)+ L+ WA+ ), L) = ;G- D@+1. ()
15



Importantly, as 6y — oo, f tends to the obstacle potential

Lo-1D(o+1), if -1<o<1,
00, if ol > 1.

fobs (0) =

which has been investigated elsewhere [5,6]. While we are only interested in the case of finite values of
0o, it is interesting to explore the effects of increasing 6. For finite 6y, clearly f.(¢) = ¢ and

f1(8) = zi(,oana +6) —In(1 - 9)).

In turn, the chemical potential for the Cahn-Hilliard model could be expressed as
p=fi(¢) = fi(¢) —*Ag.
Next, two examples will be simulated to verify the theoretical result. The first example is aimed to test

the numerical convergence associated with the numerical scheme and the second one is to present some
results associated with the phase evolution.

Example 5.1. Here we give a convergence test for the proposed numerical scheme. The initial condition

is given by
1— dzm 1— 2ym
$(2,4,0) = 1.8 ( cos (53 )> ( s (33 )> ~ 0.9, (5.2)

2 2

To get the convergence rate, “the Cauchy difference”, d,, is computed between approximate solutions
obtained with successively finer time sizes. Since the exact solution is unknown, we compute the errors
by adjacent time step in the numerical accuracy test, where the coarse spacial step h. is twice as much
as the fine step hy. The parameters are given by: (domain size) L = 3.2; (interfacial parameter)
e = 0.2; (mobility) M = 1; (quench parameter) 6y = 3.0; (final time) T" = 0.4; (Newton iteration
stopping tolerance) o = 107°; (stabilization parameter) A = 1. The refinement path for the proposed
second-order scheme is linear, 7 = 0.1h. We only consider the periodic boundary condition, while the
case of homogeneous Neumann boundary condition could be similarly handled. The test results are
displayed in Table 1. We observe that the optimal convergence rate is achieved, with perfect second
order accuracy in both time and space.

TABLE 1. Numerical errors and convergence rates for the proposed numerical scheme

at T'=0.4.
he  hy lleslloo Rate lles]l2 Rate
3232 1381901 - 1.0976e-01 -
33% % 3.7976e-02 1.8626 3.0280e-02 1.8579
%#12 % 9.7227e-03 1.9657 7.7705e-03 1.9623
% % 2.4478e-03 1.9898 1.9580e-03 1.9886
% % 6.1343e-04 1.9965 4.9085e-04 1.9961

Example 5.2. Consider the spinodal decomposition over the domain 2 = (0,1)%, with the physical
parameters € = 5.0 x 1073, 0y = 3.0, as well as the numerical resolution h = 1/256, 7 =5 x 1076, The
initial data is given by
o(x,y,0) = 0.2+ Ti5 (5.3)
where r; ; is uniformly distributed random numbers in [—0.02,0.02].
16



The second order scheme is implemented with stabilization parameter A = 1 to show the details
of spinodal decomposition with random initial data. Figure 5.1 displays the snapshot plot of ¢ at ¢
= 0.004, 0.01, 0.02, 0.1, 0.4 and 1, respectively. Moreover, the maximum values and minimum values
of the phase variable are presented in Figure 5.2 (a). In particular, a larger version of Figure 5.2 (a)
implies that the numerical solution is always located in the interval (—1,1), which is in agreement with
the theory analysis. In addition, we present the error evolution of the total mass of ¢ (away from the
mass of ¢p) in Figure 5.2(b), which demonstrates the mass conservation property. The energy evolution
of the numerical solution is illustrated in Figure 5.3, and a clear energy decay is observed.

-15
1 x10 . —
max(¢) ,\I . i- ...... cs2
08 min(¢) 1 o \
1 1 it i |
061 ——] 0 P T 1
0.995 0 i \If,ll H L -'i.!. . :: \ ‘,I
H it R 1
041 0.99 099 ! AT .l} i
g il P bk i
02 0 2 4 6 0526 0.528 0.53 0532 £ 5 IR
x10° 5 i i “
< of 3 i
= 1 l ,.
o iy
02} 2 -10 iy
-0.99 -0.99 B it
0.4 il
I_l
-1 -1 i
-06 0 2 4 6 05160518 0.52 0.5220.524 | 15 '
%102
-0.8
4 . . " 20 . . . . . . . . .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
t t
(a) (b)

FIGURE 5.2. (a): The time evolution of the minimum and the maximum value of ¢;
(b): The error development of the total mass for ¢.

6. CONCLUDING REMARKS

In this paper, we propose and analyze a second-order accurate in time, mass lumped finite ele-
ment numerical scheme for the Cahn-Hilliard equation with logarithmic Flory-Huggins energy potential.
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FIGURE 5.3. Evolution of the energy over time, with 7 =5 x 1076,

which contains an implicit treatment of the logarithmic term and the linear surface diffusion terms, as
well as an explicit update of the concave expansive linear terms. The backward differentiation for-
mula (BDF) stencil is applied in the temporal discretization. In the chemical potential approximation,
both the logarithmic singular terms and the surface diffusion term are treated implicitly, while the
expansive term is explicitly updated via a second-order Adams-Bashforth extrapolation formula. An
artificial Douglas-Dupont regularization term is added to ensure the energy dissipation. Mass lumped
finite element approximation and the singular nature of the logarithmic term ensure that the proposed
numerical algorithm has a unique solution with preserved positivity for the logarithmic arguments, so
that the finite element numerical solution is always located in the interval (-1,1) for all time in the
piecewise sense. Moreover, a modified energy stability is theoretically justified, and the convergence
analysis and error estimate have been established in the £>°(0,7; H~1) N ¢2(0,T; H') norm. Finally,
two numerical examples are carried out to show the robustness and accuracy of the proposed numerical
scheme, especially the performance of the spinodal decomposition phenomenon.
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