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Abstract. In this paper, we propose and analyze a second order accurate in time, mass lumped

mixed finite element scheme for the Cahn-Hilliard equation with a logarithmic Flory-Huggins energy

potential. The standard backward differentiation formula (BDF) stencil is applied in the temporal

discretization. In the chemical potential approximation, both the logarithmic singular terms and the

surface diffusion term are treated implicitly, while the expansive term is explicitly updated via a second-

order Adams-Bashforth extrapolation formula, following the idea of the convex-concave decomposition

of the energy functional. In addition, an artificial Douglas-Dupont regularization term is added to

ensure the energy dissipativity. In the spatial discretization, the mass lumped finite element method

is adopted. We provide a theoretical justification of the unique solvability of the mass lumped finite

element scheme, using a piecewise linear element. In particular, the positivity is always preserved for

the logarithmic arguments in the sense that the phase variable is always located between -1 and 1. In

fact, the singular nature of the implicit terms and the mass lumped approach play an essential role in

the positivity preservation in the discrete setting. Subsequently, an unconditional energy stability is

proven for the proposed numerical scheme. In addition, the convergence analysis and error estimate

of the numerical scheme are also presented. Two numerical experiments are carried out to verify the

theoretical properties.
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1. Introduction

The Cahn-Hilliard equation plays an important role in materials science and biological applications.

It was constructed by Cahn and Hilliard [9] as a conserved gradient flow with respect to the free

energy of an isothermal, isotropic fluid. Usually, the evolution of the system is driven by the gradient

of the singular Flory-Huggins free energy and describes phase separation processes with respect to the

concentration ϕ. Phase separation can be observed, e.g., when a binary alloy is cooled down sufficiently.

One then may observe spinodal decomposition, whereby the material quickly becomes inhomogeneous,

forming a fine-grained structure in which each of the two phases appears in a more or less alternating

pattern. In the second stage, which is called coarsening, and which occurs at a slower time scale, the

average size of phases in the microstructure grows with time. Such phenomena play an essential role

in the structural and mechanical properties of the material [4,17,38]. The equation is flexible, allowing

several variants – based on the choices of mobility and free energy density – which are relevant in

different contexts and for disparate physical and biological processes in which phase separation and

coarsening/clustering processes can be observed (see [34,37]).

There have been a lot of theoretical analyses and numerical approximations for these gradient flows

in the two-phase case. The existence of solutions and attractors to the Cahn-Hilliard equation with

degenerate mobility and logarithmic nonlinearities has been proved in [24, 36, 44, 45]. For the time

integration, several numerical techniques have been applied to design the energy dissipative schemes for

gradient flows [2,5,6,10,15,29,54], including convex splitting [25,55,57], stabilization [29,49], auxiliary

variable approaches [1] (such as invariant energy quadrature method [60,64] and scalar auxiliary variable

version [16, 46–48]). In particular, the convex splitting method has been widely used to solve various
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phase field equations by virtue of its theoretical advantages [11, 13, 26, 30, 31, 50, 52]. Meanwhile, the

IEQ and SAV approaches can be used to design linear and energy stable numerical schemes, which

can improve the computational efficiency of many relatively complex problems [41, 43, 48, 51, 56, 61],

and have been rapidly developed in recent years. And also, the stabilization method turns out to

be a useful tool to extend the above methods to a higher-order accuracy of time [28, 29, 48, 58, 59].

These numerical techniques possess two main features: mass conservation and energy dissipativity

(conditionally/unconditionally).

Meanwhile, most above-mentioned works have been focused on the physical model with a polyno-

mial approximation in the energy potential expansion. For the Cahn-Hilliard equation with the original

Flory-Huggins logarithmic energy potential, a theoretical justification of the positivity-preserving prop-

erty for the logarithmic arguments has always been an essential difficulty, at both the analytic and

numerical levels. There have been quite a few works on the positivity-preserving analysis of the nu-

merical solutions for the Cahn-Hilliard equation with logarithmic free energy. In [18], a finite element

scheme was proposed, based on the backward Euler temporal discretization for the Flory-Huggins-Cahn-

Hilliard equation, and the positivity-preserving property of the numerical solution was proven under a

constraint on the time step. In fact, such a time step constraint comes from the explicit treatment of

the concave expansive term, so that the monotone property of the implicit parts is not automatically

ensured. To overcome this shortcoming, Chen et al. [14] applied the convex splitting approach to the

equation, combined with finite difference spatial discretization, in which the singular logarithmic terms

and the surface diffusion part are computed implicitly, while an explicit update is applied to the explicit

part. In turn, both the unconditionally unique solvability and positivity-preserving feature have been

theoretically justified for the numerical scheme, and an optimal convergence estimate has been derived

in the ℓ∞
(
0, T ;H−1

)
∩ ℓ2

(
0, T ;H1

)
norm. Following similar theoretical framework, more positivity-

preserving numerical schemes have been proposed and analyzed for a variety of the Cahn-Hilliard type

equations with singular energy potential, with finite difference spatial discretization; see the related

works [12,19–21,32,33,40,42,62,63] and the reference therein. It is noticed that these approaches have

been based on the implicit treatment of the singular logarithmic terms, due to their convexity. On the

other hand, there have also been some works of positivity-preserving numerical schemes for certain gra-

dient flows with logarithmic energy potential, such as [27] for the Poisson-Nernst-Planck system, based

on the Lagrange multiplier method. The energy functional has to be modified in this work, because of

the scalar auxiliary variable (SAV) method used.

In fact, most existing numerical works of positivity-preserving analysis for gradient flows with sin-

gular energy potential have been focused on the finite difference spatial discretization, because of its

simplicity in the numerical representation. In comparison with the finite difference approximation,

the finite element (FEM) method allows for flexible, adaptive meshes and has a systematic theoretical

framework. Inspired by the scientific idea in [14], we would like to extend the theoretical framework

of positivity preserving scheme to the fully discrete finite element scheme. However, a direct extension

to the FEM method would face a serious difficulty in the numerical analysis. It is well-known that the

standard-conforming FEM fails to satisfy the discrete maximum principle, thus it is a great challenge

to derive the rigid theoretical analysis of positivity preserving in the finite element framework. The

main contribution of this paper is that we propose a second order accurate in time, mass-lumped FEM

numerical scheme for the Cahn-Hilliard equation with logarithmic free energy. In more details, the

standard backward differentiation formula (BDF) stencil is applied in the temporal discretization. In

the chemical potential approximation, both the logarithmic singular terms and the surface diffusion

term are treated implicitly, while the expansive term is explicitly updated via a second-order Adams-

Bashforth extrapolation formula, following the idea of the convex-concave decomposition of the energy

functional. In addition, an artificial Douglas-Dupont regularization term is added to ensure the energy

dissipativity. Meanwhile, as mentioned earlier, a direct application of the positivity-preserving analysis

techniques for the finite difference method, as reported in [14], is not available to the standard FEM
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method, due to the difficulty to ensure the point-wise positivity of the numerical solution in the standard

FEM because of the non-diagonal mass matrix. Instead, a lumped mass FEM is chosen to diagonalize

the mass matrix, that is, the diagonal elements are the row sums of the original mass matrix [53].

With the mass lumped FEM approximation, the positivity-preserving analysis of the numerical scheme

could be theoretically justified, with the help of the singular nature of the logarithmic terms as the

phase variable approaches the singular limit values of 1 and -1. A modified energy stability of the pro-

posed mass-lumped FEM will be proven, with the help of the artificial Douglas-Dupont regularization

term. In addition, the convergence analysis and error estimate will be theoretically established, in the

ℓ∞
(
0, T ;H−1

)
∩ ℓ2

(
0, T ;H1

)
norm.

The rest of this article is organized as follows. In Section 2, we review the Sobolev spaces and the

corresponding weak form, as well as the mass lumped FEM method. In Section 3, we propose the fully

discrete numerical scheme, demonstrate the positivity-preserving property of the numerical solutions.

The modified energy stability analysis and the optimal rate convergence analysis are provided in Section

4. Finally, this paper ends with some concluding remarks in the last section.

2. The weak formulation

In this section, we provide a review on the basic property of the Cahn-Hilliard equation with the

logarithmic potential, as well as the corresponding weak formulation. To this end, we consider the

following (total) free energy:

E(ϕ) =

∫
Ω

f(ϕ) +
ε2

2
|∇ϕ|2dx,

f(ϕ) = (1 + ϕ) ln(1 + ϕ) + (1− ϕ) ln(1− ϕ)− θ0
2
ϕ2,

(2.1)

where ϕ is the phase variable and f(ϕ) is a double-well logarithmic potential, often approximated by a

smooth polynomial function, with minimums located at the two attraction points that represent pure

phases ϕ = ±1, and ε, θ0 are positive constants associated with the diffuse interface width. In turn,

the Cahn-Hilliard equation with respect to the energy functional (2.1) is defined as

∂tϕ = ∇ · (M(ϕ)∇µ), (2.2)

subject to the initial condition

ϕ(x, 0) = ϕ0(x), x ∈ Ω. (2.3)

For simplicity, we are using periodic boundary conditions on square area Ω = [0, L]2. The variable µ is

the chemical potential

µ := δϕE = ln(1 + ϕ)− ln(1− ϕ)− θ0ϕ− ε2∆ϕ. (2.4)

M(ϕ) > 0 is the mobility function, which is often taken to be either constant [22,23,39] or of degenerate

type [3, 4, 8, 14, 24]. Equation (2.2) has been proposed to model phase separation in a binary mixture

composed of two species which is quenched into an unstable state. It can be regarded as a type of H−1

(conserved) gradient flow with respect to the energy functional (2.1), satisfying the following properties:

• mass conservation ∫
Ω

ϕ(x, t)dx =

∫
Ω

ϕ(x, 0)dx, ∀t > 0,

• energy dissipation

d

dt
E(ϕ(t)) = −

∫
Ω

M(ϕ)|∇µ|2dx ≤ 0.
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Now, we use standard notation for the function spaces and norms. In particular, we denote the

standard norms for the Sobolev spaces Wm,p(Ω) by ∥ · ∥m,p. When p = 2, Wm,2(Ω) is a Hilbert space

denoted by Hm(Ω) with the norm ∥ · ∥m. Let C∞
per(Ω) be the set of all restrictions onto Ω of all

real-valued, L-periodic, C∞(Ω)-functions on R2. For each integer q ≥ 0, let Hq
per(Ω) be the closure

of C∞
per(Ω) in the usual Sobolev norm ∥ · ∥q, and H−q

per(Ω) be the dual space of Hq
per(Ω). Note that

H0
per(Ω) = L2(Ω), and denote by (·, ·) the L2 inner-product on domain Ω, which, naturally induces the

L2 norm ∥ · ∥.
The mixed weak formulation of Cahn-Hilliard equation (2.2) is defined as follows: find (ϕ, µ) ∈

L2
(
0, T ;H1

per(Ω)
)
, with ϕt ∈ L2

(
0, T ;H−1

per(Ω)
)
, satisfying (ϕt, v) + (M(ϕ)∇µ,∇v) = 0, ∀v ∈ H1

per(Ω),

(µ,w) = (g(ϕ)− θ0ϕ,w) + ε2(∇ϕ,∇w), ∀w ∈ H1
per(Ω),

(2.5)

for almost every t ∈ [0, T ], where g(u) = ln(1 + u)− ln(1− u).

Let Th = K be a quasi-uniform, shape-regular triangulation of Ω, with mesh size h. By he we

denote the diameter of each triangle e ∈ Th. The symbol △e denotes the the area of e. Then, as usual,

h = maxe∈Th
he. Since the mesh is shape regular, we can assume that

h2
e

△e
is uniformly bounded by one

constant CT :
h2
e

△e
≤ CT .

Based on the quasi-uniform triangulated mesh Th, the finite element space is defined as

Sh :=
{
v ∈ H1

per(Ω)
∣∣ v is piecewise linear on each e ∈ Th

}
= span {χj | j = 1, · · · , Np} ,

where χj ∈ Sh is the jth Lagrange nodal basis function, which has the property χj(Pi) = δi,j . Define

S̊h := Sh ∩L2
0(Ω), with L

2
0(Ω) =

{
v ∈ L2(Ω)

∣∣ (v, 1) = 0
}
the function space with zero mean in L2(Ω) .

The standard mixed finite element scheme of (2.5) will lead to a theoretical difficulty with regard

to justifying the positivity-preserving property. To overcome this difficulty, we apply a mass lumped

FEM instead, which is a modification of standard FEM for solving parabolic equations. It simplifies the

computation for the inverse of mass matrix and overcomes the shortcoming of the standard FEM that

it cannot preserve the maximum principle for homogeneous parabolic equations. In more details, let

Pe,k, k = 1, 2, 3, be the three vertices of triangle e. The construction of the lumped mass inner product

can be carried out as follows: we first introduce the quadrature formula on e,

Qh(f) :=
∑
e∈Th

Qe(f), ∀ f ∈ C(Ω;R), (2.6)

where

Qe(f) :=
△e

3

3∑
k=i

f (Pe,k) ≈
∫
e

fdx.

It is straightforward to confirm that Qh(χjχk) = 0, for k ̸= j, so that Qh has the following diagonal-

ization property:

Qh(χjχk) = δj,kQh(χ
2
j ), j, k = 1, . . . , Np. (2.7)

Furthermore,

Qh(χ
2
j ) =

∑
e∈Th

Qe

(
χ2
j

)
=

1

3
area (Dj) , Dj := supp(χj). (2.8)

We may now define an approximation of the canonical inner product on Sh by

(ψ, η)Q := Qh(ψη), ∀ψ, η ∈ Sh. (2.9)

Likewise, we define ∥η∥Q :=
√
(η, η)Q for any η ∈ Sh. This norm is observed to be equivalent to the

standard ∥ · ∥L2 norm on Sh by considering each triangle separately.

To facilitate the analysis below, we have to modify the definition of the discrete Laplacian operator

and the discrete H−1 norm. In fact, the primary difference is in the integral definition.
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Definition 2.1. The discrete Laplacian operator ∆h : Sh → S̊h is defined as follows: for any vh ∈ Sh,

∆hvh ∈ S̊h denotes the unique solution to the problem

(∆hvh,χ)Q = − (∇vh,∇χ) , ∀χ ∈ Sh.

It is straightforward to show that, by restricting the domain, ∆h : S̊h → S̊h is invertible, and for

any vh ∈ S̊h, we have (
∇ (−∆h)

−1
vh,∇χ

)
= (vh, χ)Q , ∀χ ∈ Sh.

Definition 2.2. The discrete H−1 norm ∥ · ∥−1,Q, is defined as follows:

∥vh∥−1,Q :=
√
(vh, (−∆h)−1vh)Q, ∀ vh ∈ S̊h. (2.10)

3. The fully discrete numerical scheme

In this section, we propose the fully discrete scheme based on the lumped mass FEM, and establish

the positivity-preserving property, energy stability and convergence analysis at the theoretical level. For

simplicity, we consider the mobility M(ϕ) = 1, and propose the following second order accurate in time,

fully discrete finite element numerical scheme for the Cahn-Hilliard equation (2.5): given ϕnh, ϕ
n−1
h ∈ Sh,

find ϕn+1
h , µn+1

h ∈ Sh, such that

(
3
2ϕ

n+1
h −2ϕn

h+
1
2ϕ

n−1
h

τ , vh

)
Q
+ (∇µn+1

h ,∇vh) = 0, ∀vh ∈ Sh,

(µn+1
h , wh)Q =

(
g(ϕn+1

h )− θ0ϕ̌
n+1
h , wh

)
Q
+ ε2(∇ϕn+1

h ,∇wh)

+Aτ(∇(ϕn+1
h − ϕnh),∇wh), ∀wh ∈ Sh,

(3.1)

where ϕ̌n+1
h = 2ϕnh −ϕn−1

h . Obviously, the scheme requires an initialization step for n = 0. To this end,

we introduce the Ritz projection operator Rh : H1
per(Ω) → Sh, satisfying

(∇ (Rhu− u) ,∇χ) = 0, ∀χ ∈ Sh, (Rhu− u, 1) = 0. (3.2)

The initial data are chosen so that ϕ0h = Rhϕ
0.

If a solution to the proposed numerical scheme (3.1) exists, it is clear that, for any n ∈ N,

ϕ̄0h := |Ω|−1
(
ϕ0h, 1

)
Q
= |Ω|−1

(
ϕ1h, 1

)
Q
= · · · = |Ω|−1 (ϕnh, 1)Q = ϕ̄nh,

with |ϕ̄nh| < 1. Thus we expect
(
ϕnh − ϕ̄0h, 1

)
Q

= 0. In addition, the following technical lemmas are

needed in the positivity-preserving analysis.

The following lemma is one finite element version of Lemma 2.8 in [14] where the Fourier analysis

was used, here we use the discrete Gagliard-Nirenberg inequality.

Lemma 3.1. Suppose that ξ1, ξ2 ∈ Sh with (ξ1 − ξ2, 1) = 0, that is, ξ − ξ̄ ∈ S̊h, and assume that

∥ξ∥∞ < 1, ∥ξ̄∥∞ ≤M . Then, we have the following estimate:∥∥−∆−1
h (ξ1 − ξ2)

∥∥
∞ ≤ C1, (3.3)

where C1 > 0 depends only upon M and Ω. In particular, C1 is independent of the mesh spacing h.

Proof. By the discrete Gagliard-Nirenberg inequality (for example, see Theorem 2.8 in [35]): if Ω is

convex and polyhedral, then for any Ψh ∈ Sh

∥Ψh∥L∞ ≤ C ∥∆hΨh∥
d

2(6−d) ∥Ψh∥
3(4−d)
2(6−d)

L6 + C ∥Ψh∥L6 , (d = 2, 3).

Now combining with the following Lp interpolation inequality

∥Ψh∥L6 ≤ ∥Ψh∥
1
3 ∥Ψh∥

2
3

L∞ ,

and by simple calculations, we have another discrete Gagliard-Nirenberg inequality:

∥Ψh∥L∞ ≤ C ∥∆hΨh∥
d
4 ∥Ψh∥1−

d
4 + C ∥Ψh∥ , (d = 2, 3). (3.4)
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It is obvious that ξ1 − ξ2 ∈ S̊h, let Ψh := −∆−1
h (ξ1 − ξ2), we directly obtain

∥ −∆−1
h (ξ1 − ξ2)∥L∞ ≤ C∥ξ1 − ξ2∥L2 ≤ C(∥ξ1∥L∞ + ∥ξ2∥L∞) ≤ C(M + 1) := C1,

where the estimate ∥ −∆−1
h (ξ1 − ξ2)∥ ≤ C∥ξ1 − ξ2∥ is used. □

Lemma 3.2. For any ϕ ∈ Sh and any piecewise linear Lagrange nodal basis element χj, we have

(∇ϕ,∇χj) ≤
∑
e∈Dj

h2e
2△e

3∑
i=1

ϕ(Pe,i) (3.5)

on Th with mesh size he.

Proof. Let Pi = (xi, yi) (i = 1, 2, 3) be the three vertex points of e, then

∂ϕ

∂x
=

1

2△e
(ϕ(P1)(y2 − y3) + ϕ(P2)(y3 − y1) + ϕ(P3)(y1 − y2)),

∂ϕ

∂y
=

1

2△e
(ϕ(P1)(x3 − x2) + ϕ(P2)(x1 − x3) + ϕ(P3)(x2 − x1)),

which implies

(∇ϕ,∇χj) =
∑
e∈Th

∫
e

∇ϕ · ∇χjdx =
∑
e∈Dj

∫
e

∂ϕ

∂x

∂χj

∂x
+
∂ϕ

∂y

∂χj

∂y
dx ≤

∑
e∈Dj

h2e
2△e

3∑
i=1

ϕ(Pe,i). (3.6)

The proof is finished. □

The positivity-preserving property of the proposed numerical scheme (3.1) is stated in the following

theorem.

Theorem 3.1. Given ϕkh ∈ Sh with ∥ϕkh∥∞ ≤M,k = n, n− 1, for some M > 0 and |ϕ̄nh| = |ϕ̄n−1
h | < 1,

there exists a unique solution ϕn+1
h ∈ Sh to (3.1), with ϕn+1

h − ϕ̄nh ∈
◦
Sh and ∥ϕn+1

h ∥∞ < 1.

Proof. In fact, the numerical solution of (3.1) is a minimizer of the following discrete energy functional

J n(ϕ) :=
1

3τ

∥∥∥∥32ϕ− 2ϕnh +
1

2
ϕn−1
h

∥∥∥∥2
−1,Q

+ (1 + ϕ, ln(1 + ϕ))Q + (1− ϕ, ln(1− ϕ))Q

+
ε2 +Aτ

2
∥∇ϕ∥22 + (ϕ,Aτ∆ϕnh)−

(
θ0ϕ̌

n+1
h , ϕ

)
Q

(3.7)

over the admissible set

Ah :=
{
ϕ ∈ Sh

∣∣∣ ∥ϕ∥∞ ≤ 1,
(
ϕ− ϕ̄0h, 1

)
Q
= 0
}
⊂ RN2

p .

Observe that J n is a strictly convex function over this domain.

To facilitate the analysis below, we transform the minimization problem into an equivalent one.

Consider the functional

Fn(φ) :=J n
(
φ+ ϕ̄0h

)
=

1

3τ

∥∥∥∥32 (φ+ ϕ̄0h
)
− 2ϕnh +

1

2
ϕn−1
h

∥∥∥∥2
−1,Q

+
(
1 + φ+ ϕ̄0h, ln

(
1 + φ+ ϕ̄0h

))
Q
+
(
1− φ− ϕ̄0h, ln

(
1− φ− ϕ̄0h

))
Q

+
ε2 +Aτ

2
∥∇φ∥22 +

(
φ+ ϕ̄0h, Aτ∆ϕ

n
h

)
−
(
θ0ϕ̌

n+1, φ+ ϕ̄0h
)
Q

(3.8)

defined on the set

Åh :=
{
φ ∈

◦
Sh

∣∣∣ −1− ϕ̄0h ≤ φ ≤ 1− ϕ̄0h

}
⊂ RN2

p .
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If φ minimizes Fn, then ϕ := φ + ϕ̄0h ∈ Ah minimizes J n, and vice versa. Next, we prove that there

exists a minimizer of Fn over the domain Åh. The following closed domain is taken into consideration,

for δ ∈ (0, 1/2):

Åh,δ :=
{
φ ∈

◦
Sh

∣∣∣ δ − 1− ϕ̄0h ≤ φ ≤ 1− ϕ̄0h − δ
}
⊂ RN2

p . (3.9)

Since Åh,δ is a bounded, compact, and convex set in the subspace
◦
Sh, there exists a (not necessarily

unique) minimizer of Fn over Åh,δ. The key point of the positivity analysis is that such a minimizer

could not occur on the boundary of Åh,δ, if δ is sufficiently small. To be more explicit, by the boundary

of Ah,δ, we mean the locus of points ψ ∈ Åh,δ such that ∥ψ + ϕ̄0h∥∞ = 1− δ, precisely.

To get a contradiction, suppose that the minimizer of Fn, call it φ⋆ occurs at a boundary point

of Åh,δ. There is at least one grid point Pα0 = (i0, j0) such that |φ⋆|α0 + ϕ̄0h| = 1 − δ. First, let us

assume that φ⋆|α0
+ ϕ̄0h = δ−1, so that the grid function φ⋆ has a global minimum at α0. Suppose that

Pα1
= (i1, j1) is a grid point at which φ achieves its maximum. By the fact that φ̄⋆, it is obvious that

1− δ ≥ φ⋆|α1
+ ϕ̄0h ≥ ϕ̄0h.

Since Fn is smooth over Åh,δ, for all ψ ∈
◦
Sh, the directional derivative becomes

dSFn (φ⋆ + sψ)|s=0 =
(
ln
(
1 + φ⋆ + ϕ̄0h

)
− ln

(
1− φ⋆ − ϕ̄0h

)
, ψ
)
Q

+ (Aτ∆ϕnh, ψ)− θ0
(
ϕ̌n+1, ψ

)
Q
+
(
ε2 +Aτ

)
(∇φ⋆,∇ψ)

+
1

τ

(
(−∆)

−1

(
3

2

(
φ⋆ + ϕ̄0h

)
− 2ϕnh +

1

2
ϕn−1
h

)
, ψ

)
.

(3.10)

This time, due to φ⋆
1 + sψ ∈ Åh,δ, let us pick the direction

ψ = δα0
− C2δα1

, C2 =
area(Dα0

)

area(Dα1
)
, (3.11)

where δα0 and δα1 are the basis functions on α0 and α1, Dα0 and Dα1 are the support of δα0 and δα1 ,

respectively.

For simplicity, now let us write ϕ⋆ := φ⋆ + ϕ̄0h. Since ϕ
⋆|α0

= −1 + δ and ϕ⋆|α1
≥ ϕ̄0h, we have

(ln (1 + ϕ⋆)− ln (1− ϕ⋆) , ψ)Q =
∑
e∈Th

1

3
△e

3∑
j=1

(ln (1 + ϕ⋆)− ln (1− ϕ⋆))ψ(Pe,j)

=
1

3
area(Dα0

)((ln (1 + ϕ⋆)− ln (1− ϕ⋆)) |α0

− (ln (1 + ϕ⋆)− ln (1− ϕ⋆)) |α1
)

≤1

3
area(Dα0

)(ln
δ

2− δ
− ln

1 + ϕ̄0h
1− ϕ̄0h

).

(3.12)

Furthermore, an application of Lemma 3.2 gives the following estimate

(∆ϕnh, ψ) =− (∇ϕnh,∇ψ) = −(∇ϕnh,∇δα0
) + C2(∇ϕnh,∇δα1

)

≤−
∑

e∈Dα0

h2e
2△e

3∑
i=1

ϕnh(Pe,i) + C2

∑
e∈Dα1

h2e
2△e

3∑
i=1

ϕnh(Pe,i)

≤−
∑

e∈Dα0

3Mh2e
2△e

+ C2

∑
e∈Dα1

3Mh2e
2△e

≤ 3MC̃T

2
,

(3.13)

where C̃T := CT (
∑

e∈Dα0
1|e + C2

∑
e∈Dα1

1|e). For the numerical solution ϕkh, k = n, n − 1, at the

previous time steps, the a priori assumption ∥ϕkh∥∞ ≤M yields

−2M ≤ ϕkh|α0
− ϕkh|α1

≤ 2M, (3.14)
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so that

(
θ0ϕ

k
h, ψ

)
Q
= θ0

∑
e∈Th

1

3
△e

3∑
j=1

ϕkhψ(Pe,j) =
θ0
3
area(Dα0

)
(
ϕkh|α0

− ϕkh|α1

)
≤ 2Mθ0

3
area(Dα0

). (3.15)

This in turn leads to the estimate for the third term in (3.10):

−6M area(Dα0
) ≤

(
ϕ̌n+1
h , ψ

)
Q
≤ 6M area(Dα0

). (3.16)

For the fourth term, we easily obtain

(∇φ⋆,∇ψ) = (∇φ⋆,∇δα0)− C2 (∇φ⋆,∇δα1) ≤ 0. (3.17)

For the last term, an application of Lemma 3.1 reveals that(
(−∆)

−1

(
3

2
(ϕ⋆)− 2ϕnh +

1

2
ϕn−1
h

)
, ψ

)
Q

=
∑
e∈Th

1

3
△e

3∑
j=1

(
(−∆)

−1

(
3

2
(ϕ⋆)− 2ϕnh +

1

2
ϕn−1
h

)
ψ(Pe,j)

)
(3.18)

=
1

3
area(Dα0

)

(
(−∆)

−1

(
3

2
(ϕ⋆)− 2ϕnh +

1

2
ϕn−1
h

)
|α⃗0

− (−∆)
−1

(
3

2
(ϕ⋆)− 2ϕnh +

1

2
ϕn−1
h

)
|α⃗1

)
≤5C3 area(Dα0

)

3
.

Subsequently, a substitution of (3.13)-(3.18), (3.12) and (3.17) into (3.10) yields the following bound

on the directional derivative:

dSFn (φ⋆ + sψ)|s=0 ≤ area(Dα0
)

(
1

3
ln

δ

2− δ
− 1

3
ln

1 + ϕ̄0
1− ϕ̄0

+ 6Mθ0 +
5C3

3τ

)
+

3AτMC̃T

2
. (3.19)

We denote r1 = − ln
1+ϕ̄0

h

1−ϕ̄0
h

+ 18Mθ0 + 5C3τ
−1 + 9AτMC̃T

2 (area(Dα0
))−1. Note that r1 is a constant for

a fixed τ , though it becomes singular as τ → 0. However, for any fixed τ , we may choose δ ∈ (0, 1/2)

sufficiently small so that

ln
δ

2− δ
+ r1 < 0. (3.20)

This in turn shows that, provided δ satisfies (3.20) such that

dsFn (φ⋆ + sψ)|s=0 < 0. (3.21)

As before, this contradicts the assumption that Fn has a minimum at φ⋆, since the directional derivative

is negative in a direction pointing into the interior of Åh,δ.

Using very similar arguments, we can also prove that the global minimum of Fn over Åh,δ could

not occur at a boundary point φ⋆ such that φ⋆|α0
+ ϕ̄0h = 1− δ, for some α0, so that the grid function

φ⋆ has a global maximum at α0. The details are left to interested readers. A combination of these two

facts shows that, the global minimum of Fn over Åh,δ could only possibly occur at interior point

φ ∈ interior
(
Åh,δ

)
⊂ interior

(
Åh

)
.

We conclude that there must be a solution ϕ = φ + ϕ̄0 ∈ Ah that minimizes J n over Ah, which is

equivalent to the numerical solution of (3.1). The existence of the numerical solution is established.

In addition, since J n is a strictly convex function over Ah, the uniqueness analysis for this numerical

solution is straightforward. □
7



4. The energy stability and convergence analysis

In this section, we derive the discrete energy stability of the proposed numerical scheme (3.1), as

well as the convergence analysis. The discrete energy is defined as

Eh(ϕ) = (1 + ϕ, ln(1 + ϕ))Q + (1− ϕ, ln(1− ϕ))Q +
ε2

2
∥∇ϕ∥2 − θ0

2
∥ϕ∥2Q. (4.1)

Now, we will establish a modified energy stability for the numerical algorithm (3.1), provided that

A ≥ θ2
0

16 . This result is stated in the following theorem.

Theorem 4.1. We have the stability analysis of the following modified energy functional for the proposed

numerical scheme (3.1):

Ẽh

(
ϕn+1
h , ϕnh

)
≤ Ẽh

(
ϕnh, ϕ

n−1
h

)
, if A ≥ θ2

0

16 , (4.2)

with

Ẽh

(
ϕn+1
h , ϕnh

)
= Eh

(
ϕn+1
h

)
+

1

4τ

∥∥ϕn+1
h − ϕnh

∥∥2
−1,Q

+
θ0
2

∥∥ϕn+1
h − ϕnh

∥∥2
Q
. (4.3)

Proof. In (3.1), by choosing v = (−∆h)
−1(ϕn+1

h −ϕnh) and w = ϕn+1
h −ϕnh, we could derive the following

inequalities: (
3
2ϕ

n+1
h −2ϕn

h+
1
2ϕ

n−1
h

τ , (−∆h)
−1 (

ϕn+1
h − ϕnh

))
Q

= 3
2τ

∥∥ϕn+1
h − ϕnh

∥∥2
−1,Q

− 1
2τ

(
ϕnh − ϕn−1

h , (−∆h)
−1

(ϕn+1
h − ϕnh)

)
Q

≥ 1
τ

(
5
4

∥∥ϕn+1
h − ϕnh

∥∥2
−1,Q

− 1
4

∥∥ϕnh − ϕn−1
h

∥∥2
−1,Q

)
,

(4.4)

(
ϕn+1
h − ϕnh, g(ϕ

n+1
h )

)
Q
=
(
ϕn+1
h − ϕnh, ln

(
1 + ϕn+1

h

)
− ln

(
1− ϕn+1

h

))
Q

≥
(
1 + ϕn+1

h , ln
(
1 + ϕn+1

h

))
Q
−
(
1− ϕn+1

h , ln
(
1− ϕn+1

h

))
Q

− (1 + ϕnh, ln (1 + ϕnh))Q − (1− ϕnh, ln (1− ϕnh))Q ,

(4.5)

−
(
ϕ̌n+1
h ,

(
ϕn+1
h − ϕnh

))
Q
=−

(
2ϕnh − ϕn−1

h ,
(
ϕn+1
h − ϕnh

))
Q

≥− 1

2

(∥∥ϕn+1
h

∥∥2
Q
− ∥ϕnh∥

2
Q

)
− 1

2

∥∥ϕnh − ϕn−1
h

∥∥2
Q
, (4.6)

(∇ϕn+1
h ,∇

(
ϕn+1
h − ϕnh

)
) =

1

2

(∥∥∇ϕn+1
h

∥∥2 − ∥∇ϕnh∥
2
+
∥∥∇ (ϕn+1

h − ϕnh
)∥∥2) , (4.7)

(∇(ϕn+1
h − ϕnh),∇

(
ϕn+1
h − ϕnh

)
) = ∥∇(ϕn+1

h − ϕnh)∥2, (4.8)

Meanwhile, an application of Cauchy inequality indicates the following estimate:

1

τ

∥∥ϕn+1
h − ϕnh

∥∥2
−1,Q

+Aτ
∥∥∇ (ϕn+1

h − ϕnh
)∥∥2 ≥ 2A1/2

∥∥ϕn+1
h − ϕnh

∥∥2
Q
· (4.9)

Therefore, a combination of (4.4)-(4.9) yields

Eh

(
ϕn+1
h

)
− Eh (ϕ

n
h) +

1
4τ

(∥∥ϕn+1
h − ϕnh

∥∥2
−1,Q

−
∥∥ϕnh − ϕn−1

h

∥∥2
−1,Q

)
+ θ0

2

(∥∥ϕn+1
h − ϕnh

∥∥2
Q
−
∥∥ϕnh − ϕn−1

h

∥∥2
Q

)
≤
(
−2A1/2 + θ0

2

) ∥∥ϕn+1
h − ϕnh

∥∥2
Q
≤ 0,

(4.10)

provided that A ≥ θ2
0

16 . Therefore, by denoting a modified energy as given by (4.3), we get the energy

estimate (4.2). □
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Next, we will provide a convergence analysis for the proposed numerical scheme (3.1), in the

ℓ∞
(
0, T ;H−1

)
∩ ℓ2

(
0, T ;H1

)
norm. We denote the exact solution as ϕn = ϕ(x, tn) at t = tn. As

usual, a regularity assumption has to be made in the error analysis, and we denote all the upper bounds

for the exact solution as C0. The following estimates hold for Ritz projection [7]:

∥Rhφ∥1,p ≤ C∥φ∥1,p, ∀1 < p ≤ ∞, (4.11)

∥φ−Rhφ∥p + h ∥φ−Rhφ∥1,p ≤ Chq+1∥φ∥q+1,p, ∀1 < p ≤ ∞. (4.12)

Suppose that ϕ ∈ L∞(0, T ;W 1,p(Ω)). By combining (4.11) and the Sobolev imbedding theorem:

W 1,p(Ω) ↪→ L∞(Ω), for d < p ≤ ∞, there are constants C3, C4 > 0, such that

∥ϕn∥∞ ≤ C ∥ϕn∥1,p ≤ C3, ∥Rhϕ
n∥∞ ≤ C ∥Rhϕ

n∥1,p ≤ C ∥ϕn∥1,p ≤ C4. (4.13)

Lemma 4.1. If ϕ ∈ H2(Ω) where Ω ∈ Rd, and ∥ϕ∥L∞ ≤ 1−δ where δ > 0, then there exists 0 < h0 < 1

such that for any h ≤ h0,

∥Rhϕ∥L∞ ≤ 1− 1

2
δ. (4.14)

Proof. For any vh ∈ Sh,

∥Rhϕ∥L∞ ≤ ∥Rhϕ− vh∥L∞ + ∥vh∥L∞ ≤ Ch−
d
2 ∥Rhϕ− vh∥+ ∥vh∥L∞ .

We can choose vh as the standard Lagrange linear interpolation, and

∥vh∥L∞ ≤ ∥ϕ∥L∞ and ∥vh − ϕ∥ ≤ Ch2∥ϕ∥H2 .

By the approximation of Rh(see (4.12)),

∥Rhϕ∥L∞ ≤ ∥ϕ∥L∞ + Ch2−
d
2 ∥ϕ∥H2 .

For d = 2, 3, we can choose h0 such that Ch
1
2
0 ∥ϕ∥H2 ≤ δ

2 , then ∥Rhϕ∥L∞ ≤ 1− δ
2 . □

By (ϕ, µ) we denote the exact solution to the weak formulation (2.5). We say that the solution pair

belongs to regularity of class C2 if and only if

ϕ ∈W 3,∞ (0, T ;L2
per(Ω)

)
∩W 1,∞ (0, T ;H2

per(Ω)
)
,

µ ∈ L∞ (0, T ;H2
per(Ω)

)
.

On the other hand, the solution of (3.1) is also mass conservative at the discrete level:

ϕ̄n+1 = ϕ̄n = ϕ̄n−1, ∀n ∈ N. (4.15)

Lemma 4.2. [53] Let κh(·, ·) = (·, ·)− (·, ·)Q denote the quadrature error in (2.6). We then have

|κh(ψ, χ)| ≤ Ch2∥∇ψ∥∥∇χ∥, ∀ψ, χ ∈ Sh. (4.16)

Lemma 4.3. Suppose g(·) ∈W 2,∞(R) and κh(g(·), ·) = (g(·), ·)− (g(·), ·)Q, then we have

|κh(g(ψ), χ)| ≤ C5h
2(∥∇ψ∥2L4∥χ∥+ ∥∇ψ∥∥∇χ∥), ∀ψ, χ ∈ Sh, (4.17)

where C5 = Cmax{∥g′′∥L∞ , ∥g′∥L∞} is independant of h.

Proof. Since the quadrature formula (2.6) is exact for f linear we have, by transformation to a fixed

reference triangle e0 and using the Bramble-Hilbert lemma and the Sobolev inequality ∥f∥L∞(e0) ≤
C∥f∥W 2

1 (e0)
, that ∣∣∣∣Qe(f)−

∫
e

fdx

∣∣∣∣ ≤ Ch2
∑
|α|=2

∥Dαf∥L1(e) ,

9



After application to f = g(ψ)χ this implies, that∣∣∣∣Qe(g(ψ)χ)−
∫
e

g(ψ)χdx

∣∣∣∣ ≤ Ch2
∑
|α|=2

∥Dα(g(ψ)χ)∥L1(e) .

Next, we will continuous to expand every term in the right hand of the above: if α = (1, 0), then

Dα(g(ψ)χ) = g′ψxχ+ gχx,

since both ψ and χ are linear in e, α = (2, 0) implies that

Dα(g(ψ)χ) = g′′ψ2
xχ+ 2g′ψxχx.

Then

∥Dα(g(ψ)χ)∥L1(e) =

∫
e

g′′ψ2
xχdx+ 2

∫
e

g′ψxχxdx

≤ ∥g′′∥L∞(e)∥ψx∥2L4(e)∥χ∥L2(e) + 2∥g′∥L∞(e)∥ψx∥L2(e)∥χx∥L2(e).

Similiarly, for α = (1, 1) , then

∥Dα(g(ψ)χ)∥L1(e) ≤ ∥g′′∥L∞(e)∥ψxψy∥L2(e)∥χ∥L2(e)

+ ∥g′∥L∞(e)(∥ψx∥L2(e)∥χy∥L2(e) + ∥ψy∥L2(e)∥χx∥L2(e)),

and α = (0, 2)

∥Dα(g(ψ)χ)∥L1(e) ≤ ∥g′′∥L∞(e)∥ψy∥2L4(e)∥χ∥L2(e) + 2∥g′∥L∞(e)∥ψy∥L2(e)∥χy∥L2(e).

Here we have at once∣∣∣∣Qe(g(ψ)χ)−
∫
e

g(ψ)χdx

∣∣∣∣ ≤ Ch2(∥g′′∥L∞(e)∥∇ψ∥2L4(e)∥χ∥L2(e) + ∥g′∥L∞(e)∥∇ψ∥L2(e)∥∇χ∥L2(e)).

Then, we conclude that

|κh(g(ψ), χ)| ≤ Ch2
∑
e∈Th

(∥g′′∥L∞(e)∥∇ψ∥2L4(e)∥χ∥L2(e) + ∥g′∥L∞(e)∥∇ψ∥L2(e)∥∇χ∥L2(e))

≤ Ch2(∥g′′∥L∞∥∇ψ∥2L4∥χ∥+ ∥g′∥L∞∥∇ψ∥∥∇χ∥)

≤ C5h
2(∥∇ψ∥2L4∥χ∥+ ∥∇ψ∥∥∇χ∥),

where C5 = Cmax{∥g′′∥L∞ , ∥g′∥L∞} is independant of h. □

Before proceeding into the convergence analysis, we introduce a new norm from [59]. Let p =

[u, v]T ∈
[
L2(Ω)

]2
, where Ω represents an arbitrary bounded domain. Define the G-norm to be a

weighted inner product

∥p∥2G = (p,G(−∆h)
−1p)Q, G =

 1
2 −1

−1 5
2

 .
Since G is symmetric positive definite, the norm is well-defined. Moreover,

G =

 1
2 −1

−1 5
2

 =

 1
2 −1

−1 2

+

 0 0

0 1
2

 =: G1 +G2.

By the positive semi-definiteness of G1, we immediately have

∥p∥2G =
(
p, (G1 +G2) (−∆h)

−1p
)
Q
≥
(
p,G2(−∆h)

−1p
)
Q
=

1

2
∥v∥2−1,Q. (4.18)

For any vi ∈ H1
per(Ω), i = 0, 1, 2, the following equality is valid:(

3

2
v2 − 2v1 +

1

2
v0, (−∆h)

−1v2

)
Q

=
1

2

(∥∥p2
∥∥2
G
−
∥∥p1

∥∥2
G

)
+

∥v2 − 2v1 + v0∥2−1,Q

4
, (4.19)
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where p2 = [v1, v2]
T ,p1 = [v0, v1]

T , especially, when v0 = 0, ∥p1∥2G = 5
2∥v1∥

2
−1,Q. Subsequently, the

convergence result is stated in the following theorem.

Theorem 4.2. Suppose that the exact solution pair (ϕ, µ) is in the regularity class C2, for the fixed

final time T > 0. Let ϕn = ϕ(tn) and ϕnh be the solution at time t = tn to the fully discrete numerical

scheme (3.1), for 1 ≤ n ≤ N , with N · τ = T , provided that τ and h are sufficiently small, then we have

the error estimate

∥ϕn+1 − ϕn+1
h ∥−1,Q +

(
τε2

n∑
0

∥∇(ϕn+1 − ϕn+1
h )∥2

) 1
2

≤ C(T, ε)(τ2 + h2).

for some constant C(T, ε) > 0 that is independent of τ and h.

Proof. We define ξn+1 = ϕn+1 − ϕn+1
h and ηn+1 = µn+1 − µn+1

h . The following error evolutionary

equation could be derived:

(δτξ
n+1, vh)Q + (∇ηn+1,∇vh) = −(Rn+1

1 , vh)− κh(δτϕ
n+1, vh),

(ηn+1, wh)Q + κh(µ
n+1, wh) = (g(ϕn+1)− g(ϕn+1

h ), wh)Q + κh(g(ϕ
n+1), wh)

− θ0(R
n+1
2 , wh)Q − θ0(T

n+1
1 , wh)Q − θ0κh(ϕ

n+1, wh)

+ ε2(∇ξn+1,∇wh) + τ(∇Tn+1
2 ,∇wh) + (Rn+1

3 , wh),

(4.20)

where

δτv
n+1 :=


3vn+1−4vn+vn−1

2τ , n ≥ 1,

v1−v0

τ , n = 0,
Rn+1

1 := ∂tϕ
n+1 − δτϕ

n+1,

Rn+1
2 := ϕn+1 −

 2ϕn − ϕn−1, n ≥ 1,

ϕ0, n = 0,
Rn+1

3 :=

 Aτ∆
(
ϕn+1 − ϕn

)
, n ≥ 1,

0, n = 0,

Tn+1
1 :=

 2ξn − ξn−1, n ≥ 1,

ξ0 n = 0,
Tn+1
2 :=

 A
(
ξn+1 − ξn

)
, n ≥ 1,

0, n = 0.

By the Cauchy-Schwarz inequality, we have the following estimate (see [59]):∥∥Rn+1
1

∥∥2 ≤ 32τ3
∫ tn+1

tn−1

∥∂tttϕ∥2 dt ≤ 32τ3
∫ tn+1

tn−1

∥∂tttϕ∥2 dt, if n ≥ 1, (4.21)

∥∥Rn+1
1

∥∥2 ≤ τ

3

∫ t1

0

∥∂ttϕ∥2 dt ≤
τ2

3
∥ϕ∥W 2,∞(0,T ;L2) ≤ C9τ

2, if n = 0. (4.22)

An analogous estimate is available for the second remainder term:

∥∥∇Rn+1
2

∥∥2 ≤

 32τ3
∫ tn+1

tn−1
∥∂tt∇ϕ∥2 dt, n ≥ 1,

C10τ
2, n = 0.

(4.23)

In fact, the estimate for n = 0 is based on the fact that

∥∇R1
2∥2 = ∥∇(ϕ1 − ϕ0)∥2 ≤ τ

∫ t1

t0

∥∂t∇ϕ∥2dt ≤ τ2∥ϕ∥W 1,∞(0,T ;H1
per(Ω)) ≤ C10τ

2.

For the third remainder term, we obtain the estimate

∥∥Rn+1
3

∥∥2 ≤

 A2τ3
∫ tn+1

tn
∥∂t∆ϕ∥2 dt, n ≥ 1,

0, n = 0.
(4.24)
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Using the definitions of Ritz projection and combining the lumped version definition of the discrete

Laplacian operator, it holds that (∆hvh, χ)Q = −(∇vh,∇χ), for ∀ vh, χ ∈ Sh,(
∇ηn+1,∇vh

)
=
(
∇µn+1 −∇Rhµ

n+1,∇vh
)
+
(
∇Rhµ

n+1 −∇µn+1
h ,∇vh

)
=
(
∇
(
Rhµ

n+1 − µn+1
h

)
,∇vh

)
=
(
Rhµ

n+1 − µn+1
h ,−∆hvh

)
Q

=
(
µn+1 − µn+1

h +Rhµ
n+1 − µn+1,−∆hvh

)
Q

=
(
ηn+1,−∆hvh

)
Q
−
(
µn+1 −Rhµ

n+1,−∆hvh
)
Q
.

(4.25)

Denote ρn+1
ϕ := ϕn+1−Rhϕ

n+1, σn+1
ϕ := Rhϕ

n+1−ϕn+1
h , taking wh = ∆hvh in (4.20) and using (4.25),

we have

(δτσ
n+1
ϕ , vh)Q − ε2(∇σn+1

ϕ ,∇(∆hvh))

= −(Rn+1
1 , vh) + (g(ϕn+1)− g(ϕn+1

h ),∆hvh)Q − θ0(R
n+1
2 ,∆hvh)Q − θ0(T

n+1
1 ,∆hvh)Q

+ (Rn+1
3 ,∆hvh) + (µ−Rhµ

n+1,−∆hvh)Q − κh(δτϕ
n+1, vh)

− κh(µ
n+1,∆hvh) + κh(g(ϕ

n+1),∆hvh)− θ0κh(ϕ
n+1,∆hvh)

+ τ(∇Tn+1
2 ,∇(∆hvh))− (δτρ

n+1
ϕ , vh)Q.

(4.26)

In turn, taking vh = (−∆h)
−1σn+1

ϕ , the equation (4.26) can be written as follows

(δτσ
n+1
ϕ ,−∆−1

h σn+1
ϕ )Q + ε2(∇σn+1

ϕ ,∇σn+1
ϕ ) + τ(∇Tn+1

2 ,∇σn+1
ϕ )

=− (Rn+1
1 ,−∆−1

h σn+1
ϕ )− (g(ϕn+1)− g(ϕn+1

h ), σn+1
ϕ )Q + θ0(R

n+1
2 , σn+1

ϕ )Q

+ θ0(T
n+1
1 , σn+1

ϕ )Q + (µn+1 −Rhµ
n+1, σn+1

ϕ )Q − κh(δτϕ
n+1,−∆−1

h σn+1
ϕ ) + κh(µ

n+1, σn+1
ϕ )

− κh(g(ϕ
n+1), σn+1

ϕ ) + θ0κh(ϕ
n+1, σn+1

ϕ )− (δτρ
n+1
ϕ ,−∆−1

h σn+1
ϕ )Q − (Rn+1

3 , σn+1
ϕ )

=J1 + J2 + J3 + J4 + J5 + J6 + J7 + J8 + J9 + J10 + J11 := J.

(4.27)

Now look at the left-hand side of (4.27). From (4.19), we have

(
δτσ

n+1
ϕ ,−∆−1

h σn+1
ϕ

)
Q
=


1
2τ

(∥∥pn+1
∥∥2
G
− ∥pn∥2G

)
+ 1

4τ

∥∥∥σn+1
ϕ − 2σn

ϕ + σn−1
ϕ

∥∥∥2
−1,Q

, n ≥ 1,

1
2τ

(∥∥∥σ1
ϕ

∥∥∥2
−1,Q

−
∥∥∥σ0

ϕ

∥∥∥2
−1,Q

)
+ 1

2τ

∥∥∥σ1
ϕ − σ0

ϕ

∥∥∥2
−1,Q

, n = 0,

(4.28)

where pk+1 = [σk
ϕ, σ

k+1
ϕ ]T . Using the equality (3.2) indicates that

τ(∇Tn+1
2 ,∇σn+1

ϕ ) = Aτ(∇(ξn+1 − ξn),∇σn+1
ϕ )

= Aτ(∇(ρn+1
ϕ − ρnϕ),∇σn+1

ϕ ) +Aτ(∇(σn+1
ϕ − σn

ϕ),∇σn+1
ϕ )

≥ 1

2
Aτ(∥∇σn+1

ϕ ∥2 − ∥∇σn
ϕ∥2). (4.29)

Meanwhile, the estimate for the term associated with the surface diffusion is straightforward:

ε2(∇σn+1
ϕ ,∇σn+1

ϕ ) = ε2∥∇σn+1
ϕ ∥2. (4.30)

A combination with of (4.28), (4.29)and(4.30) reveals that, the left-hand side of (4.27) is bounded from

below:

1

2τ

(∥∥pn+1
∥∥2
G
− ∥pn∥2G

)
+

1

2
Aτ

(∥∥∥∇σn+1
ϕ

∥∥∥2 − ∥∥∇σn
ϕ

∥∥2)+ ϵ2
∥∥∥∇σn+1

ϕ

∥∥∥2 ≤ J, for n ≥ 1. (4.31)

Observe that σ0
ϕ ≡ 0 for n = 0, and we know that A = 0. As a result, we get

1

2τ
(∥σ1

ϕ∥2−1,Q − ∥σ0
ϕ∥2−1,Q + ∥σ1

ϕ − σ0
ϕ∥2−1,Q) + ε2∥∇σ1

ϕ∥2 ≤ J,
1

2τ
∥σ1

ϕ∥2−1,Q + ε2∥∇σ1
ϕ∥2 ≤ J. (4.32)

12



Next, we study the eleven terms on the right-hand side of (4.27). Employing the (4.21) and Young

inequality reveals that

J1 ≤ ∥Rn+1
1 ∥−1,Q∥σn+1

ϕ ∥−1,Q ≤


64τ3

∫ tn+1

tn−1
∥∂tttϕ∥2 dt+ 1

8

∥∥∥σn+1
ϕ

∥∥∥2
−1,Q

, n ≥ 1,

2C9τ
3 + 1

8τ

∥∥∥σ1
ϕ

∥∥∥2
−1,Q

, n = 0.
(4.33)

For the nonlinear term J2, we begin with an application of the mean value theorem:

g(ϕn+1)− g(Rhϕ
n+1) =

2(ϕn+1 −Rhϕ
n+1)

1− (λn+1)2
,

where λn+1 ∈ Sh is between ϕn+1 and Rhϕ
n+1. Moreover, from the positivity analysis, suppose there

exists a constant δ > 0, ∥ϕn+1∥L∞ ≤ 1− δ. In turn, we get ∥Rhϕ
n+1∥L∞ ≤ 1− 1

2δ if h is small enough,

by Lemma 4.1. Therefore,

∥ 2

1− (λn+1)2
∥ ≤ 2

1− (1− 1
2δ)

2
:= C̃8. (4.34)

Moreover, the convex nature of logarithmic term implies the following results:

(g(Rhϕ
n+1)− g(ϕn+1

h ), σn+1
ϕ ) ⩾ 0. (4.35)

Immediately, using the above inequality and Poincare’s inequality yields the following result

J2 = −(g(ϕn+1)− g(ϕn+1
h ), σn+1

ϕ )Q

= −(g(ϕn+1)− g(Rhϕ
n+1), σn+1

ϕ )Q − (g(Rhϕ
n+1)− g(ϕn+1

h ), σn+1
ϕ )Q

≤ C̃8∥ρn+1
ϕ ∥∥σn+1

ϕ ∥ ≤ CC̃8∥ρn+1
ϕ ∥∥∇σn+1

ϕ ∥

≤ C8Ch
4

2ε2
∥ϕn+1∥2H2 +

ε2

8
∥∇σn+1

ϕ ∥2,

(4.36)

where C8 = (CC̃8)
2.

The standard finite element approximation estimate could be applied to handle the term J5:

J5 = (µn+1 −Rhµ
n+1, σn+1

ϕ )Q ≤ ∥(I −Rh)µ
n+1∥−1,Q∥∇σn+1

ϕ ∥

≤ 4Ch4

ε2
∥µn+1∥2H2 +

ε2

16
∥∇σn+1

ϕ ∥2.
(4.37)

By Lemma 4.2, we have

J6 = −κh(δτϕn+1,−∆−1
h σn+1

ϕ ) ≤ Ch2∥∇δτϕn+1∥∥∇(∆−1
h σn+1

ϕ )∥

≤ Ch2∥∇δτϕn+1∥∥σn+1
ϕ ∥−1,Q ≤ 2Ch4

τ

∫ tn+1

tn

∥∂t∇ϕ∥2dt+
1

8
∥σn+1

ϕ ∥2−1,Q.
(4.38)

Similarly, the following bounds could be derived:

J7 = κh(µ
n+1, σn+1

ϕ ) ≤ 4Ch4

ε2
∥∇µn+1∥2 + ε2

16
∥∇σn+1

ϕ ∥2, (4.39)

J9 = θ0κh(ϕ
n+1, σn+1

ϕ ) ≤ 4Ch4θ20
ε2

∥∇ϕn+1∥2 + ε2

16
∥∇σn+1

ϕ ∥2. (4.40)

Moreover, an application of Lemma 4.3 yields

J8 ≤ κh(g(ϕ
n+1), σn+1

ϕ ) ≤ C5h
2(∥∇ϕn+1∥2L4∥σn+1

ϕ ∥+ ∥∇ϕn+1∥∥∇σn+1
ϕ ∥)

≤ 8(CC5)
2h4

ε2
(∥∇ϕn+1∥4L4 + ∥∇ϕn+1∥2) + ε2

16
∥∇σn+1

ϕ ∥2.
(4.41)
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The term J10 could be analyzed in a similar manner:

J10 = −(δτρ
n+1
ϕ ,−∆−1

h σn+1
ϕ )Q ≤ ∥δτρn+1

ϕ ∥−1,Q∥σn+1
ϕ ∥−1,Q

≤ 2∥δτρn+1
ϕ ∥2−1,Q +

1

8
∥σn+1

ϕ ∥2−1,Q ≤ 2Ch4

τ

∫ tn+1

tn

∥∂tϕ∥2dt+
1

8
∥σn+1

ϕ ∥2−1,Q.
(4.42)

For the J3 term, we see that

J3 ≤ θ0∥∇Rn+1
2 ∥∥σn+1

ϕ ∥−1,Q ≤


64θ20τ

3
∫ tn+1

tn−1
∥∂tt∇ϕ∥2 dt+ 1

8

∥∥∥σn+1
ϕ

∥∥∥2
−1,Q

, n ≥ 1,

2θ20C10τ
3 + 1

8τ

∥∥∥σ1
ϕ

∥∥∥2
−1,Q

, n = 0.
(4.43)

For the J4 term, we define Tn+1
1,a := 2ρnϕ − ρn−1

ϕ and Tn+1
1,h := 2σn

ϕ − σn−1
ϕ . It is obvious that Tn+1

1 =

Tn+1
1,a + Tn+1

1,h , so that the following bound is valid:

J4 = θ0(T
n+1
1 , σn+1

ϕ )Q = θ0(T
n+1
1,a , σn+1

ϕ )Q + θ0(T
n+1
1,h , σn+1

ϕ )Q

≤ θ0∥Tn+1
1,a ∥−1,Q∥∇σn+1

ϕ ∥+ θ0∥Tn+1
1,h ∥−1,Q∥∇σn+1

ϕ ∥

≤


ε2

4 ∥∇σ
n+1
ϕ ∥2 + 4θ2

0Ch4

ε2 (4∥ϕn∥2H2 + ∥ϕn−1∥H2) +
4θ2

0

ε2 (4∥σn
ϕ∥2−1,Q + ∥σn−1

ϕ ∥2−1,Q), n ≥ 1,

3ε2

8 ∥∇σ1
ϕ∥2 +

2θ2
0Ch4

ε2 ∥ϕ0∥2H2 , n = 0.

Lastly, repeating a similar process as in (4.24) gives an estimate for J11 as follows

J11 = τ(Rn+1
3 , σn+1

ϕ ) = Aτ(∇(ϕn+1 − ϕn),∇σn+1
ϕ ) ≤ Aτ∥∇(ϕn+1 − ϕn)∥∥∇σn+1

ϕ ∥

≤ 2A2τ3

ε2

∫ tn+1

tn

∥∂t∇ϕ∥2dt+
ε2

8
∥∇σn+1

ϕ ∥2.

Substituting these estimates into (4.27), and multiplying by 2τ on both sides, we have, for n ≥ 1,

(∥∥pn+1
∥∥2
G
− ∥pn∥2G

)
+Aτ2

(∥∥∥∇σn+1
ϕ

∥∥∥2 − ∥∥∇σn
ϕ

∥∥2)+
ε2τ

2

∥∥∥∇σn+1
ϕ

∥∥∥2
≤ τ∥σn+1

ϕ ∥2−1,Q + 128τ4
∫ tn+1

tn−1

∥∂tttϕ∥2 dt+
C8Ch

4τ

ε2
∥ϕn+1∥2H2 + 128θ20τ

4

∫ tn+1

tn−1

∥∂tt∇ϕ∥2 dt

+
8θ20Ch

4τ

ε2
(4∥ϕn∥2H2 + ∥ϕn−1∥H2) +

8θ20τ

ε2
(4∥σn

ϕ∥2−1,Q + ∥σn−1
ϕ ∥2−1,Q)

+
8Ch4τ

ε2
∥µn+1∥2H2 + 4Ch4

∫ tn+1

tn

∥∂t∇ϕ∥2dt+
8Ch4τ

ε2
∥∇µn+1∥2 + 16C2

5Ch
4τ

ε2
∥∇ϕn+1∥4L4

+
8Ch4τ

ε2
(θ20 + 2C2

5 )∥∇ϕn+1∥2 + 4Ch4
∫ tn+1

tn

∥∂tϕ∥2dt+
4A2τ4

ε2

∫ tn+1

tn

∥∂t∇ϕ∥2dt.

(4.44)

For n = 0, a similar inequality could be derived:

1

2
∥σ1

ϕ∥2−1,Q +
τε2

2
∥∇σ1

ϕ∥2 ≤ τ

2

∥∥σ1
ϕ

∥∥2
−1,Q

+
C8Ch

4τ

ε2
∥ϕ1∥2H2 +

4θ20Ch
4τ

ε2
∥ϕ0∥2H2 +

8Ch4τ

ε2
∥µ1∥2H2

+ 4Ch4
∫ t1

t0

∥∂t∇ϕ∥2dt+
8Ch4τ

ε2
∥∇µ1∥2 + 16C2

5Ch
4τ

ε2
∥∇ϕ1∥4L4

+
8Ch4τ

ε2
(θ20 + 2C2

5 )∥∇ϕ1∥2 + 4Ch4
∫ t1

t0

∥∂tϕ∥2dt+ 4C9τ
4 + 4θ20C10τ

4,
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or equivalently,

5

2
∥σ1

ϕ∥2−1,Q +
τε2

2
∥∇σ1

ϕ∥2 ≤ 5τ

2

∥∥σ1
ϕ

∥∥2
−1,Q

+
5C8Ch

4τ

ε2
∥ϕ1∥2H2 +

20θ20Ch
4τ

ε2
∥ϕ0∥2H2

+
40Ch4τ

ε2
∥µ1∥2 + 20Ch4

∫ t1

t0

∥∂t∇ϕ∥2dt+
40Ch4τ

ε2
∥∇µ1∥2

+
80C2

5Ch
4τ

ε2
∥∇ϕ1∥4L4 +

40Ch4τ

ε2
(θ20 + 2C2

5 )∥∇ϕ1∥2

+ 20Ch4
∫ t1

t0

∥∂tϕ∥2dt+ 20C9τ
4 + 20θ20C10τ

4,

(4.45)

in which ∥p1∥2G = 5
2∥σ

1
ϕ∥2−1,Q and ∥pn+1∥2G ≥ 1

2∥σ
n+1
ϕ ∥2−1,Q. Summing (4.44) from k = 1 to k = n+ 1,

adding (4.45), keeping in mind of (4.18) (the relationship between G-norm and H−1-norm), we arrive

at the following estimate for n ≥ 1:

1

2
∥σn+1

ϕ ∥2−1,Q +
ε2τ

2

n∑
k=0

∥∇σk+1
ϕ ∥2 ≤

∥∥pn+1
∥∥2
G
+Aτ2

∥∥∥∇σn+1
ϕ

∥∥∥2 + ε2τ

2

n∑
k=0

∥∥∥∇σk+1
ϕ

∥∥∥2
≤ τ∥σn+1

ϕ ∥2−1,Q + (
5

2
+

40θ20
ε2

)τ

n−1∑
k=0

∥∥∥σk+1
ϕ

∥∥∥2
−1,Q

+R,

where

R =
40Ch4τ

ε2

n∑
k=0

∥µk+1∥2H2 +
40Ch4τ

ε2

n∑
k=0

∥∇µk+1∥2 + 128τ4(

∫ T

0

∥∂tttϕ∥2dt+ θ20

∫ T

0

∥∂tt∇ϕ∥2dt)

+ 20Ch4(

∫ T

0

∥∂t∇ϕ∥2dt+
∫ T

0

∥∂tϕ∥2dt) +
5Ch4τ

ε2
(C8 + 8θ20)

n∑
k=0

∥ϕk+1∥2H2 +
80Ch4τ

ε2

n∑
k=0

∥∇ϕk+1∥4L4

+
40Ch4τ

ε2
(θ20 + 2C2

5 )

n∑
k=0

∥∇ϕk+1∥2 + 4A2τ4

ε2

∫ T

0

∥∂t∇ϕ∥2dt+ 20(C9 + θ20C10)τ
4 ≤ C(T, ε)(τ4 + h4),

where C(T, ε) is independent of τ and h, under a technical assumption

0 < τ ≤ 1

4
:= τ1. (4.46)

Finally, an application of the discrete Gronwall inequality leads to the desired convergence result

∥σn+1
ϕ ∥2−1,Q + ε2τ

n∑
k=0

∥∇σk+1
ϕ ∥2 ≤ C(T, ε)(τ4 + h4).

which completes the proof. □

Remark 4.1. Here the restriction condition (4.46) is simple and does not depend on ϵ, which may

be different if the L2 norm estimates are considered. This comes from the convexity property of the

nonlinear term is used in H−1 norm analysis.

5. Numerical results

In this section, we present some numerical simulation results using the proposed scheme (3.1) to

verify the theoretical results. We demonstrate, in particular, the positivity of the numerical solutions.

In the numerical test, we use a slightly different formulation of the Cahn-Hilliard equation, which

allows for a comparison with the so-called obstacle potential. Specifically, we will use the standard

Ginzburg-Landau free energy E[ϕ] =
∫
Ω

{
f(ϕ) + ε2

2 |∇ϕ|
2
}
dx, where f(ϕ) = fc(ϕ)− fe(ϕ) and

fc(ϕ) =
1

2θ0
[(1− ϕ) ln(1− ϕ) + (1 + ϕ) ln(1 + ϕ)], fe(ϕ) =

1

2
(ϕ− 1)(ϕ+ 1). (5.1)
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Importantly, as θ0 → ∞, f tends to the obstacle potential

fobs(θ) =


1
2 (ϕ− 1)(ϕ+ 1), if −1 < ϕ < 1,

∞, if |ϕ| ≥ 1.

which has been investigated elsewhere [5,6]. While we are only interested in the case of finite values of

θ0, it is interesting to explore the effects of increasing θ0. For finite θ0, clearly f
′
e(ϕ) = ϕ and

f ′c(ϕ) =
1

2θ0
(ln(1 + ϕ)− ln(1− ϕ)).

In turn, the chemical potential for the Cahn-Hilliard model could be expressed as

µ = f ′c(ϕ)− f ′e(ϕ)− ε2∆ϕ.

Next, two examples will be simulated to verify the theoretical result. The first example is aimed to test

the numerical convergence associated with the numerical scheme and the second one is to present some

results associated with the phase evolution.

Example 5.1. Here we give a convergence test for the proposed numerical scheme. The initial condition

is given by

ϕ(x, y, 0) = 1.8

(
1− cos

(
4xπ
3.2

)
2

)(
1− cos

(
2yπ
3.2

)
2

)
− 0.9, (5.2)

To get the convergence rate, “the Cauchy difference”, δϕ, is computed between approximate solutions

obtained with successively finer time sizes. Since the exact solution is unknown, we compute the errors

by adjacent time step in the numerical accuracy test, where the coarse spacial step hc is twice as much

as the fine step hf . The parameters are given by: (domain size) L = 3.2; (interfacial parameter)

ε = 0.2; (mobility) M ≡ 1; (quench parameter) θ0 = 3.0; (final time) T = 0.4; (Newton iteration

stopping tolerance) σ = 10−6; (stabilization parameter) A = 1. The refinement path for the proposed

second-order scheme is linear, τ = 0.1h. We only consider the periodic boundary condition, while the

case of homogeneous Neumann boundary condition could be similarly handled. The test results are

displayed in Table 1. We observe that the optimal convergence rate is achieved, with perfect second

order accuracy in both time and space.

Table 1. Numerical errors and convergence rates for the proposed numerical scheme

at T = 0.4.

hc hf ∥eϕ∥∞ Rate ∥eϕ∥2 Rate

3.2
16

3.2
32 1.3811e-01 – 1.0976e-01 –

3.2
32

3.2
64 3.7976e-02 1.8626 3.0280e-02 1.8579

3.2
64

3.2
128 9.7227e-03 1.9657 7.7705e-03 1.9623

3.2
128

3.2
256 2.4478e-03 1.9898 1.9580e-03 1.9886

3.2
256

3.2
512 6.1343e-04 1.9965 4.9085e-04 1.9961

Example 5.2. Consider the spinodal decomposition over the domain Ω = (0, 1)2, with the physical

parameters ε = 5.0× 10−3, θ0 = 3.0, as well as the numerical resolution h = 1/256, τ = 5× 10−6. The

initial data is given by

ϕ(x, y, 0) = 0.2 + ri,j , (5.3)

where ri,j is uniformly distributed random numbers in [−0.02, 0.02].
16



The second order scheme is implemented with stabilization parameter A = 1 to show the details

of spinodal decomposition with random initial data. Figure 5.1 displays the snapshot plot of ϕ at t

= 0.004, 0.01, 0.02, 0.1, 0.4 and 1, respectively. Moreover, the maximum values and minimum values

of the phase variable are presented in Figure 5.2 (a). In particular, a larger version of Figure 5.2 (a)

implies that the numerical solution is always located in the interval (−1, 1), which is in agreement with

the theory analysis. In addition, we present the error evolution of the total mass of ϕ (away from the

mass of ϕ0) in Figure 5.2(b), which demonstrates the mass conservation property. The energy evolution

of the numerical solution is illustrated in Figure 5.3, and a clear energy decay is observed.

Figure 5.1. Evolution of phase variables at t = 0.004, 0.01, 0.02, 0.1, 0.4 and 1, respectively.
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Figure 5.2. (a): The time evolution of the minimum and the maximum value of ϕ;

(b): The error development of the total mass for ϕ.

6. Concluding remarks

In this paper, we propose and analyze a second-order accurate in time, mass lumped finite ele-

ment numerical scheme for the Cahn-Hilliard equation with logarithmic Flory-Huggins energy potential.
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Figure 5.3. Evolution of the energy over time, with τ = 5× 10−6.

which contains an implicit treatment of the logarithmic term and the linear surface diffusion terms, as

well as an explicit update of the concave expansive linear terms. The backward differentiation for-

mula (BDF) stencil is applied in the temporal discretization. In the chemical potential approximation,

both the logarithmic singular terms and the surface diffusion term are treated implicitly, while the

expansive term is explicitly updated via a second-order Adams-Bashforth extrapolation formula. An

artificial Douglas-Dupont regularization term is added to ensure the energy dissipation. Mass lumped

finite element approximation and the singular nature of the logarithmic term ensure that the proposed

numerical algorithm has a unique solution with preserved positivity for the logarithmic arguments, so

that the finite element numerical solution is always located in the interval (-1,1) for all time in the

piecewise sense. Moreover, a modified energy stability is theoretically justified, and the convergence

analysis and error estimate have been established in the ℓ∞(0, T ;H−1) ∩ ℓ2(0, T ;H1) norm. Finally,

two numerical examples are carried out to show the robustness and accuracy of the proposed numerical

scheme, especially the performance of the spinodal decomposition phenomenon.
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[34] Q. Liu, A. Doelman, V. Rottschäfer, M. de Jager, P. M. Herman, M. Rietkerk, and J. van de Koppel. Phase

separation explains a new class of self organized spatial patterns in ecological systems. Proc. Natl. Acad. Sci. U. S.

A., 110(29):11905–11910, 2013.

[35] Y. Liu, W. Chen, C. Wang, and S. M. Wise. Error analysis of a mixed finite element method for a Cahn-Hilliard-

Hele-Shaw system. Numer. Math., 135(3):679–709, 2017.

[36] A. Miranville. A generalized Cahn-Hilliard equation with logarithmic potentials. In Continuous and Distributed

Systems II. Springer, 2015.

[37] A. Miranville. The Cahn-Hilliard equation and some of its variants. AIMS Math., 2(3):479–544, 2017.

[38] A. Miranville. Existence of solutions to a Cahn-Hilliard type equation with a logarithmic nonlinear term. Mediterr.

J. Math., 16(1):6, 2019.

[39] A. Novick Cohen. The Cahn-Hilliard equation. Handbook of differential equations: evolutionary equations, 4:201–228,

2008.

[40] Y. Qian, C. Wang, and S. Zhou. A positive and energy stable numerical scheme for the Poisson–Nernst–Planck–

Cahn–Hilliard equations with steric interactions. J. Comput. Phys., 426:109908, 2020.

[41] Z. Qiao, S. Sun, T. Zhang, and Y. Zhang. A new multi–component diffuse interface model with Peng-Robinson

equation of state and its scalar auxiliary variable (SAV) approach. Commun. Comput. Phys., 26(5):1597–1616, 2019.

[42] Y. Qin, C. Wang, and Z. Zhang. A positivity-preserving and convergent numerical scheme for the binary fluid-

surfactant system. Int. J. Numer. Anal. Model., 18(3):399–425, 2021.

[43] Y. Qin, Z. Xu, H. Zhang, and Z. Zhang. Fully decoupled, linear and unconditionally energy stable schemes for the

binary fluid surfactant model. Commun. Comput. Phys., 28(4):1389–1414, 2020.

[44] G. Schimperna. Global attractors for Cahn-Hilliard equations with nonconstant mobility. Nonlinearity, 20(10):2365–

2387, 2007.

[45] G. Schimperna and S. Zelik. Existence of solutions and separation from singularities for a class of fourth order

degenerate parabolic equations. Trans. Am. Math. Soc., 365(7):3799–3829, 2013.

[46] J. Shen and J. Xu. Convergence and error analysis for the scalar auxiliary variable (SAV) schemes to gradient flows.

SIAM J. Numer. Anal., 56(5):2895–2912, 2018.

[47] J. Shen, J. Xu, and J. Yang. The scalar auxiliary variable (SAV) approach for gradient flows. J. Comput. Phys.,

353:407–416, 2018.

[48] J. Shen, J. Xu, and J. Yang. A new class of efficient and robust energy stable schemes for gradient flows. SIAM Rev.,

61(3):474–506, 2019.

[49] J. Shen and X. Yang. Numerical approximations of Allen-Cahn and Cahn-Hilliard equations. Discret. Contin. Dyn.

Syst., 28(4):1669–1691, 2010.

[50] J. Shen and X. Yang. Decoupled, energy stable schemes for phase-field models of two-phase incompressible flows.

SIAM J. Numer. Anal., 53(1):279–296, 2015.

[51] J. Shen and X. Yang. The IEQ and SAV approaches and their extensions for a class of highly nonlinear gradient flow

systems. Contemp. Math, 754:217, 2020.

[52] J. Shin, H. G. Lee, and J. Y. Lee. Unconditionally stable methods for gradient flow using convex splitting Runge-Kutta

scheme. J. Comput. Phys., 347:367–381, 2017.

[53] V. Thomée. Galerkin Finite Element Methods for Parabolic Problems. Number v. 25 in Springer Series in Compu-

tational Mathematics. Springer, Berlin, New York, 2nd edition, 2006.

[54] D. Wang, X. Wang, and H. Jia. A second-order energy stable BDF numerical scheme for the Cahn-Hilliard equation

with logarithmic Flory-Huggins potential. Adv. Appl. Math. Mech., 13(4):867–891, 2021.

[55] D. Wang, X. Wang, and H. Jia. A second-order energy stable BDF numerical scheme for the viscous Cahn-Hilliard

equation with logarithmic Flory-Huggins potential. Adv. Appl. Math. Mech., 13(4):867–891, 2021.

[56] M. Wang, Q. Huang, and C. Wang. A second order accurate scalar auxiliary variable (SAV) numerical method for

the square phase field crystal equation. J. Sci. Comput., 88(2):1–36, 2021.

[57] S. M. Wise, C. Wang, and J. S. Lowengrub. An energy stable and convergent finite difference scheme for the phase

field crystal equation. SIAM J. Numer. Anal., 47(3):2269–2288, 2009.

[58] Z. Xu, X. Yang, H. Zhang, and Z. Xie. Efficient and linear schemes for anisotropic Cahn-Hilliard model using the

stabilized invariant energy quadratization (S-IEQ) approach. Comput. Phys. Commun., 238:36–49, 2019.

[59] Y. Yan, W. Chen, C. Wang, and S. M. Wise. A second-order energy stable BDF numerical scheme for the Cahn-

Hilliard equation. Commun. Comput. Phys., 23(2):572–602, 2018.

[60] X. Yang. Linear, first and second–order, unconditionally energy stable numerical schemes for the phase field model

of homopolymer blends. J. Comput. Phys., 327:294–316, 2016.

[61] X. Yang, J. Zhao, and Q. Wang. Numerical approximations for the molecular beam epitaxial growth model based on

the invariant energy quadratization method. J. Comput. Phys., 333:104–127, 2017.

[62] M. Yuan, W. Chen, C. Wang, S. Wise, and Z. Zhang. An energy stable finite element scheme for the three-component

Cahn-Hilliard-type model for macromolecular microsphere composite hydrogels. J. Sci. Comput., 87:78, 2021.

20



[63] J. Zhang, C. Wang, S. M. Wise, and Z. R. Zhang. Structure preserving, energy stable numerical schemes for a liquid

thin film coarsening model. SIAM J. Sci. Comput., 43(2):A1248–A1272, 2021.

[64] J. Zhao, Q. Wang, and X. Yang. Numerical approximations for a phase field dendritic crystal growth model based

on the invariant energy quadratization approach. Int. J. Numer. Methods Eng., 110(3):279–300, 2017.

School of Mathematical Sciences, Beijing Normal University, Beijing 100875, P.R. China ( Email ad-

dress, mqyuan@mail.bnu.edu.cn: )

Shanghai Key Laboratory of Mathematics for Nonlinear Sciences, School of Mathematical Sciences;

Fudan University, Shanghai, China 200433 (Corresponding author, Email address, wbchen@fudan.edu.cn:

)

Department of Mathematics, The University of Massachusetts, North Dartmouth, MA 02747, USA ( Email

address, cwang1@umassd.edu: )

Department of Mathematics, The University of Tennessee, Knoxville, TN 37996, USA ( Email address,

swise1@utk.edu: )

School of Mathematical Sciences, Beijing Normal University and Laboratory of Mathematics and Com-

plex Systems, Ministry of Education, Beijing 100875, P.R. China ( Email address, zrzhang@bnu.edu.cn: )

21


	1. Introduction
	2. The weak formulation
	3. The fully discrete numerical scheme
	4. The energy stability and convergence analysis
	5. Numerical results
	6. Concluding remarks
	Acknowledgments
	References

