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A B S T R A C T

The efficacy for shock mitigation of an interface between a hexagonally-packed ordered granular medium
and an elastic solid — referred to as the ‘‘granular-solid interface’’, is studied. The granular medium is
composed of three columns of granules (with the intermediate column composed of ‘‘intruders’’, i.e., of lighter
granules compared to their neighbors) which are closely packed but without any initial precompression. The
granular medium is in contact with a thin plate (the elastic solid) in plane stress so that only planar motions
are considered. This yields a strongly nonlinear, hybrid, i.e., discrete–continuum 2D acoustical problem. A
half -sine distributed shock is applied to the left granular column, and the aim is to mitigate as much as
possible the shock energy transmitted to the thin plate. The discrete element (DE) method is adopted to
model the granular responses which incorporate not only Hertzian (normal) contact interactions, but also
frictional effects due to granule rotations. A computational algorithm based on interpolations and iterations
is employed to accurately simulate the contact forces at the interface between the granular medium and the
thin plate, modeled using finite element, and the numerical stability is checked at each successive (variable)
time step to ensure unconditional convergence of the numerical results. It is shown that the granular medium
can be designed to absorb a major portion of the applied impulsive energy. To this end a study of the energy
partition in the granular interface is performed by changing the sizes and material properties of the column
of intruders, and investigating the amount of impulsive energy that is eventually transmitted to the thin plate.
When lighter polytetrafluoroethylene (PTFE) intruders are combined with heavier steel granules, it is shown
that the impulsive energy is mostly localized in the first column of the granular medium and negligible energy
reaches the thin plate. The reason for this effective shock mitigation is the disparity in the time scales between
the responses of the steel granules and the PTFE intruders, which, in turn, leads to an effective impedance
mismatch that confines the impulsive energy, preventing it from propagating through the interface. Moreover,
being nonlinear, the shock mitigation effectiveness of the granular-solid interface is tunable with energy, with
enhanced effectiveness for weaker shocks. The methods and results reported in this work pave the way for
predictively designing hybrid interfaces for drastically enhanced shock mitigation, with broad engineering
applications.
1. Introduction

Wave propagation in granular media composed of closely packed
rdered granules has attracted considerable attention of researchers.
he geometric nonlinearity of the contact constitutive law enables
ich nonlinear phenomenon in granular media. Nesterenko et al. [1–5]
ioneered the research of wave propagation in ordered granular media
omposed of identical linear elastic granules ordered and having no ini-
ial pre-compression. Solitary waves (referred to as Nesterenko solitary
aves) are realized in homogeneous one-dimensional (1D) granular
hains, having the form of localized pulses that preserve their shapes
uring propagation. Extensive research [6–8] has been conducted on
he interaction between Nesterenko solitary waves and local defect in a

∗ Corresponding author.
E-mail address: chongan2@illinois.edu (C. Wang).

granular chain. The most common approach to introduce such a defect
is to replace one of the granules with a light intruder. It was shown
that local intruders can significantly affect the nonlinear acoustics of
granular media, through the generation of transient breathers that are
localized at the sites of intruders and confine energy over relatively
long-time scales.

The possibility of energy confinement in ordered granular media has
led to investigations of granular protectors acting as energy absorbers.
These consist of granular media that are designed to protect primary
structures by absorbing energy from applied shock excitations, and only
allowing drastically diminished excitations to reach the primary struc-
tures. A notable engineering application consists of layered granular
materials separated by continuous elastic sheets used in retaining walls
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and reinforced by geogrid fabrics [9,10]. Such applications naturally
lead to research on the nonlinear acoustics of granular-solid interfaces,
since this can lead to predictive design and optimization of granular
media as energy absorbers and shock mitigators. Potekin et al. [11] first
developed an algorithm that accurately simulates the nonlinear wave
scattering at the interface of a 1D granular chain with a linearly elastic
cord, and Zhang et al. [12] extended this algorithm to the interface
of a 1D granular chain with a linearly elastic membrane. In these
algorithms, iterations and interpolations of the contact forces between
at the granular-solid interfaces are applied at successive time steps to
ensure their accurate computations. In both works, the 1D granular
chains were composed of alternating heavy and light granules, i.e. they
were granular dimmer. It was shown that the energy transmissibility
at the discrete–continuum interface was highly dependent on the mass
ratios of the alternating granules of the dimmers. Hence, by choosing
the appropriate parameters, such 1D granular dimmer chains can be
designed as effective passively shock mitigators.

Despite previous studies on 1D granular media, research on higher-
dimensional granular protectors is rather limited. In addition to typical
Hertzian normal contact forces, tangential effects due to granular ro-
tations are unavoidable in 2D or 3D granular media, which, in turn,
lead to frictional effects that highly complicate the nonlinear acoustics.
In fact, Yang et al. showed that the omission of frictional effects leads
to significant errors [13] when modeling the acoustics of hexagonally
packed granular media. Moreover, frictional effects may lead to dy-
namical instabilities [14–16], which represent an additional source
of complication in the analysis in higher dimensions. Therefore, it is
critical to accurately incorporate such frictional effects when studying
2D granular media as shock mitigators, as is the aim of the current
work. Towards this aim, Wang et al. [17] extended the algorithm
developed in [11] to 2D granular-elastic solid interfaces and achieved
accurate simulations of the contact forces at the discrete–continuum
interface, even when incorporating frictional effects due to granule
rotations. The iterations of the contact forces at the interface between
the granular medium and the elastic solid were conditionally stable
when imposing a stability criterion which was formulated based on
the forcing amplitudes, the adopted friction law and the variable time
step increments. Therefore, sufficiently small time-steps were required
for convergence of the computational iterations, thus ensuring the
stability and robustness of the algorithm. This work paved the way
for accurately and systematically studying the strongly nonlinear and
highly discontinuous wave scattering at 2D granular-solid interfaces.

In the present work, we focus on the shock mitigation capacity of
the granular medium component of a 2D granular-thin plate interface
forced by shock excitation. The overall aim of the mitigation is to
reduce as much as possible the portion of the shock energy that is
eventually transmitted to the thin plate. Emphasis is given on the
topological configuration and the geometric and material properties
of the granular medium to efficiently localize the energy induced
by applied shocks. Specifically, we consider a 2D granular medium
composed of three layers of granules, being in contact with a thin plate
(the elastic solid). Specifically, the granular medium is composed of
two layers (columns) of ‘‘heavy’’ granules which are separated by an
intermediate layer of ‘‘light’’ intruders. In Section 2, we briefly review
the mathematical modeling of this granular-plate interface and explain
the algorithm for the simulation. In Section 3, we evaluate the efficacy
of the granular medium as shock mitigator and show that it can be
designed to effectively localize (spatially confine) a major portion of the
applied impulsive energy. Moreover, we show that shock mitigation in
the granular medium can be maximized by appropriately selecting the
system parameters of the layer of light intruders. Lastly in Section 4,
we provide a brief synopsis of the main results of this work and discuss

some possible future extensions.

2

2. System description

We consider 2D granular-solid interface shown in Fig. 1a, consisting
of a granular medium in contact with a thin elastic plate. The granular
medium is composed of 14 hexagonally packed granules arranged in
two columns of heavy granules (granules 1–5 and A–E in Fig. 1b) and
an intermediate column of light intruders (granules 6–9 in Fig. 1b),
with no initial precompression. Each granule is spherical and composed
of linear viscoelastic material. A distributed in-plane shock excitation
is applied to the left column of the heavy granules, and the granular-
solid interface is assumed to be at rest before the excitation is applied.
For simplicity, only planar motions of the granules and the thin elastic
plate — modeled using the plane stress approximation, are taken into
consideration. The schematic of the 2D planar interface model is shown
in Fig. 1b. All boundaries of the granular medium are assumed to
be fixed (clamped) except for its right boundary granules that are in
contact with the elastic plate. The top and bottom boundaries of the
elastic plate are clamped as well, and the right boundary is traction-
free. In this work, we focus on the localization of a major portion of the
applied shock energy to the granular medium. Accordingly, we study
the primary wave transmission through the granular-solid interface,
i.e., the transmission of the wave front that is generated immediately
following the application of the shock. The overall aim is to reduce
as much as possible the portion of the shock energy that is eventually
transmitted to the thin plate. Following the methodology developed in
previous works for similar discrete–continuum systems [11,12,17,18],
the discrete element (DE) method is applied to model the granular
medium, incorporating radial (Hertzian) and tangential (Frictional)
interactions between granules, while the finite element (FE) method is
employed to model the thin elastic plate. We note the Hertzian contact
forces are generated due to granule-to-granule and granule-to-plate
compressions, while frictional forces are due to granule rotations. These
two computational models are coupled by accurately computing the in-
teraction forces between the contacting boundary granules and the thin
elastic plate at successive time steps through an iterative/interpolative
computational algorithm. The validity of the computation is verified by
the conservation of the total energy at each time step of the computa-
tion; this energy measure includes the energy dissipated by friction and
the viscoelasticity of the granules.

The detailed DE and FE models for the components of the 2D
granular interface granules have been described in detail in [14,15],
so here we only provide a brief overview. Considering first the DE
model of the granular medium, each granule is assumed to be linearly
viscoelastic, but the strong nonlinearity in its acoustics is caused by
(i) Hertzian interactions between granules when in compression [17,
18], (ii) separations between granules in the absence of compression
and ensuing impacts between them, and (iii) frictional forces due to
granule rotations; these nonlinearities also hold in the interactions of
the boundary granules that are initially in contact with the elastic
plate. Under certain conditions related to small deformations [19], each
granule is modeled as a rigid body with three degrees of freedom
(DOF), i.e. two translational and one rotational DOF. For sake of nu-
merical stability [17], the frictional forces are modeled by the smooth
Coulomb–tanh friction model [20,21]; as discussed in [14] using the
non-smooth Coulomb friction law would lead to numerical instability
of the simulations. Assuming that the 𝑖th granule is interacting with its
neighboring 𝑗th granule and the elastic plate at the 𝑘th contact point
(see Fig. 1c), its equations of motion are given by:

𝒔̈𝑖 =
∑

𝑗
(

𝑵 𝑖𝑗 + 𝒇 𝑖𝑗
)

+
∑

𝑘
(

𝑵 𝑖𝑘 + 𝒇 𝑖𝑘
)

𝑚𝑖
;

𝜽̈𝑖 =
𝑅𝑖

∑

𝑗
(

𝒏𝑖𝑗 × 𝒇 𝑖𝑗
)

+ 𝑅𝑖
∑

𝑘
(

𝒏𝑖𝑘 × 𝒇 𝑖𝑘
)

𝐼𝑖

(1)

Referring to the notation of Fig. 1c, 𝒔𝑖 denotes the displacement vector
of the 𝑖th granule that involves the horizontal and vertical displace-
ments; 𝜽𝑖 = 𝜃𝑖𝒌 is the rotational pseudo-vector of the 𝑖th granule where
𝜃 is the angle of rotation and 𝒌 the unit pseudo-vector of the rotation
𝑖
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Fig. 1. Schematics of the granular-thin plate interface subject to a distributed shock excitation: (a) 3D isometric view, (b) 2D planar model with boundary conditions, and (c)
granule-to-granule and granule-to-elastic plate contact points, corresponding free body diagrams and notations.
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(with positive anti-clockwise direction); overdot denotes differentiation
with respect to the time variable 𝜏; 𝑵 𝑖𝑗 and 𝒇 𝑖𝑗 are the normal and
tangential forces, respectively, exerted to the 𝑖th granule by the 𝑗th
granule; while 𝑵 𝑖𝑘 and 𝒇 𝑖𝑘 denote the normal and tangential forces
exerted to the 𝑖th granule by the 𝑘th contact point at the interface with
the plate. 𝒏𝑖𝑗 denotes the unit normal vector pointing from the center
of the 𝑖th granule to the 𝑗th granule, while 𝒏𝑖𝑘 denotes the unit normal
vector pointing from the center of the 𝑖th granule perpendicular to the
𝑘th boundary. In addition, 𝑚𝑖, 𝑅𝑖 and 𝐼𝑖 = 2∕5𝑚𝑖𝑅2

𝑖 denote the mass,
radius and moment of inertia of the 𝑖th granule, respectively.

The normal Hertzian forces in (1) are expressed as [13,22,23],

𝑵 𝑖𝑗 = −
(

𝐴𝑖𝑗𝛿
3∕2
𝑛,𝑖𝑗 + 𝛾𝑖𝑗 𝛿̇𝑛,𝑖𝑗

)

𝒏𝑖𝑗

𝑵 𝑖𝑘 = −
(

𝐴𝑖𝑘𝛿
3∕2
𝑛,𝑖𝑘 + 𝛾𝑖𝑘𝛿̇𝑛,𝑖𝑘

)

𝒏𝑖𝑘
(2)

where 𝛿𝑛,𝑖𝑗 = 𝑚𝑎𝑥
(

𝑅𝑖 + 𝑅𝑗 −
|

|

|

𝒔𝑗 − 𝒔𝑖
|

|

|

, 0
)

is the relative normal de-
formation between the 𝑖th and the 𝑗th granules, and 𝛿𝑛,𝑖𝑘 is the rela-
tive normal deformation between the 𝑖th granule and the 𝑘th contact
point with the plate; note that for the clamped boundaries, 𝛿𝑛,𝑖𝑘 =
(

𝒔𝑖 − 𝒔𝑖 (𝜏 = 0)
)

⋅ 𝒏𝑖𝑘. For simplicity, we only consider the translational
motions of the flexible boundaries with the rotational motions ne-
glected, which is valid in the limit of small deformations. Therefore, the
normal vector 𝒏𝑖𝑘 is a constant for each flexible boundary, and 𝛿𝑛,𝑖𝑘 =
(

𝒔𝑖 − 𝒔𝑖 (𝜏 = 0) − 𝒖𝑘
)

⋅ 𝒏𝑖𝑘, where 𝒖𝑘 denotes the displacement vector of
the 𝑘th contact point on the plate. In (2) 𝐴𝑖𝑗 , 𝛾𝑖𝑗 , (𝐴𝑖𝑘 and 𝛾𝑖𝑘) denote the
Hertzian and the viscous damping coefficients of the granule-to-granule
contact (granule-contact point of the plate), respectively, given by:

𝐴𝑖𝑗 = (4∕3)𝐸∗
𝑖𝑗

√

𝑅∗
𝑖𝑗 ; 𝐴𝑖𝑘 = (4∕3)𝐸∗

𝑖𝑘

√

𝑅∗
𝑖𝑘

𝑖𝑗 = 𝛼𝑛
(

𝑚∗
𝑖𝑗𝐴𝑖𝑗

)1∕2
𝛿1∕4𝑛,𝑖𝑗 ; 𝛾𝑖𝑘 = 𝛼𝑛

(

𝑚∗
𝑖𝑘𝐴𝑖𝑘

)1∕2 𝛿1∕4𝑛,𝑖𝑘

(3)

n (3) 𝛼𝑛 is a material coefficient related to the restitution coeffi-
ient [23], and 𝐸∗, 𝑚∗ and 𝑅∗ are the effective Young’s modulus, mass
nd radius, respectively, given by:

1
𝐸∗
𝑖𝑗

=
1 − 𝜈2𝑖
𝐸𝑖

+
1 − 𝜈2𝑗
𝐸𝑗

, 1
𝐸∗
𝑖𝑘

=
1 − 𝜈2𝑖
𝐸𝑖

+
1 − 𝜈2𝑘
𝐸𝑘

,

1
𝑅∗
𝑖𝑗

= 1
𝑅𝑖

+ 1
𝑅𝑗

; 1
𝑅∗
𝑖𝑘

= 1
𝑅𝑖

+ 1
𝑅𝑘

1
𝑚∗
𝑖𝑗

= 1
𝑚𝑖

+ 1
𝑚𝑗

, 1
𝑚∗
𝑖𝑘

= 1
𝑚𝑖

+ 1
𝑚𝑘

(4)

In (4) 𝐸, 𝜈, 𝑅 and 𝑚 denote the Young’s modulus, Poisson ratio, radius
and mass of the granules or boundaries, and the subscripts i, j and k
denote the 𝑖th granule, the 𝑗th granule and the 𝑘th contact point on the
plate, respectively. For clamped boundaries, 𝐸 ,𝑅 ,𝑚 → +∞ which
𝑘 𝑘 𝑘

3

yields 𝐸∗
𝑖𝑘 = 𝐸𝑖

1−𝜈2𝑖
, 𝑅∗

𝑖𝑘 = 𝑅𝑖 and 𝑚∗
𝑖𝑘 = 𝑚𝑖 at the contact points between

the granules and the three clamped boundaries. At the contact points
between the granules and the elastic solid, we adopt the rigid layer
model developed in [17,24] in order to overcome the inconsistency
between the point contact and the plane-stress assumption of the elastic
solid. Based on the rigid layer assumption, an artificial flat massless
rigid layer is mounted on top of the elastic solid for each granular-solid
contact point. In this case, 𝐸𝑘 → +∞, 𝑅𝑘 → +∞ and 𝑚𝑘 → 0 for the
flexible boundaries, which yields 𝐸∗

𝑖𝑘 = 𝐸𝑖
1−𝜈2𝑖

, 𝑅∗
𝑖𝑘 = 𝑅𝑖 and 𝑚∗

𝑖𝑘 = 0 at
the 𝑘th contact point on the boundary of the plate.

The Coulomb–tanh friction model [20,21] is used for the tangential
forces applied to the granules (see Fig. 1c),

𝒇 𝑖𝑗(𝑖𝑘) = −𝜇 |

|

|

𝑵 𝑖𝑗(𝑖𝑘)
|

|

|

tanh
(

𝑘𝑠𝛿̇𝑡,𝑖𝑗(𝑖𝑘)
)

𝒕𝑖𝑗(𝑖𝑘) (5)

where 𝜇 is the Coulomb friction coefficient, 𝑘𝑠 a coefficient affecting
the smoothness of the model, 𝒕𝑖𝑗(𝑖𝑘) = 𝒌 × 𝒏𝑖𝑗(𝑖𝑘) the unit vector in the
tangential direction, and 𝛿̇𝑡,𝑖𝑗(𝑖𝑘) the tangential relative velocity between
the interacting granules or boundaries:

𝛿̇𝑡,𝑖𝑗 =
[(

𝒔̇𝑖 + 𝑅𝑖𝜽̇𝑖 × 𝒏𝑖𝑗
)

−
(

𝒔̇𝑗 + 𝑅𝑗 𝜽̇𝑗 × 𝒏𝑗𝑖
)]

⋅ 𝒕𝑖𝑗

𝛿̇𝑡,𝑖𝑘 =
[(

𝒔̇𝑖 + 𝑅𝑖𝜽̇𝑖 × 𝒏𝑖𝑗
)

− 𝒖̇𝑘
]

⋅ 𝒕𝑖𝑘
(6)

In (6) the velocity of the boundary point 𝒖̇𝑘 is equal to zero for
the clamped boundaries and non-zero at the interface between the
granular medium and the plate. A discussion on the assumptions and
restrictions associated with the Coulomb–tanh friction model (5) is
iven in [14,15].
Considering now the FE model of the thin plate, the plane-stress

pproximation is invoked, which reduces the 3D linear elasticity equa-
ions to 2D by assuming 𝜎𝑧 = 𝜎𝑥𝑧 = 𝜎𝑦𝑧 = 0, where 𝑥 and 𝑦 denote the
in-plane horizontal and vertical directions, and 𝑧 denotes the direction
along the thickness. Note that wave propagation in the (continuous)
solid medium is much slower compared to wave propagation in the
granular medium. Therefore, dissipation effects in the thin plate are ne-
glected. The resulting governing 2D plane-stress equations were given
in [14,15]. The FE method is then applied to discretize these equations
by means of 8-node quadrilateral isoparametric elements. Special con-
sideration is given to the rigid layers at the contact points between the
boundary granules and the plate; to this end, the translational degrees
of freedom of the middle points of the rigid layers are considered as
the driving degrees of freedom, with the other nodes considered as the
driven degrees of freedom following multi-point constraints [14]. At the
end, the discretized equations of motion of the thin plate incorporating
the rigid layers and the boundary conditions are expressed in the
following form,
𝑴𝒙̈ +𝑲𝒙 = 𝑭 (7)
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where 𝒙 denotes the displacement vector of the corresponding degrees
of freedom, 𝑴 and 𝑲 global mass and stiffness matrices, respectively,
and 𝑭 contact force vector. We note that 𝑭 is a sparse vector with
non-zero elements equal to −𝑵 𝑖𝑘 and −𝒇 𝑖𝑘 located on the normal and
tangential driving degrees of freedom of the rigid layer of the 𝑘th
boundary on the plate. The components of the displacement vector
corresponding to these degrees of freedom are equal to the normal and
tangential components of the displacement vector of the 𝑘th boundary
𝒖𝑘.

The nonlinear DE equations (1) and the linear FE equations (7)
are coupled through interaction force vector 𝑭 between the boundary
granules and the edge of the plate (see Fig. 1). Therefore, the accurate
computation of these forces is crucial for the accurate simulations of the
nonlinear acoustics. In the following computations the Newmark-beta
method [25] is employed to simulate the FE equations (7), while the
4th order Runge–Kutta method is used to simulate the DE equation (1).
Moreover, the interpolation-iteration algorithm developed in [11,17]
is used to accurately compute the force vector 𝑭 at successive time
steps. For more details of the algorithm we refer to these works, but,
in essence, the interaction force vector 𝑭 is computed through the
iteration of a high-dimensional global nonlinear map (as it contains the
interaction forces at all contact points between the granular medium
and the edge of the plate) whose stability is non-trivial. Following [17]
this high-dimensional global nonlinear map is divided to a set of 1D
local maps, each corresponding to the iteration of either the tangential
or the normal interaction forces at each contact point; this reduction is
valid as long as the effects of the interaction forces are local (i.e., the
interaction forces at a contact point are decoupled from those at the
other contact points), which is a valid assumption as long as the time
step increment is sufficiently small. Therefore, the stability of the global
map is reduced to the stability of the local maps. Since the frictional
forces are sensitive to the relative tangential velocities, the stability of
the map associated with the nonlinear iterations of the frictional forces
is more critical compared to the normal (Hertzian) forces. Indeed, it
is shown in [17] that the local map involving the iterations of the
frictional force at a contact point is conditionally stable if the following
criterion is satisfied,
|

|

𝜆𝑘𝑖,𝑡|| =
1
2
𝜇𝑘𝑠 ||𝑵 𝑖𝑘

|

|

𝛥𝜏𝑻 𝑖,𝑡

(

𝑴 + 1
4
𝑲𝛥𝜏2

)−1
𝑻 𝑖,𝑡

𝑇 cosh−2
(

𝑘𝑠𝛿̇𝑡,𝑖𝑘
)

< 1 (8)

where 𝜆𝑘𝑖,𝑡 denotes the eigenvalue of the linearized local map corre-
sponding to the iteration of the tangential force between the 𝑖th granule
and the 𝑘th boundary point on the plate (it turns out that numerical
instabilities occur only at the frictional forces developing between the
boundary granules in contact with the edge of the plate); 𝛥𝜏 denotes
he time step increment at the given instant of the simulation, and 𝑻 𝑖,𝑡
a sparse vector with only one non-zero element equal to unity at the
tangential driven DOF of the rigid layer at the 𝑘th boundary point on
the plate [14]. The local map is stable if the modulus of the eigenvalue
|

|

𝜆𝑘𝑖,𝑡|| is smaller than unity, so at each time step of the simulation
there exists a critical time step increment 𝛥𝜏𝑐𝑟 that ensures stability
provided that 𝛥𝜏 < 𝛥𝜏𝑐𝑟. In the following numerical simulations the
self-adaptive algorithm developed in [17] is adopted by selecting the
time step increment 𝛥𝜏 < 𝛥𝜏𝑐𝑟 thus ensuring the robust convergence
of the computational algorithm at each time step. An example of the
computational stability ensured by the criterion (8) for different contact
oints k is provided in Appendix A.
The accuracy of the simulation results is validated by checking the

onservation of the total energy (including the dissipated energy) at
ach time step. The energy absorption (confinement) in the granular
edium is studied by comparing the instantaneous energy transmitted
o the plate, 𝐸𝑝, to the corresponding energy in the granular medium,
𝑔 . These are computed as follows,

𝐸𝑝 =
1
2
𝒙̇𝑇𝑴 𝑥̇ + 1

2
𝒙𝑇𝑲𝒙

𝑔 =
∑

𝑖
𝐸𝑔𝑖 =

∑

𝑖

(

1
2
𝑚𝑖

|

|

𝒔̇𝑖||
2 + 1

2
𝐼𝑖𝜃̇

2
𝑖 +

1
5
∑

𝑗
𝐴𝑖𝑗𝛿

5∕2
𝑛,𝑖𝑗 +

2
5
∑

𝑘
𝐴𝑖𝑘𝛿

5∕2
𝑛,𝑖𝑘

)

(9)
4

here 𝐸𝑔𝑖 denotes the instantaneous energy of the 𝑖th granule, com-
posed of kinetic and potential energy components. Clearly, the total
instantaneous energy 𝐸𝑝 + 𝐸𝑔 in the granular-solid interface mono-
tonically decreases due to the dissipative effects. The total energy
𝐷
(

𝜏0
)

dissipated up to the time instant 𝜏0 is evaluated by the work
performed by the frictional (at the granule-to-granule and granule-to-
plate interfaces) and viscoelastic forces (due to the material of the
granules), 𝑊friction

(

𝜏0
)

and 𝑊viscous
(

𝜏0
)

, respectively. These energy
measures are computed as:

𝑊viscous
(

𝜏0
)

=
∑

𝑖 ∫

𝜏0

0

{

∑

𝑗

(

𝛾𝑖𝑗 𝛿̇𝑛,𝑖𝑗𝒏𝑖𝑗 ⋅ 𝒔̇𝑖
)

+
∑

𝑘

(

𝛾𝑖𝑘𝛿̇𝑛,𝑖𝑘𝒏𝑖𝑘 ⋅ 𝒔̇𝑖
)

}

𝑑𝜏

𝑊friction
(

𝜏0
)

=
∑

𝑖 ∫

𝜏0

0

{

∑

𝑗

[

𝒇 𝑖𝑗 ⋅
(

𝒔̇𝑖 + 𝑅𝑖𝜃̇𝑖𝒕𝑖𝑗
)]

+
∑

𝑘

[

𝒇 𝑖𝑘 ⋅
(

𝒔̇𝑖 + 𝑅𝑖𝜃̇𝑖𝒕𝑖𝑘 − 𝒖̇𝑘
)]

}

𝑑𝜏

𝐷
(

𝜏0
)

= −𝑊viscous,𝑖
(

𝜏0
)

−𝑊friction,𝑖
(

𝜏0
)

(10)

Hence, the total energy (including dissipated energy) at the time instant
𝜏0, 𝐸

(

𝜏0
)

, should be conserved and equal to the energy induced by the
shock, 𝐸𝑠ℎ𝑜𝑐𝑘. It follows that the following relation should be checked
at each time step of the simulation to ensure the accuracy of the
computational results:

𝐸𝑝
(

𝜏0
)

+ 𝐸𝑔
(

𝜏0
)

+𝐷
(

𝜏0
)

≡ 𝐸
(

𝜏0
)

= 𝐸𝑠ℎ𝑜𝑐𝑘 (11)

3. The granular interface as shock mitigator

In the following computational study, we focus on the capacity of
the 2D granular interface as shock absorber and mitigator. As is shown
in Fig. 1b, the left and right columns of the granular medium (composed
of granules 1–5 and A–E, respectively) are composed of heavy granules
with the radius 𝑅𝑏1, while the middle column consists of light intruders
(granules 6–9) with radius 𝑅𝑏2 ≤ 𝑅𝑏1. Considering the hexagonal
topology of the granular medium, since the light intruders should be
in contact (fill the gap) with their neighboring heavy granules, it must
also hold that 𝑅𝑏2 ≥

(
√

2 − 1
)

𝑅𝑏1. In the following study the thin
elastic plate and the heavy granules are composed of steel with Young’s
modulus 𝐸 = 200 GPa, Poisson ratio 𝜈 = 0.3 and density 𝜌 = 7850 kg∕m3.
The planar dimensions of the plate are 0.1 m×0.01 m, and its thickness
is equal to 0.001 m. The radius of the heavy granules 𝑅𝑏1 is equal to
0.01 m as well.

After the application of the shock, a primary wave is initiated in the
granular medium, and as it transmits becomes dispersed and dimin-
ished in amplitude due to the highly discrete and strongly nonlinear
nature of the granular interactions [14,15]. As a result, a drastically
reduced and highly disintegrated set of primary weak waves reach the
granular-plate interface, carrying a small portion of the initial shock
energy. Therefore, we expect that the granular medium acts as a shock
mitigator that significantly disintegrates the primary wave transmitted
to the plate. The capacity of granular shock mitigation was investigated
in 1D granular media that supports Nesterenko’s solitary waves. One
way to achieve the shock mitigation is to introduce a light intruder
that scatters the solitary wave [7,24]. In the following study we aim
to study the capacity for shock absorption 2D granular medium and
establish its dependence on the geometric and material properties of the
column of granular intruders. In this work, we consider the granular-
solid hybrid system shown in Figs. 1b and 2b with three columns of
granules, which is a highly degenerate case of 2D closely-packed gran-
ules. Even if the primary wave propagation in such 2D granular media
deviates from Nesterenko’s solitary waves in 1D homogeneous granular
chains, the shock mitigation in such reduced 2D granular media is
proven to be effective due to the primary wave disintegration. The
design rules derived in this work can be extended to more complicated
configurations.
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Fig. 2. Schematics of two different configurations: (a) Shock directly applied to the thin plate (no granular medium), (b) shock applied to the left column of the granular-solid
nterface, (c) force distributions on granules 2,3 and 4, and (d) temporal profile of the shock.
An indication of the shock mitigation capacity of the granular
edium is gained by comparing the primary wave transmission through
he granular interface to the case when an identical shock is directly
pplied to the plate (i.e., the granular medium is absent). In Fig. 2a,
we show the schematics of the two systems which are subject to

he shock excitation depicted in Fig. 2c. The excitation consists of
half-sine pulse applied for a duration of 0.01 ms with a half-sine
istribution in space, extending over 0.05 m in length. The peak of
he shock excitation is equal to 50,000 N/m. In Fig. 2a, the excitation
s directly applied to the free edge of the thin plate, whereas in
ig. 2b, it is applied to the left column of heavy granules; in the
atter case, the forces are distributed only among granules 2, 3 and
. The resultant excitation applied to granule 3 is equivalent to a
orizontal concentrated force, while ones applied to granules 2 and 4
re equivalent to a combination of a horizontal force and torque since
he centroids of the applied distributed forces do not coincide with the
orresponding centroids of the granules. For this particular simulation,
he intruders in the intermediate column of the granular medium are
dentical in size and material composition to their neighboring heavy
ranules, so we take 𝑅𝑏2 = 0.01 m. Moreover, following the arguments
f previous studies [13,17,23], the friction and viscoelastic damping
oefficients are selected as 𝜇 = 0.099, 𝛼𝑛 = 6.313 × 10−3 and 𝑘𝑠 = 1000
/m.
The Von Mises yield criterion applies to ductile materials [26],

tating that material yielding begins when the von Mises stress is
reater than the yield stress. Therefore, in Fig. 3a, b we compare the
aximum von Mises stresses in the thin plate versus time for the two
ases subject to the shock excitation shown in Fig. 2c. The von Mises
tress is given by,

𝑉𝑀 =
√

1
2

[

(

𝜎𝑥𝑥 − 𝜎𝑦𝑦
)2 +

(

𝜎𝑦𝑦 − 𝜎𝑧𝑧
)2 +

(

𝜎𝑧𝑧 − 𝜎𝑥𝑥
)2
]

+ 3
(

𝜏2𝑥𝑦 + 𝜏2𝑦𝑧 + 𝜏2𝑥𝑧
)

(12)

where 𝜎𝑉𝑀 denotes the von Mises stress; and 𝜎𝑥𝑥, 𝜎𝑦𝑦, 𝜎𝑧𝑧, 𝜏𝑥𝑦, 𝜏𝑦𝑧,
𝜏𝑥𝑧 denote the axial and shear components of the stress tensor. When
the shock is directly applied to the plate the resulting maximum von
Mises stress is ∼350 MPa, which is close to the yield stress of steel.
However, when the same shock is applied to the granular protector
the resulting maximum von Mises stress drops significantly, reaching
a maximum of just around ∼80 MPa. This result provides a first hint
on the capacity of the granular medium to significantly disperse the
primary wave following the application of the shock, thus drastically
reducing the remnant of the shock that eventually transmits through
the plate. The drastic reduction of the von Mises stress is due to two
main reasons: (i) The significant shock dispersion and disintegration
at the granular medium and (ii) the reduction of the overall shock
energy input in the granular interface compared to the case when the
shock is applied directly to the plate. To demonstrate this, in Fig. 3c we
depict the instantaneous energies of the granular system, the thin plate,
5

and the entire granular interface (with and without dissipative effects
accounted for), normalized by the applied shock energy. The maximum
energy in the plate is around 50% of the input shock energy, while
the other 50% is scattered by the granular medium and not transferred
to the elastic plate. However, the granular absorption does not fully
account for the reduction of the von Mises stress. Apart from the energy
scattering in the granular medium, the total shock energy input into the
granular interface is significantly reduced compared to the case where
the excitation is directly applied to the plate. Indeed, when the shock is
directly applied to the plate, the total shock energy input is 1.53 × 10−2

J, while when the shock is applied to the granular interface, the input
energy is 7.48 × 10−4 J, i.e., close to two orders of magnitude less. The
large disparity in the input shock energy is achieved since the shock
is applied to the heavy granules of the granular interface. Since the
duration of the shock excitation is rather small, the energy exerted to
a single granule can be approximated as 𝐸𝑔 = 𝐼2𝑔 ∕𝑚𝑔 , where 𝐼𝑔 is the
magnitude of the applied impulse and 𝑚𝑔 the mass of the granule. In
this case, the heavy granules are much heavier than the plate (i.e., the
generalized mass of the first plate mode which is mainly excited [18]),
so the input shock energy to the granular interface is much smaller.

In the next sections we will further explore the capacity of the
granular medium for shock mitigation. Specifically, we will examine
the effect of the intermediate column on the granular intruders on the
shock dispersion and disintegration in the granular medium, in terms of
the material composition (and the material disparity between the heavy
granules and the intruders) and the size of the intruders. We will show
that appropriate selection of the intruder column plays a crucial role in
the shock mitigation capacity of the granular interface.

3.1. The effect of the intruder sizes on shock mitigation

We start by examining the effects of different intruder sizes on
the shock transmission through the granular interface. Accordingly, we
consider the intruder size 𝑅𝑏2 = 0.5𝑅𝑏1, i.e., we examine the case when
the radii of the intruders are one-half of the radii of the heavy granules
(see Fig. 1), and compare the results to the case when 𝑅𝑏2 = 𝑅𝑏1 (when
the intruder column is identical to its neighboring columns of heavy
granules). The same half-sine distributed shock excitation shown in
Fig. 2d is applied to the left column of heavy granules in both cases
and investigate the corresponding responses of the granular interface.
Moreover, in these simulations the friction and viscoelastic damping
coefficients are still assigned the values 𝜇 = 0.099, 𝛼𝑛 = 6.313×10−3 and
𝑘𝑠 = 1000 s/m. We will be particularly interested in (i) the scattering
by the granular medium of the primary shock wave front from the
horizontal to the vertical direction, and (ii) the time scale disparity
between the responses of the heavy granules and the light intruders
due to the size disparity of the intruders.

The simulation results for 𝑅𝑏2 = 0.5𝑅𝑏1 are shown in Fig. 4b, d and
f in comparison with the simulation results with 𝑅 = 𝑅 shown in
𝑏2 𝑏1
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Fig. 3. Capacity of the granular medium for shock reduction: Maximum Mises stress in the plate (a) in the absence of the granular medium (see Fig. 2a), and (b) in the granular
interface (see Fig. 2b); (c) instantaneous normalized energies of the granular interface (with and without dissipation taken into account) and of its constituent parts.
Fig. 4a, c and e. In Fig. 4a, b we compare the normalized instantaneous
energies of the granular medium and the plate for the two intruder
sizes. We deduce that the maximum normalized instantaneous energy
transferred to the plate is over 50% for 𝑅𝑏2 = 𝑅𝑏1, which is slightly
reduced for 𝑅𝑏2 = 0.5𝑅𝑏1. In both cases, the initial impulsive energies of
both cases are similar. In Fig. 4c, d we consider the total kinetic energy
of the granular medium (including the intruders) for the two cases. The
kinetic energy is partitioned into three parts, namely, the horizontal
kinetic energy (in the axial direction of primary wave transmission),
the vertical kinetic energy (in the direction orthogonal to the main
wave transmission) and the rotational kinetic energy of the granules.
Initially, only the horizontal and rotational kinetic energy components
are excited in the granular medium. As the wave propagates, some
energy is scattered from the horizontal to the vertical direction, so
this part of the shock energy is diverted from reaching the plate. The
energy scattering from the horizontal to the vertical directions is one
of the mechanisms that disperse the shock energy within the granular
medium. For smaller intruders, the angle of inclination between the
centers of the heavy granules and the light intruders increases, and
more energy is scattered from the horizontal to the vertical direction
as is shown in Fig. 4d.

Apart from the aforementioned mechanism of energy scattering,
we focus on the energy localization due to the disparity of the heavy
granules and the light intruders, leading to an effective impedance
mismatch. In Fig. 4e, f we compare the velocities of some representative
heavy granules, namely granules 3 and C, together with the velocity of
the representative light intruder 8. When 𝑅𝑏2 = 𝑅𝑏1 the horizontal and
vertical velocities of the intruder 8 oscillate with similar frequencies
to the heavy granules 3 and C. This is not the case when 𝑅𝑏2 =
0.5𝑅𝑏1, where the intruders are lighter than the heavy granules; then
the intruder oscillates at a faster time scale compared with the heavy
granules, which indicates that the size difference leads to a fast/slow
scale partition in the responses of the intruders and heavy granules,
respectively. This leads to further improvement in the capacity of the
6

granular medium to localize a part of the shock energy, however, the
overall improvement in shock mitigation is not high.

Hence, to further enhance the performance of the granular absorber
we turn our focus into a lighter and softer material for the intruders
thus increasing the disparity of mass and stiffnesses between the heavy
granules and light intruders without varying the granule sizes. In the
next section we show that this alternative intruder design yields to
much more improved enhancement in the shock mitigation capacity
of the granular interface.

3.2. The effect of the intruder material on shock mitigation

We proceed to study the capacity for shock mitigation of the gran-
ular interface when the column of intruders is composed of a different
material compared to the neighboring columns of heavy granules. In
order to increase the disparity of time scales between the responses of
the heavy granules and the light intruders, we keep the size disparity
by setting 𝑅𝑏2 = 0.5𝑅𝑏1, and, in addition, decrease the density and
stiffness of the intruders by adopting a lighter and softer material. In
this section, we consider polytetrafluoroethylene (PTFE) as the material
of the light intruders in comparison to the steel heavy granules. The
Young’s modulus, Poisson ratio and density of PTFE are 0.54 GPa,
0.42 and 2.15 × 103 kg∕m3, respectively. The friction coefficient at the
steel-PTFE interface is set to 𝜇 = 0.099. Since the material damping
coefficient of PTFE is about one order of magnitude higher than the one
of steel, we consider 𝛼𝑛 = 6.313 × 10−2 as the coefficient of viscoelastic
damping for steel-PTFE contact interactions, which is nearly 10 times
larger compared to the viscoelastic damping coefficient for steel–steel
contact interactions.

In the following results the same half-sine distributed shock excita-
tion shown in Fig. 2b is applied on the left column of the granules. The
simulation results of the granular-solid interface with PTFE intruders in
the leading 2 ms are shown in Fig. 5. The maximum deformations are
checked for all PTFE intruders, and are much smaller (less than 1%)
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Fig. 4. Comparison of the responses of the granular interface for two sizes of the intruders, 𝑅𝑏2 = 𝑅𝑏1 and 𝑅𝑏2 = 0.5𝑅𝑏1, respectively: (a, b) The instantaneous normalized energy
artitions in the granular medium and the thin plate; (c, d) the instantaneous horizontal, vertical and rotational kinetic energy components in the granular medium; and (e, f) the
orizontal and vertical velocities of granules 3, 8 and C (see Fig. 1b).
Fig. 5. Response of the granular interface for PTFE intruders: (a) The instantaneous normalized energy partition in the granular medium and the thin plate; (b) the instantaneous
horizontal, vertical and rotational kinetic energy components in the granular medium; and (c) the horizontal and vertical velocities of granules 3, 8 and C (see Fig. 1b).
compared to the radius 𝑅𝑏2; therefore the assumptions of the discrete
granular model related to small deformations are still applicable in this
7

case. The normalized instantaneous energies of the granular medium,
the plate and the overall granular interface are shown in Fig. 5a.
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Fig. 6. Spatio-temporal evolutions of the horizontal (axial) velocity components (in m/s) of the granular interface: (a) Case of steel intruders, and (b) case of PTFE intruders.
Fig. 7. Time evolutions of the maximum vertical strain components 𝜀𝑦𝑦 in the thin plate, for (a) steel intruders, and (b) PTFE intruders.
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Localization of shock energy in the granular medium is observed for
PTFE intruders, which is in marked difference to the case of steel in-
truders (e.g., see Fig. 4a, b). Interestingly, in this case, only about 10%
of the shock energy is eventually transmitted to the plate, therefore
the granular medium provides much more effective shock mitigation
compared to the case of same-size steel intruders, where as much as
40% of the shock energy is transmitted to the plate. We also note
that the shock wave transmission is much slower with PTFE intruders,
resulting from (i) the inhomogeneity of the granular medium and (ii)
the low wave speed in PTFE due to its low Young’s modulus.

Lastly, we note from Fig. 5c that the light intruder 8 oscillates with
a similar amplitude compared to the heavy granule 3. However, the
energy carried by the intruders is small due to their light weights,
and so the energy transmitted through the intruder column is much
smaller compared to the applied shock energy. In that same Fig. 5c we
note that the oscillation amplitude of the heavy granule C, which is
located on the third granular column, is much smaller compared with
the amplitudes of the heavy granule 3 and the granular intruder 8; this
further confirms the localization of shock energy mainly in the first
granular column, and the incapacity for shock transmission through the
granular medium in the case of PTFE intruders.

To intense shock energy localization (resulting in weak energy
transmission to the plate) for the case of PTFE intruders is better
highlighted in Fig. 6, where a comparison is also provided with the
case of steel (same-size) intruders. The plots of Fig. 6 depict the spatio-
tempotal evolutions of the horizontal (axial) velocities of all granules
and along the symmetric axis (in the axial direction) on the plate. In
particular, the contour plots refer to the values of the axial velocities
of the granules and points on the plate, and are divided into four parts;
namely, (i) the first column of heavy granules labeled from 1 to 5,
(ii) the column of light intruders labeled from 6 to 9, (iii) the third
column of heavy granules labeled from A to E, and (iv) and the axial
velocities on the symmetric axis of the thin plate (see Fig. 1b). Since the
8

top and the bottom boundaries of the plate are clamped, the maximum
velocities occur at the middle of the plate, i.e., precisely on the selected
symmetric axis of the plate.

In Fig. 6a (case of steel intruders) we notice that the horizontal
elocities are varying in time in all the four columns, indicating that
hock energy is transferred in the axial direction along the entire
ranular interface; clearly, in this case the localization of shock energy
n the granular medium is small, although the intermediate column of
teel intruders undergoes local oscillations, which, however, are not
apable from restricting the axial transmission of the primary shock
ave to the plate. As a result, a significant portion of shock energy is
ventually transferred to the plate (see also Fig. 4b which corresponds
o this case).

This is not the case for the softer PTFE intruders, where the shock
nergy is mainly localized in the first column of heavy granules, be-
ng incapable of transmitting along the axial direction (see Fig. 6b).
his energy localization phenomenon is caused by the large effective
mpedance mismatch between the first column of heavy granules and
he second column of light intruders, which results in an ‘‘effective
arrier’’ for axial energy transmission along the granular interface; that
s, the shock wave is effectively stopped at the interfaces between the
eavy granules and the light intruders, so it becomes spatially confined
n the first column of the heavy granule, close to the location of its
eneration. In this case the time scales of the granule oscillations and
he wave transfer are different. With the steel intruders, the granules
nd the plate oscillate at faster frequencies compared to the case of
TFE intruders. Animations of all granular motions are provided in
ppendix B, and these helps to better visualize the energy transfer and
ocalization (or entrapment) for the cases of steel and PTFE intruders.
t the same time, we note that the plate mainly undergoes bending
ibrations, so in Fig. 7 we plot the maximum vertical strain component,
𝑦𝑦 in the plate for both intruder cases. Clearly, by replacing the
steel intruders with PTFE ones, the maximum vertical strain 𝜀 is
𝑦𝑦
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Fig. 8. Self-adaptivity of shock isolation on energy: Instantaneous normalized (with respect to the applied shock energy) energy partitions in the granular interface for (a) weak,
(b) moderate, and (c) strong shock intensity.
significantly reduced, indicating the much better shock mitigation that
is achieved for the plate for the case of PTFE intruders.

Lastly, we focus on an additional interesting feature of the nonlinear
acoustics of the granular interface, namely, the dependence of the
granular shock isolation capacity on the intensity of the applied shock
excitation. This is to be expected due to the strong nonlinearity of the
granular acoustics. To highlight this important feature, we vary the
shock excitation considering different intensity loads. In the following
simulations we consider exclusively the case of PTFE intruders with
𝑅𝑏2∕𝑅𝑏1 = 0.5. Considering first a half-sine distributed shock excitation
with a maximum amplitude of 50,000 N/m applied to the granular
medium (see Fig. 2b), the maximum deformation of the PTFE intruders
is close 1% of the radius 𝑅𝑏2 so the discrete element model for the
granular medium is valid even in this most severe loading case; this
will be referred to as the ‘‘strong shock intensity’’ case. For comparison,
we consider half-sine distributed excitations with the same spatial
distributions but with smaller maximum amplitudes, namely, 10,000
N/m and 2000 N/m, which are referred to as the ‘‘moderate shock
intensity’’ and the ‘‘weak shock intensity’’ cases, respectively. As shown
in Fig. 8, the (passive) shock isolation capacity of the granular interface
is self-adaptive to the shock excitation (or equivalently the energy
level). Indeed, for the weak intensity case, the shock energy is almost
completely localized in the granular medium (see Fig. 8a), however,
as the intensity of excitation increases, an increasingly higher portion
of the shock energy gets eventually transmitted to the thin plate (see
Fig. 8b, c). Moreover, the governing time scales of the acoustics are also
self-adaptive to the intensity of the shock, becoming faster for stronger
excitations. Clearly, the self-adaptivity of the acoustics of the granular
interface on the intensity of the shock excitations is due to the strong
hardening nonlinearity of the Hertzian granule-to-granule and granule-
to-plate interactions, so that the speed of the propagating wavefronts
through the granular medium as well as the transmissibility of shock
energy from the granular medium to the plate increase for stronger
shock excitations.

4. Concluding remarks

We studied the shock mitigation capacity of 2D granular-thin plate
interfaces subject to a half-sine shock excitation. Each interface con-
sisted of an ordered granular medium — composed of two columns of
heavy granules separated by an intermediate column of light intruders,
interfacing with a thin plate. The shock excitation was applied to
the left column of the granular medium and the overall aim of the
mitigation was to reduce as much as possible the shock energy that
was eventually transmitted to the thin plate. All hexagonally placed
granules of the granular medium were initially uncompressed, giving
rise to strongly nonlinear acoustics due to Hertzian contact interactions.
With the plane-stress assumption for the thin plate, only planar stresses,
forces and deformations were considered in these interfaces, so the
acoustics was two-dimensional. The mathematical model developed
for these complex, hybrid (discrete–continuum) systems incorporated
9

the highly nonlinear and discontinuous normal and tangential granule-
to-granule and granule-to-plate interactions, individual granule rota-
tions resulting in frictional effects, and the flexibility of the plate
at its interface with the granular medium. The iterative/interpolative
computational algorithm developed in [17] (based on the accurate
computations of the contact forces at the discrete (granular) – con-
tinuum (plate) interfaces) was extended for the numerical simulations
of the considered granular interfaces, with its stability being checked
at each time instant through an appropriately formulated convergence
criterion.

Comparing to the case where the shock excitation is applied di-
rectly on the plate (i.e., in the absence of the granular medium), it
was demonstrated that the granular interface significantly reduced the
maximum Mises stress in the thin plate. There are mainly two sources
that account for this reduction: (i) Nearly 50% of the shock energy
became locally confined in the granular medium and could not be
transmitted to the plate, and (ii) the total input shock energy to the
granular-plate interface was significantly reduced when it was applied
to the granular medium.

Hence, we proceeded to design the granular medium (especially the
intruder column) to maximize the proportion of shock energy that was
eventually confined in it. To this end, intruders of different sizes and
material compositions were considered. We hypothesized and system-
atically analyzed two possible ways to improve the shock mitigation
capacity of the granular interface: (i) To ‘‘channel’’ the input shock
energy from the axial direction (which was the main path of energy
transfer) to a perpendicular direction within the granular medium, and
(ii) to vary the impedance mismatch between the heavy granules and
the light intruders.

For smaller sizes of the intruders, it was determined that more
energy could be scattered from the axial to an orthogonal direction
within the granular medium due to larger angles of inclination between
the centers of the heavy granules and the intruders and their sizes were
reduced. Moreover, the intruders oscillated with higher frequencies
compared to the heavy granules, introducing a fast/slow mismatch in
the corresponding responses. However, it was found that by just reduc-
ing the size of the intruders, the resulting energy localization of the
shock energy in the granular medium was only improved slightly. As
a second option, we considered different material compositions for the
granular intruders, compared to the steel heavy granules. By replacing
the light intruders with a softer and lighter polymeric material (PTFE),
we found that much more energy could be localized in the first column
of heavy granules. This was caused by the large impedance mismatch
between the heavy granules and the light intruders, which prevented
the energy transfer from the granular medium to the elastic plate; as
a result, a major portion of the shock energy ended up being confined
in the granular medium, with a very small portion being eventually
transmitted to the thin plate. Hence, very effective shock mitigation
was achieved in this case. Moreover, due to the strong nonlinearity of
the governing acoustics, the shock mitigation capacity of the granular
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interface was shown to be self-adaptive to the intensity of the shock.
In fact, weaker applied shocks lead to much more effective shock
mitigation in the granular interface.

The considered shock energy mitigation due to impedance mismatch
within the ordered granular medium could be considered as a 2D
extension of previous 1D work in granular media. In that context,
the present study acts as a first step towards predictively designing
ordered granular interfaces for highly improved and self-adaptive to
energy practical shock protectors. To this end, it would be of interest
to extend the present study to granular interfaces composed of multiple
granular layers, in three dimensions. This, for example, would be the
case when one relaxes the thin plate assumption of the current work by
considering plates (or other elastic media) with arbitrary thicknesses
and more complex topologies.
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Appendix A. Example of the stability criterion (8)

Details of the computational algorithm can be found in [14,15]
so they are not repeated. Here we demonstrate the stability of the
algorithm through criterion (8) for the granular interface depicted in
Fig. 2b, where the geometry and material properties of the intruders
6–9 are identical to the heavy granules in the first and third columns
of the granular medium. It turns out that this is the most critical case
(i.e., the most prone to numerical instability) considered in this work
due to the strongest energy transfers between the granular medium and
the plate. As in all simulations carried out in this work the initial time
step increment is selected as 𝛥𝜏0 = 4 × 10−8 s. In Fig. A.1, using an
daptive time step we plot the moduli of the eigenvalues (8) of the local
aps for three of the five contact points between the boundary granules
nd the edge of the thin plate; this is sufficient due to the symmetry of
he applied shock excitation, which, in turn, yields symmetry in the
onlinear acoustics of the granular interface. We note that the moduli
f the eigenvalues are smaller than unity, ensuring the convergence of
he computation at each time step.

ppendix B. Animations of the granular-elastic solid interface for
TFE or steel intruders

Here we provide links to animations of the responses of the
ranular-solid interface for the cases of PTFE or steel intruders. The
adii of the intruders are equal to half of the radii of the heavy
ranules, and a half-sine shock with a peak of 50 000 N/m is applied
o the left column of the granular medium. In the animations the
isplacements of the granule and the boundaries of the thin plate are
agnified by 125 times. For steel intruders the shock transmits rapidly
hrough the granular medium, reaching the edge of the plate (and

ransmitting through it) in a relatively short time; in this case, the

10
Fig. A.1. Variations of the moduli of the eigenvalues (8) for the local maps of the
rictional forces at the contact points between the boundary granules A, B and C and
he edge of the plate — see Fig. 2b.

irst column of heavy granules transmits shock energy to the second
olumn through the intermediate column of granular intruders, which,
n turn, transmits a portion of the shock energy eventually to the
late (see Fig. 6a). The nonlinear acoustics is drastically different for
TFE intruders, where the shock energy is mainly localized in the first
ranular column of heavy granules and only a small amount of the
hock energy eventually reaches the second column of heavy granules
nd the plate (see Fig. 6b).
Animation of the granular-solid interface with steel intruders (mag-

ified × 125):
https://uofi.box.com/s/9g1042spvbvu351bc7w70yvuy7l49gkm
Animation of the granular-solid interface with PTFE intruders (mag-

ified × 125):
https://uofi.box.com/s/ami30mq99rflnf9rgpyfruxns37biz5d
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