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nonlinearity. A break of configurational symmetry is realized by the weak detuning of the two
linear natural frequencies of the oscillators within the nonlinear gate. When harmonic excitation
is applied to an oscillator of the waveguide, the synergy of nonlinearity and asymmetry at the
local gate yields global effects in the acoustics, namely, in the form of strong non-reciprocity that
is tunable with the frequency and intensity of the excitation. It is desirable to select the param-
eters for this system (such as mass, springs, nonlinear springs, etc.) to maximize its performance.
Towards this objective, the nonlinear acoustics is studied by training two neural network (NN)
simulators to evaluate (i) the harmonic contents of the transmitted waves through the nonlinear
gate and (ii) the global non-reciprocity and transmissibility features of the waveguide. The
training data is obtained by direct numerical simulations of the governing differential equations
of motion. The predictions of the NN, which agree well with the direct simulations, drastically
reduce simulation time, making practical the parametric study of the nonlinear acoustics and
allowing for the detailed study the waveguide response at high-dimensional parametric domains.
Using the NN, we demonstrate robust regions of non-reciprocal acoustic responses and achieve
predictive design of the waveguide for maximum acoustic non-reciprocity. Indeed, it is shown
that, when appropriately designed, the waveguide acts as an acoustic diode, allowing wave
transmission only in one (preferred) direction and preventing wave propagation in the other
direction. Moreover, depending on the system and excitation parameters, the non-reciprocally
transmitted waves through the nonlinear gate can be either monochromatic or strongly modu-
lated, i.e., possessing multiple frequency components. As a result, the non-reciprocal waveguide
studied in this work may act either as a frequency converter or, conversely, as an acoustic diode
with minimal frequency distortion of the transmitted waves. The developed machine learning
approach is also applicable to a broad class of nonlinear waveguides with different configurations,
asymmetries, and system properties, as well as in more than one dimensions.
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Fig. 1. Schematic of the linear weakly coupled waveguide with a local nonlinear gate.
1. Introduction

Reciprocity is a basic feature of linear time invariant (LTI) acoustic waveguides governed by Sturm-Liouville operators [1]. Basic
ways of breaking reciprocity involve adding external biases [2,3,4], introducing time-variant properties [5] or imposing nonlinearity
combined with some sort of asymmetry. Non-reciprocity in a waveguide violates the symmetry of the corresponding Green’s function
and introduces directional preference in wave transmission [6]. This motivates the study of non-reciprocal elements such as acoustic
diodes [7], rectifiers [8], and frequency convertors [9].

Passive break of reciprocity in acoustic media is mostly associated with nonlinearity combined with asymmetry (disorder) [10]. A
typical feature of the nonlinear acoustics is the dependence on amplitude, which makes a nonlinear waveguide tunable to energy.
However, besides nonlinearity, spatial asymmetry is also necessary for realizing non-reciprocity [11], as shown in studies of nonlinear
lattices [12], granular chains [13,14] and granular-solid interfaces [15]. Besides spatially extended (global) nonlinearities,
non-reciprocity in linear waveguides may be achieved also through local nonlinear, asymmetric elements which are simpler and easier
to fabricate; examples of such elements are vibro-impactors [16], bilinear oscillators [9], or cascades of hierarchical nonlinear os-
cillators [17].

In this work, we propose a new, relatively simple, and highly effective design for inducing controllable non-reciprocity in an
otherwise LTI acoustic waveguide, locally augmented by an asymmetric, nonlinear gate. A single harmonic excitation with fixed
amplitude and frequency is applied at an arbitrary constituent oscillator of the infinite waveguide. We show that the resulting locally
augmented waveguide supports rich acoustics that are fully tunable with energy, and, more important, it may exhibit strong break of
acoustic reciprocity (i.e., directed wave transmission in a preferential direction) with minimal structural modification in the local
nonlinear gate.

The infinite LTI waveguide is assumed to have weak coupling between its constituent oscillators (yielding a single narrow pass band
in the frequency domain), whereas, both nonlinearity and asymmetry are embedded in the local gate, which consists of two non-
linearly coupled oscillators with weakly detuned linearized natural frequencies. We analytically and numerically show that the
nonlinearity and weak detuning of the local gate give rise to various types of global non-reciprocal acoustics, either with or without
frequency distortion of the transmitted waves through the gate. Due to the high dimensionality of the design parameter space and the
high complexity of the nonlinear acoustics, it is challenging and impractical to optimize the non-reciprocal performance by numer-
ically integrating the governing differential equations of motion; rather a numerical approach based on machine learning is employed
to study efficiently the nonlinear acoustics. Machine learning has been used to predict the responses of complex physical systems [18,
19,201, and the resulting machine learning models (simulators) drastically reduce the computational effort required to predict the
responses of high-dimensional systems or perform multi-task optimization in high-dimensional parameter spaces. In the machine
learning model, the system and excitation parameters are considered as input variables, whereas the performance objective (in this
case the achieved non-reciprocity in the gated waveguide) or the acoustical responses are regarded as output variables. Neural net
(NN) simulators are created and trained to this end, that predict a set of outputs given arbitrary inputs in high-dimensional parameter
domains. Since the trained NN simulators are much more efficient compared to direct numerical integrations of the governing
nonlinear ordinary differential equations of motion, they are efficacious for numerically optimizing and predictively designing the
considered waveguide for optimal non-reciprocity and desirable frequency conversion (or absence of) in the transmitted waves
through the local gate.

This work is structured as follows. In Section 2, we introduce the mathematical formulation of the nonlinear acoustical problem.
Two types of transmitted waves through the local gate are considered, namely monochromatic or strongly modulated. In Section 3, we
create a NN model to predict the harmonic content of the acoustic response, which informs the design of the non-reciprocal gated
waveguide for controllable frequency conversion (or absence of frequency distortion) of the transmitted waves through the gate. In
Section 4, we create an additional NN model that directly predicts the performance of the waveguide as acoustic diode from two
perspectives, namely, transmissibility and non-reciprocity; this model is used to perform optimization studies of waveguide perfor-
mance. Lastly in Section 5, we provide a brief synopsis of the overall approach and the main findings of this work and discuss some
possible further extensions of the method and applications.

2. The weakly coupled linear waveguide incorporating a local nonlinear, asymmetric gate

We consider the linear acoustic waveguide shown in Fig. 1, composed of two identical semi-infinite sub-waveguides connected
through a local nonlinear gate. Each semi-infinite sub-waveguide consists of identical linear grounded oscillators, denoted E, on the
left side and A,, on the right side, with next-neighbor coupling through weak linear springs. The nonlinear gate is composed of two
linear oscillators with identical masses but weakly detuned grounding stiffnesses and hence detuned natural frequencies; these
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oscillators are coupled through an essentially nonlinear (i.e., non-linearizable) cubic stiffness. This is the only (local) nonlinearity of
the waveguide, whereas the grounding detuning breaks the configurational symmetry. The only (weak) viscous damping of the
waveguide is located at the nonlinear gate, as this ensures faster convergence to steady state of the response. The waveguide is excited
by a single harmonic force applied to an oscillator of either one of the semi-infinite sub-waveguides (in the following analysis it is
assumed that the excitation is applied to the p — th oscillator of the left part of the waveguide E), cf. Fig. 1). For simplicity, the sub-
waveguide where the excitation is applied is designated as the “upstream” one, and the other as the “downstream” one. Accordingly,
the oscillators of the upstream (downstream) sub-waveguide are designated as E,, n=1,2,... (A;, n = 1,2,...), where the leading
oscillators E; and A; are the ones coupled to the local nonlinear gate. Moreover, the oscillators comprising the nonlinear gate are
designated as Ey and Ag, where Ej is coupled to the upstream sub-waveguide and A to the downstream one (cf. Fig. 1). Then, the
equations of motion of the gated waveguide are given by,

mXy + cxo + kixo + ke (xo — YO)3 +dxo—x)=0

myiy + ¢y + kayo + ke(yo — x0)” +d(yo — y1) =0 a.1)
m¥, + kx, +d(x, — x,_1) + d(x, — x,11) = Fpe”’6(n —p) +cc, n >0
m)';n +ky” +d(yn 7yn—l) +d(yn 7ynAl) = 07 n>0

w

with all the initial conditions being equal to zero and i = (—1)1/ 2 In (1.1) xo and y, denote the displacements of the oscillators Ey and
Ay of the nonlinear gate, x, and y, the displacements of the upstream and downstream oscillators E, and A, respectively, t the time
variable, and overdot the differentiation with respect to time. Regarding the system properties of the constituent oscillators, m denotes
the mass, k and d the grounding and coupling linear stiffnesses, respectively, k. denote the cubic nonlinear stiffness of the gate, and k;,
k2, c1, c2 the stiffnesses and viscous damping coefficients of the two oscillators of the nonlinear gate, respectively. The only non-
homogeneous term in (1) denotes the harmonic excitation applied to the upstream oscillator E,, with F, being the excitation ampli-
tude and o the excitation frequency. Lastly, () is the Dirac function and (cc) denotes the complex conjugate pairs.
Introducing the following re-scalings,

~d~ k~ k~ kb . ¢ =~ F . o
oy = \/k/m, T = wt, d:? dczza ki :I]" ka :fa c= Sk F, :f7 2] :(170
the equations of motion are normalized as follows:
Xy + /Exi) + E]xo + 3(»()% —yo)3 + Z(xo —x)=0
Yo + vy + Kayo + de(vo — x0)° +d(yo —y1) =0

R N o~ (1.2)
X x, + d(xy — x0m1) + d (X — Xpp1) = Fpe®?6(n—p) +cc, n>0

y::+y11+2(yn _yn—l) +a(yn _yn{l) :03 n>0

where prime denotes differentiation with the re-scaled time 7. The current study is performed subject to certain basic assumptions.
First, it is assumed that the linear intra-waveguide coupling stiffnesses between neighboring oscillations are weak, so that d = eD,
where 0 < ¢ <« 1 is the small parameter of the problem. Similarly, the coefficient of nonlinearity is assumed to be small and scaled as d,
= eaD.

Due to the weak coupling, the pass-band of the linear sub-waveguides is narrow. By imposing the Bloch condition x(y), =
e%x(y),_1, we obtain the dispersion relation of the linear sub-waveguides,

X))+ {1+d(2—e”—e ) }x(y), =0 = Q= /1 + 2eD(1 — cosb) (1.3)

where 6 denotes the wavenumber and Q denotes the frequency that corresponds to the wavenumber 6. The range of Q given by (1.3) is
the normalized frequency pass-band of the linear sub-waveguides. The frequency pass-band of the infinite linear waveguide is narrow

and given by [wp, o] =[1,1/1 + 43] =[1,1 + 2¢D] + O(¢?), where wy, and w,;, denote the lower frequency bound (corresponding to
in-phase oscillations of the linear waveguide) and upper frequency bound (corresponding to out-of-phase oscillations of the wave-
guide), respectively. The narrowness of the pass band of the waveguide is crucial for the following analytical approximations, since it
enables a slow-fast time scale partition of the acoustical responses. Note that only harmonic waves with frequencies within this pass
band can propagate unattenuated through the linear waveguide, whereas for other frequencies the waves spatially decay and represent
near-field responses; hence, only narrowband wave packages (that is, having harmonics in the narrow pass band) can propagate. Moreover,
the two stop bands of the waveguide are realized in the frequency ranges (0, ;) — lower stop band, and (@, o) — upper stop band.
Accordingly, the excitation frequency should be selected in the pass-band of the waveguide and expressed as, & = 1 + ¢D(1 +o5) with
is of € [— 1,1], since otherwise no transmitted waves from the forcing site could propagate along the waveguide without attenuation.
Also, the excitation amplitude is scaled as small, F, = eA,D. Moreover, the viscous damping coefficient is assumed to be of the same
(small) order of the coupling, ¢ = 2¢{D, and the normalized detunings of the grounding stiffnesses of the two gate oscillators are
assumed to be small, i.e., EI.Z =1+ ¢eDo ». A final assumption is that the acoustics satisfy the condition of 1:1 resonance, that is, the
responses of all oscillators share the same (fast) frequency. Accordingly, the normalized equations of motion are expressed in the
following form:
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Fig. 2. Dispersion relation and transfer function for ¢ = 0.05 and D = 1: (a) Dispersion relation, (b) absolute value of the transfer function

|.7 (eD[Go — G2])|, (c) imaginary part of the transfer function Im(.7 (¢D[Gy — G2])).
X+ 2e¢Dx, + (1 + €6,D)xo + €aD(xg — yo)* + eD(xo — x1) =0

Yo + 2e¢Dyy + (1 + 62Dy + €aD(yo — x0)° + €D(yo —y1) = 0

(

X+ X, + €D(xX, — Xm1) + ED(X) — Xyi1) = sA,,Dei['“DO*"f)]TE —p)+cc, n>0
y:: + Yn +8D(yn __Vn—l) +8D(yn _yn+l) = 07 n>0

(2)

We now proceed to a preliminary analytical exploration of the nonlinear response of the gated waveguide, considering the previous
assumptions. To this end, we aim to analytically approximate the monochromatic response of the system by reducing the infinite
number of differential equations (2) to an integro-differential reduced-order model (ROM). Noting that only source of nonlinearity is
spatially confined to the gate, and that the overall structure of the waveguide is linear, the responses of all oscillators can be expressed
in terms of the harmonic excitation and the responses x, and y, of the oscillators of the nonlinear gate through the following relations,
which are based on the exact expressions of the Green’s functions of the linear waveguide [21]:

Xy = eD{xo(r) % [Gyr (7) — Gt (1)] + [Apei[”‘D(‘*"f)]’ + cc] 5 [Gyon(F) = Gpin()] }
Yu = €DYo(2) * [G,o1 (1) — Goni (1)] = F () = 7 (o){-7 (eD[Go — Ga])}"

3

where Gp,, m=1,2,... denotes the Green’s function in the infinite waveguide [21,22] — whose explicit expression is given in
Appendix A, .7 (-) denotes the Fourier transform and (x) denotes the convolution operator. From (3) we note that .7 (eD[Go —G2])
denotes the transfer function of the responses between the adjacent oscillators of the downstream waveguide. In Fig. 2, we show the
dispersion relation as well as the transfer function with ¢ = 0.05 and D = 1. From Fig. 2a, the pass-band is approximately [1,1.095].
The magnitude of the transfer function between adjacent cells is shown in Fig. 2b, where the Discrete Fourier transform of the nu-
merical time series is applied. In the frequency pass-band the magnitude of the transfer function is equal to unity, indicating that the
transmitted wave propagates along the downstream sub-waveguide without attenuation. In the stop-band the magnitude of the
transfer function is smaller than unity, indicating that the amplitude decays exponentially along the downstream sub-waveguide. The
imaginary part of the transfer function is shown in Fig. 2c. Interestingly, the imaginary part of the transfer function is non-zero only in
the pass-band.

Based on the relations (3), it is possible to express the infinite system of differential equations (2) in the following more compact set
of just two nonlinear coupled integro-differential equations in terms of the responses xy and y, of the gate oscillators:

X+ 2e¢Dxy + (1 + €6,D + eD)xo + eaD(xo — ) =
£Dx0 % (Go — Go) + €D | A, [P (1er)]7 ﬂ (Gt — Gy &)
Yo+ 26CDy, + (1 + €6,D + eD)yy + eaD(yo — o)’ = 2D * (Go — G,)

Note that system (4) is equivalent to the system (2), so it still possesses infinite degrees of freedom due to its integrodifferential
terms. Also, to derive (4) the responses x; and y; in the two leading equations (4) were expressed in terms of x, and y, and the applied
harmonic excitation through the corresponding Green’s functions (cf. (3) and Appendix A).

System (4) governs the reflection and transmission of harmonic waves through the gate, as well as the wave scattering in the
frequency (and wavenumber) domain due to the cubic stiffness nonlinearity at the gate. Hence, its study yields the global acoustic non-
reciprocity features of the waveguide caused by the local nonlinearity and asymmetry at the gate; we note that in the absence of the
gate the resulting linear acoustics of the waveguide is reciprocal. At this point we asymptotically analyze (4) by employing the method
of multiple scales [23], expressing the oscillator responses in the following asymptotic series,

xo(7) = x00(70, 71) + €x01 (70, 71) + O(€%),y0(2) = yoo(70,71) + £y01 (70, 71) + O(€) )

where7p = rand7; = erare fast and slow time scales, respectively, in terms of the small parameter of the problem, ¢. Substituting (5)
into (4), expressing the time derivatives in terms of the new time variables 7 and 71, and considering only terms of O(1), we obtain the
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following leading-order approximations to the acoustical response of the gated waveguide:

0x )
aTgo +x00 = 0= x90 = X()()(Tl)e”o +cc
0
; O]
y(z)o +y00 = 0 = oo = Yoo(71)e"™ +cc
oJr;

We note that by (6) we complexify the analysis and introduce slow-fast partitions of the solutions. Specifically, the leading-order
approximations X (7o, 71) and yoo (7o, 71) are approximately expressed in terms of “slow” complex amplitudes (envelopes), Xoo(71) and
Yoo(71), that modulate the “fast” monochromatic oscillations, e, with (normalized) fast frequency equaling unity. These amplitudes
are determined by considering the next order approximation.

Before proceeding, however, to the O(¢) approximations, as an intermediate step we express the Green’s function as a slowly
modulated oscillatory function with fast frequency close to unity,

Gu(t) = 5" (D ) e + ce + Oe) %

where J,(-) denotes the Bessel function of the first kind and order n; details of this derivation are given in Appendix A. The com-
plexification and slow-fast partition of the Green’s function enables the continuation the asymptotic analysis in the complex domain.
The system governing the O(¢) approximations X1 (7o, 71) and Yo (7o, 71) is given in Appendix A. Substituting (6) and (7) into the O(¢)
set and eliminating secular terms (i.e., nonhomogeneous terms with fast frequencies equaling unity), we obtain the following mod-
ulation or slow flow equations that govern the slow evolutions of the leading-order approximations Xoo(71) and Yoo (71),

0Xoo

2i
oty

JFD(] +o; + 21§)X00 + 3QD(X()0 - YU()) (Xoo Ygo)

71

D [ Ly (Ds)Xeo(1 — 5)ds + D?A L ', (Ds)e P dseiP (o)
iDs"' o0 7| Ds °F

®

0 0

71
oY, 1
2i TUO +D(1 + 6 + 2i8) Yo + 3aD (Yoo — Xo0)* (Yoo — Xoo) = D> / o1 (Ds) Yoo (T — s)ds
T

0

where overbar denotes complex conjugate. These equations can be written in more compact form by introducing the transformations
Xoo = Xoo /Ap, Yoo = Yoo /Ap and T = 71D, yielding the following set of transformed slow flow equations:

ox, — o
2% 4 (1 4+ 0+ 2i0) Koo + 3242 (Koo — Ton)* (oo — Voo) / (5)on(E - 5)d S dsel (1707
0 0
()]
()Yoo
2i == +(1+0+ 21§)You + 3aA? (Yuo — Xou) Yoo Xoo Yoo T—s)ds=0
0

From (9), we notice that there are five independent bifurcation parameters, that is, the two frequency detuning parameters o » of
the gate oscillators, the normalized excitation frequency oy, the normalized damping coefficient ¢, and the normalized excitation
amplitude aAﬁ. In this work, we focus on the steady-state solutions of (9) which are reached in the limit when 7 — +oco and the non-
homogeneous term in the first of equations (9) becomes monochromatic. Moreover, since the slow flow (9) is in the form of two
integro-differential coupled nonlinear equations, it still possesses an infinite number of degrees of freedom, so to qualitatively study its
steady state solutions it is necessary to distinguish between two general classes of responses.

This first class of steady state solutions are monochromatic, i.e., the original responses xo(7) and yo(7) of the gate oscillators possess
only a single fast frequency equal to the excitation frequency. Clearly, one could regard this type of solutions as fundamental resonances
of the waveguide. In this case, the steady state solutions of (9) are complex constants, J~(oo = Ax,, and 1700 = Ay,,, yielding the leading-
order approximations for the steady state responses of the gate oscillators, xo () ~ Ax,, e 1*7)P7 + cc and yo (1) ~ Ay,,e1+7)¢P7, In this
case the time derivatives in (9) are set to zero, and, as shown later, the resulting nonlinear complex algebraic equations can be
analytically solved in terms of Ax,, and Ay,,. Then, this procedure gives identical results to the method of harmonic balance.

In the second class of steady state solutions of (9) the responses xo(7) and yo(7) of the gate oscillators possess multiple slow frequencies

and a single fast frequency (equaling unity). In that case, if we assume that there are at least two slow frequency components say e'°" and
ellorao)t 7, the nonlinearity will automatlcally generate additional frequency components in the form, i~ 40)7 and el "*“")’ since

(ei”?)z(e‘@’*A”)T) — ¢il0-20)7 and (ell+80)7)? (gior) = ¢il7+240)7_ Therefore, it is inferred that in the second class of solutions the steady state
response involves a countable infinity of equally spaced harmonics. Based on these arguments we anticipate the existence of quasi-
periodic (generically) or periodic steady state solutions for the gate oscillators possessing countable infinities of equally spaced
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Fig. 3. Numerical simulations of the gated waveguide (2) at steady state: (a,b) Strongly modulated responses (SMRs) of the gate oscillators and
Fourier transform of yy(z), respectively, for (61,02) = (1,0), and (c,d) monochromatic responses of the gate oscillators and Fourier transform of
Yo(7), respectively, for (o1,02) = (0,1); the normalized excitation frequency (green dashed line) and the boundaries of the pass band (red dash lines)
are indicated in (b,d).

harmonics centered to the excitation frequency; such solutions are referred to the literature as strongly modulated solutions (SMRs). By
substituting such an ansatz into the slow flow (9), we obtain a set of nonlinear algebraic equations with infinite degrees of freedom,
which, however, is not analytically solvable.

To verify the analytical predictions, we numerically simulated the waveguide (2) composed of 1000 oscillators, focusing only on
the responses of the two gate oscillators Eg and Ag. The 4-th Runge-Kutta method is employed and the numerical simulations are
performed by the MATLAB ode45 solver. The excitation was applied at the position p = 4, i.e., the 4% oscillator from the gate E4, and
the simulation was carried out in the time window 0 < 7 < 15000 to ensure that the steady state responses were not affected by wave
reflections from the end boundaries. The system parameters were selected as, ¢ =0.05,D =1,a =2,{ =0.05,0f = 0.5, A, =0.25,
and (01,02) = (1,0) or (0,1); we note that inter-changing the values of the detunings o, and o3 is equivalent to changing the site of the
excitation from the p — th oscillator of the left-half sub-waveguide to the p — th oscillator of the right-half sub-waveguide. With (o1,62)
= (1,0), the steady state responses of the gate oscillators are strongly modulated (cf. Fig. 3a), and correspond to the second class of
predicted analytical solutions. This is clear by the Fourier spectrum of the response y, in Fig. 3b, which exhibits multiple equally-
spaced peaks — a clear indication of a quasi-periodic response. Qualitatively different, monochromatic steady state responses of the
gate oscillators are depicted in Fig. 3c for (61,062) = (0,1), corresponding to the first class of analytically predicted responses. This is
verified by the Fourier transform spectrum of the response y, in Fig. 3d where the steady response possesses a single peak coinciding to
the excitation frequency. We note that the only difference between these two steady state responses is the interchange of the site of the
harmonic excitation, form the left to the right sub-waveguide.

Furthermore, in Fig. 4 we compare the direct numerical simulations of system (2) for zero initial conditions to the (slowly varying)
envelopes of the corresponding solutions predicted by the slow flow (9) again subject to zero initial conditions. Both SMRs and
monochromatic responses are recovered by the slow flow, albeit for some phase differences for the case of SMRs (indicating an error in
the analytical slow frequency of the modulations), which are due to the assumptions associated with the previous analysis, the most
important of which are, (i) the existence of a single fast frequency in the responses, and (ii) the averaging operation (multiple-scale
analysis) which, formally, is expected to hold up to time intervals of O(1 /¢) — for an improved approximation higher order averaging
(multiple-scale expansion to higher orders) is required. Nevertheless, the analysis correctly predicts the amplitudes of the strong
modulations in Figs. 4a,b and the envelopes of the monochromatic responses in Figs. 4c,d. Hence, the efficacy of the analytical model is
verified.
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The results depicted in Fig. 3 highlight the strong acoustic non-reciprocity of the gated waveguide, which is solely due to the local
nonlinearity and asymmetry of the gate. Note that in the absence of the local nonlinear and asymmetric gate, the acoustics of the
waveguide is fully reciprocal, in the sense that applying a harmonic excitation at oscillator E, (source) and measuring the resulting
response of oscillator A;, (receiver), one obtains an identical response if the sites of the source and the receiver are interchanged, that is,
if the same harmonic excitation is applied at oscillator A, (source) and the response is measured at oscillator E, (receiver). Considering
now the gated waveguide, as shown in Fig. 3, flipping the positions of the source and receiver is equivalent to flipping the values of the
detuning parameters o; and o3 in system (2); this change is sufficient to introduce strongly non-reciprocal steady state responses. The
non-reciprocity of the gated waveguide will be the focus of the following study, where a machine learning approach will be adopted to
make feasible the required load of numerical simulations.

3. Machine learning for predicting the steady state acoustics

From the analysis and results of Section 2, the non-reciprocal steady acoustics resulting from inter-changing the source and receiver
sites of the harmonic excitation exhibits two main features, namely, a significant disparity in the response amplitudes as well as the
corresponding frequency spectra. Having the aim to maximize (in some sense) acoustic non-reciprocity in the gated waveguide, it is
necessary to investigate the relation between non-reciprocity, and the gate asymmetry and nonlinearity. Moreover, given the limi-
tations of the analytical predictions and the computational demand of direct numerical simulations, we resort to machine learning, and
specifically to NN, to explore the non-reciprocal features of this acoustical system.

We start by quantifying the non-reciprocity of the downstream steady state acoustics. Current literature [24,11,25] mainly focuses
on quantifying non-reciprocity in transient acoustics through time series analysis, however, here we focus instead on the transmitted
energy downstream. Indeed, considering a harmonic excitation applied at oscillator Ep, the energy transmitted to the downstream
sub-waveguide can be estimated by the power transmitted from the gate oscillator Ay to its neighboring oscillator Aj,

T

Edawn = /é’D()’o*)’l))}]dt (10)
0

where T denotes the simulation time window. We note that y, is fully determined from y, through the convolution relation (3). Hence,
we can define the following energy-based non-reciprocity measure, §,
Edawn (61 ; 02, T)

8(T) = IOgloE

an
down (02,01, T)

which is based on the downstream transmitted energy when the site of the harmonic excitation is switched from one sub-waveguide to
the other. For a fully reciprocal system (i.e., in the absence of the gate), it holds that yo(61,02) = Yo(02,01) and y; (61,062) = y1(62,01),
so § = 0; this is a necessary condition for acoustic reciprocity. We note that the absolute value of § quantifies the disparity of the energy
transmission in orders of magnitude with the excitations applied on different sides. The left-to-right energy transmission overweighs
the right-to-left energy transmission for positive §, while the right-to-left energy transmission overweighs the left-to-right energy
transmission for positive §. Due to the symmetry, we only seek the parameters that enable non-reciprocal acoustics where left-to-right
energy transmission is preferred, and therefore we seek large positive values of 5. A shortcoming, however, of the measure (11) is that it
does not provide any information on the class of the steady state response, that is, if it is monochromatic or SMR, nor on its frequency
content. To address this limitation, from (3) we express y;(7) = eDyo(7) * [Go(r) — Ga(7)], substitute into (10), apply the Fourier
transform and invoke the Parsevel-Plancherel theorem [26] to obtain the average power flow transmitted at steady state to the
downstream sub-waveguide,

T—-+oo

+co
Ejoun T
lim M%:Re £2D? / P / i0.7 (Gy — G2).7 (y0)-7 (yo)dw 12)
0

where .7 (-) denotes the Fourier transform and overbar the complex conjugate. It is shown in Fig. 2b that the imaginary part of
.7 (Go —G2) is non-zero only at frequencies inside the pass-band. Therefore, no energy is transmitted at the steady state for frequency
components outside the pass-band. From (12) we note that the averaged power flow at steady state only depends on the amplitude of
the frequency spectrum (and not on the phase). Hence, as the acoustics reach steady state, the downstream energy can be approxi-
mated based on the measure (12), which, in turn, is fully determined by the amplitude of the frequency response of the gate oscillator
Ao.

For the non-reciprocity study of the steady state acoustics of the waveguide we investigate the effect of the detuning parameters
(01,02) of the nonlinear gate. To this end, instead of computationally costly direct simulations of the governing nonlinear differential
equations, we formulate a learnable simulator with the following two tasks. First, to map (relate) the detuning parameters (o1,03) to
the steady state frequency response |.7 (yo)|, and, then, based on the predicted frequency response |.7 (yo)| to investigate the non-
reciprocity measure § and the downstream average power flow (12).

Staring from the first task, we note that |.7 (yp)| is a continuous function in the frequency domain that involves infinite degrees of
freedom. To simplify the learnable simulator, we create a reduced-order model (ROM) that approximates the frequency response
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Fig. 5. ROM of the Fourier spectrum |.% (yo)|* of the SMR depicted in Fig. 3b: (a) The smoothed frequency response |.7 (y)|* and the amplitude
threshold for the peaks, (b) approximated peaks considered in the ROM, and (c) comparison between the original Fourier spectrum and the ROM in

o
terms of the accumulated frequency spectrum / |.7 (¥0)|?dw; the pass band of the linear waveguide is indicated in (c).
0

|.7 (¥o)| by a finite-dimensional model. The motivation for this comes from the plots of Figs. 3b and 3d which show that for both classes of
steady state responses |.7 (¥o)| exhibits a varying number of distinct peaks in the pass band of the waveguide; clearly, only these peaks
need to be accounted for in the ROM, since there are associated with downstream energy transfer in the downstream sub-waveguide —
in fact, peaks outside the passband rapidly decay away from the local gate since they represent near-field responses that cannot transfer
energy downstream. Therefore, it is reasonable to assume that the energy transmitted downstream is mainly localized at a finite
number of distinct peaks, N. This enables us to approximate the continuous Fourier spectrum |.7 (y,)| with the following approximate
ROM composed of only N peaks localized at distinct frequencies:

|'7(yo)\2 ~ Z{E2(m,-)5((g - (Di)} — % Z

i=1 i=1

F (yo)|Pdws(w — w;) y,

. e (13)
S 1700 de

@ipi

/+eo
0

In this expression w; denotes the frequency of the i — th peak, E?(w;) the amplitude-squared of the i — th peak, N the truncated total
number of peaks considered in the ROM, and §(-) Dirac’s function. In turn, E?(w;) is approximated by integrating from a lower bound,
W, to an upper bound, ,y;, of the i — th peak in the original (numerical) Fourier spectrum |.7 (yo)|; as discussed below, these bounds

Fc x 100

F(y0)|2da)
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Fig. 6. Comparison between target and output of the NN for the testing set considered: (a) Frequencies w;, and (b) peak amplitudes-squared Ez(a)i) ;
the closer these data points are to the 45° line, the better is the performance (predictive capacity) of the NN.

are determined by specifying an amplitude threshold. Hence, by the ROM (13) |.7 (yo)|* is approximated by the linear superposition of
a finite number of Dirac’s functions located at the peaks, normalized by the factor Fc so that the integration over the entire frequency
domain of the original transfer function |.7 (y,)|* and the approximate ROM are the same.

To construct (13) it is necessary to identify the frequency and the amplitude of each peak, the truncated number of peaks, N, taken
into consideration, and the bounds wy,; and w,,; for each peak. To this end, we determined the number peaks of the ROM by, (i)
smoothening (through a spline approximation) of the numerical discrete Fourier spectrum |.7 ()|, (ii) introducing an amplitude
threshold to determine the number of peaks N of the ROM, as well as the bounds for each peak, and (iii) identifying the local maxima to
determine the peak frequencies. As an example of the construction of the ROM, in Fig. 5 we approximate by (13) the SMR frequency
spectrum depicted in Fig. 3b. The smoothed Fourier spectrum |.7 (yo)|? is plotted in Fig. 5a, and the amplitude threshold is set to 1% to
identify the local maxima and the frequencies ;. From Fig. 5a, there are N = 6 local maxima, and these are considered for constructing
the approximate ROM. The upper and lower bounds w,,; and wy,; for each peak of the ROM are evaluated as the intersections of the

smoothed Fourier spectrum |.7 (yo)|*with the amplitude threshold. In Fig. 5b the resulting ROM (red curve) is compared to the fre-
quency response (blue curve). This enables the approximation of |.7 (yo)|? by the discrete function (13). To evaluate the accuracy of the

wo
ROM, in Fig. 5¢c we depict the square of the amplitude accumulated in the frequency domain, / |7 (yo)|*dw, for the original Fourier
0
spectrum and the ROM. We note that the accumulated amplitude-squared behaves as a series of step functions, which validates the
discrete approximation (13). Moreover, the normalization factor for the ROM is computed as = 96.7%, which shows that it approx-
imates accurately the original frequency spectrum. Note that since the steady state energy transmitted downstream depends only on
the frequency spectrum |.7 (yo)|, the discrete ROM (13) can be employed to accurately predict this quantity as well.

Once the discrete ROM (13) is constructed, we proceed to implement a machine learning methodology by building a learnable NN
simulator that maps the system parameters of the gated waveguide to its steady state output for a range of system parameters. In what
follows, the input variables are the gate detuning parameters o7 and o2, whereas the target and output variables are the frequencies and
peak amplitudes, w; and E(w;), of the steady state responses, respectively. Once the frequency and peak amplitudes of the waveguide
steady state responses are predicted, the resulting steady state energy transfer downstream could be computed. Extending the ROM of
Fig. 5, the system and excitation parameters are fixed to the values, ¢ = 0.05,{ =0.05, 6 =0.5,D =1, a =2 and A, = 0.25; these
correspond to the results of Fig. 3, except for the gate detuning parameters o7 and 65 which are now varied. The NN is constructed and
trained based on 1681 sets of data, which is created by performing direct numerical simulations of the governing equations of motion
for the time window 7 € [0,15,000], and parameters 67 and o7 in the range [—2, 2] with an increment of 0.1. Details of the simulations
are given in Appendix B. The simulation results show that the corresponding Fourier spectrum |.7 (yo)|* possess at most 10 peaks; such
large number of peaks is realized for steady state SMRs — cf. Fig. 3b, whereas for monochromatic responses a single peak exists — cf.
Fig. 3d. Details of the NN architecture and its training are given in Appendix B.

The efficacy of the NN is evaluated in Fig. 6 where we plot the target and output sets of the NN for the peak frequencies, w;, and the
peak amplitudes-squared, E2(w;). The target frequencies are compared to the NN predictions in Fig. 6a, and the output of the NN

10
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Fig. 8. Accumulated frequency spectra / |.7 (¥0)|*dw predicted by the NN and direct numerical simulations: (a) (61,02) = (1,1) — SMR, (b) (61, 62)

0
= (1,—1)-SMR, (¢) (61,02) =(—1,—1) —monochromatic, and (d) (¢1,02) = (—1.3,—1.7) — monochromatic; the passband of the linear waveguide
is also indicated in these plots.

simulator is validated by the resulting correlation of ~ 0.99. The frequencies w; corresponding to the harmonics of the steady state SMR
responses (e.g., Figs. 3a,b) are distributed approximately in the range [0.95,1.15] and cover approximately the pass-band. Similar
efficacy of the NN simulator is inferred from the correlation results of Fig. 6b, where the correlation between target and output for the
peak amplitudes-squared, E?(w;), reaches ~ 0.93.

Having constructed the ROM for the Fourier spectrum |.7 (yo)|, we now proceed to the second (and main) task of the machine
learning exercise, which is to make predictions of non-reciprocity in the gated waveguide, and of the energy transmitted in the
downstream sub-waveguide at steady state. Based on the NN predictions of the frequencies and amplitudes of the identified peaks, we
proceed to the prediction of downstream averaged power flow (12) and the non-reciprocity measure (11), with the results shown in
contours of Fig. 7. In Fig. 7a, the contour depicts the downstream energy at z = 15000 by multiplying the predicted power flow (12) by
the simulation window T = 15000. We note that the transmitted energy downstream reaches its maximum when both ¢; and o, are
approximately equal to unity, and that high values of this measure are realized in the first and the fourth quadrants of the plot of
Fig. 7a. Moreover, the downstream transmitted energy is asymmetric with respect to the diagonal 6; = o2, which leads to the strong
non-reciprocity. In Fig. 7b, the contour depicts the non-reciprocity measure (11) based on the NN prediction of the downstream energy
Egown at T =15000. The maximum non-reciprocity is noted in the second and fourth quadrants. In fact, the non-reciprocity measure is
anti-symmetric with respect to the diagonal 0; = o5, with the strongest non-reciprocity being observed mainly in the fourth quadrant
of the contour measure plot of Fig. 7b, especially for o; > 0.5, where the measure § is close to 2; this means that in that region the
downstream energy becomes two orders of magnitudes smaller if we flip the position of excitation and measurement. Note, however,
that in the second quadrant of that plot the downstream transmitted energy is small, and so of no practical significance. Lastly, in
Fig. 7c we consider the number of peaks predicted by the NN for varying values of (61, 02) (with details available in Appendix B). We
infer that maximum non-reciprocity in the gated waveguide is related to the greatest number of peaks in the fourth quadrant of the plot
of Fig. 7c; whereas in the second quadrant of that plot we mainly observe a single peak in the Fourier spectrum of y,, however, this
parameter range is also associated with weak downstream energy transmission and is of no practical significance.

As in the plot of Fig. 5¢ we evaluate the accuracy of the predictions of the NN by computing he accumulated frequency spectrum

12
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results are depicted in Fig. 8 for four pairs of parameters (o1, 02) selected in the four quadrants of Figs. 7a-c. The cases (61,02) = (1,1)
and (1,—1) are shown in Figs. 8a and 8b, respectively, and both correspond to steady state SMRs (cf. Fig. 5a) and strong steady state
energy transmission downstream; moreover, the NN outputs agree well with the simulations in terms of both peak amplitudes and
frequencies. In Fig. 8c we depict the case (61,02) = (—1,1) where the NN manages to predict the monochromatic steady state response.
Note, that in this case the accumulated frequency spectrum is about two to three orders of magnitude lower compared to the case (o7,
02) = (1, — 1); since the energy transmitted downstream is proportional to the square steady state amplitude, the non-reciprocity
measure § in this case should also be close to — 2 ~ — 3, which indeed is close to the NN prediction. Lastly, the accumulated fre-
quency spectrum of Fig. 8d corresponds to (61,02) = (—1.3,—1.7) and again corresponds to monochromatic steady state response (it
corresponds to a region with a single peak in the third quadrant of Fig. 7c). This case yields the smallest steady state response among
these cases, being 4 orders of magnitude smaller compared to the cases (61,062) = (1,—1) or (61,62) = (1,1), and is a case where the NN
prediction does not agree well with the direct simulation result. In particular, the NN predicts with multiple peaks, compared to the
single peak shown in the numerical simulation; however, we notice that the absolute error between these results is small due to the
weak response in this case. Since the mean square error is used as the objective function for minimization, it is in the same order with
the responses, which explains the poor prediction of the NN in this case.

Considering the overall plot of Fig. 7c, the multi-peak area (corresponding to SMRs) is divided into two regions, namely, region I
corresponding to o; > 0, and region II with o2 < 0. In region I, the transmitted energy downstream is intense and the NN provide an
accurate prediction. On the contrary, in region II, the transmitted energy is small, and, therefore, as discussed previously the SMRs
predicted by the NN might be inaccurate. In general, the designed NN accurately predicts the steady state responses in regimes of
strong downstream energy transmission, both in terms of frequencies and amplitudes, and thus paves the way for optimizing the
performance of the waveguide in terms of maximum realized non-reciprocity. In the next section we will extend our machine learning
based approach to predict parameter ranges of the gated waveguide for optimal performance, in the sense that both the non-reciprocal
measure §, and the steady state energy transmitted downstream are simultaneously optimized.

7 (yo)|*dw and comparing it with the result obtained by direct numerical simulations of the governing equations of motion. The

4. Performance optimization through machine learning

In this section, we create an extended machine learning model to map the system parameters to the performance of the gated
waveguide, and then perform its optimization. In addition to the non-reciprocity and the downstream energy measures defined in
Section 3, we are also interested in the transmissibility measure, that is, on the proportion of total energy induced in the upstream sub-
waveguide that is eventually transferred to the downstream sub-waveguide. The transmissibility measure is defined as,

_ Egoun(T) Eoun(T)

= 14
Einput(T) .fq‘:)T 2EAPD)épCOS [1 + €D(1 + Uf)}TdT ( )

n
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Fig. 11. Comparison between the target and output (prediction) of the second NN for the testing set: (a) Transmissibility measure, and (b) Non-
reciprocity measure.

where Ejny,: denotes the total input energy to the gated waveguide up to time T, which is equal to the work performed by the applied
harmonic excitation, and E4,,, the energy transmitted to the downstream sub-waveguide up to time T. Accordingly we relate the
performance of the gated waveguide with non-reciprocal transmissibility 5, that is, we aim to design this system for maximum trans-
missibility downstream and negligible transmissibility in the reverse direction, i.e., when the site of the harmonic excitation is
exchanged between the upstream and downstream sub-waveguides. Moreover, in optimizing performance we will extend the NN
simulator to account not only for the detuning parameters ¢, and o2, but also the excitation parameters o; and A,. Hence, the learnable
simulator will be extended to map the detuning and the excitation parameters (o1, 62, 6f,A,) to the non-reciprocity measure § and
transmissibility measure 7. In the following results the remaining parameters are kept fixed to the values, ¢ =0.05,a =2, D =1and ¢
= 0.05.

The machine learning prediction is performed in two steps. In the first step, a “coarse” initial exploration is performed with a NN
simulator that is created to roughly estimate the subregion of good performance from a large dataset. Then, to predict the performance
more accurately, in the second step a finer study is performed through a second neural NN that is created for a more compact dataset

14
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Table 1
Confusion matrix for assessing the predictive capacity of the second NN
Data points in the test set Predicted condition Performance
Actual condition Data points N = 2356 Desirable Undesirable
Desirable TP =101 FN =14 Sensitivity: 0.878
Undesirable FP=9 TN = 2232 Specificity: 0.996

Precision: 0.918
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Fig. 12. Predicted regions of good performance by the NN: (a) In (o1, 02) plane for fixed (of,Ap) = (0.75,0) with kernel shown, (b) contour plot of
kernel size for varying (of,Ap).

only from the subregion predicted at the first step. Both NN adopt the Rectified Linear Unit (ReLU) functions as activation functions for
the hidden layers (cf. Appendix B), and their training is through the Levenberg-Marquardt algorithm based on the MATLAB deep
learning toolbox.

The first NN is created based on simulations of the equations of motion from 7 = 0 to 15000 on a coarse grid dataset. The dataset
considers values of 1 and o3 ranging from —5 to 5 with increment 1, and A, from 0.2 to 0.8 with increment 0.15. Also, given that the
normalized passband of the linear waveguide is [1, /I + 4eD], we consider o € [-1,20v/1.2 —21] ~ [~1,0.91] to ensure that the
excitation frequency is located in the pass-band. However, when the excitation frequency is close to the boundary of the passband, the
group velocity is close to zero which makes it difficult for the acoustics to reach the steady state; therefore, the coarse grid values of of
are selected as —0.9, —0.6, —0.3, 0, 0.2, 0.35, 0.5, 0.65 and 0.85 for the dataset generation. From this dataset, 50% is used for
training, 15% for validation and 35% for testing. Each of the input and output variables is normalized in the range [—1, 1] through a
linear mapping, with the minimum mapped to 0 and the maximum to 1. Moreover, the first NN involves three hidden layers with 30
neurons per layer (cf. Appendix B).

The target values and predictions of the NN for the transmissibility and non-reciprocity measure are shown in Fig. 9 to evaluate its
efficacy. We note that the NN can only predict the trend of the performance with low accuracy. Therefore, we still need to refine the
grid dataset for a higher accuracy. Since we only focus on the subregion with high transmissibility and non-reciprocity, the second NN
(for the finer data exploration) is created only based on the specific subregion with good performance predicted by the first NN. In this
work, we consider the choice of parameters of the acoustic waveguide for good performance if it is satisfied that § > 1 for the non-
reciprocity, and 7 > 0.2 for transmissibility; hence, we require that at least 20% of the input energy is propagating downstream
(transmissibility), and that the difference between the waveguide responses when the excitation is switched between the two sub-
waveguides is at least one order of magnitude (non-reciprocity). This yields a four-dimensional subregion of good performance,
which is difficult to visualize. Instead, we first fix the excitation frequency and amplitude (os,A,) and consider the subregions of good
performance in the (o1, 02) domain. The areas of these subregions are then computed and normalized by the total area of the (61, 02)
domain [ - 5,5] x [ - 5,5], and presented in Fig. 10a. We note that for varying values of (c¢,4;), there are two robust subregions of good
performance; one is for oy being approximately in the range [-0.6,0.1] and A, in [0.3,0.8], while the other is for o; ranging approx-
imately in [0.4,0.8] and A, in [0.25,0.8]. In the complementary regions the non-reciprocity and/or the transmissibility do not meet the
posed requirements for good performance regardless of the values of (o¢,A,) and (o1, 02). Similar contours for a subregion of good
performance in the (of,A,) domain is plotted in Fig. 10b for varying (c1,02).
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Fig. 13. Robust realization B for (of,A,) = (0,0.5): Region of good performance based on (a) direct numerical simulations of the equations of
motion, and (b) NN predictions; (c,d) responses of the gate oscillators for (61,02) = (— 0.5, — 2), and (01, 062) = (— 2, — 0.5), respectively,
highlighting the acoustic non-reciprocity of the gated waveguide; and (e,f) corresponding Fourier transform spectrum of yo for (c¢) and (d),
respectively.

Table 2
Performance measures of the gated waveguide for realizations A, B and C

Realization A: (07,Ap,01,02) = (0,0.25, — 0.5, — 2) B: (07,Ap,01,02) = (0,05, — 0.5, — 2) C: (07,Ap,01,02) = (0.75,0.55, — 4.2, — 0.2)
Measures n 3 n 3 n ]

NN output 0.018 1.663 0.390 2.158 0.220 2.400

Simulation 0.002 1.112 0.263 2.045 0.021 2.461

Based on the initial study with the coarse dataset, a second NN simulator is created based on a more compact (denser) dataset in the
subregion defined by 61 € [ 2,1], 62 € [~ 4.8,0], and with (o7, A;) being consistent with the domain of the first NN simulator. The grid
dataset is then generated, where A, is uniformly distributed in the range (0.2, 0.8] with an increment of 0.2, 7 is uniformly distributed
in its range with an increment of 0.3, o> is uniformly distributed in its range with an increment of 0.4, and the grid values for oy are still
selected as —0.9, —0.6, —0.3, 0, 0.2, 0.35, 0.5, 0.65 and 0.85. Moreover, the second NN simulator for the denser dataset possesses a
total of 5 layers with 50 neurons per layer (cf. Appendix B).

To evaluate the validity of the second NN, we compare its predicted transmissibility and the non-reciprocity measures predicted
with the corresponding results from direct numerical simulations on the test set. These comparisons are shown in Fig. 11, where the
correlations for both measures are ~ 0.99, which are much improved compared with the results of the first NN simulator for the coarse
data set (cf. Fig. 9). Still, our previous definition of good (or desirable) performance for the gated waveguide holds, that is, when the
non-reciprocity measure satisfies § > 1 and the transmissibility # > 0.2. In Table 1 we show the confusion matrix of the categorization.
TP denotes the amount of true positive data that are found to be desirable by both the NN simulator and the direct numerical sim-
ulations; TN denotes the amount of true negative data, which are found to be undesirable both by the NN simulator and the direct
numerical simulations; FP denotes the amount of false positive data that are found to be desirable by the NN simulator but undesirable
by the direct numerical simulations; and lastly, FN denotes the amount of false negative data that are found to be undesirable by the NN
simulator but desirable by the direct numerical simulations. The following measures are then formulated to evaluate the efficacy of the
NN:

TP

—_— 1
TP + FP (15)

Sensitivity = TP Specificity = L Precision =
Y=+ N P YT INTFP =

The values of the sensitivity, specificity and precision for the predictions of the second NN are listed in Table 1. The sensitivity,
precision and specificity measures are all close to unity, which indicates that the NN simulator captures well and with high accuracy
the parameter ranges of good (desirable) performance. A parametric study of the sensitivity, specificity, and precision measures for
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Fig. 15. Weakly robust realization C for (o,A;) = (0.75,0.75): Region of good performance based on (a) direct numerical simulations of the
equations of motion, and (b) NN predictions; (c) responses of the gate and two neighboring oscillators for (61,02) = (— 4.2,0.2), and (d) the
corresponding Fourier spectrum of yo.

varying numbers of neurons/layer and total number of layers is shown in Appendix C, confirming the architecture of the NN for best
classification performance.

Now we proceed to a visualization of the results of the previous two steps of performance optimization. This is a challenging task as
the parameter space is four dimensional. To address this challenge, we introduce an auxiliary measure, the kernel size, which is defined
by fixing two of the parameters at a time. In particular, in Fig. 12a the region of desirable performance (corresponding to 7 > 0.2 and §
> 1) is depicted in the (o1, 02) for fixed values of 6y = 0 and A, = 0.5. Then, we fit a square to this region, whose side length we refer to
as the kernel size of the region of good performance for the specific fixed values of of and A,. Therefore, the kernel size can be regarded
as a robustness measure of the region of good performance for a given a set of fixed values of (f,A;). The variation of the kernel size for
varying values of (o7, A,) is then depicted in Fig. 12b, from which we infer two regions of good performance for the gated waveguide.
The major region is realized for 6f ~ 0 and extends up to large values of A, in the approximate range [0.5,0.8], whereas the minor (and
less robust) region corresponds to a vertical strip with o € [0.6,0.8] and A, € [0.5,0.8]. In these regions, especially in the central major
one, the good performance of the gated waveguide is robust to the variation of the four considered parameters; whereas, in the minor
region the kernel size is generally smaller compared to the major one, indicating weaker robustness.

Based on the optimization results of Fig. 12 we will examine in more detail certain realizations of the nonlinear gated waveguide in
order to highlight its non-reciprocity and transmissibility features. Specifically, we will consider the three realizations denoted by
crosses in Fig. 12b, which we will denote as, realization A with (¢5,A,) = (0,0.25) (non-robust), realization B with (c5,A,) = (0,0.5)
(robust) and realization C with (6¢,A,) = (0.75,0.75) (weakly robust). Realization A is a case of non-robustness since it corresponds to
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a small kernel size in the (61, 62) plane, whereas the other two realizations are more robust since they correspond to larger kernel sizes,
with realization B being predicted as being the most robust. Accordingly, to each realization we can associate a plot of predicted good
performance in the (61, 02) plane (analogous to the one shown in Fig. 12a), which can assist us in exploring the steady state acoustics
for different combinations of the detuning parameters of the gate.

In Fig. 13 we present the results for the robust realization B corresponding to (cf,A,) = (0,0.5) and (61, 62) = (—0.5,—2) and ( - 2,
— 0.5). We iterate here that flipping the values of 51 and o3 is equivalent to inter-changing the site of the applied harmonic excitation
between the left and right sub-waveguides; hence, this flipping is used to study acoustic non-reciprocity in the gated waveguide. In
Figs. 13a and 13b we compare the regions of good performance in the (o1, 02) plane as predicted by direct numerical simulations and
the NN, respectively, and note that NN manages to well capture the numerical integration results. The resulting non-reciprocity and
transmissibility measures are listed in Table 2, again validating the predictive capacity of the NN, especially for the non-reciprocity
measure. The simulation results for the gated waveguide corresponding to (o1, 02) = (—0.5,—2) are shown in Figs. 13c and 13e,
whereas the ones for the flipped values of 67 and o7 in Figs. 13d and 13f. Large disparity in the responses xo and y, of the gate os-
cillators is observed when the excitation is flipped, verifying the strong non-reciprocity in the nonlinear acoustics. Moreover, from
Fig. 13c we note that the responses xy and yo are strongly modulated in the transient stage (i.e., following the application of the
harmonic excitation), whereas they reach constant-amplitude steady state oscillations. This indicates that for this realization the
system reaches a monochromatic steady state, and so the secondary peaks in the Fourier spectrum shown in Fig. 13e results from the
transient acoustics. Similar conclusions can be drawn from the responses depicted in Figs. 13d and 13f.

To prove the robustness of the steady state response in realization B, in Fig. 14 we plot the Morlet wavelet transform spectrum of the
response Yo of the gate oscillator for (62, 0f,A,) = (—2,0.5,0) and three different detuning values 6; = —0.4,-0.43 and — 0.5. For 0,
= —0.5 (cf. Figs. 14a,b), only one harmonic component survives at steady state, and this corresponds to the excitation frequency shown
in Fig. 13e. In this case, the gated waveguides exhibits strong non-reciprocity and transmissibility with no frequency conversion at the
steady state; that is, the “input signal” that impedes to the nonlinear gate from the upstream sub-waveguide, has the same frequency
with the “output signal” transmitted to the downstream sub-waveguide. The effect of slightly reducing the detuning o; is showed in
Figs. 14c-f, where, through the emergence of additional harmonic components, a transition from a monochromatic (for 67 = — 0.5) to
an SMR (for 0; = — 0.4) steady state response. Yet, the transmissibility (and non-reciprocity — not depicted in Fig. 14) are still
preserved even in the presence of multiple harmonics and the corresponding qualitative change in the steady state response.

In Fig. 15 we consider the weakly robust realization C with (of,A,) = (0.75,0.75). We start by comparing the regions of good
performance predicted by direct numerical simulations (Fig. 15a) and the NN (Fig. 15b). Based on the direct numerical simulations, the
steady state responses do not meet the transmissibility and non-reciprocity thresholds for good performance for varying detuning
parameters o7 and o2; in contrast, several narrow regions of good performance are predicted by the NN, which, still confirms the
weakly robust feature of the waveguide performance in this case. Selecting (o1, 02) = (—4.2,0.2) in the region of good performance as
predicted by the NN, in Fig. 15¢ we depict the steady state responses of the gate oscillators xo, yo and the neighboring oscillators x;, and
y1. We note the modulated character of the responses in this case, which is confirmed by the multi-frequency Fourier spectrum of y, in
Fig. 15d. From these results we note that as the wave passes through the nonlinear gate, the response amplitudes decrease implying a
small transmissibility ratio. This indicates that an SMR response for a gate oscillator is not a sufficient condition for good performance
of the gated waveguide. Moreover, from Table 2 we note that for this realization the numerical transmissibility measure 7 = 0.021 is
much smaller than the one predicted by the NN, = 0.220. In addition, from Table 1 the precision of the prediction is 0.918, which
means that with ~8.2% of non-desirable response predicted by the NN, proves to be desirable in the direct numerical simulations.
From these results we deduce that the predictions concerning the region of good performance for the weakly robust realization C are
not reliable and only robust realizations (e.g., realization B) should be considered for reliable predictions of the NN.

Lastly, in Figs. 16a and 16b, we consider the regions of good performance predicted by direct numerical simulations and the NN,
respectively, for the non-robust realization A with (of,A,) = (0.25,0). In this case both predictions confirm that the steady state re-
sponses do not meet the thresholds for good performance as o7 and o5 vary. In Fig. 16¢ we depict the steady state responses of the gate
oscillators for (61,02) = (— 0.5, — 2), whereas in Fig. 16d we show the corresponding Fourier spectrum of y,. In this case the steady
state responses are monochromatic, and the transmissibility through the nonlinear gate is small. From Table 2, it holds that for this
realization the transmissibility 7 is far below the (good performance) threshold of 0.2, and this is confirmed by both direct numerical
simulations and the NN.

These results conclude our study of the performance of the non-reciprocal gated waveguide based on machine learning. In synopsis,
the developed trained NN simulator well captures and predicts the performance of the gated waveguide. This is verified through by
correlating the predicted and actual performance measures, creating a confusion matrix, and directly comparing the predictions of the
NN simulator and direct numerical simulations of the governing equations of motion. Based on the predictions of the NN simulator, a
robust region of good performance (in terms of both non-reciprocity and transmissibility) was detected, which, in turn, can be directly
employed for the predictive design of the gated waveguide with robust non-reciprocity features. In the process we deduced that steady
state SMRs (that involve strong frequency conversion of waves transmitted through the nonlinear gate) are not the only way to achieve
non-reciprocity. Indeed, a robust non-reciprocal gated waveguide can also be designed for monochromatic wave transmission
downstream, which, interesting enough, has the added benefit of the absence of frequency conversion, i.e., distortion of the signal
transmitted downstream through the nonlinear gate.

5. Concluding remarks
A machine-based approach was developed to explore the break of classical acoustic reciprocity in an infinite one-dimensional linear
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waveguide incorporating a local nonlinear gate with cubic stiffness nonlinearity and configurational asymmetry. The local gate divides
the waveguide into linear sub-waveguides, namely an upstream one (where the harmonic excitation is applied) and a downstream one.
A specific characteristic of the (ungated) linear waveguide is that it consists of an infinite number of identical grounded oscillators that
are coupled through weak coupling, and as a result its single pass band is narrow; as a result, the ungated waveguide supports
narrowband wave transmission in its far field. Only excitation frequencies inside the pass band were considered in our study since only
such excitations generate waves that can reach the local gate and transmit through it downstream.

A complexification-averaging analysis based on slow-fast partition of the acoustical responses predicted that there are two classes
of steady state acoustics in the gated waveguide, namely monochromatic responses, and strongly modulated responses (SMRs). Due to
the combined stiffness nonlinearity and structural asymmetry of the local gate, both classes of responses may yield strong non-
reciprocity in the global steady state acoustics. Both the strength and robustness of the achieved acoustic non-reciprocity, which is
energy-dependent due to the gate nonlinearity, can be tuned simply through the design of a local gate. Moreover, this non-reciprocity
can be achieved either with strong frequency distortion of the transmitted signal through the nonlinear gate (for SMRs) or no frequency
distortion (for monochromatic responses); in that latter case both the input and output signals at the gate are dominated by the
excitation frequency since any other generated harmonics lie outside the pass band of the waveguide and so are near-field. These
features highlight the high degree of passive tunability (with respect to energy, frequency content, and robustness — as discussed
below) of the global acoustics of this system achieved by the simple incorporation of a single local gate.

In this study, the performance of the gated waveguide was deemed to be good if certain thresholds ensuring satisfactory non-
reciprocity and transmissibility through the gate were met. Employing this criterion we optimized the performance by constructing
two NNs based learnable simulators which were designed to predict (i) the frequencies and amplitudes of the harmonics of the
transmitted wave through the gate, and (ii) the overall transmissibility and non-reciprocity features (measured by certain metrics) of
the gated waveguide. The first NN simulator allows us to predict the harmonics efficiently for fixed excitation and variable gate
detuning parameters (affecting the configurational asymmetry of the gate); the second NN enabled the prediction of the trans-
missibility and non-reciprocity in the steady state acoustics. Different NNs were considered in this study, based on different archi-
tectures, i.e., number of layers and neurons per layer. The applications of the learnable simulators drastically reduce the required
simulation times, which enables the design and optimization of the gated waveguide more efficiently. Our study reveals a robust region
of good performance in a four-dimensional parameter space, ensuring strong transmissibility and acoustic non-reciprocity. Selected
direct numerical simulations validated the NN predictions.

The machine learning approach discussed here paves the way for non-reciprocity studies of the acoustics of practical waveguides
with finite boundaries and with one or more local nonlinear “inclusions”, i.e., local structural modifications acting, in essence, as
nonlinear gates. The theoretical models and the design rules discussed in this work has possible applications in experimental setups in
both macro-scale [17] and nano-scale [27]. Moreover, the approach can be extended for strongly coupled waveguides (which is the
topic of current research by the authors) as well, but also to higher dimensions, e.g., two- or three-dimensional linear waveguides
incorporating local nonlinear gates. Moreover, the approach is fully scalable across scales, and as such it can be extended to phononic
lattice systems in the micro-scale, e.g., providing practical ways for inducing features of acoustic non-linear non-reciprocity in systems
of coupled passive MEMS resonators.
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Fig. 16. Non-robust realization A for (o¢,A,) = (0,0.25): Region of good performance based on (a) direct numerical simulations of the equations of
motion, and (b) NN predictions; (c) responses of the gate oscillators for (61,02) = (— 0.5, — 2), and (d) the corresponding Fourier spectrum of y,

Appendix A. Green’s function of the infinite linear waveguide and some details of the multiple-scales analysis of section 2

The Green’s function G, in (3) of the infinite, weakly coupled waveguide,

u) + uy + €Dy — 1) + €D(uy — tys1) =0,—00 < n < 400 (A-1)

is explicitly given by [22],

G =1 / w sin[w(6)7]do (A-2)

where 6 denotes the wave number and w the corresponding (normalized) frequency given by:

() = 1/ 1+ 4eDsin?(9/2) = 1 + 2¢Dsin’ (g) +0(é) (A-3)

By definition, the Green’s function (A-2) denotes the response u, ., of the (n+m) — th oscillator subject to a unit impulse applied to
the n — th oscillator, with no other excitations applied and zero initial conditions. Note that due to translational invariance the Green’s
function is independent of n, and satisfies the condition G,, = G_,, due to symmetry.

Substituting (A-3) into (A-2) we obtain the following approximate slow-fast time scale partition for the Green’s function:

A 0

: 2iDsin | ¢ | er
G, = 7% /cos(mﬁ)e <2> dOe™ + cc + O(e) = gu(1,)e™ +cc + O(e) (A-4)
0

Note that this partition is made possible by our assumption of narrow pass band of the waveguide (i.e., weak coupling), which
enables the existence of a single dominant fast component in the response at a normalized (fast) frequency equaling unity. Hence, the
analysis is formulated under the assumption that there exists a fast time scale 7o = 7 and a slow time scale t; = et in the Green’s function
and the waveguide responses.

Next, we proceed to analyze the leading order approximations for the convolution products in (3), given the fast-slow separation of
variables in (A-4). As an example we consider in detail the term ¢2D?xo * G, which, taking into account the multiple-scale analysis in
Section 2, is expressed in terms of a slow-fast time scale partition as follows:

D% * G, = eD?[Xo(11) * gu(71)]€™ + cc + O(e?) (A-5)

We note that the fast frequencies of x, and G,, are the same (as expected). Therefore, the convolution of these two series still admits
fast-slow separation of time scales. Moreover, due to the assumption of 1:1 resonance and the change of time scales of the convolution,
one of the small factors ¢ is absorbed in the convolution product itself. Similarly, it can be proven that all convolution products at the
right-hand side of (4) are O(¢) terms. Therefore, the O(e) expansion of (4) is given by,
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62x01 it 3 a0 (0Xy (T] )eim

pE + xo1 + aD{[Xoo(71) — Yoo(71) J€™ + cc}” = 72670 (T)

+(1 + 6y + 2i8)DXoo(71)e'™ + eD*{Xoo(71) * [g0(71) — g2(71)] }€'™

+D2{ApeiD(1+Jf)Tl * [gp,l(rl) — 81»+1(‘51)} }eiro Tec -
0* | .

a};(z(:l + yor + aD{[Yoo(71) — Xoo(71)] €™ +CC}3 _ 726_10 (%)

+(1 4 05 + 2i8) DYoo (7, )€™ + eD*{Yoo(71) * [g0(71) — ga2(71)]}e™ + cc

Lastly, we note that the slow part, g,, of the Green’s function G,, can be expressed alternatively in terms of the Bessel function J;, as
follows,

P 7 . ) 1 )
8n = —i /cos(m@)e"[”“‘” Ydoe’’ = 5(—i)"+1J,,,(DT|)e'DT' (A-7)
0

Therefore, the slow flow modulation Eq. (7) can be derived by substituting (A-7) into (A-6) and eliminating the secular terms in (A-
6) (i.e., the coefficient multiplying the fast term e™).

Appendix B. Construction and training of the neural network of Section 3

In the simulation data set, the input and output variables are assembled intoa2 x 1 vectorsand 20 x 1 vectors, respectively. The
input variables are the detuning parameters (o7,02), while the output variables are the frequencies and amplitudes identified from the
simulation results (;,E(w;)). The first 10 elements of the output vector are the frequencies w; sorted in the ascending order, while the
last 10 elements are the corresponding amplitudes E(w;). Moreover, in each simulation, we identify the frequencies and amplitudes, w;
and E(w;), respectively, of the corresponding Fourier spectrum (which are the output of the NN). Note that the size of the output vector
varies in the dataset, since not all 1681 sets of data will possess 10 peaks in the Fourier spectrum. Hence, to match the sizes of all output
vectors, in cases where less than 10 peaks exist we complement them (up to 10) with artificial peaks at frequencies w; = 1 and am-
plitudes E(w;) = 0. Therefore, each output vector consists of 10 frequency components and 10 corresponding amplitudes. Moreover,
each individual element of the input and the output vectors is linearly mapped in the range [— 1,1], by normalizing the maximum
element to 1 and the minimum to - 1.

Considering the architecture of the NN, it is constructed and trained using the MATLAB deep learning toolbox. In this work, we use
two hidden layers with twenty neurons in each layer to train the NN, whose schematic is depicted in Fig. B-1. Denoting the input vector
as Xo, the output vector as Y, and the vector of the n — th hidden layer as X;, since there are 20 neurons in each hidden layer, the vectors
of the hidden layers are 20 x 1 as well. The value of each layer is mapped from the previous layer with a composite transformation,
consisting of a linear and a nonlinear transformation with activation functions given by,

X; =f(wiXio +bi)
B-1
Y = g(Wpt1 Xy + busi) (B-1)
where f and g denote the activation functions of the hidden and the output layers, respectively; w; and b; denote the matrices and
vectors composed of learnable coefficients. In this work, the activation function of the output layer is the identity transformation, while
the activation function of the hidden layers is the ReLU function given by:

x (x>0)

For the training of the NN, the mean square error is adopted as its performance function. The Levenberg Marquardt back propa-
gation algorithm is adopted to train the weights w; and b; in the NN in order to minimize the performance function. The dataset is
randomly divided into three subsets, with 50% assigned for training, 15% for validation and 35% for testing. Only the training pa-
rameters are used to train the weights and optimize the performance function. An epoch is defined as a complete pass of the training
set. The performance function in the validation subset is evaluated after each epoch, and the training stops after 6 epochs of increased
error rate in the validation is reached, to avoid overfitting. In order to evaluate the performance of the trained NN simulator on the

Hidden 1 Hidden 2 Output

Fig. B-1. Schematic showing the architecture of the NN.
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entire parameter domain of interest, we compare the outputs of the NN simulator with the original numerical simulation, as shown in
Fig. 5; this comparison is based on the part of the test set that does not participate in the training process.

Note that the NN simulator cannot distinguish between physical and low-amplitude artificial (spurious) peaks. From Fig. 5, we note
that the correlation between the NN prediction and the physical simulation is high. Therefore, we expect that the output prediction of
small artificial peaks does not affect the accuracy of the predicted averaged downstream power (12) and the non-reciprocity (11).
However, it is still important to distinguish between the physical and artificial peaks in the predicted output to identify accurately the
types of the steady-state acoustics. To this end, we distinguish the artificial peaks from the physical peaks from their amplitudes. For
each output vector, a threshold is set as 1% of the maximum amplitude of the peaks: All peaks with amplitudes above the threshold are
identified as physical peaks, otherwise they are neglected as artificial peaks. The predicted number of peaks is plotted in Fig. 6¢c and the
contour denotes the amounts of identified physical peaks in the output given an arbitrary input (o1, 02).

We claim that the NN simulator drastically saves the simulation time and memory, which allows us to study the waveguide
response at high-dimensional parametric domains. Note that the time complexity of a trained NN simulator is proportional to the
number of hidden layers. Each layer possesses a composite transformation whose time complexity is proportional to the square of the
numbers of neurons. Meanwhile, the time complexity of the direct numerical simulation is proportional to the number of state var-
iables and the simulation time steps. In the direct simulations, there are 2000 state variables in total (the displacements and velocities
for each oscillator) and 150,000 time step intervals. This is replaced by a NN simulator with only 2 hidden layers with 20 neurons per
layer. Based on the analysis, the time complexity is reduced by around five orders of magnitude. We compare the simulation time of the
NN simulator developed in Section 3 and direct simulation for (61, 02) = (1,0) with the other parameters fixed to e = 0.05,{ = 0.05, of
=0.5,D =1,a =2and A, =0.25. Using the same computing server, the simulation time for the NN simulator is around 2.56ms, while
the direct simulation takes around 69.0s. It is observed that the simulation time is reduced by around 4 to 5 orders of magnitude, which
agrees with the time complexity analysis and enables us to efficiently conduct the parametric study.

Appendix C. Parametric study of the neural network for the dense dataset in section 4

Here we investigate the predictive capacity of the NN developed for the dense set for varying layers and neurons per layer. To this
end, multiple NN simulators were trained composed of 2 to 10 layers, and with 20 to 70 neurons per layer. The resulting sensitivity,
specificity, precision, and correlations for the transmissibility and non-reciprocity measures between the NN predictions and the direct
numerical integrations are listed in Tables C1-C5. We notice that the specificity and correlations are all close to 0.99, however, the
sensitivity and precision performance varies. Therefore, we conclude that the best overall performance is achieved by the NN con-
taining 50 layers and 5 neurons per layer, which is chosen as the simulator for the dense data set in section 4.

Table C1
The sensitivity of the NN prediction.
Layers/Neurons 2 3 4 5 6 7 8 9 10
20 0.717 0.796 0.647 0.768 0.782 0.628 0.713 0.738 0.459
30 0.717 0.800 0.798 0.789 0.752 0.689 0.769
40 0.850 0.856 0.833 0.771 0.529 0.813 0.505
50 0.722 0.759 0.840 0.878 0.750 0.805
60 0.852 0.850 0.848 0.752
70 0.817 0.848 0.843 0.774
Table C2
The specificity of the NN prediction.
Layers/Neurons 2 3 4 5 6 7 8 9 10
20 0.995 0.994 0.993 0.995 0.989 0.996 0.988 0.995 0.988
30 0.992 0.995 0.995 0.994 0.993 0.995 0.990
40 0.995 0.997 0.997 0.994 0.994 0.993 0.987
50 0.988 0.992 0.994 0.996 0.994 0.993
60 0.995 0.992 0.993 0.992
70 0.992 0.995 0.997 0.997
Table C3
The precision of the NN prediction.
Layers/Neurons 2 3 4 5 6 7 8 9 10
20 0.864 0.854 0.828 0.869 0.767 0.877 0.748 0.864 0.646
30 0.800 0.875 0.892 0.869 0.850 0.866 0.761
40 0.889 0.931 0.924 0.867 0.831 0.858 0.639
50 0.722 0.838 0.873 0.918 0.870 0.864
60 0.885 0.827 0.886 0.806
70 0.847 0.888 0.944 0.921
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Table C4
The correlation for the transmissibility between the NN prediction and the direct numerical simulations for the dense data set.
Layers/Neurons 2 3 4 5 6 7 8 9 10
20 0.974 0.982 0.975 0.987 0.985 0.977 0.974 0.987 0.951
30 0.980 0.983 0.990 0.991 0.988 0.984 0.988
40 0.986 0.989 0.989 0.988 0.948 0.984 0.916
50 0.944 0.986 0.993 0.993 0.979 0.983
60 0.986 0.990 0.988 0.985
70 0.964 0.988 0.992 0.988
Table C5
The correlation of the non-reciprocity between the NN prediction and the direct numerical simulations for the dense data set.
Layers/Neurons 2 3 4 5 6 7 8 9 10
20 0.978 0.982 0.982 0.983 0.983 0.979 0.987 0.988 0.972
30 0.983 0.985 0.992 0.989 0.992 0.992 0.991
40 0.990 0.989 0.992 0.987 0.971 0.985 0.965
50 0.977 0.991 0.992 0.994 0.989 0.988
60 0.989 0.993 0.990 0.991
70 0.979 0.992 0.995 0.991
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