Lightweight Encryption using Chaffing and
Winnowing with All-or-Nothing Transform for
Network-on-Chip Architectures

Hansika Weerasena, Subodha Charles and Prabhat Mishra
Department of Computer & Information Science & Engineering
University of Florida, Gainesville, Florida, USA

Abstract—Network-on-Chip (NoC) fulfills the commu-
nication requirements of modern System-on-Chip (SoC)
architectures. Due to the resource-constrained nature of
NoC-based SoCs, it is a major challenge to secure on-
chip communication against eavesdropping attacks using
traditional encryption methods. In this paper, we propose
a lightweight encryption technique using chaffing and
winnowing (C&W) with all-or-nothing transform (AONT)
that benefits from the unique NoC traffic characteristics.
Our experimental results demonstrate that our proposed
encryption technique provides the required security with
significantly less area and energy overhead compared to
the state-of-the-art approaches.

Index Terms—system-on-chip, network-on-chip, security

I. INTRODUCTION

The advancement of manufacturing technologies has
enabled the integration of more and more diverse intel-
lectual property (IP) cores on the same system-on-chip
(SoC). Commercial SoCs, such as the Intel “Xeon Phi”
series [1] and Tilera “TILE-Gx” family [2], consist of
SoCs up to 72 cores. The demand for scalable and high-
throughput on-chip interconnects has made network-on-
chip (NoC) the standard interconnection solution for
many-core SoCs [2]. While optimizing the SoC for
performance and energy efficiency is a primary objec-
tive, recent manufacturing trends have raised several
security concerns [3]. Due to cost as well as time
constraints, manufacturers outsource IPs to third-party
vendors across the globe [4]. Typically, a few important
IPs are manufactured in-house and are integrated with
third-party IPs to obtain the final SoC. As a result of
this distributed supply chain, malicious implants such as
hardware Trojans can be inserted into the IPs. Trojans
can be inserted into the RTL or into the netlist of an

This work was partially supported by NSF grant SaTC-1936040.

IP core with the intention of launching attacks without
being detected at the post-silicon verification stage or
during runtime [5]. There are several practical scenarios
of Trojan insertion during the long and distributed supply
chain such as by an untrusted CAD tool or designer
or at the foundry via reverse engineering. Given the
importance of trustworthy computing, there are many
research efforts in efficient detection and mitigation of
security vulnerabilities [4], [6]-[14].

The major security issues related to NoC can be
classified as eavesdropping, spoofing, denial-of-service,
buffer overflow, and side-channel attacks [9]. Among the
many IP cores integrated on the SoC, some of them will
have secure, crucial information. Since NoC facilities
communication between all the IPs, it exposes an ideal
threat vector for an attacker to exploit. This allows the
attacker to eavesdrop on the NoC packets to extract
secret information without hacking into individual IPs.
Therefore, protecting the packets transferred on an NoC
is a major concern. However, the added security must
not cause significant performance and energy efficiency
degradation. Complex security schemes that counter the
extraction of secret information such as AES encryp-
tion [15] can have a significant impact on overall SoC
performance and power consumption, and as a result,
they are not suitable for the resource-constrained NoC-
based SoCs.

Authenticated encryption is a widely used solution
against eavesdropping attacks. Figure 1 shows a typical
NoC implementation on a many-core SoC where packets
are encrypted when transferring between IPs. Previ-
ous work on securing on-chip communication proposed
several lightweight encryption schemes [8], [16]-[19].
However, all these solutions took the traditional path of
encryption using block ciphers and made it lightweight
by using techniques such as reducing the number of
rounds, smaller key sizes, etc. This leads to sub-optimal



| Ps [am [N e [R: IP core
N IPg - Network
. WNdrT """ 1 E Interface
< N[ R, .
1
am Encrypted ! IE' Router
1
Packet I
o ! IP Node
Original Y
Packet Py

Nip|Ro

S e

Fig. 1: NoC implementation using a 4x4 mesh topology.
Each IP is connected to NoC via a network interface and
a router. To avoid eavesdropping attack, communication
from source (I Pg) to destination (I Pp) is encrypted.

results in terms of performance, power consumption, and
security.

This paper tries to answer a fundamental question:
is it possible to develop a novel encryption scheme
that utilizes the unique characteristics of NoC traffic
to derive a lightweight solution while providing the
desired security? We assume a strong threat model
where IPs and several routers can be malicious. The
network interfaces that interface the NoC IP to other IPs
are typically manufactured in-house and are assumed to
be secure. A similar threat model has been the focus of
several other studies, which validates the reality of the
model [6], [8], [16], [17], [19], [20].

Research Contributions: Our work introduces a
lightweight key-less encryption scheme using chaffing
and winnowing (C&W) together with an all-or-nothing
transform (AONT) that utilizes the unique NoC traffic
characteristics. Specifically, this paper makes the follow-
ing important contributions.

o We propose to replace the traditional block cipher-
based encryption using a key-less encryption scheme
that utilizes C&W and AONT.

o The performance overhead of deriving realistic “chaff”
packets to be dispersed among the “wheat” packets
is addressed using NoC traffic characteristics that
allocate a predictable sequence number to every packet
injected from the same IP.

e We show that the combination of C&W and AONT
can provide the desired security guarantees for NoCs.

o Experimental results demonstrate that our approach
is an ideal fit for resource-constrained SoCs since
it incurs significantly lower performance, area and
energy overhead compared to traditional encryption.

The rest of the paper is organized as follows. Section II
presents background information and prior research ef-
forts. Section III describes our approach for lightweight
encryption. Section IV presents the experimental results.
Finally, Section V concludes the paper.

II. BACKGROUND AND RELATED WORK

A. All or Nothing Transform

All or Nothing Transform (AONT) is a concept orig-
inally introduced by Rivest in 1997 [21] to increase the
difficulty of launching a brute force attack on encryption
algorithms. An AONT is not considered encryption. It
is an invertible, unkeyed, randomized transformation,
which acts as a pre-processing step prior to encryption.
The main property of an AONT is that when a message
is transformed using AONT and then encrypted using
a block cipher-based encryption mode, an adversary
cannot reveal any information about the message (not
even one block) without decrypting all the blocks. For
example, typically, to decrypt a block encrypted with
a k-bit key using a brute force approach requires 2*
work in the worst case or 2¥~1 on average. In the
ECB (electronic codebook) mode, the adversary only
needs to decrypt the first ciphertext block to obtain the
corresponding plaintext block. However, using an AONT
as a pre-processing step before ECB can increase the
work required by orders of magnitude, depending on
the encrypted message size. This is helpful in scenarios
where the key space size is fixed and the encryption
algorithm is considered to be “marginal” [22], such as
the 56-bit DES [23].

AONT maps the message sequence (mq,ma, ...
to (m}, m},...,m},) such that,

) mn)

n

1) The transformation is invertible.

2) AONT and its inverse are effectively computable.

3) It is infeasible to recover the whole message if
at least w bits of the transformation are unknown
(encrypted), where w is a threshold related to the
security guarantees and in most cases, the size of
an AONT block.

There are several AONT implementations including
package transform [21], optimal asymmetric encryption
padding [24], a variant of the package transform based
on the counter mode of encryption [25], exposure-
resilient function-based transform [26] and quasigroup-
based transform [27], [28]. In this paper, we use an
adaptation of the AONT proposed in [28] due to its
applicability in resource-constrained environments.



B. Quasigroups and Latin Squares

A finite quasigroup (), ®) of order n consists of a set
(@ in which a binary operator e is defined that has the
following property: Va,b € @), the equations a @ x =
b and y e a = b, always have unique solutions for x
and y. A dual binary operator o can be defined for the
binary operator e with the following relationship using
the elements of set ():

aob=c<=aec=0b

A new finite quasigroup (Q, o) can be derived which
is the dual of (@, e). Using the dual operation, we can
derive the relationship:

ao(aeb)=b;ae(aob) =10

A Latin Square (LS) is an n X n matrix defined on n
symbols such that every row and every column contain
exactly one occurrence of a specific symbol. For n = 3,
there are 12 possible LSs and for n = 4, there are 576,
which shows that possible LSs grow exponentially with
n (sequence A002860 in OEIS [29]).

The multiplication table of a quasigroup of size n is
a LS of the same order [30]. Therefore, construction of
LSs provides ways of generating random quasigroups.
Marnes introduced a fast and randomized method to
generate a quasigroup from a LS [27]. Their approach
required the order of the LS to be n = p — 1, where
p is a prime number. This method can produce n! (n
factorial) distinct random LSs of order n. Even though
using this method reduces the number of possible LSs,
it is obvious that the LS space is still considerably large
to prevent brute force attacks (for n = 256, LS space
~ 8.5 x 10°96). Since the primary objective of this paper
is to develop a lightweight encryption scheme, we use
an adaptation of this approach for quasigroup generation
(detailed in Section III-B).

C. Chaffing and Winnowing

Chaffing and winnowing (C&W) is a technique that
offers confidentiality without encryption [31]. The tech-
nique which is named after its similarities with remov-
ing chaff from wheat, consists of two main processes
completed at the two ends of communication - sender
and receiver (source IP and destination IP in our case).
At the sender, a message authentication code (MAC)
is appended to each packet, which is computed using
a standard hash-based MAC algorithm [32]. Therefore,
each packet originating at the source IP has the packet
payload as plaintext and the MAC. Typically, a message
consists of multiple packets and therefore, each packet
consists of a sequence number to determine the order
of the packets that combine to create the message. The

sequence number also helps remove duplicate packets
and identify missing packets. For example, a message
can have the following packet sequence represented with
the format (sequence number, payload, MAC):
(1, Our next meeting, 230985)
(2, will be at the docks, 992405)
(3, at midnight June 28, 128476)

These are called “wheat” packets. However, if this
is sent as it is, the message is not encrypted and any
eavesdropper can read the packet data. Therefore, in
C&W, confidentially is achieved by adding “chaff” pack-
ets to the communication stream. Chaff packets are fake
packets that have the same format and similar-looking
content and are intermingled with the wheat packets. A
value from a uniformly random distribution is used as
the MAC replacement and therefore, the MAC of each
chaff packet is invalid. For example, the above packet
sequence after adding chaff can look as follows:

(1, Our next meeting, 230985)
(1, Our next call, 366357)
(2, will be at the docks, 992405)
(2, will be on Signal, 098121)
(3, at midnight June 28, 128476)
(3, at noon May 18, 471298)

The receiver has to discard the chaff packets and
retain only the wheat packets to construct the correct
message. To do this, the receiver validates the MAC of
each packet and discards the packets with invalid MACs.
It is important to note that this process of discarding
packets with invalid MACs takes place anyway in a typi-
cal packet-based communication system that implements
authentication. An eavesdropper who can not validate the
MAC is unable to “winnow out” the chaff and therefore,
unable to retrieve the correct message.

The security of a C&W scheme depends on the num-
ber of C&W packets, the security of the MAC algorithm
and the way chaffing is done. Bellare and Boldyreva [33]
critically evaluated the security of C&W on different
notions of security. Their work showed that a bit-by-
bit C&W scheme provides “find-then-guess” security.
However, the bit-by-bit scheme requires adding chaff for
every wheat bit of the packet, which drastically increases
overhead. Therefore, we use an adaptation of the bit-by-
bit C&W scheme (detailed in Section III-C) in our en-
cryption scheme that fits the low overhead requirements
of NoC-based SoCs while providing provable security.

D. Fermat Primes

Fermat primes are prime numbers that can be ex-
pressed in the form of 22" 41 where n is a non-negative



integer. Currently, there are only five Fermat primes that
have been discovered (sequence A019434 in OEIS [29]).
The known Fermat primes are; Fy = 3, F} = 5, Fy = 17,
F3 =257, and Fy = 65537. Our approach of quasigroup
generation (introduced in Section II-B and elaborated
in detail in Section III-C) and other steps in AONT
(Section III-A) motivates the usage of Fermat primes.

E. Related Work

Eavesdropping attacks in NoC have been addressed
by authenticated encryption in prior research efforts [16],
[17], [34]. Content of the packets originating from source
IP is encrypted (C) except for the header information
(H) and the message authentication tag (T). The packet
injected to the NoC consists of H || C' || 7. Having
the header information as plain text helps the routers
to process the packets faster and send to the relevant
destination. At the destination, the tag is validated to
check for tampering and the packet is decrypted.

Sepuilveda et al. [16] proposed a variation of au-
thenticated encryption as a tunnel-based communication
mechanism where only the destination headers are kept
as plain text. The authors used AES counter mode for
encryption [15] and Siphash [35] for authentication on
source headers and data. Although AES counter mode is
highly parallelizable for performance gain, it introduces
high area and energy overhead. Siphash is a lightweight
and fast hash function well suited for short inputs and is
an ideal fit for NoC-based SoCs.

Previous work tried to develop lightweight encryption
schemes to fit the resource-constrained nature of NoC.
A simple XoR cipher together with a packet certifica-
tion technique was proposed in [19]. Intel introduced
TinyCrypt - a cryptographic library targeting resource-
constrained IoT and embedded devices that provides ba-
sic functionalities with less overhead. Boraten et al. [36]
proposed a reconfigurable packet validation and authen-
tication scheme by merging two robust error detection
schemes, namely, algebraic manipulation detection and
cyclic redundancy check. However, these approaches
either lead to unacceptable design overhead or do not
provide the required security guarantees.

AONT has been used in a wide variety of applications
in previous studies. AONT is used as a countermeasure
for differential power analysis based side-channel attack
in [37]. AONT is also used to protect implementations of
cryptographic algorithms against partial key exposures in
exposure resilient cryptography [38]. To the best of our
knowledge, our proposed approach is the first attempt
in using AONT with C&W while leveraging the unique

TABLE I: Table of notations.

p  One time define Fermat prime
n  Size of quasigroup where n =p — 1
s no of AONT blocks
A function that returns a random permutation
of elements 1, ..., u of size u.
K’ Key used to derive the first row of the LS.
K =n
M  Message to be encrypted
Pseudo-Message after AONT
C  Cipher Text
B; Block in AONT where |B;| =n
di di € (1,2,...,n) and |d;| = log, n bits
(Q,e) LS defined by binary operator e of a quasi-
group
¢i; Element in row ¢ and column j in LS
w  no of C&W bits
b; inverse of bit b;

AxB Va;€A&b; €B; (a; xb;) mod p
{0,1}* A random permutation of k bits
MAC(K,in) MAC using key K: {0,1} — {0,1}*

dt[i] it" bit of dt bit stream

[] empty string

NoC traffic characteristics to secure packet transfers in
NoC architectures.

III. ENCRYPTION WITH C&W AND AONT

Figure 2 presents an overview of our approach
lightweight encryption framework. The encryption and
decryption hardware will be implemented in the network
interface since the network interfaces are assumed to
be secure according to the threat model. The remainder
of this section describes our proposed encryption and
decryption procedure using the notations outlined in
Table I.

Algorithm 1 Encryption
1: function Ex (M)

2 M+ AONT(M)

3 parse M’ as m' || m” where |m'| = w bits
4: d «—ex(m)
5
6

C<«+cd|m’
return C

Algorithm 1 shows the major steps of the proposed
encryption procedure. As the initial setup step, global
values of p and w are selected depending on the security
requirements. The selection of p and w is described in
detail in Section IV. When the message (M) is sent
from the source IP (I Ps), it is first transformed using
AONT which outputs the pseudo message (M') (line
2). Then, M’ is divided as m’ and m” depending on
the value of w (line 3). The first part (m'), which is



IPs IPp

M Encryption Decryption #M
(Algorithm 1) - (Algorithm 2)
AONT M > o T M’ | Inverse AONT
(Algorithm 3) m' “I;I';‘c’:”t‘p“ € Pre-computed (Algorithm 4)
'y ags MAC tags T
m"
K Q K Q,| Q
Adding Winnowing m'

Quasi the chaff the chaff > Quasigroup
uasigroup & Duel
EIenertar:ions ....... Chaffing Winnowing ... generation
(Algorithm 5) (Algorithm 7) (Algorithm 8) (Algorithm 6)

Fig. 2: Overview of our proposed lightweight encryption framework with chaffing and winnowing (C&W) with
all-or-nothing-transform (AONT). The packet sent from the source (I Pg) goes through AONT followed by chaffing
which is implemented in the source network interface (/N Ig). The generated ciphertext (C') traverses the NoC to
the destination. The destination network interface (NIp) decrypts the packet using winnowing followed by inverse

AONT (IAONT) and delivers it to the destination IP (I Pp).

w-bits long, undergoes bit-by-bit C&W to produce the
“chaffed” output ¢’ (line 4). Finally, ¢ is concatenated
with m” to form the final ciphertext C' (line 5).

Algorithm 2 Decryption

1: function Ex(C)
2: parse C as ¢ || m”
3: m’ < dg ()

4: M« m' || m"
5
6

M + IAONT(M’)
return M

Decryption follows the reverse of encryption as out-
lined in Algorithm 2. First, the message (C) is divided
into ¢ and m” (line 2). Next, ¢’ is sent to the “winnow-
ing” process which discards the bits with invalid MACs
and returns m’ (line 3). Finally, m’ is concatenated with
the m” to form the M’ (line 4) before applying inverse
AONT to produce the original message M (line 5). The
required MACs for both wheat and chaff bits can be
pre-computed since the sequence number of the packets
originating at an IP are predictable (incremented by one
for each packet).

The remainder of this section elaborates all these
components in detail. Section III-A explains the func-
tions AONT and TAONT. Section III-B outlines the
generation of LSs, which are used in the AONT. Sec-
tion III-C elaborates the chaffing (ex) and winnowing
(dg) processes.

A. All or Nothing Transformation (AONT)

Algorithm 3 describes the AONT invoked in line 2
of Algorithm 1. The message is first transformed to do
the arithmetic operations in base n (line 2). For the base
transformation to be computationally less demanding, we
chose n to be a power of two, which motivated us to
use a Fermat prime for p. To achieve this, the message
is divided into groups of bits of length log, n. Then,
each group is represented by a number in base n where
its symbols are mapped to the integers {1,...,n} (for
example when n = 4, (00)2 can be represented as 4
and (11)2 as 3). The resulting string is then divided
into s blocks of size n. K’ is generated as a random
permutation of {1,...,n} (line 3) which is then sent as
input to Algorithm 5 in Section III-B to generate LS
(Q, &))(line 4).

The leader (I) which is required as an initial value
is generated through element-wise application of binary
operator using the (@), e) (line 5). A single iteration of
a for loop from line 6 to 9 maps message block (B;) to
a pseudo message block (B)):

e Line 7: integer ¢ is represented using a number in
base n of length n (for example ¢ = 1 = (0001)4
can be represented as (4,4,4,1).

o Line 8: intermediate block FE(i) is calculated by
applying the binary operator on the elements of
I(i). The previously calculated leader is used to
calculate n'" element of F(3).

o Line 9: Pseudo message block (B) is generated



Algorithm 3 All or Nothing Transform

Algorithm 4 Inverse All or Nothing Transform

1: function AONT(M)

2: parse M as B; || Bs || ... || Bs where B; =
(dir, diz, ..., din)

3: K' + o(n)

4: (Q,e) + Q(K')

5: lh < ki,lo « kooly,...,l, < k, el, 1 and
<1,

6: for:=1,...,s do

7: 1(i) < representation of 7 to number in base

nand [I(i)] =n
E(Z) <— (eil,eig,...,em) where Cin < le
lins Cin—1 = €in ® lin_1, ..., €1 < €2 ® i3]

e

9: B! « (d}y,d}y, .. ,dén) where dj; < e;; o
dij,j = 1, N

10 A+ B}

11: for i=2,...,s do

12: A; — A1 x B;

132 Bl A+ K’
14: M' + Bl| B} ..
15: return M’

|| Bs+1

from the corresponding message block (B;) by
applying the binary operator e element by element
with the corresponding E(i) calculated in line 10.

Lines 10 to 13 generate the last pseudo block (B, ).
Auxiliary blocks (A;) are calculated by applying the star
operator between A;_1 and B; (line 12). Finally, the s+1
concatenated (line 14) blocks are returned as the pseudo
message (M').

Algorithm 4 elaborates the function JAONT, which
is the inverse of AONT with the following changes:

e Line 6: element by element division of Ag from
By, is used to retrieve K’ based on:
(ax k' Ymod p=m/ <= a/m' =k
e Line 7: both LSs including the dual is generated
from Algorithm 6.
e Line 12: dual operator o is used to generate the orig-
inal message blocks from pseudo message blocks.

B. Quasigroups and Latin Squares Generation

Our approach uses the LS generation technique intro-
duced by Marnes et al. [27] since it leads to a fast and
randomized generation process (Algorithm 5). The size
of the LS is n x n where n = p — 1 and p is a prime.
The first row of the LS which is a random permutation is
provided as a parameter to the algorithm (line 2). Every
element of the ¢-th row, ¢ = 2,...,n is computed by

1: function JAONT(M')
2: parse M’ as Bj || B} || ...
(i, digs -+, di,)

i

| B. where B, =

3: Al +— B/

4: for i=2,....s do

5: A; — Aj_q % Bé

6: K « A /BS

7 (Q), (Q,0) + Q'(K)

8: l1 + k‘l,lz — koeoly,...,l, « k,el, 1 and
<1,

9: fori=1,...,s do

10: 1(i) < representation of ¢ to number in base
nand |I(i)| =n

11: E(Z) — (eil,ei27...,em) where ¢e;, < [ @
lin, €in—1 < €in ® lin—1, .., €1 < €2 ® i3]

12: B() (diladi% adzn) where dij — €40
dij,j=1,..,n

13: M + Bl H By H
14: return M

H Bs+1

Algorithm 5 Generate Quasigroup

1: function Q(K")

2 parse K’ as q11 || qi2 || .- || g1n > first raw of LS
3 for i =2,...,n do

4: for j=1,...,n do

5 ¢ij < (i X q1;) mod p

6 <Q,0> «— LS of qij

7 return (Q, o)

(7 X q1;) mod p (line 5). The generated LS is then used
in the AONT calculations.

Algorithm 6 is used by the receiver to generate both
the original quasigroup and its dual simultaneously as
LSs. For every element (g;;) of row 4 and column j, a
corresponding dual element (g;,) of value j is generated
for row ¢ and column g;;(z) (lines 6 and 7).

C. Chaffing and Winnowing

The input message (m') of length w is used in the
bit by bit C&W process. The final output has 2w
packets because there is a chaff bit for each bit in m’.
Algorithm 7 outlines the process of chaffing. The m’ is
treated as a bit stream and the steps shown in line 3 to
line 7 are applied on every bit of m’. A tag (tg*?) is
generated by a secure MAC algorithm for the bit b; and
counter (ctr) using the shared authentication key K (line
4). In our implementation, we used NoC packet sequence



Algorithm 6 Generate Quasigroup with Dual

Algorithm 8 Winnowing

1: function Q'(K’)

2 parse K’ as q11 || q12 || - || ¢1n
3 for:=1,...,n do

4 for j=1,...,n do
5: ¢ij < (i x q1;) mod p
6 2 4 Q55

7 . < J

8 <Q,O> + LS of qij

9: (@,0) < LS of ¢,
10: return (Q,e), (Q,0)

(iii)| Pkt |

Bit Counter bits MAC

Fig. 3: Breakdown of bits from AONT and C&W:
(i) original packet divided into blocks for AONT, (ii)
transformed blocks after AONT, (iii) m’ converted to 2w
C&W packets and, (iv) overview of a chaffed packet.

number and an offset as the value of ctr. A random tag
(tg™?) is generated for the complement of the bit (line
5). Two packets are generated for the original bit and
the complement bit as a combination of the bit, ctr, and
tag (line 6 & 7).

In our approach, MAC can be generated in parallel,
without waiting for the bits (m’) to arrive since the
sequence number of each packet is predictable in NoC
architectures and only one bit is used from m’ for each
tg™?. This enables significant performance improvement.

Algorithm 7 Chaffing

1: function ey (m’)

2 break m/' into bits as by || b2 || ... || bw

3 fori=1,...,w do

4 tgh? < MAC(K,b; || (ctr + 1))

5. tgi? L 10, 11K

6 Pkt « (b; || (ctr +1),tg"0)

7 Pkttt < (b; || {etr + i), tg"t)

8 return Pkt\'0 Pkttt ... Pkt®O, Pktw!

function dx (Pkty, ..., Pktoy)

1:

2 m' <« []

3 for i=1,...,2w do

4: parse Pkt; as dt; || tg;

5 if MAC(K,dy) = tg; then
6 m’ || dt;[1]

7 return m’

Algorithm 8 outlines the winnowing process. It takes
2w packets and outputs the original bit stream of length
w. Bach packet is validated using the same MAC al-
gorithm and the key K (line 5). Invalid packets are
discarded and the bit values of the valid packets are con-
catenated to produce the original message. The chaffing
process increases the number of flits since for each bit in
m/, a tag and a counter are appended. However, as shown
in experimental results, the impact on performance due
to the increase in congestion is compensated by the faster
encryption (and decryption). Figure 3 elaborates how the
bits are composed in the final ciphertext compared to the
original message.

D. An Illustrative Example

In this section, we provide an illustrative example to
show how AONT and C&W work together to secure
NoC packets. Let M be the message sent by the sender.

M = 0101 1111 0110 1000 1101 1010 1011 1100 1110
0001

p and w are set to 5 and 4, respectively. Since p = 5,
n = 4 as illustrated in Section III-A. Let the chosen
alphabet be 1,2,3,4 where the binary equivalent of 00
is represented by 4. Therefore, the message M can be
represented as,

M = 11331224312223343241

where the blocks are,

By =(1,1,3,3) By =1(1,2,2,4)
Bs =(3,1,2,2) By4=1(2,3,3,4)
Bs = (3,2,4,1)
Assume that the derived random key is:
K'=(3,2,4,1)

Figure 4a shows the LS (@, e) constructed by Algo-
rithm 5.
The leader can be calculated as,

i, =3,ly=203=31l3=4e3=1,1;=1e1=23and
[=3



o
~

@) (Q,e) (b) (@

ol 2 3 4 ol 2 3 4
13 2 4 1 1[4 21 3
21 4 3 2 21 4 3 2
3(4 1 2 3 302 3 41
412 3 1 4 413 1 2 4

Fig. 4: Example of Latin Square of order 4 and its dual
generated by Algorithm 5 and 6.

Calculation of I(7):

I(1) = (4,4,4,1)
1(3) = (4,4,4,3)
I(5) =(4,4,1,1)
Calculation of E(i):
E(1) = (4,4,4,4)
E(3) = (2,2,2,2)
E() =(2,2,2,4)

Calculation of pseudo-message blocks b/:

1(2) = (4,4,4,2)
I(4) = (4,4,1,4)

By =(2,2,1,1) Bi=(4,1,1,3)
B, =(3,1,4,4) Bj=1(3,1,1,3)
Bé = (3747272)

Calculation of Auxiliary blocks A;:
A =(2,2,1,1) Ay =1(3,2,1,3)
As = (4,2,4,2) A4 =(2,2,4,1)

As = (1,3,3,2)

Using the above results, the final pseudo-message
block can be calculated as,

Bi=As K = (1,3,3,2)  (3,2,4,1) = (3,1,2,2)
M'= 2211 4113 3144 3113 3422 3122

The last block of M’, which is 3122 in this example is
the extra block added by AONT. Pseudo-message binary
representation:

M’= 10100101 00010111 11010000 11010111
11001010 11011010

Let w =4 and ctr = 1 for C&W. Then,

m’ = 1010, m” = 0101 00010111 11010000 11010111
11001010 11011010

Let the outputs of of tg be,

tgt! =1011  tg*? = 1010
tg3t =1110  tg*0 =1111
Using the calculated tag values to derive and chaff and
wheat packets, we get,

Wheat packets:
Pktb! = (1,1,1011)
Pkt = (1,3,1110)
Chaff packets:
Pkt'? = (0,1,0011) Pkt>! = (1,2,0011)
Pkt39 = (0,3,0111)  Pkt*! = (1,4,0101)
Then, the ¢’ can be computed as,

d = Pkt'0 || Pkt || PEt>0 || Pkt?!
| Pkt30 || PEt3Y || Pkt*C || Pkt*!

Pkt*? = (0,2,1010)
Pkt*9 = (0,4,1111)

If |ctr| = 3 bits, binary representation of ¢ is:

¢ =00010011 | 10011011 || 0010 1010 || 1010 0011
100110111 || 10111110/ 0100 1111 || 1 100 0101

Finally, ciphertext (C) is ¢ || m”.

At the receiver’s side, the winnowing process con-
structs m’ by winnowing the chaff as outlined in Algo-
rithm 8 and constructs M’. The TAONT process parses
M’ to derives B] and A; and retrieves the key as,

K =(1,3,3,2)/(3,1,2,2) = (3,2,4,1)

Both LSs (@, e) and its dual (Q,o) are constructed
using Algorithm 6 as in Figure 4. Calculated (i) and
E(7) will be similar to the senders’ side. Original blocks

(B;) of the message (M) can be constructed using B,
and (Q,o) LS.

IV. EXPERIMENTS

In this section, we first describe the experimental setup
used to evaluate the effectiveness of our approach. Next,
we present results to demonstrate the performance gain
achieved using our approach compared to traditional
symmetric key encryption. Finally, we discuss the as-
sociated overhead and security of our approach.

A. Experimental Setup

We used the cycle-accurate full system gem5 simulator
to evaluate our approach [39]. The “GARNET2.0” model
was used as on-chip interconnection model [40]. The
configuration parameters used in gem5 is outlined in
Table II.

We modified the Network Interface (NI) of gem5
source to simulate the proposed approach as well as
the traditional encryption. Multiple benchmarks from
SPLASH-2 and PARSEC benchmarks were run as ap-
plications to capture performance. To evaluate the area
and energy overhead of our approach against traditional
encryption, we synthesized both methods using Synopsys
Design Compiler with “Isi_10k” library.



TABLE II: gem5 configuration parameters.

Processor configuration
Number of cores 16
Core frequency 2GHz?
Instruction Set Architec- | x86
ture

Memory System Configuration
L1 instruction cache private separate cache of 16kB
L2 data cache private separate cache of 16kB
Cache coherence directory-based cache coherence
protocol
Memory size 4GB DDR

Interconnection Network Configuration

4x4 Mesh topology
X-Y deterministic
1 Cycle

Topology
Routing Scheme
Link Latency

C&W and AONT parameters: GARNET2.0 default
implementation has data packet size of 576 bits. This
motivated us to use a LS size(n) of 16 which led to
an AONT block size of 64 bits. Both the counter and
the MAC tag size are kept as 8 bits. The number of
C&W bits (w) is kept as a variable which can be chosen
according to the desired level of security.

Traditional Encryption: We compared our approach
with symmetric encryption of AES-128 [41]. Since our
AONT implementation works on blocks in parallel, we
compared it with AES-128 in parallel CTR mode of
encryption to enable a fair comparison. In this case, 576
bits of data require 5 parallel block ciphers of AES-128.

B. Performance Evaluation

The performance of our approach (C&W and AONT)
is compared with two other scenarios: i) No security -
NoC architecture that does not implement encryption to
secure communication, and ii) AES-128 parallel CTR
- packets secured using five AES-128 ciphers in counter
mode. Figure 5 and Figure 6 show the average packet
latency and overall execution time, respectively, with
varying w values when running the FFT benchmark from
the SPLASH-2 benchmark suite.

Packet latency is the number of cycles taken by one
packet to traverse from source to destination. There is an
average packet latency even in the “No security” scenario
because of delays at the network interface, links, and
routers in the NoC. AES-128 parallel CTR has high
packet latency due to additional encryption operations
taking place at the network interface. Overall execution
time consists of CPU cycles, memory load/store delays
in addition to the delays traversing the NoC.

Our proposed AONT implementation introduces
nlogan number of bits to packets which is constant for
the selected LS. However, C&W introduces a variable

= C&W and AONT = AES-128 parallel CTR = No security
200

Packet Latency (Cycles)
g g

o
3

0

10 20 30 40 50 60

Fig. 5: Comparison of average packet latency with vari-
able C&W bits against AES-128 and no security for FFT.

= C&W and AONT - AES-128 parallel CTR = No security
6

- o

Execution Time ( X 10°)
w

2
10 20 30 40 50 60

Fig. 6: Comparison of execﬁtion time with variable
C&W bits against AES-128 and no security for FFT.

amount of bits (2w(|ctr| + |tag|+ 1) — w) depending on
the number of C&W bits (w). The increasing number of
bits contributes to the increasing number of flits injected
into the network and as a result, increased packet latency.
However, the performance penalty due to congestion is
compensated by faster encryption in our approach.

We choose w = 64 experimentally according to
the observations. We evaluated our approach against
traditional encryption across multiple benchmarks of
SPLASH-2 and PARSEC, namely, FFT, OCEAN,
RADIX, LU, and Blackscholes. Figure 7 presents aver-
age packet latency and Figure 8 presents overall execu-
tion time across multiple benchmarks. It can be observed
that our proposed scheme behaves similarly across all
benchmarks. Our approach offers 14.3% improvement
in packet latency and 7.7% improvement in overall exe-
cution time compared to traditional AES-128 encryption.

C. Overhead Analysis

Table III presents results based on the area and energy
consumption calculations considering the same three
scenarios. Each network interface must implement the
required additional hardware for the security mechanism.



I C&W(64 bits) and AONT [ AES-128 parallel CTR M No Security

200

150

=)
=3

Packet Latency ( Cycles )
o
3

o

FFT OCEAN
(Splash-2) (Splash-2)

RADIX Lu
(Splash-2) (Splash-2)

Blackscholes
(Parsec)

Fig. 7: Average packet latency comparison using tradi-
tional encryption, no security and C&W with AONT.

B C&W(64 bits) and AONT [ AES-128 parallel CTR [ No Security

1.00

o e
o N
S a

Normalized Execution Time
°
N
&

4
°
=3

FFT OCEAN
(Splash-2) (Splash-2)

RADIX LU
(Splash-2) (Splash-2)

Blackscholes
(Parsec)

Fig. 8: Execution time comparison using traditional
encryption, no security and C&W with AONT.

For the ease of illustration, we show the overhead at
one network interface in Table III. Our approach im-
proves the area overhead by 48.1% and energy efficiency
by 72.1% compared to traditional encryption. The en-
ergy consumption is calculated for encrypting a 576-bit
message. Our approach increases the energy efficiency
significantly since AES-128 takes longer to encrypt and
also, requires more power to run the five block ciphers
in parallel. Therefore, our approach is ideal for resource-
constrained NoC architectures.

D. Security Analysis

Security of our approach, which utilizes both bit-by-
bit C&W and AONT, depends on the security of two
main components: i) the implementation of the MAC
algorithm used in the C&W scheme, and ii) security
of the AONT scheme [33]. Bit-by-bit C&W scheme is
proven to provide “find-then-guess” security assuming
the underlying MAC is a pseudo-random function [33].
AONT scheme used in our approach is introduced as a
secure AONT scheme in [28] as it followed the steps of
package transform defined using quasigroup [21]. The
package transform is proven to be secure with a strong
semantic security model [24].

TABLE III: Comparison of area and energy overhead
between traditional encryption and C&W with AONT.

AES-128 C&W(64 bit) | Improvement
parallel CTR | with AONT
Area 1505781 780164 48.1%
Energy(uJ) 16.6 4.6 72.1%

If fewer bits are used for C&W, the advantage of the
adversary is higher. The advantage decreases exponen-
tially with the increasing number of bits for C&W (w)
because of the find-then-guess notion of security in bit-
by-bit C&W scheme. This makes the security of our
proposed approach configurable based on the security
requirement and performance overhead.

Exhaustive key search attack is not possible in our
approach compared to traditional encryption because
AONT is key-less. For example, if w = 64, s = 9 and
n = 16, an adversary needs to brute force 2(04+9) /2
trials on average, which is 272 trials to recover the first
row of the LS (K”). Also, it will be changed in the next
message and there are 16! (n!) number of possible K’
values. In other words, the attacker has to perform 272
trials for every message, which is infeasible in practice.

The usage of AONT has also shown to hinder the
possibility of differential side-channel analysis according
to [37]. This can be considered as an added advantage
of our approach over traditional encryption. Therefore,
our approach is sufficiently secure in resource constraint
environments such as NoC-based SoCs.

V. CONCLUSION

Network-on-Chip (NoC) is a widely used solution
for on-chip communication between Intellectual Property
(IP) modules in System-on-Chip (SoC) architectures.
The increased usage of NoC and its distributed nature
across the chip has made it a focal point of potential
security attacks. It may not be feasible to implement
costly encryption schemes on resource-constrained NoC-
based SoCs. While parallel encryption methods can
mitigate performance overhead, they can lead to un-
acceptable area and power penalties. In this paper, we
proposed a lightweight encryption scheme based on
chaffing and winnowing with all-or-nothing transform.
Our chaffing and winnowing algorithms can be tuned
to address the trade-off between security and design
overhead. Experimental results demonstrated that our
proposed approach can provide the desired security guar-
antees while incurring significantly lower energy and
performance overhead compared to the state-of-the-art
encryption methods.



(1]
(2]

(3]
(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

(12]

[13]

[14]

(15]
[16]

(17]

(18]

[19]

[20]

REFERENCES

G. Chrysos, “Intel® xeon phi™ coprocessor-the architecture,”
Intel Whitepaper, vol. 176, p. 43, 2014.

C. Ramey, “Tile-gx100 manycore processor: Acceleration inter-
faces and architecture,” in 2011 IEEE Hot Chips 23 Symposium
(HCS). IEEE, 2011, pp. 1-21.

P. Mishra and S. Charles, Network-on-Chip Security and Pri-
vacy. Springer Nature, 2021.

S. Charles, Y. Lyu, and P. Mishra, “Real-time detection and
localization of dos attacks in noc based socs,” in Design
Automation & Test in Europe (DATE), 2019, pp. 1160-1165.
P. Mishra, S. Bhunia, and M. Tehranipoor, Hardware IP security
and trust. Springer, 2017.

S. Charles, M. Logan, and P. Mishra, “Lightweight Anonymous
Routing in NoC based SoCs,” in Design Automation & Test in
Europe (DATE), 2020.

S. Charles and P. Mishra, “Lightweight and trust-aware routing
in noc-based socs,” in 2020 IEEE Computer Society Annual
Symposium on VLSI (ISVLSI), 2020, pp. 160-167.

S. Charles and P. Mishra, “Reconfigurable network-on-chip
security architecture,” ACM Transactions on Design Automation
of Electronic Systems (TODAES), vol. 25, no. 6, pp. 1-25, 2020.
S. Charles and P. Mishra, “A survey of network-on-chip se-
curity attacks and countermeasures,” ACM Computing Surveys
(CSUR), vol. 54, no. 5, pp. 1-36, 2021.

H. Witharana, Y. Lyu, and P. Mishra, “Directed test generation
for activation of security assertions in rtl models,” ACM Trans-
actions on Design Automation of Electronic Systems (TODAES),
vol. 26, no. 4, pp. 1-28, 2021.

F. Farahmandi, Y. Huang, and P. Mishra, System-on-Chip Secu-
rity: Validation and Verification. Springer Nature, 2019.

Y. Lyu and P. Mishra, “Scalable activation of rare triggers in
hardware trojans by repeated maximal clique sampling,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 2020.

A. Ahmed, F. Farahmandi, Y. Iskander, and P. Mishra, “Scalable
hardware trojan activation by interleaving concrete simulation
and symbolic execution,” in 2018 IEEE International Test
Conference (ITC). 1EEE, 2018, pp. 1-10.

S. Charles, Y. Lyu, and P. Mishra, “Real-time detection and
localization of distributed dos attacks in noc based socs,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 2020.

J. Daemen and V. Rijmen, “Aes proposal: Rijndael,” 1999.

J. Sepulveda, A. Zankl, D. Flérez, and G. Sigl, “Towards pro-
tected mpsoc communication for information protection against
a malicious noc,” Procedia computer science, vol. 108, pp.
1103-1112, 2017.

S. Charles and P. Mishra, “Securing network-on-chip using
incremental cryptography,” in 2020 IEEE Computer Society
Annual Symposium on VLSI (ISVLSI). 1EEE, 2020, pp. 168—
175.

“Using TinyCrypt Library, Intel Developer Zone, Intel, 2016.”
https://software.intel.com/en-us/node/734330, [Online].

D. M. Ancajas et al., “Fort-NOCs: Mitigating the threat of a
compromised NoC,” in DAC, 2014, pp. 1-6.

V. Y. Raparti and S. Pasricha, “Lightweight mitigation of
hardware trojan attacks in noc-based manycore computing,” in
Proceedings of the 56th Annual Design Automation Conference
2019. ACM, 2019, p. 48.

(21]

[22]

(23]

(24]

[25]

[26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

R. L. Rivest, “All-or-nothing encryption and the package trans-
form,” in International Workshop on Fast Software Encryption.
Springer, 1997, pp. 210-218.

M. Blaze, W. Diffie, R. L. Rivest, B. Schneier, and T. Shimo-
mura, “Minimal key lengths for symmetric ciphers to provide
adequate commercial security. a report by an ad hoc group
of cryptographers and computer scientists,” INFORMATION
ASSURANCE TECHNOLOGY ANALYSIS CENTER FALLS
CHURCH VA, Tech. Rep., 1996.

D. Coppersmith, “The data encryption standard (des) and its
strength against attacks,” IBM journal of research and develop-
ment, vol. 38, no. 3, pp. 243-250, 1994.

V. Boyko, “On the security properties of oaep as an all-or-
nothing transform,” in Annual International Cryptology Con-
ference. Springer, 1999, pp. 503-518.

A. Desai, “The security of all-or-nothing encryption: Protecting
against exhaustive key search,” in Annual International Cryp-
tology Conference. Springer, 2000, pp. 359-375.

R. Canetti, Y. Dodis, S. Halevi, E. Kushilevitz, and A. Sahai,
“Exposure-resilient functions and all-or-nothing transforms,” in
International Conference on the Theory and Applications of
Cryptographic Techniques. Springer, 2000, pp. 453-469.

S. I. Marnas, L. Angelis, and G. L. Bleris, “All-or-nothing
transforms using quasigroups,” in Proc. Ist Balkan Conference
in Informatics, 2003, pp. 183-191.

S. I. Marnas, L. Angelis, and G. L. Bleris, “An application of
quasigroups in all-or-nothing transform,” Cryptologia, vol. 31,
no. 2, pp. 133-142, 2007.

N. J. Sloane et al., “The on-line encyclopedia of integer
sequences,” 2003.

B. D. McKay, A. Meynert, and W. Myrvold, “Small latin
squares, quasigroups, and loops,” Journal of Combinatorial
Designs, vol. 15, no. 2, pp. 98-119, 2007.

R. L. Rivest et al., “Chaffing and winnowing: Confidentiality
without encryption,” CryptoBytes (RSA laboratories), vol. 4,
no. 1, pp. 12-17, 1998.

H. Krawczyk, M. Bellare, and R. Canetti, “Hmac: Keyed-
hashing for message authentication,” 1997.

M. Bellare and A. Boldyreva, “The security of chaffing and
winnowing,” in International Conference on the Theory and
Application of Cryptology and Information Security. Springer,
2000, pp. 517-530.

C. H. Gebotys and R. J. Gebotys, “A framework for security on
noc technologies,” in IEEE Computer Society Annual Sympo-
sium on VLSI, 2003. Proceedings. 1EEE, 2003, pp. 113-117.
J.-P. Aumasson and D. J. Bernstein, “Siphash: a fast short-
input prf,” in International Conference on Cryptology in India.
Springer, 2012, pp. 489-508.

T. Boraten and A. K. Kodi, “Packet security with path sensiti-
zation for nocs,” in 2016 Design, Automation & Test in Europe
Conference & Exhibition (DATE). 1EEE, 2016, pp. 1136-1139.
R. P. McEvoy, M. Tunstall, C. Whelan, C. C. Murphy, and
W. P. Marnane, “All-or-nothing transforms as a countermeasure
to differential side-channel analysis,” International journal of
information security, vol. 13, no. 3, pp. 291-304, 2014.

Y. Dodis, “Exposure-resilient cryptography,” Ph.D. dissertation,
Massachusetts Institute of Technology, 2000.

N. Binkert et al., “The gem5 simulator,” SIGARCH Computer
Architecture News, 2011.

N. Agarwal et al., “GARNET: A detailed on-chip network
model inside a full-system simulator,” ISPASS, 2009.

J. Daemen and V. Rijmen, “Aes proposal: Rijndael,” 1999.



