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1. Introduction

The interaction of dispersive waves with slowly varying mean flows is a fundamental and
canonical problem of fluid mechanics with important applications in geophysical fluid
dynamics (see, e.g. Pedlosky (2003), Mei, Stiassnie & Yue (2005), Bühler (2009) and
references therein). This multiscale problem is relevant for linear or weakly nonlinear
wavepackets and large amplitude solitons – in this work, we do not distinguish between
solitary waves and solitons. Traditionally, the mean flow involved in the interaction
is either prescribed externally, e.g. an external current, or is induced by amplitude
modulations of a nonlinear wave. A different class of wave–mean flow interactions has
recently been identified in Maiden et al. (2018), where both the dynamic mean flow
and the propagating localised soliton are described by the same dispersive hydrodynamic
equation, a canonical example being the Korteweg–de Vries (KdV) equation. However, the
evolution of the field u(x, t) occurs on two well-separated spatio-temporal scales, allowing
for the distinct identification of waves and mean flows. A prototypical configuration of
this (figure 1) is the propagation of a soliton through a dynamically evolving macroscopic
flow, characterised by different asymptotic states u → u± as x → ±∞. We refer to such
nonlinear wave interactions as soliton–mean flow interactions. The simplest mean flows
are initiated by a monotone transition or step between u− and u+, which asymptotically
develops into either a rarefaction wave (RW) or a highly oscillatory dispersive shock wave
(DSW) (Gurevich & Pitaevskii 1974; El & Hoefer 2016). While the former is slowly
varying, the use of the expression ‘mean flow’ for the latter implies some averaging
over rapid oscillations. We shall refer to the step problem for dispersive hydrodynamics
as a dispersive Riemann problem. Solitons, RWs and DSWs (also known as undular
bores) are ubiquitous and fundamental nonlinear wave structures occurring in a variety
of geophysical fluid contexts including internal waves in lakes or oceans (Boegman, Ivey
& Imberger 2005; Helfrich & Melville 2006; Madsen, Fuhrman & Schäffer 2008; Jamshidi
& Johnson 2020) and surface water waves (Chanson 2010; Chassagne et al. 2019) as
well as magma and glacier flows (Scott & Stevenson 1984; Stubblefield, Spiegelman
& Creyts 2020), so the problem of their interaction is of considerable interest for fluid
dynamics applications. Depending upon its initial position and amplitude, the soliton
may transmit or ‘tunnel’ through the large scale, expanding mean flow; otherwise, it
remains trapped within the mean flow. Recent work has investigated the interaction
between solitons and mean flows resulting from the evolution of an initial step. Both fluid
conduit experiments and the theory for a rather general, single dispersive hydrodynamic
conservation law were described in Maiden et al. (2018). A generalisation of soliton–mean
flow interaction to the bidirectional case for a pair of conservation laws described by
the defocusing nonlinear Schrödinger equation (NLS) equation was explored in Sprenger,
Hoefer & El (2018). Soliton–mean flow interaction in the focusing NLS equation was
investigated in Biondini & Lottes (2019). A similar problem involving the interaction of
linear wavepackets with shallow-water wave mean flows modelled by the KdV equation
was studied using an analogous modulation theory framework in Congy, El & Hoefer
(2019). Aside from the focusing NLS case, for which mean flow evolution is described by
an elliptic system of equations, and the present work, the models previously investigated in
the context of soliton–mean flow interaction were limited to dispersive conservation laws
with hyperbolic, convex flux.

The focus of this work is the study of soliton–mean flow interaction when the governing
dispersive hydrodynamics exhibits a non-convex hydrodynamic flux. As we show, the
presence of non-convex flux, e.g. the cubic flux in the modified KdV (mKdV) equation
or related Gardner equation, introduces significant modifications to the transmission and

928 A21-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

80
3

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e .
 U

ni
ve

rs
ity

 o
f C

ol
or

ad
o 

Bo
ul

de
r,

 o
n 

28
 O

ct
 2

02
1 

at
 1

7:
33

:1
2,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.



Dynamic soliton–mean flow interaction with non-convex flux

u– + a–
c–

u+

u–

x

Figure 1. Representative initial configuration for soliton–mean flow interaction. The narrow soliton with
amplitude a− on the uniform mean flow u− transmits through the broad hydrodynamic flow if it reaches the
uniform mean flow u+, surpassing all initial mean-generated oscillations. Otherwise, it experiences trapping
inside the mean flow. The mean flow generally exhibits expansion and compression waves.

trapping scenarios realised in the KdV case. First of all, due to the non-convex flux,
the mKdV equation supports a much broader family of solitons and mean flow solutions
than the KdV equation, including localised solutions in the form of exponentially decaying
solitons of both polarities and, depending on the dispersion sign, kinks and algebraic
solitons. The mKdV non-convex mean flow features include undercompressive DSWs
(an alternative interpretation of kinks), contact DSWs (CDSWs) and compound two-wave
structures (Kamchatnov et al. 2012, 2013; El, Hoefer & Shearer 2017). Here, we investigate
how the solution features that arise due to non-convex flux affect soliton–mean flow
interactions. In particular, we show that soliton transmission for the defocusing mKdV
equation can be accompanied by a soliton polarity change. In the focusing case, there
is a soliton–mean flow interaction in which an exponential soliton is asymptotically
transformed into a trapped algebraic soliton. These are just two examples of the rich
catalogue of soliton–mean flow interactions we describe in this paper.

Key to the study of soliton–mean flow interaction is scale separation, whereby the
characteristic length and time scales of the propagating soliton are much shorter than
those of the mean flow. The rapidly oscillating structure of dispersive hydrodynamic flows
motivates the use of multiscale asymptotic methods. Here, we will make extensive use of
one such method known as Whitham modulation theory (Whitham 1974), which is based
on a projection of the scalar dispersive hydrodynamics onto a three-parameter family of
slowly varying periodic travelling wave solutions to the governing equation. The projection
is achieved, equivalently, by averaging conservation laws, an averaged variational
principle, or multiple scale perturbation methods. The dispersive hydrodynamics is then
approximately described by a system of three first-order quasilinear partial differential
equations (PDEs) – the Whitham modulation equations – for the periodic travelling wave’s
parameters such as the wave amplitude, the wavenumber and the period mean. Within
the framework of Whitham modulation theory, the original dispersive Riemann problem
is posed as a special Riemann problem, sometimes called the Gurevich–Pitaevskii (GP)
problem (Gurevich & Pitaevskii 1974), for the modulation equations subject to piecewise
constant initial data with a single discontinuity at the origin. Continuous, self-similar
solutions of the GP problem describe RW and DSW mean flow modulations.

Classical DSW modulation theory has been developed for the KdV equation (Gurevich
& Pitaevskii 1974) and other ‘KdV-like’ equations, both integrable and non-integrable
(El 2005; El & Hoefer 2016). It is useful to identify this class of KdV-type equations,
or classical, convex dispersive hydrodynamic equations, as those equations for which the
associated Whitham modulation equations are strictly hyperbolic and genuinely nonlinear.
In this case, the generic solution of the GP problem is either a DSW or a RW. More broadly,
even non-convex equations such as mKdV can exhibit convex dispersive hydrodynamics
for a restricted subset of modulation parameters in which the Whitham modulation
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equations remain strictly hyperbolic and genuinely nonlinear. Therefore, we shall call
the DSWs generated within the framework of convex dispersive hydrodynamics convex
DSWs.

It was shown in Maiden et al. (2018) that the interaction of a soliton with a RW is
described by an exact, soliton limit reduction of the Whitham modulation system, which
we call the solitonic modulation system. Two integrals or adiabatic invariants of the
solitonic modulation system were identified that determine the amplitude and phase shift
of the soliton when transmitted through the variable mean flow. The non-existence of
a transmitted soliton (zero or negative transmitted amplitude) signifies soliton trapping
within the mean flow. The soliton–DSW transmission/trapping conditions were shown
to be equivalent to those for the soliton–RW interaction by the fundamental property of
hydrodynamic reciprocity of the modulation solution, which is related to time reversibility
of the original dispersive hydrodynamics.

In this paper, we investigate the effects of a flux’s non-convexity on the transmission
and phase conditions. One of the main, general outcomes of our work is the identification
of the condition for soliton trapping with the coalescence of characteristics of the
solitonic modulation system, a signature of non-strict hyperbolicity. Analysis of the
solitonic modulation system for the mKdV equation shows that, in contrast to the convex
case, the characteristic coalescence and, consequently, soliton trapping can occur even
for non-zero soliton amplitude. This new type of soliton trapping is accompanied by
the asymptotic transformation of a conventional, exponentially decaying soliton into an
algebraic soliton of the mKdV equation. Another notable effect is the dynamic reversal of
soliton polarity upon its transmission through a kink mean flow, which resembles but is
different from the well-known soliton polarity reversal due to KdV soliton propagation in
a variable medium caused, for example, by internal wave propagation through variable
fluid stratification and/or variable depth. Upon passage through a critical point where
the coefficient for the quadratic flux vanishes, non-convex mKdV/Gardner dynamics
emerges (Shroyer, Moum & Nash 2009; Li, Wang & Grimshaw 2015). Modulation
theory predicts a zero – or more accurately, vanishing in the zero dispersion limit –
phase shift of soliton transmission through a non-convex mean flow such as a kink
or CDSW. Although all concrete calculations and numerical simulations are performed
for the mKdV equation, the developed solitonic modulation system framework for the
analysis of non-convex soliton–mean flow interactions is general and can be applied
to other dispersive hydrodynamic equations with non-convex flux, both integrable and
non-integrable.

It is important to stress the fundamental difference between the present soliton–mean
interaction setting and the more traditional, well-understood fluid dynamics problem
consisting of finding the nonlinear O(a2) mean flow response to O(a) waves with
small amplitude a (Pedlosky 2003; Bühler 2009). In contrast, due to scale separation,
the interaction between a soliton and a large-scale mean flow with amplitude O(1) is
primarily a one-way nonlinear process – the mean flow exhibits a small phase shift due to
soliton interaction – that can be viewed as ‘soliton steering’ by the dynamically evolving
mean flow. This distinct type of dynamic wave–mean interaction is also realised for
linearised shallow-water wave packets propagating over large-scale nonlinear dispersive
mean flows (Congy et al. 2019). However, non-convexity and positive dispersion supports
an inherently two-way process: the kink imparts a polarity reversal to DSWs and RWs
while the mean changes the amplitude and speed of the kink.

Perhaps the most prominent application of the present work is to internal waves in
lakes, the ocean or atmosphere where solitons are known to arise and may interact
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Dynamic soliton–mean flow interaction with non-convex flux

with large-scale mean flows such as expansion waves, undular bores, or non-oscillatory
fronts/kinks (also called solibores Henyey & Hoering 1997) resulting from, e.g.
tidal–topographic interaction (Helfrich & Melville 2006) or surges/plumes (Horn et al.

2002; Nash & Moum 2005) that can be modelled by the unidirectional mKdV and Gardner
equations (Kakutani & Yamasaki 1978; Holloway, Pelinovsky & Talipova 1999; Horn
et al. 2002; Helfrich & Melville 2006; Apel et al. 2007). The mKdV equation also
models potential vorticity fronts in quasi-geostrophic eddies using the method of contour
dynamics (Pratt & Stern 1986; Gruzinov 1992; Nycander, Dritschel & Sutyrin 1993).
A more sophisticated non-convex model describing the potential vorticity dynamics of
coastal fronts was recently introduced by Jamshidi & Johnson (2020). Fully nonlinear,
bidirectional internal waves are described by non-convex dispersive models such as
the Miyata–Camassa–Choi system (Miyata 1985; Choi & Camassa 1999). Non-convex
dispersive hydrodynamics modelled by the mKdV and Gardner equations also occurs in
the physics of multicomponent superfluids (Ivanov et al. 2017) and collisionless plasma
(Chanteur & Raadu 1987; Ruderman, Talipova & Pelinovsky 2008).

The structure of this paper is as follows. In § 2, we introduce the notion and
nomenclature of dispersive hydrodynamics, and provide a review of the effects of
non-convex hydrodynamic flux on mKdV solutions. In § 3, we detail the general
modulation theory framework for soliton–mean flow interaction problems, originally
introduced in Maiden et al. (2018), and extend it to the case of non-convex flux.
Then, in § 4, we narrow our focus to the modulation description of mKdV dispersive
hydrodynamics and in § 5 to the classification of mean flows realised in the mKdV
regularisation of Riemann step data. In the next § 6, we formulate the soliton–mean
flow problem for mKdV and determine admissibility conditions for soliton transmission
(tunnelling) through the mean flow. We then partition our classification of mKdV
soliton–mean flow interaction into soliton–convex mean flow interactions (§ 7),
soliton–non-convex mean flow interactions (§ 8) and the special case of kink–mean flow
interactions (§ 9). Finally, we generalise our analysis from convex mean flows generated
by the GP problem to a much broader class of convex mean flows generated from slowly
varying initial conditions. Throughout this paper, we confirm the predictions of our
asymptotic analysis using numerical experiments with a spectral integrating factor Fourier
method in space and fourth-order Runge–Kutta time integration (described in appendix B
of El et al. 2017). Discussion, conclusions and future outlooks are given in § 11 followed
by two appendices with mathematical details to make the presentation self-contained.

2. Non-convex dispersive hydrodynamics

Dispersive hydrodynamics is modelled by hyperbolic conservation laws modified by
dispersive terms (El & Hoefer 2016). We express a single one-dimensional dispersive
hydrodynamic conservation law in the general form

ut + f (u)x = D[u]x, (2.1)

where f (u) ∈ C2(R) is the hydrodynamic (or hyperbolic) flux function. The term D[u] is a
differential or integro-differential operator acting on u(x, t) that gives rise to a real-valued
linear dispersion relation

ω0(k, ū) = f ′(ū)k + Ω(k, ū), k ∈ R (2.2)

for vanishingly small amplitude travelling wave solutions ∝ exp(i(kx − ω0t)) of the
PDE (2.1) linearised about the constant solution u(x, t) = ū ∈ R. We assume that
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Ω(k, ū) = o(k) as k → 0 and Ωkk(k, ū) is not identically zero in order to separate the
long-wave hydrodynamic flux from short-wave dispersive effects. The field of dispersive
hydrodynamics encompasses multiscale nonlinear wave solutions of initial and boundary
value problems for (2.1) (possibly with perturbations) in which at least two length and
time scales play a prominent role: the oscillatory scale (e.g. the width of a soliton or the
wavelength/period of a periodic travelling wave) and a longer, hydrodynamic scale (e.g. the
slowly varying oscillatory amplitude of a wavepacket or DSW). One canonical dispersive
hydrodynamic problem for (2.1) is the so-called GP problem (Gurevich & Pitaevskii 1974)
in which u(x, 0) for x ∈ R exhibits a sharp, monotone transition between two distinct
far-field boundary conditions. The solution of the GP problem then describes the long-time
asymptotic behaviour for more general initial data with distinct far-field equilibrium states.

When f ′′(u) in (2.1) is sign definite, we say that the hydrodynamic flux – or just ‘flux’
for short – is convex, not distinguishing between convex and concave associated with
different signs. Similarly, when Ωkk(k, ū) in (2.2) is sign definite for k > 0, we say that the
dispersion is convex. A necessary condition for (2.1) to be a classical, convex dispersive
hydrodynamic equation is the convexity of both the flux and the dispersion (El & Hoefer
2016). Consequently, when f ′′ or Ωkk are sign indefinite, the dispersive hydrodynamics
is non-convex. In this paper, we focus on the non-convex flux case and assume convex
dispersion throughout.

Non-convexity is known to introduce new types of dispersive hydrodynamic solutions.
The simplest generic model of dispersive hydrodynamics with non-convex flux is the
mKdV equation

ut + (u3)x = µuxxx. (2.3)

The mKdV equation with µ > 0 is often referred to as defocusing and with µ < 0 as
focusing. The review (El et al. 2017) presents a full classification of mKdV solutions to
the GP problem associated with the Riemann initial data

u(x, 0) =
{

u− x < 0

u+ x > 0
(2.4)

for both signs of µ. Due to its cubic flux, the mKdV Riemann problem exhibits
non-classical solutions that were first studied in Chanteur & Raadu (1987), Kamchatnov,
Spire & Konotop (2004), Marchant (2008), Leach (2012) and Leach (2013). The full
classification was carried out in Kamchatnov et al. (2012) and Kamchatnov et al. (2013)
within the framework of the Gardner equation that combines the quadratic and cubic fluxes
of the KdV and mKdV equations, respectively. The classification is presented in § 5; see
figure 3.

The properties of the mKdV equation for µ > 0 and µ < 0 are very different with
respect to the evolution of Riemann data (2.4). In addition to convex DSWs and RWs
exhibited by both mKdV incarnations, there are new types of non-classical, non-convex
solutions that do not exist for convex dispersive hydrodynamic equations and depend on
the sign of µ. These features occur for initial steps satisfying u−u+ < 0, i.e. when the
initial data include the inflection point u = 0 of the cubic flux f (u) = u3. The case µ > 0
is particularly relevant for stratified fluids where monotonic, heteroclinic travelling wave
solutions, commonly known as kinks or solibores, were identified in Kluwick, Scheichl &
Cox (2007) as undercompressive DSWs analogous to discontinuous, undercompressive
shock wave solutions in conservation law theory that do not satisfy the Lax entropy
condition (LeFloch 2002). The solutions of the mKdV Riemann problem involving kinks
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Dynamic soliton–mean flow interaction with non-convex flux

were analysed in Chanteur & Raadu (1987) using the inverse scattering transform and in
Leach (2012) using matched asymptotic expansions.

When µ < 0, a family of CDSWs exist whose modulation solution coincides with
a non-strictly hyperbolic double characteristic of the Whitham modulation system.
The CDSWs are analogous to contact discontinuities in conservation law theory that
propagate with characteristic velocity (Dafermos 2016). The CDSWs were first described
in Marchant (2008) as sinusoidal undular bores, then later as trigonometric bores which
were studied in Leach (2013) using matched asymptotic expansions.

While convex DSWs are a continuous, two-parameter family of solutions to the
GP problem depending on both (u−, u+), undercompressive and contact DSWs are a
continuous, one-parameter family of solutions. For mKdV (2.3), the undercompressive
and CDSWs exhibit the additional restriction u+ = −u−. As a result, undercompressive
and CDSWs resulting from the GP problem are typically accompanied by a convex RW
or DSW in the form of a double wave structure. Representative numerical simulations for
each type of solution to the mKdV GP problem are shown in figure 3. In the context of
soliton interaction with dispersive hydrodynamic structures, we shall refer to solutions of
the GP problem generally as mean flows. The DSW modulations in this context are further
specified as DSW mean flows.

3. Modulation theory for soliton–mean interaction

We now review the general approach to the mathematical study of soliton–mean
interaction via Whitham modulation theory (Whitham 1974). This approach, termed
solitonic dispersive hydrodynamics, was introduced in Maiden et al. (2018). We shall first
follow the general description introduced in Maiden et al. (2018) for convex systems and
then consider the implications of a non-convex flux, not explored previously.

3.1. Solitonic modulation system

The analytical description of solitonic dispersive hydrodynamics is based on considering
the soliton reduction of the Whitham modulation equations. Having the mKdV equation
in mind, we present the general theory for the unidirectional, scalar case.

For a periodic travelling wave solution parametrised by three independent constants (as
in the case of KdV or mKdV equations, third-order PDEs), the modulation equations can
be written in terms of the physical wave parameters: the mean flow ū, the amplitude a

and the wavenumber k. Allowing ū, a, k to be slow functions of x, t, the requirement for
the modulated periodic wave to be an asymptotic solution to the dispersive hydrodynamic
equation (2.1) results in the quasilinear modulation system,

ut + A(u)ux = 0, (3.1)

where u = (ū, a, k)T and A(u) is a 3 × 3 modulation matrix. We call the dispersive
hydrodynamics convex if the associated Whitham modulation system (3.1) is strictly
hyperbolic and genuinely nonlinear. If at least one of these conditions is violated, the
system is non-convex. Strict hyperbolicity requires that the eigenvalues vi(u), i = 1, 2, 3
of the matrix A(u) are real and distinct, v1 < v2 < v3, for all u in the admissible set

u ∈ A =
{

(ū, a, k)T | ū ∈ R, a > 0, k > 0
}

. (3.2)

The genuine nonlinearity condition then reads ∇uvi · ri /= 0, i = 1, 2, 3 for all u ∈ A,
where ri(u) is the right eigenvector corresponding to the eigenvalue vi (Lax 1973). If the
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K. van der Sande, G.A. El and M.A. Hoefer

system is non-strictly hyperbolic (the eigenvectors ri span R
3 but multiple eigenvalues are

admissible), then it is not genuinely nonlinear either (Dafermos 2016). The converse is
generally not true. Nevertheless, a non-convex system can exhibit convex properties in a
restricted domain D ⊂ A.

The KdV–Whitham modulation system (3.1) is strictly hyperbolic and genuinely
nonlinear for all admissible u ∈ A (Levermore 1988), while for the mKdV equation, the
properties of strict hyperbolicity and genuine nonlinearity depend on the sign of µ and on
u (El et al. 2017).

An important ingredient for modulation theory is the equation for k in (3.1)

kt + [ω(ū, k, a)]x = 0, (3.3)

known as the conservation of waves, where ω(ū, k, a) is the travelling wave frequency.
Soliton–mean interaction theory is based on the fundamental property of Whitham

modulation systems that we postulate here in a general form and later explicitly justify
for mKdV: in the k → 0 soliton limit, the modulation system (3.1) admits the following
exact reduction (Gurevich, Krylov & El 1990):

[

ū

a

]

t

+
[

f ′(ū) 0
g(a, ū) c(a, ū)

] [

ū

a

]

x

=
[

0
0

]

, (3.4)

where c(a, ū) = limk→0(ω/k) is the soliton amplitude–speed relation for propagation on
the background ū and g(a, ū) is a coupling function that is system dependent. Equation
(3.4) is called the solitonic modulation system.

The third modulation equation (3.3) is identically satisfied for k = 0 while for 0 < k �
1, it assumes at leading order the form

kt + [c(a, ū)k]x = 0. (3.5)

Equation (3.5) can be added to the solitonic modulation system (3.4) to give an
approximate modulation system for a train of non-interacting solitons propagating on a
variable mean flow. Equation (3.5) then signifies the conservation of the number of solitons
in the train. We shall refer to the combined system (3.4) and (3.5) as the augmented
solitonic modulation system. Note that a particular case of this system was derived in
Grimshaw (1979) for slowly varying soliton solutions of the variable coefficient KdV
equation.

The soliton train interpretation of the modulation system (3.4) is instrumental for a
solitonic dispersive hydrodynamics as it enables the description of a single modulated
soliton by treating the soliton amplitude a(x, t) as a spatio-temporal field, in contrast
to standard soliton perturbation theory where the soliton’s parameters evolve temporally
along its trajectory in the x, t-plane; see, e.g. Kivshar & Malomed (1989). Additionally, as
we will show, the introduction of the fictitious wavenumber field k(x, t) for a single soliton
enables the determination of the soliton phase shift due to interaction with the mean flow.

The characteristic velocities of the system (3.4) are f ′(ū) and c(a, ū). The right
eigenvectors r1,2 of the Jacobian matrix in (3.4) for each characteristic velocity are

v1 = f ′(ū), r1 =
[

f ′ − c

g

]

, (3.6a,b)

v2 = c(a, ū), r2 =
[

0
1

]

. (3.7a,b)
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Dynamic soliton–mean flow interaction with non-convex flux

Thus, the system (3.4) is strictly hyperbolic if f ′ /= c for all (ū, a) ∈ A0, where

A0 = R × (0, ∞) (3.8)

is the set of admissible states. The system (3.4) is genuinely nonlinear in the jth
characteristic field if ∇vj · rj /= 0 for all (ū, a) ∈ A0. For the first characteristic field,

∇f ′(ū) · r1 /= 0 =⇒ f ′′(ū)( f ′(ū) − c(a, ū)) /= 0, (3.9)

which holds, provided the characteristic velocities are distinct (strict hyperbolicity) and
the flux f of the original scalar evolution equation (2.1) is convex. Thus, when two
characteristic velocities merge (non-strict hyperbolicity), the corresponding characteristic
field is not genuinely nonlinear.

The genuine nonlinearity of the second characteristic field requires

∇c(a, ū) · r2 /= 0 =⇒ ca(a, ū) /= 0. (3.10)

To summarise, the quasi-linear system (3.4) is strictly hyperbolic when f ′(ū) /= c(a, ū)

and is genuinely nonlinear when additionally f ′′(ū) /= 0 and ca(a, ū) /= 0 for all (ū, a) ∈
R × (0, ∞). Negation of any of these three conditions gives rise to a non-convex solitonic
dispersive hydrodynamics.

Since the exact soliton reduction (3.4) is a 2 × 2 quasi-linear hyperbolic system, it can
be reduced to Riemann invariant form. We refer to the mean flow ū as the ‘hydrodynamic’
Riemann invariant and the other is found by integrating the differential form g dū + (c −
f ′) da provided c /= f ′ (Whitham 1974). Denoting the second, solitonic Riemann invariant
as q = q(a, ū), the diagonalised system can be written as

[

ū

q

]

t

+
[

f ′(ū) 0
0 C(q, ū)

] [

ū

q

]

x

=
[

0
0

]

, (3.11)

where C(q(a, ū), ū) ≡ c(a, ū). In terms of the diagonal system (3.11), the condition of
strict hyperbolicity reads f ′(ū) /= C(q, ū) and the conditions of genuine nonlinearity of the
first and second characteristic fields are written respectively as

f ′′(ū) /= 0, and Cq /= 0. (3.12a,b)

It is important to stress that the existence of the solitonic Riemann invariant q is not
reliant on the diagonalisability of the full quasi-linear system (3.1) in Riemann invariants.
In fact, as was shown in El (2005), this Riemann invariant can be obtained directly, as
the integral q = Q(k̃, ū) = const on dx/dt = C, of the following characteristic ordinary
differential equation (ODE)

dk̃

dū
=

∂ūω̃0

f ′(ū) − ∂
k̃
ω̃0

, (3.13)

where k̃ and ω̃0 are called the conjugate wavenumber and conjugate frequency,
respectively. They are defined in terms of the soliton amplitude–speed relation c(a, ū)

and the linear dispersion relation (2.2) ω0(k, ū) by

ω̃0(k̃, ū) = −iω0(ik̃, ū); c(a, ū) =
ω̃0

k̃
. (3.14)

We note that the Riemann invariant q = Q(k̃, ū) is not defined uniquely, as any smooth
function of a Riemann invariant is also a Riemann invariant. In the case of convex systems,
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K. van der Sande, G.A. El and M.A. Hoefer

a convenient normalisation is suggested by the requirement to maintain strict hyperbolicity
of the solitonic system in the limit of vanishing amplitude where the long-wave speed
f ′(ū) and soliton speed c(a, ū) must coincide. The variable k̃ can be identified as
an amplitude-type variable (El 2005), so that k̃ = 0 ⇐⇒ a = 0, and requires that the

hydrodynamic and solitonic Riemann invariants coincide when k̃ → 0, i.e. Q(0, ū) = ū.
As a result, the system (3.11) reduces to a single hyperbolic equation ūt + f ′(ū)ūx = 0.
The situation is different for non-convex systems, where two or more distinct Riemann
invariants associated with the same characteristic speed may exist. For example, for cubic
flux f (ū) = ū3, the mean flow equation ūt + 3ū2ūx = 0 is invariant with respect to the
transformation ū → −ū so another possible normalisation is Q(0, ū) = −ū. To avoid
ambiguity, we will be using the normalisation

Q(0, ū) = ū, (3.15)

for the initial configuration. For the case of a general non-convex flux, we assumed,
without loss of generality, that it satisfies f ′′(0) = 0. Then, if the solution curve crosses
ū = 0, the normalisation of the Riemann invariant should be changed to Q(0, ū) = −ū

across this point to maintain smoothness of Q.
The two Riemann invariants ū and q for the 2 × 2 system (3.11) are also Riemann

invariants for the 3 × 3 augmented solitonic modulation system (3.11) and (3.5). But
the latter quasi-linear system is not hyperbolic because its corresponding Jacobian
matrix is deficient, with just two eigenvalues and two linearly independent eigenvectors.
Nevertheless, it has another hyperbolic subsystem, in addition to (3.11), which is obtained
by setting q ≡ q0 constant, as will be the case for the soliton–mean flow interaction
problems we consider. Then the remaining simple wave equation ūt + f (ū)x = 0, together
with the approximate equation (3.5), where we replace c(a, ū) with C(q0, ū), form a
hyperbolic subsystem. Equation (3.5) is diagonalised by the quantity kp(q0, ū), where

p(q0, ū) = exp

(

−
∫ ū

ū0

Cu(q0, u)

f ′(u) − C(q0, u)
du

)

, ū0 ∈ R. (3.16)

In other words, if q = q0 is constant, we can use

(kp)t + C(q0, ū)(kp)x = 0 (3.17)

instead of (3.5). The quantities q and kp have been identified in Maiden et al. (2018) as
adiabatic invariants of soliton–mean flow interaction.

3.2. Soliton–mean interaction

Solutions to the solitonic modulation system can now be sought subject to an initial mean
flow ū(x, 0) = ū0(x) and an initial soliton with amplitude a0 located at x = x0. However,
we need an initial amplitude and wavenumber field a(x, 0), k(x, 0) defined for all x. This is
obtained by invoking the soliton train description and asserting that the required solution
of the augmented solitonic system (3.4), (3.5) is a simple wave (to be justified), meaning
all but one Riemann invariant are constant. The non-constant Riemann invariant is ū, in
order to satisfy the initial condition. Then a(x, 0) is selected to maintain constant q

q(a(x, 0), ū0(x)) = q0 ≡ q(a0, ū0(x0)). (3.18)

Since q constant is a solution, this reduces the augmented solitonic modulation system
to the hyperbolic subsystem consisting of two diagonalised equations for ū and kp(q0, ū).
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Dynamic soliton–mean flow interaction with non-convex flux

u– + a–

c–

c+

2π/k– 2π/k+

u+ + a+

u+

0

u–

Figure 2. Sketch of the generalised GP problem.

In order to define the initial wavenumber field k(x, 0), we set the latter Riemann invariant
to also be constant

k(x, 0) = k0
p0

p(q0, ū0(x))
, (3.19)

where p0 ≡ p(q0, ū0(x0)) and k0 ≡ k(x0, 0) � 1 is a small, positive quantity whose
particular value is not important for our consideration since we assume the limit k0 → 0
in the soliton number conservation equation (3.5), and, therefore in (3.17).

The soliton–mean interaction problem can now be formulated and solved. Given the
initial mean flow profile ū(x, 0) = ū0(x), the soliton amplitude a0 and location x0, ū(x, t)

is the simple wave solution

x − f ′(ū)t = H(ū), H = u−1
0 (3.20a,b)

and the soliton amplitude and wavenumber fields satisfy

q(a, ū) = q0, k = k0
p0

p(q0, ū)
. (3.21a,b)

We will focus our analysis on a generalised GP problem, in which initial conditions for
the mean flow are given as in the original Riemann problem (2.4)

ū(x, 0) =
{

u−, x < 0,

u+, x > 0,
(3.22)

and the amplitude and wavenumber fields exhibit step variations

a(x, 0) =
{

a− x < 0

a+ x > 0
, k(x, 0) =

{

k− x < 0

k+ x > 0.
(3.23a,b)

A sketch illustrating the generalised GP problem is shown in figure 2.
Depending on the initial location x0 of the soliton relative to the mean flow discontinuity

at x = 0, either the left (a−, k−) or right (a+, k+) part of the initial wave field
a(x, 0), k(x, 0) is prescribed with the other part to be determined as described below.

Due to the scaling invariance of both the quasilinear solitonic modulation system (3.4),
(3.5) and the step initial data (3.22), (3.23a,b), the soliton–mean interaction problem is
solved by a simple wave solution of the Riemann problem, thus justifying the constant
Riemann invariant assumption for q and kp expressed by (3.18), (3.19). Therefore, the
amplitude and wavenumber fields in the soliton–mean flow interaction must satisfy
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K. van der Sande, G.A. El and M.A. Hoefer

(3.21a,b), yielding the relations between admissible values of a± and k± in (3.23a,b).
These are formulated as transmission and phase conditions

q(a−, u−) = q(a+, u+), (3.24)

k−p(q0, u−) = k+p(q0, u+), (3.25)

where p(q, ū) is defined by (3.16). It is important to stress that the existence of the
simple wave solution leading to the conditions in (3.24) and (3.25) requires convexity
(genuine nonlinearity) of the characteristic field (3.6a,b) along the integral curve so that
the conditions (3.9) are not violated.

In the context of a single soliton interacting with a varying mean flow connecting
two equilibrium states ū = u− and ū = u+, the conditions (3.24) and (3.25) should
be interpreted as follows. The initial discontinuity (3.22) initiates the varying mean
flow that is generally confined to the bounded, expanding region s−t < x < s+t.
There is an exception to this for the undercompressive DSW mean flow, which is a
non-expanding travelling wave and requires a separate treatment. Then two basic scenarios
of soliton–mean interaction can be realised that we describe by assuming positive polarity
of the propagating soliton. The generalisation to negative polarity (dark) solitons is
straightforward.

(i) Forward (left to right) transmission/trapping.
Assuming that the soliton with amplitude a− > 0 is initially placed at x0 = x− <

0 on the left, background mean flow state ū = u−, then if the soliton velocity
satisfies c(a−, u−) > s−, soliton–mean flow interaction occurs for times t > t1 =
|x−/(c(a−, u−) − s−)|. As a result, the soliton either (a) gets transmitted (tunnels) through
the variable mean flow and emerges on the right state ū = u+ with the new amplitude
a+ > 0 determined by the condition (3.24) or (b) gets trapped within the variable mean
flow. Trapping occurs if the transmitted soliton amplitude defined by (3.24) is negative or
zero, a+ ≤ 0.

For this case of forward transmission, the trajectory of the soliton post interaction is
given by x = c(a+, u+)t + x+, where generally x+ /= x−. This implies that soliton–mean
flow transmission is accompanied by both an amplitude change and a soliton phase
shift ∆ = x+ − x−, which can be determined from the condition (3.25). To relate the
x-intercepts x± of the soliton characteristic pre- and post-mean flow interaction we note
that the conservation of the number of solitons in the fictitious modulated train of
non-interacting solitons implies

k−x− = k+x+. (3.26)

Given x−, only the ratio of k+/k− is needed to determine x+, so, by virtue of the linear
relationship between k+ and k−, the particular value of k− in (3.21a,b) is irrelevant. The
soliton phase shift ∆ = x+ − x− due to interaction with the mean flow is then given by

∆

x−
=

(

k−
k+

− 1

)

=
(

p+
p−

− 1

)

, (3.27)

where we have used the shorthand notation p± ≡ p(q0, u±).
(ii) Backward (right to left) transmission/trapping.
If the soliton with amplitude a+ is initially placed at x0 = x+ > 0 on the right

background ū = u+ and c(a+, u+) < s+, then soliton–mean flow interaction occurs for
times t > t2 = x+/(s+ − c(a+, u+)). If the soliton eventually emerges from mean flow
interaction onto the opposite constant background ū = u−, its amplitude a− > 0 and phase
shift ∆ = x− − x+ = x+( p−/p+ − 1) are determined by the same transmission and phase
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Dynamic soliton–mean flow interaction with non-convex flux

conditions (3.24), (3.25). Otherwise, if the transmitted amplitude a− ≤ 0, the soliton
remains trapped within the mean flow.

The generalisation to negative (dark) soliton interaction with mean flow is
straightforward. For this, it is convenient to introduce a signed amplitude a, which enables
the representation of both bright a > 0 and dark a < 0 solitons. Assuming negative initial
amplitude a± < 0, forward/backward transmission requires that the transmitted amplitude
a∓ maintains the same, negative, sign. Generally, the condition a+a− > 0 is the sufficient
condition for transmission in both bright and dark soliton cases. Its negation implies
trapping.

In all cases of forward/backward transmission/trapping, the soliton trajectory for t > 0
is given by the characteristic,

dx

dt
= c(a(x, t), ū(x, t)), x(0) = x0, (3.28a,b)

where |x0| � 1 so that the soliton is initially well separated from the initial step in the
mean flow at x = 0.

In the present work, we consider the implications of a non-convex solitonic modulation
system (3.4) on the above soliton transmission and trapping scenarios. As described in
§ 3.1, non-convexity enters when strict hyperbolicity and/or genuine nonlinearity is lost via
one of the three conditions: f ′′(ū) = 0, f ′(ū) = c(a, ū) or ca(a, ū) = 0 for any (ū, a) ∈ A0.

In Maiden et al. (2018), positivity of the transmitted amplitude (one of a±) was proposed
as a necessary and sufficient condition for bright soliton tunnelling to occur through a
mean flow for convex dispersive hydrodynamics. In fact, this condition coincides with a
less restrictive definition of strict hyperbolicity for (3.4) where a = 0 is included in the
set of admissible states A′

0 = R × [0, ∞). Generally, the soliton speed coincides with the
long-wave speed when its amplitude vanishes, c(0, ū) = f ′(ū), which signifies the onset of
soliton trapping. Within the context of Whitham modulation theory, states in which a = 0
or k = 0 are not considered admissible when assessing strict hyperbolicity and genuine
nonlinearity of the modulation equations because they coincide with a degeneracy in
which the number of modulation equations is reduced; see, e.g. Levermore (1988) and
Bikbaev (1989). We will utilise the traditional definition in which a = 0 is not included in
the set of admissible states (3.8).

In the more general non-convex case, we find that in order for the soliton to tunnel
through the mean flow, we must require the additional condition that the modulation
system (3.4) remain strictly hyperbolic along the entire soliton trajectory for all admissible
states (ū, a) ∈ A0. If the characteristic speeds f ′(ū) and c(a, ū) coincide for non-zero a,
then strict hyperbolicity is lost and the soliton is trapped inside the mean flow. If the
speeds remain separated, the soliton amplitude on the transmitted side is non-zero and the
phase shift is well defined according to (3.25). In summary, the necessary and sufficient
conditions for tunnelling in a non-convex solitonic modulation system (3.11) with initial
data (3.22), (3.23a,b) are

q(a−, u−) = q(a+, u+), a+a−>0, f ′(ū(x, t)) /= c(a(x, t), ū(x, t)), (3.29a–c)

where x = x(t) is the characteristic (3.28a,b) and t ≥ 0.
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K. van der Sande, G.A. El and M.A. Hoefer

3.3. Hydrodynamic reciprocity

So far, we have assumed that the mean flow satisfies the simple wave equation ūt +
f ′(ū)ūx = 0. For step initial data (3.22), the only candidate continuous solution is a RW

ū(x, t) =

⎧

⎪

⎨

⎪

⎩

u− x < f ′(u−)t,

( f ′)−1(x/t) f ′(u−)t < x < f ′(u+)t,

u+ f ′(u+)t < x,

(3.30)

so long as the admissibility criterion f ′(u−) < f ′(u+) holds, corresponding to expansive
initial data. As will be shown in the next section, there is a much richer variety of
dispersive mean flows generated by the mKdV GP problem when the initial data are
compressive. Thus, we need soliton–mean flow modulation theory to be flexible enough
to accommodate a wide class of mean flows.

The solitonic modulation equations (3.4), (3.5) directly apply for expansive mean flow
initial data, yielding a description of soliton–RW interaction. For compressive initial data
(3.22), rather than form a discontinuous shock solution, a DSW is formed that occupies the
space–time region A ⊂ R × (0, ∞) where the solution is described by the full system of
Whitham modulation equations for a slowly varying nonlinear periodic wave. As a result,
the Riemann invariant q and secondary invariant kp of the augmented solitonic system
(3.4), (3.5) are not conserved in A, and our arguments leading to the transmission and
phase conditions (3.24), (3.25) do not apply to the soliton interaction with the DSW mean
flow.

To address this, we invoke an important property of the dispersive conservation law
(2.1): time reversibility. A consequence of time reversibility is the continuity of the
modulation solution for all (x, t) ∈ R

2. For compressive data, we consider the solution
for t < 0 that consists of a simple wave described by (3.30), i.e. the expansive mean flow
case. Then, since q and kp are constant for all x ∈ R and t < 0, they remain constant
by continuity for (x, t) in the complement of A, outside of the oscillatory region, where
the augmented solitonic system (3.4), (3.5) remains valid. Note that for the Riemann
data (3.22), (3.23a,b), the solution remains continuous outside R

2 \ {(0, 0)}, which is
justified by taking the limit of smooth solutions. This property was called hydrodynamic
reciprocity in Maiden et al. (2018) and has been used previously in the characterisation of
DSWs for a single or pair of dispersive hydrodynamic conservation laws (El 2005). Since
the transmission and phase conditions (3.24), (3.25) hold outside the oscillatory region,
hydrodynamic reciprocity allows us to predict the transmitted amplitude and phase shift
∆ of a soliton interacting with DSW mean flows entirely within the framework of the
augmented solitonic modulation system (3.4), (3.5).

The details of the modulation dynamics for the soliton within the interior of the
oscillatory region A can, in principle, be described by a degenerate two-phase solution
(see Flaschka, Forest & McLaughlin (1980) for multiphase modulation theory of the
KdV equation). However, as we will show, this rather technical approach can be partially,
approximately circumvented by replacing f (ū) in the characteristic equation (3.13) by an
appropriate choice of the mean flow variation and effectively defining a new adiabatic
invariant q holding within A.

4. Modulation theory for the mKdV equation

As the simplest example of dispersive hydrodynamics with non-convex flux, we study the
mKdV equation (2.3). The mean flow behaviours that arise when solving (2.3) subject
to (3.22) depend on the sign of the dispersive term sgn(µ). The mKdV hyperbolic flux
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Dynamic soliton–mean flow interaction with non-convex flux

f (u) = u3 exhibits the inflection point f ′′(0) = 0 so that non-convexity affects the solutions
whenever the initial data contain an open interval including the point u = 0. For either sign
of µ, the mKdV equation allows for solitons of both polarities by the symmetry u → −u.
The linear dispersion relation is

ω0 = 3ū2k + µk3. (4.1)

The purpose of this section is twofold: (i) to obtain the augmented solitonic modulation
system (3.4), (3.5) by direct computation for the mKdV–Whitham system and (ii) to
explore the implications of the mKdV’s non-convex flux for the structure of the augmented
solitonic modulation system. But first, we need to understand mKdV’s travelling wave
solutions. In order to be self-contained, Appendix A presents a compendium of the results
on mKdV travelling wave solutions from El et al. (2017) necessary for the development
in this paper, which we briefly summarise. The mKdV equation differs from the KdV
equation in that it supports solitons of both polarities for either sign of the dispersion µ.
For µ > 0, bright soliton solutions occur when u1 → u2 and dark soliton solutions occur
when u3 → u4. For µ < 0, solitons arise when u2 → u3 with bright solitons as solutions
between u3 and u4 while dark solitons occur between u1 and u2. The amplitude–speed
relations (A6) and (A8) for bright and dark exponential solitons, respectively, can be
combined into a single relation by introducing the convention that a > 0 for bright solitons
and a < 0 for dark solitons. Then, the general formula

c(a, ū) = 1
2 a2 + 2aū + 3ū2, a ∈ R (4.2)

holds, covering all cases: µ ≶ 0, dark and bright exponential solitons. Note that
this formula also includes kinks (a = −2ū, c = ū2, µ > 0) and algebraic solitons (a =
−4ū, c = 3ū2, µ < 0). From now on, we will be assuming the generalised amplitude
a ∈ R.

The system of modulation equations for the mKdV equation (2.3) was first derived in
Driscoll & O’Neil (1975) following Whitham’s original averaging procedure (Whitham
1965), and reduced to diagonal form.

A derivation of the travelling wave solutions and the respective modulation equations for
the Gardner equation (an extended version of mKdV), revealing the differences between
various modulationally stable DSW structures arising in the µ > 0 and µ < 0 cases was
performed in Kamchatnov et al. (2012) and then utilised in El et al. (2017) for the analysis
of modulated mKdV solutions in the zero-viscosity limit of the mKdV–Burgers equation.
Following El et al. (2017), the mKdV modulation system is

∂λi

∂t
+ Wi(λ)

∂λi

∂x
= 0, i = 1, 2, 3, (4.3)

where λi are Riemann invariants related to roots of the potential function Q(ū),

λ1 = 1
2 (u1 + u2), λ2 = 1

2 (u1 + u3), λ3 = 1
2 (u2 + u3). (4.4a–c)

The characteristic velocities Wi are given in Appendix B.
Applying the limit λ2 → λ3 to (4.3) and using (B5), (B6) gives the reduced diagonal

system
∂λ1

∂t
+ 3λ2

1
∂λ1

∂x
= 0,

∂λ3

∂t
+ (λ2

1 + 2λ2
3)

∂λ3

∂x
= 0.

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(4.5)
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K. van der Sande, G.A. El and M.A. Hoefer

Using ū = u1 = λ1 and a = u3 − u1 = 2(λ3 − λ1) (see (A5)), we can now write (4.5) as

ūt + 3ū2ūx = 0,

at +
(

1
2 a2 + 2aū + 3ū2)ax + (a2 + 4aū)ūx = 0.

}

(4.6)

The system (4.6) represents the mKdV realisation of the general solitonic modulation
system (3.4) with the hyperbolic flux f (ū) = ū3, the soliton amplitude–speed relation (4.2)
and the coupling function g(a, ū) = a2 + 4aū. Comparing the diagonal form (4.5) of the
mKdV solitonic modulation system with the general representation (3.11), we identify
the Riemann invariant λ1 in (4.5) with ū and λ3 with q = 1

2 a + ū, and the characteristic

velocity W3(λ1, λ3, λ3) = λ2
1 + 2λ2

3 with C(q, ū) = ū2 + 2q2.
The dark soliton limit is achieved when u3 → u4, which translates to λ2 → −λ3, so,

due to the quadratic dependence (B3) of r on λ, we arrive at the same system (4.5) for
λ1, λ3 and, equivalently, the system (4.6) for ū = −λ1 and q = λ3 = ū + 1

2 a, C(q, ū) =
ū2 + 2q2, where we used the extended notion of the signed amplitude, a = u2 − u3 =
2(λ1 − λ2) < 0.

The derivation for µ < 0 is analogous and also results in the solitonic modulation
system (4.6) for both bright and dark soliton cases with the identification of the merged
Riemann invariant λ1 = λ2 = ū + 1

2 a = q.
As described in § 3, the Riemann invariant q(a, ū) can be obtained directly, bypassing

the derivation of the full mKdV modulation system and the evaluation of its soliton limit.
This is achieved by integrating the characteristic ODE (3.13) with the mKdV conjugate
dispersion relation (3.14) given by ω̃0 = 3k̃ū2 − µk̃3. The ODE then assumes the form

dk̃/dū = 2ū/(µk̃). Its integral Q(k̃, ū) = const is found as Q = ±
√

ū2 − µk̃2/2. The

conjugate wavenumber k̃ is related to the soliton amplitude a via equation c(a, ū) = ω̃0/k̃

(3.14), where c(a, ū) is given by (4.2). This yields µk̃2 = −1
2 a2 − 2aū. Substituting in the

expression for Q and applying the normalisation (3.15) yields the Riemann invariant

q = ū + 1
2 a, (4.7)

in full agreement with the previous identification of the Riemann invariant of the solitonic
modulation system (4.6).

Thus, for both signs of µ and for both bright and dark solitons, the diagonalised mKdV
solitonic modulation system assumes the form

ūt + 3ū2ūx = 0,

qt + (ū2 + 2q2)qx = 0.

}

(4.8)

The system (4.8) is augmented by the approximate equation (3.5) for conservation of waves
(solitons), which assumes the form

kt + ((ū2 + 2q2)k)x = 0. (4.9)

Equation (4.9) can also be derived from the full modulation system (4.3) by considering
the pair k, U given by (A4), (A2) expressed in terms of λ1, λ2, λ3 for µ > 0 as

k =
π

√

λ
2
1 − λ2

3

4K(m)
√

2|µ|
, m =

λ
2
1 − λ2

2

λ
2
1 − λ2

3

, U = λ2
1 + λ2

2 + λ2
3. (4.10a–c)

Expanding (4.10a–c) for λ2 → λ3, evaluating kt + (kU)x = 0 at leading order and using
(4.3) we obtain (4.9) with q2 = λ2

1 for µ > 0. A similar analysis for µ < 0 yields the same
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Dynamic soliton–mean flow interaction with non-convex flux

result with q2 = λ2
3. The approximate conservation of waves equation (4.9) is subject to

corrections of order k e−αk where α = π

√

2(λ2
1 − λ2

3) = π
√

−a(a + 4ū)/2 as k → 0.

The solitonic modulation system (4.8) loses strict hyperbolicity when 3ū2 = ū2 + 2q2

– corresponding to f ′(ū) = c(a, ū) in the notation of (3.4) – which yields q2 = ū2, and
implying via (4.7) either

a = 0, or a = −4ū. (4.11)

As mentioned earlier, the a = 0 case corresponds to a reduction in order of the solitonic
modulation system (4.8) to the mean flow equation ūt + 3ū2ūx = 0. Strictly speaking, it
does not correspond to the loss of strict hyperbolicity as traditionally defined for Whitham
modulation systems, but it is relevant for the general tunnelling conditions (3.29a–c).

Genuine nonlinearity is lost when (4.11) holds or, alternatively, if f ′′(ū) = 0, or ca = 0,
cf (3.9), (3.10), i.e.

ū = 0 or a = −2ū ⇔ q = 0. (4.12)

In all cases, the soliton speed in terms of the Riemann invariants is given by

C(q, ū) = ū2 + 2q2 > 0, for a /= 0. (4.13)

As shown in § 3, for modulations with constant q, the wave conservation equation (4.9)
is diagonalised by the variable kp, where p(q, ū) is given by (3.16). Using (4.13) and
f ′(u) = 3u2 in (3.16), we determine p(q, ū) for mKdV solitonic modulations,

p(q, ū) = exp

(

−
∫ ū

ū0

u

u2 − q2
du

)

= |q2 − ū2|−1/2, q2 /= ū2, (4.14)

where we have chosen ū2
0 = q2 + 1 for convenience.

5. Classification of mean flows in the mKdV GP problem

The solution to the GP problem for mKdV was classified in El et al. (2017) by combining
previous work on the Riemann problem for either sign of dispersion (Chanteur & Raadu
1987; Marchant 2008) and elaborating on the GP problem classification for the Gardner
equation ut + 6uux − 6αu2ux + uxxx = 0 (Kamchatnov et al. 2012). The wave behaviour
that emerges from the GP problem depends on the sign of µ and relative sign and
magnitude of u− and u+, as shown in the classification diagram of figure 3. We refer
to the octants in this figure as regions I to VIII, counted in a counterclockwise fashion.
Owing to its universality as a model of weakly nonlinear, long dispersive waves (El et al.

2017), the mKdV equation provides a fundamental description of the GP problem for other
PDEs with non-convex flux.

RWs and DSWs solve the GP problem in certain convex and non-convex cases. DSWs
are classified as DSW+ and DSW− according to the polarity of the solitary wave generated
at one of the edges – leading or trailing, depending on the DSW orientation. In the
non-convex case, we see the emergence of additional wave structures. These occur when
the hydrodynamic flux f (u) = u3 exhibits an inflection point u = 0 within the range of
step data (2.4) so that u+u− < 0. Particularly, when µ > 0, and u− = −u+, the long-time
asymptotic solution is a kink, which is an undercompressive shock in the limit µ → 0+.
When µ < 0 and u− = −u+, the long-time asymptotic solution is a CDSW whose leading,
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K. van der Sande, G.A. El and M.A. Hoefer

III: K|RW

(a) (b)

II: RW

VII: K|RWVI: RW

IV: K|DSW–

V: DSW+

I: DSW–

VIII: K|DSW+

u+ u+ = u–

III: CDSW–|RW II: RW

u+ u+ = u–

u+ = –u–

VII: CDSW+|RWVI: RW
u+ = –u–

u–

IV: CDSW–|DSW–

V: DSW–

I: DSW+

VIII: CDSW+|DSW+
u–

Figure 3. Classification of the mKdV GP problem in terms of the initial values u± with representative
numerical solutions, see Kamchatnov et al. (2012), El et al. (2017). Legend: (RW) rarefaction wave, (DSW+/−)
bright/dark dispersive shock wave, (K) kink, (CDSW+/−) bright/dark contact DSW; (a) µ > 0 and (b) µ < 0.

algebraic soliton edge is a dispersionless characteristic with velocity 3ū2 as µ → 0−. For
other configurations with steps that pass through 0, the solution develops into a hybrid
double wave structure as seen in figure 3. We stress that in the DSW case, the mean flow
is interpreted as the local period average of the DSW’s oscillations.

We now present explicit expressions for the basic mean flows occurring in the mKdV
Riemann problem, distinguishing between convex and non-convex solutions. For brevity,
we shall call them convex and non-convex mean flows, respectively.

5.1. Convex mean flows

RW mean flows (regions II and VI)

RWs that emerge from the Riemann problems in regions II and VI of figure 3 are
described to leading order by

ū(x, t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

u−, x < 3u2
−t

sgn(u+−u−)

√

x

3t
, 3u2

−t < x < 3u2
+t

u+, x > 3u2
+t.

(5.1)

This is the long-time approximation of the full mKdV solution that includes dispersive
regularisation of weak discontinuities at x = 3u2

±t.
DSW mean flows (regions I and V)

The GP modulation solution describing a DSW depends on the sign of the dispersion
coefficient.

According to El et al. (2017) for µ > 0 a DSW+ is realised as the solution to the
Riemann problem with u− < u+ < 0, see quadrant V in figure 3(a). The relevant GP
solution to the mKdV modulation equations (4.3) is a centred simple wave given by

λ1 = u−, λ3 = u+, W2(u−, λ2, u+) =
x

t
, (5.2a–c)
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Dynamic soliton–mean flow interaction with non-convex flux

where the characteristic speed W2 is given by (B2), (B3) so

W2(u−, λ2, u+) = u2
− + u2

+ + λ2
2 + 2(u2

− − λ2
2)

(1 − m)K(m)

E(m) − (1 − m)K(m)
,

m =
λ

2
2 − u2

−
u2
+ − u2

−
.

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(5.3a,b)

To obtain the mean flow ū through a DSW, we average the mKdV periodic solution for
u over a period. Integrating (A3) over the period 2K(m) and writing the solution in terms
of the Riemann invariants gives

ū = −(λ1 + λ2 + λ3) + 2
(λ2 + λ3)

K(m)
Π

(

λ1 − λ2

λ1 + λ3
, m

)

, (5.4)

where Π is the complete elliptic integral of the third kind. The dependence ū(x, t) is
obtained by inserting the modulation solution (5.2a–c), (5.3a,b) in (5.4).

For µ < 0, a similar averaging over a period of (A11) gives

ū = λ1 + λ2 − λ3 − 2
(λ1 + λ2)

K(m)
Π

(

λ2 + λ3

λ3 − λ1
, m

)

. (5.5)

For a DSW+ with u− > u+ > 0 (quadrant I in figure 3b), the GP solution to the
modulation equations is

λ1 = −u−, λ3 = u+, W2(−u−, λ2, u+) =
x

t
, (5.6a–c)

where the characteristic speed is given by (B1), (B3) is

W2 = u2
− + u2

+ + λ2
2 + 2(u2

+ − λ2
2)

(1 − m)K(m)

E(m) − (1 − m)K(m)
. (5.7)

Either (5.3a,b) or (5.7) gives a parameterisation of the DSW mean flow in terms of λ2 ∈
(u−, u+), yielding W2(ū). This behaviour is not affected by the sign of the dispersion
coefficient µ.

For solutions between the roots u1 and u2, the DSW− mean flow can be found by
applying the transformation (A16).

For application to soliton–DSW mean flow interaction, it is instructive to write down
the evolution equation for the DSW mean flow ū(x, t), the simple wave equation

ūt + W2(ū)ūx = 0. (5.8)

As a matter of fact, ū(x, t) given by (5.4), (5.2a–c) (or (5.5), (5.6a–c)) satisfies (5.8). The
advantage of using the PDE (5.8), instead of the explicitly prescribed mean flow ū(x, t)

will become clear later, in § 7, where we shall use it instead of the original mean flow
equation ūt + f ′(ū)ūx = 0 as part of the solitonic modulation system (3.11).

5.2. Non-convex mean flows

As we have mentioned, non-convex mean flows are generated if the Riemann data
(2.4) satisfy u−u+ < 0. In contrast to two-parameter convex mean flows, non-convex
mean flows are constrained, one-parameter families of mKdV solutions and, because of
this, generally occur in combination with a convex mean flow – either a RW or DSW,
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K. van der Sande, G.A. El and M.A. Hoefer

see regions III, IV, VII, VIII in figure 3. The two classes of ‘pure’ non-convex mKdV
mean flows are kinks described by kinks satisfying (A10) for µ > 0 and CDSWs when
µ < 0 described by modulated trigonometric solutions (A14) that exhibit an algebraic
soliton (A15) at one of its edges.
Kink mean flows (µ > 0, u+ = −u−).

Unlike other mean flows that solve the mKdV GP problem, kinks are localised,
steady transitions between antisymmetric means ū(−∞) = u− and ū(+∞) = u+ = −u−
described by (A10). It has been shown in Leach (2012) that kinks dominate the long-time
asymptotic solution of defocusing mKdV Riemann problems with antisymmetric data.
Kinks are special in the sense that, in addition to considering them as mean flows, we can
also treat them as localised soliton solutions that interact with convex mean flows such as
RWs and DSWs.

In the limit µ → 0+, kinks are the weak discontinuous solutions

ū(x, t) =
{

u−, x < u2
−t,

−u−, x > u2
−t,

(5.9)

of the hydrodynamic modulation equation ūt + (ū3)x = 0 for the solitonic modulation
system. The weak solution (5.9) represents an undercompressive shock (Hayes & Shearer
1999; LeFloch 2002) since the hydrodynamic characteristic velocity c = 3u2

− = 3u2
+ is the

same on both sides of the shock.
CDSW mean flows (µ < 0, u+ = −u−)

A CDSW is a modulated trigonometric solution (A14) connecting antisymmetric states
u− and −u+, the negative dispersion counterpart of the kink solution. The CDSW mean
flow is given by (5.5) with λ2 = λ3 for CDSW+ and λ3 = −λ2 for CDSW−.

For CDSW+, realised when u− > 0, we have

ū = λ1 + 2
√

λ
2
1 − λ2

3, (5.10)

where the modulations of λ1 and λ3 are given by (El et al. 2017)

λ1 = −u−, W2 = W3 = −3u2
− + 6λ2

3 =
x

t
. (5.11a,b)

As earlier, the mean flow variations satisfy (5.8).

6. The mKdV soliton–mean flow interaction: transmission and phase conditions

In order to obtain solutions to the soliton–mean interaction problem, we seek simple wave
solutions to the augmented solitonic modulation system (4.8), (4.9) in which q and kp(q, ū)

are constant while the remaining Riemann invariant, the mean flow ū, varies.
The ordering of the roots ui leads to constraints on the background and amplitudes of

the initial solitons. To simplify our analysis, we will consider initial bright solitons in the
tunnelling problem. The solution for dark solitons can be obtained using the fact that the
mKdV equation is invariant under the transformation (A16). For µ > 0, the initial bright
soliton must satisfy (A7): ū < 0 and 0 < a < −2ū. For µ < 0, an initial bright soliton
must satisfy (A13): ū ∈ R and a > −4ū.
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Dynamic soliton–mean flow interaction with non-convex flux

For both signs of µ, the transmission and phase conditions can be determined from
(3.24), (3.25), (4.7), (4.14) as

a+
2

+ u+=
a−
2

+ u−,
k−
k+

=

√

q2
− − u2

−
q2
+ − u2

+
=

√

√

√

√

1
4 a2

− + a−u−
1
4 a2

+ + a+u+
. (6.1a,b)

Notably, these transmission and phase conditions are exactly the same as those for the KdV
equation ut + (u2)x = µuxxx with convex flux (Maiden et al. 2018). Although, for mKdV,
the conditions apply for both positive and negative soliton amplitudes.

The tunnelling condition (3.29a–c) fails when the characteristic speeds f ′(ū) and C(q, ū)

cross, which occurs when (see (4.11))

q2 = ū2 =⇒ a ∈ {0, −4ū}. (6.2)

Crossing through a = 0 gives the same condition as in the convex case, where for bright
solitons, a > 0 on the transmitted side implies tunnelling, and a ≤ 0 means the soliton is
trapped. For dark solitons, the inequalities must be reversed.

The additional tunnelling condition resulting from non-convexity when ū < 0 is the
constraint (A13) that the amplitude does not pass through −4ū. When a → −4ū, we again
have trapping, but with a non-zero amplitude and speed 3ū2. This limit corresponds to an
algebraic soliton. When µ > 0, the initial amplitude will be less than −4u± since (A7)
holds for valid bright solitons, and so the transmitted amplitude must also be smaller than
−4u∓. For µ < 0, initial amplitudes must satisfy (A13), so the transmitted amplitude must
also be greater than −4u∓.

Considering the intersection of the characteristic speeds is the most direct way to
verify the admissibility criteria (3.29a–c) for the soliton to tunnel through the mean flow.
However, we can also see how the phase and transmission conditions (6.1a,b) are affected.
The phase shift ∆ can be obtained from the relation (3.27), yielding for mKdV

∆

x−
=

√

1
4 a2

−+a−u−
1
4 a2

++a+u+
− 1 (6.3)

for the forward (left to right) soliton transmission through a mean flow. If a+ = −2u+
as when strict hyperbolicity is lost, then from (6.1a,b) we have k−/k+ → ∞. For the
backward (right to left) transmission one simply interchanges ‘+’ and ‘−’ in (6.3).

7. Soliton–convex mean flow interaction

First, we consider the tunnelling problem in the classical case of convex mean flows: RWs
and DSWs. However, non-convexity of the mKdV equation makes the problem novel in
the sense that both bright and dark solitons exist. We see that the additional admissibility
criterion of strict hyperbolicity leads to more restrictive tunnelling conditions than in the
convex case. When trapping occurs in situations with soliton amplitudes a > 0, we find
that an exponentially decaying soliton limits to an algebraic soliton when a → −4ū > 0.

7.1. Soliton tunnelling through RWs: regions II and VI

RWs that emerge from the GP problems in regions II and VI of figure 3 are described to
leading order by (5.1). The RW is confined to the interval 3u2

−t < x < 3u2
+t.
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K. van der Sande, G.A. El and M.A. Hoefer
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Figure 4. Soliton–RW interaction with µ = 1, a+ = 1.5, x+ = 100, u− = −1, u+ = −1.5. The soliton
trajectory (light grey curve) is accurately predicted by soliton–mean theory (dashed curve). (a) Initial condition.
(b) Space–time contour plot of solution with soliton characteristic (dashed). (c) Configuration at t = 300. The
predicted amplitude a− and phase shift ∆ are 0.5 and 96.40, respectively. The numerical solution results in
a− = 0.4981 and ∆ = 95.02 at t = 300.

To determine the admissible directionality for soliton–mean interaction, an admissible
soliton’s velocity must be compared with the edge velocity of the RW. For µ > 0, it is
only possible for solitons to travel from right to left, implying backward soliton–mean
interaction while for µ < 0, solitons can only go from left to right. Soliton tunnelling
occurs in either case if the system maintains strict hyperbolicity and a /= 0. The tunnelling
parameters are determined by the transmission conditions (6.1a,b).

For µ > 0, we focus on RWs in region VI of figure 3 because bright solitons are
admissible. The case of region II with dark soliton-RW interaction can be obtained by
the transformation (A16). Initialising x0 = x+, u+ < 0, 0 < a(x+, 0) = a+ < −2u+, we
only need to check that 0 < a− < −4u− for u+ < u− < 0 to prove that the characteristic
speeds did not cross because the RW transitions continuously and monotonically from u−
to u+. We use the transmission condition (6.1a,b) to express this inequality in terms of the
initial soliton amplitude a+ for a bright soliton starting on the right,

2(u−−u+) < a+< − 2(u++u−). (7.1)

The second inequality is automatically satisfied by any valid initial soliton. Hence, the first
is a sufficient condition for tunnelling,

a+>acr = 2(u−−u+). (7.2)

Since u+ < u− < 0 in region VI, (7.2) gives a positive critical amplitude for transmission
to occur. A numerical example of a soliton tunnelling through a RW in this case is shown
in figure 4(a–c).

The soliton trajectory is specified by dx/dt = C(q, ū), where C(q, ū) is given by (4.13).
Integrating this equation we obtain

x(t) =

⎧

⎪

⎨

⎪

⎩

(u2
− + 2q2)t + E, x < 3u2

−t

3q2t + Dt1/3, 3u2
−t < x < 3u2

+t

(u2
+ + 2q2)t + x+, x > 3u2

+t

(7.3)

928 A21-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

80
3

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e .
 U

ni
ve

rs
ity

 o
f C

ol
or

ad
o 

Bo
ul

de
r,

 o
n 

28
 O

ct
 2

02
1 

at
 1

7:
33

:1
2,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.



Dynamic soliton–mean flow interaction with non-convex flux

Dispersion Direction Region II - RW (u+ > u− > 0) Region VI - RW (u+ < u− < 0)

µ > 0 R → L No bright soliton solutions Tunnelling if a+ > acr = 2(u− − u+)

µ < 0 L → R Tunnelling if a− > acr = 2(u+ − u−) Tunnelling if a− > acr = −2(u+ + u−)

Table 1. Results for the bright soliton tunnelling problem through RWs; R → L means that x0 = x+ and the
soliton propagates from right (R) to left (L), otherwise x0 = x− (L → R).

where D and E are obtained by continuity of x(t)

D = 3
2 x

2/3
+ (2u2

+ − 2q2)1/3 (7.4)

E = x+

√

u2
+ − q2

u2
− − q2

. (7.5)

The phase shift is ∆ = E − x+, which matches the condition given by (6.1a,b).
A similar analysis can be carried out for each region in figure 3 to determine the

tunnelling criterion. We summarise the remaining results without detailing the analysis for
each case in table 1 for either sign of µ in regions II and VI. Note that for µ < 0 in region
VI, the tunnelling criterion is different than the condition that a+ > 0. This is because
there are cases for valid initial soliton amplitudes a− where the amplitude crosses −4ū

during interaction with the RW, causing the soliton to become trapped. In the limit t → ∞,
the trapped soliton limits to an algebraic soliton moving with the mean flow velocity 3ū2.

Figure 5 illustrates the loss of strict hyperbolicity when µ < 0 for non-zero amplitudes
by depicting the wave curves a(ū) corresponding to constant q(a, ū) and the corresponding
soliton speed c(a(ū), ū). For interaction to occur in region VI, solitons are initialised on
the left at x0 = x− with mean flow u− < 0 (we take u− = −1) and amplitudes satisfying
(A7). For initial amplitudes −4u− < a− < acr = −2(u+ + u−), solitons pass through
the mean flow from u− to u+ < u− (u+ = −2) maintaining positive amplitude. But
these wave curves eventually intersect the critical line −4ū (shown in red). In figure 7(b),
the corresponding soliton speeds are plotted. Intersection of a(ū) with −4ū corresponds
to the intersection of the soliton velocity c(a, ū) with the characteristic velocity 3ū2, also
shown in red. As the two coincide, the soliton asymptotically limits to a trapped algebraic
soliton propagating with characteristic velocity.

7.2. Soliton tunnelling through DSWs: regions I and V

For µ > 0, the DSW leading and trailing edge velocities for both regions I and V of
figure 3 are given by s+ = 6u2

− − 3u2
+ and s− = u2

− + 2u2
+ (El et al. 2017). Comparing

the soliton’s initial and edge velocities, we see that interaction occurs in region V (u− <

u+ < 0) for both directions. In region I (0 < u+ < u−), bright solitons do not exist.
First, we consider the backward interaction in region V in which x0 = x+. For the

interaction to occur, the soliton speed c(a+, u+) must be smaller than s+, implying

2(u−−u+) < a+< − 2u+. (7.6)

This condition is satisfied for any admissible, initial bright soliton a+. It and the
transmission condition (6.1a,b) imply that 0 < a− < −4u− so, invoking monotonicity
of the DSW mean flow, we can see that strict hyperbolicity and amplitude positivity is
maintained along the soliton trajectory. The soliton will always tunnel.
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Figure 5. Simple wave curves of constant q(a, ū) (solid) and curves of non-strict hyperbolicity (dashed)
illustrating interaction with a RW with u− = −1, u+ = −2 and µ = −1 for various initial amplitudes a−.
(a) Soliton amplitudes as a function of ū; (b) soliton speeds. When travelling from u− to u+ with a− < acr , the
solid and dashed curves intersect, corresponding to loss of strict hyperbolicity.

Dispersion Direction Region I - DSW (u− > u+ > 0) Region V - DSW (u− < u+ < 0)

µ > 0 R → L No soliton solutions Tunnelling always occurs
L → R No soliton solutions Interaction and trapping if a− < 2(u+ − u−)

µ < 0 R → L No interaction Interaction and trapping if a+ < −2(u+ + u−)

L → R Tunnelling always occurs Tunnelling if a− > acr = 2(u+ − u−)

Table 2. Results for the bright soliton–DSW interaction problem.

Next, we consider forward interaction where x0 = x−. In order for the soliton to overtake
the DSW, we require c(a−, u−) > s−, which implies that

q2 > u2
+. (7.7)

Then one of

a−> − 2(u++u−), or a−<2(u+−u−) (7.8)

holds. The first inequality in (7.8) cannot be satisfied for an admissible, initial bright
soliton constrained by (A7). The second inequality in (7.8) can be satisfied by an initial
bright soliton, but (6.1a,b) implies that a+ < 0 so the soliton is trapped. We can also
see this by comparing the characteristic velocities c(a−, u−) and 3u2

− where valid initial
soliton amplitudes a− satisfying (A7) result in q2 < u2

−. Since q2 > u2
+ is necessary for the

interaction to occur (see (7.7)), u2
+ > u2

−, and ū is continuous, the velocities must intersect
and therefore the soliton is trapped by the DSW.

For µ < 0, the DSW leading and trailing edge speeds are given by s+ = u2
+ + 2u2

− and
s− = 6u2

+ − 3u2
− (El et al. 2017). Initial solitons with either x0 = x+ or x0 = x− can exist

in both regions I and V and the tunnelling criterion can again be determined by comparing
velocities and then looking at the admissibility criterion for tunnelling. Table 2 summarises
the results for bright soliton–DSW interaction.

Numerical experiments on soliton tunnelling through DSWs were conducted for both
signs of µ with results given in tables 3 and 4. Good agreement was found between the
predicted amplitude and phase shift (6.1a,b), (6.3) and the numerical results, confirming
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Dynamic soliton–mean flow interaction with non-convex flux

u+ u− a+ Tfinal a− (pred) a− (num) ∆x/x− (pred) ∆x/x− (num)

−1 −1.5 0.1 300 1.1 1.0968 −0.7310 −0.7226
−1 −1.5 0.5 200 1.5 1.4914 −0.4908 −0.4880
−1 −1.5 1 100 2 1.9960 −0.3876 −0.3833

Table 3. Numerical tests of backward (R → L) bright soliton–DSW interaction for µ = 1 and x+ = 100 in
region V.

u− u+ a− Tfinal a+ (pred) a+ (num) ∆x/x− (pred) ∆x/x− (num)

1.5 1 0.1 170 1.1 1.0989 −0.6703 −0.6577
1.5 1 0.5 170 1.5 1.4740 −0.3724 −0.3590
1.5 1 1 70 2 1.9818 −0.2362 −0.2320
−0.6 −0.1 2.6 100 1.6 1.5966 −0.4796 −0.4539

Table 4. Numerical tests of forward (L → R) bright soliton–DSW interaction, µ = −1 and x− = 100 in
regions I and V.
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–1.5

00 500500 10001000
Numerics
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8006004002000–200
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Figure 6. Soliton–DSW interaction with µ = 1, a+ = 1, x+ = 100, u− = −1.5 and u+ = −1. (a) Initial
condition. (b) Space–time contour plot of solution with soliton characteristic (dashed). (c) Configuration at
t = 100. The predicted a− is 2 and the predicted ∆ is −38.76. At t = 100, the numerical solution gives
a− = 1.9960 and ∆ = −38.33.

that hydrodynamic reciprocity is maintained. Figure 6 shows one sample numerical
solution.

For a RW, the soliton trajectory x(t) and amplitude a(ū) throughout the soliton–RW
interaction is known. In contrast, the mean flow ū(x, t) for a DSW is given by the
modulation of a periodic travelling wave and is more complicated. Although the soliton
amplitude and phase shift on either side of the DSW can be predicted without knowing the
space–time variation of the mean flow in the DSW’s interior by invoking hydrodynamic
reciprocity (see § 3.3), the Riemann invariants q and kp of the augmented solitonic system
(4.8), (4.9) are not held constant throughout the DSW. What is desired is some way to
estimate the wave curve a(ū) within the DSW. Since ū is known and now described by
(5.8) rather than ūt + f ′(ū)ūx = 0, we require an alternative approach to approximating
the wave curve a(ū).

To obtain a(ū) along the soliton trajectory dx/dt = c(a, ū), we make an assumption that
soliton–DSW interaction can be approximated by the interaction of a soliton with the DSW
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Figure 7. Solition amplitudes (a) and corresponding local velocities (b) of a soliton interacting with a DSW+

for u− = −1.5, u+ = −1 and µ = 1. When traversing curves from u+ to u− with a+ < acr =, the curves
intersect the characteristics corresponding to loss of strict hyperbolicity. In this case, these amplitudes decay to
zero.

mean flow, and take advantage of the characteristic ODE (3.13) in which we replace the
characteristic velocity f ′(ū) in the RW solution with the characteristic velocity W2(ū) of
the simple wave equation (5.8) for the DSW modulation solution. The velocity W2(ū) is
specified parametrically by (5.3a,b), (5.4) (or equivalently, (5.7), (5.5)). Thus, we obtain
the ODE

dk̃

dū
=

∂ūω̃0

W2(ū) − ∂
k̃
ω̃0

, k̃(u−) = k̃−, (7.9a,b)

where, as earlier, ω̃0 = −iω0(ik̃, ū) and ω0(k, ū) is the mKdV linear dispersion relation
(4.1). The relation between the conjugate wavenumber k̃ and the soliton amplitude a is
given by (3.14), which is

k̃2 = −
1

µ

(

1

2
a2 + 2aū

)

, (7.10)

so that k̃− is (7.10) evaluated at a = a−, ū = u−. Substituting the expression for W2(ū)

given by (5.3a,b) or (5.7) and the dispersion relation (4.1) into (7.9a,b), we can numerically
integrate for k̃(ū) and invert (7.10) to solve for the approximate wave curve a(ū). Since
(7.10) is double valued, we use the existence conditions (A7) for µ > 0 and (A13) for
µ < 0 in order to determine the correct value for a.

We now consider the implications of this mean flow approach toward understanding
soliton–DSW interaction for each sign of µ separately.

First, for µ > 0 and a backward soliton (x0 = x+ > 0) tunnelling through a DSW+

(region V), figure 7(a) shows the wave curves a(ū) representing the soliton amplitude
as it passes through the DSW mean flow with corresponding local trajectory velocity in
figure 7(b). As expected from table 2, the soliton always tunnels through the DSW from
right to left (x0 = x+ > 0). For any valid initial positive amplitude satisfying 0 < a+ <

−2u+ (A7), the soliton’s amplitude neither crosses the critical line −2ū nor decays to
zero during propagation. Correspondingly, the velocities of solitons starting at u+ = −1
and moving to u− = −1.5 mostly remain below the DSW velocity W2(ū), save for very
small a+. However, examining solitons travelling from left to right (x0 = x− < 0), if
the initial amplitude is below the critical value a− < acr = 2(u+ − u−), the soliton is
trapped and the amplitude decays to zero. The initial amplitudes below acr in figure 7(a)
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Dynamic soliton–mean flow interaction with non-convex flux
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Figure 8. Relative error in the predicted transmitted soliton amplitude a(u−) and soliton phase shift ∆̄ for
soliton–DSW+ interaction using the mean flow description from right to left. Parameter values are µ = 1,
x0 = x+ = 100, u− = −1.5 and u+ = −1.

correspond to the velocities in figure 7(b) that lie between 3ū2 and the characteristic W2(ū),
indicating that the soliton is trapped. Initial amplitudes satisfying a− > acr correspond to
soliton velocities that never catch up to the DSW, c(a−, u−) < W2(u−), so soliton–DSW
interaction does not occur.

We make two consistency checks in figure 8. The soliton amplitude a(u−) computed
from the wave curve a(ū) that includes the point a(u+) = a+ remains within 8 % of
a− = a+ + 2(u+ − u−) predicted by the transmission condition (6.1a,b) when u− =
−1.5, u+ = −1. This result holds for all initial amplitudes satisfying 0 < a+ � 1.7134.
The upper bound on admissible initial amplitudes is below the critical value acr = 2.
When 1.7134 < a+ < 2, the wave curve terminates at a(ū) = −2ū for ū > u− = −1.5
as shown in figure 7(a). The error is shown in figure 8 as a function of initial soliton
amplitude.

Another consistency check is the predicted phase shift

∆̄ ≡ x+−(x(t−) − c(a(u−), u−)t−),
dx

dt
=

ω̃(k̃(x, t), ū(x, t))

k̃(x, t)
, x(t+) = s+t+,

(7.11a–c)
where t± are the times that the soliton’s trajectory crosses the DSW’s leading (s+t)
and trailing (s−t) edges. This is compared with the phase shift ∆ determined by the
transmission condition (6.3) in figure 8.

An interesting case where convexity is lost, but the trapped soliton amplitude does
not decay to zero is for µ < 0 and a soliton interacting with a DSW− (region V).
Figure 9(a) shows the soliton amplitude as it passes through the DSW and figure 9(b)
shows the corresponding soliton velocity. When travelling from left to right (x0 = x− < 0)
with u− = −1.5, admissible solitons satisfying (A13) always have velocities faster than
W2(ū), so interaction occurs but the velocities never cross W2(ū) so strict hyperbolicity is
maintained. This can also be seen in the smooth amplitude curves from u− to u+, which
never intersect −4ū. However, when the soliton is slow enough to interact from right to left
through the DSW from u+ = −1 to u− = −1.5, then the soliton becomes trapped and the
velocities lie between 3ū2 and W2(ū). This corresponds to amplitudes below the critical
amplitude acr = 2(u+ − u−). For a soliton with amplitudes below this critical amplitude,
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Figure 9. Soliton interaction with a DSW− with u− = −1.5, u+ = −1 and µ = −1 for various amplitudes.
When initialised on the right at u+ with a+ < acr , the wave curves do not reach u− so the soliton is trapped.
(a) Soliton amplitudes and (b) soliton velocities.

a–
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Figure 10. Relative error in the predicted transmitted soliton amplitude a(u+) and soliton phase shift ∆̄ for
soliton–DSW+ interaction using the mean flow description from left to right. Parameter values are µ = −1,
x0 = x− = −100, u− = −1.5 and u+ = −1.

the velocity crosses W2 and limits to 3ū2, while the amplitude limits to −4ū, indicating
that it behaves like an algebraic soliton.

When tunnelling occurs, the transmitted amplitude from numerical integration of the
ODE (7.9a,b) is compared with the amplitude predicted by transmission conditions and
the error is shown in figure 10. For initial amplitudes that satisfy a− > 6.1 with acr =
6 for u− = −1.5 and u+ = −1, the computed soliton amplitude a(u+) is within 1 % of
the predicted amplitude. The predicted phase shift based on (7.11a–c) with subscripts −
replaced with + is also compared with the phase shift as determined from the transmission
condition (6.3) in figure 10.

8. Soliton–non-convex mean flow interaction

In this section, we study interactions of solitons with non-convex mean flows arising from
the mKdV GP problem with u−u+ < 0. We consider interactions with ‘pure’ non-convex
mean flows generated for the symmetric conditions u− = −u+. These are kinks (µ > 0)
and CDSWs (µ < 0); see § 5.2.
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Dynamic soliton–mean flow interaction with non-convex flux

8.1. Soliton–kink interaction

A kink solution to the GP problem when µ > 0 is realised when u+ = −u−. To be definite,
we assume that u− < 0. The kink velocity u2

− = u2
+ is slower than the soliton velocity

for any amplitude so interaction happens from left to right with x0 = x− < 0. By the
soliton existence conditions (A7), when u− < 0, we must initialise with a bright soliton
(a− > 0) on the left side. Since bright solitons cannot exist on the right side of the kink
where u+ > 0, we expect that the soliton polarity undergoes a switch as a result of kink
interaction in order for the soliton to be a valid solution. To determine the transmitted
soliton amplitude, we observe that, under the quadratic transformation (B3), the mKdV
soliton–kink interaction problem in the limit µ → 0 is mapped onto the problem of KdV
soliton train propagation on a background −3ū2 described by the modulation system
(cf. (4.5))

∂r1

∂t
− r1

∂r1

∂x
= 0,

∂r3

∂t
−

1

3
(r1 + 2r3)

r3

∂x
= 0,

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(8.1)

where r1 = −3λ2
1 and r3 = −3λ2

3. Since λ1 = ū, the quadratic transformation maps the
discontinuous solution (5.9) for ū to the constant solution r1 = −3ū2 = −3u2

− of the
first equation in (8.1). The constant solution r3 = const, mapped to λ3 = const, solves
the second equation, implying |a| = 2(λ3 − λ1) = const for the mKdV equation.

The transformation of the soliton amplitude in soliton–kink tunnelling can be obtained
from the transmission condition (6.1a,b) by assuming that the normalisation (3.15) of the
Riemann invariant q = Q(a, ū) changes to Q(0, ū) = −ū when crossing the zero convexity
point ū = 0 at x = 0, yielding the transmission condition u+ + 1

2 a+ = −(u− + 1
2 a−).

Since u− = −u+, we obtain a+ = −a−. Inserting this result into the soliton phase
shift formula (6.3), we obtain ∆ = 0. To be clear, the predicted zero phase shift is an
approximate result within the context of modulation theory in the limit µ → 0. For
non-zero but small µ, a small phase shift due to soliton–kink interaction is expected.
Such an interaction for the mKdV equation can be investigated using the inverse scattering
transform (IST) with non-zero boundary conditions developed for both signs of µ in Zhang
& Yan (2020). Within the IST formalism, the conservation of the absolute value of the
soliton amplitude pre and post interaction is a consequence of the discrete spectrum’s
conservation.

Numerical experiments with results in table 5 confirm that, as the soliton propagates
through the kink, it switches polarity while preserving the absolute value of the amplitude
and that the phase shift is very small, as seen in figure 11. The observed small phase
shift from numerical experiments is due to the non-zero value of µ used in numerical
simulations. Note that the kink itself undergoes a phase shift in the direction opposite to
the soliton.

8.2. Soliton–CDSW interaction

When µ < 0 and u− = −u+, the resulting solution that emerges from the GP problem is a
CDSW. The leading and trailing edge travel at characteristic velocity s+ = 3u2

− and s− =
−3u2

−, so that solitons can only interact with the CDSW from left to right, x0 = x− < 0.
Tunnelling always occurs in this interaction and the transmitted amplitude is obtained from
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K. van der Sande, G.A. El and M.A. Hoefer

u− u+ a− tfinal a+ a+ (num) ∆x ∆x (num) ∆x/|x−| (num) ∆xkink

−1 1 0.5 200 −0.5 −0.4991 0 1.6530 0.0331 −2.3438
−1 1 1.0 200 −1.0 −1.0000 0 2.1484 0.0430 −3.8086
−1 1 1.5 500 −1.5 −1.4999 0 3.0273 0.0605 −5.8594
−2 2 1.5 50 −1.5 −1.4988 0 0.9766 0.0195 −1.6113

Table 5. Numerical tests of bright soliton–kink interaction from left to right for µ = 1 with x− = 50. Values
for a+ and ∆x according to the transmission conditions are compared with numerical (num) results.

Numerics

Predicted

t = 200

x

u

300200100–100

–1

0

1

0

t = 0

x

u

300

–100 300200100

x

t

0

200100–100

–1

0

1

0

200

150

100

50

0

(a)

(b)

(c)

Figure 11. Soliton–kink interaction for µ = 1, a− = 1, x− = −50, u− = −1 and u+ = 1. (a) Initial condition.
(b) Space–time contour plot of solution with soliton characteristic (dashed). (c) Configuration at t = 200. The
predicted a+ is –1, after flipping polarity in the interaction, and the predicted phase shift ∆ is 0. The numerical
solution gives a+ = −1.0000 and ∆ = 2.1484 at t = 200.

u− u+ a− Tfinal a+ (pred) a+ (num) ∆x (pred) ∆x (num) ∆x/|x−| (num)

−0.5 0.5 2.5 120 0.5 0.4993 0 −1.0352 0.0207
0.5 −0.5 1.0 120 3.0 2.9960 0 −0.4688 0.0094

Table 6. Numerical tests of bright soliton–CDSW interaction from left to right for µ = −1 and x− = −50.

(6.1a,b) as

a+=a−+4u−. (8.2)

By the existence conditions (A13), an initial soliton satisfies a− > −4u−. To maintain
strict hyperbolicity, a+ > −4u+ as well. Using the transmission condition, we observe

a+> − 4u+ (8.3)

=⇒ a−>2u+−2u−= − 4u−, (8.4)

and this relation is always satisfied by a− so strict hyperbolicity is maintained.
The predicted phase shift is found from (6.3) with u+ = −u− and a+ given by (8.2). As

with the pure kink interaction, ∆ = 0. Numerical experiments shown in table 6 verify the
conservation of q and kp, although we do see a small phase shift, likely due to higher order
effects. See figure 12 for depictions of soliton interaction with CDSWs of both polarities
at the boundaries of regions VII and VIII (positive polarity) and III and IV (negative
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Dynamic soliton–mean flow interaction with non-convex flux

Numerics
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–200

–200 2000
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200100–100 0

0 200 400–200–400

0

0

1
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1

2
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1
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u

0

1

2

(a)

(b)

(c)

(d)

(e)

( f )

Figure 12. (a–c) a soliton and CDSW+ interaction where µ = −1, a− = 1, x− = −50, u− = 0.5 and u+ =
−0.5. (a) Initial condition. (b) Space–time contour plot of solution with soliton characteristic (dashed).
(c) Configuration at t = 120. (d–f ) soliton and CDSW− where µ = −1, a− = 2.5, x− = −50, u− = −0.5 and
u+ = 0.5. (d) Initial condition. (e) Space–time contour plot of solution with soliton characteristic (dashed).
(f ) Configuration at t = 120.

polarity). The predicted soliton trajectory (dashed) in figure 12 was generated by assuming
that it was unchanged by the mean flow, rather than considering the CDSW mean flow
given by (5.10) and the ODE (7.9a,b). This approximation is justified by the predicted zero
phase shift and unchanged soliton velocity post CDSW interaction.

In contrast to the soliton–kink interaction, the soliton–CDSW interaction does not
result in the soliton’s polarity change. This is because strict hyperbolicity is maintained
throughout and the existence condition (A13) for solitons with µ < 0 allow for bright
solitons on either side of the mean flow.

8.3. Hybrid mean flows

Regions III, IV, VII and VIII for the Riemann problem result in hybrid mean flow dynamics
involving a CDSW or kink coexisting with a RW or DSW. The analysis for RWs, DSWs
and pure kinks and CDSWs serve as the building blocks for determining the soliton
tunnelling criterion through these combination flows. We summarise these results for
µ > 0 in table 7 and for µ < 0 in table 8.

9. Kink–mean flow interaction

So far, we have considered the case of solitons interacting with mean flows. Kinks are
another localised wave structure that arise as solutions in non-convex systems, so it
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Direction
Region III - kink|RW

(u+ > −u− > 0)
Region IV - kink|DSW

(u− < −u+ < 0)
Region VII - kink|RW

(u+ < −u− < 0)
Region VIII - kink|DSW

(−u− < u+ < 0)

R → L No soliton solutions No soliton solutions Tunnelling through RW if a+ >

−2u− − 2u+, trapped to the right of
the kink

Tunnelling through DSW always,
trapped to the right of the kink

L → R Tunnelling through kink, polarity
flips, trapped to the left of the RW

Tunnelling through kink, polarity
flips, trapping in DSW if a− <

2u+ − 2u−

No soliton solutions No soliton solutions

Table 7. Results for µ > 0 with bright solitons interacting with hybrid mean flows.
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Region VII - CDSW|RW

(u+ < −u− < 0)
Region VIII - CDSW|DSW

(−u− < u+ < 0)

R → L No interaction Interaction and trapping if
a+ < −2u+ − 2u−

No interaction No interaction

L → R Tunnelling if a− >

2u+ − 2u−
Tunnelling if a− >

2u+ − 2u−
Tunnelling if a− >

−2u+ − 2u−
Tunnelling for any amplitude

Table 8. Results for µ < 0 with bright solitons interacting with hybrid mean flows.
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Numerics

Predicted
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200010000
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(b)
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(c)

Figure 13. Backward kink–RW interaction with µ = 1, a+ = 2, x+ = 200, u− = −0.5 and u+ = −1.
(a) Initial condition. (b) Configuration at intermediate time t = 300. (c) Configuration at t = 1000.
(d) Space–time contour plot of solution with kink characteristic (dashed). The predicted a− is 1 and the
predicted ∆ is 200. The numerical solution gives a− = 0.9984 and ∆ = 199.02 at t = 1000.

is natural to consider their interaction with mean flows. Unlike in soliton–mean flow
tunnelling where the mean flow is essentially unchanged by the interaction, in this case,
both the kink and the mean flow are significantly altered by the interaction. In addition, we
find that the admissibility condition for tunnelling is always satisfied by the kink so there
is no trapping.

Kinks occur when u3 → u2 = u1, causing all three modulation equations in the system
(4.3) to collapse into the dispersionless mean flow equation ūt + 3ū2ūx = 0. The amplitude
of the kink is a = −2ū, resulting in q = 0. Since the kink velocity is slower than the RW
or DSW speed, it can only interact from right to left. The kink trajectory is given by

dx

dt
= ū2, x(0) = x+, (9.1a,b)

which satisfies the Rankine–Hugoniot condition. The kink propagates like a shock.
(i) Kink–RW interaction

The kink trajectory during interaction with a RW is the shock trajectory and can be
solved for explicitly using (5.1) and (9.1a,b), giving

dx

dt
=

x

3t
, 3u2

−t < x < 3u2
+t, (9.2a,b)

with the initial position given by x0 = x+ > 0. Numerical experiments verify that this is
true, as seen in figure 13. As the kink travels through, the RW switches polarity.
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Dynamic soliton–mean flow interaction with non-convex flux

Numerics

Predicted
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Figure 14. Kink–DSW interaction with µ = 1, a+ = 1; x+ = 150, u− = −1 and u+ = −0.5. (a) Initial
condition. (b) Configuration at intermediate time t = 50. (c) Configuration at t = 250. (d) Space–time contour
plot of solution with kink characteristic (dashed). The predicted a− is 2 and the predicted ∆ is -75. The
numerical solution gives a− = 2.0022 and ∆ = −74.56 at t = 250.

Again for DSWs, interaction with the kink causes the DSW to switch polarity as seen
in the numerical experiment of figure 14. These polarity switches are only possible due to
non-convexity. The kink–DSW trajectory is given by (9.1a,b), where the DSW mean flow
ū = ū(x/t) is determined by (5.4), (5.2a–c) and (5.3a,b).

Note that kink–kink interaction is not possible as multiple kinks will co-propagate.

10. Generalisation to arbitrary soliton–convex mean flows

We have described soliton tunnelling interactions specifically with mean flows that emerge
from a Riemann step-type initial condition. However, the tunnelling problem can be
generalised to determine the phase shift and amplitude of a soliton that tunnels through
an arbitrary mean hydrodynamic flow. If tunnelling occurs, only the far-field mean flow
conditions u− and u+ are needed to predict the transmitted soliton amplitude. The phase
shift can be calculated by approximating the initial mean flow ū(x, 0) with a series of step
functions and taking a limit that results in the Riemann integral

∆ =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

∫ x0

x−

(
√

ū(x, 0)2 − q2

u2
− − q2

− 1

)

dx, assuming R → L

∫ x+

x0

(
√

ū(x, 0)2 − q2

u2
+ − q2

− 1

)

dx, assuming L → R,

(10.1)
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Figure 15. Soliton interaction with an arbitrary mean flow with µ = −1, x+ = 150, a+ = 1, u− = −1.5 and
u+ = −1. (a) Initial condition. (b) Space–time contour plot of the solution with soliton characteristic (dashed).
(c) Configuration post soliton-mean flow interaction at t = 150. The predicted amplitude after tunnelling is 2
and the predicted phase shift is -69.28. The numerical result is a− = 2.028 and ∆ = −69.24 at t = 150.

where x0 is the initial soliton position and x− or x+ is a point where the mean flow has
equilibrated to the far-field constant.

This phase shift calculation holds only when the system remains strictly hyperbolic,
otherwise we have ū → q as the soliton travels through the mean flow and trapping
will occur. However, this can also be predicted from the far-field mean flow conditions,
as we have done throughout this work.

Figure 15 depicts a numerical example of a soliton tunnelling through a mean flow that
is a combination of a Gaussian and a Riemann step. The predicted trajectory pre and post
mean flow interaction shows good agreement with the numerics, as does the transmitted
amplitude.

11. Conclusions and outlook

In this work, we have investigated the impact of hydrodynamic flux non-convexity on
soliton–mean flow interaction. Solitons include exponential and algebraically decaying
solutions and the heteroclinic kink solution whereas mean flows are RWs and (convex,
undercompressive or contact) DSWs. Scale separation enables the use of asymptotic wave
modulation theory, formulated in a general form, that exhibits two invariants relating
soliton parameters pre- and post-mean interaction. One of the main results of our study
is the general admissibility criterion for a soliton to tunnel through a mean flow, which is
formulated in terms of maintenance of strict hyperbolicity (distinct characteristic speeds)
of the solitonic modulation system (3.4) through the interaction. Conversely, trapping
occurs when the characteristics of the solitonic system coalesce. This general theory is
used to study the mKdV equation, a non-convex model of internal waves and potential
vorticity fronts in stratified fluids. We predict soliton polarity reversal resulting from
interaction with an undercompressive DSW (kink). Similarly, kink–DSW and kink–RW
interactions result in a mean flow polarity change, accompanied by transformation of the
kink. Thus, non-convex soliton–mean interaction exhibits a two-way interaction.

An important application of this analysis is to the nonlinear dynamics of internal ocean
waves, where solitons of both polarities and mean flows such as RWs, DSWs (undular
bores) and kinks (solibores) are often observed due, for example, to tidal flow over
a sill that then slackens (Holloway, Pelinovsky & Talipova 2001; Apel 2002), internal
wave propagation onto a shallow shelf (Davis et al. 2020) or intruding gravity currents
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Dynamic soliton–mean flow interaction with non-convex flux

(la Forgia et al. 2020). When reflections occur due to additional topographic features,
such large-scale mean flows may encounter solitons of different speeds (la Forgia et al.

2020), leading to the type of soliton–mean interaction described here. Along with the
mKdV equation, internal waves can be modelled by the Gardner equation that combines
KdV and mKdV hydrodynamic fluxes (Grimshaw 2002; Helfrich & Melville 2006). The
generalisation of our results to the Gardner equation is straightforward. We stress that
our approach does not make use of the integrability of the mKdV equation, so can be
applied to a non-integrable, non-convex dispersive hydrodynamics. In particular, a new,
intriguing non-convex scalar model has recently been derived for the contour dynamics
of long-wave potential vorticity coastal fronts in Jamshidi & Johnson (2020). The model
is shown to accurately depict quasi-geostrophic contour dynamics (Pratt & Stern 1986),
generalising previous work from free fronts, involving a Rossby wave where mKdV
models the dynamics (Pratt 1988; Gruzinov 1992; Nycander et al. 1993), to fronts in
which the coastal boundary introduces additional flows due to Kelvin waves and the image
vortical current. Non-convexity was found to play a prominent role when boundary vortical
effects are dominant. This suggests that non-convex interactions such as soliton–solibore,
solibore–rarefaction and solibore–undular bore scenarios described here could occur in the
near shore vortical dynamics. The study of soliton–mean flow interaction for this model
and its fluid dynamic implications would be an interesting and relevant application of the
theory presented here.

Our theory can also be extended to bidirectional wave systems describing internal
gravity waves in fluids with the Miyata–Choi–Camassa equations (Choi & Camassa
1999) being an obvious, fully nonlinear, long-wave candidate model. Other applications
outside the realm of classical fluid dynamics include polarisation waves in two-component
Bose–Einstein condensates (Congy, Kamchatnov & Pavloff 2016; Ivanov et al. 2017),
nonlinear optics described by non-convex equations (Ivanov & Kamchatnov 2017; Ivanov
2020) and collisionless plasmas (Nakamura, Ferreira & Ludwig 1985; Chanteur & Raadu
1987; Ruderman et al. 2008). Yet another possible application is in the hydrodynamic
interpretation of a far-from-equilibrium nonlinear magnetisation dynamics such as in
Iacocca, Silva & Hoefer (2017), where solitons and DSWs can also emerge.

Future directions include considering dispersion as an additional source of
non-convexity. Such systems are abundant in geophysical fluids, describing magma and
glacier flows (Scott, Stevenson & Whitehead 1986; Stubblefield et al. 2020) or wave–ice
sheet interactions (Il’ichev & Tomashpolskii 2015). Indeed, recent works on DSWs in
systems with non-convex dispersion (Lowman & Hoefer 2013; El & Smyth 2016; Sprenger
& Hoefer 2017; Hoefer, Smyth & Sprenger 2019; Baqer & Smyth 2020; Congy et al. 2021)
reveal a plethora of unusual behaviours that can lead to new, interesting soliton–mean flow
interactions.
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Appendix A. The mKdV travelling wave solutions

The mKdV travelling wave solutions u = u(η), η = (x − Ut)/
√

2|µ| are described by the
ODE

(uη)
2 = sgn(µ)(u − u1)(u − u2)(u − u3)(u − u4) ≡ Q(u), (A1)

subject to the constraint
∑4

i=1 ui = 0 and ordering of the roots u1 ≤ u2 ≤ u3 ≤ u4. We
only consider the modulationally stable case in which all roots are real. The phase velocity
U is given by

U = −1
2(u1u2 + u1u3 + u1u4 + u2u3 + u2u4 + u3u4). (A2)

Equation (A1) is a nonlinear oscillator equation in the potential −Q(u). Figure 16
shows representative potential curves Q(u) for both signs of the dispersion coefficient
µ. Travelling wave solutions exist in the regions where Q(u) > 0 (shaded regions) and can
be obtained by integrating (A1) in terms of Jacobi elliptic functions. The cases µ < 0 and
µ > 0 are treated separately.

(i) For µ > 0, the travelling wave solution is expressed in terms of Jacobi elliptic
functions as

u = u2 +
(u3 − u2)cn2(θ, m)

1 − u3−u2
u4−u2

sn2(θ, m)
, (A3)

with θ =
√

(u3 − u1)(u4 − u2)η and modulus m = m+ = (u3 − u2)(u4 − u1)/(u4 − u2)

(u3 − u1). The wavenumber of the travelling wave is given by

k =
π

√
(u3 − u1)(u4 − u2)

2K(m)
√

2|µ|
. (A4)

When u2 → u1 (m+ → 1), the solution becomes a bright (positive polarity) soliton with
amplitude a = u3 − u1, mean background ū = u1 < 0,

u = u1 +
u3 − u1

cosh2 θ − u3−u1
u4−u1

sinh2 θ
, (A5)

which travels with the velocity U = c+

c+(a, ū) = 1
2 a2 + 2aū + 3ū2. (A6)

Due to the root ordering, these bright solitons exist only for a certain range of positive
amplitudes and a negative background, given by the constraint

0 < a < −2ū. (A7)

Dark (negative polarity) soliton solutions occur when u3 → u4 instead. In this case,
ū = u4 > 0, a = u2 − u4 < 0 and the soliton velocity U = c−

c−(a, ū) = 1
2 a2 − 2aū + 3ū2. (A8)

with negative amplitudes a satisfying

− 2ū < a < 0. (A9)

When u2 → u1 and additionally, u3 → u4, the travelling wave becomes a kink,

u = ±ū tanh(ūη), (A10)

a heteroclinic smooth transition connecting two equilibria ū = u1 < 0 and −ū = u4 > 0
(note that the constraint

∑

uj = 0 becomes u4 + u1 = 0 in this limit) and travelling
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Dynamic soliton–mean flow interaction with non-convex flux

u1

(a) (b)

u2 u3

u4

u4

u3u2

u1

Figure 16. Potential curve Q(u) of the nonlinear oscillator equation (A1). Travelling wave solutions exist in
the shaded regions. (a) µ > 0 and (b) µ < 0.

with speed U = ū2, which matches the classical shock speed determined by the
Rankine–Hugoniot condition.

(ii) For µ < 0, travelling wave solutions can occur between u1 and u2 or between u3 and
u4. Between u3 and u4, the travelling wave solution is

u = u3 +
(u4 − u3)cn2(θ, m)

1 +
u4 − u3

u3 − u1
sn2(θ, m)

, (A11)

with m = m− = (u4 − u3)(u2 − u1)/(u4 − u2)(u3 − u1). The wavenumber is given by the
same formula (A4). When u3 → u2 (m− → 1) the solution becomes a bright exponential
soliton with amplitude a = u4 − u2 and background ū = u2

u = u2 +
u4 − u2

cosh2 θ +
u4 − u2

u2 − u1
sinh2 θ

. (A12)

This soliton solution travels according to the same soliton amplitude–speed relation (A6)
as in the case µ > 0. Due to the root ordering, valid bright soliton amplitudes for the
solution to exist are given by

a > max(0, −4ū), (A13)

with no constraint on the background ū.
For µ < 0, there is a special type of travelling wave solution expressible in terms of

trigonometric functions. Again, these solutions occur either between u1 and u2 or between
u3 and u4 but under the additional constraint that u3 = u4 in the first case and u1 = u2 in
the second case. For u3 ≤ u ≤ u4, u1 = u2 the solution is given by

u = u3 +
u4 − u3

1 +
u4 − u1

u3 − u1
tan2 θ

. (A14)

The nonlinear trigonometric solution (A14) has no analogue in KdV theory. When u3 →
u2 = u1 ≡ ū, the solution (A14) becomes an algebraic bright soliton described by

u = u1 +
u4 − u1

1 + (u4 − u1)2η2/4
, (A15)

with amplitude a = u4 − u1 = −4ū and travelling at speed U = 3u2
1 = 3ū2, which is the

characteristic speed of the dispersionless mKdV equation. Dark algebraic solitons can be
obtained by the transformation (A16) below.
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The solution oscillating between u1 and u2, can be obtained by applying the invariant
transformation

u → −u, ui → −u5−i, i = 1, 2, 3, 4. (A16a,b)

In this region, both the exponential and algebraic soliton solutions have negative polarity
with amplitude a = u3 − u1 and background ū = u3 satisfying

a < min(0, −4ū). (A17)

In both cases, the soliton amplitude–speed relation is given by (A8). Heteroclinic kink
solutions of mKdV do not exist if µ < 0.

Appendix B. Characteristic velocities of the mKdV–Whitham modulation equations

The characteristic velocities Wi(λ) can be written as

µ < 0 : W1 = U +
2

3
(r3 − r2)

K(m)

E(m)

W2 = U −
2

3
(r2 − r1)

(1 − m)K(m)

E(m) − (1 − m)K(m)

W3 = U +
2

3
(r2 − r1)

K(m)

E(m) − K(m)

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(B1)

µ > 0 : W1 = −U −
2

3
(r2 − r1)

K(m)

E(m) − K(m)

W2 = −U +
2

3
(r2 − r1)

(1 − m)K(m)

E(m) − (1 − m)K(m)

W3 = −U −
2

3
(r3 − r2)

K(m)

E(m)
,

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(B2)

where U = 1
3 (r1 + r2 + r3), m = (r2 − r1)/(r3 − r1) is the modulus, 0 ≤ m ≤ 1, and

K(m) and E(m) are complete elliptic integrals of the first and second kind, respectively.
The parameters r1, r2, r3 are related to the Riemann invariants λ1, λ2, λ3 by

µ < 0 : r1 = 3λ2
3, r2 = 3λ2

2, r3 = 3λ2
1;

µ > 0 : r1 = −3λ2
1, r2 = −3λ2

2, r3 = −3λ2
3.

}

(B3)

The mapping r �→ λ specified by (B3) is multivalued, which implies that the mKdV
modulation system (4.3) with characteristic velocities (B1), (B2) is neither strictly
hyperbolic nor genuinely nonlinear in both cases µ < 0 and µ > 0. However, within the
restricted subset in which λj /= 0, j = 1, 2, 3, the mKdV modulation system is strictly
hyperbolic and genuinely nonlinear. The relevant modulation solutions are subject to the
ordering λ1 ≤ λ2 ≤ λ3 and r1 ≤ r2 ≤ r3 resulting from the ordering of the roots in the
ODE potential curve (A1).

We note here that the expressions (B1), (B2) for the mKdV–Whitham characteristic
velocities Wj(λ) are related to the characteristic velocities Vj(r) of the diagonal
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Dynamic soliton–mean flow interaction with non-convex flux

KdV–Whitham system (Whitham 1965) as

µ < 0 : Wi(λ) = V4−i(r),

µ > 0 : Wi(λ) = −Vi(r).

}

(B4)

The quadratic transformations (B3) can be viewed as a modulation theory counterpart
of the celebrated Miura transform (Miura 1968).

We now obtain the soliton reduction of the mKdV–Whitham system. First, note that
the soliton limit of the mKdV travelling wave solutions described in § 4 is achieved by
letting either m+ → 1 (µ > 0) or m− → 1 (µ < 0). Using the relations (4.4a–c), (B3), we
find that both cases correspond to the limit m → 1 in the respective modulation systems
specified by (B1) (µ < 0) and (B2) (µ > 0).

For µ > 0, bright soliton solutions occur when u1 → u2, which coincides with λ2 → λ3
by (4.4a–c). Furthermore, r2 → r3 and m → 1 in (B2), yielding the limiting characteristic
velocities

W1(λ) = 3λ2
1, (B5)

W2(λ) = λ2
1 + 2λ2

3 = W3(λ). (B6)
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