
Poisoning Attacks on Fair Machine Learning

Minh-Hao Van1[0000−0001−7342−6801], Wei Du1[0000−0002−3371−8305], Xintao
Wu1[0000−0002−2823−3063], and Aidong Lu2[0000−0002−7684−4512]

1 University of Arkansas, Fayetteville, AR 72701, USA
{haovan,wd005,xintaowu}@uark.edu

2 University of North Carolina at Charlotte, Charlotte, NC 28223, USA
Aidong.Lu@uncc.edu

Abstract. Both fair machine learning and adversarial learning have
been extensively studied. However, attacking fair machine learning mod-
els has received less attention. In this paper, we present a framework
that seeks to effectively generate poisoning samples to attack both model
accuracy and algorithmic fairness. Our attacking framework can target
fair machine learning models trained with a variety of group based fair-
ness notions such as demographic parity and equalized odds. We develop
three online attacks, adversarial sampling , adversarial labeling, and ad-
versarial feature modification. All three attacks effectively and efficiently
produce poisoning samples via sampling, labeling, or modifying a frac-
tion of training data in order to reduce the test accuracy. Our framework
enables attackers to flexibly adjust the attack’s focus on prediction ac-
curacy or fairness and accurately quantify the impact of each candidate
point to both accuracy loss and fairness violation, thus producing effec-
tive poisoning samples. Experiments on two real datasets demonstrate
the effectiveness and efficiency of our framework.

Keywords: Poisoning attacks · Algorithmic fairness · Adversarial ma-
chine learning.

1 Introduction

Both fair machine learning and adversarial machine learning have received in-
creasing attention in past years. Fair machine learning (FML) aims to learn a
function for a target variable using input features, while ensuring the predicted
value be fair with respect to some sensitive attributes based on given fairness
criterion. FML models can be categorized into pre-processing, in-processing, and
post-processing (see a survey [13]). Adversarial machine learning focuses on vul-
nerabilities in machine learning models and has been extensively studied from
perspectives of attack settings and defense strategies (see surveys [21,4]).

There have been a few works on attacking FML models very recently. Solans
et al. [18] developed a gradient-based poisoning attack to increase demographic
disparities among different groups. Mehrabi et al. [14] also focused on demo-
graphic disparity and presented anchoring attack and influence attack. Chang
et al. [5] focused on attacking FML models with equalized odds. To tackle the
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challenge of intractable constrained optimization, they developed approximate
algorithms for generating poisoning samples. However, how to effectively gen-
erate poisoning samples to attack algorithmic fairness still remains challenging
due to its difficulty of quantifying impact of each poisoning sample to accuracy
loss or fairness violation in the trained FML model.

In this paper, we present a poisoning sample based framework (PFML) for
attacking fair machine learning models. The framework enables attackers to ad-
just their attack’s focus on either decreasing prediction accuracy or increasing
fairness violation in the trained FML model. Our framework supports a vari-
ety of group based fairness notions such as demographic parity and equalized
odds. We present three training-time attacks, adversarial sampling, adversar-
ial labeling, and adversarial feature modification. All of these attacks leave the
test data unchanged and instead perturb the training data to affect the learned
FML model. In adversarial sampling, the attacker is restricted to select a sub-
set of samples from a candidate attack dataset that has the same underlying
distribution of the clean data. Adversarial labeling and adversarial feature mod-
ification can further flip the labels or modify features of selected samples. All
three developed attacking methods are online attacks, which are more efficient
than those offline poisoning attacks. Our framework enables attackers to flexi-
bly adjust the attack’s focus on prediction accuracy or fairness and accurately
quantify the impact of each candidate point to both accuracy loss and fairness
violation, thus producing effective poisoning samples. Experiments on two real
datasets demonstrate the effectiveness and efficiency of our framework.

2 Background

2.1 Fair Machine Learning

Consider a binary classification task fθ : X → Y from an input x ∈ X to an
output y ∈ Y. Let l : Θ × X × Y → R+ be a loss function, D be the training
set and each (x, y) ∈ D be a data point. The classification model minimizes,
L(θ,D) =

∑
(x,y)∈D l(θ;x, y), the cumulative loss of the model over the training

data set D, to obtain the optimal parameters. Without loss of generality, we
assume X contains one binary sensitive feature S ∈ {0, 1}. FML aims to train
a model such that its predictions are fair with respect to S based on a given
fairness notion, e.g., disparate impact, equal opportunity and equalized odds.

Definition 1. A binary classifier fθ is δ-fair under a fairness notion ∆ if
∆(θ,D) ≤ δ, where ∆(θ,D) is referred as the empirical fairness gap of the model
and δ is a user-specified threshold. The model satisfies exact fairness when δ = 0.

Definition 2. We denote demographic parity and equalized odds as ∆DP and
∆EO, respectively. They are defined as:

∆DP (θ,D) := |Pr(fθ(X) = 1|S = 1)− Pr(fθ(X) = 1|S = 0)| (1)

∆EO(θ,D) := max
y∈{0,1}

|Pr[fθ(X) 6= y|S = 0, Y = y]− Pr[fθ(X) 6= y|S = 1, Y = y]|

(2)
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Algorithm 1 Online Learning for Generating Poisoning Data

Require: Dc, n = |Dc|, feasible poisoning set F(Dk), number of poisoning data εn,
learning rate η.

Ensure: Poisoning dataset Dp.
1: Initialize θ0 ∈ Θ, Dp ← Null
2: for t = 1 : εn
3: (xt, yt)← argmax(x,y)∈F(Dk)[l(θ

t−1;x, y)
4: Dp ← Dp ∪

{(
xt, yt

)}
, F(Dk)← F(Dk)− {(x, y)}

5: θt ← θt−1 − η∇L(θt−1;Dc∪Dp)
n+t

6: end for

Demographic parity requires that the predicted labels are independent of
the protected attribute. Equalized odds [9] requires the protected feature S
and predicted outcome Ŷ are conditionally independent given the true label
Y . Equalized opportunity is a weaker notion of equalized odds and requires
non-discrimination only within the advantaged outcome group. Our framework
naturally covers equalized opportunity. The FML model achieves δ-fairness em-
pirically by minimizing the model’s empirical accuracy loss under the fairness
constraint:

θ̂ = arg min
θ∈Θ

1

|D|
L(θ;D) s.t. C(θ,D) = ∆ (θ,D)− δ ≤ 0 (3)

2.2 Data Poisoning Attack

Data poisoning attacks [2,3,15] seek to increase the misclassification rate for test
data by perturbing the training data to affect the learned model. The pertur-
bation can generally include inserting, modifying or deleting points from the
training data so that the trained classification model can change its decision
boundaries and thus yields an adversarial output. The modification can be done
by either directly modifying the labels of the training data or manipulating
the input features depending on the adversary’s capabilities. In this study, we
assume that an attacker can access to the training data during the data prepa-
ration process and have the knowledge of the structure and fairness constraint
of the classification model. We focus on three data poisoning attacks, adversar-
ial sampling, adversarial labeling, and adversarial feature modification, against
group-based FML models. In all three attacks, the adversary can select the fea-
ture vector of the poisoning data from an attack dataset Dk, which is sampled
from the same underlying distribution of the clean dataset Dc, and can control
sampling, labeling, or modifying for a fraction of training data in order to reduce
the test accuracy.

Algorithm 1 shows the general online gradient descent algorithm for gener-
ating poisoning samples. The input parameter n denotes the size of the clean set
Dc, ε is the fraction of the size of generated poisoning data over the clean data
in the training data set, F(Dk) is feasible poisoning set. Specifically, F(Dk) is
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the same as Dk for adversarial sampling. A fraction of data points (x, y) ∈ Dk
are changed to (x, 1 − y) for adversarial labeling, and to (x̃, y) for adversarial
feature modification where x̃ is a modified version of feature vector x. In line
1, it first initializes the model with θ0 ∈ Θ. Using the feasible set of poisoning
points, the algorithm generates εn poisoning data points iteratively. In line 3, it
selects a data point with the highest impact on the loss function with respect
to θt−1. In line 4, it adds the generated data point to Dp. In line 5, the model
parameters θ are updated to minimize the loss function based on the selected
data point (xt, yt).

3 Data Poisoning Attack on FML

3.1 Problem Formulation

The attacker’s goal is to find a poisoning dataset that maximizes the linear
combination of the accuracy loss and the model’s violation from the fairness
constraint. The fairness constraint is defined as C(θ,D) = ∆ (θ,D) − δ ≤ 0.
We formulate the data poisoning attack on algorithmic fairness as a bi-level
optimization problem:

max
Dp

E(x,y)[α · l(θ̂;x, y) + (1− α) · γ · lf (θ̂;x, y)]

where θ̂ = arg min
θ∈Θ

L(θ;Dc ∪ Dp)
|Dc ∪ Dp|

s.t. C(θ,Dc ∪ Dp) = ∆ (θ,Dc ∪ Dp)− δ ≤ 0

(4)

where α ∈ [0, 1] is a hyperparameter that controls the balance of the attack’s

focus on accuracy and fairness, l(θ̂;x, y) is the prediction accuracy loss of the

sample (x, y), lf (θ̂;x, y) is the fairness loss, and γ is a hyperparameter to have
lc and lf at the same scale.

We can solve Eq. 4 by optimizing user and attacker’s objectives separately.
Intuitively, the user (inner optimization) minimizes the classification loss subject
to fairness constraint. The attacker (outer optimization) tries to maximize the

joint loss E(x,y)[α · l(θ̂;x, y)+(1−α) ·γ · lf (θ̂;x, y)] by creating a poisoning set Dp
based on θ̂ obtained by the user to degrade the performance of classifier either
from accuracy or fairness aspect. For example, if the value of α approaches to 1,
then the attacker tends to degrade more on the accuracy of the model. Note that
the loss expectation is taken over the underlying distribution of the clean data.
Inspired by [5], we also approximate the loss function in the outer optimization
via the loss on the clean training data and the poisoning data and have

max
Dp

[α · L(θ̂;Dc ∪ Dp) + (1− α) · γ ·∆(θ̂;Dc ∪ Dp)] (5)

The accuracy loss L and fairness loss ∆ may be at different scales due to the
use of different loss functions and data distribution. Figure 1 shows the curves of
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Fig. 1: Accuracy and fairness loss (in terms of equalized odds) with different
iterations of PFML-AS (α = 0.8) on COMPAS.

accuracy loss and fairness loss of equalized odds when we increase the generated
poisoning samples from 1 to 211 on COMPAS dataset (see experiment section
for the detailed experimental setting). This shows the importance of introducing
hyperparameter γ to have accuracy loss and fairness loss at the same scale.

The user tries to achieve optimal and fair θ̂ under the poisoning set Dp.
As the constrained optimization is intractable, we further transform the inner
optimization to its dual form as the following:

θ̂ = min
θ∈Θ

(
1

n+ t
L(θ;Dc ∪ Dp) + λ∆(θ,Dc ∪ Dp)

)
(6)

where λ is the Lagrange multiplier and t is the current size of poisoning samples
Dp. By Eq. 5 and Eq. 6, we effectively capture the contribution of each poisoning
point (x, y) to both accuracy loss and fairness gap.

3.2 Convex Relaxation of Fairness Constraint

The dual optimization problem in Eq. 6 involves the calculation of ∆(θ,Dc∪Dp)
over the current Dc ∪Dp. However, fairness notions such as demographic parity
and equalized odds are non-convex. We adopt simplifications proposed by [22]
for demographic parity and [7] for equalized odds to reach convex relaxations of
fairness constraints. Demographic parity can be approximated by the decision
boundary fairness. The decision boundary fairness over Dc ∪ Dp is defined as
the covariance between the sensitive attribute and the signed distance from the
non-sensitive attribute vector to the decision boundary. It can be written as:

C(θ,Dc ∪ Dp) =
1

n+ t

n+t∑
i=1

(si − s̄)dθ(xi) (7)
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where t is the size of the current poisoning samples Dp, si is the value of the
sensitive attribute of the sample xi, dθ(xi) = θTxi is the distance to the decision
boundary of the classifier fθ, s̄ is the mean value of the sensitive attribute over
Dc ∪ Dp. We require that |C(θ,Dc ∪ Dp)| ≤ τ to achieve fairness.

We adopt the fairness definition for equalized odds by balancing the risk
among two sensitive groups. Let the linear loss be Ll (e.g., Ll = 0.5(1− fθ(x))
for SVM model) and denote D = Dc ∪ Dp. We can write down the convex
relaxation for the fairness gap of equalized odds as the following:

C(θ,D) =
1

2

∑
y=0,1

|Ry,s=0(θ,D)−Ry,s=1(θ,D)| (8)

where Ry,s(θ,D) =
1

ny,s
∑

(x,y)∈Dy,s
Ll(x, y; θ). Dy,s is the dataset of points with

group s and label y and ny,s is the size of Dy,s. Similar to the approximation of
equalized odds, we can use C(θ,D) = |Ry=1,s=0(θ,D)− Ry=1,s=1(θ,D)| for the
convex relaxation of equalized opportunity.

Algorithm 2 Poisoning Attack on Fair Machine Learning (PFML)

Require: Dc, n = |Dc|, feasible poisoning set F(Dk), number of poisoning data εn,
penalty parameter (Lagranger multiplier) λ, learning rate η, scaling factor γ, bal-
ance ratio α, fairness notion ∆.

Ensure: Poisoning dataset Dp.
1: Initialize θ0 ∈ Θ
2: for i = 1 : I

3: θi ← θi−1 − η
(
∇L(θi−1;Dc)

n
+∇

[
λ∆

(
θi−1,Dc

)])
4: end for
5: θ0 ← θI , Dp ← Null
6: for t = 1 : εn
7: (xt, yt)← argmax(x,y)∈F(Dk)[α · l(θ

t−1;x, y)+
8: (1− α) · γ ·∆

(
θt−1,Dc ∪ Dp ∪ {(x, y)}

)
]

9: Dp ← Dp ∪
{(
xt, yt

)}
, F(Dk)← F(Dk)− {(x, y)}

10: θt ← θt−1 − η
(
∇L(θt−1;Dc∪Dp)

n+t
+∇

[
λ∆

(
θt−1,Dc ∪ Dp

)])
11: end for

3.3 Attack Algorithm

Algorithm 2 shows pseudo code of our poisoning attack framework on fair ma-
chine learning (PFML). Our three algorithms are denoted as PFML-AS for ad-
versarial sampling, PFML-AF for adversarial flipping, and PFML-AM for adver-
sarial feature modification. In each algorithm, we can adjust the attack’s focus
on prediction accuracy or fairness by choosing different α values. For example,
when 1 (0), the attack’s focus is purely on accuracy (fairness) and when 0.5, the



Poisoning Attacks on Fair Machine Learning 7

Table 1: Test accuracy and fairness gap of fair reduction [1] and post-
processing [9] with equalized odds under PFML and baselines (COMPAS).

Accuracy Fairness

Method Fair Reduction (δ) Post (δ) Fair Reduction (δ) Post (δ)

0.12 0.1 0.07 0.05 0 0.12 0.1 0.07 0.05 0

Benign 0.950 0.949 0.949 0.948 0.877 0.108 0.103 0.086 0.082 0.095

RS 0.936 0.930 0.919 0.912 0.839 0.101 0.105 0.104 0.103 0.081

LF 0.935 0.931 0.919 0.911 0.839 0.062 0.066 0.072 0.080 0.109

HE 0.915 0.908 0.899 0.891 0.829 0.076 0.082 0.100 0.109 0.131

INFL 0.850 0.848 0.845 0.841 0.653 0.089 0.081 0.078 0.081 0.054

KKT 0.890 0.891 0.891 0.886 0.701 0.136 0.137 0.137 0.142 0.096

min-max 0.891 0.887 0.878 0.874 0.678 0.096 0.125 0.089 0.075 0.082

AS 0.830 0.824 0.816 0.810 0.740 0.051 0.069 0.111 0.143 0.156

AF 0.823 0.817 0.808 0.803 0.740 0.046 0.059 0.100 0.130 0.136

PFML-, α

AS, 0 0.853 0.847 0.833 0.802 0.753 0.126 0.148 0.164 0.185 0.190

AS, 0.2 0.843 0.837 0.820 0.792 0.728 0.112 0.124 0.138 0.127 0.188

AS, 0.5 0.824 0.820 0.814 0.809 0.705 0.110 0.118 0.130 0.142 0.143

AS, 0.8 0.820 0.816 0.809 0.800 0.715 0.101 0.105 0.116 0.120 0.099

AS, 1.0 0.811 0.807 0.800 0.796 0.724 0.083 0.071 0.061 0.061 0.074

AF, 0 0.847 0.841 0.832 0.805 0.752 0.120 0.144 0.172 0.184 0.193

AF, 0.2 0.843 0.838 0.817 0.792 0.728 0.107 0.117 0.125 0.126 0.186

AF, 0.5 0.818 0.814 0.808 0.804 0.711 0.101 0.110 0.126 0.139 0.136

AF, 0.8 0.804 0.797 0.791 0.786 0.714 0.093 0.090 0.097 0.107 0.090

AF, 1.0 0.803 0.797 0.794 0.788 0.722 0.088 0.068 0.043 0.039 0.097

AM, 0 0.908 0.906 0.904 0.897 0.764 0.195 0.200 0.215 0.207 0.198

AM, 0.2 0.811 0.805 0.798 0.794 0.731 0.102 0.086 0.076 0.076 0.153

AM, 0.5 0.793 0.788 0.780 0.775 0.688 0.079 0.059 0.071 0.080 0.124

AM, 0.8 0.791 0.789 0.782 0.773 0.696 0.082 0.055 0.053 0.077 0.096

AM, 1.0 0.828 0.823 0.817 0.813 0.696 0.063 0.045 0.055 0.073 0.076

focus is on the combination of fairness and accuracy. In line 2 - 4, we first train
FML model on the clean data Dc and use the fitted parameter θI to start gen-
erating poisoning samples. We then execute the loop of line 6 - 9 to iteratively
generate εn poisoning samples. In line 7, when generating the data point (xt, yt)
with highest impact on a weighted sum of the accuracy loss and the fairness vio-
lation with respect to θt−1, we add both the previously generated data points in
Dp and the data point (xt, yt) to Dc. As a result, we can measure the incremental
contribution of that data point to the fairness gap ∆

(
θt−1,Dc ∪ Dp ∪ {(x, y)}

)
.

Note that in this step, the accuracy loss can be simply calculated over each
point (x, y) ∈ F(Dk) as the accuracy loss of existing data points from Dc∪Dp is
unchanged. In line 8, we add the chosen poisoning point (xt, yt) to Dp and also
remove it from the feasible poisoning set. In line 9, when updating the model
parameters θ, we minimize the penalized loss function over Dc and Dp. We see



8 M. Van et al.

Table 2: Test accuracy and fairness gap of fair reduction and post-processing
with demographic parity (COMPAS).

Accuracy Fairness

Method Fair Reduction (δ) Post (δ) Fair Reduction (δ) Post (δ)

0.12 0.1 0.07 0.05 0 0.12 0.1 0.07 0.05 0

Benign 0.887 0.867 0.803 0.768 0.859 0.175 0.169 0.107 0.095 0.046

RS 0.882 0.839 0.813 0.767 0.867 0.187 0.155 0.130 0.076 0.023

LF 0.890 0.852 0.814 0.775 0.868 0.194 0.166 0.138 0.099 0.021

HE 0.901 0.859 0.808 0.766 0.840 0.205 0.181 0.135 0.098 0.036

INFL 0.879 0.855 0.774 0.748 0.784 0.200 0.186 0.097 0.108 0.015

KKT 0.884 0.875 0.788 0.768 0.817 0.221 0.214 0.127 0.136 0.016

min-max 0.870 0.870 0.843 0.818 0.810 0.201 0.204 0.182 0.167 0.036

PFML-, α

AS, 0 0.853 0.829 0.771 0.750 0.824 0.195 0.168 0.109 0.099 0.041

AS, 0.2 0.847 0.819 0.766 0.736 0.798 0.189 0.171 0.106 0.100 0.039

AS, 0.5 0.844 0.812 0.763 0.731 0.795 0.182 0.167 0.101 0.092 0.038

AS, 0.8 0.845 0.811 0.758 0.731 0.791 0.175 0.166 0.096 0.094 0.036

AS, 1.0 0.829 0.816 0.757 0.722 0.790 0.171 0.151 0.083 0.075 0.032

AF, 0 0.848 0.822 0.786 0.761 0.822 0.192 0.185 0.098 0.080 0.057

AF, 0.2 0.841 0.805 0.766 0.742 0.806 0.188 0.163 0.095 0.086 0.056

AF, 0.5 0.842 0.809 0.762 0.733 0.801 0.174 0.136 0.087 0.086 0.036

AF, 0.8 0.838 0.803 0.755 0.729 0.798 0.167 0.134 0.086 0.079 0.027

AF, 1.0 0.831 0.808 0.752 0.721 0.793 0.160 0.132 0.082 0.069 0.032

AM, 0 0.883 0.853 0.816 0.791 0.833 0.246 0.219 0.183 0.159 0.031

AM, 0.2 0.840 0.820 0.762 0.730 0.814 0.218 0.208 0.138 0.128 0.038

AM, 0.5 0.838 0.802 0.757 0.733 0.793 0.212 0.170 0.120 0.114 0.030

AM, 0.8 0.826 0.800 0.758 0.720 0.787 0.193 0.147 0.115 0.065 0.031

AM, 1.0 0.853 0.805 0.767 0.726 0.815 0.184 0.138 0.105 0.060 0.029

the execution time is mostly spent on line 6 - 11. In fact, line 9 and line 10 only
involve one time operation. The time complexity of line 8 is O(m), where m is
the size of feasible poisoning set F(Dk). Therefore, the time complexity of the
loop from line 6 - 11 is O(εnm). In practice, the size of F(Dk) is fixed, and we
can simplify time complexity as O(εn).

Remarks. Chang et al. [5] presented an online gradient descent algorithm that
generates poisoning data points for fair machine learning model with equalized
odds. As the fairness gap is not an additive function of the training data points,
they used Dc ∪ {(xt, yt)εn} (denoted as Dt) to measure the contribution of that
data point to the fairness gap where Dt is equivalent to adding εn copies of
(xt, yt) to Dc. The weighted loss function used for selecting poisoning samples
is shown as

[
ε · l

(
θt−1;x, y

)
+ λ ·∆

(
θt−1,Dt

)]
. The algorithm then updates the

model parameters θ via the gradient descent, i.e., θt ← θt−1 − η(
∇L(θt−1;Dc)

n +
∇
[
ε · l

(
θt−1;xt, yt

)
+ λ ·∆

(
θt−1,Dt

)]
). However, both the use of Dc∪{(x, y)εn}

to quantify the (xt, yt)’s contribution to the fairness gap and the use of param-
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eters (ε and λ) to define the weighted loss are heuristic, thus hard to produce
effective poisoning samples on algorithmic fairness. Moreover, different from [5]
that covers only a single fairness notion (i.e., equalized odds) and two attacks
(adversarial sampling and adversarial label flipping), our paper presents a gen-
eral framework with algorithms for three group based fairness notions and a new
important adversarial feature modification attack. In our evaluation, we compare
our methods with [5] and three new state-of-the-art baselines (influence attack,
KKT, and min-max attack) from [10].

4 Experiments

Datasets. We conduct our experiments on COMPAS [11] and Adult [8] which
are two benchmark datasets for FML community. COMPAS is a collection of
personal information such as criminal history, demographics, jail and prison
time. Adult is also a collection of individual’s information including gender, race,
martial status, and so forth. The task for COMPAS is a binary classification to
predict whether the individual will be re-offended based on personal information,
while the task for Adult dataset is to predict if an individual’s annual income will
be over $50k based on his personal information. We use race (only black/white)
as the sensitive attribute for COMPAS and gender as sensitive attribute for
Adult. After preprocessing, COMPAS has 5278 data points and 11 features,
while Adult has 48842 data points and 14 features. For each dataset, we first
train a SVM model on the entire dataset. For the 60% data with the smallest loss,
we randomly split them into clean dataset Dc, attack candidate dataset Dk, and
test dataset Dtest with ratio 4:1:1. The rest 40% data is treated as hard examples
and added into Dk. For COMPAS, Dc contains 2111 samples and Dtest has 528
samples. Dk has 2639 samples including 2112 hard examples. For adversarial
label flipping, we randomly flip the label of 15% data from Dk to build the
feasible poisoning candidate set F(Dk). For adversarial feature modification, we
randomly flip one binary feature of each data point from Dk and include them
to F(Dk). Following the similar pre-processing strategy, Dc, Dtest, and Dk of
Adult contain 15385 samples, 6594 samples, and 26863 samples, respectively.
Due to space limit, we report detailed results of COMPAS in the majority of
this experiment section and only show the summarized results of Adult in Figure
2 at the end of this experiment section.

Baselines. We consider the following baselines: (a) Random Sampling (RS): at-
tacker randomly selects data samples from Dk; (b) Label Flipping (LF): attacker
randomly selects data samples from Dk and flips their labels; (c) Hard Exam-
ples (HE): attacker randomly selects data samples from hard examples set; (d)
influence attack (INFL), (e) KKT attack, (f) min-max attack, (g) adversarial
sampling (AS), and (h) adversarial flipping (AF). Attacks (d)-(f) are stronger
data poisoning attacks breaking data sanitization defenses and all control both
the label y and input features x of the poisoned points [10]. Attacks (g) and (h)
are designed for attacking FML from [5]. As attacks (g) and (h) are only designed
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for equalized odds, we exclude them from baselines when reporting comparisons
based on demographic parity.
Fair Classification Models. We use SVM as the classification model and
choose fair reduction [1] and post-processing [9] as FML under attack. Post-
processing adjusts an unconstrained trained model to remove discrimination
based on fairness notions such as demographic parity and equalized odds. After
adjustment, the unconstrained model behaves like a randomized classifier that
assigns each data point a probability conditional on its protected attribute and
predicted label. These probabilities are calculated by a linear program to min-
imize the expected loss. Fair reduction is an advanced in-processing approach
that reduces fair classification to a sequence of cost-sensitive classification and
achieves better accuracy-fairness tradeoff than previous FML models. Hence, we
do not report results from other in-processing FML models.
Hyperparameters. In our default setting, we choose the number of pretrain
steps with Dc as 2000, learning rate lr as 0.001, penalty parameter λ as 5, and ε
as 0.1. The scaling factor γ is calculated as the ratio of accuracy loss and fairness
loss over Dc. Metrics. We run our attacks, PFML-AS, PFML-AF and PFML-
AM, each with five α values, and baseline attacks to generate the poisoning data
Dp and then train fair reduction (with four δ values as fairness threshold) and
post-processing models with Dc ∪ Dp. Finally we run the trained FML models
on the test data Dtest and report the test accuracy and fairness gap. For each
experiment, we report the average value of five runs. Due to space limit, we skip
reporting their standard deviation and instead we summarize comparisons based
on t-test.
Reproducibility. All datasets, source code and setting details are released in
GitHub with https://github.com/minhhao97vn/PFML for reproducibility.

4.1 Evaluation of PFML with Equalized Odds

Table 1 shows the comparison of our PFML attacks under different α with other
baseline models in terms of both accuracy and fairness on two FML models
(fair reduction and post-processing) trained with equalized odds under different
fairness threshold values of δ. In each cell of Table 1, we report the average value
of five runs. Due to space limit, we skip reporting their standard deviation and
instead we summarize comparisons based on t-test at the end of this subsection.

First, the accuracy of FML model under all three PFML attacks (PFML-AS,
PFML-AF and PFML-AM) is significantly lower than the benign case. For each
fixed δ, both the accuracy value and fairness gap of FML under PFML attacks
decrease when we increase α. Recall that larger α indicates that PFML attacks
more on accuracy and smaller α indicates more attack’s focus on fairness. Note
that larger fairness gap caused by smaller α indicates higher model unfairness.
Taking PFML-AS as an example, the accuracy of fair reduction with δ = 0.12
is 0.853 and the fairness gap is 0.126 when α = 0; the accuracy is 0.811 and the
fairness gap is 0.083 when α = 1. This result demonstrates that controlling α
is flexible and effective for attackers to tune attack target on either prediction
accuracy or fairness. Second, PFML-AF and PFML-AM outperform PFML-AS

https://github.com/minhhao97vn/PFML
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in terms of attacking performance from both accuracy and fairness perspectives,
which shows modifying input features or flipping labels is more powerful than
adversarial sampling. Third, compared to RS, LF and HE, our PFML attacks
can reduce more accuracy or incur more unfairness with the same δ for both fair
reduction and post-processing. Taking PFML-AS with δ = 0.12 and α = 0 as an
example, the accuracy is 0.811, which is 0.125, 0.124, and 0.104 lower than that
of RS, LF and HE, respectively. Compared to previous FML attacks (AS, AF) [5]
and sanitization attacks (INFL, KKT, min-max) [10], our PFML attacks achieve
better attack performance in terms of accuracy (fairness) with large (small) α
values, which is consistent with our expectation. In particular, the accuracy of
PFML-AS with α = 1 and δ = 0.12 is 0.811, which is 0.020 lower than AS. If we
choose smaller α, the attack performance of PFML on accuracy under performs
[5], which is consistent with our expectation.

We also notice, for each fixed α, the accuracy of fair reduction under our
PFML attacks decreases when we decrease δ. The fairness gap of fair reduction
under PFML-AS (PFML-AF) attack increases when we decrease δ, which indi-
cates the fair reduction model is less robust or more vulnerable when stricter
fairness constraint is enforced. However, the fairness gap of fair reduction under
PFML-AM attack instead decreases along the decrease of δ. Theoretical analysis
is needed to understand the robustness of fair reduction approach with equalized
odds under different poisoning attacks.

4.2 Evaluation of PFML with Demographic Parity

Table 2 shows the comparison results of adversarial fair machine learning with
demographic parity. Note that we do not compare with online FML attacks (AS,
AF) as they do not support demographic parity. Generally we see similar pat-
terns as equalized odds shown in Table 2. For each fixed δ, both the accuracy
and fairness gap of FML models under all three PFML attacks decrease when
we increase α. This is because smaller α means more attack’s focus on fairness.
Compared to RS, LF and HE, our PFML attacks can reduce more model ac-
curacy of FML with the same δ for both fair reduction and post-processing.
Compared to INFL, KKT and min-max attacks, PFML attacks achieve better
attack performance in terms of accuracy drop (fairness gap) of FML models
when we set large (small) α values.

For each fixed α, the accuracy of fair reduction under PFML attacks decreases
when we decrease δ. This pattern is similar as equalized odds. However, the
fairness gap of fair reduction has a clear decreasing trend when δ decreases,
which is different from equalized odds. This result actually indicates the fair
reduction model with stricter fairness requirement (small δ) is less vulnerable
under poisoning attacks.

4.3 Sensitivity Analysis of Hyperparameters

In this section, we evaluate the sensitivity of PFML attacks under different
hyperparameters. Table 3 shows the accuracy, fairness gap and execution time
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for COMPAS with equalized odds when we change the size of poisoning samples
ε against fair reduction. In all experiments, we fix δ = 0.07 and α = 0.8. In
general, with increasing ε, the accuracy of fair reduction drops while its fairness
gap increases when fair reduction is under each of our PMFL attacks. Note that
larger ε corresponds to injecting more poisoning data points into the training
data, thus causing more accuracy drop and unfairness of the trained FML model.

Table 3: Effects of ratio ε for fairness reduction with equalized odds (COMPAS).
Dataset ε = 0.025 ε = 0.05 ε = 0.1 ε = 0.15

Accuracy

INFL 0.891 0.857 0.845 0.820
KKT 0.912 0.899 0.891 0.884

min-max 0.918 0.902 0.878 0.850
PFML-AS 0.882 0.821 0.809 0.799
PFML-AF 0.867 0.824 0.791 0.794
PFML-AM 0.891 0.839 0.782 0.777

Fairness Gap

INFL 0.068 0.054 0.078 0.063
KKT 0.086 0.102 0.137 0.158

min-max 0.083 0.108 0.089 0.215
PFML-AS 0.086 0.082 0.116 0.134
PFML-AF 0.089 0.081 0.097 0.142
PFML-AM 0.089 0.092 0.077 0.107

Exec. Time (s)

INFL 497.1 915.7 1569.1 2009.5
KKT 1633.6 2903.3 5503.3 8400.0

min-max 337.9 597.1 1137.6 1714.6
PFML-AS 4.8 6.1 8.8 12.1
PFML-AF 5.1 6.7 9.9 13.9
PFML-AM 6.5 10.9 16.5 22.5

We also compare with baseline attack models (INFL, KKT, and min-max).
We can see with the same ε our PFML attacks can degrade the model accuracy
more than the baselines, and cause similar or higher level of model unfairness
than the baselines in most scenarios. We also report the execution time in Table
3 and we can see the execution time of our PFML attacks increases linearly with
increasing ε, which is consistent with our time complexity analysis in Algorithm
2. Compared to the baseline models, our PFML attacks takes two or three orders
of magnitude less time to generate poisoning samples than baselines.

Table 4: Effects of penalty parameter λ on PFML-AS for post-processing with
equalized odds (COMPAS).

λ = 1 λ = 5 λ = 10 λ = 15 λ = 50 λ = 150

Accuracy 0.709 0.715 0.718 0.720 0.726 0.723

Fairness Gap 0.094 0.099 0.122 0.118 0.125 0.156
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Table 4 shows the accuracy and fairness gap with equalized odds when we use
PFML-AS (α = 0.8) to attack post-processing FML [9] under different λ values.
The post-processing approach has strict fairness constraint δ = 0. We can see
with larger λ, the PFML attack focuses more on attacking fairness, which leads
to larger fairness gap and smaller accuracy drop of the FML model.

4.4 Significance Testing

For each experiment, we have run our methods and other baseline models five
times as shown in all our tables. We apply independent two-sample t-test to
compare each of three PFML models (with a given fairness notion and α) with
each of baseline models in terms of accuracy reduction and fairness respectively.
The t-test results show our PFML attacks significantly outperform baselines
from both accuracy and fairness perspectives. Due to space limit, we only report
our summarized results here. All p-values except three are less than 0.01 and
the left three are still less than 0.1, which demonstrates statistical significance
of our PFML methods over baselines.

4.5 Summarized Results of Adult Dataset
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Fig. 2: Effects of ratio ε for fairness reduction with equalized odds (Adult).

We also report our summarized results on Adult with the setting of δ = 0.1,
α = 0.8, and varied ε values 3. Figures 2a and 2b plot the curves of accuracy
and fairness gap for each of three PFML attacks with the increasing ε. The
accuracy of fair reduction under PFML-AS, PFML-AF and PFML-AM attacks
decreases when we increase ε. This pattern is consistent with our observation
on COMPAS. As we analyzed previously, larger ε indicates stronger attack as
more poisoning data are injected during the model training thus cause more

3 We conduct experiments on Adult in other settings as COMPAS and observe similar
patterns. We skip them due to space limit.
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performance degradation. Similarly, the fairness gap under PFML-AS, PFML-
AF and PFML-AM generally increases with increasing ε. In terms of execution
time, our PFML methods take from 187.4 s to 1399.2 s with increasing ε, which
is significantly less than the baseline models (e.g., two orders of magnitude faster
than min-max attack).

5 Related Work

The bulk of recent research on adversarial machine learning has focused on
test-time attacks where the attacker perturbs the test data to obtain a desired
classification. Train-time attacks leave the test data unchanged, and instead
perturb the training data to affect the learned model. Data poisoning attacks
are among the most common train-time attack methods in adversarial learning.

Barreno et al. [2] first proposed poisoning attacks which modify the training
dataset to potentially change the decision boundaries of the targeted model. The
modification can be done by either direct modifying the labels of the training
data or manipulating the input features depending on the adversary’s capabili-
ties. Biggio et al. [3] developed an approach of crafting poisoning samples using
gradient ascent. Shortly speaking, the method identifies the inputs correspond-
ing to local maxima in the test error of the classification model. Mei et al. [15]
developed a method that finds an optimal change to the training data when the
targeted learning model is trained using a convex optimization loss and its input
domain is continuous. Recent approaches include optimization-based methods
[10] (e.g., influence, KKT, and min-max), poisoning Generative Adversarial Net
(pGAN) model [16], and class-oriented poisoning attacks against neural network
models [23]. The influence attack is a gradient-based attack that iteratively mod-
ifies each attack sample to increase the test loss, the KKT attack selects poisoned
samples to achieve pre-defined decoy parameters, and the min-max attack effi-
ciently solves for the poisoned samples that maximize train loss as a proxy for
test loss. All three attacks control both the label and input features of the poi-
soned points. The structure of pGAN includes a generator, a discriminator, and
an additional target classifier. The pGAN model generates poisoning data points
to fool the model and degrade the prediction accuracy. Defense methods [10,19]
typically require additional information, e.g., a labeled set of outliers or a clean
set, and apply supervised classification to separate outliers from normal samples.

There have been a few works on attacking fair machine learning models very
recently [5,18,17,14]. Solans et al. [18] introduced an optimization framework for
poisoning attacks against algorithmic fairness and developed a gradient-based
poisoning attack to increase classification disparities among different groups.
Mehrabi et al. [14] also focused on attacking FML models trained with fairness
constraint of demographic disparity. They developed anchoring attack and influ-
ence attack and focused on demographic disparity. Chang et al. [5] formulated
the adversarial FML as a bi-level optimization and focused on attacking FML
models trained with equalized odds. To tackle the challenges of the non-convex
loss functions and the non-additive function of equalized odds, they further de-
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veloped two approximate algorithms. Roh et al. [17] developed a GAN-based
model that tries to achieve accuracy, fairness and robustness against adversary
attacks.

6 Conclusions and Future Work

In this paper, we present a poisoning sample based framework that can attack
model accuracy and algorithmic fairness. Our attacking framework can target
fair machine learning models trained with a variety of group based fairness no-
tions such as demographic parity and equalized odds. Our framework enables
attackers to flexibly adjust the attack’s focus on prediction accuracy or fairness
and accurately quantify the impact of each candidate point to both accuracy loss
and fairness violation, thus producing effective poisoning samples. We developed
three online attacks, adversarial sampling, adversarial labeling, and adversarial
feature modification. All three attacks effectively and efficiently produce poison-
ing samples via sampling, labeling, or modifying a fraction of training data in
order to reduce the test accuracy. The three attacks studied in this paper are
special cases of gradient-based attacks and belong to indiscriminate attacks. In
our future work, we will extend our approach to other attacks, e.g., the tar-
geted attacks that seek to cause errors on specific test examples. We will also
investigate robust defense approaches against attacks on fair machine learning
models, e.g., by applying multi-gradient algorithms for multi-objective optimiza-
tion [12,6] and robust learning [20].
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