
PHYSICAL REVIEW B 105, 104419 (2022)

Spin-piston problem for a ferromagnetic thin film: Shock waves and solitons
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The unsteady, nonlinear magnetization dynamics induced by spin injection in an easy-plane ferromagnetic

channel subject to an external magnetic field are studied analytically. Leveraging a dispersive hydrodynamic

description, the Landau-Lifshitz equation is recast in terms of hydrodynamic-like variables for the magneti-

zation’s perpendicular component (spin density) and azimuthal phase gradient (fluid velocity). Spin injection

acts as a moving piston that generates nonlinear, dynamical spin textures in the ferromagnetic channel with

downstream quiescent spin density set by the external field. In contrast to the classical problem of a piston

accelerating a compressible gas, here, variable spin injection and field lead to a rich variety of nonlinear wave

phenomena from oscillatory spin shocks to solitons and rarefaction (expansion) waves. A full classification of

solutions is provided using nonlinear wave modulation theory by identifying two key aspects of the fluid-like

dynamics: subsonic/supersonic conditions and convex/nonconvex hydrodynamic flux. Familiar waveforms from

the classical piston problem such as rarefaction waves and shocks manifest in their spin-based counterparts as

smooth and highly oscillatory transitions, respectively, between two distinct magnetic states. The spin shock

is an example of a dispersive shock wave, which arises in many physical systems. New features without a gas

dynamics counterpart include composite wave complexes with “contact” spin shocks and rarefactions. Magnetic

supersonic conditions lead to two pronounced piston edge behaviors including a stationary soliton and an

oscillatory wave train. These coherent wave structures have physical implications for the generation of high

frequency spin waves from pulsed injection and persistent, stable stationary and/or propagating solitons in the

presence of magnetic damping. The analytical results are favorably compared with numerical simulations.

DOI: 10.1103/PhysRevB.105.104419

I. INTRODUCTION

Spin transport in magnetic materials has been intensely
studied, due, in part, to its potential spintronic applications in
information technology. A promising means for long-distance
transport of angular momentum is by way of large-amplitude,
fluid-like excitations [1,2]. A useful approach to study
these nonlinear spin dynamics is the hydrodynamic frame-
work. First proposed by Halperin and Hohenberg [3] to
describe spin waves in anisotropic ferro- and antiferromag-
nets under long-wavelength assumptions, the hydrodynamic
perspective—essentially a transformation of the Landau-
Lifshitz equation to a set of fluid-like variables—has since
been utilized by a number of researchers to investigate a vari-
ety of novel spin textures and dynamics, sometimes referred to
as superfluid spin transport [4–14]. Actually, magnetic damp-
ing implies energy dissipation, which must be compensated if
sustained superfluid-like spin states are desired. An adequate
compensation mechanism is the injection of spin into mate-
rial boundaries via the spin-Hall effect, spin-transfer torque
[6–8,10,15–17], or the quantum spin-Hall effect [18]. Recent
experimental evidence of superfluid-like spin transport indi-
cate that such dynamics are possible [15,18]. The analytical
study of fluid-like spin transport in ferromagnetic materials
can be conveniently formulated in terms of dispersive hydro-
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dynamics (DH) in which large scale, nonlinear wave motion
in a dispersive medium is described by conservation laws
subject to dispersive corrections [19]. Such a DH formula-
tion of magnetization dynamics was proposed in [8] as an
exact transformation of the Landau-Lifshitz (LL) equation, a
standard continuum, micromagnetic model of ferromagnetic
materials. The DH formulation recasts the three-component
magnetization vector m = (mx, my, mz ), constrained to nor-
malized unit length, in terms of two dependent variables:
the longitudinal spin density n = mz and the fluid velocity
u = −∇ arctan(my/mx ). The latter is proportional to the lon-
gitudinal component of the spin current. Since my, mx → 0
when mz → ±1, u is undefined when the magnetization is
saturated in the perpendicular direction so this is referred to as
the vacuum state. When the local fluid speed exceeds the criti-

cal value ucr =
√

(1 − n2)/(1 + 3n2) (different from the local
speed of sound due to broken Galilean invariance), the flow
can be understood as supersonic [8], resulting, for example,
in the generation of magnetic vortices and antivortices with
vacuum states at their core [20,21]. Since the transformation
is exact, the DH formulation captures all of the essential
physics that are involved: exchange, anisotropy, and damping,
manifesting as dispersion, nonlinearity, and viscous effects,
respectively. Under conditions in which anisotropy and
exchange dominate, such as when the spin density exhibits a
large gradient, the spin system can develop rapidly oscillatory
structures including solitons and spin shocks, also known as
dispersive shock waves (DSWs), observed in the envelope of
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FIG. 1. Temporal development of a spin shock (DSW) solution to the piston problem in a 1D easy-plane ferromagnetic channel. (a) Initial
state prior to spin piston acceleration with constant spin density n = h0 = 0.8 and fluid velocity u = 0. (b) The piston accelerates to 99.9% of
u0 = 0.2 leading to a compressive wave. (c) A spin shock is under development with the constant piston velocity u0 = 0.2. (d) A spin shock is
fully developed.

magnetostatic spin waves in yttrium iron garnet films [22].
Such DSWs are known to occur in a variety of other DH media
including Bose-Einstein condensates (BECs) [23], nonlinear
spatial [24] and fiber [25] optics, and fluid dynamics [26,27].
Highly oscillatory, unsteady DSWs contrast sharply with clas-
sical shock waves that are nonlinear, dissipation-dominated,
nonoscillatory and steady in viscous systems such as a com-
pressible gas [28].

With the DH interpretation of spin dynamics in mind, we
will focus on the analytical study of the canonical problem
of spin injection into an easy-plane ferromagnet as a fea-
sible mechanism to generate large-amplitude, unsteady spin
textures with fluid-like features. This problem was recently
considered by us in [12] by way of numerical simulations of
the LL equation. We showed that the presence of a perpen-
dicular, uniform, external magnetic field and the rapid onset
of spin injection resulted in three evolutionary stages: (1)
injection rise leading to the generation of fluid-like expansion
and/or compression waves, (2) prerelaxation in which the dy-
namics are dominated by exchange and anisotropy resulting in
rarefaction and shock waves, and (3) relaxation to steady state
where damping, exchange and anisotropy result in steady,
precessional dissipative exchange flows [10], also known as
spin superfluids [5,6].

In the present paper, we focus on the prerelaxation stage
where magnetic damping is negligible relative to exchange
and anisotropy. We interpret spin injection at one material
boundary as a ”spin piston” whose resultant spin current is
analogous to the piston velocity. To create conditions for
dispersive hydrodynamics, it is crucial to implement a rapid
onset of spin injection, i.e., a rapid acceleration of the spin
piston until it reaches its steady velocity u0. The piston drives
fluid-like excitations into an otherwise static magnetic config-
uration whose spin density is determined by a perpendicular
external magnetic field. Different spin injection and field
strengths lead to a variety of spin rarefaction waves, spin
shocks, and solitons.

The development of a spin shock generated by the spin
piston is shown in Fig. 1. As demonstrated in [12], by consid-
ering the problem on short enough time scales, we can neglect

magnetic damping. Therefore, in this paper, we use nonlinear
wave/Whitham modulation theory [19,29–31] to analytically
classify the dynamic spin textures generated by the spin piston
with fixed velocity u0 and field h0 with negligible damping.
Our primary result is the phase diagram depicting the various
solution types in the injection-field (u0-h0) plane of Fig. 2.
This diagram demonstrates the rich variety of fluid-like spin
textures that can be generated in this system. Moreover, these
dispersive hydrodynamic waves have physical implications
for the generation of spin waves from pulsed injection and
stable solitons coincident with dissipative exchange flows. In
addition to the piston problem, another canonical hydrody-
namic problem is the space-time evolution of an initial, sharp
gradient, known as the Riemann problem [32]. We highlight
the study of Ref. [33] in which the Riemann problem for po-
larization waves in a two-component BEC is classified. As it
turns out, the governing equations studied there are equivalent
to the LL equation in one spatial dimension that we study here
in dispersive hydrodynamic form, neglecting dissipation due
to damping. As such, we rely heavily upon the analysis carried
out in [33]. Nevertheless, the piston problem studied here
introduces new boundary effects that do not occur in Riemann
problems such as supersonic flow conditions that generate a
soliton attached to the piston or a partial DSW that emanates
from it. Moreover, the spin piston problem is a physically
plausible setting to generate spin shocks and other dispersive
hydrodynamic spin textures in magnetic materials. Related su-
perfluid and superfluid-like piston problems have been studied
theoretically [34,35] and experimentally [36,37] in BECs and
optics. While they reveal intriguing dispersive hydrodynamic
features such as the generation of an oscillatory wake at the
piston accompanied by vacuum points [34,37], there are a
number of new effects predicted by the spin piston problem
studied here. This is because the hydrodynamic flux of the
spin system is nonconvex whereas the flux in BEC and optics
is convex. Nonconvexity manifests in the spin analogues of
conservation of mass and momentum with nonmonotonic hy-
drodynamic fluxes in the spin density and fluid velocity. In this
case, the long wavelength speeds of sound coalesce. Math-
ematically, the long-wavelength hydrodynamic system loses
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FIG. 2. Classification of spin piston dynamics in terms of the piston velocity u0 (spin injection) and background spin density h0 (external
magnetic field). The acronyms used in the figure and throughout the text are defined in Table I. Dotted-black curve: divide between convex (left)
and nonconvex (right) regimes. Solid-black lines: rL

+ = rR
+ (see main text), crossover between expansion and compression. The pink-shaded

region implies the existence of the vacuum state |n| = 1 within the oscillatory solution. The subsonic regime is identified in white. Sector
I: RW; Sector II: DSW+; Sector III: DSW+CDSW+; Boundary III/IV between sector III and IV: CDSW; Sector IV: RW CDSW+. The
supersonic regime is in the gray, shaded region. Sector V: S+|RW, supersonic condition v− < v+ < 0; Sector VI: S−|RW CDSW+, supersonic
condition v− < v+ < 0; Sector VII: PDSW+|DSW+, supersonic condition 0 < v− < v+.

strict hyperbolicity and/or genuine nonlinearity. This leads to
new types of dispersive hydrodynamics [38]. In addition to
expanding rarefaction waves (RWs) and compressive DSWs
in Figs. 1 and 2, nonconvexity results in hybrid spin textures
composed of a RW and a special kind of contact spin shock
or contact DSW (CDSW)—the dispersive hydrodynamic ana-
logue of a contact discontinuity in gas dynamics—whose
velocity coincides with a long wavelength magnetic speed
of sound. We identify the supersonic transition at the piston
as coincident with either the rapid generation of a stationary
soliton or a partial DSW. Finally, sufficiently large external
field and positive piston velocity result in the generation of
vacuum points within the oscillatory solution. Table I lists
the acronyms and symbols used throughout the main text
and in Fig. 2. Table II lists the physical and mathematical

TABLE I. List of acronyms and symbols.

RW rarefaction wave
DSW dispersive shock wave
CDSW contact dispersive shock wave
PDSW partial dispersive shock wave
S soliton
| constant plateau separating waves
± superscripts +: elevation soliton, −: depression soliton

properties of the all solution sectors in Fig. 2 that will be
discussed in details in Secs. V–VII. Although we focus on
the early, dissipationless spin dynamics, each of these distinct
dispersive hydrodynamic excitations have implications for the
long-time, steady-state evolution of the spin system subject
to magnetic damping [12]. These implications are discussed
in our concluding remarks Sec. VIII. The rest of the paper
is organized as follows. Section II describes the spin piston
problem setup. Section III provides a summary of the re-
sults of Whitham modulation theory from [33] so that the
analysis is self-contained. Some additional analytical details

TABLE II. Physical and mathematical properties of the solution
sectors in the phase diagram of Fig. 2.

I: RW subsonic, expansive, convex
II: DSW+ subsonic, compressive, convex
III: DSW+ CDSW+ subsonic, compressive, nonconvex
IV: RW CDSW+ subsonic, expansive/compressive,

nonconvex
V: S+|RW supersonic, expansive, convex
VI: S−|RW CDSW+ supersonic, expansive/compressive,

nonconvex
VII: PDSW+|DSW+ supersonic, compressive,

convex/nonconvex
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are provided in the Appendix. In Sec. V, solutions with zero
applied field are presented and analyzed in both the subsonic
and supersonic regimes. In Secs. VI and VII, solutions arising
in the presence of a uniform perpendicular applied field are
analyzed in the subsonic and supersonic regimes, respectively.
Finally, we present the conclusion in Sec. VIII.

II. MODEL

Consider a one-dimensional, easy-plane ferromagnetic
channel oriented in the x̂ direction with length L. Spin injec-
tion is applied to the left edge where x = 0. The right edge
at x = L corresponds to a free spin boundary. The governing
equation is the nondimensional, dissipationless LL equation,
given by

∂t m = −m × heff , x ∈ (0, L), t > 0, (1)

where

heff = ∂xxm − mzẑ + h0ẑ. (2)

Here, m = M/Ms = (mx, my, mz ) is the normalized magne-
tization vector, and Ms is the saturation magnetization. The
effective field (2) is also normalized by Ms and consists of
exchange, easy-plane anisotropy, and a uniform externally
applied magnetic field with constant magnitude h0 along the
perpendicular-to-plane (ẑ) direction. The nondimensionaliza-
tion leading to Eq. (1) is achieved by scaling time by |γ |μ0Ms

and space by λ−1
ex , where γ is the gyromagnetic ratio, μ0 is

the vacuum permeability, and λex is the exchange length. The
dissipationless LL serves as a valid model here considering
the timescale within which damping is not a key factor in the
development of the dynamical structures [12]. We will discuss
the role of damping on longer time scales in the conclusion.

The following analysis is based on the DH formulation of
Eq. (1) in terms of the hydrodynamic variables

spin density: n = mz,

fluid velocity: u = −∂x� = −∂x arctan(my/mx ),

where � is the azimuthal phase angle. The DH formulation is
given by [20]

∂t n = ∂x[(1 − n2)u], (3a)

∂t u = ∂x[(1 − u2)n] − ∂x

(

∂xxn

1 − n2
+

n(∂xn)2

(1 − n2)2

)

, (3b)

∂t� = h0 − (1 − u2)n +
1

√
1 − n2

∂x

(

∂xn
√

1 − n2

)

, (3c)

where (3b) follows from the negative gradient of (3c). These
equations result from an exact transformation of the LL equa-
tion (1). Equation (3) is analogous to the mass, momentum,
and Bernoulli equations for an inviscid, irrotational, com-
pressible fluid. Owing to a phase singularity, the vacuum state
occurs when |n| = 1. Equation (3) is invariant to the reflection
transformation

h0 → −h0, n → −n, � → −�, u → −u. (4)

So we focus on showing results with non-negative h0.
The boundary conditions (BCs) for Eq. (3) are

∂xn(0, t ) = 0, ∂xn(L, t ) = 0, (5a)

u(0, t ) = ub(t ), u(L, t ) = 0, (5b)

where ub(t ) models the time dependence of a perfect spin
injection source that increases from 0 to the maximum in-
tensity |u0| monotonically and smoothly with a rise time
t0. We adopt a hyperbolic tangent profile to model the
injection rise: u(0, t ) = (u0/2){tanh[(t − t0/2)/(t0/10)] + 1},
where t0 = 80 is the time that the injection magnitude reaches
99.99% of |u0|. For a typical Permalloy, this hyperbolic
tangent profile produces a relatively sharp change in the hy-
drodynamic variables—about 2 ns—when compared to the
typical precessional period of spin-injected DEFs, on the order
of 10–20 ns [9]. The modulationally stable region, consisting
of velocities u in the interval [−1, 1], corresponds to stable
fluid-like configurations, so we restrict |u0| < 1 [8]. The initial
condition (IC) is given by

n(x, t = 0) = h0, (6a)

u(x, t = 0) = 0, (6b)

with |h0| < 1. Thus, the spin injection problem can be reduced
to a piston problem: a piston at x = 0, initially with velocity
u = 0, is accelerated to u = u0, generating a flow to the right
(u0 > 0) or left (u0 < 0) into the quiescent fluid with density
n = h0. In the rest of this paper, we will refer to this piston
analogy for our interpretation of the spin dynamics that result
from the initial-boundary value problem (3)–(6). We focus on
the classification of solutions when they are fully developed
such as in Fig. 1(d).

III. NONLINEAR WAVE DYNAMICS AND WHITHAM

MODULATION THEORY

In this section, we provide some necessary background,
primarily following [33], on Whitham modulation theory, a
powerful tool for studying multiscale nonlinear wave dynam-
ics [19,29–31]. Modulation theory results in equations that
describe the slow variation of nonlinear, periodic traveling
wave solutions.

A. Traveling wave solutions

Consider the traveling wave solutions of Eq. (3) in the form
n(x, t ) = n(ξ ) and u(x, t ) = u(ξ ) with the moving coordinate
ξ = x − V t , where

V 2 =
1

2

⎛

⎝1 +
4

∑

i< j

nin j +
4

∏

i

ni +

√

√

√

√

4
∏

i

(1 − n2
i )

⎞

⎠ (7)

is the square of the wave’s phase speed and ni, i = 1, 2, 3, 4
are wave parameters that we will introduce shortly. The
positive/negative solution for V corresponds to the right/left-
going wave solutions, respectively. By insertion of n(ξ ), u(ξ )
into (3) and direct integration, the traveling wave satisfies the
ordinary differential equation (ODE)

(

dn

dξ

)2

= −R(n), (8)

where R(n) = (n − n1)(n − n2)(n − n3)(n − n4) is the poten-
tial function, a quartic polynomial with zeros at ni, i =
1, 2, 3, 4. The velocity field u(ξ ) can be obtained in terms
of n(ξ ) and the roots ni [33] so we focus on the modulation

104419-4



SPIN-PISTON PROBLEM FOR A FERROMAGNETIC THIN … PHYSICAL REVIEW B 105, 104419 (2022)

analysis with n. For real, ordered n1 � n2 � n3 � n4 in the
interval [−1, 1], the traveling wave solution for n either os-
cillates within [n1, n2] or [n3, n4] with wavelength given by

L =
4K (m)

√
(n3 − n1)(n4 − n2)

, (9)

where K (m) is the complete elliptic integral of the first kind
with m given by

m =
(n4 − n3)(n2 − n1)

(n4 − n2)(n3 − n1)
. (10)

When n oscillates within [n1, n2], the traveling wave solu-
tion is

n(ξ ) = n2 −
(n2 − n1)cn2(W, m)

1 + n2−n1

n4−n2
sn2(W, m)

, (11)

where

W =
√

(n3 − n1)(n4 − n2)ξ/2 (12)

and cn, sn are Jacobi elliptic functions [39]. The velocity is
given in terms of n by

u = −
A1 + V n

1 − n2
, (13)

where

A2
1 =

1

2

(

1 +
4

∑

i< j

nin j +
4

∏

i

ni ∓
4

∏

i

√

1 − n2
i

)

,

V =

√

√

√

√

1

2

(

1 +
4

∑

i< j

nin j +
4

∏

i

ni ±
4

∏

i

√

1 − n2
i

)

. (14)

The positive square root of A1 is taken here. The upper (lower)
sign in (14) gives the fast (slow) branch of wave. V in Eq. (7)
is the fast branch. We can also describe the solution in terms
of an alternative set of physical wave parameters (n̄, ū, a, k),
equivalent to ni, corresponding to the mean spin density n̄,
mean velocity ū, the amplitude a = n2 − n1, and the wave
number k = 2π/L.

When n3 → n2 and m → 1, the solution limits to a depres-
sion soliton

n = n2 −
n2 − n1

cosh2 W + n2−n1

n4−n2
sinh2 W

, (15)

with background mean density n̄ = n2. The fluid velocity in
the soliton limit is

u = −
B + csn

1 − n2
, (16)

where

B = ū(n̄2 − an̄ + 1) + n̄μ,

cs = ū(2n̄ − a) + μ,

μ = ±
√

(1 − (n̄ − a)2)(1 − ū2), (17)

where cs is the soliton speed and ū is the background mean
velocity. The sign +(−) gives the fast (slow) soliton. In terms
of the roots {ni}4

i=1, cs and ū for the soliton can be obtained by
taking the limit n3 → n2 in (13) and (14).

When n4 → n3, m → 0, there are two possible limiting
solutions. If n2 − n1 � n3 − n1, then the solution limits to a
small-amplitude harmonic wave. If n2 → n3 = n4, the solu-
tion limits to a depression algebraic soliton

n(x, t ) = n2 −
n2 − n1

1 + 1
4
(n2 − n1)2ξ 2

. (18)

The background mean density for the algebraic soliton is n̄ =
n2 = n3 = n4. The algebraic soliton amplitude is a = n2 − n1.
The background mean velocity ū and algebraic soliton speed
are obtained by setting n2 = n3 = n4 in (13) and (14).

When n oscillates within [n3, n4], the traveling wave solu-
tion is

n(ξ ) = n3 +
(n4 − n3)cn2(W, m)

1 + n4−n3

n3−n1
sn2(W, m)

, (19)

where W is given in (12). The velocity is (13) with A1 taking
the negative square root and the same V in (14).

When n3 → n2 and m → 1, the solution limits to an eleva-
tion soliton

n = n3 +
n4 − n3

cosh2 W + n4−n3

n3−n1
sinh2 W

. (20)

The background mean density for the soliton is n̄ = n2 = n3.
The soliton amplitude is a = n4 − n3. The background mean
velocity ū is obtained by taking the limit n3 → n2 in (13) and
(14). Alternatively, the fluid velocity in the soliton limit is (16)
with

B = ū(n̄2 + an̄ + 1) + n̄μ,

cs = ū(2n̄ + a) + μ,

μ = ±
√

(1 − (n̄ + a)2)(1 − ū2), (21)

where +(−) gives the fast (slow) soliton.
When n2 → n1, m → 0, there are two possible limiting

solutions. If n4 − n3 � n4 − n1, then the solution limits to a
small-amplitude harmonic wave. If n3 → n2 = n1, the solu-
tion limits to an elevation algebraic soliton

n(x, t ) = n3 +
n4 − n3

1 + 1
4
(n4 − n3)2ξ 2

. (22)

The background mean density for the algebraic soliton is n̄ =
n3 = n2 = n1 and the soliton amplitude is a = n4 − n3. The
background mean velocity ū and algebraic soliton speed are
obtained by setting n1 = n2 = n3 in (13) and (14).

B. Whitham modulation equations

The modulation equations can be expressed in diagonal
form by introducing new modulation variables λi known as
Riemann invariants

∂λi

∂t
+ vi

∂λi

∂x
= 0, i = 1, 2, 3, 4, (23)

where the Riemann invariants are ordered as λ1 � λ2 � λ3 �

λ4, and the vi are the Whitham velocities

vi =
1

2

4
∑

i=1

λi −
L

2∂L/∂λi

, i ∈ 1, 2, 3, 4, (24)
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where L = 4K (m)√
(λ3−λ1 )(λ4−λ2 )

and m = (λ4−λ3 )(λ2−λ1 )
(λ4−λ2 )(λ3−λ1 )

. The trans-

formation between the ni and λi is provided in the Appendix.
The LL-Whitham modulation equations (23) are noncon-

vex, namely they can lose strict hyperbolicity (two Whitham
velocities coalesce) and/or they can lose genuine nonlinearity
where ∂vi

∂λi
= 0 in certain parameter regimes, resulting in a

nonmonotonic dependence of the Whitham velocity on the
Riemann invariant.

C. Piston sonic and convexity conditions

The modulation equations (23) exhibit two important lim-
iting simplifications. By comparing (9) and (10), we find that
the soliton limit (L → ∞ and m → 1) occurs when λ2 → λ3

and the spin wave harmonic limit (a → 0 and m → 0) occurs
when either λ1 → λ2 or λ3 → λ4. In these limits, two of the
modulation equations coincide with the long-wave, disper-
sionless limit of Eqs. (3a) and (3b)

∂t n̄ = ∂x[(1 − n̄2)ū], (25a)

∂t ū = ∂x[(1 − ū2)n̄]. (25b)

The remaining two modulation equations merge and corre-
spond to modulations of either the soliton amplitude or the
spin wave wave number. The limiting velocities determine the
motion of DSW edges. In the soliton limit, we have

s− ≡ lim
λ2→λ3

v2 = lim
λ2→λ3

v3 = 1
2
(λ1 + 2λ3 + λ4). (26)

In one of the harmonic limits, we have

s+ ≡ lim
λ3→λ4

v3 = lim
λ3→λ4

v4 = 2λ4 +
(λ2 − λ1)2

2(λ1 + λ2 − 2λ4)
. (27)

The velocities s− < s+ are the trailing and leading edges of
the DSW.

The dispersionless equations (25) describe the evolution of
the mean density n̄ and mean velocity ū. These equations can
be expressed in diagonal form

∂r±

∂t
+ v±

∂r±

∂x
= 0, r± = ūn̄ ±

√

(1 − ū2)(1 − n̄2), (28)

where the dispersionless Whitham velocities v+ = 1
2
(3r+ +

r−) = 2ūn̄ +
√

(1 − ū2)(1 − n̄2), v− = 1
2
(r+ + 3r−) =

2ūn̄ −
√

(1 − ū2)(1 − n̄2) are also the long-wavelength
spin wave velocities. These velocities are used to identify
the magnetic sonic condition [8]. The piston is subsonic if
v− < 0 < v+, when

|ū| < ucr(n̄) =

√

1 − n̄2

1 + 3n̄2
, (29)

and supersonic if v− < v+ < 0 (ū < −ucr(n̄)) or 0 < v− <

v+ (ū > ucr(n̄)). Consequently, two different boundary behav-
iors will arise.

The dispersionless system (25) has simple wave solutions
where only one of the Riemann invariants changes: (+)-waves
when r− is constant and (−)-waves when r+ is constant. These
solutions require the hyperbolic system of equations (25) to
remain genuinely nonlinear [40], which holds so long as

ū 
= ±n̄, |ū| 
= 1, |n̄| 
= 1. (30)

These are the convexity conditions.

IV. PHASE DIAGRAM OF FIGURE 2

In this section, we provide a qualitative description of the
solution types depicted in Fig. 2 as well as a quantitative
description of the boundaries between the different sectors.
Each distinct solution type originates from the prevailing
physical and mathematical properties of the hydrodynamic
equations (3) at the piston boundary: subsonic/supersonic
flow, compression/expansion waves, and convexity. These
properties determine the various curves partitioning the phase
diagram in Fig. 2. The solution type acronyms and symbols
are defined in Table I. Note that the reflection symmetry (4)
implies that the phase diagram can be reflected in u0 and
h0 to obtain the classification for h0 < 0. A more detailed,
quantitative description of each solution type is developed in
the next three sections.

The Whitham modulation equations (23) are a set of hy-
perbolic equations that we will solve in order to determine the
structure of solutions in the phase diagram. The oscillatory
solutions we obtain here exhibit the following fundamental
feature: they terminate when either the wave amplitude goes
to zero (the harmonic limit) or the wavelength goes to infinity
(the soliton limit). In both cases, the dispersionless equa-
tions (25) govern the mean density and velocity. A general
property of hyperbolic equations such as (25) is that any
dynamic front adjacent to a constant region is a simple wave
[41]. Therefore, we can determine a relationship between the
constant states to the left and right of the RW, DSW, CDSW,
etc., by holding one dispersionless Riemann invariant con-
stant. For the spin piston located at the left boundary, we will
excite the fastest wave, a (+)-wave, in which the Riemann
invariant r− in Eq. (28) is constant across the wave

(+)-wave: nLuL −
√

(1 − (uL )2)(1 − (nL )2)

= nRuR −
√

(1 − (uR)2)(1 − (nR)2).
(31)

The superscripts L and R denote the constant (mean) states to
the left and right of the wave, respectively. In order for a (+)-
wave to solve the spin piston problem, we also require the RW
or DSW to propagate to the right of the boundary. Namely, we
require the leftmost edge of the wave to have positive velocity

admissibility: 0 <

{

v+(rL
−, rL

+), RW,

s−(rL
−, λ2 = λ3, rL

+), DSW.
(32)

It turns out that all the solutions depicted in Fig. 2 are admis-
sible except in the supersonic sector VII.

The right state is constant, determined by the external mag-
netic field and free-spin boundary condition (6a), (6b)

nR = h0, uR = 0. (33)

The constant left state is achieved after the piston velocity has
saturated at t ≈ t0 (ub(t ) → u0), provided the admissibility
condition (32) is satisfied. When the left state is subsonic, we
use (31), (33), and (5b) to obtain the spin density on the left

subsonic: nL = h0

√

1 − u2
0 − u0

√

1 − h2
0, uL = u0.

(34)
The flow is subsonic so long as (29) with ū → uL and n̄ → nL

is satisfied. The transition from subsonic to supersonic in the
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phase diagram Fig. 2 occurs when

|uL| = ucr(n
L ). (35)

Using (34), there are multiple solutions of Eq. (35). The region
of parameters corresponding to subsonic conditions at the x =
0 boundary is the interior of the following four curves

u0 = ±

√

√

√

√

2 + h2
0 ± h0

√

h2
0 + 8

6
,

u0 =

√

√

√

√

−2 + 3h2
0 ± h0

√

9h2
0 − 8

2
,

(36)

In other words, (36) are the sonic curves. The subsonic region
is reflected in Fig. 2 by the unshaded and pink-shaded regions
containing sectors I–IV.

Consequently, sectors V–VII are supersonic and we need
an alternative way to determine nL because nL 
= u0 at the
piston boundary. Sectors V and VI are associated with the
supersonic condition v− < v+ < 0 and the way to resolve this
was first identified in [10] where a stationary spin soliton was
introduced with its extremum in density and velocity centered
at the piston boundary. Thus, only half the soliton is within the
domain and it was referred to as a contact soliton. The soliton
solutions, given by the fast branch of (15) and (20), provide
for a rapid transition from supersonic conditions at the piston
to subsonic conditions in the soliton far-field (n, u). In order to
uniquely determine the soliton, we invoke three assumptions.
First, we identify the soliton far-field with (n, u) = (nL, uL ).
Then, for a (+)-wave, we can use Eqs. (31) and (33) to
determine

nL = −uL

√

1 − h2
0 + h0

√

1 − (uL )2
. (37)

Second, by equating the fluid velocity at the soliton extreme,
u(ξ = 0), in (16) to the fluid velocity at the piston boundary,
u0, we have

u0 = −
B

1 − (nL ± a)2
, (38)

where B is given in Eqs. (17) and (21), a > 0 is the soliton
amplitude. Finally, the soliton is stationary so that cs = 0 in
(17) or (21), giving

uL(2nL ± a) +
√

(1 − (nL ± a)2)(1 − (uL )2) = 0. (39)

The +(−) in (38) and (39) correspond to a bright (dark)
soliton. For example, in the supersonic sector V, the soliton is
of elevation type so (21) applies and the + sign is taken in (38)
and (39). The three conditions (37), (38), and (39) uniquely
determine the soliton amplitude a and its far field (nL, uL ).

In [12], it was shown that this problem gives rise to
compression or expansion waves emanating from the piston
depending upon the input parameters (u0, h0). This is deter-
mined by whether or not the (+)-wave speed v+ is increasing
or decreasing from left to right during the piston acceleration
period.

compression : v+(nL(t ), ub(t )) > v+(h0, 0) (40)

implies compression waves and expansion waves otherwise.
The pure compression region is reflected in Fig. 2 by the
solid-black lines u0 = 0 and u0 = h0. When 0 < u0 < h0, the
subsonic solutions involve only DSWs. When 0 < h0 < u0,
the subsonic solutions involve both RWs and DSWs. When
u0 < 0 or h0 = 0, the subsonic solutions are RWs.

When u0 > 0, there is another effect at play: loss of con-
vexity (30) when uL = |nL|. For the subsonic regime, uL = u0

and (34) implies convexity is lost when

loss of convexity: h0 = 2u0

√

1 − u2
0. (41)

This is the dotted curve in Fig. 2. To the right of this curve, the
solutions exhibit hybrid waves involving CDSWs, and either
DSWs (when 0 < u0 < h0) or RWs (when u0 > h0).

One more feature of the solutions is depicted in Fig. 2:
vacuum points. When |n| = 1, the velocity u is undefined
and corresponds to the absence of fluid or vacuum. We find
that only oscillatory solutions such as DSWs and CDSWs,
i.e., u0 > 0, can result in the generation of isolated points at
which |n| = 1. The threshold for this behavior is determined
by equating the extrema of the oscillation density (11) or
(19) with n = ±1, namely n j = (−1) j for some root n j , j ∈
{1, 2, 3, 4}. A quantitative determination of this threshold re-
quires the solution of the Whitham modulation equations (23),
which we undertake in the next several sections. The vacuum
threshold is depicted in the phase diagram Fig. 2 by a solid-red
curve, above which the solutions exhibit vacuum points.

In the following sections, we solve the Whitham modula-
tion equations to obtain the detailed structure of the shock,
rarefaction, and soliton solutions.

V. ZERO APPLIED FIELD

When h0 = 0, all of the dynamics are governed by the dis-
persionless limit (3) with additional treatment if the solution is
supersonic. This case corresponds to the horizontal axis in the
phase diagram Fig. 2. The (+)-wave for r+ = r+(ξ ) satisfies
v+(rR

−, r+) = ξ = x/(t − t̄ ), where t̄ is a constant time shift,
rR
− = −1, and rL

+ < r+(ξ ) < rR
+.

A. Subsonic regime: RW

The subsonic solution when h0 = 0 is a RW. The (+)-wave
assumption leads to the background spin density on the left
given by (34)

nL = −u0. (42)

The system is always convex because |u0| < 1 in (41). The
admissibility condition (32) is satisfied until v+(rL

−, rL
+) = 0,

which is also the sonic condition (35) leading to u0 = ±ucr =
± 1√

3
. Thus, for a RW solution to be admissible, the piston

velocity u0 is required to be subsonic with u2
0 < 1

3
. We have

additionally confirmed that there are no admissible (−)-wave
solutions with rL

+ = rR
+. The Riemann invariant configuration

and an example solution is shown in Fig. 3(a). In the the-
oretical solution, a time delay t̄ = 30 (recall, t0 = 80 is the
injection rise time) is introduced to account for the piston
acceleration time. This time delay is chosen to match the
theoretical soliton edge location in a DSW solution as if

104419-7



HU, IACOCCA, AND HOEFER PHYSICAL REVIEW B 105, 104419 (2022)

FIG. 3. Riemann invariant configurations in the upper panels
corresponding to theoretical (dotted) and numerical (solid) solutions.
The vertical-dashed lines correspond to x± = s±(t − t̄ ), where t̄ =
30 is the time delay introduced to account for the piston acceleration
time. (a) RW solution with u0 = −0.3, satisfying the subsonic con-
dition |u0| < 1√

3
; (b) soliton|RW solution with u0 = −0.7, satisfying

the supersonic condition 1√
3

< |u0| < 1.

the piston was ideal with instantaneous acceleration, demon-
strated later in Sec. IV B. The same choice of time delay is
consistently applied to all the theoretical solutions in the fol-
lowing sections. Across the subsonic domain, our theoretical
predictions on nL agree excellently with simulation results,
shown in Fig. 4(a).

B. Supersonic regime: S+|RW

When the piston velocity is supersonic with u2
0 > 1

3
, a

contact soliton develops at the piston boundary, smoothly
connected to a RW via an intermediate constant state. The
Riemann invariant configuration of the solution is shown in
the top panel of Fig. 3(b). The soliton is represented by the
Riemann invariants λ2 = λ3.

This soliton is theoretically determined by (37)–(39) for a
bright soliton. It is verified that when the piston is moving at
the sonic speed u0 = ucr = ± 1√

3
, the soliton does not exist,

i.e., a = 0. Therefore, the soliton at the piston boundary only

FIG. 4. Theory and simulation results of the left constant state
density nL for subsonic |u0| < 1√

3
(a) and supersonic 1√

3
< |u0| < 1

(b). The soliton amplitude a is also shown in (b).

FIG. 5. Riemann invariant configurations and the corresponding
theoretical (dotted) and numerical (solid) solutions. The vertical-
dashed lines correspond to x± = s±(t − t̄ ), where t̄ = 30 is the
time delay introduced to account for the piston acceleration time.
(a) Sector I: RW with u0 = −0.1 and h0 = 0.8. (b) Sector II: DSW+

with u0 = 0.2 and h0 = 0.8, the dotted curve is the theoretical DSW
envelope.

emerges in the supersonic regime. A representative super-
sonic solution is shown in the bottom panel of Fig. 3(b) with
the soliton visible close to x = 0, exhibiting good agreement
with the numerical simulation. Across the supersonic domain,
theoretical predictions of nL and a of the soliton demon-
strate excellent agreement with simulation results, shown in
Fig. 4(b). Herein we have confirmed our assumptions pro-
posed in Sec. IV on the characterization of the solitonic
supersonic solutions. In addition, our analysis found that no
vacuum state, where |n| = 1 occurs. The largest magnitude of
n is reached at the peak (crest) of the elevation (depression)
soliton at the piston boundary and this magnitude is always
less than 1 for 1

3
< u2

0 < 1.

VI. NONZERO APPLIED FIELD, SUBSONIC REGIME

In this section, we present subsonic solutions with nonzero
applied field. The solution map is the white region of the
phase diagram Fig. 2, including sectors I–IV. We consider
each sector in turn.

A. Sector I: RW

In sector I, the system satisfies the convexity condition
(30) and yields simple wave solutions. Again, the solution
is an expansive RW satisfying r− = rR

−, r+ = r+(ξ ), and
v+(r−, r+) = ξ = x/(t − t̄ ). An example Riemann invariant
configuration and solution in sector I is shown in Fig. 5(a).
Good agreement between theory and simulation is demon-
strated.

The admissibility condition (32) has been verified across
sector I. The sonic condition is determined by v+ = 0, yield-
ing the boundary between sector I and V. Again, the sonic
condition coincides with the admissibility threshold, indicat-
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FIG. 6. Space-time contour plot of a DSW+ solution in sector
II with u0 = 0.2, h0 = 0.8. The dotted-black line is the predicted
trailing edge soliton location with a time delay t̄ = 30 accounting
for the piston acceleration.

ing that only subsonic solutions are admissible in sector I. On
the boundary between sector I and II, which is the h0-axis,
there are no induced dynamics because u0 = 0. Furthermore,
no vacuum state is present in sector I since the largest magni-
tude of n is at the piston boundary where the piston velocity is
restricted to |u0| < 1.

B. Sector II: DSW+

Sector II is to the left of the convexity curve (dotted-
black curve) in the phase diagram Fig. 2, so the system
is convex, yielding simple wave solutions. Furthermore,
v+(rR

−, rL
+) > v+(rR

−, rR
+) leads to compressive DSW solutions

that satisfy λ3 = λ3(ξ ), v3(rR
−, rR

+, λ3, rL
+) = ξ = x/(t − t̄ ).

The DSW solutions satisfy the admissibility condition (32).
An example Riemann invariant configuration and solution in
sector II is shown in Fig. 5(b). Near the DSW’s harmonic
edge, the numerical simulation and the predicted envelope
amplitude deviate somewhat. This is a common feature of the
asymptotic (large t) behavior of DSWs [19]. Figure 6 shows
that the theoretically predicted trajectory of the DSW’s soliton
edge aligns with the simulation result by incorporating a time
delay t̄ = 30 to account for the piston acceleration period.
The DSW solution exhibits vacuum in the pink-shaded region
in the phase diagram Fig. 2. The vacuum state is first reached
when the maximum of the trailing edge soliton density n = n4

reaches 1. We evaluate n4 in the soliton limit, which is a
function of the Riemann invariants, to determine this threshold
(see Appendix). As time progresses, the vacuum point moves
inside the oscillatory structure [19]. Example DSWs with
vacuum will be shown in Fig. 7. We point out that the vac-
uum threshold determination is the same across all subsonic
sectors whose solution contains a DSW structure, despite the
convexity of the system.

C. Sector III: DSW+CDSW+

Sector III is to the right of the convexity curve (dotted-
black curve) in the phase diagram Fig. 2, so the solution
breaks the convexity condition (30), manifested as the coa-
lescence of two Riemann invariants λ3 = λ4 and Whitham
velocities v3 = v4. The Riemann invariant configuration and
an example solution are shown in Fig. 8(a), satisfying r− =
rR
−, λ3 = λ3(ξ ), and v3(rR

−, rR
+, λ3, rL

+) = ξ = x/(t − t̄ ). The
spin injection u0 satisfies (40), leading to a compressive

FIG. 7. Example solutions with vacuum states when h0 
= 0.
(a) Sector II: DSW+ with u0 = 0.45 and h0 = 0.92; (b) Border of
sectors II and III: CDSW+ with u0 = 0.8 and h0 = 0.8; (c) Sector
III: DSW+CDSW+ with u0 = 0.6 and h0 = 0.85; (d) Sector IV:
RW CDSW+ with u0 = 0.8 and h0 = 0.75. The dotted curves are the
predicted envelopes of the DSW structure. In (d), the dotted curve
includes the predicted dispersionless RW portion in the solution.
The vertical-dashed lines separate different components in composite
modulation solutions. The modulation solutions includes the time
delay t̄ = 30 to account for the piston acceleration time.

DSW+CDSW+ composite wave where rL
+ > rR

+ gives the
DSW portion and the coalescence of Riemann invariants λ3 =
λ4 gives the CDSW portion.

A CDSW is a degenerate DSW solution whose soliton
limit is an algebraically decaying soliton where three Riemann
invariants, λ2, λ3, and λ4, coincide. The algebraic soliton trav-
els at the speed of a dispersionless (long-wave) characteristic
velocity, mimicking a contact discontinuity in viscous hydro-
dynamics. It is observed numerically that CDSWs generally
require a longer time than DSWs to develop. Therefore, a
larger discrepancy between the simulated CDSW portion and
the analytical wave envelope is observed compared to the
DSW portion. The admissibility of the composite wave so-
lution in sector III, 0 < s

(1)
− < s

(2)
− < s+, has been confirmed.

The region where a vacuum state is present in the solution is
shaded in pink in Fig. 2 and a typical solution is shown in
Fig. 7(c).

D. Sector IV: RW CDSW+

Before moving on to sector IV, we discuss the solution
on the boundary between sector III and IV, where rL

+ = rR
+

104419-9



HU, IACOCCA, AND HOEFER PHYSICAL REVIEW B 105, 104419 (2022)

FIG. 8. Riemann invariant configurations and example solutions when h0 
= 0 for (a) Sector III: DSW+CDSW+ with u0 = 0.55 and h0 =
0.7; (b) Boundary of sectors III and IV: CDSW+ with u0 = 0.6 and h0 = 0.6. (c) Sector IV: RW CDSW+ with u0 = 0.73 and h0 = 0.6; The
vertical-dashed lines separate different components of the composite wave solutions based on predicted edge velocities. The dotted curves
are the predicted envelopes of the DSW structure in the solution. In (b), the dotted curve also predicts the dispersionless RW portion of the
solution. All modulation solutions include the time delay t̄ = 30 to account for the piston acceleration time.

as shown in the Riemann invariant configuration in Fig. 8(b).
The system is nonconvex and the solution is a single CDSW+

because λ3 = λ4 across the shock. Sector IV is to the right
of the convexity threshold [dotted-black curve, Eq. (41)] in
Fig. 2, so the system is nonconvex. During piston acceleration,
compressive dynamics are induced, then followed by expan-
sive dynamics. Thus, the solution is a RW CDSW+ composite
wave that satisfies r− = rR

−, v3(rR
−, rR

+, λ3, λ3) = ξ = x/(t −
t̄ ), and λ4 = λ3.

The Riemann invariant configuration and an example so-
lution are shown in Fig. 8(c). The admissibility (32) of the
solutions have been verified in the sector with the thresh-
old s

(1)
− = 0 coinciding with the sonic condition v+ = 0 and

Eq. (35). The vacuum region, shaded in pink in Fig. 2, is de-
termined by evaluating the wave envelope n4 in the algebraic
soliton limit. The onset of vacuum is found to be independent
of u0 in this case and happens at h0 = 1/

√
2. Representative

solutions containing a vacuum point are shown in Figs. 7(c)
and 7(d).

In the example solutions shown in Figs. 8(b) and 8(c), we
observe that there is a smooth tail at the algebraic soliton
limit of the CDSW when it connects to the dispersionless
portion of the solution. This phenomenon is most evidently
shown in Fig. 8(b) with a single CDSW. This behavior
does not occur in DSWs where the exponential soliton edge
terminates directly at the dispersionless edge state [see the

bottom panels of Figs. 5(b) and 8(a)]. This phenomenon
serves as a distinguishing feature to identify the soliton edge
of a CDSW.

VII. NONZERO APPLIED FIELD, SUPERSONIC REGIME

Sectors V and VI satisfy the supersonic condition (35)
in which v− < v+ < 0 and a contact soliton is developed at
the piston boundary. Sector VII also satisfies the supersonic
condition where 0 < v− < v+ and a PDSW emanates from
the piston boundary.

A. Sector V: S+|RW

The contact soliton is uniquely determined by (37)–(39).
With the determined soliton far-field (nL, uL ) = (n̄, ū), the
modulation solution is an expansive RW, satisfying (31) and
r+ = r+(ξ ) where v+(r−, r+) = ξ = x/(t − t̄ ). The admis-
sibility condition (32) is satisfied. Similar to the zero field
supersonic solution, no vacuum point is attained. A repre-
sentative solution is shown in Fig. 9(a) with quantitative
agreement between the theoretical prediction and the numeri-
cal simulation.

B. Sector VI: S−|RW CDSW+

The depression contact soliton is uniquely determined
by (37)–(39) with far-field (nL, uL ) = (n̄, ū) breaking the
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FIG. 9. Supersonic solutions when h0 
= 0. (a) Sector V: S+|RW with u0 = −0.6 and h0 = 0.8; (b) Sector VI: S−|RW CDSW+ with
u0 = 0.92 and h0 = 0.6; (c) Sector VI: S−|RW CDSW+ with a vacuum point, u0 = 0.96 and h0 = 0.75. The dotted curves trace the predicted
piston edge soliton, the dispersionless portion of the solution, and the envelope of the DSW-type portion of the solution. The vertical-dashed
lines divide the different components in a composite wave based on the predicted edge velocities. The time delay t̄ = 30 is used in theoretical
plotting to account for the piston acceleration time.

convexity condition (30), leading to a RW CDSW+ com-
posite wave satisfying r− = rR

−, v3 = (rR
−, rR

+, λ3, λ3) = ξ =
x/(t − t̄ ), and λ4 = λ3. A representative solution is shown in
Fig. 9(b). Same as in sector IV, the onset of vacuum, when the
algebraic soliton of the CDSW portion reaches 1, is indepen-
dent of u0 and happens at h0 = 1/

√
2. The pink-shaded region

in Fig. 2 indicates a vacuum state is present in the solution. A
vacuum solution from this sector is shown in Fig. 9(c).

C. Sector VII: PDSW+|DSW+

The supersonic condition |u0| > ucr(n
L ) in sector VII is

0 < v− < v+. This positive velocity configuration is different
from all other supersonic sectors with negative dispersionless
velocities. It gives rise to a PDSW [42] at the piston edge.
For this sector, we have not been able to develop quantitative,
theoretical descriptions for the composite waves using modu-
lation theory, so we focus on the qualitative identification of
the solution features with the support of simulations. As we
observed numerically [see Fig. 10(a) for example], the PDSW

FIG. 10. (a) PDSW|DSW+ solution in sector VII with u0 = 0.45
and h0 = 0.98. (b) Supercritical solution in sector III with u0 = 0.8
and h0 = 0.95.

is led by a soliton at its right edge and terminates on the left
at the piston boundary without reaching the small amplitude
limit. The intermediate state connecting the PDSW and a
DSW-type wave demonstrates slow oscillations that possibly
is not a constant plateau and requires additional analysis.
Without the PDSW far-field determined, we are unable to
determine the modulation solution. Note that a vacuum point
is present inside the solution, consistent with our prediction in
Fig. 2.

We have numerically confirmed that along the sonic curve
bounding the subsonic sector II, where the system remains
convex, there is no PDSW emerging from the piston boundary.
However, within the nonconvex subsonic sector III when near
the sonic curve at the sector VII boundary, we numerically
observed that a PDSW develops at the piston boundary as
shown in Fig. 10(b). Consequently, the predicted sonic bound-
ary between sectors III and VII does not precisely explain this
phase change. We have not been able to quantitatively identify
the threshold for the occurrence of this phase transition using
modulation theory. However, all simulations that we have
performed in sector VII exhibit this PDSW structure.

VIII. CONCLUSIONS

Using the dispersive hydrodynamic framework, we have
analytically classified the piston-like dynamics of a dissi-
pationless easy-plane ferromagnetic channel subject to spin
injection at one channel boundary. This framework enables
the analytical description of noncollinear magnetic textures
beyond the small-amplitude, weakly nonlinear regime.

Two properties of the system are fundamental to our
analysis. First, the piston analogy naturally leads to the
investigation of magnetic sub- to supersonic conditions, cor-
responding to distinct piston boundary behavior: either a
constant hydrodynamic flow in the subsonic case, or a soliton
or a non-stationary partial DSW (PDSW), both in the super-
sonic case. We provided quantitative characterization of the
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solutions using modulation theory and qualitative identifica-
tion of the PDSW solutions.

Second, the modulation equations exhibit nonconvex-
ity where the modulation velocities coalesce. Adopting the
method developed in [33], a nonclassical dispersive shock
wave solution, a contact DSW (CDSW), is predicted when
the system exhibits nonconvexity as a single wave or one
component of a composite wave. A distinguishing feature is
a short, smooth ramp at the algebraic soliton edge of a CDSW
where the soliton connects to a dispersionless (nonoscillatory)
portion of the solution.

While our analysis was developed for conservative spin
dynamics applicable over short enough time scales, it has
intriguing implications for longer times wherein magnetic
damping leads to relaxation of the dynamics to a steady
configuration. First, rarefaction waves expand in time with
negligible oscillations. This implies that such a solution min-
imizes the excitation of spin waves in the system. On the
contrary, spin shocks exhibit pronounced oscillations that can
reflect many times in the channel before being quenched by
magnetic damping. While this can be seen as a disadvantage,
it is also important to note that the spin waves excited by a
spin shock are launched within a specific spectral band that
is determined by the transition between the left and right
states [43], opening opportunities for controllable transport of
angular momentum by means of pulsed injection. Such spin
waves have typically high propagation speeds, recently ob-
served in the context of current-induced domain wall motion
in perpendicular magnetic anisotropic van der Waals magnets
[14]. Second, we find that a stationary soliton established
in the conservative regime can remain after stabilization via
damping, resulting in the contact soliton-dissipative exchange
flow [10]. Third, numerical simulations in [12] show that it is
also possible to excite propagating soliton trains that persist,
oscillating back and forth in the channel, even in the presence
of damping. In additional simulations, we observe here that
such solitons are excited precisely when the originating spin
shock contains a CDSW. These are examples of situations
where the transient dynamics impact the transport character-
istics of the dissipative exchange flow in equilibrium.

The dispersive hydrodynamic interpretation of ferromag-
netic dynamics allows one to adopt a large pool of analytical
tools that are traditionally used for classical fluids, which pro-
vides new perspectives on the study and understanding of spin
dynamics. The dynamical problem studied here has a problem
setup that is designed to be experimentally accessible and we
expect our methodology to aid the experimental realization
of superfluid-like spin transport in the form of nonuniform
magnetic textures.
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APPENDIX: DETERMINATION OF THE PHYSICAL WAVE

PATTERN GIVEN RIEMANN INVARIANTS

In this Appendix, we present additional information on the
characterization of periodic traveling wave solutions to the
LL equation (1). The LL-Whitham equations in terms of the
Riemann invariants λ = (λ1, λ2, λ3, λ4) have been given in
(23). The family of traveling waves dynamics satisfy Eq. (8).
The quartic polynomial R(n) can be written in terms of four
roots {ni}4

i=1. It can also be expressed in terms of the Riemann
invariants λ [33] where

R(n) = n4 +
s1 + s3

f1
n3 + s2n2 +

(

f1s1 −
s1 + s3

f1

)

n

+
1

4

(

s2
1 − 4 − 4s2 + 4 f 2

1

)

, (A1)

s1 =
4

∑

i

λi, s2 =
4

∑

i< j

λiλ j, s3 =
4

∑

i< j<k

λiλ jλk,

s4 = λ1λ2λ3λ4, (A2)

λ′
i =

√

1 − λ2
i , s′

4 = �4
i λ

′
i. (A3)

For a given set of Riemann invariants λ, there are four possible
physical wave patterns corresponding to four possible choices
of f1:

f1 = ±
√

(1 + s2 + s4 + s′
4)/2, (A4a)

or f1 = ±sgn(s1 + s3)
√

(1 + s2 + s4 − s′
4)/2, (A4b)

This 4-valued mapping of Riemann invariants to travel-
ing wave profiles implies that the LL-Whitham modulation
system is nonconvex. Later, we denote f1a as f1 taking the
positive expression in (A4a) and f1b as f1 taking the positive
expression in (A4b). The fluid velocity can be computed from

FIG. 11. The choice of f1 depending on the location of (uL, nL ).
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the density as

u(ξ ) = −
f1 + s1

2
n

1 − n2
. (A5)

The multivalued mapping from the Riemann invariants to
the roots of the potential function are [33]:

n1 = −
1

2 f1

(λ3 − λ2)s̃1 + (λ3 − λ1)s̃2 − (λ2 − λ1)s̃3

(λ3 − λ2)λ′
1 + (λ3 − λ1)λ′

2 − (λ2 − λ1)λ′
3

,

n2 = −
1

2 f1

(λ3 − λ2)s̃1 + (λ3 − λ1)s̃2 + (λ2 − λ1)s̃3

(λ3 − λ2)λ′
1 + (λ3 − λ1)λ′

2 + (λ2 − λ1)λ′
3

,

n3 = −
1

2 f1

(λ3 − λ2)s̃1 − (λ3 − λ1)s̃2 − (λ2 − λ1)s̃3

(λ3 − λ2)λ′
1 − (λ3 − λ1)λ′

2 − (λ2 − λ1)λ′
3

,

n4 = −
1

2 f1

(λ3 − λ2)s̃1 − (λ3 − λ1)s̃2 + (λ2 − λ1)s̃3

(λ3 − λ2)λ′
1 − (λ3 − λ1)λ′

2 + (λ2 − λ1)λ′
3

,

(A6)

where s̃i = (s1 − λi)λ
′
i + s4

λ′
i

λi
∓ s′

4
λi

λ′
i

. The upper sign in s̃i is

for f1a given by (A4a) and the lower sign is for f1b given by
(A4b). The other two cases when f1 < 0 leads to reordering
of the expressions of ni’s, which is ni ← n5−i, i = 1, 2, 3, 4.

Depending on which triangle, divided by the diagonal and
antidiagonal of the square [−1, 1] × [−1, 1] the left constant
state (uL, nL ) lies in, the choice of f1 is shown in Fig. 11.

[1] E. Iacocca and M. A. Hoefer, Perspectives on spin hydrody-

namics in ferromagnetic materials, Phys. Lett. A 383, 125858

(2019).

[2] E. B. Sonin, Superfluid spin transport in magnetically ordered

solids (Review article), Low Temp. Phys. 46, 436 (2020).

[3] B. Halperin and P. Hohenberg, Hydrodynamic theory of spin

waves, Phys. Rev. 188, 898 (1969).

[4] J. König, M. C. Bønsager, and A. H. MacDonald, Dissipation-

less Spin Transport in Thin Film Ferromagnets, Phys. Rev. Lett.

87, 187202 (2001).

[5] E. Sonin, Spin currents and spin superfluidity, Adv. Phys. 59,

181 (2010).

[6] S. Takei and Y. Tserkovnyak, Superfluid Spin Transport

Through Easy-Plane Ferromagnetic Insulators, Phys. Rev. Lett.

112, 227201 (2014).

[7] H. Chen, A. D. Kent, A. H. MacDonald, and I. Sodemann,

Nonlocal transport mediated by spin supercurrents, Phys. Rev.

B 90, 220401(R) (2014).

[8] E. Iacocca, T. J. Silva, and M. A. Hoefer, Breaking of Galilean

Invariance in the Hydrodynamic Formulation of Ferromagnetic

Thin Films, Phys. Rev. Lett. 118, 017203 (2017).

[9] E. Iacocca, T. J. Silva, and M. A. Hoefer, Symmetry-broken

dissipative exchange flows in thin-film ferromagnets with in-

plane anisotropy, Phys. Rev. B 96, 134434 (2017).

[10] E. Iacocca and M. A. Hoefer, Hydrodynamic description of

long-distance spin transport through noncollinear magnetiza-

tion states: Role of dispersion, nonlinearity, and damping, Phys.

Rev. B 99, 184402 (2019).

[11] M. Evers and U. Nowak, Transport properties of spin superflu-

ids: Comparing easy-plane ferromagnets and antiferromagnets,

Phys. Rev. B 101, 184415 (2020).

[12] M. Hu, E. Iacocca, and M. A. Hoefer, Spin-injection-generated

shock waves and solitons in a ferromagnetic thin film, IEEE

Trans. Magn. 58, 1300105 (2021).

[13] D. A. Smith, S. Takei, B. Brann, L. Compton, F. Ramos-Diaz,

M. J. Simmers, and S. Emori, Diffusive and fluidlike motion of

homochiral domain walls in easy-plane magnetic strips, Phys.

Rev. Applied 16, 054002 (2021).

[14] D. Abdul-Wahab, E. Iacocca, R. F. Evans, A. Bedoya-Pinto, S.

Parkin, K. S. Novoselov, and E. J. Santos, Domain wall dynam-

ics in two-dimensional van der Waals ferromagnets, Appl. Phys.

Rev. 8, 041411 (2021).

[15] P. Stepanov, S. Che, D. Shcherbakov, J. Yang, R. Chen,

K. Thilahar, G. Voigt, M. W. Bockrath, D. Smirnov, K.

Watanabe et al., Long-distance spin transport through a

graphene quantum Hall antiferromagnet, Nat. Phys. 14, 907

(2018).

[16] T. Schneider, D. Hill, A. Kákay, K. Lenz, J. Lindner,

J. Fassbender, P. Upadhyaya, Y. Liu, K. Wang, Y. Tserkovnyak,

I. N. Krivorotov, and I. Barsukov, Self-stabilizing spin super-

fluid, Phys. Rev. B 103, 144412 (2021).

[17] A. Hoffmann, Spin Hall effects in metals, IEEE Trans. Magn.

49, 5172 (2013).

[18] W. Yuan, Q. Zhu, T. Su, Y. Yao, W. Xing, Y. Chen, Y.

Ma, X. Lin, J. Shi, R. Shindou et al., Experimental signa-

tures of spin superfluid ground state in canted antiferromagnet

Cr2O3 via nonlocal spin transport, Sci. Adv. 4, eaat1098

(2018).

[19] G. El and M. Hoefer, Dispersive shock waves and modulation

theory, Physica D 333, 11 (2016).

[20] E. Iacocca and M. A. Hoefer, Vortex-antivortex proliferation

from an obstacle in thin film ferromagnets, Phys. Rev. B 95,

134409 (2017).

[21] E. Iacocca, Controllable vortex shedding from dissipative ex-

change flows in ferromagnetic channels, Phys. Rev. B 102,

224403 (2020).

[22] P. A. P. Janantha, P. Sprenger, M. A. Hoefer, and M. Wu, Obser-

vation of Self-Cavitating Envelope Dispersive Shock Waves in

Yttrium Iron Garnet Thin Films, Phys. Rev. Lett. 119, 024101

(2017).

[23] M. A. Hoefer, M. J. Ablowitz, I. Coddington, E. A. Cornell,

P. Engels, and V. Schweikhard, Dispersive and classical shock

waves in Bose-Einstein condensates and gas dynamics, Phys.

Rev. A 74, 023623 (2006).

[24] T. Bienaimé, M. Isoard, Q. Fontaine, A. Bramati, A. M.

Kamchatnov, Q. Glorieux, and N. Pavloff, Quantitative Anal-

ysis of Shock Wave Dynamics in a Fluid of Light, Phys. Rev.

Lett. 126, 183901 (2021).

[25] G. Xu, M. Conforti, A. Kudlinski, A. Mussot, and S. Trillo,

Dispersive Dam-Break Flow of a Photon Fluid, Phys. Rev. Lett.

118, 254101 (2017).

[26] S. Trillo, M. Klein, G. Clauss, and M. Onorato, Observation of

dispersive shock waves developing from initial depressions in

shallow water, Physica D 333, 276 (2016).

104419-13



HU, IACOCCA, AND HOEFER PHYSICAL REVIEW B 105, 104419 (2022)

[27] M. D. Maiden, N. K. Lowman, D. V. Anderson, M. E. Schubert,

and M. A. Hoefer, Observation of Dispersive Shock Waves,

Solitons, and Their Interactions in Viscous Fluid Conduits,

Phys. Rev. Lett. 116, 174501 (2016).

[28] H. W. Liepmann and A. Roshko, Elements of Gasdynamics

(Wiley, New York, 1957).

[29] G. B. Whitham, Nonlinear dispersive waves, Proc. R. Soc. A.

Math. Phys. Sci. 283, 238 (1965).

[30] G. B. Whitham, Linear and Nonlinear Waves, Vol. 42 (John

Wiley, New York, 2011).

[31] A. M. Kamchatnov, Nonlinear Periodic Waves and Their Mod-

ulations: An Introductory Course (World Scientific, Singapore,

2000).

[32] B. Riemann, über die fortpflanzung ebener luftwellen von

endlicher schwingungsweite, Abh. d. Königl. Ges. d. Wiss.

zu Göttingen 8, 43 (1860).

[33] S. K. Ivanov, A. M. Kamchatnov, T. Congy, and N. Pavloff,

Solution of the Riemann problem for polarization waves in

a two-component Bose-Einstein condensate, Phys. Rev. E 96,

062202 (2017).

[34] M. A. Hoefer, M. J. Ablowitz, and P. Engels, Piston Dispersive

Shock Wave Problem, Phys. Rev. Lett. 100, 084504 (2008).

[35] A. M. Kamchatnov and S. V. Korneev, Flow of a Bose-

Einstein condensate in a quasi-one-dimensional channel under

the action of a piston, J. Exp. Theor. Phys. 110, 170

(2010).

[36] M. E. Mossman, M. A. Hoefer, K. Julien, P. G. Kevrekidis, and

P. Engels, Dissipative shock waves generated by a quantum-

mechanical piston, Nat. Commun. 9, 4665 (2018).

[37] A. Bendahmane, G. Xu, M. Conforti, A. Kudlinski, A. Mussot,

and S. Trillo, Phase transitions of photon fluid flows driven by

a virtual all-optical piston, arXiv:2007.16060.

[38] G. El, M. Hoefer, and M. Shearer, Dispersive and diffusive-

dispersive shock waves for nonconvex conservation laws, SIAM

Rev. 59, 3 (2017).

[39] P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals

for Engineers and Physicists (Springer-Verlag, Berlin, 1954).

[40] P. D. Lax, Hyperbolic Systems of Conservation Laws and the

Mathematical Theory of Shock Waves (SIAM, Philadelphia, PA,

1973).

[41] R. Courant and K. O. Friedrichs, Supersonic Flow and Shock

Waves (Springer-Verlag, Berlin, 1948).

[42] T. Marchant and N. Smyth, Initial-boundary value problems for

the korteweg-de Vries equation, IMA J. Appl. Math. 47, 247

(1991).

[43] M. Conforti, F. Baronio, and S. Trillo, Resonant radiation

shed by dispersive shock waves, Phys. Rev. A 89, 013807

(2014).

104419-14


