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Drying of fine hair and fibers induces dramatic capillary-driven deformation, with important implications
on natural phenomena and industrial processes. We recently observed peculiar self-assembly of hair
bundles into various distinct patterns depending on the interplay between the bundle length and the
liquid drain rate. Here, we propose a mechanism for this pattern selection, and derive and validate
theoretical scaling laws for the polymorphic self-assembly of polygonal hair bundles. Experiments are
performed by submerging the bundles into a liquid bath, then draining down the liquid. Depending on
the interplay between the drain rates and the length of the fibers, we observe the bundles morphing
into stars (having concave sides), polygons (having straight edges and rounded corners), or circles. The
mechanism of self-assembly at the high drain regime is governed by two sequential stages. In the first
stage of the high drain rate regime, the liquid covers the outside of the bundles, and drainage from
inside the bundle does not play a role in the self-assembly due to the high viscous stress. The local
pressure at the corners of the wet bundles compresses the fibers inward blunting the corners, and the
internal lubrication facilitates fiber rearrangement. In the second stage, the liquid is slowly draining from
within the fiber spacing, and the negative capillary pressure at the perimeter causes the fibers to tightly
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1. Introduction

Drying of granular-like structures such as particles, hairs and
fins plays a critical role in both natural phenomena, such as
soil drying, and industrial processes, such as binder removal
and capillary infiltration in material processing.'™ Hairs and
long fibers have inherent flexibility due to their high aspect
ratio, showing intriguing shape morphing and self-assembly.
As an example of morphing hair in nature, otters, one of the
semiaquatic mammals in the animal kingdom, utilize their
hairs with cuticle patterns to trap air bubbles near their skin to
regulate their body temperature during swimming.’ Moreover,
in nanomanufacturing, carbon nanotubes assemble and
significantly deform, driven by capillarity, as they dry.*” This
nanoscale self-assembly can be used to fabricate and tailor
surface textures at high resolution and fast rates. In all of these
processes, the kinetics play an important role on the final
morphing shape of the hairs.
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studying the complicated physics of wet granular drying.

Capillary forces cause elastic deformation when a liquid
meniscus forms between slender structures, a phenomenon
known as elastocapillarity.® Here, balancing between bending
and capillary energies gives the elastocapillary length, l.. ~
(B/y)"?, where B and y are the bending stiffness per unit width
and surface tension.” When the structure size is larger than I,
it gets deformed by capillarity. We routinely observe elastoca-
pillarity in our daily lives, such as painting, washing long hair,
and drying of soils, wet grass or leaves.'® Inspired by these
intriguing phenomena, scientists have studied the deformation
of flexible lamellae,"*™** and capillary rise in soft deformable
solids.">"”

Recently, our group and others observed that different self-
assembly morphologies are observed as a function of the rate of
drainage. We have shown that hydrodynamic elastocapillary-
driven assembly of hairy structures leads to bundle morphing
into various patterns.’®* Currently, there are no theoretical
scaling law models which can capture the drain rate depen-
dence of the self-assembly patterns, also referred to as elasto-
capillary mode shapes. In particular, the mechanics of hairy
bundles is extremely complex, exhibiting nonlinear packing
leading to increase the resistance to compression.'® This pack-
ing, in the case of hollow bundles, also controls the resistance
to fluid flow through the bundles which sets the time scale of
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bundle morphing from an open bundle (having an internal
hole) at low drain rate, to a closed bundle at high drain rate.
However, for polygonal self-assembly, where there is no inter-
nal hole, it is not clear how the drain rate leads to dynamic
pattern selection.

Here, we start with an experimental investigation of the
multimodal self-assembly of prismatic bundles having triangu-
lar, square and pentagon cross sections. We then derive scaling
laws to theoretically analyze the assembly modes driven by
dynamic elastocapillarity. Considering the mechanics of
packed hairs, we propose a nonlinear elastic force law and
construct a theoretical model to predict the final shapes of the
prismatic bundles emerging from the liquid with different
drain rates. We finally compare the prediction model and the
experimental measurements of elastocapillary deflections
affected by drain dynamics.

2. Phenomenology of dynamic
capillary morphing

A. Experimental observations

To investigate the polymorphic assembly of the polygonal hair
bundles, we use a 3D printer (Micro Plus ¢cDLM, Envisiontec) to
fabricate various types of polygonal bases (triangle, square, and

pentagon) having an array of holes forming a triangular, square
or pentagon assembly, then insert individual carbon fiber tows
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with length [ into the holes. The depth of the holes completely
penetrates the base, and the fiber tows are fixed using an
adhesive. A single carbon fiber tow has approximately 4600
fibers 2.5 um in radius r. Since the bundles homogeneously
swell when they are submerged in water, and the holes spacing
is quite small, we can consider that they have uniform spacing
d between the fibers. In the experiment, the radius of the
polygons’ circumcircle, distance from center to the polygon
corners, is R = 7 mm. The left side of Fig. 1 shows the
schematics of the submerged prismatic hair bundles.

We submerge the bundles into a liquid bath, then pull them
out from the liquid using a motorized linear stage (EAS series,
Oriental motor). Depending on the motor speed of the linear
stage, we control the drain rates u ranging from 0.1 to
100 mm s '. We mount a DSLR camera on the top of the
bundles to optically shoot the top view of the assembled
bundles patterns. The top views of the initial and final shapes
can be observed in the right to each schematic of Fig. 1. After
drainage, the hairs of the bundles stick together by surface
tension. For hair length / > 10 mm, all hairs fully assemble,
forming a star (concave polygon), polygon, and circle shapes as
increasing u and [ (see Fig. 1). We note that when [ is very short
(! = 10 mm), the hairs cannot completely cluster together
forming a hole in the center.”®

Short bundles (small /) or at slow drain rates (slow u), the
bundles assemble into star shapes, with concave sides and
relatively pointy corners. They form circle shapes when they are
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Fig. 1 Dynamic pattern selection in polymorphic elastocapillary of prismatic hair bundles having (a) triangular, (b) square, and (c) pentagon cross section.
The schematics on the left side of (a—c) show the submerged bundles, and the rest show the bundles having different final patterns after complete
drainage. The experimental top view photographs of the bundles are located at the right side of each 3D schematics. In the plots, empty polygons, filled
polygons, and circles correspond to star, polygon, and circle shapes, respectively. The symbol x corresponds to bundle self-assembly with a hole
forming at the center. The darkness of the symbols indicates the increase in the original bundle length (, for the same bundle size R = 7 mm. Movie S1
(ESIT) shows the assembly videos of three modes (star, polygon, and circle) in three polygons (triangle, square, and pentagon). All scale bars are 5 mm.
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Fig. 2 Geometric parametrization of polymorphic assembly of polygonal bundles. (a) The morphology of the assembled bundles in various drain rates
when [ = 25 mm and R = 7 mm (see Movie S2, ESIt). Scale bar is 5 mm. (b) Description of the final shapes of the triangular bundles. The angle 0 of the
orange region is different for each type of polygon, but the bundles are design to have the same R. The black frame shows the geometric parametrization
of the assembly modes by the roundness, s. Orange dashed lines correspond to the unit cell of polygons. (c) Experimentally measured s versus u for

various geometries. All symbols are listed in the plots of Fig. 1.

sufficiently long (large /) and at fast drain rates (fast u). Between
these two extremes, there is a transition regime where they form
polygon shapes with straight sides and rounded corners. We plot
the trend of assembly modes for various / and u on the right side of
Fig. 1. As shown in Fig. 2(a), the final shapes transition from star to
circle shapes as u increases even with the same bundle stiffness
(same ). We observe that the bundles rearrange their configuration
and become more circular at the early stage of the high drain rate
regime (high %), as shown in Movies S1 and S2 (ESIf). In the
following, we will discuss how the prismatic bundles assemble into
various shapes due to both dynamical and geometrical effects.

First, to make the problem accessible by scaling laws, we
propose a geometric parameter to describe the diversity of the
self-assembly patterns. Taking symmetry into account, we con-
sider a right-angle triangular unit cell in the polygons and
quantitatively describe the geometry of the final shapes with
this single numerical value, that we refer to as roundness s as
shown in Fig. 2(b). The unit cell corresponds to the orange area
in each polygon, as shown in the orange dashed lines of
Fig. 2(b). As the number of sides of the polygons increases,
the corner angle of the unit cell, 0, increases. Here, we geome-
trically simplify the final shapes of the unit cell, as shown in the
black box of Fig. 2(b). Comparing two typical deflections:
diagonal (hypotenuse of the unit cell) direction, J, and the
direction normal to the side of the polygon d,, we approxi-
mately describe the assembly mode shapes, where the round-
ness s can be written as

dsin 6
= (1)

264 | Soft Matter, 2022,18, 262-271

The final shape is a star, polygon, or circle when s < 1, s =1,
and s > 1, respectively. We will theoretically derive scaling laws
to calculate 6 and Jd,, of eqn (1) in detail in the next sections.
We experimentally measure 6 and J, of the unit cell by
averaging the values at every corner and side of the polygonal
bundle. Using eqn (1), we plot s for various values of the drain
rate « and bundle length /, as shown in Fig. 2(c). The plot uses
darker shade of the markers’ colors to visually show that s
steadily increases when [ or u increases. The assembled bundle
tends to become more circular when s > 1, while it shows a
star-like shape when s < 1. The bundles show a transition
region of polygon shapes when s =~ 1. This simple but some-
what quantitative geometric analysis allows us to capture the
self-assembly patterns. Final assembly patterns are sponta-
neously selected not only due to changes in u (dynamic effects)
but also [ (stiffness of bundles), as shown in the plots of Fig. 1.
We note some characteristics of the s parameter and its
sensitivity to the type of polygon. For triangles, as observed in
Fig. 2(c), the s parameter is observed to (1) be numerically
shifted to lower values, (2) show data spread over a wider range
and (3) have a more “blurred” transition compared to more
circular shapes like squares and pentagons. As shown in
Fig. 2(c), the average value of the experimentally measured
/3, is 0.9 when 7 = 15 mm and u = 0.1 mm s~ (the smallest
length and drain rate in the experiments). While having this
same value of /0, = 0.9, we observe the difference in the
calculated s & 0.45, 0.63, and 0.72 for the triangle, square,
and pentagon, respectively. This can also be considered from
the constant s perspective. For instance, s = 1 correspond to /0,
of 2, 1.41 and 1.24 for triangle, square and pentagon

This journal is © The Royal Society of Chemistry 2022
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Fig. 3 Mechanism of capillary compression of polygonal bundles. (a) General mechanism of bundle morphing during the drainage showing the two
stages of the fast drainage; whereas only stage 2 plays a role in the slow drainage. The bundles are rearranged by d4 due to the dynamic effects and then
further shrink by d, in a diagonal and ¢,, in a normal direction. The black boxes indicate the side view of the bundles in the assembly process. The dashed
orange lines correspond to the unit cell of the triangles. (b) Forces during the dynamic rearrangement of stage 1. Schematics of the external dynamic rise
height induced by u. The black box shows the force blunting the corners F4 operating along height h. (c) Fiber aggregation during stage 2 is governed by
capillary pressure, y/b, between the fibers. The black box shows the close-up view of the compression direction at the corner, considering the evolution

of the morphology after stage 1.

respectively. Based on all these observations, a single numerical
parameter, s, can typically capture the complex geometrical
description of a wide variety of polygons and other shapes (stars
and circles). We believe it greatly helps the mathematical
modeling of the area of self-assembly of complex patterns.

Morphing mechanism

We find that the mechanism is best understood by considering
the fast drain rate regime first. In the fast drainage regime, the
assembly can be divided into two sequential processes:
dynamic rearrangement (stage 1), then slow capillary aggrega-
tion (stage 2), as shown in Fig. 2(a). Fig. 3(a) provides schematic
snapshots of the two morphing stages. As the bundles emerge
from the bath, the hairs piece the liquid interface without
buckling and start to assemble. In stage 1, the liquid covers
the outside of the bundles due to the high viscous stress
between the small spacings of fibers while the horizontal
liquid-air interface outside is freely descending at a
velocity u. The sharp corners of polygonal bundles cannot
maintain their small radius of curvature due to the local high
Laplace pressure caused by the curvature. In this stage hence,
the corners get blunted to release the corner’s pressure, and
compress the fibers inward. The liquid covering the bundle
compresses the soft lubricated fibers by d4 in the diagonal
direction toward the centroid. This leads to dynamic rearrange-
ment of the bundles where the initial spacing d, changes to d.
The local pressure mostly acts on the corner, rather than the
side, since the pressure difference can be negligible at the flat
side of the bundle when it is covered with a thick liquid film (no
menisci). Fig. 2(a) shows that the lubricated bundles with the
same [ self-assemble into more circular configurations when
the drain rate is fast. Because this initial rearrangement is the
initial condition to the subsequent aggregation stage, stage 1

This journal is © The Royal Society of Chemistry 2022

strongly influences the final shape observed after fast drainage
even after the liquid is fully drained. Stage 2 takes a longer
duration and starts after the initial dynamic rearrangement and
the thick film covering the bundle drains. Capillary pressure in
the menisci within the spacing between the fibers causes the
bundles to shrink by J, at the corners, or J,, on the flat sides to
eventually form a star, polygon, or circle shape. Thus, the total
deflection at the corner is § = d4 + J,. Even in the fast drainage
regime, stage 2 is slow, and it typically takes about 20 s for the
liquid to drain and the final bundle geometry to form.

At slow drain rates, the liquid film around the bundles in
constantly drained down under the force of gravity, unlike the
fast drainage, and small menisci are left within the fiber
spacings. From the in situ observations, we note that only stage
2, capillary aggregation, affects the assembly process, and stage
1 can be ignored. The negative pressure in the menisci between
the fiber spacings along the perimeter of the bundle com-
presses the bundles inward from all directions. The rearrange-
ment (stage 1) due to the dynamic effects does not affect the
final pattern, and the assembly process directly starts from the
aggregation step (stage 2). Thus, in the slow drainage regime, dq
~ 0 and the total deflection can be written as 6 ~ 0J,.

3. Scaling laws of hydrodynamic
elastocapillary polymorphing
A. Capillarity forces excreted on the hair bundles

In stage 1, which only affects the fast drain rate experiments, a
liquid film covers the perimeter of the polygonal bundles. At
the corners, the local pressure tends to increase the radius of
curvature and blunts the corners, as shown in Fig. 3(b). A
dynamical capillary force, Fyq, compresses the corners of the
soft lubricated bundles. The local pressure difference driven by

Soft Matter, 2022,18, 262-271 | 265
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capillarity can be written as p; — po = y/a, where 7 is surface
tension and a is the radius of the curvature of the meniscus
covering the corner. Here, we assume that the typical arc of the
meniscus scales as a. Then, we can typically set the surface area
as ah, where & is an external rise height raised by the drain
dynamics. Multiplying the surface area and the local pressure,
we obtain

Fq ~ yha (2)

as shown in the black box of Fig. 3(a). The external rise height,
h, arises at the outermost fibers when the bundles emerge from
the water bath. According to the classical model for 4 (Landau-
Levich film problem), we can express the characteristic length
h ~ [.CaY®2* [, is the capillary length of the liquid used,
I. = (y/pg)""?, where p and g are the density of the liquid and
gravitational acceleration, respectively. Ca is the capillary num-
ber, Ca = uu/y, where u is liquid viscosity. Using h ~ [.Ca'?,
eqn (2) yields Fq ~ y”°(pg) Y*(uu)". This force leads to a
deformation J4 at the corners. The stiffness relating the force to
the deformation is described in the next section. At fast u, the
soft lubricated bundles become circular due to the large
magnitude of Fy, as shown in the bottom images of Fig. 3(b).
This is associated with fiber rearrangement leading to changing
the shape of the unit cell. We approximate this shape change as
shown in Fig. 3(c), by deriving the relation of the new corner
angle, 04. Using the sine rule, we mathematically write

0 tdn’l{ Rsin0cos 0 }
4 =t

R(cos 0)2 — 64 (3)

According to eqn (3), 03 & 6 when J4 is very small (slow u). We
note that £, the external film height, is valid only within stage 1.
At the end of this stage, the liquid film surrounding the bundle
is completely drained. Once the liquid starts to drain through
the fiber spacing (stage 2), % is not valid. We indeed rationalize
a characteristic time scale relevant only for the early stages of
the rearrangement governed by /1 ~ [.Ca'?, at the fast drainage
regime. Using this 7 scaling, the characteristic growth time
scale of the external rise height is expressed as t© ~ h/u, so
T~ yY%(pg) 2 u*u"*?. We compare the theoretically pre-
dicted t with the experlmentally measured rearrangement time,
as shown in Fig. 4(a). The plot of Fig. 4(b) shows that the
rearrangement time scale obeys the relation u **. Based on
this result, one can accept that the Landau-Levich problem
governs the characteristic time scale of the external dynamic
rise and the dynamic rearrangement, which is relevant in the
early stage of the fast drainage regime.

Next, the assembly proceeds to stage 2: capillary aggregation
of the hairs. While the liquid continues to slowly drain from
within the bundles, the meniscus between the fibers leads to
the capillary pressure acting perpendicular to the polygon
sides. Thus, the capillary pressure can be expressed as 7y/b,
where b is the radius of the curvature of the meniscus between
the fibers, as shown in Fig. 3(c). This compression pressure is
applied to total fiber length [ so that the surface area can be
scaled as bl. Multiplying the pressure and the surface area, we
obtain the side compression force, F. ~ 7yl. At the corner,

266 | Soft Matter, 2022, 18, 262-271
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end of the rearrangement stage in the fast drainage regime. All three
bundles have { = 25 mm and drain rate u = 100 mm s~ Scale bar is 5 mm.
(b) Comparison between experimentally measured rearrangement time
(open symbols) and theoretically predicted growth time (black line). The
black theoretical line is © = ch/u, where ¢ = 5.5 is a prefactor of the scaling
law to precisely fit the experiments. The error bars of the data correspond
to the standard deviation of all experimental measurements at each drain
rate.

especially, the compression in a diagonal direction is scaled
as ylsinfy by considering the bundle geometry after fiber
rearrangement, as shown in the black box of Fig. 3(c). We note
that the resulting deformation due to aggregation has different
values in the corners J, than the side J,, not only due to the
different force, but also due to different stiffness as described
in the next section.

B. Nonlinear restoring stiffness of the bundles in the
aggregation stage

First, we consider the nonlinear stiffness of a fiber array where
each fiber is treated as a cantilever, and the stiffness of the
array is governed by the fibers progressively making contact as
the deformation is increased. The fibers are wet; so this case is
relevant for the hydrodynamically lubricated fibers. The elastic
deflection of a single soft rod obeys the classical Hooke’s law,
where the deflection is linearly proportional to the elastic force.
However, the situation will be qualitatively different when the
row of hairs, having initial spacing d, sequentially come into
contact, as shown in Fig. 5(a). When the deformation is larger
than d, the total deflection can be expressed as 6, ~ nd, where

This journal is © The Royal Society of Chemistry 2022
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of fibers. (c) Capillary aggregation with packing effects in the diagonal direction. The darkness of the gray tones indicates increased packing and stiffness.
The black boxes on the right illustrate the fibers in the diagonal direction before (top) and after (bottom) packing. n, is an effective row size perpendicular
to the diagonal direction. (d) Comparison between quadratic force laws with packing effects (solid lines) and without them (dashed lines). The line colors
in order from light to dark correspond to [ = 10, 20, and 30 mm. In the computation, we exclude the dynamic effects (34 = 0) and use 6 = 30° (triangle).

n is the number of fibers coming into contact. When all hairs in
a row are in contact but still lubricated, we sum all-individual
fiber deflection to express the elastic resistance force:

El
F:[_3

521 + nii((sa - id):| ’ (4)
i=1

where 7 is integer numbers ranging from 1 ton — 1. E and [ are
Young’s modulus and second moment of area of a single rod,
respectively. The summation equation of eqn (4) yields

F:%[aan—@} (5)

Using the relation §, ~ nd, eqn (5) becomes

El
~ @5327 (6)

F
when n » 1."®" Since the deformation is typically larger than
the spacing d, as shown in Fig. 5(b), we use this quadratic force
law (F oc J,%), instead of the linear force law.

Due to the inward nature of the capillary forces, the bundle
stiffness is also governed by packing effects. This especially
affects the diagonal direction where fibers from the side tend to
deposit in the diagonal direction due to the large deformation
of the bundle’s cross section. The packing effects lead to a
nonlinear stiffness law due to elimination of internal voids.
Specifically, in both the initial and final packing configurations
of the unit cell, the bundle has internal voids. However, the
decrease in these voids due to aggregation causes significant
stiffening effect due to packing. It is important to model the
packing-induced stiffening by considering the fiber rearrange-
ment. The rearrangement is driven by the capillary forces
between individual fibers which pulls the fibers closer together

This journal is © The Royal Society of Chemistry 2022

as the bundle deforms (see Fig. 5(b)). Hence, the direction of
the capillary forces changes with the bundle deformation, a
phenomenon known in solid mechanics as “‘follower forces”,
defined here as forces which change their absolute direction
due to large deformation.”® Under the effect of follower forces,
the fibers in the “diagonal” direction provide larger resistance
to deformations due to rearrangement. The black box of
Fig. 5(c) schematically shows the expected packing configu-
ration of the assembled bundles, where rows of fibers, acting
like parallel springs, resist the deformation in the diagonal
direction. We mathematically derive a force law for the packed
bundle due to aggregation at the corners (see Appendix A for
details). The restoring force of the bundle in the diagonal
direction is:

poR R . El
Fy ~ (p_t7R —5sin 0 cos 0)@53 . )

The predictive expression of eqn (7) resembles eqn (6) but has
the effect of large changes in packing in the pre-factor of the
right hand side. In this pre-factor, p, and pr are the dimension-
less initial and final area fraction of fibers (as observed from
the top), which have values of 0.089 £+ 0.006 and 0.37 £ 0.11,
respectively as measured experimentally. Fig. 4(d) shows the
difference between quadratic force law with and without pack-
ing effects, by theoretically comparing eqn (6) and (7). As
expect, the significant stiffening is due to the terms R/r ~ 10°
and the packing causes increased stiffening as governed by the
term R — ¢ in the denominator. We find that the packing force
law is critical to capture the pattern selection in elastocapillar-
ity of prismatic hair bundles.

Soft Matter, 2022, 18, 262-271 | 267


https://doi.org/10.1039/d1sm01376a

Published on 24 November 2021. Downloaded by University of Illinois Urbana-Champaign on 9/5/2022 3:18:21 PM.

Soft Matter

4. Nonlinear capillary force—deflection
relations

We derive the dynamic deflection d4, relevant for the fast
drainage regime (high ). In this stage, we treat the bundles
as soft noninteracting beams with lubricated interfaces. The
elastic resistance of the soft floppy bundles having N fibers can
be simply expressed as F, = NEI/I?34. The details of the expres-
sion of N are in Appendix A. Using the dynamic capillary force
F4 of eqn (2), the force balance (Fs; ~ Fy) leads to yh = NEI/I’54.
Please note that the external rise height can be written as
h ~ L(uu/y)"” being a function of u, so d4 can be neglected
when u is very small. Based on this force balance, the normal-
ized deflection due to dynamic effects dq4 = 54/R can be theore-
tically written as

da = da(Ang)*¢, (8)

where agq = 7/(kpoR), 2 = l/R is the aspect ratio, n = I/l is the
elastocapillary number, and ¢ = (cos0) "/* is the roundness
factor of the polygon, where the polygonal shapes become close
to a rounded shape as 0 increases. k is a prefactor for
the scaling law. The dimensionless external rise height,
{ = h/l(sin 0) " being a function of u, indicates the magnitude
of the dynamic effects.

In stage 2, the rearranged bundles undergo further deforma-
tion due to fiber aggregation. In this stage, the capillary
compression in the diagonal direction (F.sin0y) is balanced
by F, of eqn (7), such that we can write y/sin 04 = [(po/pg)(R/T)R/
(R — 6) sin 0 cos O]EI/(dPP)s,2, where § = 54 + 6,. We rearrange the
preceding relation in terms of d,, make some simplifications
(see Appendix B for details), then normalize such that 6, = 5,/R,
and finally obtain

) 1/2

{2 - 0| -aainer

0a = B ) (9)

where o, = pido/(poR). The quadratic solution of eqn (9) is nonlinear
function of the term /n¢ due to packing effects. We note that the
aggregation model of eqn (9) includes 64 of eqn (8) since stage 2
starts from the dynamically rearranged bundles resulting from stage
1. If the dynamic effects are absent (34 = 0), the assembly is mainly
governed by static capillarity.

N
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Fig. 6 Regime map of the assembly patterns selection. The theoretical
lines of egn (10) in order from left to right are s = 0.9, 1, and 1.1. The vertical
dashed line corresponds to the minimum An¢ for complete assembly,
expressed by egn (11). All symbols are listed in the plots of Fig. 1. In the
computation, k = 0.2. Most of the bundles that self-assemble into starts
(open markers) fall to the left of the s = 0.9 curve, while most of the
bundles that form circular shapes are to the right of the s = 1.1 curve. The
dashed line corresponds to the asymptotic solution reached whens > 1.2,
and corresponds to the asymptotic solution, { ~ 1/[og(A¢)?l.

estimated by a geometric argument by considering the elimina-
tion of spacing between the fibers in the densified state,
leading to 6, & Rdy/(r + d,) sin 0. Normalizing J,, by R gives

sin 0. (10)

_
"t dy
We note that eqn (10) does not depend on capillary forces, since
it is derived based on the geometric arguments of full densifi-
cation (see Appendix C for detail). Based on eqn (8)-(10), the
final deformed shape of the polygon can be estimated as
described in the next section.

5. Scaling prediction of the dynamic
pattern selection

We have theoretically investigated the deflections in the diag-
onal and normal directions so far. For the diagonal direction,
we express & = dq + 0, by combining eqn (8) and (9). The normal
direction can be expressed in eqn (10). Based on eqn (1),
theoretically predicted s can be written as

] l/zf%(inaﬁ)z

2d()/(l‘ —+ d())

In stage 2, the deflection in the normal direction is deter-
mined solely by the geometry, where the capillary force simply
pull the fibers inward until they fully densify with no void
between them. Here, we do not consider rearrangement-
induced packing because of the flat nature of the side, in
contrast with the corner, as shown in the green box of
Fig. 5(b). Back of the envelope calculation support this treat-
ment as mentioned in the Appendix C. The value of §,, can be
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The theoretical model of eqn (11) involves the polygon shape
roundness (¢), bundle aspect ratio (1), elastocapillarity effect
(1), and fluid dynamic effects ({). Using these dimensionless
parameters, we transform the regime map in the plots of Fig. 1
into a universal regime map ({ versus /n¢) in Fig. 6. According
to Fig. 2(c), the range below s = 1 indicates that the final shapes
of bundles are star. When s =~ 1 (transition regime), the
bundles assemble to polygonal shapes. Finally, they select
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circular patterns when s exceeds 1. In Appendix D, we mathe-
matically describe an exact value of s corresponding to trans-
forming each bundle type (triangle, square, pentagon) to a
corresponding regular bundle that is more rounded. As shown
in Fig. 6, one observes theoretical curves for various s ranging
from 0.9 to 1.1, corresponding to three dynamic assembly
modes. We note that the theoretical curves asymptotically
converge to the dashed line in Fig. 6, where { ~ 1/[aa(An¢)*]
when s > 1.2. It shows the star shapes at small iy¢ and (,
which corresponds to high stiffness and negligible dynamic
effects. The middle range of An¢ and { is the transition region,
where the bundles morph to the polygons. Finally, the bundles
become circular in the range of high An¢ and {, which corre-
sponds to large flexibility and dominant dynamic effects.
When An¢ is very small (¢ < 4), an internal void forms in
the bundle due to the strong stiffness even in high ( (see Fig. 6).
Using the preceding model,'" we can roughly estimate the
typical threshold of maximum bundle size following the fiber
length: N, = [I*/(l..d)]*”, where f is a prefactor for the scaling
law. The total number of fibers of the polygon bundle can be
written as N, = ¢cN, where ¢ = 2nt/(n/2 — 0) is the number of the
unit cell in polygons. When the polygon is a triangle, for
example, ¢ = 6. Based on the relation N,, we can express the
minimum /An¢ to completely assemble whole fibers,
3R2 gind 1/4
e

The typical (47¢)m, of eqn (12) by averaging the three polygons
(triangle, square, and polygon) is approximately 4, when f§ = 2.6
(see the vertical dashed line of Fig. 5(b)). Only when An¢ >
(A7¢)m, the bundles show complete fiber assembly into a single
solid bundle, which is our main interest.

6. Conclusions

We have theoretically and experimentally investigated the
polymorphic assembly of hairy bundles by dynamic elastoca-
pillarity. We experimentally show that prismatic hair bundles
exhibit various shapes after assembly due to the interplay
between their stiffness (fiber length) and dynamic capillary
aggregation. By combining in situ experiments and theoretical
scaling laws, we explain the mechanism of pattern selection as
follows. At fast drainage, the liquid initially covers the bundles
due to the high viscous stress in the spacing between the fibers.
The fibers are rearranged by the local pressure at the corners of
soft lubricated bundles due to the presence of thick liquid films
on the perimeter. After this fast rearrangement, the liquid starts
to drain down slowly from the inner parts of the fibers and
menisci appear around the perimeter, then capillary pressure
between the fibers compresses the bundles and cause them to
aggregate and pack. On the other hand, in the slow drainage
regime, the dynamic effects can be ignored, and the fibers
directly aggregate without rearrangement. To construct a scal-
ing law to describe this mechanism, we modeled the packing
effects at the corner of the polygonal bundles during the
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assembly, which lead to a nonlinear elastic force law. We
propose a simple geometric descriptor, referred to as the
roundness s, to describe the bundles’ final shapes, namely
stars, polygons, and circles. We non-dimensionalize the various
factors affect the self-assembly, namely the polygon shapes (¢),
bundle lengths (1), elastocapillary effects (1), and fluid dynamic
effects ({). Using these dimensionless parameters, we theoreti-
cally expressed the deflections in both diagonal and normal
directions of the unit cell, then provide a universal regime map
of morphing polygonal bundles, as shown in Fig. 6. Our
theoretical model captures three distinct assembly modes for
various An¢ and { well. We expect that the present work will be
useful for soft matter fields concerned with predicting complex
morphing geometries such as flexible membranes,***” nano/
microfabrication,”®?° programmable origami,***' and even
some applications of soft robotics and actuators.?*3?
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Appendix A: nonlinear stiffness due to
packing effects

Fiber aggregation leads to packing-induced nonlinear and non-
isotropic stiffening. Due to the geometry of the polygonal bundles,
and the nature of the capillary forces acting inward in a direction
perpendicular to the sides, packing is non-uniform within the
bundle area. Consider for instance a single isolated row of fibers
oriented in the diagonal direction before shrinkage. After shrinkage,
the row can not be considered as a single row because fibers come
into contact forming multiple rows, n,, acting like springs in parallel,
in the diagonal direction (see the bottom black box of Fig. 5(c)).
Then, the total elastic force can be simply expressed, F, = n,F, to
consider n, parallel rows acting like springs in parallel to resist
deformation in the diagonal direction. Fig. 5(c) shows the packing
morphology of the assembled bundles. In an initial configuration of
the unit cell, the area occupied by fibers can be written as poR” sin
0 cos 6/2, where the dimensionless number p, is the initial top area
fraction of fibers. Using the top area of the bundle (N/r), the total
number of fibers of the unit cell can be written as

po R sin 0 cos 0

N
2

(A1)
Here, we use the scaling law sign ~ and ignore the constant
numbers such as integer and m. After assembly, we can typically
write the assembled area occupied by fibers, p¢(R — 6)mn,. Fiber area
conservation, Nr*m = pe(R — d)rn,, allows us to express n, ~ Nr/[ps
(R — 9)] Replacing N with eqn (A1) yields

po R :
Ny, ~ —————sinfcos 0. A2
prr(R—0) (42)

Using eqn (A2) and (6), we can express the total elastic resistance,

F, = n,F, as eqn (7). This packing-induced stiffening in the diagonal
direction is critical to form the star shapes with pointy corners.

Soft Matter, 2022,18, 262-271 | 269


https://doi.org/10.1039/d1sm01376a

Published on 24 November 2021. Downloaded by University of Illinois Urbana-Champaign on 9/5/2022 3:18:21 PM.

Soft Matter

Appendix B: deflection due to capillary
aggregation, d,

Balance between capillary compression (F.sin04) and elastic
resistance (F,) leads to ylsin 04 = [(po/pg)(R/T)R/(R — ) sin O cos
0]EI/(dP)5,>. We rearrange the preceding relation in terms of J,,
then the equation becomes

» pd 1 R—4dsinly
t T poREI/(ry)cos0 R dysin0’

(A3)

The last fraction of eqn (A3), dsin04/(d,sin ), depends on
dynamic effects, but its variance is negligible in the current
experimental range. Therefore, we can simplify eqn (A3) to the
normalized expression:

L

where o, = pedo/(poR) and L. = [EI/(ry)]”>. We note that § = J, +
4. By solving a quadratic equation of eqn (A4), then normal-
izing 0, = 6,/R, we obtain eqn (9).

Appendix C: approximate solution of
deflection in normal direction, d,

In the normal direction, the fibers can easily contact without
significant jamming effects the compression force and the fiber
displacement are aligned, as shown in the green box of
Fig. 5(b). We consider J,, being solely a function of geometry.
According to the elimination of the spacing d within the fibrous
array, we get o, = nyd, where n, is the number of the fibers at
the single row in the normal direction. Dividing the side length
of the unit cell by the spacings and fiber radius, n, = Rsin 6/
(r + d). Normalized o,, by R can be written as

- d .
On = Tt 0. (A5)

We can estimate the decrease in d by the conservation of N
between the initial and rearranged configuration (stage 1 as
illustrated in Fig. 3(a)):

d =dy(1 — dg)". (46)

One can geometrically accept that d of eqn (A6) will decrease as
the bundle shrinks and rearrange by J4. The magnitude of
change of 8, in eqn (A5) is very small, so we approximately use
d, of eqn (10) being a function of geometrical parameters. As a
final note, the deflection balancing between F. and F of eqn (6)
can be written as d, ~ [yl*d/(E]"*. Thus, 6, ~ 166 mm when
/=20 mm. A typical ,, * 3 mm in a triangle configuration, so
On < J,, allows us to assume that the fibers will stop deforming
once they are all in contact. Due to the symmetry between the
different unit cells, they all then balance each other, and the
bundle remains straight without much more densification.
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Appendix D: mathematical description
of circular patterns

We geometrically express circular shapes using the s parameter
by considering the transformation of each unit cell to a regular
unit cell, and hence the same number of unit cells forming a
regular polygon, as shown in Fig. 7. Considering a triangular
bundle for instance which had six right-angled unit cells before
self-assembly, the final shape after self-assembly becomes a
regular hexagon since each of the triangular unit cell becomes
isosceles. The initial bundles having triangle, square, and
pentagon cross sections transform their cross section to a
circle, which we approximate mathematically as hexagon, octa-
gon, and decagon, respectively. We write the area of the gray
isosceles triangle in the inset of Fig. 7: w” cos 0/2, where w is the
radius of the circumcircle of the regular polygon. By using N of
eqn (A1), the fiber area conservation, Nr*t = pav” cos 0/2, yields

0 1/2
W~ <—0 sin 9) R. (A7)
Pr

Considering the ratio of deflections in the diagonal and normal
directions, we can mathematically express the roundness for
the circular shapes:

(R—w)sin@

- . A8
Rsin0 —w (48)

Sw =

The values s, of eqn (A8) are 2.1, 1.4, and 1.2 for triangle,
square, and pentagon, respectively. This geometrical argument
is mathematical more rigorous than simply considering the
onset of circularity to be s > 1. Interestingly, we find that when
s > 1.2, { reaches an asymptotic scaling of { ~ 1/[aa(An¢)*].

(R—w)siné

Sy = -
w Rsinf —w

(R—w)sinf Rsinf —w

Fig. 7 Mathematical description of the circular patterns in each polygon.
The regular polygons of hexagon, octagon, and decagon correspond to
the circular patterns in triangle, square, and pentagon, respectively.
Orange dashed lines corresponds to the unit cell. The inset indicates s
of the circular patterns can be expressed by w, R and 0.
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