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Abstract—We consider the problem of characterizing an inner
bound to the capacity region of a 3−user classical-quantum
interference channel (3−CQIC). The best known coding scheme
for communicating over CQICs is based on unstructured random
codes and employs the techniques of message splitting and
superposition coding. For classical 3−user interference channels
(ICs), it has been proven that coding techniques based on coset
codes - codes possessing algebraic closure properties - strictly
outperform all coding techniques based on unstructured codes.
In this work, we develop analogous techniques based on coset
codes for 3to1−CQICs - a subclass of 3−user CQICs. We analyze
its performance and derive a new inner bound to the capacity
region of 3to1−CQICs that subsume the current known largest
and strictly enlarges the same for identified examples.

I. INTRODUCTION

We consider the scenario of communicating over a 3−user
classical-quantum interference channel (3−CQIC) (Fig. 1).
We undertake a Shannon-theoretic study for characterizing
an inner bound to its capacity region. The current known
coding schemes for CQICs [1]–[4] are based on unstructured
codes. In this work, we propose a new coding scheme for
a 3−CQIC based on nested coset codes (NCCs) - codes
possessing algebraic structure. Analyzing its performance, we
derive a new inner bound (Sec. III) to the capacity region
of 3to1−CQIC - a sub-class of 3−CQICs. The inner bound
is proven to subsume any current known inner bounds based
on unstructured codes. Furthermore, we identify examples of
3to1−CQICs for which the derived inner bound is strictly
larger. These findings are a first step towards characterizing a
new inner bound to the capacity region of a general 3−CQIC.

The current approach of characterizing the performance
limits of CQ channels is based on unstructured codes, which
remained for several decades the de facto ensemble of codes
for information-theoretic study of any classical channels. In-
spired by the work in [5] and followed by findings in a
multitude of network communication scenarios [6]–[11], it has
been analytically proven that coding schemes designed using
codes endowed with algebraic closure properties can strictly
outperform all known unstructured coding schemes.

The goal of this work is to build on this and enhance the
current known coding schemes in the context of CQ channels.
Our experience with classical channels suggests that a first
step toward this is to design and analyze coding schemes for
basic building block channels. Indeed, the ensemble of NCCs
studied in the simple context of point-to-point (PTP) channels
form an important element of this work [12]. On the other
hand, the mathematical complexity of analyzing CQ channels
makes it challenging to generalize even well known coding
schemes to the CQ setting. In the light of this, our work maybe
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Fig. 1. Communication over 3−CQIC.

viewed as a first step in designing new coding schemes for
network CQ channels based on coset codes.

In the context of CQICs, the focus of current research is
on 2−user. There has been considerable effort in [1]–[4],
[13], [14] at proving the achievability of the Han-Kobayashi
rate-region (CHK) [15] for 2−user ICs. Analogous to these,
one can leverage all known coding techniques - message
splitting, superposition coding, Marton’s binning - and derive
an achievable rate region for a 3−CQIC. See discussion in
[10, Sec. III]. This rate region, henceforth referred to as the
USB−region contains the largest current known inner bound
for any 3−CQIC. In this work, we focus on 3to1−CQICs
(Defn. 3) - a subclass of 3−IC in which only one receiver
(Rx) experiences interference. We propose a coding scheme
based on NCCs and derive an inner bound for this sub-class
that subsumes the USB−region in general, and strictly larger
for identified examples (see Ex. 2).

To study coset code based coding schemes for basic building
block channels, and for pedagogical reasons, we present our
findings in two steps. In the first step (Thm. 1), we demonstrate
a construction of a n-letter POVM that can simultaneously
decode (i) the correct message and (ii) a bivariate interference
component. This first step enables us study performance of
NCCs for CQ-PTP channels (Sec. IV) and simultaneous de-
coding of unstructured and NCC codes (Sec. III). Our analysis
of this simultaneous decoder builds on the technique proposed
in [16]. In the next step, we leverage these building blocks and
employ a multi-terminal simultaneous decoder [14] to derive
a new achievable rate region for 3to1−CQICs.

II. PRELIMINARIES AND PROBLEM STATEMENT

For n ∈ N, [n] =∆ {1, · · · , n}. We let an underline denote an
appropriate aggregation of objects. For example, X =∆ X1 ×
X2 × X3, x =∆ (x1, x2, x3) ∈ X and in regards to Hilbert
spaces HYi : i ∈ [3], we let HY =∆ ⊗3

i=1HYi .
Consider a (generic) 3−CQIC (ρx ∈ D(HY ) : x ∈ X , κj :

j ∈ [3]) specified through (i) three finite sets Xj : j ∈ [3],
(ii) three Hilbert spaces HYj : j ∈ [3], (iii) a collection
(ρx ∈ D(HY ) : x ∈ X ) and (iv) three cost functions
κj : Xj → [0,∞) : j ∈ [3]. The cost function is assumed
to be additive, i.e., cost expended by encoder j in preparing
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the state ⊗nt=1ρx1tx2tx3t
is κnj =∆ 1

n

∑n
t=1 κj(xjt). Reliable

communication on a 3−CQIC entails identifying a code.
Defn. 1. A 3−CQIC code c = (n,M, e, λ) of B-L n consists
of three (i) message index sets [Mj ] : j ∈ [3], (ii) encoder
maps ej : [Mj ] → Xnj : j ∈ [3] and (iii) POVMs λj =∆

{λj,m : H⊗nj → H⊗nj : m ∈ [Mj ]} : j ∈ [3]. The average
probability of error of the 3−CQIC code (n,M, e, λ[3]) is

ξ(e, λ) =∆ 1− 1

M1M2M3

∑
m∈M

tr
(
λmρ

⊗n
c,m

)
.

where λm =∆ ⊗3
j=1λj,mj , ρ

⊗n
c,m =∆ ⊗nt=1ρx1tx2tx3t where (xjt :

1 ≤ t ≤ n) = xnj (mj) =∆ ej(mj) for j ∈ [3]. Average cost
per symbol of transmitting message m ∈ M ∈ τ(e|m) =∆(
κnj (ej(mj)) : j ∈ [3]

)
and the average cost per symbol of

3−CQIC code is τ(e) =∆ 1
|M|

∑
m∈M τ(e|m).

Defn. 2. A rate-cost vector (R1, R2, R3, τ1, τ2, τ3) ∈ [0,∞)6

is achievable if there exists a sequence of 3−CQIC code
(n,M(n), e(n), λ(n)) for which lim

n→∞
ξ(e(n), λ(n)) = 0,

lim
n→∞

n−1 logM(n)
j = Rj , and lim

n→∞
τ(e)j ≤ τj : j ∈ [3].

The capacity region C(ρx : x ∈ X ) of the 3−CQIC (ρx ∈
D(HY ) : x ∈ X ) is the set of all achievable rate-cost vectors.
Now, we define the sub-class of 3to1−CQICs.
Defn. 3. A 3−CQIC (ρx ∈ D(HY ) : x ∈ X ) is
a 3to1−CQIC if (i) for every Λ ∈ P(HY2

), Γ ∈
P(HY3

), tr((I ⊗ Λ⊗ I)ρx1x2x3
) = tr((I ⊗ Λ⊗ I)ρx̂1x̂2x̂3

)
for every x, x̂ ∈ X satisfying x2 = x̂2, and (ii)
tr((I ⊗ I ⊗ Γ)ρx1x2x3) = tr((I ⊗ I ⊗ Γ)ρx̂1x̂2x̂3) for every
x, x̂ ∈ X satisfying x3 = x̂3.

A. Illustration of the Central Idea

The goal here is to demonstrate the utility of algebraic
closure in coding schemes for 3−ICs. While, we state Ex. 1
in the context of 3to1−CQICs, we discus in the context of
a classical 3to1−IC. The latter provides an exposition on the
utility of algebraic closure in network scenarios.
Ex. 1. Let Xj = X = {0, 1},Hj = H, σ(j)

b ∈ D(H) for j ∈
[3] and b ∈ X . For x ∈ X , let ρx =∆ σ

(1)
x1⊕x2⊕x3

⊗ σ(2)
x2 ⊗ σ

(3)
x3 .

For x ∈ {0, 1}, we let κ1(x) = x and κk(x) = 0 for k = 2, 3.

Let H = C2, σb(η) =∆ (1− η) |b〉 〈b|+ η |1− b〉 〈1− b| for
b ∈ X , η ∈ [0, 1]. Let σ(1)

b =∆ σb(δ1) and σ(2)
b =∆ σ

(3)
b =∆ σb(δ)

for b ∈ X . In addition, let τ ∈ (0, 1
2 ) specify a Hamming cost

constraint on Tx 1’s input. With this choice, one identifies
the above example with a 3to1−IC Y1 = X1 ⊕ X2 ⊕ X3 ⊕
N1, Yk = Xk ⊕ Nk : k = 2, 3 with N1 ∼ Ber(δ1), Nk ∼
Ber(δ) k = 2, 3 being independent. Tx k ∈ {2, 3} splits its
information into Uk, Xk. Rx 1 decodes U2, U3, X1, while Rx
k ∈ {2, 3} decodes Uk, Xk. So long as H(Uk|Xk) > 0 for
either k ∈ {2, 3}, it can be shown that H(X2⊕X3|U2, U3) > 0
implying Tx-Rx 1 cannot achieve hb(δ1 ∗ τ) − hb(δ1) - its
interference free cost constrained capacity. If hb(δ1 ∗ τ) −
hb(δ1) + 2(1 − hb(δ)) > 1 − hb(δ1), it can be shown that
H(Uk|Xk) > 0 for either k ∈ {2, 3} precluding Tx-Rx 1
achieving a rate hb(δ1 ∗τ)−hb(δ1) using unstructured coding.

Suppose users 2, 3 employ codes of rate 1 − hb(δ) that are
cosets of the same linear code, then the above condition does
not preclude Tx-Rx 1 from achieving a rate hb(δ1∗τ)−hb(δ1),
so long as τ ∗δ < δ, even if 1+hb(τ ∗δ1) > 2hb(δ). Hence, for
this 3to1−IC, if hb(δ1∗τ)−hb(δ1)+2(1−hb(δ)) > 1−hb(δ1)
and τ ∗ δ < δ < 1

2 hold, then coset codes are strictly more
efficient than unstructured codes.

III. RATE REGION USING COSET CODES FOR 3TO1-CQIC
In this section we consider the above described 3to1-CQIC

and provide an achievable rate-region.

Theorem 1. Given a 3to1-CQIC (ρx ∈ D(HY ) : x ∈ X , κj :
j ∈ [3]) and a PMF pV2V3X1X2X3

= pX1
pV2X2

pV3X3
on

V2 × V3 × X2 × X3 where V2 = V3 = Fq , a rate-cost triple
(R1, R2, R2, τ1, τ2, τ3) is achievable if it satisfies the following

R1 ≤ I(Y1;X1|U)σ1 , Rj ≤ I(Yj ;Vj)σ2 ,

Rj ≤ min{H(V2), H(V3)} −H(U) + I(Y1;U |X1)σ1 ,

R1 +Rj ≤ min{H(V2), H(V3)} −H(U) + I(Y1;V1U)σ1 ,

for j = 2, 3, and E[κj(Xj)] ≤ τj : j ∈ [3], where
σ
Y
1 =∆

∑
x1∈X1,u∈Fq

pX1
(x1)pU (u)ρYx1,u ⊗ |x1〉〈x1| ⊗ |u〉〈u| ,

ρYx1,u =∆
∑
v2,v3

∑
x2,x3

pV2,V3,X2,X3|U (v2, v3, x2, x3|u)ρYx

σ2 =
∑

v1,v2,v3

pXV2V3(x, v2, v3)ρYx ⊗ |v2〉〈v2| ⊗ |v3〉〈v3| ,

for U =∆ V2 ⊕ V3, and {|v2〉}, {|v3〉} as some basis on HY .

Ex. 2. Let Xj = X = {0, 1},Hj = C2 and

σ0 =

[
2/3 0
0 1/3

]
, and σ1 =

[
1/2 1/6
1/6 1/2

]
.

Let ρx =∆ [(1− δ1)σx1⊕x2⊕x3
+ δ1σx1⊕x2⊕x3⊕1]

⊗ [(1− δ)σx2
+ δσx2⊕1]⊗ [(1− δ)σx3

+ δσx3⊕1],

for x ∈ X , where N1, N2 and N3 are mutually inde-
pendent Bernoulli random variables with biases δ1, δ and
δ, respectively. We let δ1, δ ∈ (0, 0.5). For x ∈ {0, 1},
we let κ1(x) = x and κk(x) = 0 for k = 2, 3. Let
ρ(p) := pσ0 + (1− p)σ1. Note that ρ(p) and ρ(1− p) do not
commute except for p = 0.5. It can be checked that S(ρ(p))
is a symmetric concave function of p ∈ (0, 1). Consider the
case when τ ∗δ1 ≤ δ. Using NCC, the three users can achieve
their PTP capacities simultaneously: S(ρ(τ ∗ δ1))−S(ρ(δ1)),
S(ρ(0.5)) − S(ρ(δ)), and S(ρ(0.5)) − S(ρ(δ)), respectively.
These correspond to the rates given by I(X1;B1|X2 ⊕X3),
I(X2;B2), and I(X3;B3). One can show that if S(ρ(τ∗δ1))−
S(ρ(δ1)) + 2(S(ρ(0.5)) − S(ρ(δ))) > S(ρ(0.5)) − S(ρ(δ1)),
then using unstructured codes, all three users cannot achieve
their respective capacities simultaneously. This condition is
equivalent to the condition: S(ρ(τ ∗ δ1)) + S(ρ(0.5)) >
2S(ρ(δ)). Hence by choosing τ ∗ δ1 = δ, and δ < 0.5, we see
that NCC-based coding scheme enables all users achieve their
respective capacities simultaneously, while this is not possible
in unstructured coding scheme.
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Proof. We divide the proof into three parts entailing the
encoding, decoding and error analysis techniques.

A. Encoding Technique

Consider a PMF pV2V3X on V2×V3×X with V2 = V3 = Fq ,
and choose n and Rj : j = [3] as non-negative integers. For
encoder 1, we use the conventional random coding strategy and
construct a codebook C1 =∆ {x1(m1) : m1 ∈ [2nR1 ]} on X1

using the marginal PMF pnX1
. Let e1(m1) =∆ x1(m1) : m1 ∈

[2nR1 ] denote this encoding map. However, to construct the
codebooks for encoders 2 and 3, we employ the nested coset
codes based technique. Since, the structure and encoding rule
are identical for these two encoders, we describe it using a
generic index j ∈ {2, 3}. Let ej : Fq → Xnj : j = 1, 2 denote
the encoding maps. We define an NCC as follows.

Defn. 4. An (n, k, l, gI , gO/I , b
n) NCC built over a finite field

V = Fq comprises of (i) generator matrices gI ∈ Vk×n,
gO/I ∈ V l×n (ii) a dither/bias vector bn, an encoder map
e : V l → Vk. We let vn(a,m) = agI ⊕q mgO/I ⊕q bn :
(a,m) ∈ Vk × V l denote elements in its range space.

Consider two NCCs with parameters (n, k, l, gI , gO/I , b
n
j ) :

j ∈ {2, 3} defined using the above definition, with their range
spaces denoted by vnj (aj ,mj) : j ∈ {2, 3}, respectively.
Note that the choice of gI and gO/I are identical for the two
NCCs. Further, let θj(mj) =∆

∑
aj∈Fkq

1{vnj (aj ,mj)∈T (n)
δ (pVj )}.

For every message mj the encoder j looks for a codeword
in the coset vnj (aj ,mj) : aj ∈ Fkq that is typical accord-
ing to pVj . If it finds at least one such codeword, one of
them, say vnj (αj(mj),mj), is chosen randomly and uniformly.
Using this codeword, an ej(mj) is generated according to
pnXj |Vj (·|v

n
j (αj(mj),mj)) and is transmitted on the CQIC.

Otherwise, if it finds none in the coset that is typical according
to pVj , and error is declared. This specifies the encoding rule
for the three encoders. Now we describe the decoding rule.

B. Decoding Description

Since we have a 3to1 CQIC, the decoder employed by
the user 1 is naturally different from the other two, so
we begin the describing first decoder. Unlike a generic 3
CCIC decoding technique of recovering the three messages,
the first decoder constructs his POVM to recover his own
message and only a bi-variate function of the two interfering
messages. Since, the POVMs here require joint typicality of
two messages, we employ the POVM construction similar to
[13], but additionally incorporate the capability of decoding
a bi-variate function. For this, we equip the decoder 1 with
the NCC (n, k, l, gI , gO/I , b

n), with bn = bn1 ⊕ bn2 , and define
un(a, l) as its range space. We let

πm1 =∆ πxn1 (m1), πa,l =∆ πun(a,l)1{un(a,l)∈T (n)
δ (pU )},

πa,lm1
=∆ πxn1 (m1),un(a,l)1{(xn1 (m1),un(a,l))∈T (n)

δ (pX1U
)},

denote the conditional typical projectors (as defined in [17,
Def. 15.2.4]) with respect to the states ρY1

x1
=∆
∑
u pU (u)ρY1

x1,u,
ρY1
u =∆

∑
x1
pX1(x1)ρY1

x1,u and ρY1
x1,u, respectively, where

ρY1
x1,u is as defined in the theorem statement. In addition,

let πY1
ρ denote the typical projector with respect to the state

ρ =∆
∑
x1,u

pX1
(x1)pU (u)ρY1

x1,u. Using these projectors, we
define the POVM λY1

I1 =∆ {λY1

m1,a,l
}, as

λY1

m1,a,l
=∆
(∑
m̂1∈

[2nR1 ]

∑
â∈Fkq
l̂∈Flq

γâ,l̂m̂1

)−1/2

γa,lm1

(∑
m̂1∈

[2nR1 ]

∑
â∈Fkq
l̂∈Flq

γâ,l̂m̂1

)−1/2

,

λ−1 =∆ I −
∑
m1∈[2nR1 ]

∑
a∈Fkq

∑
l∈Flq

λY1

m1,a,l
and

γa,lm1
=∆ πρπmπ

a,l
m1
πm1

πρ. Having described the first decoder,
we move on to describing the other two. Since these two
decoders are identical, we use a generic variable j to refer to
each of these. We define πjρ and πjaj ,mj as the typical and the
conditional typical projectors [17, Def. 15.2.4] with respect to
the states ρYj =∆

∑
vj
pVj (vj)ρ

Yj
vj and ρYjvj , respectively. Using

this, we construct the POVM λ
Yj
Ij =∆ {λYjmj ,aj}, for encoder j as

λYjaj ,mj =∆
( ∑
âj∈Fkq

∑
m̂j∈Flq

ζâj ,m̂j

)−1/2

ζaj ,mj

( ∑
âj∈Fkq

∑
m̂j∈Flq

ζâj ,m̂j

)−1/2

,

λ
Yj
−1 =∆ I −

∑
m∈Vl

∑
a∈Vk λ

Yj
a,m and ζaj ,mj =∆ πjρπ

j
aj ,mjπ

j
ρ.

Lastly, we provide the distribution of the random NCC.
Distribution of the Random Coset Code : The objects
gI ∈ Vk×n, gO/I ∈ V l×n, bn ∈ Vn and the collection
(am ∈ s(m) : m ∈ V l) specify a NCC CQ-PTP code
unambiguously. A distribution for a random code is therefore
specified through a distribution of these objects. We let upper
case letters denote the associated random objects, and obtain

P
(

GI = gI , GO/I = gO/I
Bnj =bnj, αj(mj)=aj : mj ∈ F lq

)
=
∏
m∈Flq

q−(k+l+1)n

Θj(mj)
.

C. Error Analysis

As in a general information theoretic setting, we derive
upper bounds on probability of error ξ(e, λ) by averaging
over the random code of the first user and the ensemble
of nested coset codes used by the other two users. The
error probability of this code is given by ξ(e, λ) =∆ 1 −

1
M1M2M3

∑
m∈M tr

(
λ
Y
mρ⊗nc,m

)
. Using the inequality

(I − λYm) ≤
3∑
i=1

(I − λYimi)⊗ I
Y \Yi ,

from [18], we get ξ(e, λ) ≤ S1 + S2 + S3, where

Sj =∆
1

M
∑
m∈M

tr
((

(I − λYjmj )⊗ I
Y \Yi

)
ρ⊗nc,m

)
: j ∈ [3].

Using the definition of 3to1-CQIC, we can further simplify S2

and S3 as Sj = 1
Mj

∑
mj

tr
(

(I − λYjmj )ρe(mj)
)

: j ∈ {2, 3}.
Consider the terms S2, S3. Due to the nature of the

3to1−CQIC problem, the terms S2 and S3 are identical
to a point-to-point (PTP) setup. Therefore, to bound these
terms we construct a CQ-PTP problem setup in the following
section and employ that as a module in bounding S2, S3. The
following proposition formalizes this.
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Prop. 1. There exists εS(δ), δS(δ), such that for all δ and
sufficiently large n, we have E [S2 + S3] ≤ εS(δ), if Rj ≤
I(Yj ;Vj)σ2 + δS : j = 2, 3, where εS , δS ↘ 0 as δ ↘ 0.

Proof. The proof is provided in Section IV.

Now, we move on to bounding the term S1. Let E =∆

{θ1(m1) = 0 or θ2(m2) = 0}. By noting that S1 ≤ 1, we
obtain S1 ≤ S′1 + 1E , where S′1 =∆ S1 · 1E c . As a first step,
we bound the indicator 1E using the following proposition.

Prop. 2. There exist εE(δ), δE(δ), such that for all δ and
sufficiently large n, we have EP [E ] ≤ εE(δ), if k

n ≥ log q −
min{H(V1), H(V2)}+ δE , where εE , δE ↘ 0 as δ ↘ 0.

Proof. The proof follows from [19, App. B].

Now considering the term S′1, and using the linearity of
trace while ignoring negative terms, we get

S′1 ≤
1

M
∑
m∈M

tr
(
(I − λY1

m1,a,l
)πa,lρ

Y1
c,mπa,l

)
1E c + S11,

where S11 =∆
∥∥∥πa,lρY1

c,mπa,l − ρY1
c,m

∥∥∥
1
, ρY1
c,m =∆ trY2Y3(ρ⊗nc,m),

a =∆ α1(m1)⊕ α2(m2), and l =∆ m1 ⊕m2 and the inequality
also uses tr(λρ) ≤ tr(λσ)+‖ρ− σ‖1 which holds for all 0 ≤
ρ, σ, λ ≤ 1. Let T be any generic term within the summation of
the first term in the right hand side of the above equation. This
term T can be bounded using the Hayashi-Nagaoka inequality
[17] as T ≤ 2(1− T1) + 4T2, where

T1 =∆ tr
(
γa,lm1

πa,lρ
Y1
c,mπa,l

)
, T2 =∆

∑
(m′

1,a
′,l′)

6=(m1,a,l)

tr
(
γa

′,l′

m′
1
πa,lρ

Y1
c,mπa,l

)
.

The objective now is to proof T1 is close to one and T2 is
close to zero. As for T1, consider the following proposition.

Prop. 3. There exist εT1(δ), δT1(δ), such that for all suffi-
ciently small δ and sufficiently large n, we have E [T1] ≥
1− εT1

(δ), where εT1
, δT1

↘ 0 as δ ↘ 0.

Proof. Using tr(λρ) ≥ tr(λσ)− ‖ρ− σ‖1, we have

T1 ≥ tr
(
πa,lρ

Y1
c,m

)
−
∥∥∥πρρY1

c,mπρ − ρY1
c,m

∥∥∥
−
∥∥∥πal ρY1

c,mπ
a
l − ρY1

c,m

∥∥∥− ∥∥∥πm1ρ
Y1
c,mπm1 − ρY1

c,m

∥∥∥ .
Further, using pinching for non-commutating operators [17],
[20] the following is true for a sufficiently large n:
tr(πa,lρY1

c,m), tr(πm1
ρY1
c,m), tr(πal ρ

Y1
c,m), tr(πρρY1

c,m) ≥ 1− εp(δ),
where εp(δ) ↘ 0 as δ ↘ 0 (see [21] for a detailed set
of pinching arguments). Using these bounds and the Gentle
Measurement Lemma [17], the result follows.

Now, we move on to bounding the term T2. Firstly, note
that the summation in T2 can be split into seven different
summations based on how many within the triple (m′1, a

′, l′)
are equal to (m1, a, l). However, only three of these seven
provide binding constraints on the rate triple (R1, R2, R3).

Building on this and by denoting κm =∆ πa,lρ
Y1
c,mπa,l, we

perform the split T2 = T21 + T22 + T23 + T3, where

T22 =∆
∑

m′
1 6=m1

tr
(
γa,lm′

1
κm
)
, T22 =∆

∑
a′ 6=a,l′ 6=l

tr
(
γa

′,l′

m1
κm
)
,

T23 =∆
∑

m′
1 6=m1,

a′ 6=a,l′ 6=l

tr
(
γa

′,l′

m′
1
κm
)
.

represents the rate constraining (binding) terms, and T3 =∆

T2 −
∑3
i=1 T2i. We provide the following set of propositions

bounding each of these terms T2i : i ∈ [3].
Prop. 4. There exists εT21(δ), δT21(δ), such that for all
sufficiently small δ and sufficiently large n, we have
E [T21] ≤ εT21

(δ) if R1 + 2k
n log q ≤ 2 log q − H(V1, V2) +

I(Y1;X1|U)σ1
+ δT21

, where εT21
, δT21

↘ 0 as δ ↘ 0.

Prop. 5. There exists εT22(δ), δT22(δ), such that for all suffi-
ciently small δ and sufficiently large n, we have E [T22] ≤
εT22

(δ) if 3k+l
n log q ≤ 3 log q − H(V1, V2) − H(U) +

I(Y1;U |X1)σ1
+ δT22

, where εT22
, δT22

↘ 0 as δ ↘ 0.

Prop. 6. There exists εT23
(δ), δT23

(δ), such that for all suf-
ficiently small δ and sufficiently large n, we have E [T23] ≤
εT23

(δ) if R1 + 3k+l
n log q ≤ 3 log q − H(V1, V2) − H(U) +

I(Y1;X1, U)σ1
+ δT23

, where εT23
, δT23

↘ 0 as δ ↘ 0.

Proof. Proof of Props. 4-6 are provided in [21].
For the terms in the expression T3, we do not obtain any new

rate constraints, so we bound them in [21]. Now, we provide
the result stating NCC codes achieve capacity of a CQ-PTP
channel (as discussed in the proof of Proposition 1).

IV. COSET CODES FOR COMMUNICATING OVER CQ-PTP

As discussed in Sec. III, here we shall build and analyze a
NCC for a point-to-point CQ channel [17] and employ it as a
module for the 3to1 CQ-IC result. Towards that, we begin by
formalizing the definition of a CQ-PTP code.

Defn. 5. A CQ-PTP code cm = (n, I, e, λI) for a CQ-PTP
(ρx ∈ D(HY ) : x ∈ X ) consists of (i) an index set I, (ii)
and encoder map e : I → Xn and a decoding POVM λI =
{λm ∈ P(HY ) : m ∈ I}. For m ∈ I, we let ρ⊗nc,m = ⊗ni=1ρxi
where e(m) = x1 · · ·xn.

Defn. 6. A CQ-PTP code (n, I = F lq, e, λI) is an NCC
CQ-PTP if there exists an (n, k, gI , gO/I , b

n) NCC such that
e(m) ∈ {un(a,m) : a ∈ Fkq } for all m ∈ F lq .

Theorem 2. Given a CQ-PTP (ρv ∈ D(HY ) : v ∈ Fq) and a
PMF pV on V , ε > 0 there exists a CQ-PTP code c = (n, I =
F lq, e, λI) such that (i) q−l

∑
m̂ 6=[I]\{m} tr

(
λm̂ρ

⊗n
c,m

)
≤ ε, (ii)

c = (n, I = F lq, e, λI) is a NCC CQ-PTP, (iii) k log2 q
n >

log2 q−H(V ) and (k+l) log2 q
n < log2 q−H(V )+χ({pv, ρv})

for all n sufficiently large.

Proof. The proof has two parts: (i) error probability analysis
for a generic fixed code and (ii) an upper bound on the latter
via code randomization.
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Upper bound on Error Prob. for a generic fixed code :
Consider a generic NCC (n, k, l, gI , gO/I , b

n) with its range
space vn(a,m) = agI⊕qmgO/I⊕q bn : (a,m) ∈ Vk×V l and
define a CQ-PTP code (n, I = F lq, e, λI) that is an NCC CQ-
PTP. Towards that, let θ(m) =∆

∑
a∈Vk 1{vn(a,m)∈Tnδ (pV )} and

s(m) =∆
{
{a ∈ VK : vn(a,m) ∈ Tnδ (pV )} if θ(m) ≥ 1

{0k} if θ(m) = 0,

for each m ∈ V l. For m ∈ V l, a predetermined element am ∈
s(m) is chosen. On receiving message m ∈ V l, the encoder
prepares the state ρ⊗nm =∆ ρ⊗nvn(am,m) =∆ ⊗ni=1ρvi(am,m) and
communicates it. The encoding map e is therefore determined
via the collection (am ∈ s(m) : m ∈ V l).

Towards specifying the decoding POVM, for any vn ∈ Vn,
let πvn be the conditional typical projector as in [17, Defn.
15.2.4] with respect ρv and let πρ be the (unconditional)
typical projector of the state ρ =∆

∑
v∈V pV (v)ρv as in

[17, Defn. 15.1.3]. For (a,m) ∈ Vk × V l, we let πa,m =∆

πvn(a,m)1{vn(a,m)∈Tnδ (pV )}. We let λI =∆ {
∑
a∈Vk λa,m :

m ∈ I = V l, λ−1}, where

λa,m=∆
(∑
â∈Vk

∑
m̂∈Vl

γâ,m̂

)−1/2

γa,m

(∑
ã∈Vk

∑
m̃∈Vl

γã,m̃

)−1/2

,

λ−1 =∆ I −
∑
m∈Vl

∑
a∈Vk λa,m and γa,m =∆ πρπa,mπρ.

Since 0 ≤ γa,m ≤ I , we have 0 ≤ λa,m ≤ I . It can be
verified that λI is a POVM. We have thus associated an NCC
(n, k, l, gI , gO/I , b

n) and a collection (am ∈ s(m) : m ∈ V l)
with a CQ-PTP code. The error probability of this code is
q−l
∑
m∈I

tr((I −
∑
a∈Vk

λa,m)ρ⊗nm ) ≤ q−l
∑
m∈I

tr((I − λam,m)ρ⊗nm ).

Denoting event E = {θ(m) < 1}, a generic term in the RHS
of the above sum satisfies

tr((I − λam,m)ρ⊗nm )1E c + tr((I − λam,m)ρ⊗nm )1E

≤ 1E c +

3∑
i=1

T2i, where T21 = 2tr((I − γam,m)ρ⊗nm )1E ,

T22 =4
∑
â 6=am

tr(γâ,mρ⊗nm )1E , T23 =4
∑
m̂6=m

∑
ã

tr(γã,m̂ρ⊗nm )1E,

and the inequality follows by Hayashi-Nagaoka inequality
[22], for 0 ≤ S ≤ I , and T ≥ 0, with S and T identified as
γam,m and

∑
â 6=am γâ,m +

∑
â∈Vk

∑
m̂6=m γâ,m̂, respectively.

Note that S and T satisfy the required hypothesis which can
be verified from earlier stated facts.

Distribution of the Random Code : The objects gI ∈
Vk×n, gO/I ∈ V l×n, bn ∈ Vn and the collection (am ∈
s(m) : m ∈ V l) specify a NCC CQ-PTP code unambiguously.
Therefore we let upper case letters denote the associated
random objects, and obtain

P
(

GI = gI , GO/I = gO/I
Bn =bn, Am=am : m ∈ S(m)

)
= q−(k+l+1)n

∏
m∈Vl

1

Θ(m)
.

Using this we analyze the expectation of E and T2i; i ∈ [1, 3].
We begin by EP [E ] = P(

∑
a∈Vk 1{V n(a,m)∈Tnδ (pV )} < 1).

For this, we provide the following proposition.

Prop. 7. There exist εT1
(δ), δT1

(δ), such that for all δ and
sufficiently large n, we have EP [E ] ≤ εT1

(δ), if k
n ≥ log q −

H(V ) + δS , where εS , δS ↘ 0 as δ ↘ 0.

Proof. The proof follows from Appendix B of [19].

We now consider T21. Since this term can be bounded by
a using straight-forward extension of the pinching technique
described in [17, Def. 15.2.4], we provide its complete details
in [21]. We now analyze EP [T22]. Denoting

J =∆
{

Θ(m)≥1,V n(â, m̂)= x̂n

Am=d, V n(d,m) = xn

}
⊆K=∆

{
V n(â, m̂)= x̂n

V n(d,m)=xn

}
(1)

we perform the following steps.

EP [T22] =
∑
d∈Vk

∑
â 6=d

∑
xn∈Tnδ (pV )

∑
x̂n∈Vn

E
[
tr(Γâ,mρ⊗nm )1J

]
where the restriction of the summation xn to Tnδ (pV ) is valid
since S(m) ≥ τc > 1 forces the choice Am ∈ S(m) such that
V n(Am,m) ∈ Tnδ (pV ). Going further, we have

EP [T22]≤ 2−n[χ({pV ;ρv})+εV −2H(pV )− 2k
n log q+2 log q] (2)

We now derive an upper bound on EP [T23]. We have

EP [T23] ≤ 2−n[χ({pV ;ρv})+2 log2 q−2H(pV )− 2k+l
n log2 q+εV ].

The reader is referred to [21] where detailed arguments are
provided bounding each of the terms T22 and T23. We have
therefore obtained three bounds k

n > 1 − H(pV )
log2 q

, 2k
n < 2 +

χ({pV ;ρv})−2H(pV )
log2 q

, 2k+l
n < 2 + χ({pV ;ρv})−2H(pV )

log2 q
. A rate of

χ({pV ; ρv})−ε is achievable by choosing k
n = 1− H(pV )

log2 q
+ ε

2 ,
l
n =

χ({pV ;ρv})−ε log2
√
q

log2 q
thus completing the proof.

V. RATE-REGION USING NCC AND MESSAGE SPLITTING
FOR 3TO1− CQIC

Theorem 3. Given a 3to1-CQIC (ρx ∈ D(HY ) : x ∈ X )
and a PMF pU2U3V2V3X2X3

= pU2V2X2
pU3V3X3

on U1×V1×
X1 × U2 × V2 × X2 where V1 = V2 = Fq , a rate triple is
achievable if it satisfies the following: Rj ≤ I(UjXj ;Yj)σj ,

R1≤ min
j=2,3

{0, H(Uj)−H(W |Y1)σ1}+ I(X1;WY1)σ1

R1+Rj≤I(Xj ;Yj |Uj)σj+I(X1;W,Y1)σ1
+H(Uj)−H(W |Y1)σ1

for j = 2, 3, where

σ
Y
1 =∆

∑
x1∈X1,w∈Fq

pX1(x1)pW (w)ρYx1,w ⊗ |x1〉〈x1| ⊗ |w〉〈w| ,

ρYx1,w =∆
∑

u2,v2,x2
u3,v3,x3

pV2,V3U2U3X2X3|W (v2, v3, u2, u3, x2, x3|w)ρYx

σ2 =∆
∑

v1,v2,v3

pU2U3V2V3X(u2, u3, v2, v3, x)ρYx
3⊗
j=2

|uj , xj〉〈uj , xj |,

for W =∆ U2⊕U3, and {|uj〉} and {|xj〉} as some orthonormal
basis on HY for j = 2, 3.

Proof. Steps for the proof are provided in [21].

By choosing W = φ, we can recover the U SB−rate region
from the above inner bound.
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