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Tasho Kaletha

Abstract

We show that, in good residual characteristic, most supercuspidal rep-
resentations of a tamely ramified reductive p-adic group G arise from pairs
(S,0), where S is a tame elliptic maximal torus of G, and 6 is a character of
S satisfying a simple root-theoretic property. We then give a new expres-
sion for the roots of unity that appear in the Adler-DeBacker-Spice charac-
ter formula for these supercuspidal representations and use it to show that
this formula bears a striking resemblance to the character formula for dis-
crete series representations of real reductive groups. Led by this, we explic-
itly construct the local Langlands correspondence for these supercuspidal
representations and prove stability and endoscopic transfer in the case of
toral representations. In large residual characteristic this gives a construc-
tion of the local Langlands correspondence for almost all supercuspidal
representations of reductive p-adic groups.
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1 INTRODUCTION

This paper pursues multiple interconnected goals, all of which are related to
Yu's construction of supercuspidal representations of reductive p-adic groups
[YuO1], which generalizes Adler’s earlier construction [AdI98]. Recall briefly
that if G is a connected reductive group over a p-adic field F' that splits over
a tamely ramified extension of F', a supercuspidal representation of G(F') can
be constructed by giving the following data: a tower G° C --- C G¢ = G of
connected reductive subgroups that become Levi subgroups of G over some
tame Galois extension of F, a sequence of characters ¢; : G'(F) — C* for all
i > 0 satisfying a certain genericity condition, and a depth-zero supercuspi-
dal representation 7_; of G°(F'), which we may call the socle of the Yu-datum.
Representations obtained from this construction are customarily called tame,
even though they can have arbitrary depth (in the case of G = GLy, these
representations are called essentially tame in the work of Bushnell and Hen-
niart; when p t N all supercuspidal representations are essentially tame). Dif-
ferent Yu-data can give rise to the same representation and Hakim and Mur-
naghan [HMO08] have made a precise study of when this happens. This leads
to the natural question of whether one can use simpler data to parameterize
the supercuspidal representations resulting from Yu’s construction. Ideally,
such data would consist simply of a maximal torus S C G and a character
6 : S(F') — C*, in analogy with the classification of discrete series representa-
tions of real reductive groups, as well as that of supercuspidal representations
of GLy when p { N. There is an immediate obstruction to this: Many reductive
groups over finite fields (but not GLy) have cuspidal representations that are
not immediately parameterizable by such pairs (for example cuspidal unipo-
tent representations), and this obstruction propagates to depth-zero supercus-
pidal representations of reductive groups over . We therefore restrict our
attention to Yu-data that satisfy a slight regularity condition, which is automat-
ically satisfied for G = GLy, and whose main part is that the socle 7_; (when
it is non-trivial) corresponds to a Deligne-Lusztig representation (of the reduc-
tive quotient of a parahoric subgroup of () that is associated to a character in
general position. Let us call supercuspidal representations arising from such
Yu-data regular. The first main goal of this paper is to give an explicit parame-
terization of regular supercuspidal representations in terms of G(F)-conjugacy
classes of pairs (.5, #). Partial results towards this were obtained earlier by Mur-
naghan in [Mur11], where a further technical restriction is imposed on 7_; and
an injective map is constructed from the set of equivalence classes of regular
supercuspidal representations satisfying this additional technical restriction to
the set of G(F')-conjugacy classes of pairs (5, 6) consisting of an elliptic max-
imal torus and a character of it. No effective description of the image of this
map was known. For many purposes it is important to have a map in the op-
posite direction — from pairs (.5, §) to representations. In the current paper we
introduce the notion of a tame regular elliptic pair (.5, #). This notion is defined
in simple and explicit root-theoretic terms. We show that in the case of GLy it
specializes to the classical notion of an admissible character. We give an explicit
algorithm that, starting from a tame regular elliptic pair, produces a Yu-datum
for a regular supercuspidal representation. This algorithm can be seen as a
generalization to arbitrary reductive groups of the Howe factorization lemma
([How?77, Lemma 11 and Corollary]) that plays an important role in the con-
struction of supercuspidal representations of GLy. Just as in the case of GLy,



the factorization we obtain is not unique, but we show that two possible fac-
torizations are related to each other by a process already introduced by Hakim
and Murnaghan, called refactorization. Their work implies that the resulting
supercuspidal representation is unaffected by this ambiguity, and may thus be
called 7(59). We then show that two such representations are isomorphic if
and only if the pairs giving rise to them are G(F')-conjugate. It is then straight-
forward to check that the map (S5, 0) — 7(g4) is the inverse to Murnaghan’s
injection (after removing the additional technical restriction on 7_; imposed in
[Murl1]). This implies that the image of Murnaghan’s map is precisely the set
of G(F')-conjugacy classes of tame regular elliptic pairs. In this way, we obtain
explicit mutually inverse bijections between the set of G(F')-conjugacy classes
of tame regular elliptic pairs and the set of isomorphism classes of regular su-
percuspidal representations. This result includes as a special basic case the
classification of regular supercuspidal representations of depth zero. In fact,
this special case is needed as the basis of our argument. When G splits over an
unramified extension, regular depth-zero supercuspidal representations were
studied by DeBacker and Reeder [DR09]. As a preparation for the study of
regular supercuspidal representations of general depth, we extend their classi-
fication results to the case of tamely ramified groups G.

When the residual characteristic of F' is not too small for G the work of Kim
[Kim07] shows that all supercuspidal representations of G(F') arise from Yu's
construction. Most of these are regular and thus of the form 7 (g 4). For G =
GLy with p { N all supercuspidal representations are regular, but for other
groups non-regular supercuspidal representations do exist, as the example of
the four exceptional supercuspidal representations of SL, shows. We believe
that our work can be used to reduce the description of general supercuspidal
representations in terms of elliptic (but not necessarily regular) pairs (.5,6) to
the description of cuspidal representations of finite groups of Lie type in terms
of Deligne-Lusztig virtual characters. It would be interesting to pursue this
question.

In the second part of the paper we study the Harish-Chandra character of su-
percuspidal representations, and in particular of the representations 7 (g ). A
formula for the character of a supercuspidal representation 7 arising from Yu's
construction has been given by Adler and Spice [AS09] and subsequently re-
fined by DeBacker and Spice [DS18]. At the moment this formula is only valid
under the assumption that G¢~1(F)/Z(G)(F) is compact, but in private com-
munication the authors have assured me that this assumption will soon be re-
moved. In the mean time we have proved in this paper a technical result which
removes this condition in a certain special case that still allows us to draw con-
clusions from it. The character formula [DS18, Theorem 4.6.2] has the following
form. Recall first that Yu’s construction produces not just a supercuspidal rep-
resentation m of G(F), but in fact a supercuspidal representation m; of G*(F')
for each i. Let r be the depth of m4_;. Given a regular semi-simple element
v € G(F) admitting a decomposition (or approximation) v = v<, - >, in the
sense of [AS08], the value at v of the normalized Harish-Chandra character
function of m = 7y is

(I)Trd, (’Y) = Z esym:ram("/gr)eram(’yir)é('yir)q)ﬂ'd—l (’Yir)ﬁgX* (log(’VZT))v (101)
g

where the sum is over certain elements g € G(F'). The term i is the Fourier-
transform of an orbital integral (on the Lie-algebra of the connected centralizer
of 7<), and €sym ram, €™, and € are roots of unity. This formula mirrors the in-
ductiveness of Yu's construction by expressing the character of m = 74 in terms



of that of 74_1. The function €™ is a character of S(F') and this allows it to be
handled easily. In fact, as is pointed out in [DS18], this function might be an
artifact resulting from certain choices inherent in Yu’s construction of super-
cuspidal representations, and a modification of this construction could alter or
suppress it. On the other hand, the two functions €sym ram and € are not char-
acters of S(F'). Their definition is quite subtle and involves the fine structure
of the p-adic group G(F), in particular its Bruhat-Tits building and associated
Moy-Prasad filtrations. This makes the analysis of these two functions with
respect to stable conjugacy and related questions difficult. The second main re-
sult of this paper gives a new expression for the product €sym ram(v<r) - €(v<r)-
This expression is a quotient of two terms of the form

e(@)e(N)er(X*(Ta)e — X*(Tr)e, M)A [a, x] (v<r)- (1.0.2)

Here J is the connected centralizer of 7., and the terms e(G) and e(J) are the
Kottwitz signs [Kot83] of the connected reductive groups G and J. The tori
T and T; are the minimal Levi subgroups in the quasi-split inner forms of G
and J, and ¢, is the e-factor at s = 1/2 of the given virtual Galois representa-
tion. Finally, the term A% is an absolute version of the corresponding term of
the Langlands-Shelstad endoscopic transfer factor [LS87, §3.3]. What we mean
here by the word “absolute” is that while the term A;; of Langlands-Shelstad
is associated to a group G and an endoscopic group G¢, the term A3 depends
only on the group G, and moreover one obtains the Langlands-Shelstad term
Ajr as a quotient of the terms A%, with the one for G in the numerator and
the one for G* in the denominator.

If we apply the formula (1.0.1) to a regular supercuspidal representation (g, g)
and a regular semi-simple element v € S(F') that is very far from the identity
(this is the special case in which we have been able to remove the compactness
hypothesis), we obtain as a consequence of (1.0.2) the following formula for the
un-normalized Harish-Chandra character O ,, (7)

e(Ger (X" (Tg)c — X*(S)c) Z
|D(v)|2 wEN(S,G)(F)/S(F)

AFPlaX](3)8' (7). (1.03)

Here we have set §' = ™™ - § using the fact that €™ is a character of S(F').

Before we discuss the main implication of (1.0.2) and (1.0.3), let us consider
some of its features. First, none of the terms in (1.0.2) involve Bruhat-Tits the-
ory in their construction. Rather, they come from Lie-theory and basic p-adic
arithmetic and are thus more elementary (the reader might argue that e-factors
of non-abelian local Galois representations are not elementary, but a result of
Kottwitz computes the particular e-factor we are dealing with in elementary
terms, see [Kall5, §5.5]). Note also that the first three terms in (1.0.2) depend
only on the stable conjugacy class of v, and it is just the term A3 that de-
pends on the full triple (S, 6, v<,).

Another interesting feature of the character formula (1.0.3) is that it provides
an interpretation of most of the Langlands-Shelstad endoscopic transfer fac-
tor in terms of the characters of supercuspidal representations. Recall that the
Langlands-Shelstad transfer factor is given as a product

e, - Ar-Arr - Aprr - Agrr, - Apy.

In view of (1.0.3), each of the factors €1, Arr, Arrr,, and Apy has an interpre-
tation as the quotient of a piece of the character formula for G by the corre-
sponding piece for G¢. The factors e, A;;, and Ajy, are directly visible in



(1.0.3), and so is also the factor Ay;y,, being the quotient of the character § by
the corresponding character on the side of G*. The factor A; also appears, al-
beit in a more subtle way: It measures which representation in the L-packet
is generic, as we will discuss in Subsection 6.2. We believe that in this way
the character formula (1.0.3) sheds a different light on the Langlands-Shelstad
transfer factor and shows that almost all parts of it are actually not of strictly
endoscopic nature (except for the term Ayrr,, which is indeed purely endo-
scopic and not a relative term in the sense discussed here). We hope that this
point of view will be fruitful in the study of more general functoriality beyond
the endoscopic case, and might in particular help with the study of the transfer
factors occurring there [Lan13].

The most striking feature of (1.0.3) is however the following: Each term in it has
an interpretation for groups G defined over an arbitrary local field, not just a p-
adic field, and when F' = R then (1.0.3) becomes the formula for the character
of the discrete series representation of the real group G(R) associated to the
elliptic maximal torus S and the character " : S(R) — C*, i.e. the well-known
formula

(_1)q(G) Z 0/(11) 12) -
weN(S,G)(R)/S(R) [1 (1= alw™iy)™)
’ a>0
This can be seen as an instance of Harish-Chandra’s Lefschetz principle, which
suggests a mysterious analogy between the behaviors of real and p-adic reduc-
tive groups. In fact, if we consider the full character formula (1.0.1), we see
that it combines two extreme behaviors — the behavior at elements near the
identity (y = <>,), which is controlled by i, and the behaviour at elements
far from the identity (y = 7«,), to which all the roots of unity contribute. The
Fourier-transform of the orbital integral i appears to belong to the world of fi-
nite groups of Lie type. For example, when 7 has depth zero, the term fi is a lift
[DR09, Lemma 12.4.3] of a Green function, expressing the character of a cus-
pidal representation of a finite group of Lie type at a unipotent element. The
roots of unity on the other hand seem to belong to the world of real reductive
groups. This suggests that the behavior of p-adic groups is an interpolation
between the behavior of finite groups of Lie type and the behavior of real re-
ductive groups.

The close parallel between the characters of regular supercuspidal represen-
tations at shallow elements and the characters of real discrete series, besides
being alluring in its own right, also has practical value, which brings us to
the third main goal of this paper — the construction and study of L-packets of
regular supercuspidal representations and their matching with Langlands pa-
rameters. The original approach [Lan89] of Langlands to the construction of L-
packets of discrete series representations for real reductive groups was to first
extract from the Langlands parameter a character of the elliptic maximal torus
and to then use this character to write down the Harish-Chandra characters of
the constituents of the L-packet. The recent explicit constructions of L-packets
for p-adic groups [DR09], [Ree08], [Kall5] have followed this procedure to the
extent that they extract from the Langlands parameter a character ¢ of an el-
liptic maximal torus, but then they determine the constituents of the L-packet
not via their Harish-Chandra characters, but by plugging in some modifica-
tion of the character 6 into Adler’s construction in the case of r > 0, or into
the construction of [DR09, §4.4] in the case of r = 0. The works of Adler-Spice
[AS09], DeBacker-Reeder [DR09], and DeBacker-Spice [DS18] on the character
formula for supercuspidal representations and our reinterpretation of it from
the first part of this paper allow us to implement a much closer analog of Lang-



lands’ construction and use it to construct the L-packets that consist of regular
supercuspidal representations and associate them to Langlands parameters.

The class of parameters we consider in this paper contains as special cases
those considered in the above mentioned papers, but is much larger. More
precisely, it consists of those discrete Langlands parameters ¢ : Wr — LG for
which ¢(Pr) is contained in a maximal torus of Gand Cent(p(Ir), G ) is abelian
(as well as a small amount of slightly more complicated parameters that we
need in order to obtain a balanced theory). Guided by the character formula
(1.0.3) we assemble the L-packet corresponding to a given parameter in the
same way as Langlands constructs the packets of real discrete series representa-
tions — by writing down (a piece) of the Harish-Chandra character of each con-
stituent of the L-packet. Our construction is nonetheless completely explicit:
Given a parameter, we explicitly give the inducing data for each constituent
of the L-packet. Conversely, one can also explicitly recover the L-parameter
from this inducing data. Important for this is the fact that the notion of a tame
regular elliptic pair (S, §) has a direct interpretation in terms of “G.

Let us now describe the construction of L-packets in more detail. Initially
it follows the framework laid out in [Kall5]. A parameter ¢ satisfying the
above conditions determines an algebraic torus S. We use x-data to produce
an embedding of ¥j, : “S — G whose image contains the image of ¢,
and hence leads to a factorization ¢ = Lj, o pg,, after which the parame-
ter s, : Wr — LS leads to a character 0, : S(F) — C* via the Langlands
correspondence for tori. The torus S comes equipped with a stable class of
embeddings into G (and in fact into any inner form of G). For any embedding
j + S — G belonging to this stable class, we obtain an elliptic maximal torus
JS C G with a character j6, of it. It is at this point that the construction of the
current paper diverges from the previous constructions. We write down the
formula

e(Ger(X*(To)e — X*(S)c, A) > AFPla, X ()0 (v*),
WEN(G,i8)(1)/3S(F)

and demand that 7; be the regular supercuspidal representation whose nor-
malized character at shallow elements v € jS(F') is given by this formula. In
practice we ensure that this demand is met by explicitly providing the pair
(S, 8) that parameterizes the regular supercuspidal representation, but we feel
that the difference in point of view is essential. At this point, a remark is in or-
der about the choice of x-data involved. In [Kall5, §5.2] we spent a lot of effort
to choose the correct y-data so that the character 6,, of S we obtain would be the
right one for Adler’s construction. From the current point of view, the choice
of x-data is irrelevant. This is because both 6, and A3%[a, x| depend on this
choice in a parallel way and the dependence cancels in the product. However,
A3]a, x] also depends on a-data, and there is no other object in the character
formula with this dependence. This means that the burden is now on choosing
the a-data correctly. It turns out that this choice is given by a simple formula
(4.10.1) that is uniform for real and p-adic groups. The only difference in the
p-adic case is that one needs to pay attention to the first upper numbering fil-
tration subgroup of inertia whose image under ¢ is detected by a given root of
G. This is reminiscent of the study of the jumps of an admissible character in
the work of Bushnell and Henniart [BHO05a], [BHO5b]. In fact, our work here
might be seen as a generalization to arbitrary tamely ramified p-adic groups
of the work of Bushnell-Henniart, insofar as both have the goal of giving an
explicit realization of the local Langlands correspondence.



Once the representations 7; are determined, the L-packet is defined to be the
set {m;} where j runs over all rational classes of embeddings of S into G. The
internal parameterization of this L-packet is again done as in [Kal15, §5.3], the
only difference being that now we are using the cohomology functor H' (u —
W, —) introduced in [Kall6] instead of the set B(G)pas used in [Kall5]. This
allows us to uniformly treat all connected reductive groups, without condi-
tions on the center. A reader interested in having a parameterization in terms
of B(G)pas, say for the purpose of studying Rapoport-Zink spaces, can either
replace in the construction all occurrences of H'(u — W, —) with B(—)pas, OF
appeal to the general results of [Kal18b].

We now give a brief overview of the contents of this paper. Section 3 con-
tains the study of regular supercuspidal representations. In Subsection 3.1 we
collect some basic facts about p-adic tori, and in particular extend Yu's theo-
rem [Yu09, Theorem 7.10] that the local Langlands correspondence for tamely
ramified tori preserves depth from the case of positive depth to the case of
characters vanishing on the Iwahori subgroup and on the maximal bounded
subgroup of a torus. In Subsection 3.4 we classify the regular depth-zero su-
percuspidal representations of tamely ramified groups. This is based on the
notion of a maximally unramified maximal torus of a tamely ramified group,
that generalizes the notion of an unramified maximal torus of a group that
splits over an unramified extension. This notion, suggested by Dick Gross,
already appears in [Roel1], where the regular depth-zero supercuspidal repre-
sentations of ramified unitary groups are studied. We then review and extend
results of DeBacker [DeB06] on the parameterization of such tori, focusing on
the case of elliptic tori that will be needed later. Using these results, we clas-
sify the regular depth-zero supercuspidal representations of tamely ramified
groups, extending results of DeBacker-Reeder [DR09]. The main hurdle in the
construction of regular depth-zero supercuspidal representations is that if S is
a maximally unramified maximal torus of the connected reductive group G,
then the equality S(F') = S(F)o - Z(G)(F) is not always true, as was pointed
out to us by Cheng-Chiang Tsai. This equality holds in the unramified case,
as well as in the case of ramified unitary groups, and makes the passage from
a cuspidal representation of a parahoric subgroup of G(F') to a supercuspi-
dal representation of G(F) straightforward. This equality is also equivalent to
the technical condition imposed on 7_; in [Murl1]: the G(F')-conjugacy class
of pairs (5,0) corresponding to 7_; satisfies [Murll, Definition 10.1(3)] pre-
cisely when S(F) = S(F)oZ(G)(F). We deal with the additional difficulty in
the general ramified case in Subsubsection 3.4.4 by exploiting the fact that the
Deligne-Lusztig variety X () associated to @ € N(T*) (notation as in [DL76,
§1.8]) admits an action of T,q(w)* by conjugation.

The rest of Section 3 is devoted to the study of the positive-depth case. In
Subsection 3.5 we review the study of Hakim-Murnaghan on when different
Yu-data produce the same representation and remove a hypothesis from their

—

results, namely Hypothesis C(G) of [HMO08, §2.6]. In Subsection 3.6 we intro-
duce the notion of a Howe factorization and prove that any pair (.9, #) consisting
of a tame maximal torus and a character possesses a Howe factorization, gen-
eralizing to arbitrary reductive groups the Howe factorization lemma. In Sub-
section 3.7 we apply these results to the classification of regular supercuspidal
representations of positive depth. In Subsubsection 3.7.1 we define the notion
of reqular Yu-data. In Subsubsection 3.7.2 we define the notion of a tame regular
elliptic pair and show that it specializes in the case of GL to the classical notion
of an admissible character. In Subsubsection 3.7.3 we use Howe factorization
and the results of Hakim-Murnaghan to show that G-equivalence classes of



regular Yu-data are in a natural bijection with G(F')-conjugacy classes of tame
regular elliptic pairs. This is done under the assumption that p does not divide
the order of the fundamental group of the derived subgroup of G, which is
also imposed in Subsections 3.5 and 3.6. We remove this assumption in Sub-
subsection 3.7.4, where we only require that p is odd and not a bad prime for
G.

Before moving on to Section 4 we mention here a recent draft [Hak17] that
was sent to us after this paper was written, in which Hakim reinterprets Yu's
construction and gives a parameterization of the resulting representations in
terms of a different kind of data. His interpretation has the advantage that the
refactorization process studied in [HMO08] becomes unnecessary. The goal and
results of this draft are quite disjoint from ours. It would be interesting to see
if the two approaches can be combined.

Section 4 is devoted to our reinterpretation of the Adler-DeBacker-Spice char-
acter formula. The technical heart of this section is Subsection 4.5, in which we
give a formula for a certain subset ord,; () C R associated by [DS18, Definition
3.1.3] to a tame maximal torus 7" of G, a symmetric root « of T, and a point x
in the Bruhat-Tits building of T" seen as embedded into the building of G. This
set plays a fundamental role in the character formula, because all roots of unity
occurring in the formula are defined based on it. According to [DS18, Corollary
3.1.9] there are only two possibilities for this set and Proposition 4.5.1 shows
that these possibilities are distinguished by the toral invariant introduced in
[Kal15, §4]. After giving the definition of the term A% in Subsection 4.6 we
are in a position to rewrite the character formula. We need however to pay at-
tention to the technical assumption that G¢~1(F)/Z(G)(F) is compact, under
which the character formula of [AS09] and [DS18] is valid. For toral super-
cuspidal representations this assumption is automatically satisfied and we can
write the full character formula in this case, which is done in Subsection 4.8.
For general regular supercuspidal representations (g gy we are able to show in
Subsection 4.4 that this assumption can be dropped provided we consider suf-
ficiently shallow elements belonging to the torus S. We use this fact, together
with a computation in the depth-zero case done in Subsection 4.9, to prove
(1.0.3) in Subsection 4.10. We conclude with Subsection 4.11, where we com-
pare (1.0.3) with the character formula for real discrete series representations.

Section 5 contains the construction of regular supercuspidal L-packets. We also
give a description of the internal structure of each L-packet I, by showing
that it has a simply transitive action of the abelian group 7(S5})”. In order to
convert this into a bijection, we need to know that the choice of a Whittaker
datum for the quasi-split group G determines a base point in the L-packet
II,, in accordance with the strong form of Shahidi’s tempered L-packet con-
jecture [Sha90, §9]. Due to the technical compactness assumption necessary for
the current form of the Adler-DeBacker-Spice character formula for elements
close to the identity, we are not in a position to do so for general regular su-
percuspidal L-packets. For the same reason, we can only prove stability or
endoscopic transfer for these packets for shallow elements, but not for general
regular semi-simple elements. Both of these points will be addressed in forth-
coming joint work with DeBacker and Spice, based on ongoing work of Spice
on removing the compactness assumption from [DS18].

We are however able to prove these statements for toral L-packets, which are
the topic of Section 6, where we specialize the construction of L-packets to the
case of toral supercuspidal representations. These are the representations ob-



tained from a Yu-datum for which the twisted Levi sequence is of the form
S = G ¢ G' = G, where S is an elliptic maximal torus of G. For these
representations the compactness assumption is satisfied and thus the Adler-
DeBacker-Spice character formula is valid for general elements, rather than just
for shallow elements. Using it, we are able to prove the existence and unique-
ness of a generic constituent in each compound L-packet as well as the stabil-
ity and endoscopic transfer of these L-packets (the stability of toral L-packets
under the additional assumption that S is unramified was already shown in
[DS18]). We expect the same arguments to apply to the case of the general reg-
ular supercuspidal L-packets of Section 5, once the compactness assumption
on the Adler-DeBacker-Spice character formula has been removed.
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ful suggestions which have substantially improved its readability. Their work
went well beyond that of a usual refereeing process and we wish to express
our gratitude for their commitment and energy.

2 NOTATION AND ASSUMPTIONS

2.1 Assumptions on the ground field and the group

Throughout most of the paper, I’ denotes a non-archimedean local field of zero
or positive characteristic. The only exceptions to this are §3.2 and §5.1, where I
can be any field, and §4.11, where F' = R. Furthermore, G denotes a connected
reductive group defined over F.

For convenience, we collect here the assumptions on F' placed in different parts
of the paper. In §3.1-§3.4 there are no further assumptions on F' or G. Starting
with §3.5 we assume that the residual characteristic of F'is odd and that G splits
over a tame extension of F’; these assumptions are kept throughout. In §3.6 and
§3.7, we assume further that the residual characteristic is not a bad prime for
G and does not divide the order of m1(Gger). The last of these assumptions is
only for technical convenience and is removed in §3.7.4.

We recall from [SS70, 1,§4] the list of bad primes for each irreducible root sys-
tem: For type A,, there are no bad primes, for types B,,, Cy,, or D,, the only bad
prime is 2, for types Es, E7, Fy, or G5 the bad primes are 2 and 3, and for type
Eg the bad primes are 2, 3, and 5. A prime is bad for G if it is bad for some
irreducible component of its absolute root system.

In §4.5, §4.6 and §4.7 the only assumption on the local field F is that its residual
characteristic is odd. For the rest of §4 we assume further that the residual
characteristic is not a bad prime for G.
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In §5 and §6 we assume that the residual characteristic is odd, is not a bad
prime for G, and does not divide |m(Z(G))|. All prime divisors of |mo(Z(G))]
are bad primes unless G has components of type A,,. If G has a component of
type A, a sufficient condition would be p t (n + 1). We are moreover forced
to assume that the characteristic of F'is zero due to the usage of [Kal16], where
this assumption is made. We believe that the results of [Kall6] are valid with-
out this assumption, but have not checked this carefully. In the meantime, if
[Kal16] is replaced by [Kot], the characteristic zero assumption can be dropped
at the expense of possibly not reaching all inner forms.

Finally, in §6.3 we must assume that I has characteristic zero and large resid-
ual characteristic. More precisely, we require p > (2 + e)n, where e is the
ramification degree of F//Q,, and n is the dimension of a faithful rational repre-
sentation of G. A result [DR09, App. B] of DeBacker-Reeder ensures that then
the exponential map converges for all topologically nilpotent elements of the
Lie algebra of G.

In some parts of the paper we appeal to papers such as [LS87] or [K599], where
a blanket assumption is made that the ground field is of characteristic zero.
It is however easy to check that for the results we use this assumption is not
needed.

The following assumptions are cruder than necessary but easier to remember:
If F has characteristic zero, p > 5 and p { n + 1 for any component of G of
type A, then all results of this paper hold except for §6.3, for which the added
assumption p > (2 + e)n is sufficient.

2.2 Further notation

We denote the ring of integers of F' by Op, its maximal ideal by pr, and its
residue field by kr, of cardinality q. We fix a separable closure F'* of I and let
I' = I'r be the Galois group of F°/F, W = Wy the Weil-group, I = I the
inertia group, and P = Pp the wild inertia group. If E/F is a finite separable
extension, which we will assume to be contained in F'*, we will use the sub-
script E to denote the analogous objects relative to £ instead of F'. Moreover,
we will denote the relative Galois group of E/F by '/ and the relative Weil
group by Wg,r. We will write F'* for the maximal unramified extension of
F within F** and by Fr the element of I'pu /f that induces the automorphism
x — 27 on the residue field kz.

Given a connected reductive group G defined over F, we denote by Gge its
derived subgroup, by Gs. and G,q the simply connected cover and adjoint quo-
tient of Gger, and by g the Lie-algebra of G. For an element g € G we will write
Ad(g) for the conjugation action of g on G (i.e. z — gzg~') as well as for the
adjoint action of g on g. We will write g* for the dual space of g and Ad”(g) for
the coadjoint action of g.

Whenever we refer to a maximal torus S C G, we will always assume that it
is defined over F, unless explicitly stated otherwise. We will write N (S, G)
for the normalizer of S in G and Q(S,G) = N(S,G)/S for the absolute Weyl
group, a finite algebraic group defined over F. We write R(S, G) for the cor-
responding set of roots. This set has an action of I' and for any a € R(S, G)
we will write I', and T'y,, for the stabilizers of the subsets {a} and {«, —a} re-
spectively, and F,, and F'y, for the corresponding fixed subfields of F'*. Then
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F,/Fyi, is an extension of degree at most 2. Following [LS87] we will call «
symmetric if the degree of this extension is 2, and asymmetric if the degree is
1. Moreover, following [AS09] we will call « ramified or unramified if the ex-
tension F,,/F+, is such. Note that « is symmetric and ramified if and only if
it is inertially symmetric in the sense if [Kall5]. For each o € R(S, G) we have
the 1-dimensional root subspace g, C g, which is defined over Fi,.

We will write B4(G, F) for the reduced Bruhat-Tits building of G(F) and
A™(T F) for the apartment associated to any maximal torus of G which is
maximally split (this notation is slightly different than the one used by other
authors, who prefer to write Ared(AT, F'), where Ar is the maximal split sub-
torus of T'). For any = € B*4(G, F) we shall write G(F), for the stabilizer of x
in G(F), G(F),, for the parahoric subgroup associated to z, and G(F'),,, for
the Moy-Prasad filtration subgroup [MP94, MP96] at depth » € R>(. On the
Lie-algebra we have the analogous filtration lattices g(F'), , for any r € R. It
is sometimes convenient to use the notation G(F')y y.s = G(F)g,r/G(F)qg,s for
r<s,aswellas G(F)zry = Usop G(F)a,s

In the special case G = Resg,rG,, for a finite separable extension E/F the
reduced Bruhat-Tits building is a singleton and the Moy-Prasad filtration can
be described simply as E; = O and E =1+ p]r;ﬂ for » > 0, where e is
the ramification degree of E/F. The corresponding Lie-algebra filtration on
g(F) = Eisgivenby Ey = Og and E, = p,LfH forr € R.

3 REGULAR SUPERCUSPIDAL REPRESENTATIONS

3.1 Basics on p-adic tori

Let S be a torus defined over F. The topological group S(F') has a unique
maximal bounded subgroup S(F), (which is also the unique maximal com-
pact subgroup, as F' is locally compact) and this subgroup is equipped with a
decreasing filtration S(F'), indexed by the non-negative real numbers, namely
the Moy-Prasad filtration corresponding to the unique point in the reduced
Bruhat-Tits building of S. When the splitting field of S is wildly ramified
over F it is known that this filtration exhibits some pathologies, which are not
present when for some tamely ramified extension E/F the torus S x E becomes
induced, see [Yul5, §4]. In particular, the pathologies are not present when the
splitting field of S is tamely ramified over F. We will call such .S tame for short.

We recall the definition of S(F'),. For r = 0 there are two ways to define the
subgroup S(F)y. The torus S possesses an lft-Neron model &' by [BLR90,
§10]. This is a smooth group scheme over Of satisfying a certain universal
property. It is locally of finite type and the maximal subgroup-scheme of finite
type is called the ft-Neron model &. Both models share the same neutral
connected component, called the connected Neron model G°. Then S(F)y =
G°(OF). One also has

&"(Or) = S(F)y = {s € S(F)[vx € X*(8), ord(x(s)) > 0}.
Note that S(F')/S(F') is a finitely generated free abelian group.

A second way to define S(F)y is via the Kottwitz homomorphism. This is a
functorial surjective homomorphism S(F) — X.(S)! introduced in [Kot97,
§7], see in particular [Kot97, §7.2,§7.6]. The kernel of this homomorphism is
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S(F)o, and the preimage of the torsion subgroup [X. () ior is S(F),. See the
first note at the end of [Rap05].

For r > 0, the definition of S(F),. is
S(F), ={s € S(F)o|vVx € X*(S), ord(x(s) — 1) > r},

see [MP96, §3.2] and [Yul5, §4.2]. Denoting by S(F),+ the union of S(F), over
s > r we see that S(F)o is precisely the pro-p-Sylow subgroup of S(F')o.

These descriptions make it clear that when F' is unramified S(F)y = S(F'), and
S(F)o+ is the pro-p-Sylow subgroup of S(F'), and hence of S(F). In order to
generalize these statements we introduce the following notions.

Definition 3.1.1. We say that a torus S has induced ramification if the following
equivalent conditions hold:

1. X*(S) has a basis invariant under the action of /.
2. X, (S) has a basis invariant under the action of Ir.

3. § x F™ is an induced torus, where F" is the maximal unramified exten-
sion of F.

We say that S has induced wild ramification if the following equivalent condi-
tions hold:

1. X*(S) has a basis invariant under the action of Pr.

2. X, (S) has a basis invariant under the action of Pp.

3. S x F' is an induced torus, where F" is the maximal tamely ramified
extension of F.

O

It is obvious that an unramified torus has induced ramification, and that a tame
torus has induced wild ramification. The notion of induced wild ramification
is the same as “Condition (T)” in [Yul5, §4.7.1].

Fact3.1.2. 1. If S has induced ramification, then S(F)y = S(F)p.
2. If S has induced wild ramification, then for any r > 0
S(F), ={se S(F)|Vx € X*(S), ord(x(s) — 1) > r}. (3.1.1)

In particular, S(F')o+ is precisely the pro-p-Sylow subgroup of S(F); and
hence of S(F).

g

Proof. When S has induced ramification, X, (.5); is torsion-free, hence the first
point. When S has induced wild ramification, X.(S); = [X.(S)p];/p has no
p-torsion and hence S(F),/S(F)o is a finite group of order prime to p. The
right-hand side of (3.1.1) is contained in S(F'); and is a pro-p group, hence lies
in S(F)o and thus equals S(F),. |
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The second part of this Fact was also proved in [Yul5, 4.7.2] by a different
method.

Lemma3.13. If 1 - A -+ B — C — 11is an exact sequence of tame tori and
r > 0, then
1— A(F), - B(F), - C(F), =1

is also exact. If A — B is an isogeny of tame tori whose kernel has order prime
topand r > 0, then A(F'), — B(F), is a bijection. O

Proof. Let E/F be a tame finite Galois extension splitting the tori. We have
A(E), = X.(A) ® EX and A(F), = A(E)\"'", according to (3.1.1). Applying
the functor X, to the exact sequence of tori produces an exact sequence of fi-
nite rank free Z-modules with I';/ action, which remains exact after @z E,
leading to

1— A(E), —» B(E), —» C(E), — 1.

Taking I' ;) p-invariants and applying [Yu01, Proposition 2.2] finishes the proof.

For the second point we recall that for any integer n and abelian group 7' the
groups Tor (T, Z/nZ) and Tor}(T,Z/nZ) are the kernel and cokernel of the
multiplication-by-n-map on 7', and thus both vanish if 7" is pro-finite with pro-
order prime to n. Since X, (A4) — X, (B) is an injection with finite cokernel of
order prime to p and E is pro-p, the functor X, (—) ®z E turns the isogeny
A — Binto a I'g,p-equivariant bijection, which remains bijective after taking
'/ p-fixed points. |

Lemma 3.14. Let1 - A — B — C — 1 be an exact sequence of tori.

1. If A hasinduced ramification, then the sequences 0 — X, (A); — X.(B)r —
X.(C)y - 0and 1 — A(F)g — B(F)o — C(F)o — 1 are exact, where I
denotes the inertia subgroup of I".

2. If A has induced wild ramification, then the sequences 0 — X.(A)p —
X.(B)p = X«(C)p » 0and 1 — A(F)o+ — B(F)o+ — C(F)oy — 1 are
exact, where P denotes the wild inertia subgroup of T'.

O

Proof. Assume that A has induced ramification. Apply again X, to the exact
sequence of tori to obtain an exact sequence of finite-rank free Z-modules with
I'-action. We claim that after taking inertial co-invariants the sequence remains
exact. The only issue would be the injectivity of X.(A4); — X.(B);. We may of
course replace I by a suitable finite quotient through which it acts. The kernel
of this map is the image of the connecting homomorphism H; (I, X.(C)) —
X, (A)r. But Hi(I,X,(C)) is finite, while by assumption X, (A); is torsion-
free, so this connecting homomorphism is zero. This shows the exactness of
the first sequence.

For the second sequence we consider the commutative diagram with exact
rows

1 A(FY) B(F*) —= C(F*) —1

o

0— X, (A)—=X.(B) — X.(C); ——0
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The exactness of the top row on the right follows from H'(I, A(F*)) = 0 due
to Steinberg’s theorem [Ste65, Theorem 1.9]. The vertical maps are surjective.
The kernel-cokernel lemma implies that the sequence

1= A(F%)y = B(F“)g = C(F")p — 1

is exact. It is well known that H*(Fr, A(F*“)y) = 0, see e.g. [DR09, Lemma
2.3.1]. Taking Frobenius-invariants gives the exactness of the second sequence.

Assume now that A has induced wild ramification. The exactness of the first
sequence follows from the same argument as above. The sequence

X*(A)I — X*(B)I — X*(O)I —0

may fail to be exact on the left, so we let X, (A); denote the image of the first
map. Applying the kernel-cokernel lemma to the diagram with exact rows and
surjective vertical maps

1 A(FY) B(F*) —= C(F*) —1

L

0— X.(4);, —X.(B) —= X.(C)r —=0

we obtain the exact sequence
1= A(F")y = B(F")g— C(F*)g — 1

of pro-finite abelian groups, where A(F™"), is the kernel of A(F*) — X.(A)},
a subgroup of A(F™), containing A(F")o. The associated sequence of pro-p-
Sylow subgroups is still exact. By Fact 3.1.2 this sequence is

1= A(F*)o+ — B(F")o4 — C(F*)o+ — 0.

We now use that H*(Fr, A(F“)o;) = 1 and taking Frobenius-invariants obtain
the exactness of the second sequence of the lemma. |

Example 3.1.5. It is tempting to hope that the above lemma might hold when
(—)o is replaced by (—),. This is however not the case. Let E/F be a ramified
quadratic extension of residual characteristic not 2, B = Resg,rG,,, A = G,
and A — B the usual embedding. Then the exact sequence of F-points is

15> F* S5 EX 5 E' 51,

where E' is the subgroup of E* of elements whose E/F-norm is 1, the first
map is the natural embedding, and the second map sends € E* to z/o(x),
where ¢ is the non-trivial F-automorphism of E.

We have A(F)o = A(F)(, = O;i, B(F)O = B(F)b = OE, and O(F)(, = E1 75
C(F)o = (1 + pg). The map z/o(x) maps O} surjectively onto (1 + pg). O

Every torus S defined over F' has a maximal unramified subtorus S’ — S,
characterized by X, (S') = X.(5)!¥, as well as a maximal unramified quotient
S — S", characterized by X*(S”) = X*(S5)!F. One has X*(S') = X*(S) 1, free
and X, (S”) = X.(5) 1, free, i-€. the torsion-free quotient of the inertial coinvari-
ants of X*(5) or X, (S) respectively.
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Lemma 3.1.6. Let S be a torus defined over F and let S’ C S be the maximal
unramified subtorus. The natural map

S"(F)o/S' (F)oy — S(F)o/S(F)o+

is an isomorphism. O

Proof. The injectivity of this map is equivalent to S"(F)o N S(F)o+ = S (F)o+,
which follows from the description of S(F)o+ and S’(F')o+ as the pro-p-Sylow
subgroups of S(F) and S’(F')o. The surjectivity is equivalent to S(F'), =
S'(F)o - S(F)o+. This follows by applying Lemma 3.1.4 with r = 0 and r = 0+
to the exact sequence 1 — S’ — S — S/S’ — 1, provided we can show that
[S/S'1(F)o+ = [S/S'](F)o. This is equivalent to saying that the special fiber
of the connected Neron model of S/S’, which is a smooth connected commu-
tative algebraic group defined over kr and hence a product of a torus and a
unipotent abelian group, is purely unipotent. But the existence of a non-trivial
torus in that special fiber would imply via [DeB06, Lemma 2.3.1] the existence
of a non-trivial subtorus of S/S’ that splits over F'*, contradicting the fact that
S/’ is inertially anisotropic. |

Lemma 3.1.7. Let S be a torus defined over F'. Then we have
H*(Tp/Ip, S(F*)y) = H*(Up/Ip, S(F")o) = H*(Urp/Ir, S(F*)o4) = 0.

O

Proof. We shall use [Ser79, Ch. XIII, §1,Prop. 2], according to which for any
torsion I'r/Ir-module A we have H*(I'r/Ir, A) = 0. This applies in partic-
ular when A4 is the set of kp-rational points of a commutative linear algebraic
group defined over kr. Kottwitz’s homomorphism leads to the exact sequence
of I'r /I p-modules

1= S(F")9 — S(F“)p — [Xu(S)1]tor — 0.

From H2(T'r/Ir, [X.(S)1)ior) = 0 we see that H?(T'r /I, S(F*);) = 0 would
follow from H%(T'r /I, S(F*)o) = 0. In the same way, H*(I'r/Ip, S(F%)o) =
0 would follow from H?(T'g/Ir,S(F“)o+) = 0, because S(F%)o/S(F“)os+ =
&°(kr) implies H2(Dp/Ip, S(F“)o/S(F%)o4) = 0.

We have H?*(Up/Ir, S(F*)ot) = lim H*(Upr/p, S(F")o+), where the colimit
runs over the finite unramified extensions of F. The group S(F”)o+ is equal
to lim .S (F")o4+/S(F"),, where S(F’), is the r-th filtration subgroup with re-
spect to any admissible schematic connected filtration in the sense of [Yul5,
§4]. One could take for example the connected Moy-Prasad filtration of [Yul5,
§4.6.3] or the minimal congruent filtration of [Yul5, §5]. The steps of the fil-
tration are discrete and the quotients are the kr/-points of abelian connected
unipotent algebraic groups U, defined over kr. From the inflation restriction
sequence

H'(Tk,, U(kp)) = H*(Tr,, jrp, U(kp)) = H? (Crye, U(RF))

and the vanishing of the two outer terms we see that the middle term vanishes.
From [Ser79, Chap. XII, §3, Lem. 3] we see that H*(T'p//p, S(F”)o4+) vanishes,
and hence that H?(TI'x /I, S(F“)o, ) vanishes. [ ]
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Consider now a tame torus S defined over F' and its complex dual torus S. The
local Langlands correspondence provides an isomorphism of abelian groups
H: (W, S ) = Homs(S(F'), C*). This bijection is functorial in S and is char-
acterized uniquely by a short list of properties [Yu09, Theorem 7.5]. According
to [Yu09, Theorem 7.10], if ¢ € H' (W, S) corresponds to 0 : S(F) — C*, then
for any r > 0 the restriction 6| g, is trivial if and only if the restriction ¢|;- is
trivial. The following two lemmas extend this result to the restrictions of 6 to
S(F)O and S(F)b

Lemma 3.1.8. The restriction 6|g (), is trivial if and only if ¢ lies in the kernel
of the restriction map H'(Wp, S ) — HY(Ip, S ), or, equivalently, belongs to the
image of the inflation map H' (W /I, 5'7) — H (W, 5). O

Proof. Assume first that S is split. The claim reduces immediately to the case
S = G, where it follows from the fact that the Artin reciprocity map Wr —
F* carries Ir surjectively onto Ox. Assume next that S is unramified. Let
E/F be the splitting field of S'and R = Resg,r (S x ). The kernel of the norm
map R — S is an unramified torus. Applying Lemma 3.1.4 to the resulting
sequence of unramified tori we obtain a surjection S(E)y = R(F)o — S(F)o.
Thus 0|s(p, is trivial if and only if [f o N]| (), is trivial. But §o N is a character
of the split torus S(E) whose parameter is equal to ¢y, . According to the split
case, 6 o N is trivial on S(E) if and only if ¢|y, has trivial restriction to If.
But I = Ir and the unramified case is complete.

Assume now that S is tamely ramified. Let S’ C S be the maximal unramified
subtorus. According to Lemma 3.1.6, 0| 5(r), is trivial if and only if 6| 5(r),, and
0|s(r), are trivial. The parameter of 0|/ () is the image of ¢ in H!(Wp, §1F)
If  has trivial image in H' (I, S), then it has trivial images in H'(I%", S) and
H(Ip,S;,), so we conclude that 0]s(r),. and 0|s (), are trivial. Conversely,
if ] s(r),, is trivial, then the image of ¢ in H* (I o 5 ) is trivial, so ¢ is inflated
from H' (W /1%, S) and its restriction to I is inflated from H'(Iy/I%", S).
The group Ir /I is pro-cyclic, let = be a pro-generator and let Z be the finite-
order automorphism of S through which x acts. We have S, = 8/(1—x)8.
If ] 5/(r), is also trivial, then the image of |, in H'(Ip/I%", S;,) is zero and
hence ¢|r, comes from an element of H'(Ip/I%", (1 — 7)5). But we claim that

this cohomology group is zero. Indeed, let N; : § — S be the norm map
for the action of z. Evaluating 1-cocycles at the pro-generator x provides an

isomorphism from H'(Ir/I3t, (1 — 7)5) to the quotient of ker(Nf\(lii)g) by
(1—-z)(1— 55)§ . But N; is trivial on (1 — £)§, so the numerator of this quotient
is equal to (1 — f)g . We claim that the denominator is also equal to that. This
follows from the fact that the map (1 — z) : (1 — )8 — (1 —z)Sisan isogeny.
Indeed, its kernel consists of those elements of (1—z) S that are fixed by z and is
thus equal to the intersection (1 — £)§ NS*. This intersection is contained in the

kernel of the restriction of N to 5%. But that restriction is just the ord(z)-power
map and its kernel is finite. |

Note that the abelian group Str might be disconnected. In fact,
X*(§IF/§IF’O) = X*(S)Ip,tor

which means that the disconnectedness of 5’7 mirrors exactly the disconnect-
edness of the ft-Neron model of S. This motivates the following.
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Lemma 3.1.9. The restriction 0|gp), is trivial if and only if ¢ belongs to the
image of the inflation map H'(Wg /I, 577°) — HY(Wg, S). O

Proof. Let S — S” be the maximal unramified quotient of S and let S; C S
be the kernel of this quotient. Thus X,.(S1) is the kernel of the norm map
X.(S) = X.(S) for the action of inertia. Note that X, (S;)/F = {0}, which
means that S; is inertially anisotropic and in particular S, (F') is compact.

We claim that S(F), is the preimage of S”(F)y. Indeed, the image of S(F); in
S"(F') is compact and hence belongs to S (F), = S”(F')¢. Thus the preimage
© C S(F) of S"(F)o contains S(F');, so it is enough to show that it is com-
pact. The group S(F’) is locally compact and o-compact, the latter because
S(F)/S(F)p is a finitely generated abelian group. Since © is an open, hence
also closed, subgroup of S(F), it inherits these properties. The open mapping
theorem [HR79, Theorem 5.29] implies that the surjection © — S”(F), is open,
and hence a quotient map. We thus have the exact sequence

1 - S1(F)—» 0 —S5"(F)y—1

of Hausdorff topological groups, the outer terms of which are compact. Then
[HR79, Theorem 5.25] implies that © is compact.

We conclude that the natural map S(F)/S(F), — S”(F)/S"(F)o is injective.
Since its cokernel is finite, the characters of S(F') that are trivial on S(F'), are
precisely those obtained from characters of S”(F) that are trivial on S”(F)o
by composing them with the natural map S(F) — S”(F'). But the dual of the
natural map S — S” is the map 5Tr° s § and the statement follows from
Lemma 3.1.8. |

3.2 Review of stable conjugacy of tori

In this subsection we review the standard notions and results concerning stable
conjugacy and transfer of tori between inner forms, mainly in order to have a
convenient reference that does not impose conditions on the ground field. We
work over an arbitrary ground field I’ with a fixed separable closure F* and
letT" = Gal(F*/F).

Let G and G’ be connected reductive groups defined over F. Recall that an
inner twist ¢ : G — G’ is an isomorphism ¢ : G x F®* — G’ x F* such that
¢~1o (1) is an inner automorphism of G for all o € I'. Let T C G be a maximal
torus. Recall that T is said to transfer to G if there exists g € G(F*®) such that
Yo Ad(g)lr : T — G’ is defined over F, i.e. invariant under I'. The image
T" C G’ of Y o Ad(g)|r is a maximal torus of G’ and one says that T"and 7" are
stably conjugate. In the special case where G = G’ and ¢ = id this recovers the
usual notion of stable conjugacy of maximal tori of G. Note that since every
torus splits over F*, for any two maximal tori 7', 7" C G there exists g € G(F*)
such that Ad(g)T = T'. However, usually the homomorphism Ad(g) : 7' — T”
will not be defined over F.

Fix a maximal torus 7' C G. Given any other maximal torus 7" C G choose
g € G(F?) such that Ad(g)T = T’. Then o + g 'o(g) is an element of
ZY (T g, N(T,G)) whose cohomology class cls(7”) is independent of the choice
of g. The class cls(7”) is independent of the choice of “reference torus” T in the
following sense: If T} and T are two reference tori so that we have clst, (T") €
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HY(Tp,N(T;,G)), and if h € G(F?) is an element satisfying Ad(h)T1 = T,
then the bijection H!(T'r, N(T2,G)) — H'(T'r, N(T1,G)) sending a 1-cocycle
23 to 0 — h™'2z3(0)o(h) is independent of the choice of h and maps clsr, (T”)
to clsp, (77). Two tori TV and T" are conjugate in G(F') if and only if cls(7”) =
cls(T"), and are stably conjugate if and only if cls(7”) and cls(7") have the
same image in H' (', Q(T, G)).

This criterion can be extended across inner forms, at least when the groups
in question are adjoint, which we assume for the rest of this paragraph. Let
v; + G = G, for i = 1,2 be inner twists and let T; C G; be maximal tori.
Replace each 1; by 1, o Ad(g;) for g; € G(F*) to achieve that 1;(T") = T;. Then
the class cls(T;) of ¥; 'o(v;) € ZY (T, N(T, @)) is independent of the choice of
g;. The tori T1 and T5 are called rationally conjugate if there exists g € G(F*) s.t.
2 0 Ad(g) o Y 1. G — Gy is defined over F and restricts to an isomorphism
Ty — Ty. This is the case if and only if cls(7h) = cls(7%). This implies in
particular that the classes of 1, and 1 in H'(F,G), i.e. the classes of the 1-
cocycles ¢; ‘o (¢);) € Inn(G) = G, are equal. Furthermore, T} and T are stably
conjugate if and only if the images of cls(7;) in H*(T', (T, G)) are equal. Note
that the notions of rational and stable conjugacy of maximal tori depend on the
inner twists ;.

Note that for the purpose of checking stable conjugacy of tori we can always
replace G by its adjoint group. This is not true for the purposes of checking
rational conjugacy. The above discussion can be extended to rational conjugacy
in not necessarily adjoint groups by replacing H!(I", —) with the cohomology
sets H*(u — W,Z — G) or HY(P — £,Z — G) of [Kall6] or [Kal18a], in the
case of local and global fields of characteristic zero.

The following result is well-known, e.g. [Kot86, §10], but we have not been
able to find a reference that allows positive characteristic.

Lemma 3.2.1. Assume that F is local. If 7' is elliptic then it transfers to G’. O

Proof. We assume that F' is non-archimedean and refer to [Kot86, §10] for the
proof in the archimedean case. As above we may assume without loss of gen-
erality that G is adjoint. One checks that T transfers to G’ if and only if the class
of ¢ in H(F, G) lies in the image of H'(F, T). Let G be the simply connected
cover of G and Z C Gy its center. Let T be the preimage of T' in G.. The exact
sequences of algebraic groups

12272 -G —>G—1 and 1=-Z T —-T—1

give exact sequences of sheaves on Spec(F') for the fpqc topology. All groups
above are smooth except possibly Z. For them, the first fpqc-cohomology
group coincides with the first etale cohomology group by [ABD 64, exp XXIV,
Proposition 8.1]. Since T is anisotropic, Tate-Nakayama duality implies that
H?(F,Ty) = 0. On the other hand, Kneser’s theorem [BT87, §4.7] implies that
all inner twists of G, have vanishing first cohomology. This leads to the com-
mutative diagram of pointed sets

HY(F,T) ——= HY(F,G)

|

HE (F,2) == H} _(F, %)
from which we conclude that the top map must be surjective. |
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Lemma 3.2.2. If G is quasi-split then any maximal torus 7" C G’ transfers to
G. O

Proof. This has been proved by Raghunathan [Rag04] and independently by
Gille [Gil04]. The proofs are based on Steinberg’s work [Ste65] on rational ele-
ments in conjugacy classes, which assumes that F' is perfect. We learned from
Jessica Fintzen that this assumption was later removed by Borel and Springer
[BS68, §8.6]. Since neither of the papers [Rag04] and [Gil04] cites [BS68], which
can cause confusion about the validity of their results, we have taken the op-
portunity to point this out here. n

3.3 Short remarks about parahoric subgroups

Let G be a connected reductive group defined over F. Recall that Borovoi has
defined in [Bor98, §1.3,§1.4] the algebraic fundamental group 7 (G) of G. The
assignment G — m1(G) is a functor from the category of connected reductive
groups defined over F' to the category of finitely generated abelian groups with
I'-action. Let L denote the completion of the maximal unramified extension of
F. In [Kot97, §7] Kottwitz has constructed a surjective homomorphism kg :
G(L) — m(G);. It is a natural transformation from the identity functor to
the functor 7;(—);. Note that in loc. cit. Kottwitz uses X*(Z(G)?) instead of
71(G)r1. These two abelian groups are equal, and just as in [RR96] we prefer to
use 71 (G)r because it is obviously a functor. In [PR08, Appendix], Haines and
Rapoport prove that for any = € B4(G, F') one has

G(F)9570 = G(F)m n ker(lig).

Corollary 3.3.1. Let f : H — G be a homomorphism of connected reductive
groups defined over F, x € B®(H, F) and y € B*4(G, F). Then

fH(F)z0) NG(F)y C G(F)y,0.
In particular, if T C G is a maximal torus, then

T(F)oNG(F)y C G(F)y.0.

Compeare this Corollary with [Yu01, Lemma 8.2].
Lemma 3.3.2. Let z € B®4(G, F) and r > 0.

1. Let K C G be a central torus and G = G/ K. The sequence
1= KEF) = GF)pyr — G(F)pyr — 1

is exactif r = 0 or r = 0+ and K has induced ramification.
Assume now that G splits over a tame extension and r > 0.

2. The above sequence is exact without assuming that K has induced rami-
fication.
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3. Let G’ C G be a connected subgroup containing Gger and let D = G/G".
The following sequence is exact

1= G(F)er = G(F)yyr — D(F), — 1.

4. Let G — G is an isogeny whose kernel has order prime to p. Then
G'(F)y, — G(F),,, is a bijection.

O

Proof. The argument for the first point and = 0 is essentially the same as for
Lemma 3.1.4, where now one uses 71 (—); instead of X, (—);.

For all the other points, we use [BT72, Lemma 6.4.48] which shows that G(F') ,
is the direct product (as topological spaces) of T'(F'), and the appropriate affine
root subgroups, where T is a maximally unramified maximally split maximal
torus, whose existence is guaranteed by [BT84, Corollary 5.1.12]. Since the
maps G — G and G’ — G induce isomorphisms on the affine root subgroups,
the claims reduce to the corresponding claims for the maps T — T and T’ —
T, where T’ = TN G’ and T = T/K. These follow from Lemmas 3.1.3 and
3.14. |

3.4 Regular supercuspidal representations of depth zero

Let G be a connected reductive group defined over F. In this subsection we
will define and classify regular depth-zero supercuspidal representations of G.
This extends results of DeBacker-Reeder [DR09], where G was assumed to split
over the maximal unramified extension of F.

In §3.4.1 we review results of DeBacker on the classification of G(F')-conjugacy
classes of maximally unramified maximal tori, focusing on the elliptic case
needed later on, and prove some additional results, particularly involving com-
parisons of various Weyl groups. In §3.4.2 we review the concepts of regu-
lar and non-singular characters due to Deligne-Lusztig and prove some sup-
plementary results. The framework of the construction of regular depth-zero
supercuspidal representations is provided by the results of Moy and Prasad
[MP96] and is reviewed in §3.4.3. In order to apply this framework in the ram-
ified case, we need a technical result that is not needed in the unramified case
treated in [DR09]. Its necessity is explained in Example 3.4.21. This technical
result, which we view as the heart of the construction of regular supercus-
pidal representations, is proved in §3.4.4, together with an extension of the
Deligne-Lusztig character formula to our more general setting. In §3.4.5 we
prove the classification of regular depth-zero supercuspidal representations.
This is again a generalization of results of [DR09], but requires additional ar-
guments due to the complication in the ramified setting exposed in Example
3.4.21.

3.4.1 Maximally unramified elliptic maximal tori

Fact 3.4.1. Let S C G be a maximal torus and S’ C S be the maximal unrami-
fied subtorus. The following statements are equivalent.

21



1. S’ is of maximal dimension among the unramified subtori of G.

2. S’ is not properly contained in an unramified subtorus of G.
3. S is the centralizer of S’ in G.
4. S x F*" is a minimal Levi subgroup of G x F*“.
5. The action of Ir on R(S, G) preserves a set of positive roots.
O
Proof. This follows from the fact that G x F'* is quasi-split. |

Definition 3.4.2. A maximal torus S C G will be called maximally unramified if
it satisfies the above equivalent conditions. O

When G splits over F™* then S is unramified. Therefore, this notion generalizes
the notion of an unramified maximal torus to the case of ramified groups (in
[Roell, Definition 3.1.1], such tori were called “unramified”, but we prefer the
term maximally unramified because it emphasizes that the splitting field of S
need not be an unramified extension of F').

The assignments S — S’ and S’ — Cent(S’,G) are mutually inverse bijec-
tions between the set of maximally unramified maximal tori of G and the set
of maximal unramified tori of G. The G(F')-conjugacy classes of the latter were
classified by DeBacker in [DeB06]. We shall review here some of DeBacker’s
work and prove some additional results that will be needed later.

Let S C G be a maximally unramified elliptic maximal torus. We can asso-
ciate to S a point x € B™4(G, F) as follows: Since S’ C G becomes a max-
imal split torus over F'“, we have the apartment A™4(S, F*) C B*4(G, Fv).
This apartment is Frobenius-invariant, since S is defined over F, and contains
Frobenius-fixed points, namely the center of mass of any (automatically finite)
Frobenius-orbit. Since S is elliptic, there is in fact a unique such fixed point x.

Lemma 3.4.3. The point z is a vertex of B4(G, F). O
Proof. This follows from [DeB06, Lemma 2.2.1(1)] applied to T = 5. |

As shown in [BT84, §5], the vertex = specifies a smooth connected Op-group
scheme &2 with & (F) = G(F) and & (Or) = G(F)4,0. We shall write G, for
the reductive quotient of the special fiber of &3. Then GS(kr) = G(F)z,0:0+-
We further have the Op-group scheme &, with @I(F) = G(F) and @I(OF) =
Stab(z, G(F)'), where G(F)! denotes the intersection of the kernels of the group
homomorphisms ord o x : G(F') — Z for all F-rational characters x : G — G,,,.
We shall write G, for the quotient of the special fiber of this group scheme by
its maximal connected normal unipotent subgroup. Then G, coincides with the
neutral connected component of G,,. In particular, G, is a usually disconnected
algebraic group over kr with reductive neutral connected component.

Lemma 3.4.4. 1. The special fiber of the (automatically connected) ft-Neron
model of S” embeds canonically as an elliptic maximal torus S’ of the re-
ductive group G2. Explicitly, S’ (kp/) C G (kp+) is the image in G(F”); 0.0+
of S(F")NG(F"),,0, or equivalently of S’(F")NG(F"),,0, for every unram-
ified extension F”.
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2. Every elliptic maximal torus of G} arises in this way.

O

Proof. This is [DeB06, Lemma 2.2.1(3) and Lemma 2.3.1] applied toT=5". W

Lemma 3.4.5. Let S;, 5> C G be two maximally unramified elliptic maximal
tori. Assume that their points in B4(G, F) coincide, call them x. Assume
furthermore that S (F*) N G(F")4,0 and So(F*) NG(F"); o have the same pro-
jection to G2 (k). Then S; and S, are G(F),. o4-conjugate. O

Proof. This is [DeB06, Lemma 2.2.2] applied to T; = S.. |

Lemma 3.4.6. Let S C G be a maximally unramified elliptic maximal torus
with associated point » € B*4(G, F). Then

S(F) n G(F)%o = S(F)o

O

Proof. This follows immediately from [PR08, Lemma 5 in Appendix] by taking
Frobenius-fixed points. See also [DeB02, Theorem 4.1.5]. [ |

Lemma 3.4.7. Assume that G is either simply connected or adjoint. If S C G is
a maximally unramified elliptic maximal torus, then S(F') = S(F)o. O

Proof. The set of fundamental weights, respectively simple roots, correspond-
ing to a set of positive roots preserved by inertia, forms a basis of X*(S) pre-
served by inertia. This shows that S has induced ramification in the sense of
Definition 3.1.1. Thus S(F), = S(F)o by Fact 3.1.2. On the other hand, S is
anisotropic, so S(F') = S(F). |

Definition 3.4.8. We shall call a vertex = € B4(G, F') superspecial if it is a (nec-
essarily special) vertex that is special in B*4(G, F’) for every finite unramified
extension F’ of F. O

Remark 3.4.9. If G is quasi-split then superspecial vertices exist: The Chevalley
valuation [BT84, §4.2.1] associated to any F-pinning of G is such a vertex. Note
that the definition is equivalent to requiring that x is special for a sufficiently
large finite unramified extension, and also equivalent to requiring that z is
special over F™*.

On the other hand, a superspecial vertex need not be a Chevalley valuation.
All vertices in the building of a ramified unitary group in 3 variables are su-
perspecial, but not all of them are Chevalley valuations. g

Lemma 3.4.10. Let S C G be a maximally unramified elliptic maximal torus
with associated point = € B*4(G, F).

1. We have the exact sequence

1= N(S,G(F)a0)/S(F)o = N(S, G)(F)/S(F) = G(F)a/[G(F)z,0-S(F)].

)
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2. The natural map
N(8,G(F)a0)/S(F)o = N(S',G3)(kr)/S (kF)
is bijective.
3. If z is superspecial, the natural inclusions
N(S,G(F)z,0)/S(F)o = N(S,G)(F)/S(F) = Q(S, G)(F)

are both bijective.
O

Proof. We prove the first point. At the first spot exactness is equivalent to the
equality S(F) N G(F)z0 = S(F)o of Lemma 3.4.6, while at the second spot
exactness is obvious. We only observe that the inclusion N(S,G)(F) — G(F)
takes image in G(F),, because the action of N(S,G)(F) on B4(G, F“) pre-
serves the apartment A™4(S, ') and commutes with the action of Gal(F*/F).

We prove the second point. If we replace F' by F* then its bijectivity is the
content of [BT84, 4.6.12]. Moreover, this bijective map is Frobenius-equivariant.
The claim now follows from the fact that both S(F*), and S’(kr) have trivial
HY(Fr,—).

We prove the third point. Steinberg’s theorem [Ste65, Theorem 1.9] implies the
equality Q(S, G)(F*) = N(S,G)(F*)/S(F*"). The point = remains special over
F" and according to [BT72, 6.2.19] the natural map N (S, G(F")z0)/S(F*)o —
N(S,G)(F*)/S(F")isanisomorphism . Applying again H'(Fr, S(F%)) = {0}
we obtain the lemma. |

Example 3.4.11. Even if the point = is a special vertex, if it is not superspecial
then the inclusion

N(S,G(F)e,0)/S(F)o = N(S,G)(F)/S(F)

may be proper. Consider the adjoint group G = PSp, and let = be a non-
special vertex in the standard apartment. The connected reductive group G
is of type A; x A;j. Let S’ be the unique (up to G2 (kr)-conjugacy) anisotropic
maximal torus in G and let S C G be an anisotropic unramified maximal torus
corresponding to S’ by Lemma 3.4.4. Then using Lemma 3.4.10 we have

N(S,G(F)s0)/S(F)o = N(S',G3)(kr)/S (kr) = QS', G3) (kr) = (2/2Z)*.

On the other hand, the extended affine Weyl group of the split diagonal torus
in G has an element that fixes # and switches the two hyperplanes passing
through it. This element is represented in G(F'), and generates the group
G(F)y/G(F)y0 = Z/2Z. Its action on G is outer and switches the two irre-
ducible factors of the root system A; x A;. Since the GS(kr)-conjugacy class
of S’ is unique, it is preserved by this action. Thus there exists an element of
G(F)yz ~ G(F); o that normalizes S’. By Lemma 3.4.5 we may assume that this
element normalizes S. It is thus an element of N (S, G)(F)/S(F') that does not
liein N(S,G(F)q4,0)/S(F)o. In fact, we have the exact sequence
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Lemma 3.4.12. Let G be quasi-split, z € B®4(G, F') superspecial, and S C G a
maximally unramified elliptic maximal torus.

1. There exists a maximal torus S; stably conjugate to S with associated
point x.

2. If T is a minimal Levi subgroup whose apartment contains z, then S; can
be chosen to be conjugate to 7" under G(F™*), o.

3. If Sy is another maximal torus stably conjugate to S with associated point
x, then S; and S, are conjugate in G(F'); o.

O

Proof. If the statements are true for G, then they are also true for G. We there-
fore assume that G is simply connected. Thus G(F),,0 = G(F),.

We first show that the point associated to S equals z if and only if 7" and
S are conjugate in G(F),. If thereis g € G(F), s.t. Ad(¢9)T = S, then
Ad(S F") contains gr = . Since this point is Frobenius-fixed and S is
elliptic, = is the unique Frobenius-fixed point of A™4(S, F*) and hence the
point associated to S. Conversely, assume that x € A™4(S, F*). Choose any
g € G(F") s.t. Ad(9)T = S. Then gz, x € A™4(S, F*) implies the existence of
n € N(S,G)(F*) with ngz = z. Replacing g by ng we have Ad(¢)T = S and
gz = z, thus g € G(F™),. The claim is proved.

Fix a minimal Levi subgroup T" C G whose apartment contains . Since both
S and T become minimal Levi subgroups over F'“ we see that the class cls(.5)
defined in §3.2 is inflated from H'(Fr, N(T,G)(F")). Projecting to the Weyl
group we obtain an element of H'(Fr, Q(T,G)(F")). We have Q(T,G)(F*) =
N(T,G)(F")/T(F") by Steinberg’s theorem [Ste65, Theorem 1.9]. Since the
point # remains special over ', [BT72, 6.2.19] implies that the natural map
N(T,G)(F")/T(F*) — N(T,G)(F")/T(F") is an isomorphism. We map
cls(S) to H'(Fr, N(T,G)(F"),/T(F")o) via this isomorphism. Lemma 3.1.7
implies that it lifts to an element of H'(Fr, N(T, G)(F"),). This element can be
represented by o — g~1o(g) for some g € G(F*),, because H' (Fr, G(F"),) is
trivial by [DR09, Lemma 2.3.1]. By construction the images in (7', F')(F") of
g~ 'o(g) and cls(S) coincide. We conclude that S; = Ad(g)T is stably conjugate
to S. Its associated point is « according to the claim above.

Let now Sy be another maximally unramified elliptic maximal torus, stably
conjugate to S, with associated point . By the claim above the tori 7" and
Sy, and hence also S; and S5, are conjugate in G(F™“),. Take g € G(F"),
st. Ad(g9)S1 = Sa. Then g~ 'Fr(g) € G(F“), N S1(F*) = S1(F“)y. Since
H*(Fr, S1(F")o) is trivial we can multiply g on the right by an element of S to
ensure g € G(F'),. |

Remark: The above Lemma is false when « is not superspecial. We can take
Example 3.4.11 and an elliptic unramified maximal torus on whose character
modules Frobenius acts by an automorphism of order 4. The vertex z in that
example would not support a stable conjugate of this torus.
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3.4.2 Depth zero characters

Let G be a connected reductive group defined over a finite field &, let S’ C G
be a maximal torus, and let § : S’(k) — Q; be a character. In [DL76, Defini-
tion 5.15], Deligne and Lusztig define two regularity conditions for a character
6 : S'(k) — Q/, which we shall now recall. They say that § is in general po-
sition, if its stabilizer in Q(S’, G)(kr) is trivial. They say that 6 is non-singular,
if it is not orthogonal to any coroot, which means that the composition of § with
the map X, (S') — S'(k) given by (3.4.1) below is non-trivial on each coroot
a¥ € RY(S',G) C X.(S). To recall the map X.(S') — S'(kr), we choose
an embedding k* — Q/Z. Its image is (Q/Z),s, the subgroup of elements
whose order is prime to p, and this embedding allows us to identify S'(k) with
X, (5") ® (Q/Z),. We have the commutative diagram

0 X.(S) X.(5)©Q —> X,(S') ® Q/Z —=0
iFr—l lFr—l \LFr—l
0 X.(S) X,(S)®Q —= X.(S)®Q/Z —=0

with exact rows, where Fr is the endomorphism of X, (S") obtained functorially
from the Frobenius endomorphism of S’. We alert the reader that this conven-
tion, which is in use in [DL76, §5] and [Car93], implies that Fr is not of finite
order, but rather satisfies Fr'" = ¢" for some natural number n. Applying the
kernel-cokernel lemma to this diagram and noting the middle vertical arrow is
an isomorphism we obtain the exact sequence

0— X.(8) = X.(§) = 5(k) = 1. (3.4.1)

We will now reinterpret the notion of non-singular in a way that does not in-
volve the choice of an isomorphism £* — (Q/Z),s and is closer to the p-adic
torus S.

Fact 3.4.13. Let &’ be a finite extension of k. The exact sequence (3.4.1) fits into
the commutative diagram

Fr™ —1

0— X.(8) —= X.(9) S'(K') 1
| |»
0—— X.(5) =L x.(5) S'(k) 1
wheren = [k’ : k] and N : S'(k') — S’'(k) is the norm map. O
Proof. This is a direct computation. |

Lemma 3.4.14. Let £’ be a finite extension of k splitting S, 6 : S'(k) — Q/ a
character, and oV € RY(S,G). Then 6 is orthogonal to oV if and only if the
character f o N o oV : k' — Q[ is trivial. In particular, 6 is non-singular if
and only if for each ¥ € RY(S’,G) the character o N o ¥ : E'* — Q[ is
non-trivial. O

Proof. According to Fact 3.4.13 we may reduce the proof to the case where S’
is split. In that case the Frobenius endomorphism Fr of X, (5') is simply given
by multiplication by ¢ (again, we are using here the conventions of [DL76, §5])
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and the map X.(S') — S'(k) sends A € X.(S) to A(¢), where ¢ € k* is the
generator whose image under the chosen isomorphism k* — (Q/Z),s is 1/(q—
1) € (Q/Z),. By definition, 0 is orthogonal to o¥ € RY(S/,G) if and only if
0(a¥(¢)) = 1. Since ( is a generator of k* this is equivalent to requiring that
the character § o ¥ be trivial. [ |

We will now define a third regularity condition on §. We say that 0 is abso-
lutely regular, if for some (hence any) finite extension k' of k splitting S’ the
character 6 o N has trivial stabilizer in (S, G). It is clear that absolutely regu-
lar implies general position. By [DL76, Corollary 5.18] general position implies
non-singular.

Lemma 3.4.15. If the center of G is connected, then the notions of non-singular,
general position, and absolutely regular, are equivalent. O

Proof. According to [DL76, Proposition 5.16], the notions of non-singular and
general position are equivalent. By Fact 3.4.13 § is non-singular if and only if
6o N is non-singular. But for o NV the notions of general position and absolute
regularity coincide. |

We now return to the p-adic group G defined over F. Let x € B®(G, F) be a
vertex. We take k = kp and G = GJ. Assume that S’ is elliptic. By Lemma 3.4.4
there exists a maximally unramified elliptic maximal torus S C G such that the
reductive quotient of the special fiber of the connected Neron model of S'is S'.
We have S'(F)o/S"(F)oy+ = S(F)o/S(F)o+ = S'(kr) by Lemma 3.1.6.

Definition 3.4.16. We shall call § : S'(kp) — Q/ (or 6 : S'(kp) — C*) regular
if its stabilizer in N (S, G)(F)/S(F') is trivial. We shall call ¢ extra reqular if its
stabilizer in Q(S, G)(F) is trivial. If  : S(F) — C* is a depth-zero character
such that 0|g(r), equals the inflation of 6, we shall call 6 (extra) regular if 6 is
such. O

Remark 3.4.17. Whether 0 is (extra) regular does not depend on the choice of
S: this follows from Lemma 3.4.5. O

Fact 3.4.18. We have
6 extra regular = 0 regular = 0 in general position .

If the point of B™4(G, F) associated to S is superspecial, then the converse
implications also hold. O

Proof. This follows from Lemma 3.4.10. |

3.4.3 Definition and construction

We now come to the definition and construction of regular depth-zero super-
cuspidal representations. Let 7 be an irreducible supercuspidal representation
of G(F) of depth zero. According to [MP96, Proposition 6.8] there exists a ver-
tex z € B™Y(G, F) such that the restriction 7| (), , contains the inflation to
G(F)z,0 of an irreducible cuspidal representation « of G(F)z,0:0+-
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Definition 3.4.19. We shall call = reqular (resp. extra regular) if « is a Deligne-
Lusztig cuspidal representation + Ry, 5 associated to an elliptic maximal torus
S’ of G2 and a character 6 : S'(kp) — C* that is regular (resp. extra regular) in
the sense of Definition 3.4.16. O

Note that, since S'(kr) is a finite group, 6 takes values in Q*, so replacing Q;
with C is inconsequential. By Fact 3.4.18 a regular 7 is automatically extra
regular if the vertex x is superspecial.

Regular depth-zero supercuspidal representations of G(F') are constructed as
follows. Let S be a maximally unramified elliptic maximal torus of G and let
¢ : S(F') — C* be a regular depth-zero character. The restriction 6|z, fac-
tors through a character 6 of S(F')o.o+ that is in general position accordmg to
Fact 3.4.18. Let z € B4(G, F) be the vertex (by Lemma 3.4.3) associated to S.
Let r(g gy = +Rs g be the irreducible cuspidal representation of G; (kr) arising
from the Deligne-Lusztig construction applied to the reductive quotient S" of
the special fiber of the connected Neron model of S and the character 6. Iden-
tify r (g g) with its inflation to G(F") 0

Note that S(F') normalizes G(F'), o. Itis easy to check, and we shall do so soon,
that the normalizer in G(F), of kg g) is equal to S(F) - G(F)z,0. This means
that, in order to obtain an irreducible representation of G(F'), we need to extend
K(s,9) to S(F)-G(F'); 0 before inducing it. In [DR09, §4.4] this is done using the
fact that, when S is unramified, S(F) = Z(F') - S(F')o (see e.g. [Kalll, Lemma
7.1.1]), which implies S(F')-G(F)z 0 = Z(F)-G(F)4,0. The same is also true for
ramified unitary groups [Roell, Theorem 3.4.1, Proposition 3.4.2, Proposition
5.2.3]. Since Z(F) N G(F)z,0 acts on £ g4 via 0| z(F)ns(r), an extension of
K(s,9) to Z(F) - G(F)z,0 is given by letting Z(F") act by the character 0| (r).
However, for general groups the equality S(F) = Z(F) - S(F'), is generally
false and a counterexample was shown to us by Cheng-Chiang Tsai, which we
have included as Example 3.4.21 at the end of this subsubsection.

The extension of kg g) to S(F') - G(F'),;,0 must thus be obtained differently. We
shall construct this extension and study its character in the next subsubsection.
For now we just assume that an extension s g) of (g ) to S(F) - G(F)z,0 is
given.

Lemma 3.4.20. The representation 7 (g 9) = C-Il’ldg((?)) G(F). o F(5,0) is irreducible
(and hence supercuspidal). ' O

Proof. The proof is the same as for [DR09, Lemma 4.5.1]. By [MP96, Proposition
6.6] it is enough to show that xg ) induces irreducibly to the normalizer of
G(F)g,0 in G(F). Note here that the Levi subgroup M in loc. cit. is equal to
G in our case since x is a vertex. The normalizer of G(F'), ¢ is equal to G(F'),
the stabilizer of the vertex x for the action of G(F) on B4(G, F). It is enough
to show that the normalizer of (g ¢) in G(F'), is equal to S(F) - G(F)4,0. For
this, let h € G(F), normalize k(s ). Then it in particular normalizes £ g 4y, SO
by [DL76, Theorem 6.8] there is g € G(F),.o so that Ad(gh)(S',0) = (S',0). B
Lemma 3.4.5 there is [ € G(F').,04 so that Ad(lgh)(S,0|s(r),) = (S,0]s(r),)-
Thus lgh € N(S,G)(F) and then the regularity of 6 implies that lgh € S(F').
|

It is clear that (g g) is regular, as its restriction to G(F),,0 contains r(g 5. We
shall see in Proposition 3.4.27 that every regular depth-zero supercuspidal rep-
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resentation is of the form (g ¢) for some pair (S, 6) consisting of a maximally
unramified elliptic maximal torus S and regular character 6 : S(F') — C*.

Example 3.4.21. We come to the example of the failure of Z(F) - S(F)o = S(F)
due to Cheng-Chiang Tsai. Consider F' of odd residual characteristic and not
containing a fourth root of unity, for example F' = Q, with 4|(p — 3), and a
ramified quadratic extension E/F. Let G = Resp,pPGL, and T = Resp,/r Ty,
where Ty = G2, /G,, is the standard maximal torus of PGL,. We have X, (T) =
Z*)7 @ 7* 7. Let L be the kernel of the addition map Z*/Z & Z* /7 — 7Z/4Z.
Let T — T be the isogeny of tori specified by X, (T) = L and let G — G be the
corresponding isogeny of connected reductive groups. Then G is semi-simple
and quasi-split, and its center is 4. A direct computation shows X, (T); = Z3®
Z/27Z. Let S be an anisotropic maximal torus of G that is conjugate to T" over F™
(such an S does exist — we can let Frobenius act by the same Coxeter element
within both copies of PGL4 and use [Ste65]). Then X.(S); = Z3 & Z/2Z with
an action of Frobenius. This action must be trivial on the Z/2Z factor, which
is the torsion subgroup of X.(S);. Since S is anisotropic, we conclude that
[X.(9)/)f* = Z/2Z. Since this is the quotient S(F)/S(F), in order for Z(F) -
S(F)oy = S(F) to hold the composed map Z(F) — S(F) — [X.(9)]" must
be surjective. However, Z(F") = p4(F*) has order 4, while Z(F) = pa(F)
has order 2, by our assumption on F. We see that whatever the map Z(F") —
S(F*) — X.(S); might be, its restriction to Z(F) — S(F) — [X.(S)/]'" is the
zero map. g

3.4.4 An extension and its character

We shall now construct the representation rg,9) of S(F') - G(F), o that extends
K(s,9)- For this we must first recall the construction of g ). Let U C Gg be
the unipotent radical of a Borel subgroup defined over kr and containing the
maximal torus S'. Let

X = {g € Gylg~'Fr(g) € U}

be the corresponding Deligne-Lusztig variety, where Fr stands for the Frobe-
nius automorphism of GJ. By construction, G}, (kr) acts on this variety by mul-
tiplication on the left, and S’ (kr) acts by multiplication on the right. The l-adic
cohomology (for some fixed auxiliary prime ! different from p) with compact
support H:(X, Q) is thus a (G2(kr),S'(kr))-bimodule. It is shown in [DL76,
Corollary 9.9] that if X is affine and 0 : S'(kr) — Q/° is a non-singular charac-
ter, then the -isotypic subspace H(X, Q;)s is non-zero for exactly one value
of i, namely i = [(w), where w is the Weyl element determined by the maximal
torus S'. In fact, according to [DL76, Remark 9.15.1] the affineness assump-
tion on X can be relaxed to the assumption that some X (w’) is affine, where
w’ is an element of the Weyl group that is Frobenius-conjugate to w. The lat-
ter assumption has been proved to always hold [He08, Theorem 1.3]. We let

vV =H"(X,Q)and
Vo={veVt=0@tw, VteS (kr)}

The G;(kr)-module Vj, inflated to G(F'),,0, is the representation r g g). It is
irreducible if § is in general position [DL76, Theorem 6.8].

We now assume that 6 : S'(kr) — C* is obtained by restricting to S(F)o a
regular depth-zero character 0 : S(F) — C*. The extension k(s g) of £ (g ) to
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S(F) - G(F)y,0 begins with the observation that besides a left G (kp)-action
and a right S'(kr)-action, the variety X also carries an S/ (kr)-action by con-
jugation, where S/, is the image of S’ in the adjoint group of G3. This action
— a special case of [DL76, 1.21] - is simply the restriction to S/, (kr) of the ac-
tion of S/; on GJ by conjugation, and is readily seen to preserve X. We shall
write Ad(5) for the action of 5 € S/ ;(kr) by conjugation on G, as well as on the
subvariety X of GJ. The three actions on X have the following compatibility
relation: Forall 5 € S j(kr),g € Gy(kF), s € S'(kp),z € X

Ad(s)lg - - ') = [Ad(5)g] - [Ad(5)a] - &'

In particular, the action of S/ ;(kr) by conjugation commutes with the action of
S'(kr) on the right. Furthermore, the action of s’ € S'(kr) on the right can be
recovered as v - s’ = Ad(5'!)[s’ - v], where § € S/ (kF) is the image of s'.

There is a natural map S(F) — S.;(kr) given as follows. To avoid confusion,
let H be the adjoint group of G. Then the natural map G — [GS].4 factors as
the composition G — HS — [G2]ag. In particular, we have the map Sy —
S;d, where Sy is the image of S in H. Since S is maximally unramified, so is
Sy and Lemma 3.4.7 implies Sy (F)o = Su(F). The map S(F) — S.,(kr) is
then obtained as the composition S(F) — Sy (F) = Su(F)o — Su(F)oo+ =
Sk (kr) = Sy (kr).

Via the map S(F) — S/, (kr) we can let S(F') act on G}, and X by conjugation,
and the action on X gives an action on V, which preserves the subspace Vj.
This action factors through S(F)/S(F)o+. The subgroup S'(kr) of S(kr) =
S(F)/S(F)o. embeds via s ~ (s,s71) into the center of G%(kr) x S(kr) and
we let G(kr) be the quotient. We extend the representation of G2 (k) on Vj to

G(kp) via the formula

(g,8) - v =0(s)g[Ad(s)v]. (3.4.2)
It is immediate to check that this formula gives an action of G2 (kr) x S(kp)
which descends to G(kr). The maps G(F).o — Go(kr) and S(F) — S(kr)
splice together to a map G(F), o - S(F) — G(kr) via which we obtain an action
of G(F)z,0 - S(F) on V. This is the extension r(s) of r(gg) that we were
seeking.

We will now compute the character of the representation xg ) of the group
G(F)g,0-S(F). The resulting formula will be used in the classification of regular
depth-zero supercuspidal representations in the next subsubsection. In fact,
we will give two formulations of the character formula: one more technical,
but valid in complete generality, and one more palatable, but only valid when
G splits over a tamely ramified extension and for elements of G(F), - S(F)
that are semi-simple.

To state the more palatable version, we begin with a discussion of a variant
of the topological Jordan decomposition. When S is unramified, the equation
G(F)zo - S(F) = G(F)g,0 - Z(F) reduces the computation of the character of
K(s,9) to elements of the compact group G(F);,0, for which the usual topo-
logical Jordan decomposition can be used. The failure of this equation when
S is ramified precludes this, because we need to deal with general elements
of G(F'), - S(F) which need not be compact and hence do not have a usual
topological Jordan decomposition. However, if we let Ag be the maximal split
central torus of G, and G = G/Ag, then the image of G(F), o - S(F) in G(F)
is contained in G(F),, whose elements are compact and have a topological
Jordan decomposition. We recall from [Spi08] that an element is called topo-
logically unipotent if has pro-p order, and topologically semi-simple if it has finite
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order prime to p. An element is called topologically unipotent/semi-simple
modulo Ag if its image in G(F') has the corresponding property.

Lemma 3.4.22. Assume that G splits over a tame extension. Let vy € G(F),,0 -
S(F') be a semi-simple element. Then v = ~,,, where 5, € G(F), 0 - S(F) is
topologically semi-simple modulo Ag and v, € G(F'),,o is topologically unipo-
tent. Both ~, and +,, are unique up to multiplication by elements of Ag(F)o4.
The image of the decomposition v = 7,7y, in G, (kr) is the usual Jordan de-
composition in the (possibly disconnected) finite group of Lie type G,. If T
is a maximal torus containing ~, then ~,,v, € T(F). In particular, v, and ,
commute. g

Proof. Let ¥ € G(F) be the image of v. Since G has anisotropic center, the
group G(F),,0S(F) C G(F), is compact. By [Spi08, Proposition 1.8] there exist
commuting elements 75,75, € G(F);,0S(F) with ¥ = 7, - 4, such that 75 is of
finite order prime to p, and ¥, is of pro-p order. This decomposition is unique
by [Spi08, Proposition 1.7]. The orders of 7, and ¥, show that their images in
G, form the usual Jordan decomposition of the image of 7 there.

We claim that 4, € G(F),,0. Indeed, the image of ¥, in G(F).05(F)/G(F).0
still has pro-p order. But G(F), 0S(F)/G(F).0 = S(F)/S(F)o & X.(S)F.
Since S becomes a minimal Levi subgroup of G over F™*, S splits over the same
extension of F'* as G does. In particular, S is tame, and therefore the abelian
group X, (S); has no p-torsion. Thus the image of 7, in G(F), 0S(F)/G(F).0
is trivial.

Using the surjectivity of G(F), o — G(F). o guaranteed by Lemma 3.3.2 we
lift 4, to an element of G(F), . This lift may not have pro-p-order. Apply
[Spi08, Proposition 1.8] to this lift and the group G(F'), o to write this lift as a
commuting product ¢ - v, with § € G(F'); o having finite order prime to p and
Yu € G(F).0 having pro-p-order. The image of § - v, in G(F) equals %, and
thus has pro-p order. This implies that the image of & in G(F) is trivial, and
hence that ~,, lifts 7,,.

We claim that if 7" is a maximal torus and v € T(F') then also v, € T(F).
Indeed, ¥ € T(F) N G(F), C T(F)p. Thus 4 has a decomposition according
to [Spi08, Proposition 1.8] relative to T'(F);, but then [Spi08, Proposition 1.7]
implies that this decomposition coincides with the one relative to G(F),, thus
Ys,Yu € T(F). Since v,, € G(F) is a lift of 7, we must have v, € T(F).

Set now 5 = 77, . Then s is a lift of 4, and hence topologically semi-simple
modulo Ag. Moreover, if T' is a maximal torus with v € T'(F'), then also ~, €
T(F).

Finally, since 7, %, are uniquely determined by ~ and ~, is a lift of ¥, of pro-
p-order, v, is uniquely determined up to multiplication by Ag(F)o4, and the
same is then true for ~s. |

Proposition 3.4.23. Assume that G splits over a tamely ramified extension. The
character of x(g ) at a semi-simple element v € G(F').,0 - S(F) is given by the
formula

rg—r o — — C(vs)°
(~1)7 eSO (k)0 Y 0 s h) Qe (),
heGS (kr)
h™lysheS(kr)
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where C(v,) C G2 is the subgroup whose action on [G(F)y 0 - S(F)]/G(F) g0+
fixes the image of ~,, and r¢ and rg are the split ranks of G and S, respectively.
U

We now state the more technical version of this formula, valid without assump-
tions on G and 7. Let v € G(F)y,0 - S(F). Write v = gr, where r € S(F) and
g € G(F)z,0. Wemap rto7 € S, ;(kr) via the natural map S(F) — S (kr) de-
scribed above and then lift 7 arbitrarily to 7 € S'(kr). We also map g to G2 (kr).
Let g = su be the Jordan decomposition of g7 € GS. Let z € Z(G}) be such
that Fr(7) = zr. Then Fr(gr) = zgr and the uniqueness of the Jordan decom-
position implies u € G2 (kr) and Fr(s) = zs. We see that s7~! € G2(kr), and
moreover the centralizer C(s) of s in G has a kp-structure. Since the action
of S(F“)/S(F*)o1+ on G(F“);0/G(F")z 0+ = G(kr) by conjugation factors
through the natural map S(F*) — S.,(kr) we see that 7+~ 'r acts trivially on
G?.

Proposition 3.4.24. The character of (g g) at an element v € G(F), - S(F) is
given by the formula

(~0)rers|C()°(kp)| ™ S O shi O Qe (u).
heGy (kr)
h~1lshes’

where C(s) C Gj is the centralizer of s in G3, 7 and rg are the split ranks of GG
and S, respectively, and 0 : S'(kp) — C* is obtained by restricting 6 to S(F)o.
U

Proof of Propositions 3.4.23 and 3.4.24. We first show that Proposition 3.4.23 fol-
lows from Proposition 3.4.24. For this we claim thatin [G(F),,0-S(F)]/G(F)x,0+
we have the identities v, = s7~'r and 7, = u. Indeed, recalling the notation
H = Gaq, we map the decomposition v = vs7, to H(F). The image of v in
H(F) belongs to H(F),,0Su(F) which equals H(F'), o by Lemma 3.4.7. The
image of v in H3,(kr) has Jordan decomposition given by the images of v, and
~u- Since the images of v and g7 in the adjoint group of GJ agree, the images
of v, and u there also agree. Both of these elements being unipotent elements
of G2 we conclude that they are equal in G. Now 75 = s7~!r follows from
st~ lru = sur~lr = gr = , which uses the fact that 7 ' commutes with G¢.
Having established the claimed identities, the fact that 7 ~!r commutes with ev-
ery element of G2 implies that C(vs) = C(s), that h='shi—lr = h= 1 (s~ 1r)h =t =
h~'~h, and finally that h='sh € S is equivalent to h~*y;h € S.

We come to the proof of Proposition 3.4.24 and will compute the character of
K(s,0) at v = gr using the Jordan decomposition gi = su following the argu-
ments in [Car93, §7]. The virtual (G} (kr), S’ (kr))-bimodule >, (—1)" H: (X, Q)
will be denoted by W and its f-isotypic component for the right action of S’ (kr)
will be denoted by Wj. Thus Wj is a virtual G (kr)-module. By the above
mentioned vanishing result we have W, = (—1)"®)Vj, so it will be enough
to compute the character of the action of S(F') - G(F'),,0 on Wj, noting that
(-1)!®) = (=1)"¢ ™'Y, rg = rs;, and rg = rco, the latter according to [BT84,
Corollary 5.1.11].

We now use all three actions we have on W, i.e. the fact that itis a ([G(kr) %

S(kr)],S'(kr))-bimodule. According to (3.4.2), the action of gr on Wj is given
by 6(r) times the action of g X 7 € G3,(kr) x S,;(kr) on Wj. The element in the
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group algebra of S'(kr) given by e = [S'(kp)| ™" 3, cq (4, O(t ")t projects W
to Wj. Then the trace of g x 7 € GJ(kr) % S 4(kr) on Wy is equal to the trace
of (¢ x 7,e) on W. The element (g x 7,e) of the group algebra of [G3(kr) %
Sl 4(kr)] x S'(kr) has the same action on W as the element

=|S'(kp)|™" D Ot [gt x T

teS’ (kr)

of the group algebra of G} (kr) x S/ (kr). The trace of gr on Wj is thus equal
to O(r) times the trace of ¢, i.e. to the expression

S'(ke) 7> 0(m0(E ) L(gt 0 EE X)),

teS/ (kr)

where £ denotes the Lefschetz number. For the computation of the Lefschetz
number, we use [Car93, Property 7.1.10], which involves the Jordan decom-
position in the algebraic group G3 x S’ ;. This decomposition is computed as
follows: Given ¢’ x t/,lift ' tot’ € S’ and let ¢'t' = s’ be the Jordan decom-
position of ¢'t’ in the algebraic group G2. Then [¢/ x #'] = [¢'t/1 x#'] - [u’ x 1] is
the Jordan decomposition of ¢’ x ¢’ in the algebraic group G3 x S/ ;. Note that s’
depends on the choice of lift ¢’ of #’ and that s't'~! is independent of this choice.
Note moreover that if ¢’ is a kp-point, then so is s't'~!, even though neither s’
nor t' has to be a kp-point in general.

Applying this to the element gt x t717, we decompose gi = su in G and then
obtain [gt x&~17] = [str~! xt~!7]-[ux1] as the Jordan decomposition in G2 x S’a a
The subvariety of X fixed by the action of the semi-simple part [str—1 x ¢~17]
is X" = {z € X|z~lsz = (tr~1)~'}. We are following here the notation
of [Car93, Proposition 7.2.5], but need to keep in mind that s and r are not
Frobenius-fixed, but rather satisfy the relation F'(+) = 7z and F'(s) = sz, for
some z in the center of GJ. Nonetheless, the conclusions of Propositions 7.2.6
and Propositions 7.2.7 in loc. cit. remain valid with the same proofs, and the
arguments in the proof of Theorem 7.2.8 in loc. cit. carry over as well. We give
a brief sketch.

The trace of gr on Wj is now seen to equal
S'(ke)|™t > O(r )L(u, X507,
tes! (kr)

One checks that the centralizer C(t7~!) of t#~! in G¢ is defined over kr, even
though 71 is not. Let [GS(kx)]*'" " denote the subset {g € G (kg)|g~'sg =
(tr~1) 71} and let Y;;-1 = X NC(tr~1)°. Just as in the proof of [Car93, Proposi-
tion 7.2.6] we see that the morphism

(G (k)] X Yigmr = X570 (g,) > gy
is surjective and its fibers are the orbits for the action of the group C(t7~1)° (kr)

on the variety [GS(kp)]**" " x Y;,-1 given by ¢(g,y) = (gc™!, cy). This implies

that X" is the disjoint union of closed subsets
Xs,ti‘71 — |_| RY;p-1,
he[Gg (kp)]*t" ™1 /C(tr=1)° (kF)

each of which is invariant under left multiplication by u. Plugging this into the
Lefschetz number we obtain the trace of gr on Wj as

S'ke)[ Tt DY 1CETY ke D 0O L(u, Y ).

tes' (kr) he[GY (kg)]sth 1
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Define Z, = hXh~' N C(s)° and note that Z, = Z,-1 = hY;—1h~!. Then
L(u, hYy—1) = L(h™ uh, Y1) = L(u, Zs). Since Z, is the Deligne-Lusztig va-
riety associated to the group C(s)°, its maximal torus hS’h~!, and its maximal
unipotent subgroup hUR™! N C(s)°, we have L(u, Z;) = |S’(kp)\Q%,S,z,l (u).
Combining the two sums and re-indexing completes the proof. |

Corollary 3.4.25. Let ¢ : G(F'), — C* be a character that is trivial on G(F'); 0N
G(F)y,(H_ for all RS Bred(G, F) Then K(S,p-0) = ¢|S(F)'G(F)z,0 & K(S,0)- O

Proof. 1t is enough to show that the characters of both sides are equal. For
this we use Proposition 3.4.24 and the notation of its statement. Given vy €
[G(F)z0 - S(F)]/G(F). 04 we write it again as v = gr = gri~lr = sur—1lr =
si~'ru. For the character of ¢ @ k(g 9) at v we note that ¢(y) = ¢(s7~'r), since
u, being unipotent in G(F), 0/G(F)z 0+, is contained in G(F), 0+ for some
y € B*Y(G, F). To compare this with the character of (g 4.9) at ¥ we compute
for h € G (kr)

(h shi~lr) = G(h~Lsi Tl rh ™) = (s ).
]

Corollary 3.4.26. If v € G(F); - S(F) is regular semi-simple and its image
in G,q(F) is topologically semi-simple, then the character of g g) at v is zero
unless v is (G(F), o-conjugate to) an element of S(F'), in which case it is given
by the formula

(=1)remrs > 0(v*),

wEN (8,G(F)x,0)/S(F)o

where again ¢ and rg are the split ranks of G and S, respectively. O

Proof. We apply Proposition 3.4.24. The character of x g4 is zero unless s is
conjugate in G (kp) to an element of S’. This is equivalent to y being G(F),o-
conjugate to an element of S(F'), because the images of s and v in HS (kr) coin-
cide.

We now assume that v € S(F') and use that in the decomposition v = sui~'r

we have v = 1 and s = 7. Since y = r is regular and topologically semi-simple
in G(F), 7 is regular in G2, so the summation index & runs over N (S, G2)(kr).
Taking into account the normalizing factor |C(s)°(kr)|~! and the fact that ev-
ery h € S'(kr) commutes with s, we see that the formula becomes

(=y)re=rs > 6(7").

weN (S',GS)(kr)/S' (kF)

According to Lemma 3.4.10 the indexing set of this sumis N (S, G(F)4.0)/S(F)o
and the proof is complete.

3.4.5 Classification

Proposition 3.4.27. Every regular depth-zero supercuspidal representation of
G(F) is of the form 7(g4) for some maximally unramified elliptic maximal
torus S and regular depth-zero character § : S(F) — C*. Two representa-
tions m(g, 9,) and (g, ,) are isomorphic if and only if the pairs (Si,6;) and
(S2,02) are G(F)-conjugate. O
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Proof. For the first statement, let m be a regular depth-zero supercuspidal repre-
sentation. By definition (which involves [MP96, Proposition 6.8]), there exists
a vertex z € B*4(G, F) such that the restriction of 7 to G(F),,o contains the
representation (g 5) for some maximally unramified elliptic maximal torus S
whose vertex is x and some regular character ' : S(F) — C*. By [MP9,
Proposition 6.6], we have

™= C—Indgggm T,

for an irreducible representation 7 of G(F'), which upon restriction to G(F),.o
contains x g 5. One such representation is given by

T = Indg((g))é(F)z,o"f(Sﬁ’)'

We claim that there exists a character x : G(F),/G(F)z0 — C* such that
T = 7' ® x. Indeed, both 7 and 7’ are irreducible G(F),-representations,
hence tautologically semi-simple. Therefore so is 7 ® 7, which is isomor-
phic to Home (7, 7'), because both 7 and 7’ are finite-dimensional. The G(F),-
subrepresentation Home(py, ,(7,7’) is then also semi-simple. It factors through
a representation of the abelian quotient G(F),/G(F);,0. By semi-simplicity
this representation is the direct sum of characters, and we can take any x s.t.
x ! is a summand. Having proved the claim, we observe that Corollary 3.4.25
shows

_ G(F)a _ G(Fe
Tex= IndS(F)G(F),,(,(“(S,O’) O Xls(P)G(F)a) = IndS(F)G(F)m,U“(S,H’vx\sm)'

The character § = 6’ - x|s(r) has the same restriction to S(F)o as ¢’ and is thus
regular. We conclude 7 = (g g).

We come to the second statement. The first half of the proof is the same as for
[Kal14, Lemma 3.1.1]. It is clear that conjugate pairs lead to isomorphic repre-
sentations, so we need to prove the opposite implication. Let z; € B(G, F') be
the point for S; and «; and &, the representations of S;(F)G(F'), 0 and G(F)g, 0
respectively. By [MP96, Theorem 3.5] the unrefined minimal K-types of depth
zero (G(F)y, 0, 1) and (G(F')4, 0, R2) are associate. Thus there exists g € G(F)
s.t. G(F)gz,,0 N G(F)g, 0 surjects onto both G(F) gz, 0.0+ and G(F),, 0.0+ and
Ad(g)k1 = Ro. We claim that we must also have gz; = x5. Indeed, assume
not. The group G(F),.0 N G(F )y, 0 fixes the unique geodesic in B4(G, F)
connecting gx; and x,. This geodesic meets a facet of positive dimension con-
taining x5 in its closure. If y is a point in the intersection of the geodesic and
the facet, then G(F),,,0 N G(F)gz,,0 is contained in G(F),. It is moreover con-
tained in the kernel of the Kottwitz map, and hence in G(F),o, see §3.3. But
the image of G(F'), o in G(F')4, 0.0+ is a parabolic subgroup of G(F), 0.0+ and
this precludes G(F)qg,,0 N G(F) gz, 0 mapping surjectively onto G(F)g, 0:0+-

Conjugating (S1,61) by g we may assume g = 1, s0 z1 = z2 =: z and k1 = Ra.

The letter g being free again, by [DL76, Theorem 6.8] we can find g € G(F).0

such that Ad(g)(S1,01) = (S2,02). By Lemma 3.4.5 there is | € G(F)4,04 such
(

that Ad(lg)(S1,01) = (S2,02). We again conjugate (S1,6;) by lg and assume
that S; = Sy and 01 = 5. Let’s write S = S; = Sy and 6; = 05 = 0.

In the unramified case the proof is now complete, because S(F) = S(F)o -
Z(F'), which implies ¢; = ), because the central character of 7(sg,) is 0| z(r)-
Since this fails in the ramified case, we need an additional argument. It is
similar to the proof of [Mor89, Proposition 4.2]. The argument given there,
combined with [Mor89, Proposition 5.2], shows that for any g ¢ G(F), the
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group Homg(py, nsc(r), (F1, ko) vanishes, where #; = Indg((g)c( )i We
conclude

Homg(F) (7‘((5791), 7T(S792)) = HomG(F)z (I.ﬁl, KQ),
using Kutzko’s Mackey formula [Kut77]. We apply again the (this time ordi-

nary) Mackey formula to the subgroup S(F') - G(F'), o of finite index of G(F),.
Then we get

Homg(r), (F1, fi2) = @ Homg(rya(r), o (K1, kK2).
9EG(F)o/S(F)G(F)ax,0

For any coset g the corresponding summand on the right is a subgroup of
Homg (ry, ,(R1,9F2). But we already know &; = Ky, so by the same argument
as above there exist h € G(F)y0 and | € G(F). 04 such that Ad(g)(S5,0) =
Ad(IR)(S, ). The regularity of § implies that g “lhe S (F), which means that
g must represent the trivial coset in G(F'),/S(F)G(F)y,0. This implies

Homg(r)(7(s,6,), T(5,6,)) = HoMg(myG(F), o (K1, K2)-

From (3.4. 2) we see that both x1 and k2 act on the same vector space V; and

Ko = 0207 '@y, because 020, ! is a character of S(F)/S(F)o = S(F)G(F)1.0/G(F)x.0

Since k1 = Rq is already an irreducible representation of G(F),, any ele-
ment of Homg(ry(r), , (K1, K2) is a scalar multiple of the identity, which forces
0y = 061. |

The following lemma will be needed for the classification of positive depth
regular supercuspidal representations.

Lemma 3.4.28. Let S C G be maximally unramified elliptic, 6 : S(F)) - C* a
regular character, and ¢ : G(F') — C* a character. If the depth of ¢ ® m(g )
is zero, then the depth of ¢ is zero. If the depth of ¢ is zero, then ¢ ® (54 =

O

T(8,0:0)-

Proof. The representation ¢® g, g) is supercuspidal. If its depth is zero, then by
[MP96, Proposition 6.8] there exist a vertex y € B*4(G, F) and an irreducible
representation 7 of the stabilizer G(F'), whose restriction to G(F),,o contains
G(F)
G(F),
writing H(S 0) = IndS(F)G(F) K(s,0) We see PR T(S,0) = C- IndgEF) (p® ,‘3&(5,9)).
Applying Kutzko’s Mackey formula [Kut77] we see that

a cuspidal representation o, s.t. ¢ ® m(g) = c-Ind 7. At the same time,

Endg(r) (¢ ® m(59) = Homgp) (C-IndgE T, C- IndG(F) (9®Fs0))

= @Homg(F)yﬂG(F)gw(Tv [¢® i(s,)),
g

where g runs over G(F), \ G(F)/G(F),. Since the left hand side is non-zero
there must exist g for which the corresponding summand on the right is non-
zero. This summand is a subgroup of Home (), o, nG(F) e .0s (T: /[0 @ fi(s,0)])-
Since both 7 and 94 9) are 1-isotypic upon restriction to G(F')y 04 NG(F) gz 04
we see that ¢ must be trivial upon restriction to this group. By [HMO08, Lemma
2.45, Definition 2.46] this implies that ¢ has depth zero.

The equality ¢ ® 7(s,9) = 7(5,¢4.9) NOW follows from Corollary 3.4.25 and the
obvious equality ¢ ® 7(g,9) = C—Indg((lf:))(;(F)va (¢ ® K(s,6))- |
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3.5 Review of the work of Hakim and Murnaghan

In accordance with [Yu01] and [HMO08] we now assume that the residual char-
acteristic of F' is not 2 and that G splits over a tame extension of F. Let
(G° ¢ GY--- € G, 7_1,(¢0, 1, --,¢a)) be a reduced generic cuspidal G-
datum, in the sense of [HMO08, Definition 3.11]. We recall that each G’ is a tame
twisted Levi subgroup of G, i.e. a connected reductive subgroup of G that is
defined over F' and becomes a Levi subgroup of G over a tame extension of
F, GY = G, n_; is a depth-zero supercuspidal representation of G°(F'), and
¢i : GY(F) — C* is a smooth character of depth r; > 0, which is G**!-generic
when i # d. We refer the reader to [HMO08, §3.1] for the notion of a generic
character, as well as for the precise list of conditions imposed on this datum.

From a reduced generic cuspidal G-datum, the construction of [Yu01] pro-
duces an irreducible supercuspidal representation of G(F'). We can think of
Yu's construction as a map from the set of reduced generic cuspidal G-data
to the set of isomorphism classes of irreducible supercuspidal representations
of G(F). One of the main results of [HMO08] is the description of the fibers
of this map. Hakim and Murnaghan introduce three operations on the set of
reduced generic cuspidal G-data: elementary transformation, G-conjugation,
and refactorization. According to [HMO08, Theorem 6.6], the equivalence re-
lation generated by these operations, called G-equivalence in [HMO08], places
two reduced generic cuspidal G-data in the same equivalence class precisely
when they lead to isomorphic supercuspidal representations. This theorem is

—

valid under a certain technical hypothesis, called C(G).

Our goal in this subsection is to recall the notion of G-equivalence and Hy-
pothesis C (é), and then show that [HMO08, Theorem 6.6] is valid even without
assuming C/(G). For this, we will first prove that Hypothesis C(G) holds for all
G for which the fundamental group of Gger has order prime to p. In particular,
it holds when Gy, is simply connected. We will then use this to treat the case

of general G.

We now recall Hypothesis C(G) from [HMO08, §2.6]. Given a tower G = (G° C
G' - € G%) of twisted Levi subgroups of G, Hypothesis C(G) is the conjunc-
tion of hypotheses C(G?). In turn, Hypothesis C(G) stipulates that whenever
¢ : G(F) — C* is a character of positive depth r > 0 and = € B™4(G, F), the
restriction ¢|g(r), ., 15 realized by an element of Lie"(Z(G)°)(F)—,. This
means the following. Let g = Lie(G) and let A : FF — C* be an additive char-
acter of depth zero. For any r > s the Pontryagin dual of the abelian group
9(F)u,s+/8(F)gr+ is identified with the abelian group ¢*(F)y,—r/0*(F)z —s,
via the pairing

(K X*) = A<X*7Y>7 Y e g(F)w,8+7X* € g*(F)a:’*""

Whenever » > s > r/2 we have the Moy-Prasad isomorphism (see [YuO01,
Corollary 2.4] and the discussion following [HMO08, Definition 2.46])

MP, : §(F)z,s+/0(F)ert = G(F)es1/G(F) ety

via which g*(F)g,—»/9"(F)z,—s is identified with the Pontryagin dual of the
abelian group G(F); s4+/G(F)yr+. An element X* € g*(F)y /9" (F)y —s is
said to realize the character of G(F), s+ /G(F )+ thatit corresponds to under
this identification. Now let 3 = Lie(Z(G)®). As discussed in [Yu01, §8], there
is a natural way to view 3* as a subspace of g*. Namely, the natural projection
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g* — 3" that is dual to the inclusion 3 — g becomes an isomorphism upon
restriction to the subspace of g* that is 1-isotypic for the adjoint action of G.

Lemma 3.5.1. If the fundamental group of G4er has order prime to p, then every
character of Gger(F') has trivial restriction to Gger(F')s 0+ for every point z €
Bed(G, F). O

Proof. Assume first that G, is simply connected and write Gger = Gy as the
product Gsc = Ggc1 X -+ - X G n, With each G ; simple over F. Then G ; is
either isotropic, or else by [BT87, §4.5,84.6] isomorphic to Resz, »SL; (D), where
E/F is a finite extension and D/ E is a central division algebra. In the first case,
Gsc,i satisfies the Kneser-Tits conjecture [Tit78, §1.2] and hence G ;(F') has no
non-trivial characters. In the second case G ;(F') is isomorphic to the group
DW of elements of D whose reduced norm is equal to 1. According to [Rie70,
§5 Corollary], the derived subgroup of D) is equal to (1+pp)N D), where pp
is the maximal ideal of D. In terms of Moy-Prasad filtrations this means that
the derived subgroup of Gy ;(F) is Gsc,i (F) 4,0+, Where x is the unique point in
the reduced building of Gy ;(F'). We conclude that every character of G (F') is
trivial on Gyc(F), 0+ for any x € B*4(G, F).

For the general case, let z € B4(G, F). Let A C G be a maximal split torus such
that = belongs to the apartment of A. According to [BT84, Corollaire 5.1.12]
there exists a maximal torus 7' C G containing A and maximally split over
F*. Since G is tame, so is T. Let Ty, and Ty be the corresponding maximal
tori of Gger and Gs.. Lemma 3.3.2 implies that the natural map Gs(F)z 0+ —
Ger(F')z,0+ is bijective. |

Lemma 3.5.2. Assume the fundamental group of Gger has order prime to p.

Then Hypothesis C'(G) holds. More generally, Hypothesis C(G) holds for any
tower of twisted Levi subgroups of G. O

Proof. The fundamental group of the derived subgroup of any twisted Levi
subgroup of G is a subgroup of the fundamental group of the derived subgroup
of G. It is therefore enough to establish Hypothesis C(G). When G is a torus the
statement is clear, because then g* = 3*. For the general case, let D = G/Gger
and let ¢ : G(F)) — C* be a character of depth » > 0. The restriction of ¢ to
Gaer(F)z,(r/2)+ is trivial by Lemma 3.5.1, hence its restriction to G(F),,(,/2)+
factors through a character of D(F)(,/2)+ by Lemma 3.3.2. This character is
represented by an element X* € Lie"(D)(F)_,. Under the exact sequence of
dual Lie algebras

1 — Lie*(D) — Lie*(G) — Lie*(Gger) — 1

the image of Lie"(D) in Lie*(G) is precisely the subspace that Yu identifies
with Lie"(Z(G)°) in [Yu01, §8]. Thus the image of X* in Lie*(G),,_, realizes
Dle(F), 2y - u

At the moment we do not know if Hypothesis C(G) holds without the as-
sumption on the fundamental group of G4.,. However, we can still prove that
[HMO8, Theorem 6.6] is valid without this assumption, by reducing to the case
where Gger is simply connected. The main tool that we exploit for that is z-
extensions, introduced by Langlands and Kottwitz. Recall from [Kot82, §1] that
a z-extension of G is an exact sequence 1 - K — G — G — 1 of connected
reductive groups defined over F', where the derived subgroup of G is simply
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connected, and K is an induced torus (automatically central). In particular, the
map G(F) — G(F) is surjective. Such a z-extension always exists.

Lemma 353. Let1 - K — G — G — 1 be a z-extension and let x €
Bd(G, F). For any r > 0 the sequence

1= K(F)p = G(F)ay = G(F)pr — 1
is exact. For any r > 0 the sequence
1= Gse(F)zy = G(F)ap = D(F), — 1

is exact, where D = G /Gsc. O
Proof. This is a special case of Lemma 3.3.2. |

Given such a z-extension, we can pull-back the reduced generic cuspidal G-
datum to G to obtain ((G° € G- C G?),7_1,(¢o, ¢1,. .., a4)). Here G’ is
the preimage of G* in G and is a twisted Levi subgroup of G, 7_; is the com-
position of 7_; with the surjective homomorphism G*(F) — G°(F) and is an
irreducible supercuspidal representation of depth-zero, and ¢; is the compo-
sition of ¢; with the surjection G*(F) — G’(F) and is a character of the same
depth as ¢;, generic when i # d. The result of this procedure is a reduced
cuspidal generic datum for G. The irreducible supercuspidal representation of
G(F) associated to this datum by Yu'’s construction is the pull-back of the irre-
ducible supercuspidal representation of G(F') associated to the reduced cuspi-
dal G-datum we started with. Note here that K (F') is contained in the compact
open subgroup of G(F) from which the supercuspidal representation of G (F)
is compactly induced.

We now recall the notion of G-equivalence of reduced generic cuspidal G-data.
It is the equivalence relation generated by three operations: G-conjugation, el-
ementary transformation, and refactorization. The operation of G-conjugation
is obvious from its name — one replaces each member of the G-datum by its
conjugate under a given g € G(F). An elementary transformation consists of
replacing 7_; by an isomorphic representation. If we are already thinking of
m_1 as an isomorphism class of representations, then this operation is vacuous.
Finally, a datum ((G"° € G-+ € G'¥), 7", (b, B, ---,¢})) is a refactoriza-
tion of ((G° € G'--- € G¥),7_1, (¢o, b1,-..,0q)) if G = G* for all i and the
following conditions involving

Xi : G'(F) — C*, xi(9) =[] ¢i(9)8)(9) ",
are satisfied:

FO. If ¢ = 1 then ¢/, = 1;
F1. x; is of depth at most r;_; foralli =0, ...,d, wherer_; =0;

FZ 7TL1 =T_1 ®X0

Note that the three operations of G-conjugation, elementary transformation,
and refactorization, commute.
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Lemma 3.54. Let 1 - K — G — G — 1 be a z-extension. Two reduced
generic cuspidal G-data are G-equivalent if and only if their pull-backs to G
are G-equivalent. O

Proof. Let (G° € G'--- € G9),7_1,(¢o,¢1,.--,04)) and (G € G"--- C
G'Y, 71, (¢, b, - .., ¢),)) be the two reduced data for G. It is enough to check
the three relations that generate G-equivalence: G-conjugacy, elementary trans-
formation, and refactorization. For these, the statement follows immediately
from the surjectivity of the maps G*(F) — G*(F) and G*(F),., — G*(F),., for
any z € B*4(G?, F) and r > 0. [ |

Corollary 3.5.5. Let ¥ and ¥’ be two reduced generic cuspidal G-data, and
let 7(¥) and 7(¥’) be the corresponding irreducible supercuspidal representa-
tions of G(F'). Then n(¥) and 7(¥’) are isomorphic if and only if ¥ and ¥’ are
G-equivalent (without assuming Hypotheses C/(G) and C(G")). O

Proof. This follows immediately from Lemma 3.5.4 and [HMO08, Theorem 6.6].
|

3.6 Howe factorization

In this subsection we assume that p is not a bad prime (in particular also not a
torsion prime) for G. The notion and values of bad primes are recalled in §2.1.
We further assume that p does not divide the order of the fundamental group
of Gder-

Imagine we are given a reduced generic cuspidal G-datum ((G° € G'--- C
G, 7_1,(¢0, P1,- -, ¢a)) such that the depth-zero supercuspidal representa-
tion m_1 of G°(F) is regular in the sense of Definition 3.4.19. Proposition
3.4.27 produces from 7_; a G°(F)-conjugacy class of pairs (S, ¢_1). We can let
6 : S(F) — C* be the product H?:q #ils(r)- It was observed by Murnaghan
[Murl11], in a more technically restricted setting, that the G(F)-conjugacy class
of the pair (S, 6) obtained in this way does not change if we replace the G-
datum by a G-equivalent one. Thus, the G/(F')-conjugacy class of the pair (.5, )
is an invariant of the representation 7 obtained from the G-datum via Yu's
construction. In order to turn this observation into an effective classification
of representations we need a reverse process — one that takes a pair (5,6) and
“unfolds” the information contained in it into a reduced generic cuspidal G-
datum. Motivated by this we shall introduce in this subsection a factorization
algorithm that generalizes to arbitrary connected reductive groups (split over a
tame extension) the Howe factorization lemma ([How77, Lemma 11 and Corol-

lary]).

Let (S,0) be a pair consisting of a tame maximal torus S C G and a character
6 : S(F) — C*. Let E be the splitting field of S. For each positive real number
r consider the set of roots

R, ={a € R(S,G)|0(Ng/p(a”(E)))) =1}. B.6.1)

Then r — R, is a I-invariant filtration of R(S,G). We have R, C R, for s <r
and define R, = (,., Rs. Letrg_1 > rq_2 > --- > 79 > 0 be the breaks of
this filtration, that is, the positive real numbers r with R, # R,. We allow
here d = 0, which signifies that there are no breaks, i.e. Roy = R(S,G). We set
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in addition r_; = 0 and r4 = depth(f), so thatrg > rq_1 > --- >rg >r_1 =0
ifd>0andrg >r_; =0if d = 0. For each d > i > 0 let G* be the connected
reductive subgroup of G with maximal torus S and root system R,, ,.. By
definition the root system of G%is R(S,G), so G* = G. Moreover, the root
system of G is Ry, which may or may not be empty. If it is empty, then
GY = S. Weset G~! = S. Since S splits over a tamely ramified extension of F,
so does each G*. The following Lemma shows that each G* is a tame twisted
Levi.

Lemma 3.6.1. The subset R, C R(S, Q) is a Levi subsystem of R(S, G). O

Proof. Let ¢ € Z'(Wp,&S) be the Langlands parameter of §. The Langlands
parameter of the character § o Ng/p 0o a¥ : EX — C* is @ o ¢|w,. By local
class field theory, 0 o Ng/p o a" has non-trivial restriction to E* if and only if
@ o ¢|w, has non-trivial restriction to I}, = Ij,. Thus

R, ={a € R(S,G)|a(p(I")) = 1}.

But ¢(I") is a finite subgroup of S and then RY = {a € R(S,G)|a(p(I")) = 1}
is the root system of the connected centralizer in G of this finite group. This
connected centralizer is a Levi subgroup, as one sees by applying [AS08, Propo-
sition A.7] repeatedly to the elements in the image of ¢(I"). Thus RY is a Levi
subsystem of R(S,G)", equivalently R, is a Levi subsystem of R(S, G).

We now give a second proof suggested to us by the referee, that avoids the use
of the local Langlands correspondence. It is enough to prove that the quotient
of the Z-span of R(S,G)" by the Z-span of Ry is torsion-free. If it weren't, let
I be a prime factor of the order of its torsion subgroup. There exists A in the
Z-span of R(S,G)Y s.t. 0 o Ng,p o (I\) is trivial on E, while 6 o Ng,p o A is
not. Since E¢ is a pro-p-group, this implies [ = p, i.e. pis a torsion prime for
R(S, G), in particular a bad prime, contrary to our assumption. |

Definition 3.6.2. A Howe factorization of (S,0) is a sequence of characters ¢; :
G'(F) — C* fori = —1,...,d with the following properties.

d
0= 11 éilscm- (3.62)

i=—1
2. For all 0 < i < d the character ¢; is trivial on G (F).

3. Forall 0 < i < d, ¢; has depth r; and is G**!-generic. For i = d, ¢q4 is
trivial if r4 = rq—1 and has depth r4 otherwise. For ¢ = —1, ¢_; is trivial
if GY = S and otherwise satisfies ¢_; ls(Fyoy = 1.

O

The discussion of [HMO08, §3.5] makes clear the direct parallel between this
definition and the original notion of Howe factorization for the group GLy, as
formulated for example in [HMO08, Defintion 3.33]. Our goal in this subsection
is to show that Howe factorizations always exist. But we begin by reviewing
the process inverse to Howe factorization alluded to above.
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Lemma 3.6.3. Lett > 0 be a natural number. If £ = 0 assume given a sequence
of real numbers 5o > s_; = 0;if £ > 0 assume given a sequence of real numbers

St > St—1 > -+ > 89 > s_1 = 0. Assume given a tower S = H~! ¢ H® C
H'--. C H' = G of tame twisted Levi subgroups. Let ¢; : H* — C*, i =
—1,...,t be characters. Assume that the characters ¢; satisfy properties 2. and

3. of Definition 3.6.2 with respect to the groups H* and the numbers s;. Define
0 =1Ti— 1 ¢ilsr).

Then

1. The numbers s;_; > s;_ > --- > so > 0 are precisely the breaks of the
filtration (3.6.1) associated to the character §. Thatis, d = ¢t and s; = r;
foralli =—1,...,d.

2. Foreachi = —1,...,d, the subset R,, ,+ C R(S,G) is the root system of
the group H'. Thatis, H' = G".

3. (¢—-1,...,¢q) is a Howe factorization of (.5, ).
O

Proof. The characters (¢_1, ..., ¢;) satisfy part 1. of Definition 3.6.2 by defini-
tion of 0. They also satisfy parts 2. and 3. of Definition 3.6.2, but with G* and
r; replaced by H' and s;. Thus, the third point of the lemma follows from the
first two points. Those in turn are equivalent to the following two inclusions

R(S,H"*') C R, ¢, Vi=—1,...,t—1

and ‘ .
R(S,H""')\ R(S,H") C Rs,+ ~ R,,, Vi=0,...,t—1,

where we set s_; = 0. If t = 0 these inclusions are trivial, so we assume ¢ > 0.

If a € R(S,H"*') and j > i then ¢; o Ng,p o o (E*) = 1, because Ng/r o o
takes image in Hi"! (F), while the pull-back of ¢; to HZ.(F), and hence also to
HIFY(F), is trivial by assumption. Thus

0oNgpoa’ =(p_1...¢;)oNgpoa’.

Since Ny, p(a¥(E))) C S(F), forany 7 > 0 we see o € R,, 4, which is the first
claimed inclusion. Furthermore, for j < i we have ¢; o N /p o aV(E}) =1,
because ¢; is trivial on S(F),,+ D S(F')s,. Thus

O(Ng/r(a(EX)) = ¢i(Ng/r(aV(E]))).
Assume now « ¢ R(S,H"). We will show that ¢;(Ng,r(aV(EY))) # 1. A
direct computation shows
¢i(Np/r(a’(1+2))) = Ao trg p(a(X], Ha)),

where X} € Lie*(Z(H"))(F)_s, represents ¢;. By assumption ord((X}, H,)) =
—s;, so every element of O} can be written as (X}, H,) for some z € E,. The
character A o trg, p is non-trivial on Og, so the left-hand side is non-trivial for
some z € E,,. We conclude that ¢; o Ny, o ¥, and hence also § o N/ 0 o,
is non-trivial on £, as claimed. This implies a ¢ R,,. We have thus proved
the second inclusion. |
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Before we discuss the existence of Howe factorizations, let us first collect some
of their properties.

Fact 3.6.4. Let S’ be the preimage of S in G?.. Then the restrictions of ¢; and 6
to SiFL(F),, agree. O

Proof. This follows from (3.6.2), since ¢;11,. .., ¢q restrict trivially to GiF*(F)
and ¢;_1,...,$_ restrict trivially to S(F),,. |

Lemma 3.6.5. Letr =0 orr = 0+.

1. The stabilizer of 0|g(r), in Q(S, G)(F) lies in (S, G°)(F) and equals the
stabilizer of ¢_1|g(p), there.

2. The stabilizer of | g(py, in N (S, G)(F) lies in N (S, G°)(F) and equals the
stabilizer of ¢ _1|g(r), there.

O

Proof. We begin with the following observation: For any s € S(F) and w €
Q(S, G)(F) the element wsw~1s™1 € S(F) lifts to Ss.(F). Since ¢, is trivial on
Gsc(F) we see that ¢g|g() is invariant under Q(S, G)(F).

We now prove the first claim by induction on d. The case d = 0 follows
immediately from the above observation. Now assume the claim has been
proved for all reductive groups and all torus-character pairs that have a Howe-
factorization of length less than d. Let w € Q(S, G)(F) fix 0|g(p),. Applying
again the above observation we see that w fixes 6_1| s(F),, Wherefg_; = 9~¢>Jl.
Since 7 < rq—1, w fixes §a—1|s(r),, | = ba-1ls(r),, ,- But ga1 is G%-generic,
hence w € Q(S,G471)(F). We see that the stabilizer of 6|, in Q(S, G)(F)
belongs to (S, G?~1)(F) and equals the stabilizer of 64_1|s(r), there. We can
now apply the induction hypothesis to the character 63—, of the maximal torus
S(F) in the group Ge~1(F), with the Howe factorization 64 1 = ¢_1...dq_1.
This proves the first claim.

Chasing through the following commutative diagram with exact rows

S(F) —— N(S,G)(F) — Q(S,G)(F) — H\(T', S)
S(F) — N(8,G")(F) —= (S, G")(F) — H'(T, 5)
we see that the first claim implies the second. n

Lemma 3.6.6. If (¢_1,...,¢q) and (¢4, ..., ¢}) are two Howe factorizations of
the same pair (5, 0), then they are refactorizations of each other in the sense of
[HIMOS, Definition 4.19]. 0

Proof. We need to check the three properties FO, F1, and F2, in [HMO08, Defini-
tion 4.19], which we reviewed in §3.5. As there, we define y; : G*(F) — C*

by
d
xi=]]¢i- 4"
Jj=t
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for 0 < i < d. For FO, the definition of Howe factorization implies that ¢4 = 1
if and only if 4 = 741 if and only if ¢/, = 1.

For F1, we observe that by (3.6.2) we have x;|g(r) = H;;l_l q&j_lgb; |s(r)y, which
implies depth(x;|s(r)) < ri—1. To show that this implies depth(x;) < r;—; we
choose a z-extension G — G and apply the two exact sequences of Lemma
3.5.3. The first sequence allows us to replace G by G or, in other words, assume
that GG has a simply connected derived subgroup. Since ¢; and ¢/ are trivial
on GL.(F) for all j > i we see that x; is trivial on G (F) and thus descends to
D(F'), where D = G/Gs.. The second sequence of Lemma 3.5.3 shows that it is
enough to check depth(x;) < r;—; on D(F). Finally, applying Lemma 3.1.3 to
the exact sequence 1 — Sic —+ S — D — 1 we reduce this to depth(x;|s(r)) <
ri—1.

For F2, we have again by (3.6.2) the equality ¢’ ; = ¢_1xo and the statement
follows from Lemma 3.4.28. |

We will now show that Howe factorizations exist.

Proposition 3.6.7. Any pair (5,6) consisting of a tame maximal torus S C G
and a character 6 : S(F) — C* has a Howe factorization (¢_1, ..., ¢q). O

The remainder of this section is devoted to the proof of this proposition. This
proof will be constructive, i.e. we shall give an algorithm that recursively pro-
duces the Howe factorization. First, we prove some technical lemmas that will
be needed for the algorithm.

Lemma 3.6.8. Let H C G be a twisted Levi subgroup containing S and let
¢ : H(F') — C* be a character of positive depth r, trivial on Hs.(F). Then ¢ is
generic if and only if forall « € R(S, G)\R(S, H) wehave ¢(Ng,p(a” (E)))) #
1. (]

Proof. Assume first that the derived subgroup of G, and hence also of H, is
simply connected. Put D = H/H. Fix a point z € A™4(S, E) N B*4(H, F).
By Kneser’s theorem [BT87, §4.7] H(F) — D(F) is surjective and by Lemma
3.32 H(F)z,s — D(F), remains surjective for all s > 0, so ¢ is inflated from a
character of the torus D(F') of depth r. Let A : F' — C* be a character of depth
zero, i.e. trivial on F} but not on Fj. Recall the Moy-Prasad isomorphism

MPy o : Lie(H)(F)y,/Lie(H)(F) g+ = H(F) g /H(F)grt-
Let X* € Lie*(D)(F)_,/Lie*(D)(F)_,+ be the element satisfying
d(MPp ,(Y)) = A(X*,Y), VY € Lie(D)(F),.

The surjection H — D leads to an injection Lie* (D) — Lie" (H) whose image is
precisely the subspace that Yu identifies with Lie* (Z(H)°) in [Yu01, §8]. Letting
X* stand also for its image in Lie* (H) we then obtain

O(MPy ., (V)) = AMX*)Y), VY € Lie(H)(F),.

We can restrict this equation to Y € Lie(S)(F'),. Using the fact that MPg, is
I'-equivariant we see that for all Y € Lie(S)(E), we have

¢(Ng/p(MPs - (Y)))=p(MPs - (trg/p(Y)))=A(X " trg/pY)=A o trg, p (X*,Y).
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From the functoriality of the Moy-Prasad isomorphism in the case of the split
torus S x Ewehaveforally € E./E,;

MPg . (do” (y)) = " (y +1).
Combining the last two equations we obtain

¢(Ng/p(a’(y+1))) =Aotrg,p(y(X*, Hy)).

Therefore ¢(Ng/p(aV (E)))) # 1is equivalent to the existence of some y € E,
st. Aotrg p(y(X*, Hy)) doesn’t vanish. Since the character A o trg,p is of
depth zero this in turn is equivalent to ord(X*, H,) = —r. This condition for
alla € R(S,G)\R(S, H) is condition GE1 of [Yu01, §8] for ¢. By [Yu01, Lemma
8.1] condition GE1 implies GE2.

Now drop the assumption that the derived subgroup of G is simply connected.
Let1 — K — G — G — 1be a z-extension. Pull-back along the inclusion H —
G gives a z-extension 1 — K — H — H — 1. Let ¢ : H(F) — C* be the pull-
back of ¢. If X* € Lie"(H)(F)_, represents ¢|y(r), as above, then its image
X* € Lie*(H)(F)_, under the natural inclusion represents ¢| fi(r),- Since Hq

is naturally an element of Lie(H) the above argument shows ord(X*, H,) =
ord(X*, Hy) = —r. |

Lemma 3.6.9. Let 6 : S(F) — C* be a character of positive depth r. If for all
a € R(S,G) we have § o Ng/p o aV|Erx = 1, then there exists a character ¢ :
G(F) — C* of depth r that is trivial on G (F") and satisfies ¢|s(r), = 0]s(r), -
g

Proof. Let Sger and S be the preimages of S in Gger and Gs.. We claim that
0]5.(F), = 1. Let R = Resg,p(Ssc X E). We have the norm homomorphism
Ng/p : R — Ss. It is surjective and we call its kernel R'. We have the exact
sequence

15R' 53 R— Sc—1

of tori defined over F' and split over E. According to Lemma 3.1.3 the homo-
morphism Ss.(E), = R(F); — Ssc(F)r — Sder(F), is surjective. The claim
would thus follow from 6 o Ng/p(Ss(E),) = 1. However, X, (Ss) is generated
by R(S,G)Y over Z so the latter follows immediately from the assumption of
the lemma.

With the claim proved, we turn to the proof of the lemma. Let D = G/Gger.
From Lemma 3.1.3 we have the equality D(F), = S(F),/S4er(F)r and the
claim we just proved tells us that § descends to a non-trivial character of D(F),
that is trivial on D(F),. This finite order character of D(F), can be extended
by Pontryagin duality [HR79, Corollary 24.12] to a character ¢ : D(F) — C*,
trivial on D(F'),. This character pulls back to a character of G(F') whose re-
striction to S(F'), is equal to that of 6. |

Corollary 3.6.10. Let# : S(F') — C* be a character of positive depth r. Assume
that 0 o Ng/p o aV[5x = 1 forall @ € R(S,G). Then there exists a character
¢ : G(F) — C* of depth r, trivial on G (F), such that 6/ = 0 - ¢~*|g(p) has
depth 7' < r. Moreover, if ' > 0 there exists a root a € R(S, @) such that
0'(Np/r(a¥ (B))) # 1. H
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Proof. We work recursively on the depth of 6. Put 6y = 6 and o = r and apply
Lemma 3.6.9 and obtain ¢, : G(F) — C* of depth r such that the depth 7, of
01 := 0o - ¢~ |s(r) is strictly less than ro. If vy > 0 and 61 (Ng,p(a¥ (E)))) =1
for all & € R(S,G) we apply the recursion step again with ¢; and ;. The
recursion eventually stops because the set of positive numbers that are depths
of characters of S(F') (i.e. the breaks of the Moy-Prasad filtration of S(F')) has
no accumulation points. Let ¢ be the product of all ¢;. Its depth is equal to that
of ¢y, which is rq. [ ]

Proof of Proposition 3.6.7. We first deal with the following two trivial cases: If
d =0and ry = r_; = 0 then the twisted Levi sequence we haveis G = G° > S
and weset g = land ¢_; = f and wearedone. If d =1,y =rg >r_1 =0,
and Ry; = 0, then the twisted Levi sequence we have is G = G' > G = Sand
0 is a G-generic character of S(F) of depth r; = r¢ according to Lemma 3.6.8,
and weset g1 =1, ¢ =6, and ¢_1 = 1.

Assume now r4 > 0. To begin the recursion: If rq4 > rq_; leti = dand 64 = 0,
and if rd =Td—1 leti =d— 1, ¢d = 1, and Qd_l = 9[1 =0.

The recursion step assumes that we are in the following situation (which is
true in the beginning because we have separately handled the two trivial cases
above): 0; : S(F) — C* is a character of depth r; > 0, R(S,G") # ), and for
any r > 0 and « € R(S,G"), we have

0:(Ng/p(a¥ (E)))) = 0(Ng/r(a' (E)))).

Given that, we apply Corollary 3.6.10 to G and 6, and obtain a character ¢; :
G'(F) — C* of depth r; trivial on Gi.(F). Set 0;,_1 = 0; - ¢; | s(r) and note the
triviality of ¢; on G (F) implies for all » > 0 and o € R(S,G") the following
strengthening of the second recursion hypothesis

0i1(Ngyr(a’(E)))) = 0:(Ng/p(a’(E)))) = 0(Ng/r(e (E)))).  (3.63)

We claim that 7’ := depth(6,_1) isequal tor;_;ifi > 0,and ' <7, =r_1 =0
if i = 0. If we assume r’ > r;_1, then v’ > 0 and according to Corollary 3.6.10
we would have a root & € R(S,G") satisfying 1 # 0;_1(Ng,p(a”(E)))) =
O(Ng/p(a¥(E)))), contradicting the definition of G'. Thus 7' < r;_;. If we in
addition assume ¢ > 0, then r;_; is ajump of the filtration R, and so there exists
a € R(S, G'L) such that 1 75 Q(NE/F(OéV(Eéil))) = 91‘71(NE/F(04V(ET><1.71))),
showing ' > r;_;.

If i = 0 the recursion stops and we set ¢_; = 6_1. If i = 1 but G° = S the
recursion also stops and we set ¢9 = 6y and ¢_; = 1. Otherwise, we have just
checked that (G, 6;_1) meets the requirements of the recursion step, and we
continue with it.

Let us now show that the characters ¢; obtained in this way are a Howe fac-
torization of (S, 6). The first two parts of the definition of Howe factorization
are immediate from the construction, as well as the claims about ¢4 and ¢_;.
Let now d > i > —1. According to Corollary 3.6.10 we have depth(¢;) =
depth(6;) = r;. Moreover, for a € R(S,G"') \ R(S,GY)

1#0(Ng/r(aV(EY))) = 0:(Ng/p(a” (E)))) = ¢i(Ng/p(a” (E)))),

the first (non)equality holding by definition of R(S, G*™!) \ R(S, G"), the sec-
ond by (3.6.3), and the third by the fact that depth(6;—1) < r; = depth(6;) =
depth(¢;). According to Lemma 3.6.8 ¢; is G "!-generic. [ |
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3.7 Regular supercuspidal representations of positive depth

In this Subsection we will introduce the notion of (extra) regular Yu-data and
(extra) regular supercuspidal representations. The work of Hakim-Murnaghan
reviewed in §3.5 implies that the (extra) regular supercuspidal representations
are classified by the G-equivalence classes of (extra) regular Yu-data. We will
show that in fact the (extra) regular supercuspidal representations are classified
by much simpler data, namely G(F')-conjugacy classes of tame elliptic (extra)
regular pairs, a concept we will also introduce.

We assume that p is not a bad prime for G.

3.7.1 Regular Yu-data

Definition 3.7.1. We shall call a reduced generic cuspidal G-datum ((G° €
Gt CGY,m_1,(do, 91, .., ba)) normalized if the pull-back of ¢; to Gi.(F) is
trivial, forall 0 <7 < d. O

Lemma 3.7.2. If p does not divide the order of the fundamental group of Gge,
then every reduced generic cuspidal G-datum is G-equivalent to a normalized
one. O

Proof. Let ¢ : G(F) — C* be a character of depth » > 0. Put D = G/Gger.
Let € B*4(G, F). By Lemma 3.5.1 Bl G (F)s 04 18 trivial, while Lemma 3.3.2
implies that G(F') 0+ — D(F)o+ is surjective. Thus ¢ induces a smooth char-
acter of D(F')o4. It is of finite order, hence unitary, and by Pontryagin duality
[HR79, Corollary 24.12] extends to a character ¢’ of D(F'), which we may pull
back to G(F). Then ¢ - (¢')~! is a character trivial on G(F) .0+

If (¢o,...,¢q) is the sequence of characters in a reduced generic cuspidal G-
datum, we can use this procedure to replace (¢q—1, ¢a) by (pa—10a(¢}y) ™1, ¢}),
thereby obtaining a refactorization for which ¢/ is trivial on Gge(F'). Doing
this inductively leads to the desired refactorization. |

Definition 3.7.3. Let ((G° € G'--- C G%),7_1,(¢0, ¢1,...,04)) be a reduced
generic cuspidal G-datum. We shall call it

1. reqular, if m_; is a regular depth-zero supercuspidal representation of
G°(F) in the sense of §3.4;

2. extra regular, if it is normalized and 7_, is an extra regular depth-zero
supercuspidal representation of G°(F') in the sense of §3.4.

O

The regularity of 7_; is a non-trivial restriction. This is seen already in the case
of SLy, where four of the supercuspidal representations of this group are not
regular. Nonetheless one can say, somewhat informally, that most depth-zero
supercuspidal representations are regular. Indeed, the depth-zero supercusp-
idal representations correspond to cuspidal representations of finite groups of
Lie type by Moy-Prasad theory, which are in turn grouped into Lusztig series,
indexed by semi-simple elements of the Lusztig dual group. The condition of

47



m_1 being regular translates to a Zariski-open and dense condition on the semi-
simple elements of the Lusztig dual group of each finite group of Lie type that
is the reductive quotient of a parahoric subgroup.

According to Proposition 3.4.27, associated to 7_; are a maximally unramified
elliptic maximal torus S of G° and a depth-zero character ¢_; : S(F) — C*
that is (extra) regular with respect to G°. Recall our conventions G~! = S and
r_1 = 0. Note that it may happen that G = G~

Using Lemma 3.4.28 one sees that the regularity of a G-datum is an invariant of
its G-equivalence class. One also sees that the extra regularity of a normalized
G-datum is an invariant of its G-equivalence class, provided we only consider
normalized G-data, for then we are only allowed to replace 7_; by xo ® 7_1,
where Yo : GY(F) — C* is trivial on G2 (F), because given w € Q(S, G°)(F)
and s € S(F) the element wsw~ts~! € S(F) lifts to G2 (F). On the other
hand, the 7_; component of a G-datum that is not normalized, but equivalent
to a normalized extra regular datum, need not be an extra regular depth-zero
supercuspidal representation of G°(F).

Example 3.7.4. As an example we can take G°(F) to be the norm-1 elements in
a central division algebra D/F of degree d and S(F') to be the norm-1 elements
in the unramified extension Fy of F' of degree d, embedded into D. We shall
show that N (S, G%)(F)/S(F) is trivial, so every character of S(F)y is regular
with respect to G, while Q(S, G%)(F) is cyclic of degree d and there exist char-
acters of S(F), that are extra regular with respect to G°, as well as characters
that are not. Finally, we shall show that every depth-zero character of S(F)
extends uniquely to G°(F). As a result, in a given Yu-tower G° C G an extra
regular Yu-datum can be refactorized into one where ¢_; = 1, in particular not
extra regular.

We follow the exposition of [PR94, §1.4]. Let G°(F) = D* and S(F) = F.
Then Q(S,G°)(F) = Q(S,G°)(F) = N(G° S)(F)/S(F), the latter due to S
being an induced torus and thus having trivial first Galois cohomology group.
Any element of G°(F') acts trivially on the center F*. Thus elements of Q(S, G°)(F)
acton S(F) = F as Galois elements. On the other hand, it is known that the

Frobenius element of F;/ F is realized by conjugation by an element g € G°(F).
Thus (S, G°)(F) = Gal(F,/F) is cyclic of order d.

The valuation of the reduced norm of g is an integer a coprime to d. Given
an integer [, the element of Q(S,G°)(F) represented by g’ can be lifted to
N(S,G%)(F) if and only if there exists s € F)* such that sg' € D'. The reduced
norm of gl has valuation la, while the reduced norm of s, which coincides with
the field norm for the extension F;/F, has valuation in dZ. So sg' € D! implies
la € dZ, hence | € dZ. We conclude that no non-trivial element of Q(S, G°)(F)
lifts to N(S,G°)(F), and so N(S,G®)(F)/S(F) is trivial.

The triviality of N (S, G%)(F)/S(F) implies that all characters of S(F') are reg-
ular, even the trivial character. On the other hand, extra regular is a non-trivial
condition. For example, the trivial character is not extra-regular. On the other
hand, there do exist extra regular characters. Indeed, S(F)o.04+ = kJ,, is a cyclic
group of order n = 2;1:—01 q*, so its character group is (non-canonically) isomor-
phic to the group p,,(C) of n-th roots of unity. The character corresponding
to ¢ € pn(C) (under any choice of isomorphism) is fixed by the i-th power of
Frobenius if and only if ¢ ¢'=1 — 1. There clearly exist ¢ for which this equation
isnot true forany l =1,...,d — 1.
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Finally, let  be the unique point in the Bruhat-Tits building of G°. We have
G°(F) = G°(F)y4.0, since G is simply connected. It is shown in the proofs of
[PR94, Theorem 1.8, Proposition 1.8] that the inclusion F; — D> induces an
isomorphism S(F)g.o1 = Or,/(1+pr,) — Op/(14+pp) = G(F)4.0:0+,and that
this isomorphism restricts to an isomorphism S(F)o.0+ — G°(F)s.0.0+. Thus
every character of depth zero extends uniquely to a character of G°(F). O

3.7.2 Tame regular elliptic pairs

Definition 3.7.5. Let S C G be a maximal torus and 6 : S(F') — C* a character.
We shall call the pair (S, 0) tame elliptic reqular (resp. tame elliptic extra regular) if

1. S is elliptic and split over a tame extension;

2. the action of inertia on the root subsystem
Roy ={a € R(S,G)|0(Ng,r(a"(EF))) =1}

preserves a set of positive roots, where E/F is any tame Galois extension
splitting S (note that Ry is independent of the choice of E/F);

3. the character 0|g(), has trivial stabilizer for the action of N (S, G%)(F)/S(F)
(resp. Q(S, G°)(F)), where G° C G is the reductive subgroup with maxi-
mal torus S and root system Ry .

O

We recall from Lemma 3.6.1 that Ry is a Levi subsystem of R, and from Fact
3.4.1 that the second condition is equivalent to saying that S is a maximally
unramified maximal torus of G°. We furthermore recall from Lemma 3.6.5 that,
when p does not divide the order of the fundamental group of Gger, One can
replace G° by G in the third condition.

Fact 3.7.6. If (S, 0) is a regular (resp. extra regular) tame elliptic pair and dy :
S(F) — C* is a character of depth zero that is invariant under N (S, G°)(F)/S(F)
(resp. under Q(S, G°)(F)), then (S, 6y) is regular (resp. extra regular). O

Proof. This follows from the fact that neither Ry nor the appropriate stabilizer
of 0] s(r), changes when we pass from 6 to 6. |

Recall that when p { N the supercuspidal representations of GL y are classified
by admissible characters. The notion of admissible character and the construc-
tion of a supercuspidal representation from an admissible character appears
in [How?77], while the exhaustion is proved in [Moy86] (under the assumption
that F' has characteristic zero). We will now argue that the notion of a tame
elliptic (extra) regular pair is a generalization of the notion of an admissible
character to an arbitrary tamely ramified reductive p-adic group. An admissi-
ble character is really a pair (K, §), where K/F is a field extension of degree
N and 6 : K* — C* is a character satisfying certain axioms, listed on the
first page of [How?77], see also [HMO8, Definition 3.29]. Since the equation
S(F') = K* provides a bijection between the conjugacy classes of elliptic max-
imal tori S of GLy and the isomorphism classes of field extensions K/F' of
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degree N, admissibility can be seen as a property of a pair (S, §), where S is an
elliptic maximal torus of GLy and 6 : S(F') — C* is a character. Note that the
splitting extension E/F of S is the normal closure of K, and in particular E/K
is unramified.

Lemma 3.7.7. If G = GLy and p 1 N then the notions of extra regular, regular,
and admissible, pairs coincide. O

Proof. The notions of extra regular and regular coincide, because H!(F,S) =0
for every maximal torus S, hence Q(S, G%)(F) = N(S,G°)(F)/S(F).

To show that a regular elliptic pair (S, 0) is admissible, let K/ F be the degree-
N extension such that S(F) = K*. If there exists an intermediate extension
K/L/F such that § = 6, o Nk, for some 0y, : L* — C*, then we can con-
sider the twisted Levi subgroup M = Res;,pGLy/, where N’ = [K : L], and
realize S as a maximal torus inside of it. Then 6 is the restriction to S(F') of
the character 01, o Res;,p(det) of M(F'). For every a € R(S, M) the character
o Ng/poa" of EX is trivial. In particular R(S, M) C Roy. But 6 is obviously
invariant under Q(S, M)(F). This contradicts Definition 3.7.5 unless S = M,
ie. L =K.

Now assume that 6| Ky, = 010 Ng /1, for an intermediate extension K/L/F and

acharacter 0y, : Ly, — C*. With M as above we see again that R(S, M) C Ry
By Definition 3.7.5 the action of inertia preserves a positive subsystem of Ry,
and hence of R(S,M). This means that over ' the torus S = Resk,rG,,
becomes a minimal Levi subgroup of M = Res;,rGLy+, which implies that
K /L is unramified.

Conversely let (5, 0) be admissible. Since S = Resg,pG,, for some field ex-
tension K/F of degree N, it is automatically a tame elliptic maximal torus.
Consider the root system Ryy. By Lemma 3.6.1, it spans a twisted Levi sub-
group M C G whose center is contained in S and hence anisotropic mod Z(G).
Thus M = Res,;rGLy for some intermediate extension K /L/F. Let Sy, be
the intersection of S with the derived subgroup of M. Since the simple co-
roots for M form a basis for X, (Sy,,,) the group Sir,., (E)os+ is generated by
its subgroups a"(Ey, ) for a € Roi. Applying Lemma 3.1.3 to the surjec-
tion Resg,p(Sn, X E) — Sy, induced by the norm we see that the group
Sy (F)ot is generated by its subgroups Ng,paV(E, ) for « € Ryy. Thus
0]s(r),, factors through the exact sequence

1 = Sy (Fow = S(F)oy = [M/Mger](F)og — 1

of Lemma 3.1.3. We have the isomorphism Resy, /- (det) : M/Mger — Resy Gy,
which restricted to S(F') becomes the map Nk, : S(F) = K* — L*. Thus
0]s(r),,. factors through N, and the admissibility of  implies that K/L is
unramified. This means that Resg /G, splits over L, or equivalently the
maximal torus S = Resk,rG,, of M = Resy,,rGLy’ becomes a minimal Levi
over F'*. This implies that inertia preserves a set of positive roots in Ry.

Now consider the stabilizer of 8|, in (S, G°)(F). We may as well remove
the restriction of scalars L/F and consider S = Resy 1 G,, as a maximal torus
of GY = GLy-/L and the stabilizer in Q(S, GY)(L) of the character 6 : S(L)y —
C*. Now S(L) = K* = O} - L* = S(L)o - Z(G°)(L). It follows that the
stabilizer in Q(S, G°)(L) of 0| s(r), is the same as the stabilizer of 6. Since K/L
is unramified, the splitting field E of S is equal to K. The ellipticity of S then
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implies that the cyclic group Gal(K/L) acts on X*(S) via a Coxeter element
of Q(S, GY) (since Q(S, GY) is the symmetric group on N’ letters, this element
is simply an N’-cycle), which in turn implies that Q(S, G°)(L) is cyclic and
generated by that Coxeter element. That is, the action of Q(S, G°)(L) on S(L)
is translated via S(L) = K* to the action of Gal(K/L) on K*. If some element
o € Gal(K/L) leaves # invariant, then # will factor through the group of co-
invariants KX. Letting K be the subfield of K fixed by ¢, Hilbert’s Theorem 90
implies that the norm map K* — K/ descends to an isomorphism K — K.
Thus 6 factors through this norm map and its admissibility implies K; = K,
ie.o=1. ]

3.7.3 Classification when p does not divide |71 (Gger)|

In this subsubsection we assume that p is not a bad prime for G’ and does not
divide the order of the fundamental group of the derived subgroup of G.

Proposition 3.7.8. Let ((G° € G'--- C G, 7_1,(¢o, ¢1,---,0a)) be a (extra)
regular reduced generic cuspidal G-datum. Using Proposition 3.4.27 let S ¢ G°
be a maximally unramified elliptic maximal torus and ¢_; : S(F) — C* a
(extra) regular depth-zero character s.t. m_; = m(g,4_,). Let 6 = ngq bils(r)-
The resulting map

((GO g_ Gl g Gd)aﬂfl7(¢07¢17"'7¢d)) — (559)

induces a bijection between the set of G-equivalence classes of (extra) regular
reduced generic cuspidal G-data and the set of G(F')-conjugacy classes of tame
elliptic (extra) regular pairs. O

Proof. We first show that (S5, 6) is a (extra) regular tame elliptic pair. From
Lemma 3.6.3 we know that the groups G' from the statement of this propo-
sition coincide with the groups G* constructed in §3.6 in terms of (S, 6), and
that furthermore (¢_1, ..., ¢q) is a Howe factorization of (S, ). Since S is el-
liptic in GY and Z(G°)/Z(G) is anisotropic, S is elliptic in G. Furthermore,
S C G is maximally unramified. In particular, it is split over a tame extension,
since G is. Thus parts 1. and 2. of Definition 3.7.5 are satisfied. The third part
follows from Lemma 3.6.5.

We claim that G-equivalent data lead to G'(F')-conjugate pairs. It is enough to
check this in the three cases where the two data are related by G-conjugation,
elementary transformation, or refactorization. The case of G-conjugation is ob-
vious. The case of elementary transformation means that we replace (g 4_,)
by an isomorphic representation of GY(F). By Proposition 3.4.27 such a repre-
sentation is of the form m(g: 4 ), where (S’ ¢"1) = Ad(g)(S, ¢-1) for some g €

G°(F). Thenew datum is thus givenby ((G° € G" --- C G%), w5/ ¢ ), (d0, 1, - .-

and it leads to the pair (5, 6’), where ¢’ : S'(F) — C* is given by ngo bilsr(F)-
¢_,. But (8,0") = Ad(g)(S,0). Finally consider a refactorization ((G° C
G- C Gd),7r237¢71), (96, #%,---.0})). Let @ and 8" be the two correspond-
ing characters of S(F). Asin §3.5let y; : G'(F) — C* be defined by y;(g) :=
H?:i ¢j(9)¢;(9)~". Then the character xo of G°(F) has the property that 06 ~' =
X0|§(1F) - (¢'_1¢"7). At the same time, property F2 of refactorization implies
T(s.¢' ) = T(S,¢_1) ® Xo- According to Lemma 3.4.28 we have m(s4_,) ® xo =
T(S.6-1-x0| s(r)- PTOPOSition 3.4.27 then implies that (9, ¢, ) is G°(F)-conjugate
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to (S, ¢_1 - xols(r)), which, combined with the regularity of ¢’ | implies ¢’ | =
®—1 - Xols(r)- This in turn implies 0’6~ =1.

We thus obtain a well-defined map between G-equivalence classes of data and
G(F)-conjugacy classes of pairs.

To show surjectivity, let (S,6) be a (extra) regular tame elliptic pair. As de-
scribed in §3.6 we obtain a sequence of tame twisted Levi subgroups G° C
G' C .-+ € G* = G. By Definition 3.7.5 the torus S is a maximally unramified
maximal torus of G°. By Proposition 3.6.7 there exists a Howe-factorization
(¢—1,...,0q) of (5,0). By Lemma 3.6.5 the (extra) regularity of the pair (.5, 0)
implies the (extra) regularity of the depth-zero character ¢_; with respect to
G". Proposition 3.4.27 gives an (extra) regular depth-zero supercuspidal repre-
sentation 7(s 4 ,) of GY(F), and we obtain a reduced generic cuspidal G-datum
mapping to (.5, 6), that is normalized in the sense of Definition 3.7.1 and (extra)
regular in the sense of Definition 3.7.3.

To show injectivity, assume ((G° C G'--- C GY), 75,4 ), (d0,¢1,...,¢a)) and
(G°caGgt...c G’d/),w(sl}(ﬁf_l), (64, P, .., #y)) lead to conjugate pairs (S, 0)
and (5',0'). The already proved part of this lemma allows us to replace both
data by G-equivalent ones, so we use Lemma 3.7.2 to assume that they are both
normalized. Replacing the second datum by a G-conjugate we may assume
that the two pairs are actually equal. Lemma 3.6.3 shows that d = d’, that
G'" = G'foralli =0,...,d, and that (¢_1,...,¢q) and (¢’ 4, ..., ;) are two
Howe factorizations of the same pair (S, §). Lemma 3.6.6 implies that they are
refactorizations of each other. n

Definition 3.7.9. Under the assumption that p does not divide the order of the
fundamental group of G 4er we shall call a supercuspidal representation of G(F)
(extra) regular if it arises via Yu’s construction from an (extra) regular (reduced
generic cuspidal) Yu-datum. O

We will generalize this definition to the case when p is allows to divide |71 (G ger)|
in §3.7.4.

Corollary 3.7.10. Composing the bijection of Proposition 3.7.8 with Yu's con-
struction provides a bijection

(8,0) = m(s.0)

between the set of G(F)-conjugacy classes of (extra) regular tame elliptic pairs
and the set of (extra) regular supercuspidal representations. O

Proof. Definition 3.7.9 and Corollary 3.5.5 imply that the set of (extra) regu-
lar supercuspidal representations is in bijection with the set of G-equivalence
classes of (extra) regular reduced generic cuspidal G-data, which in turn is in
bijection with the set of G(F")-conjugacy classes of (extra) regular tame elliptic
pairs by Proposition 3.7.8. |

Fact 3.7.11. The central character of 7(g g) is the restriction of 6 to Z(G)(F). O

Proof. Let (¢_1,...,¢q) be a Howe factorization. We examine Yu's construc-
tion, following the exposition in [HMO08, §3.4]. There is a sequence of compact
modulo center subgroups of G(F)

G'F),=K°cK'c---cK‘=K
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On each K there is an irreducible representation ;. There is a natural inflation
process that makes x; into a representation of K. The tensor product k_; ®- - -®
kq is irreducible and its compact induction from K to G'is 7(g,¢)-

Since Z(G)(F) C K°, the inflation process doesn’t disturb the central character
of k;. For i = 0 the representation «; is ¢g ® Indg? }fgﬂg (F)aot(S,6-1)r where
K(g,¢-1) is as in Lemma 3.4.20. The central character of this representation is
¢o - ¢_1. For the intermediate indices i the representation «; is described after
[HMO08, Remark 3.25] and its construction may or may not involve the Weil
representation. In either case, its restriction to Z(G)(F) is seen to act via the
character ¢;. [

3.7.4 Classification when p divides |71 (Gger)|

In the previous subsubsection we assumed that p is not a bad prime for G and
does not divide the order of 71(Gg4er). In this subsection we will remove the
condition that p does not divide the order of 71 (Gg4er). This is only an issue for
Dynkin type A, for which there are no bad primes while 71 (Gger) can be any
divisor of n + 1. For all other Dynkin types a prime that divides m (Gger) is
automatically bad for G, and equals either 2 or 3. We keep the assumption that
p is not a bad prime for G.

Fix a z-extension1 - K - G; — G — 1.

Lemma 3.7.12. Let (5,60) be a tame elliptic (extra) regular pair for G. Let S;
be the preimage of S in G and let 6, be the inflation of ¢ to S;(F). The map
(S,6) — (S1,6.1) is a depth-preserving bijection between the G(F')-conjugacy
classes of tame elliptic (extra) regular pairs of G and those tame elliptic (extra)
regular pairs of G; for which 01| () = 1. O

Proof. This follows at once from Lemma 3.5.3. n

Definition 3.7.13. A supercuspidal representation 7 of G(F') will be called (ex-
tra) reqular if its inflation 7 to G (F") is so. O

Proposition 3.7.14. There is a bijection (S, 0) — 7(g g) between the set of G(F)-
conjugacy classes of tame elliptic (extra) regular pairs (.5, 0) for G(F') and the
set of (extra) regular supercuspidal representations of G(F). O

Proof. This follows from Corollary 3.7.10, Fact 3.7.11, and Lemma 3.7.12. |

Lemma 3.7.15. The notion of (extra) regularity and the bijection (5, 0) — 7(g,9)
are independent of the choice of G;.

Proof. Choose another z-extension G of G and consider the fiber product G's
of G and G5 over G. Then G35 is a z-extension of G, of G1, and of G5. If the
inflation m; of 7 is (extra) regular then m; = m(g, ¢,) for some (extra) regular
tame elliptic pair (S1,61). Let (S, 6) be the pair of G corresponding to (51, 61).
Let (S2,02) and (Ss,603) be the pairs on G, and G5 corresponding to (5, 6).
According to Lemma 3.7.12, (S3, 63) is tame elliptic (extra) regular, and hence
(Sa2,02) is tame elliptic (extra) regular. According to Lemma 3.3.2 the pull-back
to G35 of a Howe factorization for 8, is a Howe factorization for 65. The same
is true for 03 in place of ¢;. Thus the representation 7 g, g, is the pull-back to
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G3(F) of the representation (g, ¢,y and also of the representation 7 (g, 4,). But
then 7(g, 4, is the pull-back of 7 to G3(F), which then implies that 7 (g, 4,) is
the pull-back of m to G2(F'). We conclude that the pull-back of 7 to G»(F) is
(extra) regular. |

4 THE CHARACTER FORMULA

Let F' be a non-archimedean local field and let G' be a connected reductive
group defined over F and splitting over a tame extension of F. Let ((G° ¢
Gt C GY, 71, (¢o,¢1,...,0a)) be a reduced generic cuspidal G-datum
in the sense of [HMO08, Definition 3.11]. From this datum Yu’s construction
produces not just a single supercuspidal representation 7 of depth rg4, but in
fact a supercuspidal representation m; of the group G*(F) of depth r;, for each
0<i<d,and 7 = my.

The Harish-Chandra character © of = has been computed in the work of Adler
and Spice [AS08, AS09] and later reinterpreted in the work of DeBacker and
Spice [DS18]. At the moment this work has the additional technical assump-
tion that G9! /Z¢ is anisotropic, but we are hopeful that this condition will
be eliminated in the future. The resulting character formula involves various
roots of unity. The main purpose of this section is to provide an alternative
description of these roots of unity. As we shall see, they can be interpreted in a
way that ties them closely to the Langlands-Shelstad transfer factors from the
theory of endoscopy [LS87]. More precisely, we shall define certain terms ¢ and
A, that can be seen as absolute versions of the corresponding pieces of the
transfer factor, and will show that they describe the roots of unity occurring in
the character formula. These terms are absolute in the sense that they depend
just on the group G, a maximal torus of it, and some auxiliary data. In the
presence of an endoscopic group H, the quotient of either term for G by the
corresponding term for H will be equal to the analogous term occurring in the
Langlands-Shelstad transfer factor.

Once the roots of unity in the character formula have been reinterpreted in this
way, we will show that the resulting expression for the character of a regu-
lar supercuspidal representation evaluated at a sufficiently shallow element is
precisely analogous to the character formula for discrete series representations
of real reductive groups.

4.1 Hypotheses

The papers [AS08] and [AS09] impose various hypotheses on the group G
under which the character formula is obtained. Besides the assumption that
G?~1/Z¢ is compact that we already mentioned, these are Hypotheses (A)-(D)
of [AS08, §2], Hypothesis 2.3 of [AS09], and the assumption [AS09, §1.1] that
the residual characteristic of F' is not 2. As remarked in [AS09, §1.2], Hypothe-
ses (A) and (D) are implied by the tameness of GG. Hypothesis (C) is satisfied
when G has simply connected derived subgroup. According to Lemma 3.5.2
the same is also true for Hypothesis 2.3. However, the character function of a
representation 7 of G(F') can be computed by first taking a z-extension G of G,
pulling 7 back to a representation 7 of G/(F), and then computing the character
function of 7. This means that Hypotheses (C) and 2.3 are in fact superfluous.
Finally, Hypothesis (B) is satisfied when the residual characteristic of F' is not a
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bad prime for G. Thus we shall make the assumption that the residual charac-
teristic of I is not a bad prime for G whenever we apply the character formula
of [AS09], in addition to our standing assumption that it is not equal to 2. On
the other hand, some results of [AS08] are valid and can be used without this
assumption.

4.2 Review of orbital integrals

Let A : I — C* be a non-trivial character. Let S C G be a maximal torus. We
can view s* = Lie"(S) as a subspace of g* = Lie"(G) as explained in [Yu01,
§8], namely as the trivial-weight space for the coadjoint action of S. Let X* ¢
s*(F) C g*(F) be an element whose stabilizer for the coadjoint action of G is
S. For any function f* € C°(g*(F')) we have the orbital integral

Ox-(f*) = / £* (A" () X*)dg.
G(F)/S(F)

The measure used for integration is the quotient of a measure on G(F) by a
measure on S(F'), and on both groups we take the canonical measure intro-
duced by Waldspurger in [Wal01, §1.4], as is done in [DS18, Definition 4.1.6].
For a function f € C°(g(F')) we define its Fourier-transform ﬁ\,dY € CX(g*(F))
by

Fray(Y®) = /(F) FY)AY, Y™)ay,
g

where we have indicated as subscripts the dependence on the choices of the
character A and the measure dY. A fundamental result of Harish-Chandra is
that the distribution f — Ox+(fa.qy) is represented by a function, i.e. there
exists a function fix- s on g(F) such that

OX*(J/C\A,dY) = /(F) fxe A(Y)f(Y)dY
g

for all f € C°(g(F)). The function fix- » does not depend on the choice of
measure dY. We can renormalize it using the usual Weyl discriminants [DS18,
Definition 2.2.8] and obtain

—~ syl 1
tx-a(Y) = [DXT) D)2 ix- A (Y).
The function jix - A depends on A via the equation
Bx= Ae = Hex* As

where ¢ € F* and [A - ¢](z) = A(cz). The same is true for Tx« 5 provided
ce Of.

4.3 Review of the work of Adler-Spice and DeBacker-Spice

In this subsection F is a local field of odd residual characteristic that is not a bad
prime for G. Set r = r4—; and m = m4. Let « be the unique point in the building
Bred(G4=1, F). The formula of Adler-Spice gives the value of the function O,
at any regular semi-simple element v € G(F) that has an r-approximation v =
Y<r - ¥>r, in terms of the value of O, ,, under the assumption that G17(@G)
is anisotropic. It is more convenient to replace ©,(vy) by its renormalization
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®.(7) = |Da(7)|20x(7). In the form presented in [DS18, Theorem 4.6.2] the
formula for @, (v) is

¢d(7) Z 65Ymrram(’YgT)Eram(’yir)é(fYZr) ' ‘I)‘ﬂ'd—l (727’)2"’,ng71 (log(’}/ZT)) (431)
geJU (FPN\GH(F) /G (F)
74, €GITH(F)

We need to explain the notation. Fix again a non-trivial character A : F' — C*,
with the additional assumption that A is trivial on p  but non-trivial on Op. Let
X5, € Lie*(Z(G*1))(F)_, be a G4-generic element (in the sense of [Yu01,
§8]) that realizes (in the sense of [Yu01, §5]) the character ¢4_1. We abbrevi-
ate 72, = g7 'y<,gand 9X; | = Ad"(9)X}_,. Setting J¢ = Cent(y,,G?)°,
the condition 72, on the summation index g implies that Ad(g)Z(G9"!) is a
subgroup of J¢ and in particular X | € j4*(F). Therefore, the function
tja ax:  thatrepresents the normalized Fourier-transform of the integral along

the coadjoint orbit of 9X | in j%*(F) (as recalled in the §4.2) makes sense.
Moreover, since both the function itself and the element X ; now depend on
the choice of A in a parallel way, the entire expression 4 s x+  is independent
of A. The map log is either the true logarithm function, provided it converges
at >, or else the inverse of a mock-exponential map [AS09, Appendix A].

One place where the technical assumption on the compactness of G*~1(F)
modulo Zg(F) enters is the evaluation of @, , (v%,.), because the semi-simple
element 72, € G4~!(F) need not be regular. When G*~1(F)/Zs(F) is com-
pact, the character O, , is defined on all (semi-simple) elements of G¢~1(F),
not just the regular elements. Thus the function ®,, , = \Dgf},l\%@ﬁ ., 1S
also defined on all of G4~!(F). When ., is itself regular one can hope that
the above formula applies even without the compactness assumption and we
shall prove in the next subsection that it does, at least in the case when v = v,
is topologically semi-simple modulo Z(G)°.

The remaining objects in the formula: €sym ram, €™, and ¢, are all complex roots
of unity of order dividing 4 and will be the focus of our study. We shall now
give their definition following [DS18, §4.3]. Let T be a maximal torus of G¢~!
containing 72, and such that x € A™Y(T, E) for some finite Galois extension
E/F splitting T'. We consider the following subset of the real numbers, defined
for each o € R(T, G) by

ord,(a) = {r € nga(Fa)w,r+ # ga(Fa)w,T}a

where we have abbreviated by g, (Fy ). the intersection g, (Fu) N 9(Fo)x.r-
Based on this set we define the following subsets of the root system R(T, G)

Ry, = {a€R(T,G)\R(T, G Ha(rL,) # 1},
R,» = {a€Ry |re2ord,(a)},
R(T’*‘“dwi 2 = {a€Ry |r—ord(a(vZ,) 1) € 2ord,(a)}.

Fora e R(,«,Ordvg y/2 symmetric and ramified we define
<r

1 *
ta - ieaNFa/Fia (wa)<d0[v(1)’Xd_1>(O[(’yir) —_ 1) e O;ﬂ

Here e, is the ramification degree of F,,/F and w, € FJ is any element of
valuation (ord(a(y<,) —1) —r)/2. The existence of w, is argued in the proof of
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[AS09, Proposition 5.2.13]. It also follows from Proposition 4.5.1 below. Finally,
we introduce the Gauss sum

6=q17> Aa?) eCx

z€kp

With this notation at hand, we come to the definition of the three roots of unity.

€sym,ram (72 r )

= H SgN k., (Ga)(~8)" S8y, x (ta)-
aeF\(R(Tford_\{g v)/2)symm,ram “
<r

(4.3.2)
The product here runs over the I'-orbits of symmetric ramified roots belonging
to R(;_ord(~2,))/2- For each such q, let G 1, be the subgroup of G generated by
the root subgroups for the two roots « and —c. It is a semi-simple group of
rank 1 defined over F,, and sgn Fio denotes its Kottwitz sign [Kot83], which
equals 1 if the G4, is split and —1 if it is anisotropic. Furthermore, f, is the
degree of the field extension kr, /kr, and s8Ny is the quadratic character of

the cyclic group kf, , onto which we can pro]ect the element t,, € Of, . Both
& and t,, depend on the choice of A (the latter through X ;) and it is easy to
check that this dependence cancels out.

ez = J[ sen (a0L)) IT 0 senyy (a(Z,)- 433)

QGFX{:I:I}\(RT/Q)SY'“ DCGF\(1%7‘/2)sym,unram

Here the superscript sym means that we are taking I' x {+1}-orbits of asym-
metric roots, while the subscripts sym,unram mean that we are taking I'-orbits
of roots that are symmetric and unramified. In the first product, we project
a(vZ,) € Og, to kf, . In the second product, the F, /Fi,-norm of the element
a(vZ,) € O, is trivial, because the root « is symmetric. The same is true for
the projection of a(vZ,) to kj, , because the symmetric root a is unramified.
The group kj, of elements of kj; with trivial kg, /kp, ,-norm is cyclic and we
apply its quadratlc character to the projection of «(v%,.). Finally

é(ve,) = 11 (—1). (4.3.4)

aEF\(R(r—ord g )/2)sym
<

Note that while the original definition of € does not contain the subscript sym,
we may restrict the product to symmetric roots by [DS18, Remark 4.3.4].

Each of these signs implicitly depends on T', but their product is independent
of T. We will soon give an alternative formula for the product €sym ram - €. About
€™ we will only need to know the following;:

Fact 4.3.1. The function v — €™ (y) is an Q(7T, G)(F)-invariant character of
T(F). O

The observation that this function is a character was already made in [DS18]
and will be very useful.
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4.4 Character values at shallow elements

In this subsection F' is a local field of odd residual characteristic that is not a
bad prime for G. In the special case v = v, formula (4.3.1) specializes to

B (1) = 6a(1) Y esympam (V) (1)) - By, (7). (4.4.1)
g€JLFI\GH(F) /G (F)
yIEGITH(F)

This formula still requires the assumption that G?~! is anisotropic modulo cen-
ter. However, we expect that this condition is unnecessary. In this subsection,
we will prove that this formula is valid without this condition, but under the
stronger assumption on + that it is tame elliptic and topologically semi-simple
modulo Z(G)°. That is, we are assuming that v = =, which is stronger than
v = y<r. The regularity of v implies that J¢ is a tame elliptic maximal torus.
To remind ourselves of that let us write S, for it.

We follow the proof of [AS09, Theorem 6.4]. We have the point = € B*4(G, F),
which is called 7 in loc. cit. Let B*(G, F') denote the enlarged Bruhat-Tits
building of G, i.e. B(G, F) = B*Y(G, F) x X.(Z(G))' ® R. Fix a preimage
i € B(G, F), which will serve as the point z in loc. cit. Recall that the
representation 7 is compactly induced from a finite dimensional irreducible
representation o of the group K, = G4 1(F), - G(F), 0+. We denote by x,, the
character of this representation, and by x,, the extension by zero of the function
Xo to all of G(F).

We claim that the function
9= Xo("7)

on G(F)/Z(F) is compactly supported. For this, note that because + is topolog-
ically semi-simple modulo Z(G)° all of its root values are topologically semi-
simple. It follows from [Tit79, §3.6] that the set of fixed points of y in B4 (G, E),
where E is the splitting field of S, is precisely the apartment A™4(S,, E).
Thus, the set of fixed points of v in B4(G, F) is a singleton set {z }. The same
is of course true for the element 9, which then has the unique fixed point gx.,.
Thus, unless gz, = z, the element 97y does not belong to K, C G(F'), and con-
sequently X, (9y) vanishes. This function is thus supported on a single coset of
G(F)z/Z(F)in G(F)/Z(F), which is compact.

According to the Harish-Chandra integral character formula, we have

_ deg(m) (96 de
0:(0) = qorgoa) [ [ ge(deds

where K is any compact open subgroup of G(F) with Haar measure dc nor-
malized so that the volume of K is equal to 1. We can take for example K =
G(F)z. 0. Since the integrand is compactly supported as a function of g, we
switch the two integrals and then remove the integral over K. We arrive at

Ox(v) = jggg; ba(7) > /K Xo (F9%~)dkds.

GEKNG(F) /S, (F) ? Ko9Sy(F)/Z(F)

We have x,(*9%v) = ¥, (%y) which, as we already discussed, is zero unless
gz, = x. Recall the subset B,.(y) of [AS08, Definition 9.5]. By [AS08, Lemma
9.6] it is equal to B"!(S,, F'), which is the preimage of z., in B*"(G, F'). Thus,
if gz, = x then & belongs to B,.(77y). Because of this, the rest of the argument in
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the proof of [AS09, Theorem 6.4] goes through: [AS09, Corollaries 4.5,4.6] can
now be used without the assumption that G¢~*(F)/Z(F) is anisotropic, whose
purpose was to guarantee, via [AS08, Lemma 9.13], that = € B,.(97).

4.5 Computation of ord,(«)

In this subsection F' is a local field of odd residual characteristic. The roots
of unity occurring in the character formula (4.3.1) of Adler-DeBacker-Spice de-
pend on the sets ord,(a) C R for the various roots o« € R(T,G). According
to [DS18, Corollary 3.1.9], when « is symmetric there are only two possibilities
for ord, (), namely e;'Z and e, ! (Z + 1), where e,, is the ramification degree
of the extension F, /F. The key to our reinterpretation of these roots of unity
is the exact computation of ord, (), which is as follows.

Proposition 4.5.1. Let " C G be a maximal torus with a tamely ramified split-
ting field E/F and let z € B*4(G, F) N A™Y(T, E). For any a € R(T, G)sym we
have

e Z, if a is ramified
ord, (o) =< e, 'Z, if a is unramified and f(¢ (o) = +1
ex (Z+ 1), if ais unramified and fg ) (o) = —1
where f(q 1)() is the toral invariant defined in [Kal15, §4.1]. O

The proof will occupy this subsection. The crucial step is the reduction of the
proof to the case of semi-simple groups of rank 1.

Let G 1, be the subgroup of G generated by the root subgroups for the roots «
and —o. It is a semi-simple group of absolute rank 1 and is defined over Fl,,.
Its Lie-algebra is g+ = g—a ® Sa @ go, Where s, is the 1-dimensional subspace
of g spanned by the coroot H,. Let S, C G, be the maximal torus whose Lie-
algebra is s, . It is a 1-dimensional anisotropic torus defined over F, and split
over F,,. Let x4, € B (Giq, Fi,) be the unique point in A®d(S,, F, ) e (we
are using here again [Pra01]).

Lemma 4.5.2. The filtrations go(Fo) N §(Fa)z,r and go(Fo) N g+a(Fa)z, » are
equal. O

Proof. Since E/F, is tame we have g(Fo)zr = §(E)s,r Ng(F,) forall r € R,
and the same is true for g4,. We may thus extend scalars to F for the com-
parison of the filtrations. Consider the root datum RD¢ := (T, {Us}gecr(r,c:))
in the sense of [BT72, §6.1.1], where we have omitted the data Mg from the
notation because they are redundant in this case, see [BT84, §4.1.19(i)]. The
point x € B*Y(G,F) C B®(G, E) gives a valuation 9, of RD¢, consisting
of functions ¥, 5 : Ug(E) — R U {oo}, one for each 8 € R(T,G), satisfying
[BT72, Definition 6.2.1]. On the group G, we have the root datum RD¢, =
(Sa, {Us}p=+a) and it is easy to see that the functions {14 o, %y —o } satisfy the
conditions of [BT72, Definition 6.2.1] and hence form a valuation of RD¢, ,
which we shall call ¢, +,. We claim that this valuation corresponds to a point
in A4(S,, F) C B*Y(Gi,, F). For this we must show that 1, 1, is equipol-
lent to a Chevalley valuation of RDg,, [BT84, §4.2.1]. This follows from the
fact that 1, is equipollent to a Chevalley valuation of RD¢. Indeed, the lat-
ter statement means by definition that there exists a system of isomorphisms
(vg : Go — Up)per(r,) and an element v € X, (T,q) ® R with the following
properties:
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1. For all 8 € R(T,G) we have [dzs(1),dx_5(1)] = Hg in g;

2. Forall 5,7 € R(T,G) with 5 + v € R(T, G) there exists €5, € {+1} with
[dxg(1l),dz,(1)] = €3, (rs,y +1)dzsi~ (1), where rg , is the largest integer
such thaty — 8 € R(T, G);

3. Forall 8 € R(T,G) and t € E we have 9, g(zg(t)) = ord(t) + (5, v).

Clearly then the system of isomorphisms (zg)g=+~ and the valuation ¢, +,
satisfy the same properties (the second being vacuous). We only need to show
that in the third property we can replace v € X.(T,q) ® R with some vy, €
X.(S4) ®R. For this, we observe that the surjection X*(Toq) ® R — X*(S,) @R
induced by the inclusion S, C T,4 has a natural section, sending the im-
age of o under this surjection back to «. This section is dual to a surjection
X:(Tha) ® R = X.(S4) ® R and we let v, be the image of v under this sur-
jection. Then by definition (o, v) = (@, v14). This proves that ¢, 1, is equipol-
lent to a Chevalley valuation of RD¢_, and thus corresponds to a point in
Ared(Sa, E). Finally, because the point z, and hence the valuation #,, are fixed
by I', and in particular by I'y,,, the valuation ¢, 1., and hence the correspond-
ing point in Ad(S,, E), are also fixed by I' 1. The torus S, being anisotropic
over Fi,, the only point in Aed(S,, B)l'+ is ., and this implies that the
point corresponding to 1, + is none other than x,. |

According to this lemma, we can replace G by G1,, T by Sy, and = by x4, in
the computation of ord, («). At the same time, it follows directly from the defi-
nition that we can make the same replacement in the computation of f(c ().
This reduces the proof to the case when the group G is semi-simple of absolute
rank 1. Such a group is a (necessarily inner) form of either SL, or PGL;. Nei-
ther ord,. () nor f(q 1) () is affected by passing to an isogenous group, so we
may assume that G is an inner form of SL,. Then we have to contend with four
cases — G is either split or not, and S is either unramified or not. Rather than
going through all four cases by hand, we will use the following lemma, which
reduces to the cases where G = SL;. We formulate it in general, as we believe
this makes the proof more transparent.

Lemma 4.5.3. Let { : G — G’ be an inner twist and S C G a tame elliptic
maximal torus. Assume that the restriction of £ to S is defined over F', and let
S :=¢(S5) and o = {(a). Then Proposition 4.5.1 is true for (G, S, «) if and only
if it is true for (G’, 5", o). O

Proof. Let again E/F be the tame finite Galois extension splitting S. Let = and
z’ be the unique I'-fixed points in the reduced apartments of S and S’ over
E. Then ¢ : G — G’ is an isomorphism defined over E that restricts to an
isomorphism S — S’ defined over F. We will need to control three parameters:
The failure of £ to send z to 2/, the failure of the isomorphism g, — g, induced
by £ to descend to Fi,, and the possible inequality of f(¢ s)(a) and fgr /().

By assumption for any o € I there is t/, € S,q such that {7 1o(€) = Ad(t)).
Thent, € Z(T', Saq). According to [Ste65, Theorem 1.9] the cohomology group
H'(I, S,q) vanishes and hence there exist t, € Z!(T'/I, Sad(F“)) and t € S.q SO
that t’ =t,-t-o(t). Replacing ¢ by £ o Ad(t) we obtain £ 1o (£) = Ad(¢,).

We have the isomorphism ¢ : A™4(S, E) — A™4(S' E). Letv € X, (S,q) ® R be
the element satisfying {(x + v) = 2’. Then the isomorphism g, (E) — g¢.,(E)
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induced by ¢ restricts for all € R to an isomorphism

5 : ga(E):r+v,r — g/a’(E>:L”,r'

This isomorphism is not necessarily equivariant for the action of I',,, but rather
satisfies 0(£(X)) = £({a, ty)o (X)) for X € go(F) and o € T',. Now 0 — (a, t,)
is the image of ¢, under

ZHT/1,S3a(F)) =% 21 (Ta/Ta, Saa(FY)) = 7' (Ta/Ta Fi¥),
where FY denotes the fixed field of I, in F**. Hilbert’s theorem 90 implies
that this cocycle takes values not just in F»*, but in OXZ;. The vanishing of
HY(Ty/1,, Or.) implies that there exists u € O, such that the modified iso-
morphism
w € ga(E)ator = Gor (B)arr

is I'p-equivariant, and hence descends to an isomorphism

goz(Fa)w,r—(a,v) = ga(Fa)z+v,r — gg/(Fa)z’,r-

This implies ord, (a) + (@, v) = ord, (). In order to prove the lemma we must
now compute (o, v) and relate it to the invariant f(g g ().

The isomorphism ¢ : A™4(S, E) — A™4(S’, E) is not necessarily I'-equivariant.
Rather, it satisfies ¢ "1o(¢) = v(t,), where v(t,) € X,(S.q) ® R is characterized
by (8, v(ts)) = —ord(8(t,)) forall B € R(S,G). Applying o € I to the equation
&(z+v) = 2’ we obtain v—o(v) = v(t,) and hence —ord(a(t,)) = (@, v—0c(v)) =
(a— 07 (a),v). Choosing o € 'y, \I', we then obtain («, v) = —Sord(a(t,)).
We now use that o — «(t,) is the image of ¢, under

ZMNU/1, Saa(F) =5 2D/ Tza, Saa(Fia)) = 2 (D /e, Sa(FL,)),
where S, is the 1-dimensional anisotropic torus defined over Fly, and split
over F, and F}, denotes fixed subfield in F* of I1,. We have S,(F},) =
Sa(Fl)lxe/la.

Now we distinguish two cases. If « is ramified, then I.,/I, is of order 2
and S, (FY)"=«/I= is the kernel of the norm F* — F{*. It follows that
ord(a(ty)) = 0. If o is unramified, then I1,/I, = {1} and S,(F¥,) = F¥*.

The inflation map H'(T'+4/Ta, Sa(Fa)) = H'(T+a, Sa(F?)), which is an iso-
morphism, factors as

H'(T40/Ta; Sa(Fy)) = H Tta/Ita, Sa(FL,)) — H (T 4a, Sa(F*))

and both arrows are isomorphisms. The value at o € Iy, \T', of any cobound-
ary in the middle term is of the form zo(z) for some » € F})) = F** and
its valuation belongs to 2ord(F.‘). This implies that ord(a(t,)) € ord(c,) +
2ord(F)) for any 1-cocycle ¢ € Z'(Ti0/I1a, Sa(FY,)) that is cohomologous
to a(te). But if we take co € Z'(I'1o/T, So(Fy)), then [Kall5, Prop. 4.3(1)]
implies that —1ord(c,) € ord(FY) if and only if fig s)(e) = far,s/(e/). We
conclude

(0,0) sord(F}) ~ord(F)), if ovis unramified and f(g s)(a) # for s ()
a? .

ord(FY), otherwise. [
This lemma reduces the proof of Proposition 4.5.1 to the case G = SL; and S an

anisotropic maximal torus. Moreover, we are free to change S within its stable
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class if we like. This case can be treated by a simple calculation as follows. We
have F'y, = F and F,/Fy, is a quadratic extension that may be ramified or
unramified. Let o € ', /T, denote the non-trivial element and fix an element
a € F} satisfying a + o(a) = 0. Set

h= [1 12} € G(F,).
a 3
If T C G is the split diagonal torus, then hTh~! is stably conjugate to S, so we
may assume that it is equal to S. It will be convenient to change coordinates by
Ad(h) and represent S as the diagonal torus in G. This comes at the expense of
replacing the usual action o of o on G(F,), given by applying o to the entries
of the matrix representing a given element of G(F, ), by the more complicated
action given by Ad(h™'o(h)) x 0. A simple computation reveals

h=lo(h) = {ga a(ﬂ .

According to [DS18, Corollary 3.1.8] we have ord, (o) = —ord, (—«) and so we
are free to choose either root of S as the one we study. We take the root « whose
root subspace is spanned by the element

0 1
o= o o)

Then we see Ad(h ™o (h)) % 0g(Xa) = —4a*X_,, and this implies f( g)(a) =
+1. In order to understand the filtration g (F ) » we must compute the point
x € A*4(S, F,)T. Let o € A™4(S, F,,) be the point given by the pinning X, and
letv € X, (S) @R be the element satisfying o+ v = z. Applying Ad(h~ o (h)) %
o¢ to this equation we see that 2v is equal to the translation on A™4(S, F,)
effected by the action of a¥(a™!), and hence

(a,v) = ord(a).

It follows that go (F)z,r = 8a(Fa)o,r—ord(a)- Since the filtration g, (F4 )., has a
break at zero and ord(a) € ord(F) we conclude that the filtration g, (Fu)z.»
also has a break at zero. The proof of Proposition 4.5.1 is complete.

4.6 Definition of A3

In this subsection F' is a local field of odd residual characteristic. In [LS87, §3.3]
Langlands and Shelstad define the term A7, which is a component of their
transfer factor. It is associated to a connected reductive group defined over
a local field, an endoscopic group, a maximal torus that is common to both
groups, as well as a-data and x-data. In this subsection, we will introduce a
slight variation of Ay, which we will call AE}I}S. It will be associated to a con-
nected reductive group defined over a local field, a maximal torus thereof, as
well as a-data and y-data. We think of A% as an absolute version of Az, in the
precise sense that the original term Aj; can be written as a quotient with nu-
merator A3 for the reductive group and denominator A3 for its endoscopic

group.

We begin by recalling the notions of a-data and x-data from [LS87, §2]. A set
of a-data consists of elements a, € F.S, one for each o € R(T, G), having the
properties a_, = —a, and a,(,) = 0(aq) for o € T'. A set of y-data consists
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of characters x, : F; — C*, one for each o € R(T, ), having the properties
Xea = Xab Xo(a) = Xa © o1 for each o € T, and Xa‘FiX = Ko Whenever

a € R(T,G)sym and k4 : F — {#£1} is the quadratic character associated to
the quadratic extension F,, /Fly,.

Sets of a-data and x-data always exist, but there are rarely unique choices for
them without further structure. It is clear from the definitions that one can
choose a, = 1 and x, = 1 for asymmetric o € R(T,G), although it is some-
times convenient not to do so. When « is symmetric and unramified, the char-
acter k, is unramified and there is a distinguished choice for x., namely the
unramified quadratic character of ;. When « is symmetric and ramified, the
character «, is ramified and the unramified quadratic character of F* is not
a valid choice for x,. In this situation, under the assumption p # 2, there are
exactly two tamely-ramified characters of F) that extend k.. Their quotient
(in either order) is the unramified quadratic character of F)', and each of the
two tame choices for x,, is characterized by the fact that its restriction to O;ﬂ
lifts the quadratic character of kj, and its value on any uniformizer belongs
to {7, —i} C C* if —1is not a square in F, and to {+1,—1} C C* otherwise.
Regardless of the ramification of F,,/F.,, it is often useful to allow X, to have
arbitrary depth.

Definition 4.6.1. We will call a set of x-data minimally ramified, if x, = 1 for
asymmetric o, X, is unramified for unramified symmetric o, and x,, is tamely
ramified for ramified symmetric o. O

Asjust discussed, different choices of minimally ramified y-data can differ only
at ramified symmetric roots o, and only by the unramified sign character of F.

Definition 4.6.2. Given sets of a-data and y-data, we define

0)-1),

oy

AFla] i T(F) 5T, 4o ] xa(
«€T\R(T,G)
a(y)#1

O

We will now recall some results from [LS87] about how this term changes when
the a-data or x-data are changed. First, the a-data (a. )~ can only be replaced by
(ba - aa)a, Where b, € F for a € R(T, G) satisfies b_,, = by and o(ba) = by ()
forallo €T.

Lemma 4.6.3.

AP, X)() = APl () J] salba):
€M\ R(T,G)sym
a(y)#1
U
Proof. Immediate. u
Definition 4.6.4. A set of (-data () for R(T,G) consists of a character (, :
FX — C* for each a € R(T,G) subject to the conditions (_, = (!, (oo =
(o 00 1 forall o € T and, in the case of symmetric o, Ca|Fix =1. O
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It is immediate that if (x4 )o and (X/,). are two sets of x-data, then x., = xa (o,
where ((4)q is a (uniquely determined) set of (-data.

Let ((4)o be a set of ¢-data. For each orbit O of I" x {£1} in R(T, G) we define
a character (o : T(F) — C* as follows. If O consists of two distinct I'-orbits,
choose a € O and let (o = (4 0. If O consists of a single I'-orbit, choose o € O
and let (o be the composition

T(F) -2 FL & FX/FX, = CX,

where F} = Ker(Np, /p,, : F} — FZ,) and the middle isomorphism sends
r € Ftox/r(z) € F!, with 7 € 'L, /T, being the non-trivial element. In
both cases it is straightforward to check that (o depends only on O and not on
the choice of a.

Definition 4.6.5. Given (-data (()q let (r : T(F) — C* be the product of
the characters (o, as O runs over the set of orbits in R(7T, G) for the action of
' x {£1}. O

Lemma 4.6.6.
AFla, ¢ - X(7) = AFFla, XI(7) - Cr ()
O

Proof. The argument for this constitutes the proofs of [LS87, Lemma 3.3.A,
Lemma 3.3.D]. |

Lemma 4.6.7. Let v € T([F')wg be an element having a decomposition 7 =
Y<r - Vor With yop, v>, € T(F') satisfying ord(a(v<,) —1) < r and ord(a(y>,) —
1) > rforall « € R(T,G). Assume that the x-data is tamely ramified, i.e.
Xal(rx),, = 1. Then

AT a, X)) = AT a, X (v<r) - AT [a, X](721),

where J = Cent(y<,,G)° and the superscripts indicate the group relative to
which the factor A3 is taken. O

Proof. We need to show that

QAo

(a(’y) - 1) Xo (20=220) 0 ifaye,) #1,
Xo | —— ] = ey — .

Xa (’yi(x) - ) 1f0‘(’7<r) =1L
The case a(y<,) = 1is obvious. Assume now a(v<,) # 1. Write a(y<,) = 1+ 2
and a(y>,) = 1+y withord(z) < rand ord(y) > r. Then a(y)—1 = (x+1)(y+
1)—1==z(1+y+yx~').Since 1 +y+yz~! € [F}]o4 the proof is complete. MW

We now introduce a weaker variant of the notion of a-data that can be used in
conjunction with tame y-data and is sometimes more convenient.

Definition 4.6.8. A mod-a-data {(r,,a,)} is an assignment to each o € R(T, G)
of a real number r, € R and a non-zero element a,, € [F,]:,/[Fa]r.+ such that
Toa =Ta = T—q, Goa = 0(Gq), and G_, = —aq, forany o € I, O
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Given tame x-data and mod-a-data, we can choose an arbitrary lift a, € [Fu ],
for each a,, and consider the function A3%[a, x] (even if the set of lifts a,, does
not constitute a-data). This function is independent of the chosen lifts, because
another choice would have the form a,, + a/,, where a,, € [F,],,+. Now a, +
al, = anb,, where b, = 1 + % belongs to [F|o+, and X, restricts trivially to
this group. We will denote the resulting function by A3%[a, y].

4.7 A formula for €sym ram - €

In this subsection F' is a local field of odd residual characteristic. We will use
the results of Subsections 4.5 and 4.6 to give a formula for the product of the
two roots of unity esymram(7%,) - €(vZ,.).

Recall that we have fixed an additive character A : F' — C* that is non-trivial
on O and trivial on pr. Recall also that the definition of the roots of unity
depends on a tame maximal torus T of G4~ containing vZ,. We now choose
a-data and x-data for R(T,G) as follows. If a € R(T,G% ') or a(v%,) = 1, we
leave the choice unspecified, as these roots will not contribute to the formula.
For any other € R(T,G) we set aq = (H,, X);_,), and we take x, to be the
trivial character if « is asymmetric and the unramified quadratic character if
a is symmetric and unramified. If « is symmetric and ramified, we choose
among the two possible tamely-ramified characters by demanding

Xa(2aa) = fie,r) () AR,y (Ao trp, /F), (4.7.1)

where fc () is the toral invariant [Kall5, §4.1] and Ap,_/p, , is Langlands’
constant [Lan, Theorem 2.1], [BHO5b, §1.5]. We recall here that for any non-
trivial character A’ : ', — C* the constant Ap_/r,  (A’) can be expressed as
e(1,sgn, \'), where sgn : T'p, , — {£1} is the quadratic character with kernel
I'r,, and we have taken its root number at s = 1/2 with respect to Langlands’
normalization [Tat79, (3.6.4)].

To see that this specifies a valid x-data, note that since a, € F. is an element of
trace zero, we have ord(a,) € ord(F) \ ord(F7,). Thus the value of x,(2a4)
distinguishes the two possible choices of x,. Since the square of the right hand
side of (4.7.1) equals ko (—1), we may indeed chose x, to satisfy (4.7.1). Finally,
it is enough to check that x,o © 0 = X, on the element 2a,, where it is obvious.

Note that the choice of x, depends only on G, T, and ¢4—1, but not on A,
because the dependence of the right side of (4.7.1) on A is canceled by the de-
pendence of a, on A, as one sees using [Tat79, (3.6.6)].

The main step in our reinterpretation of the character formula is the following
expression for the product esym ram (7%, )€(7Z,.).

Lemma 4.7.1. The product €sym ram(7Z,.)€(7Z,.) is equal to

II  fen@re p.(Aotrp,, /5) " Xa (
QGF\(RWZr)sym

a(vL,) - 1) .

Aoy
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Proof. According to (4.3.2) and (4.3.4) we can write egymram(7%,)€(7%,) as the
product of

I1 sgnp, (Gaa)(—1)/ 6 sgn,. (t)

aeF\(R(Tford g )/Z)Symm,ram
v<,

with

II (=1).

O‘EF\(R(rford g )/2 )sym,unram
<r

We consider the contribution of an individual symmetric @ € R,s . If a is
unramified, then x, is unramified and ord((Hn, X_,)) = —r € ord(F}), so
we have

N ad) -1 = (—1)c=(ord(a(vZ,)=1)=r)
(Ho, Xj_y) ’

while Ap, /g, (Aotrp, /p) = —1 according to [BHO5b, Lemma 1.5]. The total
contribution of « to the right hand side of the equation of the lemma is thus

fiam(a) - (~1)catordltE)=D=r+1,

According to Proposition 4.5.1 this expression is equal to —1 precisely when
a € R(T_Ordwg y/2- The contributions of « to both sides of the equation of the
<r

lemma are thus equal.

Now let a be ramified. Since a(v%,) € F is an element whose F,, /F1,-norm
is trivial, ord(«(v%,) — 1) is either zero or belongs to ord(F) \ ord(Fy,). At
the same time, (H,, X ;) € F.S is an element whose F,,/F.,-trace vanishes,
so —r = ord((Hqa, X_;)) € ord(F}) ~\ ord(Fy,). It follows from Proposition
45.1 that o € R(r,ord72 y/2 if and only if ord(a(7Z,) — 1) # 0. Assume first

that this is the case. Then « contributes to both sides of the equation of the
lemma. For the contribution of the left side, we note that by the theorem of
Hasse-Davenport the term (—1)/« 1@/« is equal to the Gauss sum

q_fa/Q Z A(trkF(1 /kr (xQ))
z€kF,

Since the character Ao trp, /p : Fiin — C* induces on kr, = kr,, the char-
acter z — A(try, sk, (e+a)), the latter Gauss sum is equal by [BHO5b, Lemma
1.5] to '

ApyFag(Notrp, /p) - Kaleta) = Ap, /., (Ao ’UL‘FM/F)_1 - Ka(—€+a).

Next, using that x,, is trivial on Np_/p, -norms and that (H,, Xj ;) € F, is
an element whose F,, /F,-trace vanishes, we see

o)1)

sgnk;a (ta) = Xalta) = Kaleta)ka(—1)Xa ((HQ,XJ_Q

These computations and the fact that f( r)(a) = sgny, (G+a) imply that the
contributions of « to the both sides of the equation of the lemma agree.

Assume now that ord(a(v%,) — 1) is zero, so that & ¢ R(,_orq_, )/2 and thus «
T<r

does not contribute to the left side of the equation of the lemma. To compute
its contribution to the right side, we first notice that «(7%,) € —1 + pp, and
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hence a(7%,) — 1 = (—2)u for some u € 1+ pp, . Since u is in the kernel of x,
and trp, /p, . (aq) = 0 we see

a(v,) -1 -
Xa (j = Xa (—2aa1) = Xa(2a4),
and according to (4.7.1) the contribution of « to the right side of the equation
of the lemma is 1. [ |

Using Kottwitz’s result [Kall5, §4.5] on the relationship between e-factors and
Weil constants, as well as the factor A% defined in §4.6, we can restate this
lemma as follows. Let Tz« denote the minimal Levi subgroup of the quasi-
split inner form of G¢, and let T';« denote the minimal Levi subgroup of the
quasi-split inner form of J<.

Corollary 4.7.2. The product €sym ram (7%, )€(7%,.) is equal to

e(Ghe(JY)  en(X*(Tga)e = X*(Tya)e,A) AT [a,x)(v%,)
(G4 Ne(J71) e (X*(Tga-1)c — X*(Tya-1)c, A) AT [a, 4] (72,)

O

Proof. This follows immediately from [Kall5, Corollary 4.11] and the additivity
of €7 in degree zero. Note that there is a typo in loc.cit: trf, /r,, should read
trr, . /p. Notealso that J? = Ad(g~')J%and J?~! = Ad(g~')J? ! as reductive
groups over I |

We remark here that this expression does not depend on the choice of A, be-
cause both ¢;, and the a-data a, = (H,, Xj_;) depend on A in a parallel way.
Thus we may from now on use an arbitrary additive character A, i.e. remove
the condition on its depth.

A slight variant of this corollary will also be useful later when we study L-
packets. It involves the following modified choice of x-data, where we use

X;(QGQ) = AFD(/Fia (AOtI'FiQ/F) (472)

instead of (4.7.1). Then x/, is a valid set of y-data for the same reasons that
Xo Was. Again x/, is independent of A. The usefulness of x/, comes from the
fact that it depends only on the torus 7" and the character ¢4_1, but not on the
group G in the sense that it is insensitive to replacing T' by a stably conjugate
torus in an inner form of G. The relationship between the two x-data can be
expressed by
Xo(2) = Xa(T)éa(),

where e, : F — C* is the trivial character unless « is symmetric and ramified,
in which case it is given by €,(z) = f(g1)(a)®*4®). The collection (4 ), is a
set of (-data for R(T, G) in the sense of Definition 4.6.4.

Definition 4.7.3. Let €fram : T(F) — C* be the character of Definition 4.6.5
corresponding to this (-data. O

This character is similar, but not the same as, the one introduced in [Kall5,
§4.6], the difference being that in loc. cit. €, was assigned non-trivial even
when o was symmetric and unramified. However, due to [Kall5, Proposition
4.4] both definitions yield the same result in the case of epipelagic representa-
tions.
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Lemma 4.7.4. For all v € T(F) we have
6f,rarn(’Y) = H f(G,T) (04)

a€R(T,G)symram/T

a(y)#1
ord(a(y)—1)=0

Proof. Using that e, is trivial unless « is symmetric and ramified we have

€fram(7) = H €o (6a)_1»
a€R(T,G)symram /T
where 6% € F is any element satisfying §%/0(6%) = a(y) for the non-trivial
elemento € I'y,/T,. If ord(a(y) — 1) > 0 we have ord(6* — 1) > 0 and hence
€a(0%) = 1. If ord(a(y) — 1) = 0 then the fact that « is symmetric and ramified
implies a(7y) € —1+pp,. Writing a(y) = —1-u withu € 1+pr, we may choose
0% = w-vwithv € 1+ pp, satisfying v/o(v) = vwand w € F a uniformizer
with o(w) = —w. Then €,(6%) = f(q,r)(). |

Fact 4.7.5. The character € yam is N(T, G)(F')-invariant. O

Proof. This follows from the N (7', G)(F)-invariance of the function fig 7). W
Corollary 4.7.6. The product esym ram(7%,)€(7%,.) is equal to

Gram (VLGN e (X*(Tga)e - X* (D)) AB 0, v)(12,)

G (V2 )e(GA)e(JA71) e (X* (Tga-1)e — X*(Tya-1)c, A) ATSC g /) (72,)
[

Before going further, it will be useful to express the a-data a, = (Hq, X ) in
a way that does not reference the structure of the p-adic group G. In fact, since
we are using tame y-data, it will be enough to specify mod-a-data. For this, we
consider the character

FX—=C* zw q&d_l(NFa/F(av(x))),

where Ng,_ ,p : T(F,) — T(F) is the norm map. According to Lemma 3.6.8,
restriction to [F)], provides a non-trivial character [F.}],/[F)].+ — C*. At
the same time, we have the character

AOtI'Fa/F . F, —)(CX,
which factors through [F,]o/[Fa]o+. We have the isomorphism
X = X +1: [Folo/[Folrs = [FS 1/ [Falr+,s

which is a truncated version of the exponential map. The equation
¢a—1(Nr,/r(@”(X +1))) = Altrg, /r(@a X)), (4.7.3)
characterizes the image a, of (Hu, X 1) in [Fo]—r/[Fa]—r+-

Fact 4.7.7. The a-data a, = (H,, X ), and hence the x-data X/, are invariant
under the action of Q(T, G4~1)(F). O

Proof. For the a-data this follows from the fact that X ; belongs to the dual

Lie algebra of the center of G?~1. For the y-data this follows from its definition
(4.7.2). |
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4.8 The characters of toral supercuspidal representations

In this subsection F is a local field of odd residual characteristic that is not a
bad prime for G.

The supercuspidal representation = is called toral if it arises from a Yu-datum
of the form ((9,G), 1, (¢,1)), where G~! = S is an elliptic maximal torus and
¢ = ¢q—1 is a generic character of S(F') of positive depth. Let r be the depth
of ¢ and let X* € Lie"(S)(F)_, be a generic element realizing ¢|s(r),. In
this special case, the Adler-DeBacker-Spice character formula (4.3.1) applies
to all regular semi-simple v = v<, - 7>, € G(F), because the compactness
assumption is automatically satisfied. Moreover, the formula of Corollary 4.7.6
simplifies, because we have J¢~1 = G4=! = S. Thus we obtain

Corollary 4.8.1. The product €sym ram(7%,)€(7Z,.) is equal to

€f,ram(727')e(G)e(J)€L (X* (TG)(C - X" (TJ)(C7 A) : A?}:}S [(Z, X/] (’Yi,)

Combining this with (4.3.1), and setting § = ¢4_1 : S(F) — C*, we arrive at

Corollary 4.8.2. The value of the normalized character ¢, at the element v =
V<r - Y>r is given as the product

e(Gle(N)er(X*(Ta)e = X™(Tr)e, A)

> AT [0, X )(VE e ram (Y ) E ™ (1L,)0(72, )T o x - (108 (751)
gEJ(F)\G(F)/S(F)
v ,.€S(F)
O

4.9 Character values of regular supercuspidal representations at shallow
elements: depth zero

In this subsection F' is a local field of odd residual characteristic.

Lemma 4.9.1. Let S be a maximally unramified maximal torus of G and let T’
be a minimal Levi subgroup of the quasi-split inner form of G. If A : F — C*
is a character of depth zero, then

(X (S)e = X*(T)e, A) = (=)',

where r5 and rr are the split ranks of S and T respectively. O

Proof. By Lemma 3.2.2 the torus S transfers to the quasi-split inner form of G.
The statement we are proving is invariant under replacing G by its quasi-split
inner form, so we may now assume G is quasi-split. We may also assume that
G is simply connected. Let o € A™4(T, F) be the superspecial vertex associated
to a I'-invariant pinning. By Lemma 3.4.12 we may further replace S by a stable
conjugate so that o is the unique point in B4 (G, F)NA™4(S, F*), and moreover
so that S and T are conjugate under G(F*"), .
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We will use Kottwitz’s result [Kall5, Corollary 4.11] to compute the left hand
side. It is the formula

(X (S)e =X (M, M) = [ fies(@Ar pp.(Motrp,, p).
QER(S,G)sym/T

Here f(,s) is the toral invariant of S C G [Kall5, §4], and g, /r, , is the Lang-
lands constant [BHO5b, §1.5]. Since S is maximally unramified, each quadratic
extension F,, /F4, is unramified, so by [BH05b, Lemma 1.5] the corresponding
Langlands constant is —1. Moreover, according to Proposition 4.5.1, f(c s)(a) =
+1 if and only if 0 € ord,(a). According to [DS18, Remark 3.1.4] we may ex-
tend scalars to F* before computing ord,(«). Since S and T are conjugate
under G(F*),,o we may thus replace S by T in the computation of ord,(«).

We are now interested in the question of whether there is an element of g(E),
whose valuation with respect to o is zero, and which is fixed by the action of
Gal(E/F}'), where E/F*" is the splitting field of T. Consider the simple compo-
nent of the root system R(T, G) to which «a belongs. Then Gal(E/F}) is a cyclic
group preserving this component and acting on it by a pinned automorphism
that fixes the root «. Let’s call this automorphism 6. It preserves the line g, (F).
The fixed pinning provides a pair of elements {X, —X} C g,(E). Both of these
elements have o-valuation equal to 0. Now ¢(X) = ¢ - X, where ( € F** is
a root of unity of order divisible by the order of . A direct examination of
the simple root systems shows that {( = 1 unless « belongs to a simple compo-
nent of type Az, and 6 is the non-trivial pinned automorphism, in which case
¢ = —1. In the case ( = 1 we have X € g,(FY) and hence 0 € ord,(«). In the
case ( = —1, let w € E be a square root of a uniformizing element of /'*, then
wX € go(FY) and hence 0 ¢ ord,(«).

Returning to the original torus S, we can interpret this as follows. Let S" C S
be the maximal unramified subtorus. Let R(S’,G) be the corresponding rel-
ative root system. It need not be reduced. The fibers of the map R(S,G) —
R(S’,G) induced by the inclusion S’ — S are precisely the inertial orbits in
R(S,G). This map then sets up a bijection between the I'-orbits in R(S,G)
and the Frobenius-orbits in R(S’,G) and this bijection restricts to a bijection
between the symmetric orbits. A root a € R(S, G) restricts to a divisible root
in R(S',G) if and only if 0 ¢ ord,(«). If such a root is symmetric, we have
fa.s)(@)Ap, /p. (Aotrp, /r) = 1, because both factors are equal to —1. For
any other symmetric root, we have f(q s)(a)\p, /p, (Ao trp, /rp) = —1, be-
cause the first factor is equal to 1 and the second is equal to —1. With this,
Kottwitz’s formula above becomes

e(X*(S)c — X*(T)c, A) = (—1)#F oo /Fr

where the subscript “nd” denotes the set of non-divisible roots. On the other
hand, we have

(—1)7s =77 = (—)dim(X (S)e) ) —dim((X (T)el ) (g )dim{X " (S)elfF—dim[ X (T)el]
Since S is maximally unramified, the I-modules X, (S)c and X..(T)¢ are equal.
Moreover, the action of Frobenius on [X.(S)c]r is the twist of the action of
Frobenius on [ X, (T')c]r by an unramified 1-cocycle w,. Letting V' = [ X, (T)c]1,

¢ be the automorphism of V' by which Frobenius acts, and w € Q(T, G) the
value of w, at the Frobenius element, we get

(=1)s—T = (_l)dimvd’fdimV“"b .
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Both ¢ and w are of finite order and preserve a Q-structure on V/, so their eigen-
values are either +1, —1, or pairs of conjugate non-real roots of unity. From this
we see

(=1)"s7"" = det(¢|V) 'det(weg|V) = det(w|V).

Note that V is the vector space in which the root system R(S’, G)nq resides, and
in fact is spanned by that root system, because X *(T')¢ is spanned by R(T, G).
Thus det(w|V) = (—1)"®). According to the argument of [Kal11, Lemma 4.0.7],
(—1)") is equal to (—1)V, where N is the number of symmetric Frobenius
orbits in R(S’, G)nqg- |

For a maximally unramified maximal torus S C G all symmetric roots in
R(S, G) are unramified. We can thus fix unramified y-data for R(S, G) and we
can fix mod-a-data consisting of units, i.e. non-zero elements of [Fy,]o/[Fa]o+-

Proposition 4.9.2. Let S C G be a maximally unramified maximal torus, 6 :
S(F') — C* aregular depth-zero character, and (g ¢ the corresponding regu-
lar depth-zero supercuspidal representation as in §3.4. If v € G(F') is a regular
topologically semi-simple element belonging to an elliptic maximally unrami-
fied maximal torus, then the character of m(g ¢y at v is zero, unless v is (conju-
gate to) an element of S(F'), in which case it is given by

e(@)e(X*(T)e = X*(S)e, A) > AFPlE, X)),
weN(8,G)(F)/S(F)

where x is unramified y-data and a is any mod-a-data consisting of units.

Proof. Recall from Lemma 3.4.20 that 7(g4) = c-Indg((f:))G( Fao

z € B®4(G, F) is the point associated to the torus S. We will perform this in-
duction in stages, where we let & = f (g 9) be the induction of (g g) to G(F),.
Since S(F)G(F)qg,0 is a subgroup of G(F'), of finite index, & is still finite di-
mensional. We compute the character of (g 4) in terms of that of £ by means
of Harish-Chandra’s integral character formula [DR09, §9.1] and we obtain

deg(m; dg/dz) / / . gk
— = i dkdg/dz
deg(#) G(F)/Z(F) JK X (" )dkdg/

where K is any compact open subgroup of G(F) with Haar measure dk of
normalized volume 1, Z is the center of G, and ¥, is the extension by zero of
the character function x, of . Just as in §4.4 we can argue that the function g —
X (9%7) is compactly supported modulo center and thus remove the integral
over K, which leads us to

deg(m; dg/dz) / . g
— = 2 & dg/dz
deg(r) G(F)/Z(F)X (7)dg/

The integrand is zero unless gz, = x, where z, is the unique fixed point of
in B4(G, F). Thus if v is not conjugate to an element of G(F), the character
is zero. Assume now v € G(F'),. Then the domain of integration reduces to
G(F)z/Z(F) and since the integrand is G(F'),-invariant we obtain

vol(G(F)+/Z(F); dg/dz)deg(r; dg/dz)deg(iz) " xx(7),

which is equal to x; (). We compute this using the Frobenius formula and
obtain

K(s,9) and that

tr(k(s.0) (9~ "79)).
(9)€EG(F) s /[G(F)a,0-S(F)]
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Note that G(F).,0 - S(F) is a normal subgroup of G(F'),, so the element gyg~!

lies in G(F'); 0 - S(F) and is regular topologically semi-simple. Corollary 3.4.26
implies that the summand tr(ss,9) (9~ '7g)) is zero unless g~ 'vg is G(F), o-
conjugate to an element of S(F'). If v is not G(F')-conjugate to an element of
S(F') then all summands in the sum are zero and hence the vanishing statement
of the proposition is proved.

Assume now that v € S(F') and consider again the above formula. Let [g] €
G(F)g/|G(F)z0 - S(F)] be a coset giving a non-zero contribution to the sum.
As we have just argued, this coset can be represented by g € G(F), such that
g~ vg € S(F). Since v is regular semi-simple we see g € N(S,G)(F). Thus [g]
lies in the subset N (S, G)(F)/[N(S,G(F)z0) - S(F)| of G(F)y/|G(F)z,0-S(F)].
Lemma 3.4.10 and Corollary 3.4.26 imply that the character of (g4 at v is
given by
G G > 0(v*),
WEN(S,G)(F)/S(F)

where again 7" is the minimal Levi subgroup of the quasi-split inner form
of G. We have (—1)"77"s = ¢(X*(S)c — X*(T)c,A) from Lemma 4.9.1 and
(—1)"¢~"T = ¢(G) by [Kot83]. It remains to check that A%%[a, x](v¥) = 1.
The F,,/Fy,norm of a(y") € F; is equal to 1, so a(y*) € Op, . Moreover,
since v is regular and topologically semi-simple, a(y") ¢ 1 4 pr,, and there-
fore a(y") — 1 € Oy, . Since the mod-a-data consists of units and the x-data is
unramified, the claim follows. [ |

Remark 4.9.3. We close this subsection with a remark about the characters
of extra regular depth-zero supercuspidal representations of groups that split
over F". These are the representations constructed in [DR09, §4.4]. DeBacker
and Reeder compute in [DR09, §9,10,11,12] the characters of these representa-
tions at arbitrary regular semi-simple elements: For an element v € G (F)o
with topological Jordan decomposition v = 5 - 7, the character of 7(gg) is
given by
(=1 > 0(73)i,5 x (10g (7)),
gEJ(F)\G(F)/S(F)
veS(F)

where again J is the connected centralizer of s in G and r¢ denotes the split
rank of the group G. The final paragraph of the preceding proof shows that
this formula is the same as the formula of Corollary 4.8.2. We expect that the
same is true for tamely ramified groups as well. O

4.10 Character values of regular supercuspidal representations at shallow
elements: general depth

In this subsection F' is a local field of odd residual characteristic that is not a
bad prime for G.

Consider a regular supercuspidal representation m(g ). Let G — Gbea z-
extension and let 74 5, be the pull—b~acl< of m(s,9) to G(F). Since the character
function of 7 5 5, is the pull-back to G (F) of the d}aracter function of (g ), we
may assume without loss of generality that G = G.

Let GO C --- C G be the corresponding twisted Levi sequence, (¢_1,. .., ¢4)
a Howe factorization, and (r_1, 79, ..., rq) the sequence of depths of the char-
acters ¢;. Let v € G(F) be regular semi-simple. If S # G° we will call v
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“shallow” if it is a topologically semi-simple element v = vo. If S = G° we will
call v “shallow” if it is topologically semi-simple modulo Z(G)°, although we
believe that in this case it is enough to require v = vy<,.

We will now fix mod-a-data and x-data for R(S,G). We do this successively
for R(S,G)\ R(S,G*~!) as described in §4.7, where i runs from d to 1. We also
need to handle the step i = 0 in the case where G® # S. Let us first focus on i >
0. Fix a character A : F — C* of depth zero. For any a € R(S,G*) \ R(S,G*™1)
the equation

¢i-1(Np, r(a’ (X +1))) = Altrg, /r(3a X)),

in the variable X € [F,],, ,/[Falr, .+ specifies o € [Fol—r, ,/[Fal-r, 1+- In
this way we obtain a set of mod-a-data for R(S, G*) \ R(S,G'~'); it is the same
as the one of (4.7.3). Applying Fact 3.6.4 to the Howe factorization (¢_1, ..., ¢q)
of 0 we see that this equation is equivalent to

O(Nr, r(@’ (X +1))) = Altrp, /p(@aX))- (4.10.1)

We take this as the defining equation for the mod-a-data, as it clearly demon-
strates that this data depends only on ¢ and not on the Howe factorization.
From the mod-a-data we obtain y-data x’ via (4.7.2). Now consider the case
i = 0, which is only relevant when G° # S. We can still take (4.10.1) as the
defining equation for mod-a-data and we obtain a, € [Fulo/[Falo+. On the
other hand, we take x/, to be unramified. This is possible because the action of
inertia preserves a base in R(S, G°) so all symmetric roots are unramified. With
the mod-a-data and x-data fixed this way, we have the following formula.

Corollary 4.10.1. Let v € G(F) be a shallow regular semi-simple element. The
value of the normalized character @ at +y is zero, unless +y is (G(F')-conjugate
to) an element of S(F'), in which case is given by

(@er (X (De=X"(S)e,d) D AR 1(0)efram (7)™ (v)0(*),
weN(S,G)(F)/S(F)

where T is a minimal Levi subgroup in the quasi-split inner form of G. O

Proof. We write (4.4.1) as
(bd('Y) Z 6(Wdfl: Pyg)¢7rd—1 ('Yg)'

9EGL (PG (F) /G~ (F)
IeGIH(F)

Here we use the notation G in place of J¢ for the connected centralizer of ~
in G%, so that we can keep track of the element 7. We have combined all three
roots of unity into the single term ¢(m4_1,79), and we have included m4_; into
the notation of this term. We are now going to unwind the induction inherent
in this formula. To see what is going on we substitute the formula for ¢
and obtain

0a) Y mai1 01 () Y emaa, ) r, L (1),

9EGI(P\G(F) /G~ (F) heGSgH (FI\G™H(F) /G2 (F)
,Ygecd—l(F) ’\/ghEGd72(F)

Td—1

Recall [DS18, Remark 4.3.5] that the term e(74—1,7?) remains unchanged if we
conjugate both ;1 and 79 by an element of G¢(F). If this element happens to
belong to G9=1(F), then m4_; remains unchanged. With this we obtain

33 6a(r M) dac1 (a1, 4 (a2, 7 gy (1),
g h
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where the summation indices are as before, and after re-indexing the sum this
leads to

> ¢a(¥*) a1 (Y)e(ma—1,7°)e(ma—2,7") Py, (V7).
g€ G (FNG(F) /G2 (F)
vIeGIT3(F)
We have used here the equality G4, N G4~! = GZ;, which is implied by the
stronger statement G%, C G*~! coming from the regularity of 7. We do this
inductively, where at the (—1)-stage we apply Proposition 4.9.2 if G° # S, and
obtain the formula

d
) T #:()e(mi ).
9eGL(FI\GY(F)/5(F)i=—1
vIe€S(F)

In particular, we see that the result is zero unless v is G(F')-conjugate to an
element of S(F). We can thus assume that y € S(F) and then G¢ = S, so the
summation index becomes g € N(S,G)(F)/S(F).

We now go into the roots of unity e(m;,v9). Their definition depends on the
choice of a tame maximal torus T containing v9. In the current situation we
have a canonical choice for T, namely 7" = S. We now apply Corollary 4.7.6
using the mod-a-data and x-data fixed in (4.10.1) and (4.7.2). Recalling (3.6.2)
that 6 is the product of all ¢; restricted to S(F') and letting €®™ be the product
of all €™ (m;, —) of (4.3.3), the proof is complete. |

It is noted in [DS18] that the map v — €™ (v) is a character of S(F'). If we let
0’ be the character € ram - €™ - 0, then the character formula takes the form

e(Gler (X (T)e — X*(9)c, A) > AfPla, X130 (7). (410.2)
wEN(S,G)(F)/S(F)

411 Comparison with the characters of real discrete series representations

In this subsection only, we let G be a connected reductive group defined over R
and having a discrete series of representations, or equivalently having elliptic
maximal tori. All elliptic maximal tori in G are conjugate under G(R). Fix one
such S C G. We also fix an element i € C with i = —1.

Let 6 : S(R) — C* be a character. Its differential at 1 is a homomorphism
Lie(S(R)) — C of R-vector spaces and gives rise to a C-linear form Lie(S(R)) ®
C — C. Now Lie(S(R)) ® C = Lie(S(C)) = X.(S)®C and hence df € X*(5)®
C. Since every character of an anisotropic real torus is algebraic, we see that
the image of df in X*(Ss.) ® C, which is the differential of the restriction of 6 to
Ssc(R), lies in the sublattice X*(Ssc) of X*(Ss) ® C. We may thus ask whether
df is dominant for a given choice of positive roots in R(S, G).

The discrete series representations of G(R) are parameterized by pairs (6, p)
(taken up to conjugation by N(S,G)(R)/S(R)) consisting of a character 6 :
S(R) — C* and a choice of positive roots p for R(S, G) for which df is domi-
nant. Given such a pair (6, p) the corresponding representation is characterized
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by the fact that the value of its character on any regular v € S(R) is given by

(")

@) 4111

(=1) > I[1(1—a(y»)-1) D
weN(S,G)(R)/S(R) 45

where ¢(G) is half of the dimension of the symmetric space of G(R).

We now claim that this formula is the same as (4.10.2) specialized to the case
F = R. The latter formula involves a non-trivial character A : R — C*, but
is independent of the choice. We choose here the standard character A(z) =
exp(2miz). It also involves a-data, which is to be computed based on A and 6
according to (4.10.1), namely

0(Ne/r(a” (exp(2)))) = Altre/z(aaz))

for z € C, keeping in mind that all elements of R(S, G) are symmetric, with
F, = Cand Fi, = R, because complex conjugation acts by —1 on the root
system of S. Evaluating this formula we find

0(Ner(a” (exp(2)))) = O(aV (%)) = =2 a7 d0)
while at the same time A(trc;r(an2)) = ?7/(¢2**422). This implies

(aV,db)

Qo = .
211

Finally, we need to choose x-data, and we take x,(z) = sgn(z) for z € C* and
o > 0, where sgn.. : C* — S! denotes the argument function. We will discuss
the significance of this choice at the end of this subsection.

Having made these preparations we now explicate (4.10.2) in this setting. First,
we use the real case of [Kall5, Corollary 4.11], which gives us

e(@ep(X*(Te = X*(S)e, M) =[] fes (@A otrem)™"
a€R(S,G)/T

Now A¢/r(Aotrg/r) =i and fig s)(a) equals —1 if o is compact and +1 if av is
non-compact. It follows that

e(G)er(X*(T)e — X*(S)c,A) = (-1)*@ [ -
a€R(S,G)/T
On the other hand we have
A [a, X] (v Hsn # _11—[ HSn 1\ !
7l 8l o) (2mi) 1 &N av d9> .
a<0 i ot

Recall that df is dominant for the chosen set of positive roots, so (a",df) < 0
whenever o < 0, leading to
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At the same time

DIE = [ ek -1z
wcR(5.)
= (gw—ua(v)—l—u)z
= (gaw —a(y) #la(y) —a<v>%|>2
= g|a<w>%—a<v>-f|
= g|1—a<v>-l|

where the last equality follows form the fact that a(y) is of absolute value 1.
Combining these calculations we see that

e(@)er(X*(To)e — X*(S)e, A)[Da(7)| "2 A% [a, '](7)

is equal to

()@ J[a-am !

a>0

and we conclude that the formula (4.10.2), interpreted for the ground field R,

evaluates to w
(_l)q(G) Z 0 (’7 )

1— a(ve)-1)’
weN(S,G)(R)/S(R) al;lo( a(y®)~1)

which is indeed the character formula for a discrete series representation (4.11.1).

Finally, we make a comment on the choice of y-data used here. The choice we
have just used is well-known by the name of “based” x-data from the work
of Shelstad [She08a, §9], and is intimately connected with the local Langlands
correspondence. In the p-adic case, our choice was made so as to encode the
roots of unity that occur in the character formula of Adler-DeBacker-Spice. If
we speculatively view C/R as an analog of a ramified quadratic extension of
non-archimedean local fields and apply formula (4.7.2), we would get the in-
verse of the based x-data used here. So it appears that the real and p-adic case
are very closely related.

The particular choice of x-data is however of minor importance. Indeed, mak-
ing a different choice of x-data has the effect of multiplying the term A3 by
a character of S(F'). This character can then be absorbed into 6, and so can be
the characters €y ram and ™. In fact, the particular representation of G(F') that
the character 6 of S(F') leads to depends on the details of the construction that
is used, and different constructions could lead to slightly different represen-
tations. What is important for us here is that the formula for the character of
regular supercuspidal representations at shallow elements has the same struc-
ture, including the roots of unity that cannot be absorbed into a character of
S(F), as the character formula for real discrete series. This fact will be our
guide to the construction and study of L-packets in what follows.
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5 REGULAR SUPERCUSPIDAL L-PACKETS

Let G be a connected reductive group defined and quasi-split over F' and split
over a tame extension of F. Let G be a Langlands dual group for G and G =
G x Wp the Weil-form of the corresponding L-group.

In this section we are going to construct those L-packets of all inner forms of
G that consist entirely of regular supercuspidal representations and assign to
each such L-packet a Langlands parameter. The construction will allow an
explicit passage from parameters to representations and conversely. Each of
the L-packets will contain extra regular supercuspidal representations, which
is the reason for their name.

We will eventually assume that the residual characteristic p of F is not a bad

prime for G and does not divide |mo(Z(G))|. Note that the bad primes for G
and G are the same, and that mo(Z(G)) has the same order as the fundamental

~

group of the derived subgroup of G.

51 Admissible embeddings

We recall here some basic facts about the relationship between G and G. For
this, F' can be any field, but G is taken over C.

Let S be a torus defined over F' of dimension equal to the rank of G, and let J
be a I'-stable G(F')-conjugacy class of embeddings j : S — G defined over F.
From J we obtain a I'-stable é—conjugacy class J of embeddings 7 : S Gas
follows. Fix I'-invariant pinnings (T, B, {X,}) of G and (T, B,{Ya}) of G. Any
j € J embeds S as a maximal torus of GG, so we may choose j € J such that
j(S) = T and define 7 to be the inverse of the isomorphism T — S of complex
tori induced by j. Then the @-conjugacy class .J of 7 is I-stable. Indeed, w :
o+ joo(j71)is an element of Z(T, Q(T, G)), which under the isomorphism
QT,G) = AT, G) corresponds to an element w € ZNT,Q(T,d)), and we
have o 0(37') = W,. The choice of j € J can only be altered to v o j for
some v € Q(T,G), but then 7 becomes ¥ o 7 and leads to the same .J. The
choices of pinning also have no influence, because any two F-pinnings of G
are conjugate by G,q(F') and any two I'-stable pinnings of G are conjugate by

GT [Kot84, Corollary 1.7].

—

The same procedure can be performed in the opposite direction and produces

J from .J. Since G is quasi-split, there exist I'-fixed elements j € J by [Kot82,
Corollary 2.2], which applies also in positive characteristic due to [BS68, §8.6].

From J we obtain the following structure on S.

e An embedding Z(G) — S over F, by choosing j : S — T' and restricting
j~1to Z(G);

e A I-invariant subset R(S,G) C X*(5), by choosing j : S — T and
pulling back R(T, G) along j;

e A I'-invariant subgroup Q(S,G) C Autaggrp(S), by choosing j : S — T
and pulling back (T, G).
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Again it is clear that this structure depends only on J and not on the choices
of pinning of G or j € J. Moreover, if j € J is I'-fixed, then it provides I'-
equivariant isomorphisms R(S,G) — R(jS,G) and (S, G) — Q(jS, G).

We follow standard terminology and call the embeddings belonging to J admis-
sible. More generally, if (G', £) is an inner twist of G, we will call an embedding
j S — G admissible if £ o j € J. The notion of admissible does depend on
the datum of J. Outside of this subsection, we will not use the symbol J for a
conjugacy class of embeddings, but will rather keep it reserved for connected
centralizers of semi-simple elements of G. The notion of admissible will be
taken with respect to a distinguished conjugacy class of embeddings that will
be clear from the context. An example of such a context is given by an endo-
scopic datum for G. This datum identifies a maximal torus in the dual group
of the endoscopic group with a maximal torus of G, so we can speak of admis-
sibility of embeddings of a maximal torus of the endoscopic group into G or
inner forms of G.

If j : S — G’ is an admissible embedding and S’ is its image, we shall call
j : S — S an admissible isomorphism. Two elements v € S and v/ € 5’
are called related if there exists an admissible isomorphism j : S — S with
J(v) = +'. There exists exactly one such isomorphism, and we will write f, -/
for it. If v and +/ are I'-fixed, then so is f, .,/ due to its uniqueness.

5.2 Regular supercuspidal L-parameters

We now introduce the Langlands parameters that correspond to regular su-
percuspidal L-packets. We will give two definitions — the first one (Definition
5.2.1) is easier to state and describes most of the parameters we need. It also
generalizes many of the parameters that have previously been studied. The
second definition (Definition 5.2.3) is slightly more general and turns out to be
the one that we need.

From now on we assume that the residual characteristic of F' is not 2 and is not
a bad prime for G. We also assume that the characteristic of F' is zero. While
this latter assumption is not needed for any of the arguments here, it is as-
sumed in [Kall6], which we will use. We are convinced that the constructions
and arguments of [Kall6] are also valid in positive characteristic, so the ad-
venturous reader is encouraged to think about the positive characteristic case
as well. Alternatively, if one replaces H'(u — W, —) by B(—)pas of [Kot], this
assumption can be dropped, at the expense of possibly not reaching all inner
forms.

Definition 5.2.1. A strongly regular supercuspidal parameter is a discrete Lang-
lands parameter ¢ : Wy — LG such that ¢(Pr) is contained in a torus of G and
Cent(¢(Ir),G) is abelian. O

Special cases of such parameters are those discussed in [DR09, §4.1], [Roel1],
[Ree08, §6.3], and [Kall5, §5.1]. In fact, these examples are special cases of a
class of parameters which one might call toral, that is much smaller than the
class of strongly regular parameters. The case of positive depth toral parame-
ters is treated in more detail in §6, because they are much easier to deal with
and because the current state of the Adler-DeBacker-Spice character formula
allows us to obtain additional results for them.
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Before coming to the second definition, we collect some basic facts.

Lemma 5.2.2. Let » : Wr — LG be a Langlands parameter.

1. If p(Pr) is contained in a torus of G, then M = Cent(p(Pr), @)O isa Levi
subgroup of G. If p does not divide |mo(Z(G))|, then Cent(x(Pr), G) is
connected.

2. If p(Pp) is contained in a torus of Gand C = Cent(eo(Ir), é)" is a torus,
then T = Cent(a M ) is a maximal torus of G normalized by ¢(Wp) and
contained in a Borel subgroup of M normalized by ¢(Ir). Furthermore,
T is normalized by Cent(p(Ir), G).

O

Proof. By continuity, ¢(Pr) is a finite p-subgroup of G, let xy,. .., x, beits el-
ements. We work by induction on n. By [AS08, Proposition A. 7] Cent(z1,G)°
is a Levi subgroup of G. Any torus of G containing z1, ..., x, is contained in
Cent(x1, G) . If p does not divide |7 (Z(G))|, then it does not divide the or-
der of the fundamental group of @der and Cent(z1, @) is connected by [SS70,
Corollary 4.6]. Being a Levi subgroup of G, the fundamental group of its de-
rived subgroup isa subgroup of the fundamental group of Ger- In either case,
replace G by Cent(x1, @)° and proceed with z,. This proves the first point.

For the second point, we have C = Cent(p(Irp), @)O = Cent(eo(Ir), ) The
action of Ir on M by Ad(y(—)) restricts trivially to Pr. Since Ir/Pp is pro-
cyclic, the centralizer of ¢(Ir) in M is the fixed-point set of a single automor-

phism 6 of M, namely Ad(¢(z)), where x € Ip projects onto a topological
generator of I/ Pr. The automorphism 6 is semi-simple (in fact of finite order)

and by [Ste68, Theorem 7.5] it preserves a Borel pair of M. Let T be the maximal
torus in that Borel pair. From [KS99, Theorem 1.1.A] we know that [ZA“ N 6]0 is
a maximal torus of C and hence must equal C, and moreover T = Cent(C, M ).
Since M is a Levi subgroup of G, T is also a maximal torus of G. Finally, since
both M and C are normalized by ¢(Wr) as well as by Cent(p(Ir), G), so is
T. u
Definition 5.2.3. A regular supercuspidal parameter is a discrete Langlands pa-
rameter ¢ : Wp — LG satisfying the following:

1. ¢(Pp) is contained in a torus of G; set M= Cent(p(Pr), G)°.

2. C := Cent(p(Ir),G)° is a torus; let S be the I-module with underlying
abelian group T := Cent(C, M) and TI'-action given by Ad(p(—)).

3.1fn € N(T,M ) projects onto a non-trivial element of (S, M )F then

n ¢ Cent(p(Ir), )
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We note that if ¢ is a strongly regular supercuspidal parameter then

N(T, J\//?) N Cent(o(Ir),G) C Cent(p(Ir), ]\//.7) C Cent(C, ]\//.7) =T,
where the second containment follows from the fact that Cent(p(Ir), M) is
abelian and contains C, thus ¢ is regular. Conversely, almost all regular super-
cuspidal parameters are strongly regular.

Our task in this subsection is to construct for each regular supercuspidal pa-
rameter and each inner form of G the corresponding L-packet. The first step is
to identify the set of equivalence classes of such parameters with a set of equiv-
alence classes of another kind of data. We find it most convenient to organize
this new data into a category, which we call the category of regular supercusp-
idal L-packet data.

Definition 5.2.4. A regular supercuspidal L-packet datum is a tuple (5,7, x,6),
where

1. Sis a torus of dimension equal to the absolute rank of G, defined over F
and split over a tame extension of F;

2.7 : 8 — @ is an embedding of complex reductive groups whose G-
conjugacy class is I'-stable;

3. x is minimally ramified y-data for R(S, G) in the sense of Definition 4.6.1;
4. 0: S(F) — C* is a character.

We require of this data that the y-data be Q(S, GY)(F)-invariant, S/Z(G) be
anisotropic, and (.5, ) be a tame extra regular elliptic pair in the sense of Def-
inition 3.7.5. Here we are using the structure on S that is given to us by 7 as
described in §5.1, and moreover (S, G%) is the subgroup of (S, G) generated
by the reflection along the sub-root system Ry C R(S, G) as in Definition 3.7.5.
g

Definition 5.2.5. A morphism of regular supercuspidal L-packet data (S,7, x,0) —
(8.7,x',0") is a triple (¢, g, ¢), where

1. v: S — S5’ is an isomorphism of F-tori,

2. g€ G, and

3. ¢ = (Ca)a is a set of (-data for R(S’, G) in the sense of Definition 4.6.4.
We require that 707 = Ad(g) o7, that xa/o, = X}, - {w, and that {;,1 0 orL=20,
where (g is the character of S’'(F') corresponding to ¢ as in Definition 4.6.5.

Composition of morphisms is defined in the obvious way. Note that every
morphism is an isomorphism and that ¢ is determined by x and x’. O

While not needed for the purposes of this paper, the following result might be
worth recording.

Lemma 5.2.6. The map s — (1,7(s), 1) is an isomorphism from S to the group
of automorphisms of (5,7, x, 6). O
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Proof. It is enough to show that if (¢, g,¢) is an automorphism of (S ﬁ X, ),
then ¢ = id and ¢, = 1. From Ad(g) o 7= Jo 7 we see that g € N(j(S) ) G) and
this implies that ¢ is given by an element w € Q(S, G)(F). Now (4 = Xwa * X5 -
Since x is minimal the character (g restricts trivially to S(F')o, so the equation
(s - 0 ow = 0 implies that w fixes 0|g(p),, . Lemma 3.6.5 then implies that w €
Q(S,G°)(F). The Q(S,G°)(F)-invariance of (x4)o now implies that ¢, = 1.
But this in turn leads to the equation ¢ o w = 6, and the extra regularity of 0
now implies w = 1, i.e. v = id. |

Proposition 5.2.7. There is a natural 1-1 correspondence between the @—Conju—
gacy classes of regular supercuspidal parameters and the isomorphism classes
of regular supercuspidal L-packet data. O

The proof of this Proposition will use the following supplementary results.

Lemma 5.2.8. Let M C G be a tame twisted Levi. Let M — G be the natural
inclusion, well-defined up to G- -conjugacy. There exists an extension of M—G
to a tame L-embedding “M — LG. O

Proof. Fix a I'-invariant pinning (T, B, {X5}) of G. The unique standard Levi
subgroup of G dual to the Levi subgroup M x F of G x F is a dual group of

M, so we can take it as M. The natural inclusion M — G lies in the canonical
G-conjugacy class.

We have an action of T" on G coming from the fact that @ is the dual al group of
G. We also have an action of T on M, preservmg the pinning of M induced
by the fixed pinning of G, coming from viewing M as the dual group of M.
The inclusion M — G need not be equ1var1ant for these actions, and in fact
the I-action on G need not even preserve M. The restriction to T of the I'-
action on M differs from the restriction to 7' of the I'-action on G by an element
wy € Z' Ty, Q(T, @), where K/F is a finite Galois extension, tame because
the actions of I'y on G and M are tame. We will find a homomorphism ¢ :
Wg/Pr — N(T,G) x Wg/Pp such that each £(w) preserves the pinning of M
and acts on 7 via w M(0w) X oy, where o, € T is the image of w. This £ will
then give us the L-embedding

M\NWF%@NWF, m X w — mé(w).
For this, let ny (0) € N(T, G) be the Tits lift [Spr81, 11.2.9] of was (o) relative to
the fixed pinning of G. For @ € A}, C AY we have Ad(n(0))o(Xs) = Xa by
[Spr81, 11.2.11]. The map o — ny (o) x o € N(T,G) x T is not necessarily a
homomorphism. We have by [LS87, Lemma 2.1.A] that
[nar(o) X o] - [np(7) x 7] =t(o,7) - ny (o) X oT,

where t(o,7) = ap . (—1) and o, r € X, (T)) is the sum of all members of the set

{B € R(T,G)|B > 0,[wr(0)o] ™8 < 0, [war(0)ownr(1)7] 718 > 0}, (5.2.1)

We claim that (o, 7') € Z(M ) Since X, (Z(M)®) is the annihilator in X, (T) of
the root lattice Q(M) C X*(T), it will be enough to show that a, , annihilates
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Q(J\//.T ). This is equivalent to showing that «, , is fixed by O(T, M ), because for
any 3 € R(T, M) we have

<a07776v> =0« <aa,7—a§> = _<ao,773> = <5§a0777§>~

Now observe that any member § of (5.2.1) must be outside of R(f7 M )V, be-
cause otherwise [wy/ (o) ~! would not make it negative. The action of Q(T, M )
on R(T,G) preserves the set of positive roots in R(T,G)~ R(T, M ). It follows
that if u € Q(f M\) then uB > 0 and for the same reason [wy(c)o] tuf =
v[war(o)o] 18 < 0, with v = [war(0)o] ufwr (0)o] € QT, ]\7) This shows
that the set (5.2.1) is (7', M )-invariant, hence its sum Qg 7 is Q(T, M)-fixed.

We have thus proved t(o,7) € Z(]/W\)O, ie. t € ZQ(FK/F,Z(]/W\)O). But then

[Lan79, Lemma 4] implies that there is r € C'(Wx a4 (M\ )°) whose differen-
tial is the inflation of ¢. This means that

E:w s r(w)na(ow) X oy

is a homomorphism Wy rp — N(T,G) x Wg. Since r(w) € Z(M\)O, it acts
trivially on the root spaces of M and thus ¢ (w) preserves the pinning of M.

We claim that after inflating £ to Wi, its restriction to Py is trivial. Since K/F is
tame, the image of Pr in W p is equal to K, , so we must check that 7(w) = 1
when w € K, . This can be extracted from the proof of [Lan79, Lemma 4]. It

proceeds by embedding Z (]\/47 )° into an exact sequence
1—>Z(]/\4\)°—>§1—>§2—>1,

where S; and S, are tori defined over F' and split over K and S; is induced.
Then r(w) is expressed as d~!(w)c(oy,)a~ oy (a), where ¢ € C'(Tg/p, 51) is
chosen so that its co-boundary is ¢ (it exists because S; is induced and further-
more H?(I',C*) = H3(T',Z) = 0, the latter because I" has strict cohomological

dimension 2) and d € Z 1(WK/ I §1) and a € §1 are chosen so that the equa-
tion d(w) = ¢(0y)a" oy (a) holds in S, (they exist because H' (W, 5y) —
H'(Wg,p, S,) is surjective, which follows from the injectivity of Sy(F) —
S1(F') and the Langlands correspondence for tori).

For w € K, we have 0, = 1 € I'g,p and therefore both ¢(c,,) and a0, (a)
are trivial. To show that d is trivial on K, , we use Lemma 3.1.3 which implies
the injectivity of So(F')/Sa2(F)o+ — S1(F)/S1(F)o+ and hence by [Yu09, Theo-
rem 7.10] the surjectivity of H' (Wi p /K, S1) — H' (Wi /K, S2). M

Let o : Wr — G x Wp be a Langlands parameter such that cp(PF) is contained
in a torus and Cent(¢(Ir), G) is a torus. Let T ¢ M C G be the maximal
torus and Levi subgroup from Lemma 5.2.2, normalized by Ad(¢(—)), and let
S be the I'-module with underlying abelian group T and T-action _given by
Ad(¢(—)). By construction ¢(Pr) C Z (M ) C T, so the I'-module S is tame.
Since <p(I F) preserves a Borel subgroup of M containing T, the action of I on

R(S, M) preserves a positive chamber. We let 7 E S — G be the tautological
embedding of the abelian group T underlying S into G. Let S be the algebraic
torus over F dual to S. Write R(S, M) C R(S,G) C X.(5) = X*(S) for the
dual root systems to R(S, J/W\) and R(S,G).
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Lemma 5.2.9. There exists y-data for R(S,G) that is minimal and Q(S, M)'-
invariant. U

Proof. We mimic some of the arguments of the Howe factorization algorithm
of §3.6 and begin by considering the filtration

R, = {a € R(S,G)|a(p(I") = 1}.

This is well-defined because ¢(Pr) C Z(JT/[\) CT. Letrg_y > - >rg>0be
the jumps of this filtration. Set in addition r4 = depth(y) and r_; = 0. Thus
Ryt = R(S,M) and R,,_,+ = R(S,G). Fix an additive character A : F' — C*.
For notational convenience, we assume A is of depth zero, i.e. trivial on Fy;
but not on Fy. Given o € R(S,G) \ R(S, M), let r,, be the unique r;, d > i > 0,
suchthata € R+ \ R,_.

We define a character ¢, : [F],, /[F}]r,+ — C* as follows. The composition
@ o ¢ gives a homomorphism I™ — C* that is trivial on ™. We claim that
this homomorphism can be extended to W, . Indeed, if we fix arbitrary tame
x-data for R(S,G) we obtain a tame L-embedding Ly S Wrp — G Wg
containing the image of ¢ and hence a factorization ¢ = ©j o pg with ¢g :
Wr — S x W having the property ¢s|p, = ¢|p., and then & o pg : Wg, —
S x Wg, — §WFQ — C* is an extension of @ o ¢|p, to Wg,. Thus @ o ¢
corresponds to a character ¢, : [F)],, /[F3]r,+ — C*, which of course does
not depend on the extension of & o ¢ to W, . The equation

Ca(X + 1) = A(tI'FQ/F(@aX)), X € [Fa]r,lz

specifies an element a, € [Fo|_r,/[Fa]-r,+- We claim that {(—r,,a,)} is a
set of (S, M)'-invariant mod-a-data for R(S, G) \ R(S, M). The I'-invariance
of the filtration R, and Roy = R(S, M) implies the equations r., = r_, =
Twa = To for 7 € I'and w € Q(S, M)''. We further need to show 7(ady) = Gra,
—l = o, and Gy = Gq, for 7 € T'and w € Q(S, M)'. This in turn translates
t0 Gra = Ca o7 Y (o = ¢t and (o = (. Note that 7 : F, — F,, is an
isomorphism of F-algebras and F,,, = F,, so these formulas make sense. The
claimed properties of the characters (, are seen as follows: Going from o to —«
is trivial, going from o to wa comes from the fact that w can be represented by
conjugation by an element of M, which centralizes ¢(Pr), and going from « to
Ta comes from

T(p(w)) = T(ps(w)) = ps(1)es(w)es(r) ™ = ps(rwr™") = p(rwr ™),
for w € Pp. From the Q(S, M)"-invariant mod-a-data we obtain (S, M)~
invariant tame x-data for R(S,G) \ R(S, M) by (4.7.2). We augment this with
unramified y-data for R(S, M), which suffices since R(S, M) has no ramified
symmetric roots, and which is automatically (S, M) -invariant. |

Proof of Proposition 5.2.7. Given a datum (S, 7, x, ) we use the x-data to extend
jto an L-embedding Lj : 'S — LG as explained in [LS87, §2.6] and let ¢ :
Wr — LS be the parameter for 6. Define p = £j o pg.

Let us first check that the é—conjugacy class of ¢ depends only on the isomor-
phism class of the datum (5,7, x,0). Keeping this datum fixed, the parame-

ter ¢g is determined by 6 up to S-conjugacy and the embedding ;j is deter-
mined by x and 7 also up to S-conjugacy, so the G-conjugacy class of ¢ does
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not depend on these choices. Now we vary the datum (5,7, x, ) within its
isomorphism class. It is enough to check the three basic cases of an isomor-
phism: (¢,1,1), (1,g,1), and (1,1, ¢). In the first case we have Lj o L1 = £j” and
Liowg = pg, hence “j o pg = Lj' o pg. In the second case we have S S’
and ©j = Ad(g) o ©j'. In the third case we have *j' = Lj . ¢c~1, where c is the
1-cocycle of [LS87, Corollary 2.5.B], as well as §' = 6 - (5. The proof of [LS87,
Lemma 3.5.A] shows that c is the Langlands parameter for the character (g, so
that pg: = pg - c.

We now check that ¢ satisfies the conditions of Definition 5.2.3. Since S is
tamely ramified and the y-data is at most tamely ramified, we have ¢|p, =
Jo 905| pp, SO ¢(Pr) is contained in the i image of 3, which is a maximal torus

of G. Before we can discuss Cent(o(Ir), G) we need some preparation. Fix
a I'-invariant pinning (T B {X }QEAV) of G and replace (5,7, x, 6) by an iso-
morphic datum so that j(S )=

Let M = Cent(p(Pr), G)°. According to Lemma 5.2.2 this is a Levi subgroup of
G. Tt is normalized by the action of ¢(Wp) and the resulting homomorphism
Wgr — Aut(]/\/[\ ) — Out(M\ ) extends to I'r, because its target is finite. We
have arranged that T C M, so the fixed pinning of G induces the pinning
(T, BNM, {Xza}ac Ay, ) of M. This pinning gives a splitting Out(/\) — Aut(M)
of the natural projection, so we obtain an action T'y — Aut(M) preserving the
pinning. Note that the original action of I' on @ need not preserve M, so there
is no potential for confusion whenever we speak about “the” I p-action on M.
The group M endowed with this I'p-action is the dual group of a quasi-split

F-group M. We now claim that under the identification R(S,G) = RY(S,G)
the root system

R(S, M) = {a@ € R(S,G)[a(e(Pr)) = 1}

becomes identified with the coroot system of the subsystem Ry, of Definition
3.7.5. Forany @ € R(S,G) leta¥ € RY(S, G) be the corresponding cocharacter.
Letting E/F be the tame Galois extension splitting S, the parameter of the
character § o Ng/p o a” is equal to the restriction to W of & o ¢g. Since Pp =
Prp C Wg, we see using [Yu09, Theorem 7.10] that R(§, M ) is the subset of
RY(S, @) consisting of those o for which 6 o N, o a restricts trivially to
Eg, and the claim is proved. This claim implies, in particular, that the twisted
Levi subgroup of G containing S and having Ry as root system is an inner
form of the quasi-split group M, and thus M is a dual group of that twisted
Levi subgroup.

Consider the embedding 7 : S — M. Itis trivially Wpg-equivariant if we en-
dow both sides with the action of Wy given by Ad(p(—)). It is no longer Wg-

equivariant if we endow M with the action of W via which M becomes the
dual group of M, but this latter action differs from the previous action only

by inner automorphisms of M, so the M- -conjugacy class of 7 : S — M is still
I'-stable. As discussed in §5.1 this gives us the notion of admissible embed-
dings S — M. Tracking through the definitions we see that the subset R(S, M)
of X*(S) arising from this notion is a subset of R(S, G) and the identification

R(S,G) = RY(S,G) identifies R(S, M) with RV (S, M).

By assumption on 6 the action of I on R(S, M ) leaves a basis invariant. This
implies that all symmetric roots in R(S, M) are unramified and hence there is
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a canonical (up to §-conjugation) extension of the embedding 7 : S — Mto
an L-embedding Ljs pr : ©S — M, namely the one given by the construction
[LS87, §2.6] for unramified y-data.

Composing the unramified L-embedding “js s : *S — LM with a tame L-
embedding Ljy ¢ 1 “M — LG supplied by Lemma 5.2.8 we obtain an L-
embedding Zj; : £S — LG, which extends 7 : S — G. Then Lj, = Lj . b,
for some b € Z'(Wg, S). Let 6, : S(F') — C* be the character corresponding
to b. By [Yu09, Theorem 7.10] and the fact that Lj and Lj agree on Pr we see
that 6, is trivial on S(F)gy. We claim that 0, is Q(S, M) -invariant. If w €
Q(S, M)" then [LS87, (2.6.2)] and the fact that L is produced from Q(S, M)"-
invariant x-data imply the existence of n € N (f M ) representing w such that
Ljow = Ad(n) o Lj. At the same time £j; o w = Ad(n') o ]1 — we have
Ljsaow = Ad(n') o Ljg s, for some possibly different n’ € N(T', M) lifting
w, for the same reason as for *j, namely the w-invariance of the unramified
x-data, and we have “jy ¢ o Ad(n’) = Ad(n') o L'y ¢ tautologically, because
L jar.c is a group homomorphism extending the identity M — G. We conclude
that b and w o b are cohomologous, hence 6, = 6, o w.

We now have p = Ljopg = Lj;0b 5 and can proceed with the computation of
Cent(¢(Ir), G)°. Clearly Cent(o(Ip), G)° = Cent(p(Ir), M)° = Cent(Lj, ob-
¢s(Ip), M)° = Cent(Yjg py 0b-ps(I), M)°. Since Ljg vy 0 b- s(Pr) C Z(M)
the action of “j 5, 0 b- ps(Ir) on M factors through the pro-cyclic quotient
Ir/Pp. Letting @ € I be a pre—image of a generator of this quotient, we are
considering the automorphism “jg 5, o b - pg(z) of M. 1t is semi- -simple (in
fact of finite order) and by [Ste68, Theorem 7.5] it preserves a Borel pair of
M. Conjugating within M we may assume that it preserves the Borel pair
belonging to the fixed pinning of M. But then it must be given by an element ¢ x
2 € T % Ir. The connected centralizer in M of this automorphism is a reductive
subgroup Mt@=° M with maximal torus 7%°. We recall the description
of its root system from [KS99, §1.3]. One divides the roots R(f M ) in three
types, dependlng on their image in the relative (and possibly non-reduced)
root system R(T%° ]\7). One says that @ € R(T, M) is of type R1/R2/R3,
if its image Qres € R(T” °M ) is a relative root that: is neither divisible nor
multipliable/is multipliable/is divisible. For any @ € R(T, M) we denote by
Na the sum of all elements of the orbit of & under the automorphism z. Then

Ofres 18 a OOt Of Mt*7 if and only if it is either of type R1 or R2 and Na(t) =1
or if it is of type R3 and Na(t) = —1.

Our goal is to show that neither of these cases occurs. For any a € R(T, M )
the homomorphism Na& : T — C* is I-invariant and descends to a homo-
rnorphism T; — C*. Note here that we are using the I'-action on T inher-
ited from M and not from G. In partlcular Js,m restricts to an isomorphism
S x I — T x I. Consider the composition

I 28 G T 5 Tt Ty N8 o (5.2.2)

The restriction of this homomorphism to Pr is trivial and the image of x € I
under this homomorphism is equal to the value Na(t). We want to show that
this image is not equal to 1 when @ is of type R1 or R2 and is not equal to —1
when & is of type R3.
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First let us assume that & is of type R1. Then Na(t) # 1 is equivalent to the ho-
momorphism (5.2.2) being non-trivial. We shall interpret that homomorphism
in terms of the character 6;-6. Since M is quasi-split there exists by Lemma 3.2.2
an admissible embedding S — M defined over F. By assumption on 6 the im-
age is a maximally unramified maximal torus and using Lemma 3.4.12 we may
choose the admissible embedding so that the associated point o € B*4(M, F)
is the superspecial point associated to a Chevalley valuation. Let F’/F be an
unramified extension over which S becomes a minimal Levi subgroup of M.
The point o is still special over F’ and the root system of M{ is the subsystem of
non-divisible roots in R(Ag, M). The bijection R(S, M) « R(§ M ) sending &
to a = a" restricts to a bijection R(Ag, M) <> R(5%°, M ) that preserves types.
Thus & corresponds to a root o € R(S, M) whose restriction to Ag is neither
divisible nor multipliable. This root is then also an element of R(S’,M¢) and
the corresponding coroot is Na¥ = Na. The L-embedding Zjs 5 restricts to

an isomorphism S x Wgs — T x Wr and

b ~ Lj, ~ ~ NA
W =23 83 Wpr 223 T Wpr — Ty, =5 C*

is the parameter of the character [0, -0]o N/ po[Na]. The character [0, -0] (),
has trivial stabilizer in Q(S, M) and thus reduces to a character of S'(kr) in
regular position. According to Lemma 3.4.14 the composition [0y, - 0] o N/ /p 0
[NaV] is a non-trivial character of k,, or, seen as a character of [F’]*, has non-
trivial restriction to O,. This in turn is equivalent to the claim that its param-
eter restricts non-trivially to /r = Ir. But that restriction is exactly (5.2.2).

We now turn to the cases where & is of type R2 or R3. These cases are linked

together —if @ is a root of type R2 and [ is the smallest positive number such that

2'a = @, thenlisevenand = a+z!/?

a is a root of type R3. Conversely, every
root of type R3 occurs in this way. In this situation, we have N8 = Na. The
cases of @ and § will be handled simultaneously if we can show (2Na)(¢) # 1.

But the bijection R(Ag, M) R(S5%9, M) sends @ to a non-divisible relative
root o which then occurs in R(S’,M?). Its coroot is 2Na¥ = 2Na. The same
argument now shows that the homomorphism (5.2.2), where we replace Na
by 2N &, is non-trivial.

We have thus shown that C' := Cent(p(Ir), JTI\)O = M is a reductive group
with maximal torus 7%° and an empty root system, so it equals 7%° and is
thus contained in T'.

It now remains to check the third property in Definition 5.2.3. Letn’ € N(T, M)
project to w € Q(S, M) and centralize ¢(Ir). Write n’ = s~'n, where s € S
and n € N(T, M) satisfies Ad(n) o “j = Lj o w. The latter equality together
with Ad(n)o|r,. = Ad(s)oy|r,. implies wopg|r, = Ad(s)ops|r,.. By Lemma
3.1.8 this means that w stabilizes 0| g(r),. The regularity of § implies w = 1.

We now give the inverse construction. Let ¢ : Wp — G x Wp be a regular
supercuspidal parameter. Let T ¢ M C G be the maximal torus and Levi
subgroup from Lemma 5.2.2, normalized by Ad(¢(—)), and let S be the T-
module with underlying abelian group T and I'-action given by Ad(¢(—)). By
construction p(Pr) C Z (]\/4\ ) C T, so the I'-module S is tame. Since ¢(Ir)
preserves a Borel subgroup of M containing T, the action of I on R(S, M )
preserves a positive chamber. We let 7' S — G be the tautological embedding
of the abelian group T underlying Sinto G.
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Lemma 5.2.9 allows us to fix (S, M)'-invariant minimal 1 x-data for R(S Q).
From it we obtain a G- -conjugacy class of L- embeddmgs SxWg — G x Wg.
Fix j, within this conjugacy class by demanding *j |5 = 7. The image of j
contains the image of ¢ and we obtain the factorization

P = ij 0 PS,xs

for some Langlands parameter g, : Wr — ©S. Let 0 = 6, : S(F) — C*
be the corresponding character. Since any L-embedding that is G-conjugate to
Lj. and also restricts to 7 must be conjugate to “j, by an element of T, the

§—Conjugacy class of ¢g ,, and hence the character 6,, are independent of the
choice of ©j,. They depend only on the choice of .

Lemma 5.2.10. The stabilizer of 0|g(r), in (S, M) is trivial. O

Proof. This is equivalent to [0 o w/0]| s, # 1 for allw € Q(S, M)"'. By Lemma
3.1.8 this is equivalent to w o p5 # ¢s in H'(Ip, 3). Explicitly we need to
show that for any w € Q(S, M)' there does not exist s, € S with w o pgl;, =
Ad(sw)ps|r.. Assume this fails for some w and let s,, be the corresponding
element. We have the equality

w o ps|r, = Ad(sy) 0 ps|rp-

Composing both sides of the displayed equation with ©j, we obtain

LjX owo @SlfF = Ad(sw)sp‘IF

We may now use [LS87, (2.6.2)] together with the w-invariance of x-data to get
Ljow = Ad(n) o £j, wheren € N(T, M) is a suitable lift of w. This leads to

Ad(n)gphF = Ad(sw)(ph}m

i.e. s,;'n € Cent(p(Ir), M\) contradicting part 3 of Definition 5.2.3. |

We now form (5,7, x, 0y) and claim that its isomorphism class depends only
on the G-class of v. Keeping ¢ fixed, recall from §4.6 that the x-data Can only
be changed to ¢ - x and then accordmg to [LS87, (2.6.3)] we have © Jex = ]x ¢,

where c is the element of Z!(Wp, S) defined in [LS87, Corollary 2.5.B]. Thus
©s,cx = ps-c ' As we already remarked, c is the Langlands parameter for the
character (s. Thus we obtain the isomorphic object (S,7,¢ - x, 0y - (5 ')

If we replace ¢ by ¢’ = Ad(g) o ¢ for some g € G then T = Ad(g)f, where
T’ is the maximal torus analogous to T but corresponding to <p , because T
can be recovered from ¢ as Cent(C M ), with M = Cent(y (Pp),G)° and C =
Cent(p(IF), ) If we let S’ be the I'-module with abelian group T' and T-
action given by Ad(¢’(—)), then we see that Ad(g) : S — §isan isomorphism
of I'-modules. It gives rise to an isomorphism ¢ : S’ — S of algebraic tori.
Choose minimal (S, M)"-invariant x-data on R(S,G) and transport it via ¢
to x-data x’ on R(S’, G), which is minimal and Q(5’, M )F-invariant. Use it to
obtain a character 6,/ : S'(F') — C*. One then checks immediately that the
isomorphism ¢ identifies the characters 6, and 6,.. The proof of Proposition
5.2.7 is now complete. u
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5.3 Construction and internal structure of L-packets

As in the previous subsection, we are assuming that the residual characteristic
of F'is odd, is not a bad prime for G, and does not divide |7¢(Z(G))|. We also
keep the assumption that the characteristic of F' is zero due to our usage of
[Kal16].

Let » : Wr — LG be a regular supercuspidal parameter in the sense of Defini-
tion 5.2.3. Apply Proposition 5.2.7 to obtain a regular supercuspidal L-packet
datum (S,7, x, #), well-defined up to isomorphism. We will define a function
O : S(F')weg — C as follows. Choose a non-trivial character A : /' — C*. For
any o € R(S,G) we have the character A o trp, p : Fly — C*; let 75 4 be its
depth. On the other hand, we have the character 6 o Np, ,p o " : FJ — C*;
let 79 o be its depth. By restriction we obtain a character

[Fualrg o/ [Falrga+ = C*, X =00 Np jpoa’(X +1).

Let aq € [Fa)( )/ [Fal(ra.a—re o)+ De the unique element satisfying

TA,a—T0,a
0o Np jpoa’(X+1)=Aotrp p(@aX).

It is immediate to check that {(ra,o — 76,q,G«)} is a set of mod-a-data. Define

O(7) = eL(X*(T)c — X*(S)c, M)A [a, x](7)0(7). (5.3.1)

Lemma 5.3.1. The function © is independent of the choice of A. Thus it de-
pends only (5,7, x,6). Any isomorphism (5,7, x,6) — (5,7, x’,0') carries ©
over to the corresponding function ©" on S’(F)eg. O

Proof. The character A can be replaced by A - ¢ for some ¢ € F', where we recall
that [A-c|(z) = A(cz). Then @, is replaced by ¢'a,. Invoking [Kal15, Corollary
4.11], using that Ag, /p,, ([A - clotrr,, ) = Ka(c)Ap, /p . (Ao trp,  r), and
appealing to Lemma 4.6.3, we see that (5.3.1) is unchanged.

We now discuss the isomorphisms (5,7, x,0) — (5',7,x’,60'). Again we can

treat the three basic isomorphism types (¢,1,1), (1,9,1) and (1,1, {) separately.
For the first two the statement is trivial. For the third, we have x = x’ - ( and
0=0"-(Cg ! by Definition 5.2.5 and the statement follows from Lemma 4.6.6. W

It is clear from Proposition 5.2.7 that the isomorphism classes of regular su-
percuspidal L-packet data will correspond to L-packets. We now introduce
another category, which we call the category of regular supercuspidal data,
whose isomorphism classes of object will correspond to the individual super-
cuspidal representations that are to be organized into L-packets.

Definition 5.3.2. A regular supercuspidal datum is a tuple (5,7, x, 0, (G',£,2),7),
where

1. (5,7, x,6) is a regular supercuspidal L-packet datum,

2. (@', €, z) is arigid inner twist of G in the sense of [Kall6, §5.1],

3. and j : S — G’ is an admissible embedding defined over F.
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Definition 5.3.3. A morphism of reqular supercuspidal data

(Slv./j\lvxlaah (Gllvghzl)ajl) - (525727X2;927 (G/27§2722>7j2)

is given by (¢, g, ¢, f), where (¢, g, () is an isomorphism of the underlying reg-
ular supercuspidal L-packet data, f : (G,£1,21) — (G5, &2, 2z2) is an isomor-
phism of rigid inner twists, and js o = f o j;. O

There is an obvious forgetful functor from the category of regular supercus-
pidal data to the category of regular supercuspidal L-packet data. If we fix
a regular supercuspidal L-packet datum (5,7, x,0), the set of isomorphism
classes of regular supercuspidal data mapping to it is a torsor under H'(u —
W, Z(G) — S). This torsor is given by the relation

z- (G, 61, 21,51) = (G, &2, 22, J2) & & = Inv(j1, ja), (5.3.2)
see [Kall6, §5.1] for this statement and the notation involved.

We will now attach to each regular supercuspidal datum (5,7, x, ¢, (G', &, 2), j)
aregular supercuspidal representation of G’(F'). For this we take our lead from
the construction of L-packets of real discrete series representations [Lan89].
Ideally we would like to take “the” regular supercuspidal representation of
G’ (F) whose Harish-Chandra character, evaluated at shallow regular elements
of S(F), is given by the formula

e(G')|[Dar (7)) 7% 3 oG (v")), (5.3.3)
weQ(jS(F),G'(F))

where © is the function (5.3.1). We don’t know yet quite enough about the
Harish-Chandra character of regular supercuspidal representations to know
whether this would specify a unique representation. However, we can achieve
the same result by the following construction, which, while less elegant, has
the virtue of describing explicitly the inducing datum of the representation.

Step 1: From 6 we construct, for symmetric a € R(S, G)~ R(S, G®), mod-a-data

(Ga)a by (4.10.1) and then x-data (x,,) by (4.7.2). We recall here the definitions:

H(NFQ/F(OZV(X + 1))) = A(trpa/p(daX))7 X;(2da) = )\Fa/Fia(Aotrpia/F).

The mod-a-data depends on the choice of additive character A : ¥ — C*, but
the resulting y-data does not. For a € R(S,G%) we set \/, = Xa, and remind
the reader that x,, : F} — {£1} is the unramified quadratic character, and that
all symmetric roots in R(S, G°) are unramified.

Step 2: Replace (5,7, x,0, (G', €, 2), j) by an isomorphic object in which the x-
data is the one just constructed. More precisely, let ¢, = X/, - x5 ' Then (¢,)a
is a set of (-data in the sense of Definition 4.6.4. We replace the tuple A =
(5,2, x,0, (G', &, 2), 7) by the isomorphic tuple B = (5,7, x',0- (5", (G, €, 2),5),
where (g : S(F') — C* is the character defined by ({,) in Definition 4.6.5.

Step 3: Consider the maximal torus jS C G’ and the character on it given by

o' = (6 - {51) 071 €fram - €™, Here € ram is the character of jS(F) defined
in Definition 4.7.3, and ™™ is given by (4.3.3). The character j¢’ is regular
according to Facts 4.3.1 and 4.7.5, but may fail to be extra regular due to the
occurrence of €f ram. We assign to the isomorphism class of the supercuspidal
datum A the representation ;g jory of G'(F). It is regular, but may fail to

89



be extra regular. However, it will be extra regular at least when the point of
Brd([G']°, F) associated to jS is superspecial, by Lemma 3.4.10.

Note that, since (g, €fram, and €™, are tamely ramified, the two characters
and 0-(g ' of S(F), and the character j#' of jS(F), all determine the same mod-
a-data (@, )s and hence the same y-data (xa)q. Therefore the above construc-
tion is well-posed and the character of the representation ;g ;o) evaluated
at shallow elements of S(F) is given by (5.3.3). This follows from Corollary
4.10.1.

We define the compound L-packet II, to be the following set of equivalence
classes of representations of rigid inner twists. Fix a regular supercuspidal
L-packet datum (5,7, x, 0) corresponding to ¢. For each regular supercuspi-
dal datum (5,7, x, 6, (G',&, 2), j) let 7; be the representation of G’(F’) just con-
structed. Then

= {(G/7£’Z77Tj)}’ (534)

where (5,7, x,0, (G', €, 2), j) runs over all regular supercuspidal data mapping
to the regular supercuspidal L-packet datum (5,7, x, 6). By Lemma 3.4.12 there
exists at least one regular supercuspidal datum for which the point associated
to jS in B4([G"]°, F) is superspecial, which shows that II, contains extra reg-
ular supercuspidal representations.

We now describe the internal structure of the compound L-packet II,. Let

S, = Cent(p,G). We apologize for the double usage of the letter S, which
seems unavoidable given the standard notation.

Lemma 5.3.4. The embedding 7 : S — G induces an isomorphism ST — Se.
For any finite subgroup Z C Z(G) defined over F' this isomorphism extends to

an isomorphism [S]* — S O

Proof. Let s € S,. Then s € Cent( (Pp),G) = M, and furthermore, s €
Cent(yp (I #),G). Thus s normalizes C' = Cent( (Ir ) G)° and then also T =
Cent(C, M). The projection of s € N (T M) to Q(S, M) is T-fixed, so by Defi-
nition 5.2.3 it must be trivial, i.e. s € T.

We have thus shown S, C 7. Since 7maps S isomorphically to 7' and we have

the equation £j, o s, = ¢, we conclude that 7 maps ST

as claimed.

isomorphically to S,

Via the canonical embedding Z(G) — S we can view Z as a subgroup of S
and form S = S/Z The 1somorphlsm 7:8 T extends uniquely to an
isomorphism S — T. But [S}Jr is the preimage of ST in S whlle St is the
preimage of S, in G thus by what was shown above also in T. 1t follows that
the isomorphism S = T identifies [S] with St |

Consider the composition H'(u — W,Z — S) — mo([S]")P — mo(SE)P,
where the first arrow is the isomorphism of [Kall8b, Proposition 5.3], and the
second arrow is the isomorphism obtained from the above Lemma. The con-
stituents of I, are in canonical bijection with the set of isomorphism classes
of regular supercuspidal data that map to the isomorphism class of (5,7, x, )
under the forgetful functor. We have already seen in (5.3.2) that this set is a
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torsor under H'(u — W,Z — S). In this way, we obtain a canonical simply
transitive action of (S} )" on IL,,.

In order to obtain a bijection IT,, — mo (S} )" from this simply transitive action,
we need to fix a base point. Fix a Whittaker datum tv for G. According to the
strong tempered L-packet conjecture there should exist a unique constituent
of II, that is t-generic. At the moment we can prove this conjecture only in
the case of toral representations, see Lemma 6.2.2. The same argument should
go through without much modification once the character formula for regular
supercuspidal representations, which is currently being developed in the work
of Spice and others, is known. Granted this result, let j, be the admissible
embedding S — G so that 7, is the generic constituent. Then we obtain the
perfect pairing
(= =)oy x m(Sf) = C

by

<(Gl7f,Z77Tj>,S>m = <inV(jm7j)73>> (535)
where on the right the pairing comes from the isomorphism H' (v — W, Z —
S) — mo(SS)P. Then the map s — ((G',€,2,7;), $)w is a character of mo(S}),
while the map (G', ¢, z,m;) — ((G',€,2,7j), —)w is a bijection identifying II,
with WO(S;)D.

If o’ is another Whittaker datum, then we have

(G & 2,m), 8)w = ((G', €, 2,7}), $)ro » (INV(Jro’s Jrw ), S)- (5.3.6)

5.4 Comparison with the case of real groups

Continuing the theme of §4.11 we will now show that the construction of the
regular supercuspidal part of the local Langlands correspondence given in §5.2
and §5.3 is a direct generalization of Langlands’ construction [Lan83] of real
discrete series L-packets and Shelstad’s [She82], [Shel0], [She08b] parameteri-
zation of these.

In this subsection only, let G be a connected reductive group defined and quasi-
split over R and let » : Wg — G be a discrete Langlands parameter. We
briefly recall the construction of the correspondence, following the exposition

in [Kall6, §5.6]. One chooses a Borel pair (f, E) in G and modifies p in its
conjugacy class so that o(C*) C T. Write o(z) = 2z, with pu,v € X,(T)¢,
w—v e X, (IA“) One shows that the image of y in X*(ﬁd)c is integral, i.e. be-
longs to X, (fad), and moreover regular [Lan83, Proof of Lemma 3.3]. One then
modifies ¢ again within its conjugacy class so that this image is B-dominant.
The parameter  is now pinned down within its G- -conjugacy class up to conju-
gation by T. The action of Wi on T via Ad(p(w)) factors through I'r and gives

a twist S of the D-structure on 7. The real torus S dual to S comes equipped
with a stable class of embeddings S — G’ (note that the images of any two such
embeddings are conjugate under G(R), but the embeddings themselves need
not be) into any inner form G’ of G (this follows from [Kot82, Corollary 2.2] in
the case of the quasi-split group G and from [She79, Lemma 2.8] for its inner
forms G’). By construction there is a distinguished Weyl-chamber in X*(5).
Using based x-data [She08a, §9] for R(S, G) with respect to that chamber, we
obtain an L-embedding ©j : S — G whose image contains the image of ¢.
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We write ¢ = Lj o pg, for ps : Wg — LS. The local Langlands correspon-
dence for S produces from ¢ a character § : S(R) — C*. For any embedding
j S — G welet 7; be the unique discrete series representation of G(R) whose
character evaluates at a strongly regular element v € jS(R) to the function
(4.11.1), where we are to replace S and @ in this formula with jS and 6 o j~1.
The L-packet on any inner form G’ of G is defined to be the set {7} where j
runs over the rational classes of embeddings j : S — G’ in the given stable

class.

Fixing a Whittaker datum tv, there is a unique embedding j, : S — G such
that the corresponding representation =;, is to-generic [Kos78], [Vog78]. For a
canonical internal parameterization of the L-packets we use rigid inner twists.
Fix a finite subgroup Z C G, a rigid inner twist (G, &, z) realized by Z, and an

admissible rational embedding j : S — G’. Given s € S} = [S]T, we define

<(G/a 57 Za 7Tj7 5>m = <inV(jmaj)» S>7
where the pairing on the right is the one from [Kall6, Corollary 5.4].

This exposition makes the direct analogy with the constructions of §5.2 and
§5.3 almost obvious. In fact, the exposition here is already slightly different
from the one presented in [Kall6, §5.6] in that it uses L-embeddings and fac-
torization of parameters, where in [Kall6, §5.6] we kept more closely to the
original construction in [Lan83]. That the two presentations are equivalent is
explained in [Shel0, §7b]. With §4.11 in mind, the only point where the con-
struction of regular supercuspidal L-packets may seem to differ from that of
real discrete series L-packets is that in the real case one chooses a specific pa-
rameter within its G-conjugacy class based on a pinning of G and the notion
of dominance. This choice is also used to construct the L-embedding *j using
based x-data with respect to the same Weyl chamber that gives the notion of
dominance. But if we use the argument of §4.11 to rewrite the real discrete se-
ries character formula (4.11.1) as (4.10.2), then Lemma 5.3.1 tells us that we can
use arbitrary y-data, at which point the B-dominance of i becomes irrelevant
and we recognize the construction in the p-adic case as a direct generalization
of the construction in the real case.

6 TORAL L-PACKETS

In this section we will consider the special case of those regular supercuspidal
L-packets whose constituents are toral supercuspidal representations. These
are the representations arising from Yu-data of the form (S C G,1,(¢o,1)),
where ¢¢ : S(F') — C* is a G-generic character of positive depth. These repre-
sentations were constructed by Adler in the paper [Ad198], which, as far as we
know, was the first construction of supercuspidal representations for general
reductive p-adic groups, and whose approach formed the basis of Yu’s more
general construction.

The class of toral supercuspidal representations is general enough to include
the epipelagic representations [RY14] (such representations always have depth
1/m for some natural number m) when p does not divide 2m [Kall5], and
the representations considered by Reeder [Ree08]. It is at the same time spe-
cial enough so that the construction of L-packets simplifies considerably. The
biggest advantage of this class of representations is that, from the current stand-
point, they are the only ones of the regular supercuspidal representations for
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which the full character formula is known for all members of the L-packet. This
will allow us to sharpen and extend our results — we will prove the existence
and uniqueness of a generic constituent in each toral L-packet, as well as the
stability and endoscopic transfer of these packets.

6.1 Construction and exhaustion

In this subsection we assume that the residual characteristic of F' is odd, not
a bad prime for G, and not a divisor of |7o(Z(G))|. We further assume that
the characteristic of F' is zero due to our use of [Kall6], but as we already
mentioned this assumption is likely unnecessary and can be avoided if one
uses [Kot] instead of [Kal16], at the expense of not treating all reductive groups.

Definition 6.1.1. A toral supercuspidal parameter of generic depth r > 0 is a dis-
crete Langlands parameter ¢ : Wr — LG satisfying the following conditions.

~

1. Cent(¢(I"), G) is a maximal torus and contains ¢(Pr);

2. p(I"™") is trivial.

O

~ ~

Since Cent(p(I),G) C Cent(¢(I"), G), the toral supercuspidal parameters are
a special case of the strongly regular supercuspidal parameters of Definition
5.2.1 and hence their L-packets have already been constructed in §5.3. How-
ever, since the construction in this special case is considerably simpler, we shall
examine it in detail, with the hope that it will be more useful to the readers who
are only interested in this special case, and will also serve as an introduction to
the more general construction.

The first step is to give the corresponding subcategory of the category of regu-
lar supercuspidal L-packet data. We will call it the category of toral L-packet
data of generic depth r. A regular supercuspidal L-packet datum (S,7, x,6)
will belong to this subcategory precisely when 6 is a G-generic character of
depth r.

Proposition 6.1.2. The construction of Proposition 5.2.7 restricts to a bijection

between the C?-conjugacy classes of toral supercuspidal parameters of generic
depth r and the isomorphism classes of toral L-packet data of generic depth r.
g

Proof. We fix a I'-stable pinning (T, B,{Xz}) of G. Let ¢ : Wr — LG be a toral
supercuspidal Langlands parameter of generic depth . We conjugate ¢ so that
Cent(¢(I"),G) = T. The composition

Wi 2 N(T,G) x Wg — Q(T,G) x Wp — Autyg(T)

factors through a finite quotient of Wx and endows T’ with a new I'-module
structure, which we will record by using the name S. The assumption that
¢(Pg) C T ensures that P acts trivially on S. The I'-module § is the com-
plex dual torus to a torus S defined over F'. Let J: S — @ be the embedding
coming from the equality S=Tof complex tori. The @—conjugacy class of the
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embedding 7'is I'-stable and we obtain a I'-stable G-conjugacy class of embed-
dings S — G as in §5.1, which we will call admissible. Choose minimal tame
x-data for R(S, G). Via the construction of [LS87, §2.6] it gives a G- -conjugacy
class of L-embeddings S — G whose elements extend the G—con]ugates of 7.
We choose one particular L-embedding j, within this conjugacy class whose
restriction to S is equal to 7. By definition, the projections of £j, (1 x w) and
o(w) in QT,G) x W are equal for any w € Wp. This implies that the image
of ¢ is contained in the image of “j,, which in turn leads to a factorization

Y= L.jx O PS,xs

for some Langlands parameter ¢g, : Wr — £S. Let 6, : S(F) — C* be
the corresponding character. Since any L-embedding that is @—conjugate to
Lj. and also restricts to 7 must be conjugate to “j, by an element of T, the
§—C0njugacy class of ¢g ,, and hence the character 6,, are independent of the
choice of “j,. They depend only on the choice of .

We claim that §,, is generic of depth r. Let E/F' be the splitting field of S. By
[Kall5, Lemma 3.2] we need to check that for each root « € R(S, G) the charac-
ter B /E), — C* givenby 0, o Ny r oo is non-trivial and that the stabilizer
of 0, o Ng/p|s(p), in Q(S, Q) is trivial. For the first point, the parameter of
0y © Ng/p o a" is the homomorphism & o ¢g|w,. By [Yu09, Theorem 7.10]
the character restricts non-trivially to £ if and only if its parameter restricts
non-trivially to Iy, = I}. But the restriction of & o g to I} is equal to the re-
striction of @ o ¢, by the tameness of x-data, and the latter is non-trivial, due to
Cent(p(I"), CAY') = T. The second point follows from the same reasoning — the
stabilizer in Q(S, G) of 0, o Ng,r|s(E), is equal to the stabilizer of ¢|;-, which
is trivial by assumption.

The object (5,7, x, ) we thus obtain belongs to the category of toral L-packet
data of generic depth r. The proof that its isomorphism class depends only on

the @-conjugacy class of ¢ is exactly the same as in Proposition 5.2.7.

We now give the converse construction. Given a toral L-packet datum (S, 7, x, 0)
of generic depth r we use the x-data to extend 7to an L—embedding Lj.Lg
LG and let ps : Wi — LS be the parameter for 6. Define ¢ = Lj o pg5. We
claim that ¢ satisfies the conditions of Definition 6.1.1. Since Pr acts trivially
on S, we can regard | p, as a homomorphism Pr — S. We use again [Kal15,

Lemma 3.2] and see that the genericity of # implies that the restriction pg| -+ is
trivial; the centralizer of |- in Q(S, G) is trivial; and for each a € R(§ ,G) the
composition @ o gl is non-trivial. The tameness of the x-data and of G im-
plies that we can replace ¢ g with ¢ in these statements, from which we obtain
that the homomorphism o ¢|p,. is trivial on I"+ and Cent(70 o(I"), G) = 7(5).

Thus ¢ is a toral supercuspidal parameter of generic depth r. The proof that its
G-conjugacy class depends only on the isomorphism class of (5,7, x, 0) is again
the same as for Proposition 5.2.7. |

We define the category of toral supercuspidal data of generic depth r as a sub-
category of the category of regular supercuspidal data in the same way: A
regular supercuspidal datum (5,7, x, 0, (G1,§, 2), j) belongs to the subcategory
precisely when 6 is G-generic of depth r. For any such datum the representa-
tion associated to it in §5.3 is a toral representation of depth r. Indeed, it is by
construction the regular supercuspidal representation 7 ;g ;o) of G'(F), where
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we recall that j¢' :=f0oj ! ¢ #,ram - €™, Since both € ram and €™ are of depth
zero, jb' is still G-generic of depth r. In the Howe factorization algorithm of
3.6 this is the second “trivial” case, i.e. in the notation of that subsection we
haved =1,r; =79 >r_1 = 0,8 = G° C G! = G, so we obtain the twisted Levi
sequence S C G and the Howe factorization (1, 6,1). The resulting Yu-datum
then reduces to an Adler datum.

We conclude that the compound L-packet II, constructed in §5.3 consists of
toral supercuspidal representations of depth r and moreover every such repre-
sentation is contained in one of these L-packets.

The internal parameterization of IL,, is as described in §5.3, but with the added
precision that we are now in the position to prove the existence and uniqueness
of a generic constituent. This will be done in the next subsection.

6.2 Characters and genericity

We keep the assumptions on F' from the previous subsection: the residual char-
acteristic of F' is odd, not a bad prime for G, and not a divisor of |7y (Z(G))|,
and furthermore the characteristic of F' is zero. From now on this latter as-
sumption becomes more significant, as it is made in the various references we
cite (although we do expect that most of the results we cite remain valid in
sufficiently large positive characteristic).

In this and the following subsections we will use the character formula for toral
supercuspidal representations of §4.8. For this, fix a character A : F* — C*
of depth zero. We will use the following short-hand notation: ¢(T¢ — Ty) =
en(X*(Te)e — X*(Ty)e, A), 77 = j~(7), and 7 X* = dj(X¥).

Lemma6.2.1. Let (5,7, x,0, (G', €, 2), j) be a toral supercuspidal datum of generic
depth r and let 7 be the corresponding representation of G'(F'). The character
of 7 at a regular semi-simple element 7' = 7., - 7, € G'(F) is given by

e(G') er(Te — Ty) 3 b 1giv - 1giv
- Aa S , / 972 2] QZ P 1 / ),
e(J/) |DG’ (7’)‘5 II [CL X ](’Y< ) (’Y< )LJ J9X ( Og('Yz ))

gEJ (F)\G'(F)/jS(F)
v2,.€jS(F)

where J' = Cent(7.,,G")°, and T and T; are the minimal Levi subgroups in
the quasi-split inner forms of G’ and .J'. O

Proof. This follows directly from Corollary 4.8.2. |

Let (T, B,{X,}) be an F-pinning of G. Together with the character A, it deter-
mines a Whittaker datum w for G.

Lemma 6.2.2. Let (5,7, x, #) be a toral L-packet datum of generic depth r. There
exists a unique (up to G(F)-conjugacy) admissible rational embedding jn :
S — @G such that the representation corresponding to (5,7, x, 6, (G,id, 1), jw ) is
tw-generic. Moreover, the splitting invariant [LS87, §2.3] for the torus j,S C G
relative to (T, B, { X, }) and the mod-a-data constructed in (4.7.3) is trivial. O

Proof. The statement about genericity is a result of DeBacker and Reeder, [DR10,
Proposition 4.10]. In that reference the statement is formulated only for the case
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that S is unramified, but the same argument goes through in general. We limit
ourselves to a sketch:

Let j : S — G be a rational admissible embedding, let 7; be the representation
of G(F') corresponding to the supercuspidal toral datum (5,7, x, 6, (G,id, 1), j),
and let ©; be its character. According to the Harish-Chandra local character
expansion, for strongly regular semi-simple elements v € G(F) that are suffi-
ciently close to the identity we have

0,(7) = Z c(O) o (log(y)),

(@]

where the sum runs over the set of nilpotent orbits of the adjoint action of G(F)
on g(F), c(O) are complex constants, and [ip are the Fourier transforms of the
invariant integrals along these orbits.

Fix a G(F)-invariant non-degenerate symmetric bilinear form 3 on g(F’). De-
fine an element f, € u™(F), where U~ is the unipotent radical of the Borel
subgroup of G that is T-opposite to B, and u~ is its Lie-algebra, by f, =
Yo B(Xa, X_o)t-X_,, where the sum runs over the B-simple roots of T. This
element has the property that the character of u(F’) given by X — A(8(fw, X)),
when composed with exp, is equal to the generic character of U (F') determined
by the splitting (T, B, {X,}) and the character A. The main result of [MW87]
then states that the representation r; is tw-generic if and only if the constant
¢(Ad(G(F)) fr) is non-zero.

According to Lemma 6.2.1, if g = g>, € G(F) is a strongly regular semi-simple
element, then

0;(9) = |Dc(g)|77qx- (log(g)) = | Da(? X*) |2 g i x- (log(g))-

Equating the last two displayed formulas and using a result of Shelstad [She89],
reinterpreted as [DR10, Proposition 4.2], we see that c(Ad(G(F)) f) is non-
zero precisely when the G(F)-orbit of jX* meets the Kostant section f,, +
Cent(ey,g), where e, = > (X4, X_o)Xa, and where we are interpreting
JjX* € g*(F) as an element of g(F) via 8. From this, the uniqueness of jy,
follows.

We turn to the triviality of the splitting invariant. Let X, = 5(Xa, X_o)Xa-
The main result of [Kot99] asserts that the splitting invariant of j.,S vanishes,
if it is computed with respect to the pinning (7', B, {X/,}) and the a-data a, =
dy(jwX*), for v € R(S,G). Now dy(jwX*) = B(H,,jnX*) - B(Xy, X_) 7L
The function o — S(X,, X_,) extends to a Q(7, G) x I'-equivariant function
and then [Kall3, Lemma 5.1] implies that the splitting invariant of j,, S van-
ishes, if it is computed with respect to the splitting (7', B, { X, }) and the a-data
B(Hy, jwX™). But the a-data 8(H,, juX*) = (H,,X*) projects to the mod-a-
data of (4.7.3). |

6.3 Stability and transfer

In this subsection we assume that F' has characteristic zero and sufficiently
large residual characteristic, so that the logarithm map is defined on G(F)g.
It is shown in [DR09, App. B] that this is true provided p > (2 + e)n, where e
is the ramification degree of F'/Q, and n is the dimension of a faithful rational
representation of G.
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We continue with a toral supercuspidal parameter ¢ of generic depth r with
associated L-packet II,. For any rigid inner twist (G',¢, ) and any s € S}
define the function

96@,!1):1: = G(G/) Z <(Gl7§,$,ﬂ'),8>m : 97‘1’

(G’,g,r,ﬂ)GHg,

on G'(F'). According to (5.3.6), when s = 1 this function does not depend on

the choice of o and we can denote it by SO, , = 0] , ..

Lemma 6.3.1. The value of ©°

.1, at a regular semi-simple element 7' = 7., -
75, € G'(F) is given by

e(J’)W Z A 02002 S0 9,75 )

where J', Tg, and T; are as in Lemma 6.2.1, j runs over the set of .J'-stable
classes of embeddings S — J’, whose composition with J’ C G’ is admissible,
k runs over the set of J'(F')-rational classes inside the stable class j, and jy, :
S — G is the admissible embedding given by Lemma 6.2.2. O

Proof. Let (5,7, x,0) be a toral L-packet datum of generic depth r in the isomor-
phism class associated to ¢ by Proposition 6.1.2. According to Lemma 6.2.1, for
any admissible embedding j : S — G’ the value at 7' of the character ©; of the
corresponding representation is given by

e(G’ —Ty) R
(( ) |DG, J ZA?}:}S a/ X VjT)H(WZCT)Lj’,kX* (10g(’yzr))’

where k runs over the set of J'(F')-conjugacy classes of embeddings S — J’
that are G’ (F)-conjugate to j. We have ©F, , , = ZJ (inv(jw, j), sy©; according
to (5.3.5), where the sum runs over the G'(F)-conjugacy classes of admissible
embeddings j : S — G’ defined over F. Putting both sums together and re-
indexing we see that ©F, , . (7) is equal to

TG—T 7
CART e Zvaym, S)ATFLa X1 (V)05 )y x- (log(1,),

where now j runs over the set of J-stable conjugacy classes of G’-admissible
embeddings S — J' defined over F' and k runs over the set of J'(F')-conjugacy
classes of embeddings S — J' in the J'-stable class of j. Since 7, is central in
J’, this expression is equal to the one in the statement of the lemma. |

Before we begin the study of stability and endoscopic transfer, we make the
following convention. Let T' be a maximal torus of G and vy € T'(F') a strongly
regular semi-simple element with a normal r-approximation v = v, - y>,. If
T' is a maximal torus in some inner form of G or in an endoscopic group of G
and f : T — T’ is an admissible isomorphism, then f(y) = f(v<,) - f(y>) is
a normal r-approximation. This is proved in [DS18, Lemma 5.2] for the case
of stable conjugacy, but the argument works without change for the case of
transfer to an endoscopic group. This fixes the approximations of all stable
conjugates and transfers of v. It is well-defined, because the only admissible
automorphism of T' carrying v to itself is the identity.
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Theorem 6.3.2. The function SO, . is stable across inner forms. That is, for any
two rigid inner twist (G}, &1, x1) and (G4, &2, z2) and stably conjugate strongly
regular semi-simple elements v{ € G/ (F') and v} € G5(F) we have

Sgtp,wl ('Y{) = SG«p,xz (’Yé)
U

Proof. It is enough to consider the case where one of the two rigid inner twists
is trivial. Thus let (G', &, z) be a rigid inner twist of G, ¥ = v<, - 7>, a strongly
regular semi-simple element of G(F) and 7' = 7., - 7%, € G'(F) stably con-
jugate to . Let J = Cent(y<,, G)° and J' = Cent(y.,,G’)°. The admissible
isomorphism f, . (recall notation from §5.1) provides an inner twist J — J’
which carries v, to 7% ,.. Moreover, for every .J-stable class of G-admissible ra-
tional embeddings j : S — J, j' = f, 4 o j is a J'-stable class of G’-admissible
rational embeddings S — J', and j <+ j is a 1-1 correspondence, under which
we have j' o j7'(v<,) = 7L,. For each pair j <+ j’ of corresponding stable
classes of embeddings, the result of Waldspurger [Wal06, Theoreme 1.5] and
Kottwitz’s computation of e-factors [Kall5, Theorem 4.10] imply

e(1) Y B x-(log(yzr) = e(J) Y 7w x-(log(75,))- u
™

k

We will now prove the endoscopic character identities for toral L-packets. Let
¢ = (H, s,n) be an extended endoscopic triple for G. This means that (H, s, 7))
is an endoscopic triple and n : “H — LG is an L-embedding extending
n: H — G. While an extension of 7 to n need not always exist, the argument
for the slightly more general case where £7 does not exist is the same, but the
notation is more cumbersome, so we leave it to the reader and refer to [Kall6,
(5.11)] for a formulation of these identities in this general case. We may further
assume that H splits over a tame extension and the 1-cocycle Wp — G, given
by restricting 7 to Wy and projecting to G, is tame. Without this assump-
tion, our problem would be vacuous, as a regular supercuspidal parameter, in
particular a toral parameter, would not factor through .

For any rigid inner twist (G’, £, z) we have the normalized transfer factor A =
Ay » defined in [Kal18b, (5.10)]. This factor was decorated with a prime sym-
bol in loc. cit., because it is a normalization of the factor A’ of [KS, §5.1], which
itself is slightly different from the factor A of [LS87]. Nonetheless, to aid read-
ability, we will drop the prime decoration here. As in [Kall5, §6.4], we denote
by A the transfer factor A with its part Ay removed.

Lemma 6.3.3. Let " € H(F) and v/ € G'(F) be strongly regular semi-simple
elements. For any sufficiently large natural number & we have

A(P)/gr : h/gr]p

2 2k

k o
er 57T = AT,
a
Proof. Since we have arranged that an admissible isomorphism carrying v/

to ' carries v to 7, and 'ygT to 74, the notion of relatedness (see §5.1) is
unchanged.

We must compare the terms Ay, Arr, Arrr, and Aggy, of both sides. For each
root a of 7" = Cent(y/, G') we have ord(a(vy%,) — 1) < r (or a(y%,) = 1) and

98



ord(a(v%,) — 1) > r. It follows that 7., - [7’>T]p2k is still a regular element
of T'. Thus A; and Ay, don’t change. To treat the other two, we choose
tamely ramified y-data. Then Aj;j, is a tamely ramified character of T"(F)
and thus any power of 7% ,. belongs to its kernel. For A;;, we apply Lemma
4.6.7 and see that the contributions of those roots a with a(v.,) # 1 to both
sides are the same. If a is a root with a(v%,) =1, lety = a(44,.) € [F],. Then
the contribution of « to the left-hand side is Xa(agl(yp% —1)). According to
[Hal93, Lemma 3.1] and the tameness of x,, this is equal to x (ag 'p**(y — 1)),
which is equal to the product of the contribution of « to the right-hand side
with g (p)%F = 1. [ |

Theorem 6.3.4. Let 7' € G'(F) be a strongly regular semi-simple element with
a normal r-approximation y = 7., - 74,. Assume that ¢ = 7o o for o
Wpr — YH. Then

s A D Y )
Op (V) = Z Am,m(VH,W/)WS@pHJ(VH)-
~H € H(F) /st

O

Proof. Let T’ = Cent(y’,G"). We follow the beginning of the proof of [Kall5,
Theorem 6.6]. In doing so, we will make active use of the descent lemmas es-
tablished in [Kall5, §6.3]. Rather than recalling their fairly technical statements,
we refer the reader to the cited exposition, which is self-contained.

Let Y be a set of representatives for the stable classes of preimages in H(F’) of
~<r chosen so that the connected centralizer H, = Cent(y, H)° is quasi-split
for each y € Y. According to [Kall5, Lemma 6.4] we can write the right hand
side of the equality in the statement as

Y m@E)E Y Apazr) 2o S0 0 ()
D% ()

yeYy 2€H, (F)1 /st

where HY denotes the (possibly disconnected) centralizer of y in H, and H,,(F');
is the subset of H,(F') consisting of those elements z for which yz is strongly
regular semi-simple and has normal r-approximation with head y and tail z.
Applying Lemma 6.3.3, we can rewrite this as

_ 0 2k 2 DH
S o H) ) Y A7 4 () Pt 50 a(52). (6320
yey 2€H, (F), /st

As before let J' = Cent(v.,,G’)°. Recall the set =(H,, J') from [Kall5, §6.3].
It encodes the different inequivalent ways in which H,, can be realized as an
endoscopic group of J’ via descent. There exists a unique { € Z(H,, J') for

which the element yz2"" € H,(F) is related to the element ’y’<r(’y’>r)p2k (for
every value of k). We apologize here for the double use of ¢, but the inner
twist £ : G — G’ will not be used in this proof. Taking k large enough, we
can apply the Langlands-Shelstad descend theorem [LS90, Theorem 1.6] and
conclude that there is a unique normalization Aﬁﬁs;’g of the transfer factor for
the group J’ and its endoscopic group H,, realized by descent according to &,
with the property

2k 3 2k 2k

d
Adeset (2™ 5L ()Y = A (2?4 (2 )7,
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For any other ¢ we take A?ﬁff to be an arbitrary normalization of the transfer
factor for J' and H, and have

2k

AR (2™ L (AL, )7 ) = 0.

This discussion allows us to rewrite (6.3.1) as

o 2k 2k

S m(EET YT AR o 0 ) B 50, (02),
yey & z€H,(F) /st

(6.3.2)
where ¢ runs over the set Z(H,, J'). The sum over z can be extended to H, (F)s,,
since for elements outside of H,(F'); the transfer factor will be zero. Further-
more, since y is central in H, and 7., is central in J’, we may apply [LS90,
Lemma 3.5.A] and obtain

AT W A ()P = A e L) AT ()P ),
where A ¢ is the character of Z(J')(F') denoted by Ag in [LS90]. Increasing k
if necessary we have
2k

o 2k 2k o ./ 2k
ARSE (P (74,07 ) = Al L (log(2P ), log((75,)7 ),

where on the right we have the transfer factor for the Lie-algebra of J’ that is
compatibly normalized with the one on the left. Since the Lie-algebra transfer
factor is invariant under multiplication by F*:2, we can remove the p**-power.
Plugging this into (6.3.2), replacing SO .r ; with the formula from Lemma
6.3.1, and rearranging terms, we arrive at

W 2 Imo(H BT D03 A5 Xty (639

yey

Ty —Tw,) Z A . (Z,1log(( 'y>r ZLm“kHX*
Zeby (F)s/st

Here jy and ky run as in Lemma 6.3.1 but with target H instead of G’, and we
have fixed a toral L-packet datum (SH, 7% 5 ) for oH.

Fix a triple (y, &, ju) contributing to the upper line of (6.3.3). Via [Kall5, Lemma
6.5] this triple corresponds to a J'-stable class of rational G’-admissible embed-
dings j: S — J'.

Fix a J'(F)-invariant non-degenerate symmetric bilinear form 5 on the Lie-
algebra j’(F') and use it to identify this Lie-algebra with its dual. The results of
Waldspurger [Wal97], [Wal06], and Ng6 [Ng610], imply that then

Z A’ +(Z,log(( ’y>T ZLhy:kHX*

Z ey (F)s /st

is equal to

(', B)7a by, B) ZA (G X kX )Tk x- (l0g(75,),

where now k runs over the set of J'(F)-conjugacy classes in the .J'-stable class
of j. According to [Kall5, Theorem 4.10, Lemma 4.8] we have

(s B)va(by, B)~F = e(J)e(Tn, — Ty) 11 Ko (Ba);

a€R(jS,J' —Hy)sym/T
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where « runs over the I'-orbits of symmetric roots of j.5 in J' that are outside
of H,. Appealing to the correspondence (y,&,ju) <> j of [Kall5, Lemma 6.5]
we can rewrite (6.3.3) as

W DA 0™ ) ()0 (7 e( S )e(Tr — Ty) (6.3.4)
J

H H(X(BO/) Z Ai;,a:(jHX*a kX*)/L\j',kX* (log(’}/%r))

Q€R(jS,J' —Hy)sym/T &
Selecting a small z € F* we undo the descent of the transfer factor by
(V)AL 4 (G X7, BXT)
A 2 (yexp(22ia X*), 7, exp(22k X))
= Ap1(yexp(22iuX*), ver exp(22jn X)) (inv (ju, k), s),

where 7<, = jiwk ™' (7L,). Then (6.3.4) becomes

e(J") Z A?]:}S,H[GH, X7 m)0 (i )e(Tyy — Ty) H Ko (Ba) (6.3.5)

I
D (") QER(jS,J' — Hy)sym/T

At (9 exp(22 X "), v<r exp(22w X)) S0V G, k) )75 1 x- (08(72,))-
k

Comparing this with Lemma 6.3.1 we see that the theorem will be proved once
we prove that Ay, 1 (yexp(22jg X*), v<r exp(22jwn X *)) is equal to

Aabs ’jr 0 ’Y/jr
e I1 Fia(Ba),
AT (y H)OH (yir) a€R(jS,J' —Hy)sym/T'

where (5,7, x, ) is a toral L-packet datum corresponding to ¢.

For this we examine the structure of A, ;. Its first argument belongs to the
maximal torus jzS” C H and its second argument belongs to the maximal
torus j,S C G. Modifying (S, 7% yH 6H) within its isomorphism class, we
may assume that the isomorphism 77 o 770 77 : §# — § is -equivariant.
Using the dual of this isomorphism we identify S¥ and S and also obtain an
admissible isomorphism jz.S — ji.S that we use in the discussion of the trans-
fer factor. We select as x-data for j,,.S the transport via jy, of the y-data from
the toral L-packet datum (S, 7, x, ), and as a-data we select the one used in the
character formula of Lemma 6.2.1, namely the one from (4.7.3). The admissible
isomorphism ji, o j;' transports this to a-data and y-data for S¥. By modify-
ing the toral L-packet datum (S, 7%\ 6H) within its isomorphism class we
may assume that the resulting y-data is the transport via jz of the y-data x*.

Recall that A = €(Te — Tu)ArArrArrr,, the term Ajpp, being trivial by our
choice of admissible isomorphism. According to Lemma 6.2.2 we have A; = 1.
By definition, Ayyy, is the value at ., of the character of j,,.5 given by 6 o
Jw' /0™ 0 jut. Taking » small enough and using ' (v.,) = ju' (v<r) = i7" (¥)
we get Arrr, = 0(57" (v<r))/0" (i (1))

To handle the term A;; we apply Lemma 4.6.7, which reduces the proof to the
claim that for small z we have

[ e = S enEin ),

abs,Hy / o . %
@€R()S,J —Hy)sym/T A (22 X)
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Indeed, we have

im a(exp(z?jn X)) — 1 =da(X*) = (Hy, X" 8"

z—0 22

and recalling that a, = (H,, X*) we see

. (oz(exp(szmX*)) _ 1) ). .

Qo
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