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Abstract

We show that, in good residual characteristic, most supercuspidal rep-
resentations of a tamely ramified reductive p-adic groupG arise from pairs
(S, θ), where S is a tame elliptic maximal torus of G, and θ is a character of
S satisfying a simple root-theoretic property. We then give a new expres-
sion for the roots of unity that appear in the Adler-DeBacker-Spice charac-
ter formula for these supercuspidal representations and use it to show that
this formula bears a striking resemblance to the character formula for dis-
crete series representations of real reductive groups. Led by this, we explic-
itly construct the local Langlands correspondence for these supercuspidal
representations and prove stability and endoscopic transfer in the case of
toral representations. In large residual characteristic this gives a construc-
tion of the local Langlands correspondence for almost all supercuspidal
representations of reductive p-adic groups.
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1 INTRODUCTION

This paper pursues multiple interconnected goals, all of which are related to
Yu’s construction of supercuspidal representations of reductive p-adic groups
[Yu01], which generalizes Adler’s earlier construction [Adl98]. Recall briefly
that if G is a connected reductive group over a p-adic field F that splits over
a tamely ramified extension of F , a supercuspidal representation of G(F ) can
be constructed by giving the following data: a tower G0 ( · · · ( Gd = G of
connected reductive subgroups that become Levi subgroups of G over some
tame Galois extension of F , a sequence of characters φi : Gi(F ) → C× for all
i ≥ 0 satisfying a certain genericity condition, and a depth-zero supercuspi-
dal representation π−1 of G0(F ), which we may call the socle of the Yu-datum.
Representations obtained from this construction are customarily called tame,
even though they can have arbitrary depth (in the case of G = GLN , these
representations are called essentially tame in the work of Bushnell and Hen-
niart; when p - N all supercuspidal representations are essentially tame). Dif-
ferent Yu-data can give rise to the same representation and Hakim and Mur-
naghan [HM08] have made a precise study of when this happens. This leads
to the natural question of whether one can use simpler data to parameterize
the supercuspidal representations resulting from Yu’s construction. Ideally,
such data would consist simply of a maximal torus S ⊂ G and a character
θ : S(F ) → C×, in analogy with the classification of discrete series representa-
tions of real reductive groups, as well as that of supercuspidal representations
of GLN when p - N . There is an immediate obstruction to this: Many reductive
groups over finite fields (but not GLN ) have cuspidal representations that are
not immediately parameterizable by such pairs (for example cuspidal unipo-
tent representations), and this obstruction propagates to depth-zero supercus-
pidal representations of reductive groups over F . We therefore restrict our
attention to Yu-data that satisfy a slight regularity condition, which is automat-
ically satisfied for G = GLN , and whose main part is that the socle π−1 (when
it is non-trivial) corresponds to a Deligne-Lusztig representation (of the reduc-
tive quotient of a parahoric subgroup of G) that is associated to a character in
general position. Let us call supercuspidal representations arising from such
Yu-data regular. The first main goal of this paper is to give an explicit parame-
terization of regular supercuspidal representations in terms ofG(F )-conjugacy
classes of pairs (S, θ). Partial results towards this were obtained earlier by Mur-
naghan in [Mur11], where a further technical restriction is imposed on π−1 and
an injective map is constructed from the set of equivalence classes of regular
supercuspidal representations satisfying this additional technical restriction to
the set of G(F )-conjugacy classes of pairs (S, θ) consisting of an elliptic max-
imal torus and a character of it. No effective description of the image of this
map was known. For many purposes it is important to have a map in the op-
posite direction – from pairs (S, θ) to representations. In the current paper we
introduce the notion of a tame regular elliptic pair (S, θ). This notion is defined
in simple and explicit root-theoretic terms. We show that in the case of GLN it
specializes to the classical notion of an admissible character. We give an explicit
algorithm that, starting from a tame regular elliptic pair, produces a Yu-datum
for a regular supercuspidal representation. This algorithm can be seen as a
generalization to arbitrary reductive groups of the Howe factorization lemma
([How77, Lemma 11 and Corollary]) that plays an important role in the con-
struction of supercuspidal representations of GLN . Just as in the case of GLN ,
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the factorization we obtain is not unique, but we show that two possible fac-
torizations are related to each other by a process already introduced by Hakim
and Murnaghan, called refactorization. Their work implies that the resulting
supercuspidal representation is unaffected by this ambiguity, and may thus be
called π(S,θ). We then show that two such representations are isomorphic if
and only if the pairs giving rise to them are G(F )-conjugate. It is then straight-
forward to check that the map (S, θ) 7→ π(S,θ) is the inverse to Murnaghan’s
injection (after removing the additional technical restriction on π−1 imposed in
[Mur11]). This implies that the image of Murnaghan’s map is precisely the set
of G(F )-conjugacy classes of tame regular elliptic pairs. In this way, we obtain
explicit mutually inverse bijections between the set of G(F )-conjugacy classes
of tame regular elliptic pairs and the set of isomorphism classes of regular su-
percuspidal representations. This result includes as a special basic case the
classification of regular supercuspidal representations of depth zero. In fact,
this special case is needed as the basis of our argument. When G splits over an
unramified extension, regular depth-zero supercuspidal representations were
studied by DeBacker and Reeder [DR09]. As a preparation for the study of
regular supercuspidal representations of general depth, we extend their classi-
fication results to the case of tamely ramified groups G.

When the residual characteristic of F is not too small for G the work of Kim
[Kim07] shows that all supercuspidal representations of G(F ) arise from Yu’s
construction. Most of these are regular and thus of the form π(S,θ). For G =
GLN with p - N all supercuspidal representations are regular, but for other
groups non-regular supercuspidal representations do exist, as the example of
the four exceptional supercuspidal representations of SL2 shows. We believe
that our work can be used to reduce the description of general supercuspidal
representations in terms of elliptic (but not necessarily regular) pairs (S, θ) to
the description of cuspidal representations of finite groups of Lie type in terms
of Deligne-Lusztig virtual characters. It would be interesting to pursue this
question.

In the second part of the paper we study the Harish-Chandra character of su-
percuspidal representations, and in particular of the representations π(S,θ). A
formula for the character of a supercuspidal representation π arising from Yu’s
construction has been given by Adler and Spice [AS09] and subsequently re-
fined by DeBacker and Spice [DS18]. At the moment this formula is only valid
under the assumption that Gd−1(F )/Z(G)(F ) is compact, but in private com-
munication the authors have assured me that this assumption will soon be re-
moved. In the mean time we have proved in this paper a technical result which
removes this condition in a certain special case that still allows us to draw con-
clusions from it. The character formula [DS18, Theorem 4.6.2] has the following
form. Recall first that Yu’s construction produces not just a supercuspidal rep-
resentation π of G(F ), but in fact a supercuspidal representation πi of Gi(F )
for each i. Let r be the depth of πd−1. Given a regular semi-simple element
γ ∈ G(F ) admitting a decomposition (or approximation) γ = γ<r · γ≥r in the
sense of [AS08], the value at γ of the normalized Harish-Chandra character
function of π = πd is

Φπd(γ) =
∑
g

εsym,ram(γg<r)ε
ram(γg<r)ẽ(γ

g
<r)Φπd−1

(γg<r)µ̂gX∗(log(γ≥r)), (1.0.1)

where the sum is over certain elements g ∈ G(F ). The term µ̂ is the Fourier-
transform of an orbital integral (on the Lie-algebra of the connected centralizer
of γ<r), and εsym,ram, εram, and ẽ are roots of unity. This formula mirrors the in-
ductiveness of Yu’s construction by expressing the character of π = πd in terms
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of that of πd−1. The function εram is a character of S(F ) and this allows it to be
handled easily. In fact, as is pointed out in [DS18], this function might be an
artifact resulting from certain choices inherent in Yu’s construction of super-
cuspidal representations, and a modification of this construction could alter or
suppress it. On the other hand, the two functions εsym,ram and ẽ are not char-
acters of S(F ). Their definition is quite subtle and involves the fine structure
of the p-adic group G(F ), in particular its Bruhat-Tits building and associated
Moy-Prasad filtrations. This makes the analysis of these two functions with
respect to stable conjugacy and related questions difficult. The second main re-
sult of this paper gives a new expression for the product εsym,ram(γ<r) · ẽ(γ<r).
This expression is a quotient of two terms of the form

e(G)e(J)εL(X∗(TG)C −X∗(TJ)C,Λ)∆abs
II [a, χ](γ<r). (1.0.2)

Here J is the connected centralizer of γ<r and the terms e(G) and e(J) are the
Kottwitz signs [Kot83] of the connected reductive groups G and J . The tori
TG and TJ are the minimal Levi subgroups in the quasi-split inner forms of G
and J , and εL is the ε-factor at s = 1/2 of the given virtual Galois representa-
tion. Finally, the term ∆abs

II is an absolute version of the corresponding term of
the Langlands-Shelstad endoscopic transfer factor [LS87, §3.3]. What we mean
here by the word “absolute” is that while the term ∆II of Langlands-Shelstad
is associated to a group G and an endoscopic group Ge, the term ∆abs

II depends
only on the group G, and moreover one obtains the Langlands-Shelstad term
∆II as a quotient of the terms ∆abs

II , with the one for G in the numerator and
the one for Ge in the denominator.

If we apply the formula (1.0.1) to a regular supercuspidal representation π(S,θ)

and a regular semi-simple element γ ∈ S(F ) that is very far from the identity
(this is the special case in which we have been able to remove the compactness
hypothesis), we obtain as a consequence of (1.0.2) the following formula for the
un-normalized Harish-Chandra character Θπ(S,θ)

(γ)

e(G)εL(X∗(TG)C −X∗(S)C)

|D(γ)| 12
∑

w∈N(S,G)(F )/S(F )

∆abs
II [a, χ](γw)θ′(γw). (1.0.3)

Here we have set θ′ = εram · θ using the fact that εram is a character of S(F ).

Before we discuss the main implication of (1.0.2) and (1.0.3), let us consider
some of its features. First, none of the terms in (1.0.2) involve Bruhat-Tits the-
ory in their construction. Rather, they come from Lie-theory and basic p-adic
arithmetic and are thus more elementary (the reader might argue that ε-factors
of non-abelian local Galois representations are not elementary, but a result of
Kottwitz computes the particular ε-factor we are dealing with in elementary
terms, see [Kal15, §5.5]). Note also that the first three terms in (1.0.2) depend
only on the stable conjugacy class of γ<r, and it is just the term ∆abs

II that de-
pends on the full triple (S, θ, γ<r).

Another interesting feature of the character formula (1.0.3) is that it provides
an interpretation of most of the Langlands-Shelstad endoscopic transfer fac-
tor in terms of the characters of supercuspidal representations. Recall that the
Langlands-Shelstad transfer factor is given as a product

εL ·∆I ·∆II ·∆III1 ·∆III2 ·∆IV .

In view of (1.0.3), each of the factors εL, ∆II , ∆III2 , and ∆IV has an interpre-
tation as the quotient of a piece of the character formula for G by the corre-
sponding piece for Ge. The factors εL, ∆II , and ∆IV , are directly visible in
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(1.0.3), and so is also the factor ∆III2 , being the quotient of the character θ by
the corresponding character on the side of Ge. The factor ∆I also appears, al-
beit in a more subtle way: It measures which representation in the L-packet
is generic, as we will discuss in Subsection 6.2. We believe that in this way
the character formula (1.0.3) sheds a different light on the Langlands-Shelstad
transfer factor and shows that almost all parts of it are actually not of strictly
endoscopic nature (except for the term ∆III1 , which is indeed purely endo-
scopic and not a relative term in the sense discussed here). We hope that this
point of view will be fruitful in the study of more general functoriality beyond
the endoscopic case, and might in particular help with the study of the transfer
factors occurring there [Lan13].

The most striking feature of (1.0.3) is however the following: Each term in it has
an interpretation for groupsG defined over an arbitrary local field, not just a p-
adic field, and when F = R then (1.0.3) becomes the formula for the character
of the discrete series representation of the real group G(R) associated to the
elliptic maximal torus S and the character θ′ : S(R)→ C×, i.e. the well-known
formula

(−1)q(G)
∑

w∈N(S,G)(R)/S(R)

θ′(w−1γ)∏
α>0

(1− α(w−1γ)−1)
.

This can be seen as an instance of Harish-Chandra’s Lefschetz principle, which
suggests a mysterious analogy between the behaviors of real and p-adic reduc-
tive groups. In fact, if we consider the full character formula (1.0.1), we see
that it combines two extreme behaviors – the behavior at elements near the
identity (γ = γ≥r), which is controlled by µ̂, and the behaviour at elements
far from the identity (γ = γ<r), to which all the roots of unity contribute. The
Fourier-transform of the orbital integral µ̂ appears to belong to the world of fi-
nite groups of Lie type. For example, when π has depth zero, the term µ̂ is a lift
[DR09, Lemma 12.4.3] of a Green function, expressing the character of a cus-
pidal representation of a finite group of Lie type at a unipotent element. The
roots of unity on the other hand seem to belong to the world of real reductive
groups. This suggests that the behavior of p-adic groups is an interpolation
between the behavior of finite groups of Lie type and the behavior of real re-
ductive groups.

The close parallel between the characters of regular supercuspidal represen-
tations at shallow elements and the characters of real discrete series, besides
being alluring in its own right, also has practical value, which brings us to
the third main goal of this paper – the construction and study of L-packets of
regular supercuspidal representations and their matching with Langlands pa-
rameters. The original approach [Lan89] of Langlands to the construction of L-
packets of discrete series representations for real reductive groups was to first
extract from the Langlands parameter a character of the elliptic maximal torus
and to then use this character to write down the Harish-Chandra characters of
the constituents of the L-packet. The recent explicit constructions of L-packets
for p-adic groups [DR09], [Ree08], [Kal15] have followed this procedure to the
extent that they extract from the Langlands parameter a character θ of an el-
liptic maximal torus, but then they determine the constituents of the L-packet
not via their Harish-Chandra characters, but by plugging in some modifica-
tion of the character θ into Adler’s construction in the case of r > 0, or into
the construction of [DR09, §4.4] in the case of r = 0. The works of Adler-Spice
[AS09], DeBacker-Reeder [DR09], and DeBacker-Spice [DS18] on the character
formula for supercuspidal representations and our reinterpretation of it from
the first part of this paper allow us to implement a much closer analog of Lang-
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lands’ construction and use it to construct the L-packets that consist of regular
supercuspidal representations and associate them to Langlands parameters.

The class of parameters we consider in this paper contains as special cases
those considered in the above mentioned papers, but is much larger. More
precisely, it consists of those discrete Langlands parameters ϕ : WF → LG for
whichϕ(PF ) is contained in a maximal torus of Ĝ and Cent(ϕ(IF ), Ĝ) is abelian
(as well as a small amount of slightly more complicated parameters that we
need in order to obtain a balanced theory). Guided by the character formula
(1.0.3) we assemble the L-packet corresponding to a given parameter in the
same way as Langlands constructs the packets of real discrete series representa-
tions – by writing down (a piece) of the Harish-Chandra character of each con-
stituent of the L-packet. Our construction is nonetheless completely explicit:
Given a parameter, we explicitly give the inducing data for each constituent
of the L-packet. Conversely, one can also explicitly recover the L-parameter
from this inducing data. Important for this is the fact that the notion of a tame
regular elliptic pair (S, θ) has a direct interpretation in terms of LG.

Let us now describe the construction of L-packets in more detail. Initially
it follows the framework laid out in [Kal15]. A parameter ϕ satisfying the
above conditions determines an algebraic torus S. We use χ-data to produce
an embedding of Ljχ : LS → LG whose image contains the image of ϕ,
and hence leads to a factorization ϕ = Ljχ ◦ ϕS,χ, after which the parame-
ter ϕS,χ : WF → LS leads to a character θχ : S(F ) → C× via the Langlands
correspondence for tori. The torus S comes equipped with a stable class of
embeddings into G (and in fact into any inner form of G). For any embedding
j : S → G belonging to this stable class, we obtain an elliptic maximal torus
jS ⊂ G with a character jθχ of it. It is at this point that the construction of the
current paper diverges from the previous constructions. We write down the
formula

e(G)εL(X∗(TG)C −X∗(S)C,Λ)
∑

w∈N(G,jS)(F )/jS(F )

∆abs
II [a, χ](γw)jθχ(γw),

and demand that πj be the regular supercuspidal representation whose nor-
malized character at shallow elements γ ∈ jS(F ) is given by this formula. In
practice we ensure that this demand is met by explicitly providing the pair
(S, θ) that parameterizes the regular supercuspidal representation, but we feel
that the difference in point of view is essential. At this point, a remark is in or-
der about the choice of χ-data involved. In [Kal15, §5.2] we spent a lot of effort
to choose the correct χ-data so that the character θχ of S we obtain would be the
right one for Adler’s construction. From the current point of view, the choice
of χ-data is irrelevant. This is because both θχ and ∆abs

II [a, χ] depend on this
choice in a parallel way and the dependence cancels in the product. However,
∆abs
II [a, χ] also depends on a-data, and there is no other object in the character

formula with this dependence. This means that the burden is now on choosing
the a-data correctly. It turns out that this choice is given by a simple formula
(4.10.1) that is uniform for real and p-adic groups. The only difference in the
p-adic case is that one needs to pay attention to the first upper numbering fil-
tration subgroup of inertia whose image under ϕ is detected by a given root of
Ĝ. This is reminiscent of the study of the jumps of an admissible character in
the work of Bushnell and Henniart [BH05a], [BH05b]. In fact, our work here
might be seen as a generalization to arbitrary tamely ramified p-adic groups
of the work of Bushnell-Henniart, insofar as both have the goal of giving an
explicit realization of the local Langlands correspondence.
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Once the representations πj are determined, the L-packet is defined to be the
set {πj} where j runs over all rational classes of embeddings of S into G. The
internal parameterization of this L-packet is again done as in [Kal15, §5.3], the
only difference being that now we are using the cohomology functor H1(u →
W,−) introduced in [Kal16] instead of the set B(G)bas used in [Kal15]. This
allows us to uniformly treat all connected reductive groups, without condi-
tions on the center. A reader interested in having a parameterization in terms
of B(G)bas, say for the purpose of studying Rapoport-Zink spaces, can either
replace in the construction all occurrences of H1(u → W,−) with B(−)bas, or
appeal to the general results of [Kal18b].

We now give a brief overview of the contents of this paper. Section 3 con-
tains the study of regular supercuspidal representations. In Subsection 3.1 we
collect some basic facts about p-adic tori, and in particular extend Yu’s theo-
rem [Yu09, Theorem 7.10] that the local Langlands correspondence for tamely
ramified tori preserves depth from the case of positive depth to the case of
characters vanishing on the Iwahori subgroup and on the maximal bounded
subgroup of a torus. In Subsection 3.4 we classify the regular depth-zero su-
percuspidal representations of tamely ramified groups. This is based on the
notion of a maximally unramified maximal torus of a tamely ramified group,
that generalizes the notion of an unramified maximal torus of a group that
splits over an unramified extension. This notion, suggested by Dick Gross,
already appears in [Roe11], where the regular depth-zero supercuspidal repre-
sentations of ramified unitary groups are studied. We then review and extend
results of DeBacker [DeB06] on the parameterization of such tori, focusing on
the case of elliptic tori that will be needed later. Using these results, we clas-
sify the regular depth-zero supercuspidal representations of tamely ramified
groups, extending results of DeBacker-Reeder [DR09]. The main hurdle in the
construction of regular depth-zero supercuspidal representations is that if S is
a maximally unramified maximal torus of the connected reductive group G,
then the equality S(F ) = S(F )0 · Z(G)(F ) is not always true, as was pointed
out to us by Cheng-Chiang Tsai. This equality holds in the unramified case,
as well as in the case of ramified unitary groups, and makes the passage from
a cuspidal representation of a parahoric subgroup of G(F ) to a supercuspi-
dal representation of G(F ) straightforward. This equality is also equivalent to
the technical condition imposed on π−1 in [Mur11]: the G(F )-conjugacy class
of pairs (S, θ) corresponding to π−1 satisfies [Mur11, Definition 10.1(3)] pre-
cisely when S(F ) = S(F )0Z(G)(F ). We deal with the additional difficulty in
the general ramified case in Subsubsection 3.4.4 by exploiting the fact that the
Deligne-Lusztig variety X̃(ẇ) associated to ẇ ∈ N(T ∗) (notation as in [DL76,
§1.8]) admits an action of Tad(w)F by conjugation.

The rest of Section 3 is devoted to the study of the positive-depth case. In
Subsection 3.5 we review the study of Hakim-Murnaghan on when different
Yu-data produce the same representation and remove a hypothesis from their
results, namely Hypothesis C( ~G) of [HM08, §2.6]. In Subsection 3.6 we intro-
duce the notion of a Howe factorization and prove that any pair (S, θ) consisting
of a tame maximal torus and a character possesses a Howe factorization, gen-
eralizing to arbitrary reductive groups the Howe factorization lemma. In Sub-
section 3.7 we apply these results to the classification of regular supercuspidal
representations of positive depth. In Subsubsection 3.7.1 we define the notion
of regular Yu-data. In Subsubsection 3.7.2 we define the notion of a tame regular
elliptic pair and show that it specializes in the case of GLN to the classical notion
of an admissible character. In Subsubsection 3.7.3 we use Howe factorization
and the results of Hakim-Murnaghan to show that G-equivalence classes of
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regular Yu-data are in a natural bijection with G(F )-conjugacy classes of tame
regular elliptic pairs. This is done under the assumption that p does not divide
the order of the fundamental group of the derived subgroup of G, which is
also imposed in Subsections 3.5 and 3.6. We remove this assumption in Sub-
subsection 3.7.4, where we only require that p is odd and not a bad prime for
G.

Before moving on to Section 4 we mention here a recent draft [Hak17] that
was sent to us after this paper was written, in which Hakim reinterprets Yu’s
construction and gives a parameterization of the resulting representations in
terms of a different kind of data. His interpretation has the advantage that the
refactorization process studied in [HM08] becomes unnecessary. The goal and
results of this draft are quite disjoint from ours. It would be interesting to see
if the two approaches can be combined.

Section 4 is devoted to our reinterpretation of the Adler-DeBacker-Spice char-
acter formula. The technical heart of this section is Subsection 4.5, in which we
give a formula for a certain subset ordx(α) ⊂ R associated by [DS18, Definition
3.1.3] to a tame maximal torus T of G, a symmetric root α of T , and a point x
in the Bruhat-Tits building of T seen as embedded into the building of G. This
set plays a fundamental role in the character formula, because all roots of unity
occurring in the formula are defined based on it. According to [DS18, Corollary
3.1.9] there are only two possibilities for this set and Proposition 4.5.1 shows
that these possibilities are distinguished by the toral invariant introduced in
[Kal15, §4]. After giving the definition of the term ∆abs

II in Subsection 4.6 we
are in a position to rewrite the character formula. We need however to pay at-
tention to the technical assumption that Gd−1(F )/Z(G)(F ) is compact, under
which the character formula of [AS09] and [DS18] is valid. For toral super-
cuspidal representations this assumption is automatically satisfied and we can
write the full character formula in this case, which is done in Subsection 4.8.
For general regular supercuspidal representations π(S,θ) we are able to show in
Subsection 4.4 that this assumption can be dropped provided we consider suf-
ficiently shallow elements belonging to the torus S. We use this fact, together
with a computation in the depth-zero case done in Subsection 4.9, to prove
(1.0.3) in Subsection 4.10. We conclude with Subsection 4.11, where we com-
pare (1.0.3) with the character formula for real discrete series representations.

Section 5 contains the construction of regular supercuspidal L-packets. We also
give a description of the internal structure of each L-packet Πϕ by showing
that it has a simply transitive action of the abelian group π0(S+

ϕ )D. In order to
convert this into a bijection, we need to know that the choice of a Whittaker
datum for the quasi-split group G determines a base point in the L-packet
Πϕ, in accordance with the strong form of Shahidi’s tempered L-packet con-
jecture [Sha90, §9]. Due to the technical compactness assumption necessary for
the current form of the Adler-DeBacker-Spice character formula for elements
close to the identity, we are not in a position to do so for general regular su-
percuspidal L-packets. For the same reason, we can only prove stability or
endoscopic transfer for these packets for shallow elements, but not for general
regular semi-simple elements. Both of these points will be addressed in forth-
coming joint work with DeBacker and Spice, based on ongoing work of Spice
on removing the compactness assumption from [DS18].

We are however able to prove these statements for toral L-packets, which are
the topic of Section 6, where we specialize the construction of L-packets to the
case of toral supercuspidal representations. These are the representations ob-
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tained from a Yu-datum for which the twisted Levi sequence is of the form
S = G0 ( G1 = G, where S is an elliptic maximal torus of G. For these
representations the compactness assumption is satisfied and thus the Adler-
DeBacker-Spice character formula is valid for general elements, rather than just
for shallow elements. Using it, we are able to prove the existence and unique-
ness of a generic constituent in each compound L-packet as well as the stabil-
ity and endoscopic transfer of these L-packets (the stability of toral L-packets
under the additional assumption that S is unramified was already shown in
[DS18]). We expect the same arguments to apply to the case of the general reg-
ular supercuspidal L-packets of Section 5, once the compactness assumption
on the Adler-DeBacker-Spice character formula has been removed.
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2 NOTATION AND ASSUMPTIONS

2.1 Assumptions on the ground field and the group

Throughout most of the paper, F denotes a non-archimedean local field of zero
or positive characteristic. The only exceptions to this are §3.2 and §5.1, where F
can be any field, and §4.11, where F = R. Furthermore, G denotes a connected
reductive group defined over F .

For convenience, we collect here the assumptions on F placed in different parts
of the paper. In §3.1-§3.4 there are no further assumptions on F or G. Starting
with §3.5 we assume that the residual characteristic ofF is odd and thatG splits
over a tame extension of F ; these assumptions are kept throughout. In §3.6 and
§3.7, we assume further that the residual characteristic is not a bad prime for
G and does not divide the order of π1(Gder). The last of these assumptions is
only for technical convenience and is removed in §3.7.4.

We recall from [SS70, I,§4] the list of bad primes for each irreducible root sys-
tem: For type An there are no bad primes, for types Bn, Cn, or Dn the only bad
prime is 2, for types E6, E7, F4, or G2 the bad primes are 2 and 3, and for type
E8 the bad primes are 2, 3, and 5. A prime is bad for G if it is bad for some
irreducible component of its absolute root system.

In §4.5, §4.6 and §4.7 the only assumption on the local field F is that its residual
characteristic is odd. For the rest of §4 we assume further that the residual
characteristic is not a bad prime for G.
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In §5 and §6 we assume that the residual characteristic is odd, is not a bad
prime for G, and does not divide |π0(Z(G))|. All prime divisors of |π0(Z(G))|
are bad primes unless G has components of type An. If G has a component of
type An, a sufficient condition would be p - (n + 1). We are moreover forced
to assume that the characteristic of F is zero due to the usage of [Kal16], where
this assumption is made. We believe that the results of [Kal16] are valid with-
out this assumption, but have not checked this carefully. In the meantime, if
[Kal16] is replaced by [Kot], the characteristic zero assumption can be dropped
at the expense of possibly not reaching all inner forms.

Finally, in §6.3 we must assume that F has characteristic zero and large resid-
ual characteristic. More precisely, we require p ≥ (2 + e)n, where e is the
ramification degree of F/Qp and n is the dimension of a faithful rational repre-
sentation of G. A result [DR09, App. B] of DeBacker-Reeder ensures that then
the exponential map converges for all topologically nilpotent elements of the
Lie algebra of G.

In some parts of the paper we appeal to papers such as [LS87] or [KS99], where
a blanket assumption is made that the ground field is of characteristic zero.
It is however easy to check that for the results we use this assumption is not
needed.

The following assumptions are cruder than necessary but easier to remember:
If F has characteristic zero, p > 5 and p - n + 1 for any component of G of
type An, then all results of this paper hold except for §6.3, for which the added
assumption p ≥ (2 + e)n is sufficient.

2.2 Further notation

We denote the ring of integers of F by OF , its maximal ideal by pF , and its
residue field by kF , of cardinality q. We fix a separable closure F s of F and let
Γ = ΓF be the Galois group of F s/F , W = WF the Weil-group, I = IF the
inertia group, and P = PF the wild inertia group. If E/F is a finite separable
extension, which we will assume to be contained in F s, we will use the sub-
script E to denote the analogous objects relative to E instead of F . Moreover,
we will denote the relative Galois group of E/F by ΓE/F and the relative Weil
group by WE/F . We will write Fu for the maximal unramified extension of
F within F s and by Fr the element of ΓFu/F that induces the automorphism
x 7→ xq on the residue field kF .

Given a connected reductive group G defined over F , we denote by Gder its
derived subgroup, byGsc andGad the simply connected cover and adjoint quo-
tient of Gder, and by g the Lie-algebra of G. For an element g ∈ G we will write
Ad(g) for the conjugation action of g on G (i.e. x 7→ gxg−1) as well as for the
adjoint action of g on g. We will write g∗ for the dual space of g and Ad∗(g) for
the coadjoint action of g.

Whenever we refer to a maximal torus S ⊂ G, we will always assume that it
is defined over F , unless explicitly stated otherwise. We will write N(S,G)
for the normalizer of S in G and Ω(S,G) = N(S,G)/S for the absolute Weyl
group, a finite algebraic group defined over F . We write R(S,G) for the cor-
responding set of roots. This set has an action of Γ and for any α ∈ R(S,G)
we will write Γα and Γ±α for the stabilizers of the subsets {α} and {α,−α} re-
spectively, and Fα and F±α for the corresponding fixed subfields of F s. Then
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Fα/F±α is an extension of degree at most 2. Following [LS87] we will call α
symmetric if the degree of this extension is 2, and asymmetric if the degree is
1. Moreover, following [AS09] we will call α ramified or unramified if the ex-
tension Fα/F±α is such. Note that α is symmetric and ramified if and only if
it is inertially symmetric in the sense if [Kal15]. For each α ∈ R(S,G) we have
the 1-dimensional root subspace gα ⊂ g, which is defined over Fα.

We will write Bred(G,F ) for the reduced Bruhat-Tits building of G(F ) and
Ared(T, F ) for the apartment associated to any maximal torus of G which is
maximally split (this notation is slightly different than the one used by other
authors, who prefer to write Ared(AT , F ), where AT is the maximal split sub-
torus of T ). For any x ∈ Bred(G,F ) we shall write G(F )x for the stabilizer of x
in G(F ), G(F )x,0 for the parahoric subgroup associated to x, and G(F )x,r for
the Moy-Prasad filtration subgroup [MP94, MP96] at depth r ∈ R≥0. On the
Lie-algebra we have the analogous filtration lattices g(F )x,r for any r ∈ R. It
is sometimes convenient to use the notation G(F )x,r:s = G(F )x,r/G(F )x,s for
r < s, as well as G(F )x,r+ =

⋃
s>r G(F )x,s.

In the special case G = ResE/FGm for a finite separable extension E/F the
reduced Bruhat-Tits building is a singleton and the Moy-Prasad filtration can
be described simply as E×0 = O×E and E×r = 1 + p

dere
E for r > 0, where e is

the ramification degree of E/F . The corresponding Lie-algebra filtration on
g(F ) = E is given by E0 = OE and Er = p

dere
E for r ∈ R.

3 REGULAR SUPERCUSPIDAL REPRESENTATIONS

3.1 Basics on p-adic tori

Let S be a torus defined over F . The topological group S(F ) has a unique
maximal bounded subgroup S(F )b (which is also the unique maximal com-
pact subgroup, as F is locally compact) and this subgroup is equipped with a
decreasing filtration S(F )r indexed by the non-negative real numbers, namely
the Moy-Prasad filtration corresponding to the unique point in the reduced
Bruhat-Tits building of S. When the splitting field of S is wildly ramified
over F it is known that this filtration exhibits some pathologies, which are not
present when for some tamely ramified extensionE/F the torus S×E becomes
induced, see [Yu15, §4]. In particular, the pathologies are not present when the
splitting field of S is tamely ramified over F . We will call such S tame for short.

We recall the definition of S(F )r. For r = 0 there are two ways to define the
subgroup S(F )0. The torus S possesses an lft-Neron model Slft by [BLR90,
§10]. This is a smooth group scheme over OF satisfying a certain universal
property. It is locally of finite type and the maximal subgroup-scheme of finite
type is called the ft-Neron model Sft. Both models share the same neutral
connected component, called the connected Neron model S◦. Then S(F )0 =
S◦(OF ). One also has

Sft(OF ) = S(F )b = {s ∈ S(F )|∀χ ∈ X∗(S), ord(χ(s)) ≥ 0}.

Note that S(F )/S(F )b is a finitely generated free abelian group.

A second way to define S(F )0 is via the Kottwitz homomorphism. This is a
functorial surjective homomorphism S(F ) → X∗(S)Fr

I introduced in [Kot97,
§7], see in particular [Kot97, §7.2,§7.6]. The kernel of this homomorphism is
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S(F )0, and the preimage of the torsion subgroup [X∗(S)Fr
I ]tor is S(F )b. See the

first note at the end of [Rap05].

For r > 0, the definition of S(F )r is

S(F )r = {s ∈ S(F )0|∀χ ∈ X∗(S), ord(χ(s)− 1) ≥ r},

see [MP96, §3.2] and [Yu15, §4.2]. Denoting by S(F )r+ the union of S(F )s over
s > r we see that S(F )0+ is precisely the pro-p-Sylow subgroup of S(F )0.

These descriptions make it clear that when F is unramified S(F )0 = S(F )b and
S(F )0+ is the pro-p-Sylow subgroup of S(F )b and hence of S(F ). In order to
generalize these statements we introduce the following notions.

Definition 3.1.1. We say that a torus S has induced ramification if the following
equivalent conditions hold:

1. X∗(S) has a basis invariant under the action of IF .

2. X∗(S) has a basis invariant under the action of IF .

3. S × Fu is an induced torus, where Fu is the maximal unramified exten-
sion of F .

We say that S has induced wild ramification if the following equivalent condi-
tions hold:

1. X∗(S) has a basis invariant under the action of PF .

2. X∗(S) has a basis invariant under the action of PF .

3. S × F tr is an induced torus, where F tr is the maximal tamely ramified
extension of F .

�

It is obvious that an unramified torus has induced ramification, and that a tame
torus has induced wild ramification. The notion of induced wild ramification
is the same as “Condition (T)” in [Yu15, §4.7.1].

Fact 3.1.2. 1. If S has induced ramification, then S(F )0 = S(F )b.

2. If S has induced wild ramification, then for any r > 0

S(F )r = {s ∈ S(F )|∀χ ∈ X∗(S), ord(χ(s)− 1) ≥ r}. (3.1.1)

In particular, S(F )0+ is precisely the pro-p-Sylow subgroup of S(F )b and
hence of S(F ).

�

Proof. When S has induced ramification, X∗(S)I is torsion-free, hence the first
point. When S has induced wild ramification, X∗(S)I = [X∗(S)P ]I/P has no
p-torsion and hence S(F )b/S(F )0 is a finite group of order prime to p. The
right-hand side of (3.1.1) is contained in S(F )b and is a pro-p group, hence lies
in S(F )0 and thus equals S(F )r. �
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The second part of this Fact was also proved in [Yu15, 4.7.2] by a different
method.

Lemma 3.1.3. If 1 → A → B → C → 1 is an exact sequence of tame tori and
r > 0, then

1→ A(F )r → B(F )r → C(F )r → 1

is also exact. If A→ B is an isogeny of tame tori whose kernel has order prime
to p and r > 0, then A(F )r → B(F )r is a bijection. �

Proof. Let E/F be a tame finite Galois extension splitting the tori. We have
A(E)r = X∗(A) ⊗ E×r and A(F )r = A(E)

ΓE/F
r , according to (3.1.1). Applying

the functor X∗ to the exact sequence of tori produces an exact sequence of fi-
nite rank free Z-modules with ΓE/F action, which remains exact after ⊗ZE

×
r ,

leading to
1→ A(E)r → B(E)r → C(E)r → 1.

Taking ΓE/F -invariants and applying [Yu01, Proposition 2.2] finishes the proof.

For the second point we recall that for any integer n and abelian group T the
groups TorZ1 (T,Z/nZ) and TorZ0 (T,Z/nZ) are the kernel and cokernel of the
multiplication-by-n-map on T , and thus both vanish if T is pro-finite with pro-
order prime to n. Since X∗(A) → X∗(B) is an injection with finite cokernel of
order prime to p and E×r is pro-p, the functor X∗(−) ⊗Z E

×
r turns the isogeny

A → B into a ΓE/F -equivariant bijection, which remains bijective after taking
ΓE/F -fixed points. �

Lemma 3.1.4. Let 1→ A→ B → C → 1 be an exact sequence of tori.

1. IfA has induced ramification, then the sequences 0→ X∗(A)I → X∗(B)I →
X∗(C)I → 0 and 1 → A(F )0 → B(F )0 → C(F )0 → 1 are exact, where I
denotes the inertia subgroup of Γ.

2. If A has induced wild ramification, then the sequences 0 → X∗(A)P →
X∗(B)P → X∗(C)P → 0 and 1→ A(F )0+ → B(F )0+ → C(F )0+ → 1 are
exact, where P denotes the wild inertia subgroup of Γ.

�

Proof. Assume that A has induced ramification. Apply again X∗ to the exact
sequence of tori to obtain an exact sequence of finite-rank free Z-modules with
Γ-action. We claim that after taking inertial co-invariants the sequence remains
exact. The only issue would be the injectivity of X∗(A)I → X∗(B)I . We may of
course replace I by a suitable finite quotient through which it acts. The kernel
of this map is the image of the connecting homomorphism H1(I,X∗(C)) →
X∗(A)I . But H1(I,X∗(C)) is finite, while by assumption X∗(A)I is torsion-
free, so this connecting homomorphism is zero. This shows the exactness of
the first sequence.

For the second sequence we consider the commutative diagram with exact
rows

1 // A(Fu) //

��

B(Fu) //

��

C(Fu) //

��

1

0 // X∗(A)I // X∗(B)I // X∗(C)I // 0

14



The exactness of the top row on the right follows from H1(I, A(F s)) = 0 due
to Steinberg’s theorem [Ste65, Theorem 1.9]. The vertical maps are surjective.
The kernel-cokernel lemma implies that the sequence

1→ A(Fu)0 → B(Fu)0 → C(Fu)0 → 1

is exact. It is well known that H1(Fr, A(Fu)0) = 0, see e.g. [DR09, Lemma
2.3.1]. Taking Frobenius-invariants gives the exactness of the second sequence.

Assume now that A has induced wild ramification. The exactness of the first
sequence follows from the same argument as above. The sequence

X∗(A)I → X∗(B)I → X∗(C)I → 0

may fail to be exact on the left, so we let X∗(A)′I denote the image of the first
map. Applying the kernel-cokernel lemma to the diagram with exact rows and
surjective vertical maps

1 // A(Fu) //

��

B(Fu) //

��

C(Fu) //

��

1

0 // X∗(A)′I
// X∗(B)I // X∗(C)I // 0

we obtain the exact sequence

1→ A(Fu)+ → B(Fu)0 → C(Fu)0 → 1

of pro-finite abelian groups, where A(Fu)+ is the kernel of A(Fu) → X∗(A)′I ,
a subgroup of A(Fu)b containing A(Fu)0. The associated sequence of pro-p-
Sylow subgroups is still exact. By Fact 3.1.2 this sequence is

1→ A(Fu)0+ → B(Fu)0+ → C(Fu)0+ → 0.

We now use that H1(Fr, A(Fu)0+) = 1 and taking Frobenius-invariants obtain
the exactness of the second sequence of the lemma. �

Example 3.1.5. It is tempting to hope that the above lemma might hold when
(−)0 is replaced by (−)b. This is however not the case. Let E/F be a ramified
quadratic extension of residual characteristic not 2, B = ResE/FGm, A = Gm,
and A→ B the usual embedding. Then the exact sequence of F -points is

1→ F× → E× → E1 → 1,

where E1 is the subgroup of E× of elements whose E/F -norm is 1, the first
map is the natural embedding, and the second map sends x ∈ E× to x/σ(x),
where σ is the non-trivial F -automorphism of E.

We have A(F )0 = A(F )b = O×F , B(F )0 = B(F )b = O×E , and C(F )b = E1 6=
C(F )0 = (1 + pE). The map x/σ(x) maps O×E surjectively onto (1 + pE). �

Every torus S defined over F has a maximal unramified subtorus S′ → S,
characterized by X∗(S′) = X∗(S)IF , as well as a maximal unramified quotient
S → S′′, characterized by X∗(S′′) = X∗(S)IF . One has X∗(S′) = X∗(S)IF ,free
andX∗(S′′) = X∗(S)IF ,free, i.e. the torsion-free quotient of the inertial coinvari-
ants of X∗(S) or X∗(S) respectively.
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Lemma 3.1.6. Let S be a torus defined over F and let S′ ⊂ S be the maximal
unramified subtorus. The natural map

S′(F )0/S
′(F )0+ → S(F )0/S(F )0+

is an isomorphism. �

Proof. The injectivity of this map is equivalent to S′(F )0 ∩ S(F )0+ = S′(F )0+,
which follows from the description of S(F )0+ and S′(F )0+ as the pro-p-Sylow
subgroups of S(F )0 and S′(F )0. The surjectivity is equivalent to S(F )0 =
S′(F )0 · S(F )0+. This follows by applying Lemma 3.1.4 with r = 0 and r = 0+
to the exact sequence 1 → S′ → S → S/S′ → 1, provided we can show that
[S/S′](F )0+ = [S/S′](F )0. This is equivalent to saying that the special fiber
of the connected Neron model of S/S′, which is a smooth connected commu-
tative algebraic group defined over kF and hence a product of a torus and a
unipotent abelian group, is purely unipotent. But the existence of a non-trivial
torus in that special fiber would imply via [DeB06, Lemma 2.3.1] the existence
of a non-trivial subtorus of S/S′ that splits over Fu, contradicting the fact that
S/S′ is inertially anisotropic. �

Lemma 3.1.7. Let S be a torus defined over F . Then we have

H2(ΓF /IF , S(Fu)b) = H2(ΓF /IF , S(Fu)0) = H2(ΓF /IF , S(Fu)0+) = 0.

�

Proof. We shall use [Ser79, Ch. XIII, §1,Prop. 2], according to which for any
torsion ΓF /IF -module A we have H2(ΓF /IF , A) = 0 . This applies in partic-
ular when A is the set of kF -rational points of a commutative linear algebraic
group defined over kF . Kottwitz’s homomorphism leads to the exact sequence
of ΓF /IF -modules

1→ S(Fu)0 → S(Fu)b → [X∗(S)I ]tor → 0.

From H2(ΓF /IF , [X∗(S)I ]tor) = 0 we see that H2(ΓF /IF , S(Fu)b) = 0 would
follow from H2(ΓF /IF , S(Fu)0) = 0. In the same way, H2(ΓF /IF , S(Fu)0) =
0 would follow from H2(ΓF /IF , S(Fu)0+) = 0, because S(Fu)0/S(Fu)0+ =
S◦(kF ) implies H2(ΓF /IF , S(Fu)0/S(Fu)0+) = 0.

We have H2(ΓF /IF , S(Fu)0+) = lim−→H2(ΓF ′/F , S(F ′)0+), where the colimit
runs over the finite unramified extensions of F . The group S(F ′)0+ is equal
to lim←−r S(F ′)0+/S(F ′)r, where S(F ′)r is the r-th filtration subgroup with re-
spect to any admissible schematic connected filtration in the sense of [Yu15,
§4]. One could take for example the connected Moy-Prasad filtration of [Yu15,
§4.6.3] or the minimal congruent filtration of [Yu15, §5]. The steps of the fil-
tration are discrete and the quotients are the kF ′ -points of abelian connected
unipotent algebraic groups Ur defined over kF . From the inflation restriction
sequence

H1(ΓkF ′ ,U(kF ))→ H2(ΓkF ′/kF ,U(kF ′))→ H2(ΓkF ,U(kF ))

and the vanishing of the two outer terms we see that the middle term vanishes.
From [Ser79, Chap. XII, §3, Lem. 3] we see that H2(ΓF ′/F , S(F ′)0+) vanishes,
and hence that H2(ΓF /IF , S(Fu)0+) vanishes. �
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Consider now a tame torus S defined over F and its complex dual torus Ŝ. The
local Langlands correspondence provides an isomorphism of abelian groups
H1

cts(WF , Ŝ) → Homcts(S(F ),C×). This bijection is functorial in S and is char-
acterized uniquely by a short list of properties [Yu09, Theorem 7.5]. According
to [Yu09, Theorem 7.10], if ϕ ∈ H1(WF , Ŝ) corresponds to θ : S(F )→ C×, then
for any r > 0 the restriction θ|S(F )r is trivial if and only if the restriction ϕ|Ir is
trivial. The following two lemmas extend this result to the restrictions of θ to
S(F )0 and S(F )b.

Lemma 3.1.8. The restriction θ|S(F )0
is trivial if and only if ϕ lies in the kernel

of the restriction map H1(WF , Ŝ)→ H1(IF , Ŝ), or, equivalently, belongs to the
image of the inflation map H1(WF /IF , Ŝ

IF )→ H1(WF , Ŝ). �

Proof. Assume first that S is split. The claim reduces immediately to the case
S = Gm, where it follows from the fact that the Artin reciprocity map WF →
F× carries IF surjectively onto O×F . Assume next that S is unramified. Let
E/F be the splitting field of S and R = ResE/F (S×E). The kernel of the norm
map R → S is an unramified torus. Applying Lemma 3.1.4 to the resulting
sequence of unramified tori we obtain a surjection S(E)0 = R(F )0 → S(F )0.
Thus θ|S(F )0

is trivial if and only if [θ◦N ]|S(E)0
is trivial. But θ◦N is a character

of the split torus S(E) whose parameter is equal to ϕ|WE
. According to the split

case, θ ◦ N is trivial on S(E)0 if and only if ϕ|WE
has trivial restriction to IE .

But IE = IF and the unramified case is complete.

Assume now that S is tamely ramified. Let S′ ⊂ S be the maximal unramified
subtorus. According to Lemma 3.1.6, θ|S(F )0

is trivial if and only if θ|S(F )0+
and

θ|S′(F )0
are trivial. The parameter of θ|S′(F ) is the image of ϕ in H1(WF , ŜIF ).

If ϕ has trivial image in H1(IF , Ŝ), then it has trivial images in H1(I0+
F , Ŝ) and

H1(IF , ŜIF ), so we conclude that θ|S(F )0+
and θ|S′(F )0

are trivial. Conversely,
if θ|S(F )0+

is trivial, then the image of ϕ in H1(I0+
F , Ŝ) is trivial, so ϕ is inflated

from H1(WF /I
0+
F , Ŝ) and its restriction to IF is inflated from H1(IF /I

0+
F , Ŝ).

The group IF /I0+
F is pro-cyclic, let x be a pro-generator and let x̄ be the finite-

order automorphism of Ŝ through which x acts. We have ŜIF = Ŝ/(1 − x̄)Ŝ.
If θ|S′(F )0

is also trivial, then the image of ϕ|IF in H1(IF /I
0+
F , ŜIF ) is zero and

hence ϕ|IF comes from an element of H1(IF /I
0+
F , (1− x̄)Ŝ). But we claim that

this cohomology group is zero. Indeed, let Nx̄ : Ŝ → Ŝ be the norm map
for the action of x̄. Evaluating 1-cocycles at the pro-generator x provides an
isomorphism from H1(IF /I

0+
F , (1 − x̄)Ŝ) to the quotient of ker(Nx̄|(1−x̄)Ŝ) by

(1− x̄)(1− x̄)Ŝ. But Nx̄ is trivial on (1− x̄)Ŝ, so the numerator of this quotient
is equal to (1 − x̄)Ŝ. We claim that the denominator is also equal to that. This
follows from the fact that the map (1− x̄) : (1− x̄)Ŝ → (1− x̄)Ŝ is an isogeny.
Indeed, its kernel consists of those elements of (1−x̄)Ŝ that are fixed by x̄ and is
thus equal to the intersection (1− x̄)Ŝ∩ Ŝx̄. This intersection is contained in the
kernel of the restriction ofNx̄ to Ŝx̄. But that restriction is just the ord(x̄)-power
map and its kernel is finite. �

Note that the abelian group ŜIF might be disconnected. In fact,

X∗(ŜIF /ŜIF ,◦) = X∗(S)IF ,tor

which means that the disconnectedness of ŜIF mirrors exactly the disconnect-
edness of the ft-Neron model of S. This motivates the following.
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Lemma 3.1.9. The restriction θ|S(F )b is trivial if and only if ϕ belongs to the
image of the inflation map H1(WF /IF , Ŝ

IF ,◦)→ H1(WF , Ŝ). �

Proof. Let S → S′′ be the maximal unramified quotient of S and let S1 ⊂ S
be the kernel of this quotient. Thus X∗(S1) is the kernel of the norm map
X∗(S) → X∗(S) for the action of inertia. Note that X∗(S1)IF = {0}, which
means that S1 is inertially anisotropic and in particular S1(F ) is compact.

We claim that S(F )b is the preimage of S′′(F )0. Indeed, the image of S(F )b in
S′′(F ) is compact and hence belongs to S′′(F )b = S′′(F )0. Thus the preimage
Θ ⊂ S(F ) of S′′(F )0 contains S(F )b so it is enough to show that it is com-
pact. The group S(F ) is locally compact and σ-compact, the latter because
S(F )/S(F )0 is a finitely generated abelian group. Since Θ is an open, hence
also closed, subgroup of S(F ), it inherits these properties. The open mapping
theorem [HR79, Theorem 5.29] implies that the surjection Θ→ S′′(F )0 is open,
and hence a quotient map. We thus have the exact sequence

1→ S1(F )→ Θ→ S′′(F )0 → 1

of Hausdorff topological groups, the outer terms of which are compact. Then
[HR79, Theorem 5.25] implies that Θ is compact.

We conclude that the natural map S(F )/S(F )b → S′′(F )/S′′(F )0 is injective.
Since its cokernel is finite, the characters of S(F ) that are trivial on S(F )b are
precisely those obtained from characters of S′′(F ) that are trivial on S′′(F )0

by composing them with the natural map S(F ) → S′′(F ). But the dual of the
natural map S → S′′ is the map ŜIF ,◦ → Ŝ and the statement follows from
Lemma 3.1.8. �

3.2 Review of stable conjugacy of tori

In this subsection we review the standard notions and results concerning stable
conjugacy and transfer of tori between inner forms, mainly in order to have a
convenient reference that does not impose conditions on the ground field. We
work over an arbitrary ground field F with a fixed separable closure F s and
let Γ = Gal(F s/F ).

Let G and G′ be connected reductive groups defined over F . Recall that an
inner twist ψ : G → G′ is an isomorphism ψ : G × F s → G′ × F s such that
ψ−1σ(ψ) is an inner automorphism of G for all σ ∈ Γ. Let T ⊂ G be a maximal
torus. Recall that T is said to transfer to G′ if there exists g ∈ G(F s) such that
ψ ◦ Ad(g)|T : T → G′ is defined over F , i.e. invariant under Γ. The image
T ′ ⊂ G′ of ψ ◦Ad(g)|T is a maximal torus of G′ and one says that T and T ′ are
stably conjugate. In the special case where G = G′ and ξ = id this recovers the
usual notion of stable conjugacy of maximal tori of G. Note that since every
torus splits over F s, for any two maximal tori T, T ′ ⊂ G there exists g ∈ G(F s)
such that Ad(g)T = T ′. However, usually the homomorphism Ad(g) : T → T ′

will not be defined over F .

Fix a maximal torus T ⊂ G. Given any other maximal torus T ′ ⊂ G choose
g ∈ G(F s) such that Ad(g)T = T ′. Then σ 7→ g−1σ(g) is an element of
Z1(ΓF , N(T,G)) whose cohomology class cls(T ′) is independent of the choice
of g. The class cls(T ′) is independent of the choice of “reference torus” T in the
following sense: If T1 and T2 are two reference tori so that we have clsTi(T ′) ∈
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H1(ΓF , N(Ti, G)), and if h ∈ G(F s) is an element satisfying Ad(h)T1 = T2,
then the bijection H1(ΓF , N(T2, G)) → H1(ΓF , N(T1, G)) sending a 1-cocycle
z2 to σ 7→ h−1z2(σ)σ(h) is independent of the choice of h and maps clsT2

(T ′)
to clsT1

(T ′). Two tori T ′ and T ′′ are conjugate in G(F ) if and only if cls(T ′) =
cls(T ′′), and are stably conjugate if and only if cls(T ′) and cls(T ′′) have the
same image in H1(ΓF ,Ω(T,G)).

This criterion can be extended across inner forms, at least when the groups
in question are adjoint, which we assume for the rest of this paragraph. Let
ψi : G → Gi for i = 1, 2 be inner twists and let Ti ⊂ Gi be maximal tori.
Replace each ψi by ψi ◦Ad(gi) for gi ∈ G(F s) to achieve that ψi(T ) = Ti. Then
the class cls(Ti) of ψ−1

i σ(ψi) ∈ Z1(Γ, N(T,G)) is independent of the choice of
gi. The tori T1 and T2 are called rationally conjugate if there exists g ∈ G(F s) s.t.
ψ2 ◦Ad(g) ◦ ψ−1

1 : G1 → G2 is defined over F and restricts to an isomorphism
T1 → T2. This is the case if and only if cls(T1) = cls(T2). This implies in
particular that the classes of ψ1 and ψ2 in H1(F,G), i.e. the classes of the 1-
cocycles ψ−1

i σ(ψi) ∈ Inn(G) = G, are equal. Furthermore, T1 and T2 are stably
conjugate if and only if the images of cls(Ti) in H1(Γ,Ω(T,G)) are equal. Note
that the notions of rational and stable conjugacy of maximal tori depend on the
inner twists ψi.

Note that for the purpose of checking stable conjugacy of tori we can always
replace G by its adjoint group. This is not true for the purposes of checking
rational conjugacy. The above discussion can be extended to rational conjugacy
in not necessarily adjoint groups by replacing H1(Γ,−) with the cohomology
sets H1(u → W,Z → G) or H1(P → E , Z → G) of [Kal16] or [Kal18a], in the
case of local and global fields of characteristic zero.

The following result is well-known, e.g. [Kot86, §10], but we have not been
able to find a reference that allows positive characteristic.

Lemma 3.2.1. Assume that F is local. If T is elliptic then it transfers to G′. �

Proof. We assume that F is non-archimedean and refer to [Kot86, §10] for the
proof in the archimedean case. As above we may assume without loss of gen-
erality thatG is adjoint. One checks that T transfers toG′ if and only if the class
of ψ in H1(F,G) lies in the image of H1(F, T ). Let Gsc be the simply connected
cover ofG and Z ⊂ Gsc its center. Let Tsc be the preimage of T inGsc. The exact
sequences of algebraic groups

1→ Z → Gsc → G→ 1 and 1→ Z → Tsc → T → 1

give exact sequences of sheaves on Spec(F ) for the fpqc topology. All groups
above are smooth except possibly Z. For them, the first fpqc-cohomology
group coincides with the first etale cohomology group by [ABD+64, exp XXIV,
Proposition 8.1]. Since Tsc is anisotropic, Tate-Nakayama duality implies that
H2(F, Tsc) = 0. On the other hand, Kneser’s theorem [BT87, §4.7] implies that
all inner twists of Gsc have vanishing first cohomology. This leads to the com-
mutative diagram of pointed sets

H1(F, T )

����

// H1(F,G)
_�

��
H2

fpqc(F,Z) H2
fpqc(F,Z)

from which we conclude that the top map must be surjective. �
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Lemma 3.2.2. If G is quasi-split then any maximal torus T ′ ⊂ G′ transfers to
G. �

Proof. This has been proved by Raghunathan [Rag04] and independently by
Gille [Gil04]. The proofs are based on Steinberg’s work [Ste65] on rational ele-
ments in conjugacy classes, which assumes that F is perfect. We learned from
Jessica Fintzen that this assumption was later removed by Borel and Springer
[BS68, §8.6]. Since neither of the papers [Rag04] and [Gil04] cites [BS68], which
can cause confusion about the validity of their results, we have taken the op-
portunity to point this out here. �

3.3 Short remarks about parahoric subgroups

Let G be a connected reductive group defined over F . Recall that Borovoi has
defined in [Bor98, §1.3,§1.4] the algebraic fundamental group π1(G) of G. The
assignment G 7→ π1(G) is a functor from the category of connected reductive
groups defined over F to the category of finitely generated abelian groups with
Γ-action. Let L denote the completion of the maximal unramified extension of
F . In [Kot97, §7] Kottwitz has constructed a surjective homomorphism κG :
G(L) → π1(G)I . It is a natural transformation from the identity functor to
the functor π1(−)I . Note that in loc. cit. Kottwitz uses X∗(Z(Ĝ)I) instead of
π1(G)I . These two abelian groups are equal, and just as in [RR96] we prefer to
use π1(G)I because it is obviously a functor. In [PR08, Appendix], Haines and
Rapoport prove that for any x ∈ Bred(G,F ) one has

G(F )x,0 = G(F )x ∩ ker(κG).

Corollary 3.3.1. Let f : H → G be a homomorphism of connected reductive
groups defined over F , x ∈ Bred(H,F ) and y ∈ Bred(G,F ). Then

f(H(F )x,0) ∩G(F )y ⊂ G(F )y,0.

In particular, if T ⊂ G is a maximal torus, then

T (F )0 ∩G(F )y ⊂ G(F )y,0.

�

Compare this Corollary with [Yu01, Lemma 8.2].

Lemma 3.3.2. Let x ∈ Bred(G,F ) and r ≥ 0.

1. Let K ⊂ G be a central torus and Ḡ = G/K. The sequence

1→ K(F )r → G(F )x,r → Ḡ(F )x,r → 1

is exact if r = 0 or r = 0+ and K has induced ramification.

Assume now that G splits over a tame extension and r > 0.

2. The above sequence is exact without assuming that K has induced rami-
fication.
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3. Let G′ ⊂ G be a connected subgroup containing Gder and let D = G/G′.
The following sequence is exact

1→ G′(F )x,r → G(F )x,r → D(F )r → 1.

4. Let G′ → G is an isogeny whose kernel has order prime to p. Then
G′(F )x,r → G(F )x,r is a bijection.

�

Proof. The argument for the first point and r = 0 is essentially the same as for
Lemma 3.1.4, where now one uses π1(−)I instead of X∗(−)I .

For all the other points, we use [BT72, Lemma 6.4.48] which shows thatG(F )x,r
is the direct product (as topological spaces) of T (F )r and the appropriate affine
root subgroups, where T is a maximally unramified maximally split maximal
torus, whose existence is guaranteed by [BT84, Corollary 5.1.12]. Since the
maps G → Ḡ and G′ → G induce isomorphisms on the affine root subgroups,
the claims reduce to the corresponding claims for the maps T → T̄ and T ′ →
T , where T ′ = T ∩ G′ and T̄ = T/K. These follow from Lemmas 3.1.3 and
3.1.4. �

3.4 Regular supercuspidal representations of depth zero

Let G be a connected reductive group defined over F . In this subsection we
will define and classify regular depth-zero supercuspidal representations of G.
This extends results of DeBacker-Reeder [DR09], whereGwas assumed to split
over the maximal unramified extension of F .

In §3.4.1 we review results of DeBacker on the classification of G(F )-conjugacy
classes of maximally unramified maximal tori, focusing on the elliptic case
needed later on, and prove some additional results, particularly involving com-
parisons of various Weyl groups. In §3.4.2 we review the concepts of regu-
lar and non-singular characters due to Deligne-Lusztig and prove some sup-
plementary results. The framework of the construction of regular depth-zero
supercuspidal representations is provided by the results of Moy and Prasad
[MP96] and is reviewed in §3.4.3. In order to apply this framework in the ram-
ified case, we need a technical result that is not needed in the unramified case
treated in [DR09]. Its necessity is explained in Example 3.4.21. This technical
result, which we view as the heart of the construction of regular supercus-
pidal representations, is proved in §3.4.4, together with an extension of the
Deligne-Lusztig character formula to our more general setting. In §3.4.5 we
prove the classification of regular depth-zero supercuspidal representations.
This is again a generalization of results of [DR09], but requires additional ar-
guments due to the complication in the ramified setting exposed in Example
3.4.21.

3.4.1 Maximally unramified elliptic maximal tori

Fact 3.4.1. Let S ⊂ G be a maximal torus and S′ ⊂ S be the maximal unrami-
fied subtorus. The following statements are equivalent.
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1. S′ is of maximal dimension among the unramified subtori of G.

2. S′ is not properly contained in an unramified subtorus of G.

3. S is the centralizer of S′ in G.

4. S × Fu is a minimal Levi subgroup of G× Fu.

5. The action of IF on R(S,G) preserves a set of positive roots.

�

Proof. This follows from the fact that G× Fu is quasi-split. �

Definition 3.4.2. A maximal torus S ⊂ G will be called maximally unramified if
it satisfies the above equivalent conditions. �

When G splits over Fu then S is unramified. Therefore, this notion generalizes
the notion of an unramified maximal torus to the case of ramified groups (in
[Roe11, Definition 3.1.1], such tori were called “unramified”, but we prefer the
term maximally unramified because it emphasizes that the splitting field of S
need not be an unramified extension of F ).

The assignments S 7→ S′ and S′ 7→ Cent(S′, G) are mutually inverse bijec-
tions between the set of maximally unramified maximal tori of G and the set
of maximal unramified tori ofG. TheG(F )-conjugacy classes of the latter were
classified by DeBacker in [DeB06]. We shall review here some of DeBacker’s
work and prove some additional results that will be needed later.

Let S ⊂ G be a maximally unramified elliptic maximal torus. We can asso-
ciate to S a point x ∈ Bred(G,F ) as follows: Since S′ ⊂ G becomes a max-
imal split torus over Fu, we have the apartment Ared(S, Fu) ⊂ Bred(G,Fu).
This apartment is Frobenius-invariant, since S is defined over F , and contains
Frobenius-fixed points, namely the center of mass of any (automatically finite)
Frobenius-orbit. Since S is elliptic, there is in fact a unique such fixed point x.

Lemma 3.4.3. The point x is a vertex of Bred(G,F ). �

Proof. This follows from [DeB06, Lemma 2.2.1(1)] applied to T = S′. �

As shown in [BT84, §5], the vertex x specifies a smooth connected OF -group
scheme G◦x with G◦x(F ) = G(F ) and G◦x(OF ) = G(F )x,0. We shall write G◦x for
the reductive quotient of the special fiber of G◦x. Then G◦x(kF ) = G(F )x,0:0+.
We further have the OF -group scheme Ĝx with Ĝx(F ) = G(F ) and Ĝx(OF ) =
Stab(x,G(F )1), whereG(F )1 denotes the intersection of the kernels of the group
homomorphisms ord ◦ χ : G(F )→ Z for all F -rational characters χ : G→ Gm.
We shall write Gx for the quotient of the special fiber of this group scheme by
its maximal connected normal unipotent subgroup. Then G◦x coincides with the
neutral connected component of Gx. In particular, Gx is a usually disconnected
algebraic group over kF with reductive neutral connected component.

Lemma 3.4.4. 1. The special fiber of the (automatically connected) ft-Neron
model of S′ embeds canonically as an elliptic maximal torus S′ of the re-
ductive group G◦x. Explicitly, S′(kF ′) ⊂ G◦x(kF ′) is the image inG(F ′)x,0:0+

of S(F ′)∩G(F ′)x,0, or equivalently of S′(F ′)∩G(F ′)x,0, for every unram-
ified extension F ′.
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2. Every elliptic maximal torus of G◦x arises in this way.

�

Proof. This is [DeB06, Lemma 2.2.1(3) and Lemma 2.3.1] applied to T = S′. �

Lemma 3.4.5. Let S1, S2 ⊂ G be two maximally unramified elliptic maximal
tori. Assume that their points in Bred(G,F ) coincide, call them x. Assume
furthermore that S1(Fu)∩G(Fu)x,0 and S2(Fu)∩G(Fu)x,0 have the same pro-
jection to G◦x(kF ). Then S1 and S2 are G(F )x,0+-conjugate. �

Proof. This is [DeB06, Lemma 2.2.2] applied to Ti = S′i. �

Lemma 3.4.6. Let S ⊂ G be a maximally unramified elliptic maximal torus
with associated point x ∈ Bred(G,F ). Then

S(F ) ∩G(F )x,0 = S(F )0.

�

Proof. This follows immediately from [PR08, Lemma 5 in Appendix] by taking
Frobenius-fixed points. See also [DeB02, Theorem 4.1.5]. �

Lemma 3.4.7. Assume that G is either simply connected or adjoint. If S ⊂ G is
a maximally unramified elliptic maximal torus, then S(F ) = S(F )0. �

Proof. The set of fundamental weights, respectively simple roots, correspond-
ing to a set of positive roots preserved by inertia, forms a basis of X∗(S) pre-
served by inertia. This shows that S has induced ramification in the sense of
Definition 3.1.1. Thus S(F )b = S(F )0 by Fact 3.1.2. On the other hand, S is
anisotropic, so S(F ) = S(F )b. �

Definition 3.4.8. We shall call a vertex x ∈ Bred(G,F ) superspecial if it is a (nec-
essarily special) vertex that is special in Bred(G,F ′) for every finite unramified
extension F ′ of F . �

Remark 3.4.9. IfG is quasi-split then superspecial vertices exist: The Chevalley
valuation [BT84, §4.2.1] associated to any F -pinning ofG is such a vertex. Note
that the definition is equivalent to requiring that x is special for a sufficiently
large finite unramified extension, and also equivalent to requiring that x is
special over Fu.

On the other hand, a superspecial vertex need not be a Chevalley valuation.
All vertices in the building of a ramified unitary group in 3 variables are su-
perspecial, but not all of them are Chevalley valuations. �

Lemma 3.4.10. Let S ⊂ G be a maximally unramified elliptic maximal torus
with associated point x ∈ Bred(G,F ).

1. We have the exact sequence

1→ N(S,G(F )x,0)/S(F )0 → N(S,G)(F )/S(F )→ G(F )x/[G(F )x,0·S(F )].
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2. The natural map

N(S,G(F )x,0)/S(F )0 → N(S′,G◦x)(kF )/S′(kF )

is bijective.

3. If x is superspecial, the natural inclusions

N(S,G(F )x,0)/S(F )0 → N(S,G)(F )/S(F )→ Ω(S,G)(F )

are both bijective.

�

Proof. We prove the first point. At the first spot exactness is equivalent to the
equality S(F ) ∩ G(F )x,0 = S(F )0 of Lemma 3.4.6, while at the second spot
exactness is obvious. We only observe that the inclusion N(S,G)(F ) → G(F )
takes image in G(F )x, because the action of N(S,G)(F ) on Bred(G,Fu) pre-
serves the apartmentAred(S, Fu) and commutes with the action of Gal(Fu/F ).

We prove the second point. If we replace F by Fu then its bijectivity is the
content of [BT84, 4.6.12]. Moreover, this bijective map is Frobenius-equivariant.
The claim now follows from the fact that both S(Fu)0 and S′(kF ) have trivial
H1(Fr,−).

We prove the third point. Steinberg’s theorem [Ste65, Theorem 1.9] implies the
equality Ω(S,G)(Fu) = N(S,G)(Fu)/S(Fu). The point x remains special over
Fu and according to [BT72, 6.2.19] the natural map N(S,G(Fu)x,0)/S(Fu)0 →
N(S,G)(Fu)/S(Fu) is an isomorphism . Applying againH1(Fr, S(Fu)0) = {0}
we obtain the lemma. �

Example 3.4.11. Even if the point x is a special vertex, if it is not superspecial
then the inclusion

N(S,G(F )x,0)/S(F )0 → N(S,G)(F )/S(F )

may be proper. Consider the adjoint group G = PSp4 and let x be a non-
special vertex in the standard apartment. The connected reductive group G◦x
is of type A1 × A1. Let S′ be the unique (up to G◦x(kF )-conjugacy) anisotropic
maximal torus in G◦x and let S ⊂ G be an anisotropic unramified maximal torus
corresponding to S′ by Lemma 3.4.4. Then using Lemma 3.4.10 we have

N(S,G(F )x,0)/S(F )0 = N(S′,G◦x)(kF )/S′(kF ) = Ω(S′,G◦x)(kF ) = (Z/2Z)2.

On the other hand, the extended affine Weyl group of the split diagonal torus
in G has an element that fixes x and switches the two hyperplanes passing
through it. This element is represented in G(F )x and generates the group
G(F )x/G(F )x,0 ∼= Z/2Z. Its action on G◦x is outer and switches the two irre-
ducible factors of the root system A1 × A1. Since the G◦x(kF )-conjugacy class
of S′ is unique, it is preserved by this action. Thus there exists an element of
G(F )x rG(F )x,0 that normalizes S′. By Lemma 3.4.5 we may assume that this
element normalizes S. It is thus an element of N(S,G)(F )/S(F ) that does not
lie in N(S,G(F )x,0)/S(F )0. In fact, we have the exact sequence

1→ N(S,G(F )x,0)/S(F )0 → N(S,G)(F )/S(F )→ G(F )x/G(F )x,0 → 1.

�
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Lemma 3.4.12. Let G be quasi-split, x ∈ Bred(G,F ) superspecial, and S ⊂ G a
maximally unramified elliptic maximal torus.

1. There exists a maximal torus S1 stably conjugate to S with associated
point x.

2. If T is a minimal Levi subgroup whose apartment contains x, then S1 can
be chosen to be conjugate to T under G(Fu)x,0.

3. If S2 is another maximal torus stably conjugate to S with associated point
x, then S1 and S2 are conjugate in G(F )x,0.

�

Proof. If the statements are true for Gsc, then they are also true for G. We there-
fore assume that G is simply connected. Thus G(F )x,0 = G(F )x.

We first show that the point associated to S equals x if and only if T and
S are conjugate in G(F )x. If there is g ∈ G(F )x s.t. Ad(g)T = S, then
Ared(S, Fu) contains gx = x. Since this point is Frobenius-fixed and S is
elliptic, x is the unique Frobenius-fixed point of Ared(S, Fu) and hence the
point associated to S. Conversely, assume that x ∈ Ared(S, Fu). Choose any
g ∈ G(Fu) s.t. Ad(g)T = S. Then gx, x ∈ Ared(S, Fu) implies the existence of
n ∈ N(S,G)(Fu) with ngx = x. Replacing g by ng we have Ad(g)T = S and
gx = x, thus g ∈ G(Fu)x. The claim is proved.

Fix a minimal Levi subgroup T ⊂ G whose apartment contains x. Since both
S and T become minimal Levi subgroups over Fu we see that the class cls(S)
defined in §3.2 is inflated from H1(Fr, N(T,G)(Fu)). Projecting to the Weyl
group we obtain an element of H1(Fr,Ω(T,G)(Fu)). We have Ω(T,G)(Fu) =
N(T,G)(Fu)/T (Fu) by Steinberg’s theorem [Ste65, Theorem 1.9]. Since the
point x remains special over Fu, [BT72, 6.2.19] implies that the natural map
N(T,G)(Fu)x/T (Fu)0 → N(T,G)(Fu)/T (Fu) is an isomorphism. We map
cls(S) to H1(Fr, N(T,G)(Fu)x/T (Fu)0) via this isomorphism. Lemma 3.1.7
implies that it lifts to an element of H1(Fr, N(T,G)(Fu)x). This element can be
represented by σ 7→ g−1σ(g) for some g ∈ G(Fu)x, because H1(Fr, G(Fu)x) is
trivial by [DR09, Lemma 2.3.1]. By construction the images in Ω(T, F )(Fu) of
g−1σ(g) and cls(S) coincide. We conclude that S1 = Ad(g)T is stably conjugate
to S. Its associated point is x according to the claim above.

Let now S2 be another maximally unramified elliptic maximal torus, stably
conjugate to S, with associated point x. By the claim above the tori T and
S2, and hence also S1 and S2, are conjugate in G(Fu)x. Take g ∈ G(Fu)x
s.t. Ad(g)S1 = S2. Then g−1Fr(g) ∈ G(Fu)x ∩ S1(Fu) = S1(Fu)0. Since
H1(Fr, S1(Fu)0) is trivial we can multiply g on the right by an element of S1 to
ensure g ∈ G(F )x. �

Remark: The above Lemma is false when x is not superspecial. We can take
Example 3.4.11 and an elliptic unramified maximal torus on whose character
modules Frobenius acts by an automorphism of order 4. The vertex x in that
example would not support a stable conjugate of this torus.
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3.4.2 Depth zero characters

Let G be a connected reductive group defined over a finite field k, let S′ ⊂ G
be a maximal torus, and let θ̄ : S′(k) → Q̄×l be a character. In [DL76, Defini-
tion 5.15], Deligne and Lusztig define two regularity conditions for a character
θ̄ : S′(k) → Q̄×l , which we shall now recall. They say that θ̄ is in general po-
sition, if its stabilizer in Ω(S′,G)(kF ) is trivial. They say that θ̄ is non-singular,
if it is not orthogonal to any coroot, which means that the composition of θ̄ with
the map X∗(S′) → S′(k) given by (3.4.1) below is non-trivial on each coroot
α∨ ∈ R∨(S′,G) ⊂ X∗(S′). To recall the map X∗(S′) → S′(kF ), we choose
an embedding k̄× → Q/Z. Its image is (Q/Z)p′ , the subgroup of elements
whose order is prime to p, and this embedding allows us to identify S′(k̄) with
X∗(S′)⊗ (Q/Z)p′ . We have the commutative diagram

0 // X∗(S′) //

Fr−1

��

X∗(S′)⊗Q //

Fr−1

��

X∗(S′)⊗Q/Z //

Fr−1

��

0

0 // X∗(S′) // X∗(S′)⊗Q // X∗(S′)⊗Q/Z // 0

with exact rows, where Fr is the endomorphism ofX∗(S′) obtained functorially
from the Frobenius endomorphism of S′. We alert the reader that this conven-
tion, which is in use in [DL76, §5] and [Car93], implies that Fr is not of finite
order, but rather satisfies Frn = qn for some natural number n. Applying the
kernel-cokernel lemma to this diagram and noting the middle vertical arrow is
an isomorphism we obtain the exact sequence

0→ X∗(S′)→ X∗(S′)→ S′(k)→ 1. (3.4.1)

We will now reinterpret the notion of non-singular in a way that does not in-
volve the choice of an isomorphism k̄× → (Q/Z)p′ and is closer to the p-adic
torus S.

Fact 3.4.13. Let k′ be a finite extension of k. The exact sequence (3.4.1) fits into
the commutative diagram

0 // X∗(S′)
Frn−1

// X∗(S′) //

id
��

S′(k′) //

N

��

1

0 // X∗(S′)
Fr−1 // X∗(S′) // S′(k) // 1

where n = [k′ : k] and N : S′(k′)→ S′(k) is the norm map. �

Proof. This is a direct computation. �

Lemma 3.4.14. Let k′ be a finite extension of k splitting S′, θ̄ : S′(k) → Q̄×l a
character, and α∨ ∈ R∨(S′,G). Then θ̄ is orthogonal to α∨ if and only if the
character θ̄ ◦ N ◦ α∨ : k′× → Q̄×l is trivial. In particular, θ̄ is non-singular if
and only if for each α∨ ∈ R∨(S′,G) the character θ̄ ◦ N ◦ α∨ : k′× → Q̄×l is
non-trivial. �

Proof. According to Fact 3.4.13 we may reduce the proof to the case where S′

is split. In that case the Frobenius endomorphism Fr of X∗(S′) is simply given
by multiplication by q (again, we are using here the conventions of [DL76, §5])
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and the map X∗(S′) → S′(k) sends λ ∈ X∗(S′) to λ(ζ), where ζ ∈ k× is the
generator whose image under the chosen isomorphism k̄× → (Q/Z)p′ is 1/(q−
1) ∈ (Q/Z)p′ . By definition, θ̄ is orthogonal to α∨ ∈ R∨(S′,G) if and only if
θ̄(α∨(ζ)) = 1. Since ζ is a generator of k× this is equivalent to requiring that
the character θ̄ ◦ α∨ be trivial. �

We will now define a third regularity condition on θ̄. We say that θ̄ is abso-
lutely regular, if for some (hence any) finite extension k′ of k splitting S′ the
character θ̄ ◦N has trivial stabilizer in Ω(S′,G). It is clear that absolutely regu-
lar implies general position. By [DL76, Corollary 5.18] general position implies
non-singular.

Lemma 3.4.15. If the center of G is connected, then the notions of non-singular,
general position, and absolutely regular, are equivalent. �

Proof. According to [DL76, Proposition 5.16], the notions of non-singular and
general position are equivalent. By Fact 3.4.13 θ̄ is non-singular if and only if
θ̄ ◦N is non-singular. But for θ̄ ◦N the notions of general position and absolute
regularity coincide. �

We now return to the p-adic group G defined over F . Let x ∈ Bred(G,F ) be a
vertex. We take k = kF and G = G◦x. Assume that S′ is elliptic. By Lemma 3.4.4
there exists a maximally unramified elliptic maximal torus S ⊂ G such that the
reductive quotient of the special fiber of the connected Neron model of S is S′.
We have S′(F )0/S

′(F )0+ = S(F )0/S(F )0+ = S′(kF ) by Lemma 3.1.6.

Definition 3.4.16. We shall call θ̄ : S′(kF ) → Q̄×l (or θ̄ : S′(kF ) → C×) regular
if its stabilizer in N(S,G)(F )/S(F ) is trivial. We shall call θ̄ extra regular if its
stabilizer in Ω(S,G)(F ) is trivial. If θ : S(F ) → C̄× is a depth-zero character
such that θ|S(F )0

equals the inflation of θ̄, we shall call θ (extra) regular if θ̄ is
such. �

Remark 3.4.17. Whether θ̄ is (extra) regular does not depend on the choice of
S: this follows from Lemma 3.4.5. �

Fact 3.4.18. We have

θ̄ extra regular ⇒ θ̄ regular ⇒ θ̄ in general position .

If the point of Bred(G,F ) associated to S is superspecial, then the converse
implications also hold. �

Proof. This follows from Lemma 3.4.10. �

3.4.3 Definition and construction

We now come to the definition and construction of regular depth-zero super-
cuspidal representations. Let π be an irreducible supercuspidal representation
of G(F ) of depth zero. According to [MP96, Proposition 6.8] there exists a ver-
tex x ∈ Bred(G,F ) such that the restriction π|G(F )x,0 contains the inflation to
G(F )x,0 of an irreducible cuspidal representation κ of G(F )x,0:0+.
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Definition 3.4.19. We shall call π regular (resp. extra regular) if κ is a Deligne-
Lusztig cuspidal representation ±RS′,θ̄ associated to an elliptic maximal torus
S′ of G◦x and a character θ̄ : S′(kF )→ C× that is regular (resp. extra regular) in
the sense of Definition 3.4.16. �

Note that, since S′(kF ) is a finite group, θ̄ takes values in Q̄×, so replacing Q̄l
with C is inconsequential. By Fact 3.4.18 a regular π is automatically extra
regular if the vertex x is superspecial.

Regular depth-zero supercuspidal representations of G(F ) are constructed as
follows. Let S be a maximally unramified elliptic maximal torus of G and let
θ : S(F ) → C× be a regular depth-zero character. The restriction θ|S(F )0

fac-
tors through a character θ̄ of S(F )0:0+ that is in general position according to
Fact 3.4.18. Let x ∈ Bred(G,F ) be the vertex (by Lemma 3.4.3) associated to S.
Let κ(S,θ̄) = ±RS′,θ̄ be the irreducible cuspidal representation of G◦x(kF ) arising
from the Deligne-Lusztig construction applied to the reductive quotient S′ of
the special fiber of the connected Neron model of S and the character θ̄. Iden-
tify κ(S,θ̄) with its inflation to G(F )x,0.

Note that S(F ) normalizesG(F )x,0. It is easy to check, and we shall do so soon,
that the normalizer in G(F )x of κ(S,θ̄) is equal to S(F ) · G(F )x,0. This means
that, in order to obtain an irreducible representation ofG(F ), we need to extend
κ(S,θ̄) to S(F ) ·G(F )x,0 before inducing it. In [DR09, §4.4] this is done using the
fact that, when S is unramified, S(F ) = Z(F ) · S(F )0 (see e.g. [Kal11, Lemma
7.1.1]), which implies S(F ) ·G(F )x,0 = Z(F ) ·G(F )x,0. The same is also true for
ramified unitary groups [Roe11, Theorem 3.4.1, Proposition 3.4.2, Proposition
5.2.3]. Since Z(F ) ∩ G(F )x,0 acts on κ(S,θ̄) via θ̄|Z(F )∩S(F )0

an extension of
κ(S,θ̄) to Z(F ) · G(F )x,0 is given by letting Z(F ) act by the character θ|Z(F ).
However, for general groups the equality S(F ) = Z(F ) · S(F )0 is generally
false and a counterexample was shown to us by Cheng-Chiang Tsai, which we
have included as Example 3.4.21 at the end of this subsubsection.

The extension of κ(S,θ̄) to S(F ) ·G(F )x,0 must thus be obtained differently. We
shall construct this extension and study its character in the next subsubsection.
For now we just assume that an extension κ(S,θ) of κ(S,θ̄) to S(F ) · G(F )x,0 is
given.

Lemma 3.4.20. The representation π(S,θ) = c-IndG(F )
S(F )G(F )x,0

κ(S,θ) is irreducible
(and hence supercuspidal). �

Proof. The proof is the same as for [DR09, Lemma 4.5.1]. By [MP96, Proposition
6.6] it is enough to show that κ(S,θ) induces irreducibly to the normalizer of
G(F )x,0 in G(F ). Note here that the Levi subgroupM in loc. cit. is equal to
G in our case since x is a vertex. The normalizer of G(F )x,0 is equal to G(F )x,
the stabilizer of the vertex x for the action of G(F ) on Bred(G,F ). It is enough
to show that the normalizer of κ(S,θ) in G(F )x is equal to S(F ) · G(F )x,0. For
this, let h ∈ G(F )x normalize κ(S,θ). Then it in particular normalizes κ(S,θ̄), so
by [DL76, Theorem 6.8] there is g ∈ G(F )x,0 so that Ad(gh)(S′, θ̄) = (S′, θ̄). By
Lemma 3.4.5 there is l ∈ G(F )x,0+ so that Ad(lgh)(S, θ|S(F )0

) = (S, θ|S(F )0
).

Thus lgh ∈ N(S,G)(F ) and then the regularity of θ implies that lgh ∈ S(F ).
�

It is clear that π(S,θ) is regular, as its restriction to G(F )x,0 contains κ(S,θ̄). We
shall see in Proposition 3.4.27 that every regular depth-zero supercuspidal rep-
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resentation is of the form π(S,θ) for some pair (S, θ) consisting of a maximally
unramified elliptic maximal torus S and regular character θ : S(F )→ C×.

Example 3.4.21. We come to the example of the failure of Z(F ) ·S(F )0 = S(F )
due to Cheng-Chiang Tsai. Consider F of odd residual characteristic and not
containing a fourth root of unity, for example F = Qp with 4|(p − 3), and a
ramified quadratic extension E/F . Let Ḡ = ResE/FPGL4 and T̄ = ResE/F T̄0,
where T̄0 = G4

m/Gm is the standard maximal torus of PGL4. We have X∗(T̄ ) =
Z4/Z ⊕ Z4/Z. Let L be the kernel of the addition map Z4/Z ⊕ Z4/Z → Z/4Z.
Let T → T̄ be the isogeny of tori specified by X∗(T ) = L and let G→ Ḡ be the
corresponding isogeny of connected reductive groups. Then G is semi-simple
and quasi-split, and its center is µ4. A direct computation showsX∗(T )I = Z3⊕
Z/2Z. Let S be an anisotropic maximal torus ofG that is conjugate to T over Fu

(such an S does exist – we can let Frobenius act by the same Coxeter element
within both copies of PGL4 and use [Ste65]). Then X∗(S)I = Z3 ⊕ Z/2Z with
an action of Frobenius. This action must be trivial on the Z/2Z factor, which
is the torsion subgroup of X∗(S)I . Since S is anisotropic, we conclude that
[X∗(S)I ]

Fr = Z/2Z. Since this is the quotient S(F )/S(F )0, in order for Z(F ) ·
S(F )0 = S(F ) to hold the composed map Z(F ) → S(F ) → [X∗(S)I ]

Fr must
be surjective. However, Z(Fu) = µ4(Fu) has order 4, while Z(F ) = µ4(F )
has order 2, by our assumption on F . We see that whatever the map Z(Fu)→
S(Fu) → X∗(S)I might be, its restriction to Z(F ) → S(F ) → [X∗(S)I ]

Fr is the
zero map. �

3.4.4 An extension and its character

We shall now construct the representation κ(S,θ) of S(F ) ·G(F )x,0 that extends
κ(S,θ̄). For this we must first recall the construction of κ(S,θ̄). Let U ⊂ G◦x be
the unipotent radical of a Borel subgroup defined over kF and containing the
maximal torus S′. Let

X = {g ∈ G◦x|g−1Fr(g) ∈ U}

be the corresponding Deligne-Lusztig variety, where Fr stands for the Frobe-
nius automorphism of G◦x. By construction, G◦x(kF ) acts on this variety by mul-
tiplication on the left, and S′(kF ) acts by multiplication on the right. The l-adic
cohomology (for some fixed auxiliary prime l different from p) with compact
support Hi

c(X, Q̄l) is thus a (G◦x(kF ), S′(kF ))-bimodule. It is shown in [DL76,
Corollary 9.9] that if X is affine and θ̄ : S′(kF ) → Q̄×l is a non-singular charac-
ter, then the θ̄-isotypic subspace Hi

c(X, Q̄l)θ̄ is non-zero for exactly one value
of i, namely i = l(w), where w is the Weyl element determined by the maximal
torus S′. In fact, according to [DL76, Remark 9.15.1] the affineness assump-
tion on X can be relaxed to the assumption that some X(w′) is affine, where
w′ is an element of the Weyl group that is Frobenius-conjugate to w. The lat-
ter assumption has been proved to always hold [He08, Theorem 1.3]. We let
V = H

l(w)
c (X, Q̄l) and

Vθ̄ = {v ∈ V |vt = θ̄(t)v, ∀t ∈ S′(kF )}.

The G◦x(kF )-module Vθ̄, inflated to G(F )x,0, is the representation κ(S,θ̄). It is
irreducible if θ̄ is in general position [DL76, Theorem 6.8].

We now assume that θ̄ : S′(kF ) → C× is obtained by restricting to S(F )0 a
regular depth-zero character θ : S(F ) → C×. The extension κ(S,θ) of κ(S,θ̄) to
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S(F ) · G(F )x,0 begins with the observation that besides a left G◦x(kF )-action
and a right S′(kF )-action, the variety X also carries an S′ad(kF )-action by con-
jugation, where S′ad is the image of S′ in the adjoint group of G◦x. This action
– a special case of [DL76, 1.21] – is simply the restriction to S′ad(kF ) of the ac-
tion of S′ad on G◦x by conjugation, and is readily seen to preserve X . We shall
write Ad(s̄) for the action of s̄ ∈ S′ad(kF ) by conjugation on G◦x as well as on the
subvariety X of G◦x. The three actions on X have the following compatibility
relation: For all s̄ ∈ S′ad(kF ), g ∈ G◦x(kF ), s′ ∈ S′(kF ), x ∈ X

Ad(s̄)[g · x · s′] = [Ad(s̄)g] · [Ad(s̄)x] · s′.

In particular, the action of S′ad(kF ) by conjugation commutes with the action of
S′(kF ) on the right. Furthermore, the action of s′ ∈ S′(kF ) on the right can be
recovered as v · s′ = Ad(s̄′−1)[s′ · v], where s̄′ ∈ S′ad(kF ) is the image of s′.

There is a natural map S(F ) → S′ad(kF ) given as follows. To avoid confusion,
let H be the adjoint group of G. Then the natural map G◦x → [G◦x]ad factors as
the composition G◦x → H◦x → [G◦x]ad. In particular, we have the map S′H →
S′ad, where SH is the image of S in H . Since S is maximally unramified, so is
SH and Lemma 3.4.7 implies SH(F )0 = SH(F ). The map S(F ) → S′ad(kF ) is
then obtained as the composition S(F ) → SH(F ) = SH(F )0 → SH(F )0:0+ =
S′H(kF )→ S′ad(kF ).

Via the map S(F )→ S′ad(kF ) we can let S(F ) act on G◦x and X by conjugation,
and the action on X gives an action on V , which preserves the subspace Vθ̄.
This action factors through S(F )/S(F )0+. The subgroup S′(kF ) of S(kF ) =
S(F )/S(F )0+ embeds via s 7→ (s, s−1) into the center of G◦x(kF ) o S(kF ) and
we let G̃(kF ) be the quotient. We extend the representation of G◦x(kF ) on Vθ̄ to
G̃(kF ) via the formula

(g, s) · v = θ(s)g[Ad(s)v]. (3.4.2)

It is immediate to check that this formula gives an action of G◦x(kF ) o S(kF )

which descends to G̃(kF ). The maps G(F )x,0 → G◦x(kF ) and S(F ) → S(kF )

splice together to a map G(F )x,0 ·S(F )→ G̃(kF ) via which we obtain an action
of G(F )x,0 · S(F ) on Vθ̄. This is the extension κ(S,θ) of κ(S,θ̄) that we were
seeking.

We will now compute the character of the representation κ(S,θ) of the group
G(F )x,0·S(F ). The resulting formula will be used in the classification of regular
depth-zero supercuspidal representations in the next subsubsection. In fact,
we will give two formulations of the character formula: one more technical,
but valid in complete generality, and one more palatable, but only valid when
G splits over a tamely ramified extension and for elements of G(F )x,0 · S(F )
that are semi-simple.

To state the more palatable version, we begin with a discussion of a variant
of the topological Jordan decomposition. When S is unramified, the equation
G(F )x,0 · S(F ) = G(F )x,0 · Z(F ) reduces the computation of the character of
κ(S,θ) to elements of the compact group G(F )x,0, for which the usual topo-
logical Jordan decomposition can be used. The failure of this equation when
S is ramified precludes this, because we need to deal with general elements
of G(F )x,0 · S(F ) which need not be compact and hence do not have a usual
topological Jordan decomposition. However, if we let AG be the maximal split
central torus of G, and Ḡ = G/AG, then the image of G(F )x,0 · S(F ) in Ḡ(F )
is contained in Ḡ(F )x, whose elements are compact and have a topological
Jordan decomposition. We recall from [Spi08] that an element is called topo-
logically unipotent if has pro-p order, and topologically semi-simple if it has finite
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order prime to p. An element is called topologically unipotent/semi-simple
modulo AG if its image in Ḡ(F ) has the corresponding property.

Lemma 3.4.22. Assume that G splits over a tame extension. Let γ ∈ G(F )x,0 ·
S(F ) be a semi-simple element. Then γ = γsγu, where γs ∈ G(F )x,0 · S(F ) is
topologically semi-simple moduloAG and γu ∈ G(F )x,0 is topologically unipo-
tent. Both γs and γu are unique up to multiplication by elements of AG(F )0+.
The image of the decomposition γ = γsγu in Ḡx(kF ) is the usual Jordan de-
composition in the (possibly disconnected) finite group of Lie type Ḡx. If T
is a maximal torus containing γ, then γs, γu ∈ T (F ). In particular, γs and γu
commute. �

Proof. Let γ̄ ∈ Ḡ(F ) be the image of γ. Since Ḡ has anisotropic center, the
group Ḡ(F )x,0S̄(F ) ⊂ Ḡ(F )x is compact. By [Spi08, Proposition 1.8] there exist
commuting elements γ̄s, γ̄u ∈ Ḡ(F )x,0S̄(F ) with γ̄ = γ̄s · γ̄u such that γ̄s is of
finite order prime to p, and γ̄u is of pro-p order. This decomposition is unique
by [Spi08, Proposition 1.7]. The orders of γ̄s and γ̄u show that their images in
Ḡx form the usual Jordan decomposition of the image of γ̄ there.

We claim that γ̄u ∈ Ḡ(F )x,0. Indeed, the image of γ̄u in Ḡ(F )x,0S̄(F )/Ḡ(F )x,0
still has pro-p order. But Ḡ(F )x,0S̄(F )/Ḡ(F )x,0 ∼= S̄(F )/S̄(F )0

∼= X∗(S̄)Fr
I .

Since S becomes a minimal Levi subgroup ofG over Fu, S splits over the same
extension of Fu as G does. In particular, S is tame, and therefore the abelian
group X∗(S̄)I has no p-torsion. Thus the image of γ̄u in Ḡ(F )x,0S̄(F )/Ḡ(F )x,0
is trivial.

Using the surjectivity of G(F )x,0 → Ḡ(F )x,0 guaranteed by Lemma 3.3.2 we
lift γ̄u to an element of G(F )x,0. This lift may not have pro-p-order. Apply
[Spi08, Proposition 1.8] to this lift and the group G(F )x,0 to write this lift as a
commuting product δ · γu with δ ∈ G(F )x,0 having finite order prime to p and
γu ∈ G(F )x,0 having pro-p-order. The image of δ · γu in Ḡ(F ) equals γ̄u and
thus has pro-p order. This implies that the image of δ in Ḡ(F ) is trivial, and
hence that γu lifts γ̄u.

We claim that if T is a maximal torus and γ ∈ T (F ) then also γu ∈ T (F ).
Indeed, γ̄ ∈ T̄ (F ) ∩ Ḡ(F )x ⊂ T̄ (F )b. Thus γ̄ has a decomposition according
to [Spi08, Proposition 1.8] relative to T̄ (F )b, but then [Spi08, Proposition 1.7]
implies that this decomposition coincides with the one relative to Ḡ(F )x, thus
γ̄s, γ̄u ∈ T̄ (F ). Since γu ∈ G(F ) is a lift of γ̄u we must have γu ∈ T (F ).

Set now γs = γγ−1
u . Then γs is a lift of γ̄s and hence topologically semi-simple

modulo AG. Moreover, if T is a maximal torus with γ ∈ T (F ), then also γs ∈
T (F ).

Finally, since γ̄s, γ̄u are uniquely determined by γ and γu is a lift of γ̄u of pro-
p-order, γu is uniquely determined up to multiplication by AG(F )0+, and the
same is then true for γs. �

Proposition 3.4.23. Assume thatG splits over a tamely ramified extension. The
character of κ(S,θ) at a semi-simple element γ ∈ G(F )x,0 · S(F ) is given by the
formula

(−1)rG−rS |C(γs)
◦(kF )|−1

∑
h∈G◦x(kF )

h−1γsh∈S(kF )

θ(h−1γsh)Q
C(γs)

◦

hS′h−1(γu),
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where C(γs) ⊂ G◦x is the subgroup whose action on [G(F )x,0 · S(F )]/G(F )x,0+

fixes the image of γs, and rG and rS are the split ranks of G and S, respectively.
�

We now state the more technical version of this formula, valid without assump-
tions on G and γ. Let γ ∈ G(F )x,0 · S(F ). Write γ = gr, where r ∈ S(F ) and
g ∈ G(F )x,0. We map r to r̄ ∈ S′ad(kF ) via the natural map S(F )→ S′ad(kF ) de-
scribed above and then lift r̄ arbitrarily to ṙ ∈ S′(kF ). We also map g to G◦x(kF ).
Let gṙ = su be the Jordan decomposition of gṙ ∈ G◦x. Let z ∈ Z(G◦x) be such
that Fr(ṙ) = zṙ. Then Fr(gṙ) = zgṙ and the uniqueness of the Jordan decom-
position implies u ∈ G◦x(kF ) and Fr(s) = zs. We see that sṙ−1 ∈ G◦x(kF ), and
moreover the centralizer C(s) of s in G◦x has a kF -structure. Since the action
of S(Fu)/S(Fu)0+ on G(Fu)x,0/G(Fu)x,0+ = G◦x(kF ) by conjugation factors
through the natural map S(Fu) → S′ad(kF ) we see that ṙ−1r acts trivially on
G◦x.

Proposition 3.4.24. The character of κ(S,θ) at an element γ ∈ G(F )x,0 · S(F ) is
given by the formula

(−1)rG−rS |C(s)◦(kF )|−1
∑

h∈G◦x(kF )

h−1sh∈S′

θ̄(h−1shṙ−1)θ(r)Q
C(s)◦

hS′h−1(u).

where C(s) ⊂ G◦x is the centralizer of s in G◦x, rG and rS are the split ranks of G
and S, respectively, and θ̄ : S′(kF ) → C× is obtained by restricting θ to S(F )0.
�

Proof of Propositions 3.4.23 and 3.4.24. We first show that Proposition 3.4.23 fol-
lows from Proposition 3.4.24. For this we claim that in [G(F )x,0·S(F )]/G(F )x,0+

we have the identities γs = sṙ−1r and γu = u. Indeed, recalling the notation
H = Gad, we map the decomposition γ = γsγu to H(F ). The image of γ in
H(F ) belongs to H(F )x,0SH(F ) which equals H(F )x,0 by Lemma 3.4.7. The
image of γ in H◦x(kF ) has Jordan decomposition given by the images of γs and
γu. Since the images of γ and gṙ in the adjoint group of G◦x agree, the images
of γu and u there also agree. Both of these elements being unipotent elements
of G◦x we conclude that they are equal in G◦x. Now γs = sṙ−1r follows from
sṙ−1ru = suṙ−1r = gr = γ, which uses the fact that ṙ−1r commutes with G◦x.

Having established the claimed identities, the fact that ṙ−1r commutes with ev-
ery element of G◦x implies thatC(γs) = C(s), that h−1shṙ−1r = h−1(sṙ−1r)h−1 =
h−1γsh, and finally that h−1sh ∈ S′ is equivalent to h−1γsh ∈ S.

We come to the proof of Proposition 3.4.24 and will compute the character of
κ(S,θ) at γ = gr using the Jordan decomposition gṙ = su following the argu-
ments in [Car93, §7]. The virtual (G◦x(kF ), S′(kF ))-bimodule

∑
i(−1)iHi

c(X, Q̄l)
will be denoted byW and its θ̄-isotypic component for the right action of S′(kF )
will be denoted by Wθ̄. Thus Wθ̄ is a virtual G◦x(kF )-module. By the above
mentioned vanishing result we have Wθ̄ = (−1)l(w)Vθ̄, so it will be enough
to compute the character of the action of S(F ) · G(F )x,0 on Wθ̄, noting that
(−1)l(w) = (−1)rG◦x−rS′ , rS = rS′ , and rG = rG◦x , the latter according to [BT84,
Corollary 5.1.11].

We now use all three actions we have on W , i.e. the fact that it is a ([G◦x(kF ) o
S(kF )], S′(kF ))-bimodule. According to (3.4.2), the action of gr on Wθ̄ is given
by θ(r) times the action of g o r̄ ∈ G◦x(kF ) o S′ad(kF ) on Wθ̄. The element in the
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group algebra of S′(kF ) given by e = |S′(kF )|−1
∑
t∈S′(kF ) θ̄(t

−1)t projects W
to Wθ̄. Then the trace of g o r̄ ∈ G◦x(kF ) o S′ad(kF ) on Wθ̄ is equal to the trace
of (g o r̄, e) on W . The element (g o r̄, e) of the group algebra of [G◦x(kF ) o
S′ad(kF )]× S′(kF ) has the same action on W as the element

e′ = |S′(kF )|−1
∑

t∈S′(kF )

θ̄(t−1)[gto t̄−1r̄]

of the group algebra of G◦x(kF ) o S′ad(kF ). The trace of gr on Wθ̄ is thus equal
to θ(r) times the trace of e′, i.e. to the expression

|S′(kF )|−1
∑

t∈S′(kF )

θ(r)θ̄(t−1)L(gto t̄−1r̄, X),

where L denotes the Lefschetz number. For the computation of the Lefschetz
number, we use [Car93, Property 7.1.10], which involves the Jordan decom-
position in the algebraic group G◦x o S′ad. This decomposition is computed as
follows: Given g′ o t̄′, lift t̄′ to t′ ∈ S′ and let g′t′ = s′u′ be the Jordan decom-
position of g′t′ in the algebraic group G◦x. Then [g′o t̄′] = [s′t′−1 o t̄′] · [u′o 1] is
the Jordan decomposition of g′o t̄′ in the algebraic group G◦xoS′ad. Note that s′

depends on the choice of lift t′ of t̄′ and that s′t′−1 is independent of this choice.
Note moreover that if t̄′ is a kF -point, then so is s′t′−1, even though neither s′

nor t′ has to be a kF -point in general.

Applying this to the element gto t̄−1r̄, we decompose gṙ = su in G◦x and then
obtain [gtot̄−1r̄] = [stṙ−1ot̄−1r̄]·[uo1] as the Jordan decomposition in G◦xoS′ad.
The subvariety of X fixed by the action of the semi-simple part [stṙ−1 o t̄−1r̄]

is Xs,tṙ−1

= {x ∈ X|x−1sx = (tṙ−1)−1}. We are following here the notation
of [Car93, Proposition 7.2.5], but need to keep in mind that s and ṙ are not
Frobenius-fixed, but rather satisfy the relation F (ṙ) = ṙz and F (s) = sz, for
some z in the center of G◦x. Nonetheless, the conclusions of Propositions 7.2.6
and Propositions 7.2.7 in loc. cit. remain valid with the same proofs, and the
arguments in the proof of Theorem 7.2.8 in loc. cit. carry over as well. We give
a brief sketch.

The trace of gr on Wθ̄ is now seen to equal

|S′(kF )|−1
∑

t∈S′(kF )

θ(r)θ̄(t−1)L(u,Xs,tṙ−1

).

One checks that the centralizer C(tṙ−1) of tṙ−1 in G◦x is defined over kF , even
though tṙ−1 is not. Let [G◦x(kF )]s,tṙ

−1

denote the subset {g ∈ G◦x(kF )|g−1sg =
(tṙ−1)−1} and let Ytṙ−1 = X ∩C(tṙ−1)◦. Just as in the proof of [Car93, Proposi-
tion 7.2.6] we see that the morphism

[G◦x(kF )]s,tṙ
−1

× Ytṙ−1 → Xs,tṙ−1

, (g, y) 7→ gy

is surjective and its fibers are the orbits for the action of the groupC(tṙ−1)◦(kF )

on the variety [G◦x(kF )]s,tṙ
−1 × Ytṙ−1 given by c(g, y) = (gc−1, cy). This implies

that Xs,tṙ−1

is the disjoint union of closed subsets

Xs,tṙ−1

=
⊔

h∈[G◦x(kF )]s,tṙ−1/C(tṙ−1)◦(kF )

hYtṙ−1 ,

each of which is invariant under left multiplication by u. Plugging this into the
Lefschetz number we obtain the trace of gr on Wθ̄ as

|S′(kF )|−1
∑

t∈S′(kF )

|C(tṙ−1)◦(kF )|−1
∑

h∈[G◦x(kF )]s,tṙ−1

θ(r)θ̄(t−1)L(u, hYtṙ−1).
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Define Zs = hXh−1 ∩ C(s)◦ and note that Zs = Zs−1 = hYtṙ−1h−1. Then
L(u, hYtṙ−1) = L(h−1uh, Ytṙ−1) = L(u, Zs). Since Zs is the Deligne-Lusztig va-
riety associated to the group C(s)◦, its maximal torus hS′h−1, and its maximal
unipotent subgroup hUh−1 ∩ C(s)◦, we have L(u, Zs) = |S′(kF )|QC(s)◦

hS′h−1(u).
Combining the two sums and re-indexing completes the proof. �

Corollary 3.4.25. Let φ : G(F )x → C× be a character that is trivial onG(F )x,0∩
G(F )y,0+ for all y ∈ Bred(G,F ). Then κ(S,φ·θ) = φ|S(F )·G(F )x,0 ⊗ κ(S,θ). �

Proof. It is enough to show that the characters of both sides are equal. For
this we use Proposition 3.4.24 and the notation of its statement. Given γ ∈
[G(F )x,0 · S(F )]/G(F )x,0+ we write it again as γ = gr = gṙṙ−1r = suṙ−1r =
sṙ−1ru. For the character of φ⊗ κ(S,θ) at γ we note that φ(γ) = φ(sṙ−1r), since
u, being unipotent in G(F )x,0/G(F )x,0+, is contained in G(F )y,0+ for some
y ∈ Bred(G,F ). To compare this with the character of κ(S,φ·θ) at γ we compute
for h ∈ G◦x(kF )

φ(h−1shṙ−1r) = φ(h−1sṙ−1rh−1) = φ(sṙ−1r).

�

Corollary 3.4.26. If γ ∈ G(F )x,0 · S(F ) is regular semi-simple and its image
in Gad(F ) is topologically semi-simple, then the character of κ(S,θ) at γ is zero
unless γ is (G(F )x,0-conjugate to) an element of S(F ), in which case it is given
by the formula

(−1)rG−rS
∑

w∈N(S,G(F )x,0)/S(F )0

θ(γw),

where again rG and rS are the split ranks of G and S, respectively. �

Proof. We apply Proposition 3.4.24. The character of κ(S,θ) is zero unless s is
conjugate in G◦x(kF ) to an element of S′. This is equivalent to γ being G(F )x,0-
conjugate to an element of S(F ), because the images of s and γ in H◦x(kF ) coin-
cide.

We now assume that γ ∈ S(F ) and use that in the decomposition γ = suṙ−1r
we have u = 1 and s = ṙ. Since γ = r is regular and topologically semi-simple
in G(F ), ṙ is regular in G◦x, so the summation index k runs over N(S′,G◦x)(kF ).
Taking into account the normalizing factor |C(s)◦(kF )|−1 and the fact that ev-
ery h ∈ S′(kF ) commutes with s, we see that the formula becomes

(−1)rG−rS
∑

w∈N(S′,G◦x)(kF )/S′(kF )

θ(γw).

According to Lemma 3.4.10 the indexing set of this sum isN(S,G(F )x,0)/S(F )0

and the proof is complete. �

3.4.5 Classification

Proposition 3.4.27. Every regular depth-zero supercuspidal representation of
G(F ) is of the form π(S,θ) for some maximally unramified elliptic maximal
torus S and regular depth-zero character θ : S(F ) → C×. Two representa-
tions π(S1,θ1) and π(S2,θ2) are isomorphic if and only if the pairs (S1, θ1) and
(S2, θ2) are G(F )-conjugate. �
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Proof. For the first statement, let π be a regular depth-zero supercuspidal repre-
sentation. By definition (which involves [MP96, Proposition 6.8]), there exists
a vertex x ∈ Bred(G,F ) such that the restriction of π to G(F )x,0 contains the
representation κ(S,θ̄′) for some maximally unramified elliptic maximal torus S
whose vertex is x and some regular character θ′ : S(F ) → C×. By [MP96,
Proposition 6.6], we have

π = c-IndG(F )
G(F )x

τ,

for an irreducible representation τ of G(F )x which upon restriction to G(F )x,0
contains κ(S,θ̄′). One such representation is given by

τ ′ = IndG(F )x
S(F )G(F )x,0

κ(S,θ′).

We claim that there exists a character χ : G(F )x/G(F )x,0 → C× such that
τ = τ ′ ⊗ χ. Indeed, both τ and τ ′ are irreducible G(F )x-representations,
hence tautologically semi-simple. Therefore so is τ∨ ⊗ τ , which is isomor-
phic to HomC(τ, τ ′), because both τ and τ ′ are finite-dimensional. The G(F )x-
subrepresentation HomG(F )x,0(τ, τ ′) is then also semi-simple. It factors through
a representation of the abelian quotient G(F )x/G(F )x,0. By semi-simplicity
this representation is the direct sum of characters, and we can take any χ s.t.
χ−1 is a summand. Having proved the claim, we observe that Corollary 3.4.25
shows

τ ′ ⊗ χ = IndG(F )x
S(F )G(F )x,0

(κ(S,θ′) ⊗ χ|S(F )G(F )x,0) = IndG(F )x
S(F )G(F )x,0

κ(S,θ′·χ|S(F )).

The character θ = θ′ · χ|S(F ) has the same restriction to S(F )0 as θ′ and is thus
regular. We conclude π = π(S,θ).

We come to the second statement. The first half of the proof is the same as for
[Kal14, Lemma 3.1.1]. It is clear that conjugate pairs lead to isomorphic repre-
sentations, so we need to prove the opposite implication. Let xi ∈ Bred(G,F ) be
the point for Si and κi and κ̄i the representations of Si(F )G(F )xi,0 andG(F )xi,0
respectively. By [MP96, Theorem 3.5] the unrefined minimal K-types of depth
zero (G(F )x1,0, κ̄1) and (G(F )x2,0, κ̄2) are associate. Thus there exists g ∈ G(F )
s.t. G(F )gx1,0 ∩ G(F )x2,0 surjects onto both G(F )gx1,0:0+ and G(F )x2,0:0+ and
Ad(g)κ̄1 = κ̄2. We claim that we must also have gx1 = x2. Indeed, assume
not. The group G(F )x2,0 ∩ G(F )gx1,0 fixes the unique geodesic in Bred(G,F )
connecting gx1 and x2. This geodesic meets a facet of positive dimension con-
taining x2 in its closure. If y is a point in the intersection of the geodesic and
the facet, then G(F )x2,0 ∩G(F )gx1,0 is contained in G(F )y . It is moreover con-
tained in the kernel of the Kottwitz map, and hence in G(F )y,0, see §3.3. But
the image of G(F )y,0 in G(F )x2,0:0+ is a parabolic subgroup of G(F )x2,0:0+ and
this precludes G(F )x2,0 ∩G(F )gx1,0 mapping surjectively onto G(F )x2,0:0+.

Conjugating (S1, θ1) by g we may assume g = 1, so x1 = x2 =: x and κ̄1 = κ̄2.
The letter g being free again, by [DL76, Theorem 6.8] we can find g ∈ G(F )x,0
such that Ad(g)(S1, θ̄1) = (S2, θ̄2). By Lemma 3.4.5 there is l ∈ G(F )x,0+ such
that Ad(lg)(S1, θ̄1) = (S2, θ̄2). We again conjugate (S1, θ1) by lg and assume
that S1 = S2 and θ̄1 = θ̄2. Let’s write S = S1 = S2 and θ̄1 = θ̄2 = θ̄.

In the unramified case the proof is now complete, because S(F ) = S(F )0 ·
Z(F ), which implies θ1 = θ2, because the central character of π(S,θi) is θi|Z(F ).
Since this fails in the ramified case, we need an additional argument. It is
similar to the proof of [Mor89, Proposition 4.2]. The argument given there,
combined with [Mor89, Proposition 5.2], shows that for any g /∈ G(F )x the
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group HomG(F )x∩gG(F )x(κ̇1, κ̇2) vanishes, where κ̇i = IndG(F )x
S(F )G(F )x,0

κi. We
conclude

HomG(F )(π(S,θ1), π(S,θ2)) = HomG(F )x(κ̇1, κ̇2),

using Kutzko’s Mackey formula [Kut77]. We apply again the (this time ordi-
nary) Mackey formula to the subgroup S(F ) ·G(F )x,0 of finite index of G(F )x.
Then we get

HomG(F )x(κ̇1, κ̇2) =
⊕

g∈G(F )x/S(F )G(F )x,0

HomS(F )G(F )x,0(κ1,
gκ2).

For any coset g the corresponding summand on the right is a subgroup of
HomG(F )x,0(κ̄1,

gκ̄2). But we already know κ̄1
∼= κ̄2, so by the same argument

as above there exist h ∈ G(F )x,0 and l ∈ G(F )x,0+ such that Ad(g)(S, θ̄) =
Ad(lh)(S, θ̄). The regularity of θ̄ implies that g−1lh ∈ S(F ), which means that
g must represent the trivial coset in G(F )x/S(F )G(F )x,0. This implies

HomG(F )(π(S,θ1), π(S,θ2)) = HomS(F )G(F )x,0(κ1, κ2).

From (3.4.2) we see that both κ1 and κ2 act on the same vector space Vθ̄ and
κ2 = θ2θ

−1
1 ⊗κ1, because θ2θ

−1
1 is a character of S(F )/S(F )0 = S(F )G(F )x,0/G(F )x,0.

Since κ̄1 = κ̄2 is already an irreducible representation of G(F )x,0, any ele-
ment of HomS(F )G(F )x,0(κ1, κ2) is a scalar multiple of the identity, which forces
θ2 = θ1. �

The following lemma will be needed for the classification of positive depth
regular supercuspidal representations.

Lemma 3.4.28. Let S ⊂ G be maximally unramified elliptic, θ : S(F ) → C× a
regular character, and φ : G(F ) → C× a character. If the depth of φ ⊗ π(S,θ)

is zero, then the depth of φ is zero. If the depth of φ is zero, then φ ⊗ π(S,θ) =
π(S,φ·θ). �

Proof. The representation φ⊗π(S,θ) is supercuspidal. If its depth is zero, then by
[MP96, Proposition 6.8] there exist a vertex y ∈ Bred(G,F ) and an irreducible
representation τ of the stabilizer G(F )y whose restriction to G(F )y,0 contains
a cuspidal representation σ, s.t. φ ⊗ π(S,θ) = c-IndG(F )

G(F )y
τ . At the same time,

writing κ̇(S,θ) = IndG(F )x
S(F )G(F )x,0

κ(S,θ) we see φ⊗ π(S,θ) = c-IndG(F )
G(F )x

(φ⊗ κ̇(S,θ)).
Applying Kutzko’s Mackey formula [Kut77] we see that

EndG(F )(φ⊗ π(S,θ)) = HomG(F )(c-IndG(F )
G(F )y

τ, c-IndG(F )
G(F )x

(φ⊗ κ̇(S,θ)))

=
⊕
g

HomG(F )y∩G(F )gx(τ, g[φ⊗ κ̇(S,θ)]),

where g runs over G(F )y \ G(F )/G(F )x. Since the left hand side is non-zero
there must exist g for which the corresponding summand on the right is non-
zero. This summand is a subgroup of HomG(F )y,0+∩G(F )gx,0+

(τ, g[φ⊗ κ̇(S,θ)]).
Since both τ and gκ̇(S,θ) are 1-isotypic upon restriction toG(F )y,0+∩G(F )gx,0+

we see that φ must be trivial upon restriction to this group. By [HM08, Lemma
2.45, Definition 2.46] this implies that φ has depth zero.

The equality φ ⊗ π(S,θ) = π(S,φ·θ) now follows from Corollary 3.4.25 and the
obvious equality φ⊗ π(S,θ) = c-IndG(F )

S(F )G(F )x,0
(φ⊗ κ(S,θ)). �
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3.5 Review of the work of Hakim and Murnaghan

In accordance with [Yu01] and [HM08] we now assume that the residual char-
acteristic of F is not 2 and that G splits over a tame extension of F . Let
((G0 ( G1 · · · ( Gd), π−1, (φ0, φ1, . . . , φd)) be a reduced generic cuspidal G-
datum, in the sense of [HM08, Definition 3.11]. We recall that each Gi is a tame
twisted Levi subgroup of G, i.e. a connected reductive subgroup of G that is
defined over F and becomes a Levi subgroup of G over a tame extension of
F , Gd = G, π−1 is a depth-zero supercuspidal representation of G0(F ), and
φi : Gi(F ) → C× is a smooth character of depth ri > 0, which is Gi+1-generic
when i 6= d. We refer the reader to [HM08, §3.1] for the notion of a generic
character, as well as for the precise list of conditions imposed on this datum.

From a reduced generic cuspidal G-datum, the construction of [Yu01] pro-
duces an irreducible supercuspidal representation of G(F ). We can think of
Yu’s construction as a map from the set of reduced generic cuspidal G-data
to the set of isomorphism classes of irreducible supercuspidal representations
of G(F ). One of the main results of [HM08] is the description of the fibers
of this map. Hakim and Murnaghan introduce three operations on the set of
reduced generic cuspidal G-data: elementary transformation, G-conjugation,
and refactorization. According to [HM08, Theorem 6.6], the equivalence re-
lation generated by these operations, called G-equivalence in [HM08], places
two reduced generic cuspidal G-data in the same equivalence class precisely
when they lead to isomorphic supercuspidal representations. This theorem is
valid under a certain technical hypothesis, called C( ~G).

Our goal in this subsection is to recall the notion of G-equivalence and Hy-
pothesis C( ~G), and then show that [HM08, Theorem 6.6] is valid even without
assuming C( ~G). For this, we will first prove that Hypothesis C( ~G) holds for all
G for which the fundamental group of Gder has order prime to p. In particular,
it holds when Gder is simply connected. We will then use this to treat the case
of general G.

We now recall Hypothesis C( ~G) from [HM08, §2.6]. Given a tower ~G = (G0 (
G1 · · · ( Gd) of twisted Levi subgroups of G, Hypothesis C( ~G) is the conjunc-
tion of hypotheses C(Gi). In turn, Hypothesis C(G) stipulates that whenever
φ : G(F ) → C× is a character of positive depth r > 0 and x ∈ Bred(G,F ), the
restriction φ|G(F )x,(r/2)+

is realized by an element of Lie∗(Z(G)◦)(F )−r. This
means the following. Let g = Lie(G) and let Λ : F → C× be an additive char-
acter of depth zero. For any r > s the Pontryagin dual of the abelian group
g(F )x,s+/g(F )x,r+ is identified with the abelian group g∗(F )x,−r/g

∗(F )x,−s,
via the pairing

(Y,X∗) 7→ Λ〈X∗, Y 〉, Y ∈ g(F )x,s+, X
∗ ∈ g∗(F )x,−r.

Whenever r > s ≥ r/2 we have the Moy-Prasad isomorphism (see [Yu01,
Corollary 2.4] and the discussion following [HM08, Definition 2.46])

MPx : g(F )x,s+/g(F )x,r+ → G(F )x,s+/G(F )x,r+,

via which g∗(F )x,−r/g
∗(F )x,−s is identified with the Pontryagin dual of the

abelian group G(F )x,s+/G(F )x,r+. An element X∗ ∈ g∗(F )x,−r/g
∗(F )x,−s is

said to realize the character of G(F )x,s+/G(F )x,r+ that it corresponds to under
this identification. Now let z = Lie(Z(G)◦). As discussed in [Yu01, §8], there
is a natural way to view z∗ as a subspace of g∗. Namely, the natural projection
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g∗ → z∗ that is dual to the inclusion z → g becomes an isomorphism upon
restriction to the subspace of g∗ that is 1-isotypic for the adjoint action of G.

Lemma 3.5.1. If the fundamental group ofGder has order prime to p, then every
character of Gder(F ) has trivial restriction to Gder(F )x,0+ for every point x ∈
Bred(G,F ). �

Proof. Assume first that Gder is simply connected and write Gder = Gsc as the
product Gsc = Gsc,1 × · · · × Gsc,n, with each Gsc,i simple over F . Then Gsc,i is
either isotropic, or else by [BT87, §4.5,§4.6] isomorphic to ResE/F SL1(D), where
E/F is a finite extension andD/E is a central division algebra. In the first case,
Gsc,i satisfies the Kneser-Tits conjecture [Tit78, §1.2] and hence Gsc,i(F ) has no
non-trivial characters. In the second case Gsc,i(F ) is isomorphic to the group
D(1) of elements of D whose reduced norm is equal to 1. According to [Rie70,
§5 Corollary], the derived subgroup ofD(1) is equal to (1+pD)∩D(1), where pD
is the maximal ideal of D. In terms of Moy-Prasad filtrations this means that
the derived subgroup of Gsc,i(F ) is Gsc,i(F )x,0+, where x is the unique point in
the reduced building of Gsc,i(F ). We conclude that every character of Gsc(F ) is
trivial on Gsc(F )x,0+ for any x ∈ Bred(G,F ).

For the general case, let x ∈ Bred(G,F ). LetA ⊂ G be a maximal split torus such
that x belongs to the apartment of A. According to [BT84, Corollaire 5.1.12]
there exists a maximal torus T ⊂ G containing A and maximally split over
Fu. Since G is tame, so is T . Let Tder and Tsc be the corresponding maximal
tori of Gder and Gsc. Lemma 3.3.2 implies that the natural map Gsc(F )x,0+ →
Gder(F )x,0+ is bijective. �

Lemma 3.5.2. Assume the fundamental group of Gder has order prime to p.
Then Hypothesis C(G) holds. More generally, Hypothesis C( ~G) holds for any
tower of twisted Levi subgroups of G. �

Proof. The fundamental group of the derived subgroup of any twisted Levi
subgroup ofG is a subgroup of the fundamental group of the derived subgroup
ofG. It is therefore enough to establish HypothesisC(G). WhenG is a torus the
statement is clear, because then g∗ = z∗. For the general case, let D = G/Gder
and let φ : G(F ) → C× be a character of depth r > 0. The restriction of φ to
Gder(F )x,(r/2)+ is trivial by Lemma 3.5.1, hence its restriction to G(F )x,(r/2)+

factors through a character of D(F )(r/2)+ by Lemma 3.3.2. This character is
represented by an element X∗ ∈ Lie∗(D)(F )−r. Under the exact sequence of
dual Lie algebras

1→ Lie∗(D)→ Lie∗(G)→ Lie∗(Gder)→ 1

the image of Lie∗(D) in Lie∗(G) is precisely the subspace that Yu identifies
with Lie∗(Z(G)◦) in [Yu01, §8]. Thus the image of X∗ in Lie∗(G)x,−r realizes
φ|G(F )x,(r/2)+

. �

At the moment we do not know if Hypothesis C(G) holds without the as-
sumption on the fundamental group of Gder. However, we can still prove that
[HM08, Theorem 6.6] is valid without this assumption, by reducing to the case
where Gder is simply connected. The main tool that we exploit for that is z-
extensions, introduced by Langlands and Kottwitz. Recall from [Kot82, §1] that
a z-extension of G is an exact sequence 1 → K → G̃ → G → 1 of connected
reductive groups defined over F , where the derived subgroup of G̃ is simply
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connected, and K is an induced torus (automatically central). In particular, the
map G̃(F )→ G(F ) is surjective. Such a z-extension always exists.

Lemma 3.5.3. Let 1 → K → G̃ → G → 1 be a z-extension and let x ∈
Bred(G,F ). For any r ≥ 0 the sequence

1→ K(F )r → G̃(F )x,r → G(F )x,r → 1

is exact. For any r > 0 the sequence

1→ Gsc(F )x,r → G̃(F )x,r → D(F )r → 1

is exact, where D = G̃/Gsc. �

Proof. This is a special case of Lemma 3.3.2. �

Given such a z-extension, we can pull-back the reduced generic cuspidal G-
datum to G̃ to obtain ((G̃0 ( G̃1 · · · ( G̃d), π̃−1, (φ̃0, φ̃1, . . . , φ̃d)). Here G̃i is
the preimage of Gi in G̃ and is a twisted Levi subgroup of G̃, π̃−1 is the com-
position of π−1 with the surjective homomorphism G̃0(F ) → G0(F ) and is an
irreducible supercuspidal representation of depth-zero, and φ̃i is the compo-
sition of φi with the surjection G̃i(F ) → Gi(F ) and is a character of the same
depth as φi, generic when i 6= d. The result of this procedure is a reduced
cuspidal generic datum for G̃. The irreducible supercuspidal representation of
G̃(F ) associated to this datum by Yu’s construction is the pull-back of the irre-
ducible supercuspidal representation of G(F ) associated to the reduced cuspi-
dal G-datum we started with. Note here thatK(F ) is contained in the compact
open subgroup of G̃(F ) from which the supercuspidal representation of G̃(F )
is compactly induced.

We now recall the notion ofG-equivalence of reduced generic cuspidalG-data.
It is the equivalence relation generated by three operations: G-conjugation, el-
ementary transformation, and refactorization. The operation of G-conjugation
is obvious from its name – one replaces each member of the G-datum by its
conjugate under a given g ∈ G(F ). An elementary transformation consists of
replacing π−1 by an isomorphic representation. If we are already thinking of
π−1 as an isomorphism class of representations, then this operation is vacuous.
Finally, a datum ((G′0 ( G′1 · · · ( G′d), π′−1, (φ

′
0, φ
′
1, . . . , φ

′
d)) is a refactoriza-

tion of ((G0 ( G1 · · · ( Gd), π−1, (φ0, φ1, . . . , φd)) if G′i = Gi for all i and the
following conditions involving

χi : Gi(F )→ C×, χi(g) :=
d∏
j=i

φj(g)φ′j(g)−1,

are satisfied:

F0. If φd = 1 then φ′d = 1;

F1. χi is of depth at most ri−1 for all i = 0, . . . , d, where r−1 = 0;

F2. π′−1 = π−1 ⊗ χ0.

Note that the three operations of G-conjugation, elementary transformation,
and refactorization, commute.
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Lemma 3.5.4. Let 1 → K → G̃ → G → 1 be a z-extension. Two reduced
generic cuspidal G-data are G-equivalent if and only if their pull-backs to G̃

are G̃-equivalent. �

Proof. Let ((G0 ( G1 · · · ( Gd), π−1, (φ0, φ1, . . . , φd)) and ((G′0 ( G′1 · · · (
G′d), π′−1, (φ

′
0, φ
′
1, . . . , φ

′
d)) be the two reduced data for G. It is enough to check

the three relations that generateG-equivalence: G-conjugacy, elementary trans-
formation, and refactorization. For these, the statement follows immediately
from the surjectivity of the maps G̃i(F )→ Gi(F ) and G̃i(F )x,r → Gi(F )x,r for
any x ∈ Bred(Gi, F ) and r ≥ 0. �

Corollary 3.5.5. Let Ψ and Ψ′ be two reduced generic cuspidal G-data, and
let π(Ψ) and π(Ψ′) be the corresponding irreducible supercuspidal representa-
tions of G(F ). Then π(Ψ) and π(Ψ′) are isomorphic if and only if Ψ and Ψ′ are
G-equivalent (without assuming Hypotheses C( ~G) and C( ~G′)). �

Proof. This follows immediately from Lemma 3.5.4 and [HM08, Theorem 6.6].
�

3.6 Howe factorization

In this subsection we assume that p is not a bad prime (in particular also not a
torsion prime) for G. The notion and values of bad primes are recalled in §2.1.
We further assume that p does not divide the order of the fundamental group
of Gder.

Imagine we are given a reduced generic cuspidal G-datum ((G0 ( G1 · · · (
Gd), π−1, (φ0, φ1, . . . , φd)) such that the depth-zero supercuspidal representa-
tion π−1 of G0(F ) is regular in the sense of Definition 3.4.19. Proposition
3.4.27 produces from π−1 a G0(F )-conjugacy class of pairs (S, φ−1). We can let
θ : S(F ) → C× be the product

∏d
i=−1 φi|S(F ). It was observed by Murnaghan

[Mur11], in a more technically restricted setting, that the G(F )-conjugacy class
of the pair (S, θ) obtained in this way does not change if we replace the G-
datum by a G-equivalent one. Thus, the G(F )-conjugacy class of the pair (S, θ)
is an invariant of the representation π obtained from the G-datum via Yu’s
construction. In order to turn this observation into an effective classification
of representations we need a reverse process – one that takes a pair (S, θ) and
“unfolds” the information contained in it into a reduced generic cuspidal G-
datum. Motivated by this we shall introduce in this subsection a factorization
algorithm that generalizes to arbitrary connected reductive groups (split over a
tame extension) the Howe factorization lemma ([How77, Lemma 11 and Corol-
lary]).

Let (S, θ) be a pair consisting of a tame maximal torus S ⊂ G and a character
θ : S(F )→ C×. Let E be the splitting field of S. For each positive real number
r consider the set of roots

Rr = {α ∈ R(S,G)|θ(NE/F (α∨(E×r ))) = 1}. (3.6.1)

Then r 7→ Rr is a Γ-invariant filtration of R(S,G). We have Rs ⊂ Rr for s < r
and define Rr+ =

⋂
s>r Rs. Let rd−1 > rd−2 > · · · > r0 > 0 be the breaks of

this filtration, that is, the positive real numbers r with Rr+ 6= Rr. We allow
here d = 0, which signifies that there are no breaks, i.e. R0+ = R(S,G). We set
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in addition r−1 = 0 and rd = depth(θ), so that rd ≥ rd−1 > · · · > r0 > r−1 = 0
if d > 0 and r0 ≥ r−1 = 0 if d = 0. For each d ≥ i ≥ 0 let Gi be the connected
reductive subgroup of G with maximal torus S and root system Rri−1+. By
definition the root system of Gd is R(S,G), so Gd = G. Moreover, the root
system of G0 is R0+, which may or may not be empty. If it is empty, then
G0 = S. We set G−1 = S. Since S splits over a tamely ramified extension of F ,
so does each Gi. The following Lemma shows that each Gi is a tame twisted
Levi.

Lemma 3.6.1. The subset Rr ⊂ R(S,G) is a Levi subsystem of R(S,G). �

Proof. Let ϕ ∈ Z1(WF , Ŝ) be the Langlands parameter of θ. The Langlands
parameter of the character θ ◦ NE/F ◦ α∨ : E× → C× is α̂ ◦ ϕ|WE

. By local
class field theory, θ ◦NE/F ◦ α∨ has non-trivial restriction to E×r if and only if
α̂ ◦ ϕ|WE

has non-trivial restriction to IrE = IrF . Thus

Rr = {α ∈ R(S,G)|α̂(ϕ(Ir)) = 1}.

But ϕ(Ir) is a finite subgroup of Ŝ and then R∨r = {α̂ ∈ R(Ŝ, Ĝ)|α̂(ϕ(Ir)) = 1}
is the root system of the connected centralizer in Ĝ of this finite group. This
connected centralizer is a Levi subgroup, as one sees by applying [AS08, Propo-
sition A.7] repeatedly to the elements in the image of ϕ(Ir). Thus R∨r is a Levi
subsystem of R(S,G)∨, equivalently Rr is a Levi subsystem of R(S,G).

We now give a second proof suggested to us by the referee, that avoids the use
of the local Langlands correspondence. It is enough to prove that the quotient
of the Z-span of R(S,G)∨ by the Z-span of R∨r is torsion-free. If it weren’t, let
l be a prime factor of the order of its torsion subgroup. There exists λ in the
Z-span of R(S,G)∨ s.t. θ ◦ NE/F ◦ (lλ) is trivial on E×r , while θ ◦ NE/F ◦ λ is
not. Since E×r is a pro-p-group, this implies l = p, i.e. p is a torsion prime for
R(S,G), in particular a bad prime, contrary to our assumption. �

Definition 3.6.2. A Howe factorization of (S, θ) is a sequence of characters φi :
Gi(F )→ C× for i = −1, . . . , d with the following properties.

1.

θ =
d∏

i=−1

φi|S(F ). (3.6.2)

2. For all 0 ≤ i ≤ d the character φi is trivial on Gisc(F ).

3. For all 0 ≤ i < d, φi has depth ri and is Gi+1-generic. For i = d, φd is
trivial if rd = rd−1 and has depth rd otherwise. For i = −1, φ−1 is trivial
if G0 = S and otherwise satisfies φ−1|S(F )0+

= 1.

�

The discussion of [HM08, §3.5] makes clear the direct parallel between this
definition and the original notion of Howe factorization for the group GLN , as
formulated for example in [HM08, Defintion 3.33]. Our goal in this subsection
is to show that Howe factorizations always exist. But we begin by reviewing
the process inverse to Howe factorization alluded to above.
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Lemma 3.6.3. Let t ≥ 0 be a natural number. If t = 0 assume given a sequence
of real numbers s0 ≥ s−1 = 0; if t > 0 assume given a sequence of real numbers
st ≥ st−1 > · · · > s0 > s−1 = 0. Assume given a tower S = H−1 ( H0 (
H1 · · · ( Ht = G of tame twisted Levi subgroups. Let φi : Hi → C×, i =
−1, . . . , t be characters. Assume that the characters φi satisfy properties 2. and
3. of Definition 3.6.2 with respect to the groups Hi and the numbers si. Define
θ =

∏t
i=−1 φi|S(F ).

Then

1. The numbers st−1 > st−2 > · · · > s0 ≥ 0 are precisely the breaks of the
filtration (3.6.1) associated to the character θ. That is, d = t and si = ri
for all i = −1, . . . , d.

2. For each i = −1, . . . , d, the subset Rri−1+ ⊂ R(S,G) is the root system of
the group Hi. That is, Hi = Gi.

3. (φ−1, . . . , φd) is a Howe factorization of (S, θ).

�

Proof. The characters (φ−1, . . . , φt) satisfy part 1. of Definition 3.6.2 by defini-
tion of θ. They also satisfy parts 2. and 3. of Definition 3.6.2, but with Gi and
ri replaced by Hi and si. Thus, the third point of the lemma follows from the
first two points. Those in turn are equivalent to the following two inclusions

R(S,Hi+1) ⊂ Rsi+, ∀i = −1, . . . , t− 1

and
R(S,Hi+1) rR(S,Hi) ⊂ Rsi+ rRsi , ∀i = 0, . . . , t− 1,

where we set s−1 = 0. If t = 0 these inclusions are trivial, so we assume t > 0.

If α ∈ R(S,Hi+1) and j > i then φj ◦NE/F ◦ α∨(E×) = 1, because NE/F ◦ α∨

takes image in Hi+1
sc (F ), while the pull-back of φj to Hj

sc(F ), and hence also to
Hi+1

sc (F ), is trivial by assumption. Thus

θ ◦NE/F ◦ α∨ = (φ−1 . . . φi) ◦NE/F ◦ α∨.

Since NE/F (α∨(E×r )) ⊂ S(F )r for any r > 0 we see α ∈ Rsi+, which is the first
claimed inclusion. Furthermore, for j < i we have φj ◦ NE/F ◦ α∨(E×si) = 1,
because φj is trivial on S(F )sj+ ⊃ S(F )si . Thus

θ(NE/F (α∨(E×si))) = φi(NE/F (α∨(E×si))).

Assume now α /∈ R(S,Hi). We will show that φi(NE/F (α∨(E×si))) 6= 1. A
direct computation shows

φi(NE/F (α∨(1 + x))) = Λ ◦ trE/F (x〈X∗i , Hα〉),

whereX∗i ∈ Lie∗(Z(Hi))(F )−si represents φi. By assumption ord(〈X∗i , Hα〉) =
−si, so every element of O×E can be written as x〈X∗i , Hα〉 for some x ∈ Esi . The
character Λ ◦ trE/F is non-trivial on OE , so the left-hand side is non-trivial for
some x ∈ Esi . We conclude that φi ◦NE/F ◦ α∨, and hence also θ ◦NE/F ◦ α∨,
is non-trivial on E×si , as claimed. This implies α /∈ Rsi . We have thus proved
the second inclusion. �
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Before we discuss the existence of Howe factorizations, let us first collect some
of their properties.

Fact 3.6.4. Let Sisc be the preimage of S in Gisc. Then the restrictions of φi and θ
to Si+1

sc (F )ri agree. �

Proof. This follows from (3.6.2), since φi+1, . . . , φd restrict trivially to Gi+1
sc (F )

and φi−1, . . . , φ−1 restrict trivially to S(F )ri . �

Lemma 3.6.5. Let r = 0 or r = 0+.

1. The stabilizer of θ|S(F )r in Ω(S,G)(F ) lies in Ω(S,G0)(F ) and equals the
stabilizer of φ−1|S(F )r there.

2. The stabilizer of θ|S(F )r in N(S,G)(F ) lies in N(S,G0)(F ) and equals the
stabilizer of φ−1|S(F )r there.

�

Proof. We begin with the following observation: For any s ∈ S(F ) and w ∈
Ω(S,G)(F ) the element wsw−1s−1 ∈ S(F ) lifts to Ssc(F ). Since φd is trivial on
Gsc(F ) we see that φd|S(F ) is invariant under Ω(S,G)(F ).

We now prove the first claim by induction on d. The case d = 0 follows
immediately from the above observation. Now assume the claim has been
proved for all reductive groups and all torus-character pairs that have a Howe-
factorization of length less than d. Let w ∈ Ω(S,G)(F ) fix θ|S(F )r . Applying
again the above observation we see thatw fixes θd−1|S(F )r , where θd−1 = θ·φ−1

d .
Since r < rd−1, w fixes θd−1|S(F )rd−1

= φd−1|S(F )rd−1
. But φd−1 is Gd-generic,

hence w ∈ Ω(S,Gd−1)(F ). We see that the stabilizer of θ|S(F )r in Ω(S,G)(F )

belongs to Ω(S,Gd−1)(F ) and equals the stabilizer of θd−1|S(F )r there. We can
now apply the induction hypothesis to the character θd−1 of the maximal torus
S(F ) in the group Gd−1(F ), with the Howe factorization θd−1 = φ−1 . . . φd−1.
This proves the first claim.

Chasing through the following commutative diagram with exact rows

S(F ) // N(S,G)(F ) // Ω(S,G)(F ) // H1(Γ, S)

S(F ) // N(S,G0)(F )

OO

// Ω(S,G0)(F )

OO

// H1(Γ, S)

we see that the first claim implies the second. �

Lemma 3.6.6. If (φ−1, . . . , φd) and (φ′−1, . . . , φ
′
d) are two Howe factorizations of

the same pair (S, θ), then they are refactorizations of each other in the sense of
[HM08, Definition 4.19]. �

Proof. We need to check the three properties F0, F1, and F2, in [HM08, Defini-
tion 4.19], which we reviewed in §3.5. As there, we define χi : Gi(F ) → C×
by

χi =
d∏
j=i

φj · φ′−1
j ,
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for 0 ≤ i ≤ d. For F0, the definition of Howe factorization implies that φd = 1
if and only if rd = rd−1 if and only if φ′d = 1.

For F1, we observe that by (3.6.2) we have χi|S(F ) =
∏i−1
j=−1 φ

−1
j φ′j |S(F ), which

implies depth(χi|S(F )) ≤ ri−1. To show that this implies depth(χi) ≤ ri−1 we
choose a z-extension G̃ → G and apply the two exact sequences of Lemma
3.5.3. The first sequence allows us to replaceG by G̃ or, in other words, assume
that G has a simply connected derived subgroup. Since φj and φ′j are trivial
on Gjsc(F ) for all j ≥ i we see that χi is trivial on Gisc(F ) and thus descends to
D(F ), where D = G/Gsc. The second sequence of Lemma 3.5.3 shows that it is
enough to check depth(χi) ≤ ri−1 on D(F ). Finally, applying Lemma 3.1.3 to
the exact sequence 1 → Ssc → S → D → 1 we reduce this to depth(χi|S(F )) ≤
ri−1.

For F2, we have again by (3.6.2) the equality φ′−1 = φ−1χ0 and the statement
follows from Lemma 3.4.28. �

We will now show that Howe factorizations exist.

Proposition 3.6.7. Any pair (S, θ) consisting of a tame maximal torus S ⊂ G
and a character θ : S(F )→ C× has a Howe factorization (φ−1, . . . , φd). �

The remainder of this section is devoted to the proof of this proposition. This
proof will be constructive, i.e. we shall give an algorithm that recursively pro-
duces the Howe factorization. First, we prove some technical lemmas that will
be needed for the algorithm.

Lemma 3.6.8. Let H ⊂ G be a twisted Levi subgroup containing S and let
φ : H(F ) → C× be a character of positive depth r, trivial on Hsc(F ). Then φ is
generic if and only if for allα ∈ R(S,G)rR(S,H) we have φ(NE/F (α∨(E×r ))) 6=
1. �

Proof. Assume first that the derived subgroup of G, and hence also of H , is
simply connected. Put D = H/Hsc. Fix a point x ∈ Ared(S,E) ∩ Bred(H,F ).
By Kneser’s theorem [BT87, §4.7] H(F ) → D(F ) is surjective and by Lemma
3.3.2 H(F )x,s → D(F )s remains surjective for all s > 0, so φ is inflated from a
character of the torus D(F ) of depth r. Let Λ : F → C× be a character of depth
zero, i.e. trivial on F1 but not on F0. Recall the Moy-Prasad isomorphism

MPH,x,r : Lie(H)(F )x,r/Lie(H)(F )x,r+ → H(F )x,r/H(F )x,r+.

Let X∗ ∈ Lie∗(D)(F )−r/Lie∗(D)(F )−r+ be the element satisfying

φ(MPD,r(Y )) = Λ〈X∗, Y 〉, ∀Y ∈ Lie(D)(F )r.

The surjection H → D leads to an injection Lie∗(D)→ Lie∗(H) whose image is
precisely the subspace that Yu identifies with Lie∗(Z(H)◦) in [Yu01, §8]. Letting
X∗ stand also for its image in Lie∗(H) we then obtain

φ(MPH,x,r(Y )) = Λ〈X∗, Y 〉, ∀Y ∈ Lie(H)(F )r.

We can restrict this equation to Y ∈ Lie(S)(F )r. Using the fact that MPS,r is
Γ-equivariant we see that for all Y ∈ Lie(S)(E)r we have

φ(NE/F (MPS,r(Y )))=φ(MPS,r(trE/F (Y )))=Λ〈X∗, trE/FY 〉=Λ ◦ trE/F 〈X∗, Y 〉.

44



From the functoriality of the Moy-Prasad isomorphism in the case of the split
torus S × E we have for all y ∈ Er/Er+

MPS,r(dα∨(y)) = α∨(y + 1).

Combining the last two equations we obtain

φ(NE/F (α∨(y + 1))) = Λ ◦ trE/F (y〈X∗, Hα〉).

Therefore φ(NE/F (α∨(E×r ))) 6= 1 is equivalent to the existence of some y ∈ Er
s.t. Λ ◦ trE/F (y〈X∗, Hα〉) doesn’t vanish. Since the character Λ ◦ trE/F is of
depth zero this in turn is equivalent to ord〈X∗, Hα〉 = −r. This condition for
all α ∈ R(S,G)rR(S,H) is condition GE1 of [Yu01, §8] for φ. By [Yu01, Lemma
8.1] condition GE1 implies GE2.

Now drop the assumption that the derived subgroup ofG is simply connected.
Let 1→ K → G̃→ G→ 1 be a z-extension. Pull-back along the inclusion H →
G gives a z-extension 1 → K → H̃ → H → 1. Let φ̃ : H̃(F ) → C× be the pull-
back of φ. If X∗ ∈ Lie∗(H)(F )−r represents φ|H(F )r as above, then its image
X̃∗ ∈ Lie∗(H̃)(F )−r under the natural inclusion represents φ̃|H̃(F )r

. Since Hα

is naturally an element of Lie(H̃) the above argument shows ord〈X∗, Hα〉 =

ord〈X̃∗, Hα〉 = −r. �

Lemma 3.6.9. Let θ : S(F ) → C× be a character of positive depth r. If for all
α ∈ R(S,G) we have θ ◦ NE/F ◦ α∨|E×r = 1, then there exists a character φ :

G(F ) → C× of depth r that is trivial on Gsc(F ) and satisfies φ|S(F )r = θ|S(F )r .
�

Proof. Let Sder and Ssc be the preimages of S in Gder and Gsc. We claim that
θ|Sder(F )r = 1. Let R = ResE/F (Ssc × E). We have the norm homomorphism
NE/F : R → Ssc. It is surjective and we call its kernel R1. We have the exact
sequence

1→ R1 → R→ Ssc → 1

of tori defined over F and split over E. According to Lemma 3.1.3 the homo-
morphism Ssc(E)r = R(F )r → Ssc(F )r → Sder(F )r is surjective. The claim
would thus follow from θ ◦NE/F (Ssc(E)r) = 1. However, X∗(Ssc) is generated
by R(S,G)∨ over Z so the latter follows immediately from the assumption of
the lemma.

With the claim proved, we turn to the proof of the lemma. Let D = G/Gder.
From Lemma 3.1.3 we have the equality D(F )r = S(F )r/Sder(F )r and the
claim we just proved tells us that θ descends to a non-trivial character ofD(F )r
that is trivial on D(F )r+. This finite order character of D(F )r can be extended
by Pontryagin duality [HR79, Corollary 24.12] to a character φ : D(F ) → C×,
trivial on D(F )r+. This character pulls back to a character of G(F ) whose re-
striction to S(F )r is equal to that of θ. �

Corollary 3.6.10. Let θ : S(F )→ C× be a character of positive depth r. Assume
that θ ◦ NE/F ◦ α∨|E×r = 1 for all α ∈ R(S,G). Then there exists a character
φ : G(F ) → C× of depth r, trivial on Gsc(F ), such that θ′ = θ · φ−1|S(F ) has
depth r′ < r. Moreover, if r′ > 0 there exists a root α ∈ R(S,G) such that
θ′(NE/F (α∨(E×r′ ))) 6= 1. �
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Proof. We work recursively on the depth of θ. Put θ0 = θ and r0 = r and apply
Lemma 3.6.9 and obtain φ0 : G(F ) → C× of depth r such that the depth r1 of
θ1 := θ0 · φ−1|S(F ) is strictly less than r0. If r1 > 0 and θ1(NE/F (α∨(E×r1))) = 1
for all α ∈ R(S,G) we apply the recursion step again with θ1 and r1. The
recursion eventually stops because the set of positive numbers that are depths
of characters of S(F ) (i.e. the breaks of the Moy-Prasad filtration of S(F )) has
no accumulation points. Let φ be the product of all φi. Its depth is equal to that
of φ0, which is r0. �

Proof of Proposition 3.6.7. We first deal with the following two trivial cases: If
d = 0 and r0 = r−1 = 0 then the twisted Levi sequence we have is G = G0 ⊃ S
and we set φ0 = 1 and φ−1 = θ and we are done. If d = 1, r1 = r0 > r−1 = 0,
and R0+ = ∅, then the twisted Levi sequence we have isG = G1 ⊃ G0 = S and
θ is a G-generic character of S(F ) of depth r1 = r0 according to Lemma 3.6.8,
and we set φ1 = 1, φ0 = θ, and φ−1 = 1.

Assume now rd > 0. To begin the recursion: If rd > rd−1 let i = d and θd = θ,
and if rd = rd−1 let i = d− 1, φd = 1, and θd−1 = θd = θ.

The recursion step assumes that we are in the following situation (which is
true in the beginning because we have separately handled the two trivial cases
above): θi : S(F ) → C× is a character of depth ri > 0, R(S,Gi) 6= ∅, and for
any r ≥ 0 and α ∈ R(S,Gi), we have

θi(NE/F (α∨(E×r ))) = θ(NE/F (α∨(E×r ))).

Given that, we apply Corollary 3.6.10 to Gi and θi and obtain a character φi :
Gi(F )→ C× of depth ri trivial on Gisc(F ). Set θi−1 = θi · φ−1

i |S(F ) and note the
triviality of φi on Gisc(F ) implies for all r ≥ 0 and α ∈ R(S,Gi) the following
strengthening of the second recursion hypothesis

θi−1(NE/F (α∨(E×r ))) = θi(NE/F (α∨(E×r ))) = θ(NE/F (α∨(E×r ))). (3.6.3)

We claim that r′ := depth(θi−1) is equal to ri−1 if i > 0, and r′ ≤ ri−1 = r−1 = 0
if i = 0. If we assume r′ > ri−1, then r′ > 0 and according to Corollary 3.6.10
we would have a root α ∈ R(S,Gi) satisfying 1 6= θi−1(NE/F (α∨(E×r′ ))) =

θ(NE/F (α∨(E×r′ ))), contradicting the definition of Gi. Thus r′ ≤ ri−1. If we in
addition assume i > 0, then ri−1 is a jump of the filtrationRr and so there exists
α ∈ R(S,Gi) such that 1 6= θ(NE/F (α∨(E×ri−1

))) = θi−1(NE/F (α∨(E×ri−1
))),

showing r′ ≥ ri−1.

If i = 0 the recursion stops and we set φ−1 = θ−1. If i = 1 but G0 = S the
recursion also stops and we set φ0 = θ0 and φ−1 = 1. Otherwise, we have just
checked that (Gi−1, θi−1) meets the requirements of the recursion step, and we
continue with it.

Let us now show that the characters φi obtained in this way are a Howe fac-
torization of (S, θ). The first two parts of the definition of Howe factorization
are immediate from the construction, as well as the claims about φd and φ−1.
Let now d > i > −1. According to Corollary 3.6.10 we have depth(φi) =
depth(θi) = ri. Moreover, for α ∈ R(S,Gi+1) rR(S,Gi)

1 6= θ(NE/F (α∨(E×ri))) = θi(NE/F (α∨(E×ri))) = φi(NE/F (α∨(E×ri))),

the first (non)equality holding by definition of R(S,Gi+1) r R(S,Gi), the sec-
ond by (3.6.3), and the third by the fact that depth(θi−1) < ri = depth(θi) =
depth(φi). According to Lemma 3.6.8 φi is Gi+1-generic. �
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3.7 Regular supercuspidal representations of positive depth

In this Subsection we will introduce the notion of (extra) regular Yu-data and
(extra) regular supercuspidal representations. The work of Hakim-Murnaghan
reviewed in §3.5 implies that the (extra) regular supercuspidal representations
are classified by the G-equivalence classes of (extra) regular Yu-data. We will
show that in fact the (extra) regular supercuspidal representations are classified
by much simpler data, namely G(F )-conjugacy classes of tame elliptic (extra)
regular pairs, a concept we will also introduce.

We assume that p is not a bad prime for G.

3.7.1 Regular Yu-data

Definition 3.7.1. We shall call a reduced generic cuspidal G-datum ((G0 (
G1 · · · ( Gd), π−1, (φ0, φ1, . . . , φd)) normalized if the pull-back of φi to Gisc(F ) is
trivial, for all 0 ≤ i ≤ d. �

Lemma 3.7.2. If p does not divide the order of the fundamental group of Gder,
then every reduced generic cuspidal G-datum is G-equivalent to a normalized
one. �

Proof. Let φ : G(F ) → C× be a character of depth r > 0. Put D = G/Gder.
Let x ∈ Bred(G,F ). By Lemma 3.5.1 φ|Gder(F )x,0+

is trivial, while Lemma 3.3.2
implies that G(F )x,0+ → D(F )0+ is surjective. Thus φ induces a smooth char-
acter of D(F )0+. It is of finite order, hence unitary, and by Pontryagin duality
[HR79, Corollary 24.12] extends to a character φ′ of D(F ), which we may pull
back to G(F ). Then φ · (φ′)−1 is a character trivial on G(F )x,0+.

If (φ0, . . . , φd) is the sequence of characters in a reduced generic cuspidal G-
datum, we can use this procedure to replace (φd−1, φd) by (φd−1φd(φ

′
d)
−1, φ′d),

thereby obtaining a refactorization for which φ′d is trivial on Gder(F ). Doing
this inductively leads to the desired refactorization. �

Definition 3.7.3. Let ((G0 ( G1 · · · ( Gd), π−1, (φ0, φ1, . . . , φd)) be a reduced
generic cuspidal G-datum. We shall call it

1. regular, if π−1 is a regular depth-zero supercuspidal representation of
G0(F ) in the sense of §3.4;

2. extra regular, if it is normalized and π−1 is an extra regular depth-zero
supercuspidal representation of G0(F ) in the sense of §3.4.

�

The regularity of π−1 is a non-trivial restriction. This is seen already in the case
of SL2, where four of the supercuspidal representations of this group are not
regular. Nonetheless one can say, somewhat informally, that most depth-zero
supercuspidal representations are regular. Indeed, the depth-zero supercusp-
idal representations correspond to cuspidal representations of finite groups of
Lie type by Moy-Prasad theory, which are in turn grouped into Lusztig series,
indexed by semi-simple elements of the Lusztig dual group. The condition of
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π−1 being regular translates to a Zariski-open and dense condition on the semi-
simple elements of the Lusztig dual group of each finite group of Lie type that
is the reductive quotient of a parahoric subgroup.

According to Proposition 3.4.27, associated to π−1 are a maximally unramified
elliptic maximal torus S of G0 and a depth-zero character φ−1 : S(F ) → C×
that is (extra) regular with respect to G0. Recall our conventions G−1 = S and
r−1 = 0. Note that it may happen that G0 = G−1.

Using Lemma 3.4.28 one sees that the regularity of aG-datum is an invariant of
its G-equivalence class. One also sees that the extra regularity of a normalized
G-datum is an invariant of its G-equivalence class, provided we only consider
normalized G-data, for then we are only allowed to replace π−1 by χ0 ⊗ π−1,
where χ0 : G0(F ) → C× is trivial on G0

sc(F ), because given w ∈ Ω(S,G0)(F )
and s ∈ S(F ) the element wsw−1s−1 ∈ S(F ) lifts to G0

sc(F ). On the other
hand, the π−1 component of a G-datum that is not normalized, but equivalent
to a normalized extra regular datum, need not be an extra regular depth-zero
supercuspidal representation of G0(F ).

Example 3.7.4. As an example we can take G0(F ) to be the norm-1 elements in
a central division algebra D/F of degree d and S(F ) to be the norm-1 elements
in the unramified extension Fd of F of degree d, embedded into D. We shall
show that N(S,G0)(F )/S(F ) is trivial, so every character of S(F )0 is regular
with respect to G0, while Ω(S,G0)(F ) is cyclic of degree d and there exist char-
acters of S(F )0 that are extra regular with respect to G0, as well as characters
that are not. Finally, we shall show that every depth-zero character of S(F )
extends uniquely to G0(F ). As a result, in a given Yu-tower G0 ⊂ G an extra
regular Yu-datum can be refactorized into one where φ−1 = 1, in particular not
extra regular.

We follow the exposition of [PR94, §1.4]. Let G̃0(F ) = D× and S̃(F ) = F×d .
Then Ω(S,G0)(F ) = Ω(S̃, G̃0)(F ) = N(G̃0, S̃)(F )/S̃(F ), the latter due to S̃
being an induced torus and thus having trivial first Galois cohomology group.
Any element of G̃0(F ) acts trivially on the centerF×. Thus elements of Ω(S̃, G̃0)(F )

act on S̃(F ) = F×d as Galois elements. On the other hand, it is known that the
Frobenius element of Fd/F is realized by conjugation by an element g ∈ G̃0(F ).
Thus Ω(S,G0)(F ) = Gal(Fd/F ) is cyclic of order d.

The valuation of the reduced norm of g is an integer a coprime to d. Given
an integer l, the element of Ω(S,G0)(F ) represented by gl can be lifted to
N(S,G0)(F ) if and only if there exists s ∈ F×d such that sgl ∈ D1. The reduced
norm of gl has valuation la, while the reduced norm of s, which coincides with
the field norm for the extension Fd/F , has valuation in dZ. So sgl ∈ D1 implies
la ∈ dZ, hence l ∈ dZ. We conclude that no non-trivial element of Ω(S,G0)(F )
lifts to N(S,G0)(F ), and so N(S,G0)(F )/S(F ) is trivial.

The triviality of N(S,G0)(F )/S(F ) implies that all characters of S(F ) are reg-
ular, even the trivial character. On the other hand, extra regular is a non-trivial
condition. For example, the trivial character is not extra-regular. On the other
hand, there do exist extra regular characters. Indeed, S(F )0:0+ = k1

Fd
is a cyclic

group of order n =
∑d−1
i=0 q

i, so its character group is (non-canonically) isomor-
phic to the group µn(C) of n-th roots of unity. The character corresponding
to ζ ∈ µn(C) (under any choice of isomorphism) is fixed by the l-th power of
Frobenius if and only if ζq

l−1 = 1. There clearly exist ζ for which this equation
is not true for any l = 1, . . . , d− 1.
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Finally, let x be the unique point in the Bruhat-Tits building of G0. We have
G0(F ) = G0(F )x,0, since G0 is simply connected. It is shown in the proofs of
[PR94, Theorem 1.8, Proposition 1.8] that the inclusion F×d → D× induces an
isomorphism S̃(F )0:0+ = O×Fd/(1+pFd)→ O×D/(1+pD) = G̃(F )x,0:0+, and that
this isomorphism restricts to an isomorphism S(F )0:0+ → G0(F )x,0:0+. Thus
every character of depth zero extends uniquely to a character of G0(F ). �

3.7.2 Tame regular elliptic pairs

Definition 3.7.5. Let S ⊂ G be a maximal torus and θ : S(F )→ C× a character.
We shall call the pair (S, θ) tame elliptic regular (resp. tame elliptic extra regular) if

1. S is elliptic and split over a tame extension;

2. the action of inertia on the root subsystem

R0+ = {α ∈ R(S,G)|θ(NE/F (α∨(E×0+))) = 1}

preserves a set of positive roots, where E/F is any tame Galois extension
splitting S (note that R0+ is independent of the choice of E/F );

3. the character θ|S(F )0
has trivial stabilizer for the action ofN(S,G0)(F )/S(F )

(resp. Ω(S,G0)(F )), where G0 ⊂ G is the reductive subgroup with maxi-
mal torus S and root system R0+.

�

We recall from Lemma 3.6.1 that R0+ is a Levi subsystem of R, and from Fact
3.4.1 that the second condition is equivalent to saying that S is a maximally
unramified maximal torus ofG0. We furthermore recall from Lemma 3.6.5 that,
when p does not divide the order of the fundamental group of Gder, one can
replace G0 by G in the third condition.

Fact 3.7.6. If (S, θ) is a regular (resp. extra regular) tame elliptic pair and δ0 :
S(F )→ C× is a character of depth zero that is invariant underN(S,G0)(F )/S(F )
(resp. under Ω(S,G0)(F )), then (S, θδ0) is regular (resp. extra regular). �

Proof. This follows from the fact that neitherR0+ nor the appropriate stabilizer
of θ|S(F )0

changes when we pass from θ to θδ0. �

Recall that when p - N the supercuspidal representations of GLN are classified
by admissible characters. The notion of admissible character and the construc-
tion of a supercuspidal representation from an admissible character appears
in [How77], while the exhaustion is proved in [Moy86] (under the assumption
that F has characteristic zero). We will now argue that the notion of a tame
elliptic (extra) regular pair is a generalization of the notion of an admissible
character to an arbitrary tamely ramified reductive p-adic group. An admissi-
ble character is really a pair (K×, θ), where K/F is a field extension of degree
N and θ : K× → C× is a character satisfying certain axioms, listed on the
first page of [How77], see also [HM08, Definition 3.29]. Since the equation
S(F ) = K× provides a bijection between the conjugacy classes of elliptic max-
imal tori S of GLN and the isomorphism classes of field extensions K/F of
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degree N , admissibility can be seen as a property of a pair (S, θ), where S is an
elliptic maximal torus of GLN and θ : S(F ) → C× is a character. Note that the
splitting extension E/F of S is the normal closure of K, and in particular E/K
is unramified.

Lemma 3.7.7. If G = GLN and p - N then the notions of extra regular, regular,
and admissible, pairs coincide. �

Proof. The notions of extra regular and regular coincide, because H1(F, S) = 0
for every maximal torus S, hence Ω(S,G0)(F ) = N(S,G0)(F )/S(F ).

To show that a regular elliptic pair (S, θ) is admissible, let K/F be the degree-
N extension such that S(F ) = K×. If there exists an intermediate extension
K/L/F such that θ = θL ◦ NK/L for some θL : L× → C×, then we can con-
sider the twisted Levi subgroup M = ResL/FGLN ′ , where N ′ = [K : L], and
realize S as a maximal torus inside of it. Then θ is the restriction to S(F ) of
the character θL ◦ ResL/F (det) of M(F ). For every α ∈ R(S,M) the character
θ ◦NE/F ◦ α∨ of E× is trivial. In particular R(S,M) ⊂ R0+. But θ is obviously
invariant under Ω(S,M)(F ). This contradicts Definition 3.7.5 unless S = M ,
i.e. L = K.

Now assume that θ|K×0+
= θL ◦NK/L for an intermediate extensionK/L/F and

a character θL : L×0+ → C×. WithM as above we see again thatR(S,M) ⊂ R0+.
By Definition 3.7.5 the action of inertia preserves a positive subsystem of R0+

and hence of R(S,M). This means that over Fu the torus S = ResK/FGm
becomes a minimal Levi subgroup of M = ResL/FGLN ′ , which implies that
K/L is unramified.

Conversely let (S, θ) be admissible. Since S = ResK/FGm for some field ex-
tension K/F of degree N , it is automatically a tame elliptic maximal torus.
Consider the root system R0+. By Lemma 3.6.1, it spans a twisted Levi sub-
groupM ⊂ Gwhose center is contained in S and hence anisotropic mod Z(G).
Thus M = ResL/FGLN ′ for some intermediate extension K/L/F . Let SMder be
the intersection of S with the derived subgroup of M . Since the simple co-
roots for M form a basis for X∗(SMder) the group SMder(E)0+ is generated by
its subgroups α∨(E×0+) for α ∈ R0+. Applying Lemma 3.1.3 to the surjec-
tion ResE/F (SMder × E) → SMder induced by the norm we see that the group
SMder(F )0+ is generated by its subgroups NE/Fα∨(E×0+) for α ∈ R0+. Thus
θ|S(F )0+

factors through the exact sequence

1→ SMder(F )0+ → S(F )0+ → [M/Mder](F )0+ → 1

of Lemma 3.1.3. We have the isomorphism ResL/F (det) : M/Mder → ResL/FGm,
which restricted to S(F ) becomes the map NK/L : S(F ) = K× → L×. Thus
θ|S(F )0+

factors through NK/L and the admissibility of θ implies that K/L is
unramified. This means that ResK/LGm splits over Lu, or equivalently the
maximal torus S = ResK/FGm of M = ResL/FGLN ′ becomes a minimal Levi
over Fu. This implies that inertia preserves a set of positive roots in R0+.

Now consider the stabilizer of θ|S(F )0
in Ω(S,G0)(F ). We may as well remove

the restriction of scalars L/F and consider S = ResK/LGm as a maximal torus
of G0 = GLN ′/L and the stabilizer in Ω(S,G0)(L) of the character θ : S(L)0 →
C×. Now S(L) = K× = O×K · L× = S(L)0 · Z(G0)(L). It follows that the
stabilizer in Ω(S,G0)(L) of θ|S(L)0

is the same as the stabilizer of θ. Since K/L
is unramified, the splitting field E of S is equal to K. The ellipticity of S then
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implies that the cyclic group Gal(K/L) acts on X∗(S) via a Coxeter element
of Ω(S,G0) (since Ω(S,G0) is the symmetric group on N ′ letters, this element
is simply an N ′-cycle), which in turn implies that Ω(S,G0)(L) is cyclic and
generated by that Coxeter element. That is, the action of Ω(S,G0)(L) on S(L)
is translated via S(L) = K× to the action of Gal(K/L) on K×. If some element
σ ∈ Gal(K/L) leaves θ invariant, then θ will factor through the group of co-
invariantsK×σ . LettingK1 be the subfield ofK fixed by σ, Hilbert’s Theorem 90
implies that the norm mapK× → K×1 descends to an isomorphismK×σ → K×1 .
Thus θ factors through this norm map and its admissibility implies K1 = K,
i.e. σ = 1. �

3.7.3 Classification when p does not divide |π1(Gder)|

In this subsubsection we assume that p is not a bad prime for G and does not
divide the order of the fundamental group of the derived subgroup of G.

Proposition 3.7.8. Let ((G0 ( G1 · · · ( Gd), π−1, (φ0, φ1, . . . , φd)) be a (extra)
regular reduced generic cuspidalG-datum. Using Proposition 3.4.27 let S ⊂ G0

be a maximally unramified elliptic maximal torus and φ−1 : S(F ) → C× a
(extra) regular depth-zero character s.t. π−1 = π(S,φ−1). Let θ =

∏d
i=−1 φi|S(F ).

The resulting map

((G0 ( G1 · · · ( Gd), π−1, (φ0, φ1, . . . , φd)) 7→ (S, θ)

induces a bijection between the set of G-equivalence classes of (extra) regular
reduced generic cuspidalG-data and the set ofG(F )-conjugacy classes of tame
elliptic (extra) regular pairs. �

Proof. We first show that (S, θ) is a (extra) regular tame elliptic pair. From
Lemma 3.6.3 we know that the groups Gi from the statement of this propo-
sition coincide with the groups Gi constructed in §3.6 in terms of (S, θ), and
that furthermore (φ−1, . . . , φd) is a Howe factorization of (S, θ). Since S is el-
liptic in G0 and Z(G0)/Z(G) is anisotropic, S is elliptic in G. Furthermore,
S ⊂ G0 is maximally unramified. In particular, it is split over a tame extension,
since G0 is. Thus parts 1. and 2. of Definition 3.7.5 are satisfied. The third part
follows from Lemma 3.6.5.

We claim that G-equivalent data lead to G(F )-conjugate pairs. It is enough to
check this in the three cases where the two data are related by G-conjugation,
elementary transformation, or refactorization. The case of G-conjugation is ob-
vious. The case of elementary transformation means that we replace π(S,φ−1)

by an isomorphic representation of G0(F ). By Proposition 3.4.27 such a repre-
sentation is of the form π(S′,φ′−1), where (S′, φ′−1) = Ad(g)(S, φ−1) for some g ∈
G0(F ). The new datum is thus given by ((G0 ( G1 · · · ( Gd), π(S′,φ′−1), (φ0, φ1, . . . , φd))

and it leads to the pair (S′, θ′), where θ′ : S′(F )→ C× is given by
∏d
i=0 φi|S′(F ) ·

φ′−1. But (S′, θ′) = Ad(g)(S, θ). Finally consider a refactorization ((G0 (
G1 · · · ( Gd), π′(S,φ−1), (φ

′
0, φ
′
1, . . . , φ

′
d)). Let θ and θ′ be the two correspond-

ing characters of S(F ). As in §3.5 let χi : Gi(F ) → C× be defined by χi(g) :=∏d
j=i φj(g)φ′j(g)−1. Then the character χ0 ofG0(F ) has the property that θ′θ−1 =

χ0|−1
S(F ) · (φ

′
−1φ

−1
−1). At the same time, property F2 of refactorization implies

π(S,φ′−1) = π(S,φ−1) ⊗ χ0. According to Lemma 3.4.28 we have π(S,φ−1) ⊗ χ0 =

π(S,φ−1·χ0|S(F )). Proposition 3.4.27 then implies that (S, φ′−1) isG0(F )-conjugate
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to (S, φ−1 ·χ0|S(F )), which, combined with the regularity of φ′−1 implies φ′−1 =
φ−1 · χ0|S(F ). This in turn implies θ′θ−1 = 1.

We thus obtain a well-defined map between G-equivalence classes of data and
G(F )-conjugacy classes of pairs.

To show surjectivity, let (S, θ) be a (extra) regular tame elliptic pair. As de-
scribed in §3.6 we obtain a sequence of tame twisted Levi subgroups G0 (
G1 ( · · · ( Gd = G. By Definition 3.7.5 the torus S is a maximally unramified
maximal torus of G0. By Proposition 3.6.7 there exists a Howe-factorization
(φ−1, . . . , φd) of (S, θ). By Lemma 3.6.5 the (extra) regularity of the pair (S, θ)
implies the (extra) regularity of the depth-zero character φ−1 with respect to
G0. Proposition 3.4.27 gives an (extra) regular depth-zero supercuspidal repre-
sentation π(S,φ−1) ofG0(F ), and we obtain a reduced generic cuspidalG-datum
mapping to (S, θ), that is normalized in the sense of Definition 3.7.1 and (extra)
regular in the sense of Definition 3.7.3.

To show injectivity, assume ((G0 ( G1 · · · ( Gd), π(S,φ−1), (φ0, φ1, . . . , φd)) and
((G′0 ( G′1 · · · ( G′d

′
), π(S′,φ′−1), (φ

′
0, φ
′
1, . . . , φ

′
d′)) lead to conjugate pairs (S, θ)

and (S′, θ′). The already proved part of this lemma allows us to replace both
data byG-equivalent ones, so we use Lemma 3.7.2 to assume that they are both
normalized. Replacing the second datum by a G-conjugate we may assume
that the two pairs are actually equal. Lemma 3.6.3 shows that d = d′, that
G′i = Gi for all i = 0, . . . , d, and that (φ−1, . . . , φd) and (φ′−1, . . . , φ

′
d) are two

Howe factorizations of the same pair (S, θ). Lemma 3.6.6 implies that they are
refactorizations of each other. �

Definition 3.7.9. Under the assumption that p does not divide the order of the
fundamental group ofGder we shall call a supercuspidal representation ofG(F )
(extra) regular if it arises via Yu’s construction from an (extra) regular (reduced
generic cuspidal) Yu-datum. �

We will generalize this definition to the case when p is allows to divide |π1(Gder)|
in §3.7.4.

Corollary 3.7.10. Composing the bijection of Proposition 3.7.8 with Yu’s con-
struction provides a bijection

(S, θ) 7→ π(S,θ)

between the set of G(F )-conjugacy classes of (extra) regular tame elliptic pairs
and the set of (extra) regular supercuspidal representations. �

Proof. Definition 3.7.9 and Corollary 3.5.5 imply that the set of (extra) regu-
lar supercuspidal representations is in bijection with the set of G-equivalence
classes of (extra) regular reduced generic cuspidal G-data, which in turn is in
bijection with the set of G(F )-conjugacy classes of (extra) regular tame elliptic
pairs by Proposition 3.7.8. �

Fact 3.7.11. The central character of π(S,θ) is the restriction of θ to Z(G)(F ). �

Proof. Let (φ−1, . . . , φd) be a Howe factorization. We examine Yu’s construc-
tion, following the exposition in [HM08, §3.4]. There is a sequence of compact
modulo center subgroups of G(F )

G0(F )x = K0 ⊂ K1 ⊂ · · · ⊂ Kd = K

52



On eachKi there is an irreducible representation κi. There is a natural inflation
process that makes κi into a representation ofK. The tensor product κ−1⊗· · ·⊗
κd is irreducible and its compact induction from K to G is π(S,θ).

Since Z(G)(F ) ⊂ K0, the inflation process doesn’t disturb the central character
of κi. For i = 0 the representation κi is φ0 ⊗ IndG

0(F )x
S(F )G0(F )x,0

κ(S,φ−1), where
κ(S,φ−1) is as in Lemma 3.4.20. The central character of this representation is
φ0 · φ−1. For the intermediate indices i the representation κi is described after
[HM08, Remark 3.25] and its construction may or may not involve the Weil
representation. In either case, its restriction to Z(G)(F ) is seen to act via the
character φi. �

3.7.4 Classification when p divides |π1(Gder)|

In the previous subsubsection we assumed that p is not a bad prime for G and
does not divide the order of π1(Gder). In this subsection we will remove the
condition that p does not divide the order of π1(Gder). This is only an issue for
Dynkin type An, for which there are no bad primes while π1(Gder) can be any
divisor of n + 1. For all other Dynkin types a prime that divides π1(Gder) is
automatically bad for G, and equals either 2 or 3. We keep the assumption that
p is not a bad prime for G.

Fix a z-extension 1→ K → G1 → G→ 1.

Lemma 3.7.12. Let (S, θ) be a tame elliptic (extra) regular pair for G. Let S1

be the preimage of S in G1 and let θ1 be the inflation of θ to S1(F ). The map
(S, θ) 7→ (S1, θ1) is a depth-preserving bijection between the G(F )-conjugacy
classes of tame elliptic (extra) regular pairs of G and those tame elliptic (extra)
regular pairs of G1 for which θ1|K(F ) = 1. �

Proof. This follows at once from Lemma 3.5.3. �

Definition 3.7.13. A supercuspidal representation π of G(F ) will be called (ex-
tra) regular if its inflation π1 to G1(F ) is so. �

Proposition 3.7.14. There is a bijection (S, θ) 7→ π(S,θ) between the set of G(F )-
conjugacy classes of tame elliptic (extra) regular pairs (S, θ) for G(F ) and the
set of (extra) regular supercuspidal representations of G(F ). �

Proof. This follows from Corollary 3.7.10, Fact 3.7.11, and Lemma 3.7.12. �

Lemma 3.7.15. The notion of (extra) regularity and the bijection (S, θ) 7→ π(S,θ)

are independent of the choice of G1. �

Proof. Choose another z-extension G2 of G and consider the fiber product G3

of G1 and G2 over G. Then G3 is a z-extension of G, of G1, and of G2. If the
inflation π1 of π is (extra) regular then π1 = π(S1,θ1) for some (extra) regular
tame elliptic pair (S1, θ1). Let (S, θ) be the pair of G corresponding to (S1, θ1).
Let (S2, θ2) and (S3, θ3) be the pairs on G2 and G3 corresponding to (S, θ).
According to Lemma 3.7.12, (S3, θ3) is tame elliptic (extra) regular, and hence
(S2, θ2) is tame elliptic (extra) regular. According to Lemma 3.3.2 the pull-back
to G3 of a Howe factorization for θ1 is a Howe factorization for θ3. The same
is true for θ2 in place of θ1. Thus the representation π(S3,θ3) is the pull-back to

53



G3(F ) of the representation π(S1,θ1) and also of the representation π(S2,θ2). But
then π(S3,θ3) is the pull-back of π to G3(F ), which then implies that π(S2,θ2) is
the pull-back of π to G2(F ). We conclude that the pull-back of π to G2(F ) is
(extra) regular. �

4 THE CHARACTER FORMULA

Let F be a non-archimedean local field and let G be a connected reductive
group defined over F and splitting over a tame extension of F . Let ((G0 (
G1 · · · ( Gd), π−1, (φ0, φ1, . . . , φd)) be a reduced generic cuspidal G-datum
in the sense of [HM08, Definition 3.11]. From this datum Yu’s construction
produces not just a single supercuspidal representation π of depth rd, but in
fact a supercuspidal representation πi of the group Gi(F ) of depth ri, for each
0 ≤ i ≤ d, and π = πd.

The Harish-Chandra character Θπ of π has been computed in the work of Adler
and Spice [AS08, AS09] and later reinterpreted in the work of DeBacker and
Spice [DS18]. At the moment this work has the additional technical assump-
tion that Gd−1/ZG is anisotropic, but we are hopeful that this condition will
be eliminated in the future. The resulting character formula involves various
roots of unity. The main purpose of this section is to provide an alternative
description of these roots of unity. As we shall see, they can be interpreted in a
way that ties them closely to the Langlands-Shelstad transfer factors from the
theory of endoscopy [LS87]. More precisely, we shall define certain terms ε and
∆abs
II , that can be seen as absolute versions of the corresponding pieces of the

transfer factor, and will show that they describe the roots of unity occurring in
the character formula. These terms are absolute in the sense that they depend
just on the group G, a maximal torus of it, and some auxiliary data. In the
presence of an endoscopic group H , the quotient of either term for G by the
corresponding term for H will be equal to the analogous term occurring in the
Langlands-Shelstad transfer factor.

Once the roots of unity in the character formula have been reinterpreted in this
way, we will show that the resulting expression for the character of a regu-
lar supercuspidal representation evaluated at a sufficiently shallow element is
precisely analogous to the character formula for discrete series representations
of real reductive groups.

4.1 Hypotheses

The papers [AS08] and [AS09] impose various hypotheses on the group G
under which the character formula is obtained. Besides the assumption that
Gd−1/ZG is compact that we already mentioned, these are Hypotheses (A)-(D)
of [AS08, §2], Hypothesis 2.3 of [AS09], and the assumption [AS09, §1.1] that
the residual characteristic of F is not 2. As remarked in [AS09, §1.2], Hypothe-
ses (A) and (D) are implied by the tameness of G. Hypothesis (C) is satisfied
when G has simply connected derived subgroup. According to Lemma 3.5.2
the same is also true for Hypothesis 2.3. However, the character function of a
representation π of G(F ) can be computed by first taking a z-extension G̃ of G,
pulling π back to a representation π̃ of G̃(F ), and then computing the character
function of π̃. This means that Hypotheses (C) and 2.3 are in fact superfluous.
Finally, Hypothesis (B) is satisfied when the residual characteristic of F is not a
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bad prime for G. Thus we shall make the assumption that the residual charac-
teristic of F is not a bad prime for G whenever we apply the character formula
of [AS09], in addition to our standing assumption that it is not equal to 2. On
the other hand, some results of [AS08] are valid and can be used without this
assumption.

4.2 Review of orbital integrals

Let Λ : F → C× be a non-trivial character. Let S ⊂ G be a maximal torus. We
can view s∗ = Lie∗(S) as a subspace of g∗ = Lie∗(G) as explained in [Yu01,
§8], namely as the trivial-weight space for the coadjoint action of S. Let X∗ ∈
s∗(F ) ⊂ g∗(F ) be an element whose stabilizer for the coadjoint action of G is
S. For any function f∗ ∈ C∞c (g∗(F )) we have the orbital integral

OX∗(f
∗) =

∫
G(F )/S(F )

f∗(Ad∗(g)X∗)dg.

The measure used for integration is the quotient of a measure on G(F ) by a
measure on S(F ), and on both groups we take the canonical measure intro-
duced by Waldspurger in [Wal01, §I.4], as is done in [DS18, Definition 4.1.6].
For a function f ∈ C∞c (g(F )) we define its Fourier-transform f̂Λ,dY ∈ C∞c (g∗(F ))
by

f̂Λ,dY (Y ∗) =

∫
g(F )

f(Y )Λ〈Y, Y ∗〉dY,

where we have indicated as subscripts the dependence on the choices of the
character Λ and the measure dY . A fundamental result of Harish-Chandra is
that the distribution f 7→ OX∗(f̂Λ,dY ) is represented by a function, i.e. there
exists a function µ̂X∗,Λ on g(F ) such that

OX∗(f̂Λ,dY ) =

∫
g(F )

µ̂X∗,Λ(Y )f(Y )dY

for all f ∈ C∞c (g(F )). The function µ̂X∗,Λ does not depend on the choice of
measure dY . We can renormalize it using the usual Weyl discriminants [DS18,
Definition 2.2.8] and obtain

ι̂X∗,Λ(Y ) = |D(X∗)| 12 |D(Y )| 12 µ̂X∗,Λ(Y ).

The function µ̂X∗,Λ depends on Λ via the equation

µ̂X∗,Λ·c = µ̂cX∗,Λ,

where c ∈ F× and [Λ · c](x) = Λ(cx). The same is true for ι̂X∗,Λ provided
c ∈ O×F .

4.3 Review of the work of Adler-Spice and DeBacker-Spice

In this subsection F is a local field of odd residual characteristic that is not a bad
prime for G. Set r = rd−1 and π = πd. Let x be the unique point in the building
Bred(Gd−1, F ). The formula of Adler-Spice gives the value of the function Θπ ,
at any regular semi-simple element γ ∈ G(F ) that has an r-approximation γ =
γ<r ·γ≥r, in terms of the value of Θπd−1

, under the assumption that Gd−1/Z(G)
is anisotropic. It is more convenient to replace Θπ(γ) by its renormalization
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Φπ(γ) = |DG(γ)| 12 Θπ(γ). In the form presented in [DS18, Theorem 4.6.2] the
formula for Φπ(γ) is

φd(γ)
∑

g∈Jd(F )\Gd(F )/Gd−1(F )

γg<r∈G
d−1(F )

εsym,ram(γg<r)ε
ram(γg<r)ẽ(γ

g
<r) · Φπd−1

(γg<r)ι̂jd,gX∗d−1
(log(γ≥r)) (4.3.1)

We need to explain the notation. Fix again a non-trivial character Λ : F → C×,
with the additional assumption that Λ is trivial on pF but non-trivial onOF . Let
X∗d−1 ∈ Lie∗(Z(Gd−1))(F )−r be a Gd-generic element (in the sense of [Yu01,
§8]) that realizes (in the sense of [Yu01, §5]) the character φd−1. We abbrevi-
ate γg<r = g−1γ<rg and gX∗d−1 = Ad∗(g)X∗d−1. Setting Jd = Cent(γ<r, Gd)◦,
the condition γg<r on the summation index g implies that Ad(g)Z(Gd−1) is a
subgroup of Jd and in particular gX∗d−1 ∈ jd,∗(F ). Therefore, the function
ι̂jd,gX∗d−1

that represents the normalized Fourier-transform of the integral along
the coadjoint orbit of gX∗d−1 in jd,∗(F ) (as recalled in the §4.2) makes sense.
Moreover, since both the function itself and the element X∗d−1 now depend on
the choice of Λ in a parallel way, the entire expression ι̂jd,gX∗d−1

is independent
of Λ. The map log is either the true logarithm function, provided it converges
at γ≥r, or else the inverse of a mock-exponential map [AS09, Appendix A].

One place where the technical assumption on the compactness of Gd−1(F )
modulo ZG(F ) enters is the evaluation of Φπd−1

(γg<r), because the semi-simple
element γg<r ∈ Gd−1(F ) need not be regular. When Gd−1(F )/ZG(F ) is com-
pact, the character Θπd−1

is defined on all (semi-simple) elements of Gd−1(F ),
not just the regular elements. Thus the function Φπd−1

= |Dred
Gd−1 |

1
2 Θπd−1

is
also defined on all of Gd−1(F ). When γ<r is itself regular one can hope that
the above formula applies even without the compactness assumption and we
shall prove in the next subsection that it does, at least in the case when γ = γ<r
is topologically semi-simple modulo Z(G)◦.

The remaining objects in the formula: εsym,ram, εram, and ẽ, are all complex roots
of unity of order dividing 4 and will be the focus of our study. We shall now
give their definition following [DS18, §4.3]. Let T be a maximal torus of Gd−1

containing γg<r and such that x ∈ Ared(T,E)Γ for some finite Galois extension
E/F splitting T . We consider the following subset of the real numbers, defined
for each α ∈ R(T,G) by

ordx(α) = {r ∈ R|gα(Fα)x,r+ 6= gα(Fα)x,r},

where we have abbreviated by gα(Fα)x,r the intersection gα(Fα) ∩ g(Fα)x,r.
Based on this set we define the following subsets of the root system R(T,G)

Rγg<r = {α ∈ R(T,G) rR(T,Gd−1)|α(γg<r) 6= 1},
Rr/2 = {α ∈ Rγg<r |r ∈ 2ordx(α)},

R(r−ordγg<r
)/2 = {α ∈ Rγg<r |r − ord(α(γg<r)− 1) ∈ 2ordx(α)}.

For α ∈ R(r−ordγg<r
)/2 symmetric and ramified we define

tα =
1

2
eαNFα/F±α(wα)〈dα∨(1), X∗d−1〉(α(γg<r)− 1) ∈ O×Fα .

Here eα is the ramification degree of Fα/F and wα ∈ F×α is any element of
valuation (ord(α(γ<r)−1)− r)/2. The existence of wα is argued in the proof of
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[AS09, Proposition 5.2.13]. It also follows from Proposition 4.5.1 below. Finally,
we introduce the Gauss sum

G = q−1/2
∑
x∈kF

Λ(x2) ∈ C×.

With this notation at hand, we come to the definition of the three roots of unity.

εsym,ram(γg<r) =
∏

α∈Γ\(R(r−ord
γ
g
<r

)/2)symm,ram

sgnF±α(G±α)(−G)fαsgnk×Fα
(tα).

(4.3.2)
The product here runs over the Γ-orbits of symmetric ramified roots belonging
to R(r−ord(γg<r))/2. For each such α, let G±α be the subgroup of G generated by
the root subgroups for the two roots α and −α. It is a semi-simple group of
rank 1 defined over F±α, and sgnF±α denotes its Kottwitz sign [Kot83], which
equals 1 if the G±α is split and −1 if it is anisotropic. Furthermore, fα is the
degree of the field extension kFα/kF , and sgnk×Fα

is the quadratic character of

the cyclic group k×Fα , onto which we can project the element tα ∈ O×Fα . Both
G and tα depend on the choice of Λ (the latter through X∗d−1) and it is easy to
check that this dependence cancels out.

εram(γg<r) =
∏

α∈Γ×{±1}\(Rr/2)sym

sgnk×Fα
(α(γg<r)) ·

∏
α∈Γ\(Rr/2)sym,unram

sgnk1
Fα

(α(γg<r)). (4.3.3)

Here the superscript sym means that we are taking Γ × {±1}-orbits of asym-
metric roots, while the subscripts sym,unram mean that we are taking Γ-orbits
of roots that are symmetric and unramified. In the first product, we project
α(γg<r) ∈ O×Fα to k×Fα . In the second product, the Fα/F±α-norm of the element
α(γg<r) ∈ O×Fα is trivial, because the root α is symmetric. The same is true for
the projection of α(γg<r) to k×Fα , because the symmetric root α is unramified.
The group k1

Fα
of elements of k×Fα with trivial kFα/kF±α -norm is cyclic and we

apply its quadratic character to the projection of α(γg<r). Finally

ẽ(γg<r) =
∏

α∈Γ\(R(r−ord
γ
g
<r

)/2)sym

(−1). (4.3.4)

Note that while the original definition of ẽ does not contain the subscript sym,
we may restrict the product to symmetric roots by [DS18, Remark 4.3.4].

Each of these signs implicitly depends on T , but their product is independent
of T . We will soon give an alternative formula for the product εsym,ram · ẽ. About
εram we will only need to know the following:

Fact 4.3.1. The function γ 7→ εram(γ) is an Ω(T,G)(F )-invariant character of
T (F ). �

The observation that this function is a character was already made in [DS18]
and will be very useful.
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4.4 Character values at shallow elements

In this subsection F is a local field of odd residual characteristic that is not a
bad prime for G. In the special case γ = γ<r formula (4.3.1) specializes to

Φπ(γ) = φd(γ)
∑

g∈Jd(F )\Gd(F )/Gd−1(F )

γg∈Gd−1(F )

εsym,ram(γg)εram(γg)ẽ(γg) · Φπd−1
(γg). (4.4.1)

This formula still requires the assumption thatGd−1 is anisotropic modulo cen-
ter. However, we expect that this condition is unnecessary. In this subsection,
we will prove that this formula is valid without this condition, but under the
stronger assumption on γ that it is tame elliptic and topologically semi-simple
modulo Z(G)◦. That is, we are assuming that γ = γ0, which is stronger than
γ = γ<r. The regularity of γ implies that Jd is a tame elliptic maximal torus.
To remind ourselves of that let us write Sγ for it.

We follow the proof of [AS09, Theorem 6.4]. We have the point x ∈ Bred(G,F ),
which is called x̄ in loc. cit. Let Benl(G,F ) denote the enlarged Bruhat-Tits
building of G, i.e. Benl(G,F ) = Bred(G,F ) × X∗(Z(G))Γ ⊗ R. Fix a preimage
ẋ ∈ Benl(G,F ), which will serve as the point x in loc. cit. Recall that the
representation π is compactly induced from a finite dimensional irreducible
representation σ of the group Kσ = Gd−1(F )x ·G(F )x,0+. We denote by χσ the
character of this representation, and by χ̇σ the extension by zero of the function
χσ to all of G(F ).

We claim that the function
g 7→ χ̇σ(gγ)

onG(F )/Z(F ) is compactly supported. For this, note that because γ is topolog-
ically semi-simple modulo Z(G)◦ all of its root values are topologically semi-
simple. It follows from [Tit79, §3.6] that the set of fixed points of γ in Bred(G,E),
where E is the splitting field of Sγ , is precisely the apartment Ared(Sγ , E).
Thus, the set of fixed points of γ in Bred(G,F ) is a singleton set {xγ}. The same
is of course true for the element gγ, which then has the unique fixed point gxγ .
Thus, unless gxγ = x, the element gγ does not belong to Kσ ⊂ G(F )x and con-
sequently χ̇σ(gγ) vanishes. This function is thus supported on a single coset of
G(F )x/Z(F ) in G(F )/Z(F ), which is compact.

According to the Harish-Chandra integral character formula, we have

Θπ(γ) =
deg(π)

deg(σ)
φd(γ)

∫
G(F )/Z(F )

∫
K

χ̇σ(gcγ)dcdg,

where K is any compact open subgroup of G(F ) with Haar measure dc nor-
malized so that the volume of K is equal to 1. We can take for example K =
G(F )xγ ,0. Since the integrand is compactly supported as a function of g, we
switch the two integrals and then remove the integral over K. We arrive at

Θπ(γ) =
deg(π)

deg(σ)
φd(γ)

∑
g∈Kσ\G(F )/Sγ(F )

∫
KσgSγ(F )/Z(F )

χ̇σ(kgsγ)dkds.

We have χ̇σ(kgsγ) = χ̇σ(gγ) which, as we already discussed, is zero unless
gxγ = x. Recall the subset Br(γ) of [AS08, Definition 9.5]. By [AS08, Lemma
9.6] it is equal to Benl(Sγ , F ), which is the preimage of xγ in Benl(G,F ). Thus,
if gxγ = x then ẋ belongs to Br(gγ). Because of this, the rest of the argument in
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the proof of [AS09, Theorem 6.4] goes through: [AS09, Corollaries 4.5,4.6] can
now be used without the assumption thatGd−1(F )/Z(F ) is anisotropic, whose
purpose was to guarantee, via [AS08, Lemma 9.13], that x ∈ Br(gγ).

4.5 Computation of ordx(α)

In this subsection F is a local field of odd residual characteristic. The roots
of unity occurring in the character formula (4.3.1) of Adler-DeBacker-Spice de-
pend on the sets ordx(α) ⊂ R for the various roots α ∈ R(T,G). According
to [DS18, Corollary 3.1.9], when α is symmetric there are only two possibilities
for ordx(α), namely e−1

α Z and e−1
α (Z + 1

2 ), where eα is the ramification degree
of the extension Fα/F . The key to our reinterpretation of these roots of unity
is the exact computation of ordx(α), which is as follows.

Proposition 4.5.1. Let T ⊂ G be a maximal torus with a tamely ramified split-
ting field E/F and let x ∈ Bred(G,F ) ∩ Ared(T,E). For any α ∈ R(T,G)sym we
have

ordx(α) =


e−1
α Z, if α is ramified
e−1
α Z, if α is unramified and f(G,T )(α) = +1

e−1
α (Z + 1

2 ), if α is unramified and f(G,T )(α) = −1

where f(G,T )(α) is the toral invariant defined in [Kal15, §4.1]. �

The proof will occupy this subsection. The crucial step is the reduction of the
proof to the case of semi-simple groups of rank 1.

Let G±α be the subgroup of G generated by the root subgroups for the roots α
and −α. It is a semi-simple group of absolute rank 1 and is defined over F±α.
Its Lie-algebra is g±α = g−α⊕ sα⊕ gα, where sα is the 1-dimensional subspace
of g spanned by the coroot Hα. Let Sα ⊂ G±α be the maximal torus whose Lie-
algebra is sα. It is a 1-dimensional anisotropic torus defined over F±α and split
over Fα. Let x±α ∈ Bred(G±α, F±α) be the unique point inAred(Sα, Fα)Γ±α (we
are using here again [Pra01]).

Lemma 4.5.2. The filtrations gα(Fα) ∩ g(Fα)x,r and gα(Fα) ∩ g±α(Fα)x±α,r are
equal. �

Proof. Since E/Fα is tame we have g(Fα)x,r = g(E)x,r ∩ g(Fα) for all r ∈ R,
and the same is true for g±α. We may thus extend scalars to E for the com-
parison of the filtrations. Consider the root datum RDG := (T, {Uβ}β∈R(T,G))
in the sense of [BT72, §6.1.1], where we have omitted the data Mβ from the
notation because they are redundant in this case, see [BT84, §4.1.19(i)]. The
point x ∈ Bred(G,F ) ⊂ Bred(G,E) gives a valuation ψx of RDG, consisting
of functions ψx,β : Uβ(E) → R ∪ {∞}, one for each β ∈ R(T,G), satisfying
[BT72, Definition 6.2.1]. On the group G±α we have the root datum RDG±α :=
(Sα, {Uβ}β=±α) and it is easy to see that the functions {ψx,α, ψx,−α} satisfy the
conditions of [BT72, Definition 6.2.1] and hence form a valuation of RDG±α ,
which we shall call ψx,±α. We claim that this valuation corresponds to a point
in Ared(Sα, E) ⊂ Bred(G±α, E). For this we must show that ψx,±α is equipol-
lent to a Chevalley valuation of RDG±α [BT84, §4.2.1]. This follows from the
fact that ψx is equipollent to a Chevalley valuation of RDG. Indeed, the lat-
ter statement means by definition that there exists a system of isomorphisms
(xβ : Ga → Uβ)β∈R(T,G) and an element v ∈ X∗(Tad) ⊗ R with the following
properties:
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1. For all β ∈ R(T,G) we have [dxβ(1), dx−β(1)] = Hβ in g;

2. For all β, γ ∈ R(T,G) with β + γ ∈ R(T,G) there exists εβ,γ ∈ {±1} with
[dxβ(1), dxγ(1)] = εβ,γ(rβ,γ +1)dxβ+γ(1), where rβ,γ is the largest integer
such that γ − rβ ∈ R(T,G);

3. For all β ∈ R(T,G) and t ∈ E we have ψx,β(xβ(t)) = ord(t) + 〈β, v〉.

Clearly then the system of isomorphisms (xβ)β=±α and the valuation ψx,±α
satisfy the same properties (the second being vacuous). We only need to show
that in the third property we can replace v ∈ X∗(Tad) ⊗ R with some v±α ∈
X∗(Sα)⊗R. For this, we observe that the surjectionX∗(Tad)⊗R→ X∗(Sα)⊗R
induced by the inclusion Sα ⊂ Tad has a natural section, sending the im-
age of α under this surjection back to α. This section is dual to a surjection
X∗(Tad) ⊗ R → X∗(Sα) ⊗ R and we let v±α be the image of v under this sur-
jection. Then by definition 〈α, v〉 = 〈α, v±α〉. This proves that ψx,±α is equipol-
lent to a Chevalley valuation of RDG±α and thus corresponds to a point in
Ared(Sα, E). Finally, because the point x, and hence the valuation ψx, are fixed
by Γ, and in particular by Γ±α, the valuation ψx,±α, and hence the correspond-
ing point in Ared(Sα, E), are also fixed by Γ±α. The torus Sα being anisotropic
over F±α, the only point in Ared(Sα, E)Γ±α is x±α and this implies that the
point corresponding to ψx,±α is none other than x±α. �

According to this lemma, we can replace G by G±α, T by Sα, and x by x±α, in
the computation of ordx(α). At the same time, it follows directly from the defi-
nition that we can make the same replacement in the computation of f(G,T )(α).
This reduces the proof to the case when the group G is semi-simple of absolute
rank 1. Such a group is a (necessarily inner) form of either SL2 or PGL2. Nei-
ther ordx(α) nor f(G,T )(α) is affected by passing to an isogenous group, so we
may assume thatG is an inner form of SL2. Then we have to contend with four
cases – G is either split or not, and S is either unramified or not. Rather than
going through all four cases by hand, we will use the following lemma, which
reduces to the cases where G = SL2. We formulate it in general, as we believe
this makes the proof more transparent.

Lemma 4.5.3. Let ξ : G → G′ be an inner twist and S ⊂ G a tame elliptic
maximal torus. Assume that the restriction of ξ to S is defined over F , and let
S′ := ξ(S) and α′ = ξ(α). Then Proposition 4.5.1 is true for (G,S, α) if and only
if it is true for (G′, S′, α′). �

Proof. Let again E/F be the tame finite Galois extension splitting S. Let x and
x′ be the unique Γ-fixed points in the reduced apartments of S and S′ over
E. Then ξ : G → G′ is an isomorphism defined over E that restricts to an
isomorphism S → S′ defined over F . We will need to control three parameters:
The failure of ξ to send x to x′, the failure of the isomorphism gα → g′α′ induced
by ξ to descend to Fα, and the possible inequality of f(G,S)(α) and fG′,S′(α′).

By assumption for any σ ∈ Γ there is t′σ ∈ Sad such that ξ−1σ(ξ) = Ad(t′σ).
Then t′• ∈ Z1(Γ, Sad). According to [Ste65, Theorem 1.9] the cohomology group
H1(I, Sad) vanishes and hence there exist t• ∈ Z1(Γ/I, Sad(Fu)) and t ∈ Sad so
that t′σ = tσ · t · σ(t)−1. Replacing ξ by ξ ◦Ad(t) we obtain ξ−1σ(ξ) = Ad(tσ).

We have the isomorphism ξ : Ared(S,E)→ Ared(S′, E). Let v ∈ X∗(Sad)⊗R be
the element satisfying ξ(x + v) = x′. Then the isomorphism gα(E) → g′α′(E)
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induced by ξ restricts for all r ∈ R to an isomorphism

ξ : gα(E)x+v,r → g′α′(E)x′,r.

This isomorphism is not necessarily equivariant for the action of Γα, but rather
satisfies σ(ξ(X)) = ξ(〈α, tσ〉σ(X)) for X ∈ gα(E) and σ ∈ Γα. Now σ 7→ 〈α, tσ〉
is the image of tσ under

Z1(Γ/I, Sad(Fu))
Res−→ Z1(Γα/Iα, Sad(Fuα ))

α−→ Z1(Γα/Iα, F
u,×
α ),

where Fuα denotes the fixed field of Iα in F s. Hilbert’s theorem 90 implies
that this cocycle takes values not just in Fu,×α , but in O×Fuα . The vanishing of
H1(Γα/Iα, O

×
Fuα

) implies that there exists u ∈ O×Fuα such that the modified iso-
morphism

u · ξ : gα(E)x+v,r → g′α′(E)x′,r

is Γα-equivariant, and hence descends to an isomorphism

gα(Fα)x,r−〈α,v〉 = gα(Fα)x+v,r → g′α′(Fα)x′,r.

This implies ordx(α)+〈α, v〉 = ordx′(α′). In order to prove the lemma we must
now compute 〈α, v〉 and relate it to the invariant f(G,S)(α).

The isomorphism ξ : Ared(S,E)→ Ared(S′, E) is not necessarily Γ-equivariant.
Rather, it satisfies ξ−1σ(ξ) = v(tσ), where v(tσ) ∈ X∗(Sad)⊗ R is characterized
by 〈β, v(tσ)〉 = −ord(β(tσ)) for all β ∈ R(S,G). Applying σ ∈ Γ to the equation
ξ(x+v) = x′we obtain v−σ(v) = v(tσ) and hence−ord(α(tσ)) = 〈α, v−σ(v)〉 =
〈α−σ−1(α), v〉. Choosing σ ∈ Γ±αrΓα we then obtain 〈α, v〉 = − 1

2 ord(α(tσ)).
We now use that σ 7→ α(tσ) is the image of t• under

Z1(Γ/I, Sad(Fu))
Res−→ Z1(Γ±α/I±α, Sad(Fu±α))

α−→ Z1(Γ±α/I±α, Sα(Fu±α)),

where Sα is the 1-dimensional anisotropic torus defined over F±α and split
over Fα and Fu±α denotes fixed subfield in F s of I±α. We have Sα(Fu±α) =

Sα(Fuα )I±α/Iα .

Now we distinguish two cases. If α is ramified, then I±α/Iα is of order 2
and Sα(Fuα )I±α/Iα is the kernel of the norm Fu,×α → Fu,×±α . It follows that
ord(α(tσ)) = 0. If α is unramified, then I±α/Iα = {1} and Sα(Fu±α) = Fu,×α .
The inflation map H1(Γ±α/Γα, Sα(Fα)) → H1(Γ±α, Sα(F s)), which is an iso-
morphism, factors as

H1(Γ±α/Γα, Sα(Fα))→ H1(Γ±α/I±α, Sα(Fu±α))→ H1(Γ±α, Sα(F s))

and both arrows are isomorphisms. The value at σ ∈ Γ±αrΓα of any cobound-
ary in the middle term is of the form xσ(x) for some x ∈ Fu,×±α = Fu,×α and
its valuation belongs to 2ord(F×α ). This implies that ord(α(tσ)) ∈ ord(cσ) +
2ord(F×α ) for any 1-cocycle c• ∈ Z1(Γ±α/I±α, Sα(Fu±α)) that is cohomologous
to α(t•). But if we take c• ∈ Z1(Γ±α/Γ, Sα(Fα)), then [Kal15, Prop. 4.3(1)]
implies that − 1

2 ord(cσ) ∈ ord(F×α ) if and only if f(G,S)(α) = fG′,S′(α
′). We

conclude

〈α, v〉 ∈

{
1
2 ord(F×α ) r ord(F×α ), if α is unramified and f(G,S)(α) 6= fG′,S′(α

′)

ord(F×α ), otherwise. �

This lemma reduces the proof of Proposition 4.5.1 to the caseG = SL2 and S an
anisotropic maximal torus. Moreover, we are free to change S within its stable
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class if we like. This case can be treated by a simple calculation as follows. We
have F±α = F and Fα/F±α is a quadratic extension that may be ramified or
unramified. Let σ ∈ Γ±α/Γα denote the non-trivial element and fix an element
a ∈ F×α satisfying a+ σ(a) = 0. Set

h =

[
1 −a

−1

2
a 1

2

]
∈ G(Fα).

If T ⊂ G is the split diagonal torus, then hTh−1 is stably conjugate to S, so we
may assume that it is equal to S. It will be convenient to change coordinates by
Ad(h) and represent S as the diagonal torus in G. This comes at the expense of
replacing the usual action σG of σ on G(Fα), given by applying σ to the entries
of the matrix representing a given element of G(Fα), by the more complicated
action given by Ad(h−1σ(h)) o σG. A simple computation reveals

h−1σ(h) =

[
0 a−1

2
−2a 0

]
.

According to [DS18, Corollary 3.1.8] we have ordx(α) = −ordx(−α) and so we
are free to choose either root of S as the one we study. We take the root αwhose
root subspace is spanned by the element

Xα =

[
0 1
0 0

]
.

Then we see Ad(h−1σ(h)) o σG(Xα) = −4a2X−α and this implies f(G,S)(α) =
+1. In order to understand the filtration gα(Fα)x,r we must compute the point
x ∈ Ared(S, Fα)Γ. Let o ∈ Ared(S, Fα) be the point given by the pinningXα, and
let v ∈ X∗(S)⊗R be the element satisfying o+v = x. Applying Ad(h−1σ(h))o
σG to this equation we see that 2v is equal to the translation on Ared(S, Fα)
effected by the action of α∨(a−1), and hence

〈α, v〉 = ord(a).

It follows that gα(Fα)x,r = gα(Fα)o,r−ord(a). Since the filtration gα(Fα)o,r has a
break at zero and ord(a) ∈ ord(F×α ) we conclude that the filtration gα(Fα)x,r
also has a break at zero. The proof of Proposition 4.5.1 is complete.

4.6 Definition of ∆abs
II

In this subsection F is a local field of odd residual characteristic. In [LS87, §3.3]
Langlands and Shelstad define the term ∆II , which is a component of their
transfer factor. It is associated to a connected reductive group defined over
a local field, an endoscopic group, a maximal torus that is common to both
groups, as well as a-data and χ-data. In this subsection, we will introduce a
slight variation of ∆II , which we will call ∆abs

II . It will be associated to a con-
nected reductive group defined over a local field, a maximal torus thereof, as
well as a-data and χ-data. We think of ∆abs

II as an absolute version of ∆II , in the
precise sense that the original term ∆II can be written as a quotient with nu-
merator ∆abs

II for the reductive group and denominator ∆abs
II for its endoscopic

group.

We begin by recalling the notions of a-data and χ-data from [LS87, §2]. A set
of a-data consists of elements aα ∈ F×α , one for each α ∈ R(T,G), having the
properties a−α = −aα and aσ(α) = σ(aα) for σ ∈ Γ. A set of χ-data consists
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of characters χα : F×α → C×, one for each α ∈ R(T,G), having the properties
χ−α = χ−1

α , χσ(α) = χα ◦ σ−1 for each σ ∈ Γ, and χα|F×±α = κα whenever
α ∈ R(T,G)sym and κα : F×α → {±1} is the quadratic character associated to
the quadratic extension Fα/F±α.

Sets of a-data and χ-data always exist, but there are rarely unique choices for
them without further structure. It is clear from the definitions that one can
choose aα = 1 and χα = 1 for asymmetric α ∈ R(T,G), although it is some-
times convenient not to do so. When α is symmetric and unramified, the char-
acter κα is unramified and there is a distinguished choice for χα, namely the
unramified quadratic character of F×α . When α is symmetric and ramified, the
character κα is ramified and the unramified quadratic character of F×α is not
a valid choice for χα. In this situation, under the assumption p 6= 2, there are
exactly two tamely-ramified characters of F×α that extend κα. Their quotient
(in either order) is the unramified quadratic character of F×α , and each of the
two tame choices for χα is characterized by the fact that its restriction to O×Fα
lifts the quadratic character of k×Fα and its value on any uniformizer belongs
to {i,−i} ⊂ C× if −1 is not a square in Fα and to {+1,−1} ⊂ C× otherwise.
Regardless of the ramification of Fα/F±α, it is often useful to allow χα to have
arbitrary depth.

Definition 4.6.1. We will call a set of χ-data minimally ramified, if χα = 1 for
asymmetric α, χα is unramified for unramified symmetric α, and χα is tamely
ramified for ramified symmetric α. �

As just discussed, different choices of minimally ramified χ-data can differ only
at ramified symmetric rootsα, and only by the unramified sign character ofF×α .

Definition 4.6.2. Given sets of a-data and χ-data, we define

∆abs
II [a, χ] : T (F )→ C×, γ 7→

∏
α∈Γ\R(T,G)
α(γ)6=1

χα

(
α(γ)− 1

aα

)
.

�

We will now recall some results from [LS87] about how this term changes when
the a-data or χ-data are changed. First, the a-data (aα)α can only be replaced by
(bα · aα)α, where bα ∈ F×α for α ∈ R(T,G) satisfies b−α = bα and σ(bα) = bσ(α)

for all σ ∈ Γ.

Lemma 4.6.3.

∆abs
II [ba, χ](γ) = ∆abs

II [a, χ](γ) ·
∏

α∈Γ\R(T,G)sym

α(γ) 6=1

κα(bα).

�

Proof. Immediate. �

Definition 4.6.4. A set of ζ-data (ζα)α for R(T,G) consists of a character ζα :
F×α → C× for each α ∈ R(T,G) subject to the conditions ζ−α = ζ−1

α , ζσα =
ζα ◦ σ−1 for all σ ∈ Γ and, in the case of symmetric α, ζα|F×±α = 1. �
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It is immediate that if (χα)α and (χ′α)α are two sets of χ-data, then χ′α = χα ·ζα,
where (ζα)α is a (uniquely determined) set of ζ-data.

Let (ζα)α be a set of ζ-data. For each orbit O of Γ× {±1} in R(T,G) we define
a character ζO : T (F ) → C× as follows. If O consists of two distinct Γ-orbits,
choose α ∈ O and let ζO = ζα ◦α. IfO consists of a single Γ-orbit, choose α ∈ O
and let ζO be the composition

T (F )
α−→ F 1

α

∼=←− F×α /F×±α
ζα−→ C×,

where F 1
α = Ker(NFα/F±α : F×α → F×±α) and the middle isomorphism sends

x ∈ F×α to x/τ(x) ∈ F 1
α, with τ ∈ Γ±α/Γα being the non-trivial element. In

both cases it is straightforward to check that ζO depends only on O and not on
the choice of α.

Definition 4.6.5. Given ζ-data (ζα)α let ζT : T (F ) → C× be the product of
the characters ζO, as O runs over the set of orbits in R(T,G) for the action of
Γ× {±1}. �

Lemma 4.6.6.
∆abs
II [a, ζ · χ](γ) = ∆abs

II [a, χ](γ) · ζT (γ).

�

Proof. The argument for this constitutes the proofs of [LS87, Lemma 3.3.A,
Lemma 3.3.D]. �

Lemma 4.6.7. Let γ ∈ T (F )reg be an element having a decomposition γ =
γ<r ·γ≥r with γ<r, γ≥r ∈ T (F ) satisfying ord(α(γ<r)−1) < r and ord(α(γ≥r)−
1) ≥ r for all α ∈ R(T,G). Assume that the χ-data is tamely ramified, i.e.
χα|[F×α ]0+

= 1. Then

∆abs,G
II [a, χ](γ) = ∆abs,G

II [a, χ](γ<r) ·∆abs,J
II [a, χ](γ≥r),

where J = Cent(γ<r, G)◦ and the superscripts indicate the group relative to
which the factor ∆abs

II is taken. �

Proof. We need to show that

χα

(
α(γ)− 1

aα

)
=

χα
(
α(γ<r)−1

aα

)
, if α(γ<r) 6= 1,

χα

(
α(γ≥r)−1

aα

)
, if α(γ<r) = 1.

The case α(γ<r) = 1 is obvious. Assume now α(γ<r) 6= 1. Write α(γ<r) = 1+x
and α(γ≥r) = 1+y with ord(x) < r and ord(y) ≥ r. Then α(γ)−1 = (x+1)(y+
1)−1 = x(1+y+yx−1). Since 1+y+yx−1 ∈ [F×α ]0+ the proof is complete. �

We now introduce a weaker variant of the notion of a-data that can be used in
conjunction with tame χ-data and is sometimes more convenient.

Definition 4.6.8. A mod-a-data {(rα, āα)} is an assignment to each α ∈ R(T,G)
of a real number rα ∈ R and a non-zero element āα ∈ [Fα]rα/[Fα]rα+ such that
rσα = rα = r−α, āσα = σ(āα), and ā−α = −āα, for any σ ∈ Γ. �
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Given tame χ-data and mod-a-data, we can choose an arbitrary lift aα ∈ [Fα]rα
for each āα and consider the function ∆abs

II [a, χ] (even if the set of lifts aα does
not constitute a-data). This function is independent of the chosen lifts, because
another choice would have the form aα + a′α, where a′α ∈ [Fα]rα+. Now aα +

a′α = aαbα, where bα = 1 +
a′α
aα

belongs to [F×α ]0+, and χα restricts trivially to
this group. We will denote the resulting function by ∆abs

II [ā, χ].

4.7 A formula for εsym,ram · ẽ

In this subsection F is a local field of odd residual characteristic. We will use
the results of Subsections 4.5 and 4.6 to give a formula for the product of the
two roots of unity εsym,ram(γg<r) · ẽ(γ

g
<r).

Recall that we have fixed an additive character Λ : F → C× that is non-trivial
on OF and trivial on pF . Recall also that the definition of the roots of unity
depends on a tame maximal torus T of Gd−1 containing γg<r. We now choose
a-data and χ-data for R(T,G) as follows. If α ∈ R(T,Gd−1) or α(γg<r) = 1, we
leave the choice unspecified, as these roots will not contribute to the formula.
For any other α ∈ R(T,G) we set aα = 〈Hα, X

∗
d−1〉, and we take χα to be the

trivial character if α is asymmetric and the unramified quadratic character if
α is symmetric and unramified. If α is symmetric and ramified, we choose
among the two possible tamely-ramified characters by demanding

χα(2aα) = f(G,T )(α)λFα/F±α(Λ ◦ trF±α/F ), (4.7.1)

where f(G,T )(α) is the toral invariant [Kal15, §4.1] and λFα/F±α is Langlands’
constant [Lan, Theorem 2.1], [BH05b, §1.5]. We recall here that for any non-
trivial character Λ′ : F±α → C× the constant λFα/F±α(Λ′) can be expressed as
ε( 1

2 , sgn,Λ′), where sgn : ΓF±α → {±1} is the quadratic character with kernel
ΓFα , and we have taken its root number at s = 1/2 with respect to Langlands’
normalization [Tat79, (3.6.4)].

To see that this specifies a valid χ-data, note that since aα ∈ F×α is an element of
trace zero, we have ord(aα) ∈ ord(F×α ) r ord(F×±α). Thus the value of χα(2aα)
distinguishes the two possible choices of χα. Since the square of the right hand
side of (4.7.1) equals κα(−1), we may indeed chose χα to satisfy (4.7.1). Finally,
it is enough to check that χσα ◦σ = χα on the element 2aα, where it is obvious.

Note that the choice of χα depends only on G, T , and φd−1, but not on Λ,
because the dependence of the right side of (4.7.1) on Λ is canceled by the de-
pendence of aα on Λ, as one sees using [Tat79, (3.6.6)].

The main step in our reinterpretation of the character formula is the following
expression for the product εsym,ram(γg<r)ẽ(γ

g
<r).

Lemma 4.7.1. The product εsym,ram(γg<r)ẽ(γ
g
<r) is equal to

∏
α∈Γ\(Rγg<r )sym

f(G,T )(α)λFα/F±α(Λ ◦ trF±α/F )−1χα

(
α(γg<r)− 1

aα

)
.

�
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Proof. According to (4.3.2) and (4.3.4) we can write εsym,ram(γg<r)ẽ(γ
g
<r) as the

product of ∏
α∈Γ\(R(r−ord

γ
g
<r

)/2)symm,ram

sgnF±α(G±α)(−1)fα+1Gfαsgnk×Fα
(tα)

with ∏
α∈Γ\(R(r−ord

γ
g
<r

)/2)sym,unram

(−1).

We consider the contribution of an individual symmetric α ∈ Rγg<r . If α is
unramified, then χα is unramified and ord(〈Hα, X

∗
d−1〉) = −r ∈ ord(F×α ), so

we have

χα

(
α(γg<r)− 1

〈Hα, X∗d−1〉

)
= (−1)eα(ord(α(γg<r)−1)−r),

while λFα/F±α(Λ ◦ trF±α/F ) = −1 according to [BH05b, Lemma 1.5]. The total
contribution of α to the right hand side of the equation of the lemma is thus

f(G,T )(α) · (−1)eα(ord(α(γg<r)−1)−r)+1.

According to Proposition 4.5.1 this expression is equal to −1 precisely when
α ∈ R(r−ordγg<r

)/2. The contributions of α to both sides of the equation of the
lemma are thus equal.

Now let α be ramified. Since α(γg<r) ∈ F×α is an element whose Fα/F±α-norm
is trivial, ord(α(γg<r) − 1) is either zero or belongs to ord(F×α ) r ord(F×±α). At
the same time, 〈Hα, X

∗
d−1〉 ∈ F×α is an element whose Fα/F±α-trace vanishes,

so −r = ord(〈Hα, X
∗
d−1〉) ∈ ord(F×α ) r ord(F×±α). It follows from Proposition

4.5.1 that α ∈ R(r−ordγg<r
)/2 if and only if ord(α(γg<r) − 1) 6= 0. Assume first

that this is the case. Then α contributes to both sides of the equation of the
lemma. For the contribution of the left side, we note that by the theorem of
Hasse-Davenport the term (−1)fα+1Gfα is equal to the Gauss sum

q−fα/2
∑
x∈kFα

Λ(trkFα/kF (x2)).

Since the character Λ ◦ trF±α/F : F±α → C× induces on kFα = kF±α the char-
acter x 7→ Λ(trkFα/kF (e±αx)), the latter Gauss sum is equal by [BH05b, Lemma
1.5] to

λFα/F±α(Λ ◦ trF±α/F ) · κα(e±α) = λFα/F±α(Λ ◦ trF±α/F )−1 · κα(−e±α).

Next, using that χα is trivial on NFα/F±α -norms and that 〈Hα, X
∗
d−1〉 ∈ Fα is

an element whose Fα/F±α-trace vanishes, we see

sgnk×Fα
(tα) = χα(tα) = κα(e±α)κα(−1)χα

(
α(γg<r)− 1

〈Hα, X∗d−1〉

)
.

These computations and the fact that f(G,T )(α) = sgnF±α(G±α) imply that the
contributions of α to the both sides of the equation of the lemma agree.

Assume now that ord(α(γg<r)− 1) is zero, so that α /∈ R(r−ordγg<r
)/2 and thus α

does not contribute to the left side of the equation of the lemma. To compute
its contribution to the right side, we first notice that α(γg<r) ∈ −1 + pFα and
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hence α(γg<r) − 1 = (−2)u for some u ∈ 1 + pFα . Since u is in the kernel of χα
and trFα/F±α(aα) = 0 we see

χα

(
α(γg<r)− 1

aα

)
= χα

(
−2a−1

α

)
= χα(2aα),

and according to (4.7.1) the contribution of α to the right side of the equation
of the lemma is 1. �

Using Kottwitz’s result [Kal15, §4.5] on the relationship between ε-factors and
Weil constants, as well as the factor ∆abs

II defined in §4.6, we can restate this
lemma as follows. Let TGd denote the minimal Levi subgroup of the quasi-
split inner form of Gd, and let TJd denote the minimal Levi subgroup of the
quasi-split inner form of Jd.

Corollary 4.7.2. The product εsym,ram(γg<r)ẽ(γ
g
<r) is equal to

e(Gd)e(Jd)

e(Gd−1)e(Jd−1)

εL(X∗(TGd)C −X∗(TJd)C,Λ)

εL(X∗(TGd−1)C −X∗(TJd−1)C,Λ)

∆abs,Gd

II [a, χ](γg<r)

∆abs,Gd−1

II [a, χ](γg<r)

�

Proof. This follows immediately from [Kal15, Corollary 4.11] and the additivity
of εL in degree zero. Note that there is a typo in loc.cit: trFα/F±α should read
trF±α/F . Note also that Jd ∼= Ad(g−1)Jd and Jd−1 ∼= Ad(g−1)Jd−1 as reductive
groups over F . �

We remark here that this expression does not depend on the choice of Λ, be-
cause both εL and the a-data aα = 〈Hα, X

∗
d−1〉 depend on Λ in a parallel way.

Thus we may from now on use an arbitrary additive character Λ, i.e. remove
the condition on its depth.

A slight variant of this corollary will also be useful later when we study L-
packets. It involves the following modified choice of χ-data, where we use

χ′α(2aα) = λFα/F±α(Λ ◦ trF±α/F ) (4.7.2)

instead of (4.7.1). Then χ′α is a valid set of χ-data for the same reasons that
χα was. Again χ′α is independent of Λ. The usefulness of χ′α comes from the
fact that it depends only on the torus T and the character φd−1, but not on the
group G in the sense that it is insensitive to replacing T by a stably conjugate
torus in an inner form of G. The relationship between the two χ-data can be
expressed by

χ′α(x) = χα(x)εα(x),

where εα : F×α → C× is the trivial character unless α is symmetric and ramified,
in which case it is given by εα(x) = f(G,T )(α)eαord(x). The collection (εα)α is a
set of ζ-data for R(T,G) in the sense of Definition 4.6.4.

Definition 4.7.3. Let εf,ram : T (F ) → C× be the character of Definition 4.6.5
corresponding to this ζ-data. �

This character is similar, but not the same as, the one introduced in [Kal15,
§4.6], the difference being that in loc. cit. εα was assigned non-trivial even
when α was symmetric and unramified. However, due to [Kal15, Proposition
4.4] both definitions yield the same result in the case of epipelagic representa-
tions.
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Lemma 4.7.4. For all γ ∈ T (F ) we have

εf,ram(γ) =
∏

α∈R(T,G)sym,ram/Γ
α(γ) 6=1

ord(α(γ)−1)=0

f(G,T )(α).

�

Proof. Using that εα is trivial unless α is symmetric and ramified we have

εf,ram(γ) =
∏

α∈R(T,G)sym,ram/Γ

εα(δα)−1,

where δα ∈ F×α is any element satisfying δα/σ(δα) = α(γ) for the non-trivial
element σ ∈ Γ±α/Γα. If ord(α(γ)− 1) > 0 we have ord(δα − 1) > 0 and hence
εα(δα) = 1. If ord(α(γ)− 1) = 0 then the fact that α is symmetric and ramified
implies α(γ) ∈ −1+pFα . Writing α(γ) = −1 ·uwith u ∈ 1+pFα we may choose
δα = ω · v with v ∈ 1 + pFα satisfying v/σ(v) = u and ω ∈ F×α a uniformizer
with σ(ω) = −ω. Then εα(δα) = f(G,T )(α). �

Fact 4.7.5. The character εf,ram is N(T,G)(F )-invariant. �

Proof. This follows from the N(T,G)(F )-invariance of the function f(G,T ). �

Corollary 4.7.6. The product εsym,ram(γg<r)ẽ(γ
g
<r) is equal to

εG
d

f,ram(γg<r)e(G
d)e(Jd)

εG
d−1

f,ram(γg<r)e(G
d−1)e(Jd−1)

εL(X∗(TGd)C −X∗(TJd)C,Λ)

εL(X∗(TGd−1)C −X∗(TJd−1)C,Λ)
·

∆abs,Gd

II [a, χ′](γg<r)

∆abs,Gd−1

II [a, χ′](γg<r)
.

�

Before going further, it will be useful to express the a-data aα = 〈Hα, X
∗
d−1〉 in

a way that does not reference the structure of the p-adic group G. In fact, since
we are using tame χ-data, it will be enough to specify mod-a-data. For this, we
consider the character

F×α → C×, x 7→ φd−1(NFα/F (α∨(x))),

where NFα/F : T (Fα) → T (F ) is the norm map. According to Lemma 3.6.8,
restriction to [F×α ]r provides a non-trivial character [F×α ]r/[F

×
α ]r+ → C×. At

the same time, we have the character

Λ ◦ trFα/F : Fα → C×,

which factors through [Fα]0/[Fα]0+. We have the isomorphism

X 7→ X + 1 : [Fα]r/[Fα]r+ → [F×α ]r/[F
×
α ]r+,

which is a truncated version of the exponential map. The equation

φd−1(NFα/F (α∨(X + 1))) = Λ(trFα/F (āαX)), (4.7.3)

characterizes the image āα of 〈Hα, X
∗
d−1〉 in [Fα]−r/[Fα]−r+.

Fact 4.7.7. The a-data aα = 〈Hα, X
∗
d−1〉, and hence the χ-data χ′, are invariant

under the action of Ω(T,Gd−1)(F ). �

Proof. For the a-data this follows from the fact that X∗d−1 belongs to the dual
Lie algebra of the center of Gd−1. For the χ-data this follows from its definition
(4.7.2). �
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4.8 The characters of toral supercuspidal representations

In this subsection F is a local field of odd residual characteristic that is not a
bad prime for G.

The supercuspidal representation π is called toral if it arises from a Yu-datum
of the form ((S,G), 1, (φ, 1)), where Gd−1 = S is an elliptic maximal torus and
φ = φd−1 is a generic character of S(F ) of positive depth. Let r be the depth
of φ and let X∗ ∈ Lie∗(S)(F )−r be a generic element realizing φ|S(F )r . In
this special case, the Adler-DeBacker-Spice character formula (4.3.1) applies
to all regular semi-simple γ = γ<r · γ≥r ∈ G(F ), because the compactness
assumption is automatically satisfied. Moreover, the formula of Corollary 4.7.6
simplifies, because we have Jd−1 = Gd−1 = S. Thus we obtain

Corollary 4.8.1. The product εsym,ram(γg<r)ẽ(γ
g
<r) is equal to

εf,ram(γg<r)e(G)e(J)εL(X∗(TG)C −X∗(TJ)C,Λ) ·∆abs
II [a, χ′](γg<r).

�

Combining this with (4.3.1), and setting θ = φd−1 : S(F )→ C×, we arrive at

Corollary 4.8.2. The value of the normalized character Φπ at the element γ =
γ<r · γ≥r is given as the product

e(G)e(J)εL(X∗(TG)C −X∗(TJ)C,Λ)

·
∑

g∈J(F )\G(F )/S(F )
γg<r∈S(F )

∆abs
II [a, χ′](γg<r)εf,ram(γg<r)ε

ram(γg<r)θ(γ
g
<r)ι̂j,gX∗(log(γ≥r))

�

4.9 Character values of regular supercuspidal representations at shallow
elements: depth zero

In this subsection F is a local field of odd residual characteristic.

Lemma 4.9.1. Let S be a maximally unramified maximal torus of G and let T
be a minimal Levi subgroup of the quasi-split inner form of G. If Λ : F → C×
is a character of depth zero, then

ε(X∗(S)C −X∗(T )C,Λ) = (−1)rS−rT ,

where rS and rT are the split ranks of S and T respectively. �

Proof. By Lemma 3.2.2 the torus S transfers to the quasi-split inner form of G.
The statement we are proving is invariant under replacing G by its quasi-split
inner form, so we may now assume G is quasi-split. We may also assume that
G is simply connected. Let o ∈ Ared(T, F ) be the superspecial vertex associated
to a Γ-invariant pinning. By Lemma 3.4.12 we may further replace S by a stable
conjugate so that o is the unique point inBred(G,F )∩Ared(S, Fu), and moreover
so that S and T are conjugate under G(Fu)o,0.
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We will use Kottwitz’s result [Kal15, Corollary 4.11] to compute the left hand
side. It is the formula

ε(X∗(S)C −X∗(T )C,Λ) =
∏

α∈R(S,G)sym/Γ

f(G,S)(α)λFα/F±α(Λ ◦ trF±α/F ).

Here f(G,S) is the toral invariant of S ⊂ G [Kal15, §4], and λFα/F±α is the Lang-
lands constant [BH05b, §1.5]. Since S is maximally unramified, each quadratic
extension Fα/F±α is unramified, so by [BH05b, Lemma 1.5] the corresponding
Langlands constant is−1. Moreover, according to Proposition 4.5.1, f(G,S)(α) =
+1 if and only if 0 ∈ ordo(α). According to [DS18, Remark 3.1.4] we may ex-
tend scalars to Fu before computing ordo(α). Since S and T are conjugate
under G(Fu)o,0 we may thus replace S by T in the computation of ordo(α).

We are now interested in the question of whether there is an element of g(E)α
whose valuation with respect to o is zero, and which is fixed by the action of
Gal(E/Fuα ), whereE/Fu is the splitting field of T . Consider the simple compo-
nent of the root systemR(T,G) to which α belongs. Then Gal(E/Fuα ) is a cyclic
group preserving this component and acting on it by a pinned automorphism
that fixes the root α. Let’s call this automorphism θ. It preserves the line gα(E).
The fixed pinning provides a pair of elements {X,−X} ⊂ gα(E). Both of these
elements have o-valuation equal to 0. Now θ(X) = ζ · X , where ζ ∈ Fu,× is
a root of unity of order divisible by the order of θ. A direct examination of
the simple root systems shows that ζ = 1 unless α belongs to a simple compo-
nent of type A2n and θ is the non-trivial pinned automorphism, in which case
ζ = −1. In the case ζ = 1 we have X ∈ gα(Fuα ) and hence 0 ∈ ordx(α). In the
case ζ = −1, let $ ∈ E be a square root of a uniformizing element of Fu, then
$X ∈ gα(Fuα ) and hence 0 /∈ ordo(α).

Returning to the original torus S, we can interpret this as follows. Let S′ ⊂ S
be the maximal unramified subtorus. Let R(S′, G) be the corresponding rel-
ative root system. It need not be reduced. The fibers of the map R(S,G) →
R(S′, G) induced by the inclusion S′ → S are precisely the inertial orbits in
R(S,G). This map then sets up a bijection between the Γ-orbits in R(S,G)
and the Frobenius-orbits in R(S′, G) and this bijection restricts to a bijection
between the symmetric orbits. A root α ∈ R(S,G) restricts to a divisible root
in R(S′, G) if and only if 0 /∈ ordo(α). If such a root is symmetric, we have
f(G,S)(α)λFα/F±α(Λ ◦ trF±α/F ) = 1, because both factors are equal to −1. For
any other symmetric root, we have f(G,S)(α)λFα/F±α(Λ ◦ trF±α/F ) = −1, be-
cause the first factor is equal to 1 and the second is equal to −1. With this,
Kottwitz’s formula above becomes

ε(X∗(S)C −X∗(T )C,Λ) = (−1)#R(S′,G)nd,sym/Fr,

where the subscript “nd” denotes the set of non-divisible roots. On the other
hand, we have

(−1)rS−rT = (−1)dim([X∗(S)C]I)Fr−dim([X∗(T )C]I)Fr
= (−1)dim[X∗(S)C]Fr

I −dim[X∗(T )C]Fr
I .

Since S is maximally unramified, the I-modulesX∗(S)C andX∗(T )C are equal.
Moreover, the action of Frobenius on [X∗(S)C]I is the twist of the action of
Frobenius on [X∗(T )C]I by an unramified 1-cocyclewσ . Letting V = [X∗(T )C]I ,
φ be the automorphism of V by which Frobenius acts, and w ∈ Ω(T,G) the
value of wσ at the Frobenius element, we get

(−1)rS−rT = (−1)dimV φ−dimV wφ .
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Both φ and w are of finite order and preserve a Q-structure on V , so their eigen-
values are either +1,−1, or pairs of conjugate non-real roots of unity. From this
we see

(−1)rS−rT = det(φ|V )−1det(wφ|V ) = det(w|V ).

Note that V is the vector space in which the root systemR(S′, G)nd resides, and
in fact is spanned by that root system, because X∗(T )C is spanned by R(T,G).
Thus det(w|V ) = (−1)l(w). According to the argument of [Kal11, Lemma 4.0.7],
(−1)l(w) is equal to (−1)N , where N is the number of symmetric Frobenius
orbits in R(S′, G)nd. �

For a maximally unramified maximal torus S ⊂ G all symmetric roots in
R(S,G) are unramified. We can thus fix unramified χ-data for R(S,G) and we
can fix mod-a-data consisting of units, i.e. non-zero elements of [Fα]0/[Fα]0+.

Proposition 4.9.2. Let S ⊂ G be a maximally unramified maximal torus, θ :
S(F )→ C× a regular depth-zero character, and π(S,θ) the corresponding regu-
lar depth-zero supercuspidal representation as in §3.4. If γ ∈ G(F ) is a regular
topologically semi-simple element belonging to an elliptic maximally unrami-
fied maximal torus, then the character of π(S,θ) at γ is zero, unless γ is (conju-
gate to) an element of S(F ), in which case it is given by

e(G)ε(X∗(T )C −X∗(S)C,Λ)
∑

w∈N(S,G)(F )/S(F )

∆abs
II [ā, χ](γw)θ(γw),

where χ is unramified χ-data and ā is any mod-a-data consisting of units. �

Proof. Recall from Lemma 3.4.20 that π(S,θ) = c-IndG(F )
S(F )G(F )x,0

κ(S,θ) and that
x ∈ Bred(G,F ) is the point associated to the torus S. We will perform this in-
duction in stages, where we let κ̇ = κ̇(S,θ) be the induction of κ(S,θ) to G(F )x.
Since S(F )G(F )x,0 is a subgroup of G(F )x of finite index, κ̇ is still finite di-
mensional. We compute the character of π(S,θ) in terms of that of κ̇ by means
of Harish-Chandra’s integral character formula [DR09, §9.1] and we obtain

deg(π; dg/dz)

deg(κ̇)

∫
G(F )/Z(F )

∫
K

χ̇κ̇(gkγ)dkdg/dz

where K is any compact open subgroup of G(F ) with Haar measure dk of
normalized volume 1, Z is the center of G, and χ̇κ̇ is the extension by zero of
the character function χκ̇ of κ̇. Just as in §4.4 we can argue that the function g 7→
χ̇κ̇(gkγ) is compactly supported modulo center and thus remove the integral
over K, which leads us to

deg(π; dg/dz)

deg(κ̇)

∫
G(F )/Z(F )

χ̇κ̇(gγ)dg/dz

The integrand is zero unless gxγ = x, where xγ is the unique fixed point of γ
in Bred(G,F ). Thus if γ is not conjugate to an element of G(F )x the character
is zero. Assume now γ ∈ G(F )x. Then the domain of integration reduces to
G(F )x/Z(F ) and since the integrand is G(F )x-invariant we obtain

vol(G(F )x/Z(F ); dg/dz)deg(π; dg/dz)deg(κ̇)−1χκ̇(γ),

which is equal to χκ̇(γ). We compute this using the Frobenius formula and
obtain ∑

[g]∈G(F )x/[G(F )x,0·S(F )]

tr(κ(S,θ)(g
−1γg)).
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Note that G(F )x,0 · S(F ) is a normal subgroup of G(F )x, so the element gγg−1

lies in G(F )x,0 ·S(F ) and is regular topologically semi-simple. Corollary 3.4.26
implies that the summand tr(κ(S,θ)(g

−1γg)) is zero unless g−1γg is G(F )x,0-
conjugate to an element of S(F ). If γ is not G(F )-conjugate to an element of
S(F ) then all summands in the sum are zero and hence the vanishing statement
of the proposition is proved.

Assume now that γ ∈ S(F ) and consider again the above formula. Let [g] ∈
G(F )x/[G(F )x,0 · S(F )] be a coset giving a non-zero contribution to the sum.
As we have just argued, this coset can be represented by g ∈ G(F )x such that
g−1γg ∈ S(F ). Since γ is regular semi-simple we see g ∈ N(S,G)(F ). Thus [g]
lies in the subset N(S,G)(F )/[N(S,G(F )x,0) ·S(F )] of G(F )x/[G(F )x,0 ·S(F )].
Lemma 3.4.10 and Corollary 3.4.26 imply that the character of π(S,θ) at γ is
given by

(−1)rG−rT (−1)rT−rS
∑

w∈N(S,G)(F )/S(F )

θ(γw),

where again T is the minimal Levi subgroup of the quasi-split inner form
of G. We have (−1)rT−rS = ε(X∗(S)C − X∗(T )C,Λ) from Lemma 4.9.1 and
(−1)rG−rT = e(G) by [Kot83]. It remains to check that ∆abs

II [ā, χ](γw) = 1.
The Fα/F±α-norm of α(γw) ∈ F×α is equal to 1, so α(γw) ∈ O×Fα . Moreover,
since γ is regular and topologically semi-simple, α(γw) /∈ 1 + pFα , and there-
fore α(γw)− 1 ∈ O×Fα . Since the mod-a-data consists of units and the χ-data is
unramified, the claim follows. �

Remark 4.9.3. We close this subsection with a remark about the characters
of extra regular depth-zero supercuspidal representations of groups that split
over Fu. These are the representations constructed in [DR09, §4.4]. DeBacker
and Reeder compute in [DR09, §9,10,11,12] the characters of these representa-
tions at arbitrary regular semi-simple elements: For an element γ ∈ Gsr(F )0

with topological Jordan decomposition γ = γs · γu the character of π(S,θ) is
given by

(−1)rG−rJ
∑

g∈J(F )\G(F )/S(F )
γgs∈S(F )

θ(γgs )µ̂j,gX(log(γu)),

where again J is the connected centralizer of γs in G and rG denotes the split
rank of the group G. The final paragraph of the preceding proof shows that
this formula is the same as the formula of Corollary 4.8.2. We expect that the
same is true for tamely ramified groups as well. �

4.10 Character values of regular supercuspidal representations at shallow
elements: general depth

In this subsection F is a local field of odd residual characteristic that is not a
bad prime for G.

Consider a regular supercuspidal representation π(S,θ). Let G̃ → G be a z-
extension and let π(S̃,θ̃) be the pull-back of π(S,θ) to G̃(F ). Since the character
function of π(S̃,θ̃) is the pull-back to G̃(F ) of the character function of π(S,θ), we
may assume without loss of generality that G = G̃.

Let G0 ( · · · ( Gd be the corresponding twisted Levi sequence, (φ−1, . . . , φd)
a Howe factorization, and (r−1, r0, . . . , rd) the sequence of depths of the char-
acters φi. Let γ ∈ G(F ) be regular semi-simple. If S 6= G0 we will call γ
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“shallow” if it is a topologically semi-simple element γ = γ0. If S = G0 we will
call γ “shallow” if it is topologically semi-simple modulo Z(G)◦, although we
believe that in this case it is enough to require γ = γ<r0 .

We will now fix mod-a-data and χ-data for R(S,G). We do this successively
forR(S,Gi)rR(S,Gi−1) as described in §4.7, where i runs from d to 1. We also
need to handle the step i = 0 in the case whereG0 6= S. Let us first focus on i >
0. Fix a character Λ : F → C× of depth zero. For any α ∈ R(S,Gi)rR(S,Gi−1)
the equation

φi−1(NFα/F (α∨(X + 1))) = Λ(trFα/F (āαX)),

in the variable X ∈ [Fα]ri−1
/[Fα]ri−1+ specifies āα ∈ [Fα]−ri−1

/[Fα]−ri−1+. In
this way we obtain a set of mod-a-data for R(S,Gi)rR(S,Gi−1); it is the same
as the one of (4.7.3). Applying Fact 3.6.4 to the Howe factorization (φ−1, . . . , φd)
of θ we see that this equation is equivalent to

θ(NFα/F (α∨(X + 1))) = Λ(trFα/F (āαX)). (4.10.1)

We take this as the defining equation for the mod-a-data, as it clearly demon-
strates that this data depends only on θ and not on the Howe factorization.
From the mod-a-data we obtain χ-data χ′ via (4.7.2). Now consider the case
i = 0, which is only relevant when G0 6= S. We can still take (4.10.1) as the
defining equation for mod-a-data and we obtain āα ∈ [Fα]0/[Fα]0+. On the
other hand, we take χ′α to be unramified. This is possible because the action of
inertia preserves a base inR(S,G0) so all symmetric roots are unramified. With
the mod-a-data and χ-data fixed this way, we have the following formula.

Corollary 4.10.1. Let γ ∈ G(F ) be a shallow regular semi-simple element. The
value of the normalized character Φπ at γ is zero, unless γ is (G(F )-conjugate
to) an element of S(F ), in which case is given by

e(G)εL(X∗(T )C−X∗(S)C,Λ)
∑

w∈N(S,G)(F )/S(F )

∆abs
II [a, χ′](γw)εf,ram(γw)εram(γw)θ(γw),

where T is a minimal Levi subgroup in the quasi-split inner form of G. �

Proof. We write (4.4.1) as

φd(γ)
∑

g∈Gdγ(F )\Gd(F )/Gd−1(F )

γg∈Gd−1(F )

ε(πd−1, γ
g)Φπd−1

(γg).

Here we use the notation Gdγ in place of Jd for the connected centralizer of γ
in Gd, so that we can keep track of the element γ. We have combined all three
roots of unity into the single term ε(πd−1, γ

g), and we have included πd−1 into
the notation of this term. We are now going to unwind the induction inherent
in this formula. To see what is going on we substitute the formula for Φπd−1

and obtain

φd(γ)
∑

g∈Gdγ(F )\Gd(F )/Gd−1(F )

γg∈Gd−1(F )

ε(πd−1, γ
g)φd−1(γg)

∑
h∈Gd−1

γg
(F )\Gd−1(F )/Gd−2(F )

γgh∈Gd−2(F )

ε(πd−2, γ
gh)Φπd−2

(γgh).

Recall [DS18, Remark 4.3.5] that the term ε(πd−1, γ
g) remains unchanged if we

conjugate both πd−1 and γg by an element of Gd(F ). If this element happens to
belong to Gd−1(F ), then πd−1 remains unchanged. With this we obtain∑

g

∑
h

φd(γ
gh)φd−1(γgh)ε(πd−1, γ

gh)ε(πd−2, γ
gh)Φπd−2

(γgh),
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where the summation indices are as before, and after re-indexing the sum this
leads to ∑

g∈Gdγ(F )\Gd(F )/Gd−2(F )

γg∈Gd−2(F )

φd(γ
g)φd−1(γg)ε(πd−1, γ

g)ε(πd−2, γ
g)Φπd−2

(γg).

We have used here the equality Gdγg ∩ Gd−1 = Gd−1
γg , which is implied by the

stronger statement Gdγg ⊂ Gd−1 coming from the regularity of γ. We do this
inductively, where at the (−1)-stage we apply Proposition 4.9.2 if G0 6= S, and
obtain the formula

∑
g∈Gdγ(F )\Gd(F )/S(F )

γg∈S(F )

d∏
i=−1

φi(γ
g)ε(πi, γ

g).

In particular, we see that the result is zero unless γ is G(F )-conjugate to an
element of S(F ). We can thus assume that γ ∈ S(F ) and then Gdγ = S, so the
summation index becomes g ∈ N(S,G)(F )/S(F ).

We now go into the roots of unity ε(πi, γ
g). Their definition depends on the

choice of a tame maximal torus T containing γg . In the current situation we
have a canonical choice for T , namely T = S. We now apply Corollary 4.7.6
using the mod-a-data and χ-data fixed in (4.10.1) and (4.7.2). Recalling (3.6.2)
that θ is the product of all φi restricted to S(F ) and letting εram be the product
of all εram(πi,−) of (4.3.3), the proof is complete. �

It is noted in [DS18] that the map γ 7→ εram(γ) is a character of S(F ). If we let
θ′ be the character εf,ram · εram · θ, then the character formula takes the form

e(G)εL(X∗(T )C −X∗(S)C,Λ)
∑

w∈N(S,G)(F )/S(F )

∆abs
II [a, χ′](γw)θ′(γw). (4.10.2)

4.11 Comparison with the characters of real discrete series representations

In this subsection only, we letG be a connected reductive group defined over R
and having a discrete series of representations, or equivalently having elliptic
maximal tori. All elliptic maximal tori in G are conjugate under G(R). Fix one
such S ⊂ G. We also fix an element i ∈ C with i2 = −1.

Let θ : S(R) → C× be a character. Its differential at 1 is a homomorphism
Lie(S(R))→ C of R-vector spaces and gives rise to a C-linear form Lie(S(R))⊗
C→ C. Now Lie(S(R))⊗C = Lie(S(C)) = X∗(S)⊗C and hence dθ ∈ X∗(S)⊗
C. Since every character of an anisotropic real torus is algebraic, we see that
the image of dθ in X∗(Ssc)⊗C, which is the differential of the restriction of θ to
Ssc(R), lies in the sublattice X∗(Ssc) of X∗(Ssc)⊗ C. We may thus ask whether
dθ is dominant for a given choice of positive roots in R(S,G).

The discrete series representations of G(R) are parameterized by pairs (θ, ρ)
(taken up to conjugation by N(S,G)(R)/S(R)) consisting of a character θ :
S(R) → C× and a choice of positive roots ρ for R(S,G) for which dθ is domi-
nant. Given such a pair (θ, ρ) the corresponding representation is characterized
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by the fact that the value of its character on any regular γ ∈ S(R) is given by

(−1)q(G)
∑

w∈N(S,G)(R)/S(R)

θ(γw)∏
α>0

(1− α(γw)−1)
, (4.11.1)

where q(G) is half of the dimension of the symmetric space of G(R).

We now claim that this formula is the same as (4.10.2) specialized to the case
F = R. The latter formula involves a non-trivial character Λ : R → C×, but
is independent of the choice. We choose here the standard character Λ(x) =
exp(2πix). It also involves a-data, which is to be computed based on Λ and θ
according to (4.10.1), namely

θ(NC/R(α∨(exp(z)))) = Λ(trC/R(aαz))

for z ∈ C, keeping in mind that all elements of R(S,G) are symmetric, with
Fα = C and F±α = R, because complex conjugation acts by −1 on the root
system of S. Evaluating this formula we find

θ(NC/R(α∨(exp(z)))) = θ(α∨(ez−z̄)) = e(z−z̄)〈α∨,dθ〉,

while at the same time Λ(trC/R(aαz)) = e2πi(aαz+āαz̄). This implies

aα =
〈α∨, dθ〉

2πi
.

Finally, we need to choose χ-data, and we take χα(z) = sgnC(z) for z ∈ C× and
α > 0, where sgnC : C× → S1 denotes the argument function. We will discuss
the significance of this choice at the end of this subsection.

Having made these preparations we now explicate (4.10.2) in this setting. First,
we use the real case of [Kal15, Corollary 4.11], which gives us

e(G)εL(X∗(T )C −X∗(S)C,Λ) =
∏

α∈R(S,G)/Γ

f(G,S)(α)λC/R(Λ ◦ trC/R)−1.

Now λC/R(Λ ◦ trC/R) = i and f(G,S)(α) equals −1 if α is compact and +1 if α is
non-compact. It follows that

e(G)εL(X∗(T )C −X∗(S)C,Λ) = (−1)q(G)
∏

α∈R(S,G)/Γ

i.

On the other hand we have

∆abs
II [a, χ](γ)=

∏
α<0

sgnC

(
α(γ)− 1

〈α∨, dθ〉(2πi)−1

)−1

=
∏
α<0

(−i) ·
∏
α<0

sgnC

(
α(γ)− 1

〈α∨, dθ〉

)−1

.

Recall that dθ is dominant for the chosen set of positive roots, so 〈α∨, dθ〉 < 0
whenever α < 0, leading to

sgnC

(
α(γ)− 1

〈α∨, dθ〉

)−1

= sgnC(1− (−α)(γ)−1)−1.
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At the same time

|D(γ)| 12 =
∏

α∈R(S,G)

|α(γ)− 1| 12

=

(∏
α>0

|α(γ)− 1||α(γ)−1 − 1|

) 1
2

=

(∏
α>0

|α(γ)
1
2 − α(γ)−

1
2 ||α(γ)−

1
2 − α(γ)

1
2 |

) 1
2

=
∏
α>0

|α(γ)
1
2 − α(γ)−

1
2 |

=
∏
α>0

|1− α(γ)−1|

where the last equality follows form the fact that α(γ) is of absolute value 1.
Combining these calculations we see that

e(G)εL(X∗(T0)C −X∗(S)C,Λ)|DG(γ)|− 1
2 ∆abs

II [a, χ′](γ)

is equal to
(−1)q(G)

∏
α>0

(1− α(γ)−1)−1

and we conclude that the formula (4.10.2), interpreted for the ground field R,
evaluates to

(−1)q(G)
∑

w∈N(S,G)(R)/S(R)

θ′(γw)∏
α>0

(1− α(γw)−1)
,

which is indeed the character formula for a discrete series representation (4.11.1).

Finally, we make a comment on the choice of χ-data used here. The choice we
have just used is well-known by the name of “based” χ-data from the work
of Shelstad [She08a, §9], and is intimately connected with the local Langlands
correspondence. In the p-adic case, our choice was made so as to encode the
roots of unity that occur in the character formula of Adler-DeBacker-Spice. If
we speculatively view C/R as an analog of a ramified quadratic extension of
non-archimedean local fields and apply formula (4.7.2), we would get the in-
verse of the based χ-data used here. So it appears that the real and p-adic case
are very closely related.

The particular choice of χ-data is however of minor importance. Indeed, mak-
ing a different choice of χ-data has the effect of multiplying the term ∆abs

II by
a character of S(F ). This character can then be absorbed into θ, and so can be
the characters εf,ram and εram. In fact, the particular representation ofG(F ) that
the character θ of S(F ) leads to depends on the details of the construction that
is used, and different constructions could lead to slightly different represen-
tations. What is important for us here is that the formula for the character of
regular supercuspidal representations at shallow elements has the same struc-
ture, including the roots of unity that cannot be absorbed into a character of
S(F ), as the character formula for real discrete series. This fact will be our
guide to the construction and study of L-packets in what follows.

76



5 REGULAR SUPERCUSPIDAL L-PACKETS

Let G be a connected reductive group defined and quasi-split over F and split
over a tame extension of F . Let Ĝ be a Langlands dual group for G and LG =

ĜoWF the Weil-form of the corresponding L-group.

In this section we are going to construct those L-packets of all inner forms of
G that consist entirely of regular supercuspidal representations and assign to
each such L-packet a Langlands parameter. The construction will allow an
explicit passage from parameters to representations and conversely. Each of
the L-packets will contain extra regular supercuspidal representations, which
is the reason for their name.

We will eventually assume that the residual characteristic p of F is not a bad
prime for G and does not divide |π0(Z(G))|. Note that the bad primes for G
and Ĝ are the same, and that π0(Z(G)) has the same order as the fundamental
group of the derived subgroup of Ĝ.

5.1 Admissible embeddings

We recall here some basic facts about the relationship between G and Ĝ. For
this, F can be any field, but Ĝ is taken over C.

Let S be a torus defined over F of dimension equal to the rank of G, and let J
be a Γ-stable G(F̄ )-conjugacy class of embeddings j : S → G defined over F̄ .
From J we obtain a Γ-stable Ĝ-conjugacy class Ĵ of embeddings ̂ : Ŝ → Ĝ as
follows. Fix Γ-invariant pinnings (T,B, {Xα}) of G and (T̂ , B̂, {Yα̂}) of Ĝ. Any
j ∈ J embeds S as a maximal torus of G, so we may choose j ∈ J such that
j(S) = T and define ̂ to be the inverse of the isomorphism T̂ → Ŝ of complex
tori induced by j. Then the Ĝ-conjugacy class Ĵ of ̂ is Γ-stable. Indeed, w :
σ 7→ j ◦ σ(j−1) is an element of Z1(Γ,Ω(T,G)), which under the isomorphism
Ω(T,G) ∼= Ω(T̂ , Ĝ) corresponds to an element ŵ ∈ Z1(Γ,Ω(T̂ , Ĝ)), and we
have ̂ ◦ σ(̂−1) = ŵσ . The choice of j ∈ J can only be altered to v ◦ j for
some v ∈ Ω(T,G), but then ̂ becomes v̂ ◦ ̂ and leads to the same Ĵ . The
choices of pinning also have no influence, because any two F -pinnings of G
are conjugate by Gad(F ) and any two Γ-stable pinnings of Ĝ are conjugate by
ĜΓ [Kot84, Corollary 1.7].

The same procedure can be performed in the opposite direction and produces
J from Ĵ . Since G is quasi-split, there exist Γ-fixed elements j ∈ J by [Kot82,
Corollary 2.2], which applies also in positive characteristic due to [BS68, §8.6].

From J we obtain the following structure on S.

• An embedding Z(G) → S over F , by choosing j : S → T and restricting
j−1 to Z(G);

• A Γ-invariant subset R(S,G) ⊂ X∗(S), by choosing j : S → T and
pulling back R(T,G) along j;

• A Γ-invariant subgroup Ω(S,G) ⊂ Autalg.grp(S), by choosing j : S → T
and pulling back Ω(T,G).
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Again it is clear that this structure depends only on J and not on the choices
of pinning of G or j ∈ J . Moreover, if j ∈ J is Γ-fixed, then it provides Γ-
equivariant isomorphisms R(S,G)→ R(jS,G) and Ω(S,G)→ Ω(jS,G).

We follow standard terminology and call the embeddings belonging to J admis-
sible. More generally, if (G′, ξ) is an inner twist of G, we will call an embedding
j : S → G′ admissible if ξ−1 ◦ j ∈ J . The notion of admissible does depend on
the datum of J . Outside of this subsection, we will not use the symbol J for a
conjugacy class of embeddings, but will rather keep it reserved for connected
centralizers of semi-simple elements of G. The notion of admissible will be
taken with respect to a distinguished conjugacy class of embeddings that will
be clear from the context. An example of such a context is given by an endo-
scopic datum for G. This datum identifies a maximal torus in the dual group
of the endoscopic group with a maximal torus of Ĝ, so we can speak of admis-
sibility of embeddings of a maximal torus of the endoscopic group into G or
inner forms of G.

If j : S → G′ is an admissible embedding and S′ is its image, we shall call
j : S → S′ an admissible isomorphism. Two elements γ ∈ S and γ′ ∈ S′

are called related if there exists an admissible isomorphism j : S → S′ with
j(γ) = γ′. There exists exactly one such isomorphism, and we will write fγ,γ′
for it. If γ and γ′ are Γ-fixed, then so is fγ,γ′ due to its uniqueness.

5.2 Regular supercuspidal L-parameters

We now introduce the Langlands parameters that correspond to regular su-
percuspidal L-packets. We will give two definitions – the first one (Definition
5.2.1) is easier to state and describes most of the parameters we need. It also
generalizes many of the parameters that have previously been studied. The
second definition (Definition 5.2.3) is slightly more general and turns out to be
the one that we need.

From now on we assume that the residual characteristic of F is not 2 and is not
a bad prime for G. We also assume that the characteristic of F is zero. While
this latter assumption is not needed for any of the arguments here, it is as-
sumed in [Kal16], which we will use. We are convinced that the constructions
and arguments of [Kal16] are also valid in positive characteristic, so the ad-
venturous reader is encouraged to think about the positive characteristic case
as well. Alternatively, if one replaces H1(u → W,−) by B(−)bas of [Kot], this
assumption can be dropped, at the expense of possibly not reaching all inner
forms.

Definition 5.2.1. A strongly regular supercuspidal parameter is a discrete Lang-
lands parameter ϕ : WF → LG such that ϕ(PF ) is contained in a torus of Ĝ and
Cent(ϕ(IF ), Ĝ) is abelian. �

Special cases of such parameters are those discussed in [DR09, §4.1], [Roe11],
[Ree08, §6.3], and [Kal15, §5.1]. In fact, these examples are special cases of a
class of parameters which one might call toral, that is much smaller than the
class of strongly regular parameters. The case of positive depth toral parame-
ters is treated in more detail in §6, because they are much easier to deal with
and because the current state of the Adler-DeBacker-Spice character formula
allows us to obtain additional results for them.
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Before coming to the second definition, we collect some basic facts.

Lemma 5.2.2. Let ϕ : WF → LG be a Langlands parameter.

1. If ϕ(PF ) is contained in a torus of Ĝ, then M̂ = Cent(ϕ(PF ), Ĝ)◦ is a Levi
subgroup of Ĝ. If p does not divide |π0(Z(G))|, then Cent(ϕ(PF ), Ĝ) is
connected.

2. If ϕ(PF ) is contained in a torus of Ĝ and Ĉ = Cent(ϕ(IF ), Ĝ)◦ is a torus,
then T̂ = Cent(Ĉ, M̂) is a maximal torus of Ĝ normalized by ϕ(WF ) and
contained in a Borel subgroup of M̂ normalized by ϕ(IF ). Furthermore,
T̂ is normalized by Cent(ϕ(IF ), Ĝ).

�

Proof. By continuity, ϕ(PF ) is a finite p-subgroup of Ĝ, let x1, . . . , xn be its el-
ements. We work by induction on n. By [AS08, Proposition A.7] Cent(x1, Ĝ)◦

is a Levi subgroup of Ĝ. Any torus of Ĝ containing x1, . . . , xn is contained in
Cent(x1, Ĝ)◦. If p does not divide |π0(Z(G))|, then it does not divide the or-
der of the fundamental group of Ĝder and Cent(x1, Ĝ) is connected by [SS70,
Corollary 4.6]. Being a Levi subgroup of Ĝ, the fundamental group of its de-
rived subgroup is a subgroup of the fundamental group of Ĝder. In either case,
replace Ĝ by Cent(x1, Ĝ)◦ and proceed with x2. This proves the first point.

For the second point, we have Ĉ = Cent(ϕ(IF ), Ĝ)◦ = Cent(ϕ(IF ), M̂)◦. The
action of IF on M̂ by Ad(ϕ(−)) restricts trivially to PF . Since IF /PF is pro-
cyclic, the centralizer of ϕ(IF ) in M̂ is the fixed-point set of a single automor-
phism θ of M̂ , namely Ad(ϕ(x)), where x ∈ IF projects onto a topological
generator of IF /PF . The automorphism θ is semi-simple (in fact of finite order)
and by [Ste68, Theorem 7.5] it preserves a Borel pair of M̂ . Let T̂ be the maximal
torus in that Borel pair. From [KS99, Theorem 1.1.A] we know that [T̂ ∩ Ĉ]◦ is
a maximal torus of Ĉ and hence must equal Ĉ, and moreover T̂ = Cent(Ĉ, M̂).
Since M̂ is a Levi subgroup of Ĝ, T̂ is also a maximal torus of Ĝ. Finally, since
both M̂ and Ĉ are normalized by ϕ(WF ) as well as by Cent(ϕ(IF ), Ĝ), so is
T̂ . �

Definition 5.2.3. A regular supercuspidal parameter is a discrete Langlands pa-
rameter ϕ : WF → LG satisfying the following:

1. ϕ(PF ) is contained in a torus of Ĝ; set M̂ = Cent(ϕ(PF ), Ĝ)◦.

2. C := Cent(ϕ(IF ), Ĝ)◦ is a torus; let Ŝ be the Γ-module with underlying
abelian group T̂ := Cent(C, M̂) and Γ-action given by Ad(ϕ(−)).

3. If n ∈ N(T̂ , M̂) projects onto a non-trivial element of Ω(Ŝ, M̂)Γ, then
n /∈ Cent(ϕ(IF ), Ĝ).

�
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We note that if ϕ is a strongly regular supercuspidal parameter then

N(T̂ , M̂) ∩ Cent(ϕ(IF ), Ĝ) ⊂ Cent(ϕ(IF ), M̂) ⊂ Cent(C, M̂) = T̂ ,

where the second containment follows from the fact that Cent(ϕ(IF ), M̂) is
abelian and contains C, thus ϕ is regular. Conversely, almost all regular super-
cuspidal parameters are strongly regular.

Our task in this subsection is to construct for each regular supercuspidal pa-
rameter and each inner form of G the corresponding L-packet. The first step is
to identify the set of equivalence classes of such parameters with a set of equiv-
alence classes of another kind of data. We find it most convenient to organize
this new data into a category, which we call the category of regular supercusp-
idal L-packet data.

Definition 5.2.4. A regular supercuspidal L-packet datum is a tuple (S, ̂, χ, θ),
where

1. S is a torus of dimension equal to the absolute rank of G, defined over F
and split over a tame extension of F ;

2. ̂ : Ŝ → Ĝ is an embedding of complex reductive groups whose Ĝ-
conjugacy class is Γ-stable;

3. χ is minimally ramified χ-data forR(S,G) in the sense of Definition 4.6.1;

4. θ : S(F )→ C× is a character.

We require of this data that the χ-data be Ω(S,G0)(F )-invariant, S/Z(G) be
anisotropic, and (S, θ) be a tame extra regular elliptic pair in the sense of Def-
inition 3.7.5. Here we are using the structure on S that is given to us by ̂ as
described in §5.1, and moreover Ω(S,G0) is the subgroup of Ω(S,G) generated
by the reflection along the sub-root systemR0+ ⊂ R(S,G) as in Definition 3.7.5.
�

Definition 5.2.5. A morphism of regular supercuspidal L-packet data (S, ̂, χ, θ) →
(S′, ̂′, χ′, θ′) is a triple (ι, g, ζ), where

1. ι : S → S′ is an isomorphism of F -tori,

2. g ∈ Ĝ, and

3. ζ = (ζα′)α′ is a set of ζ-data for R(S′, G) in the sense of Definition 4.6.4.

We require that ̂ ◦ ι̂ = Ad(g) ◦ ̂′, that χα′◦ι = χ′α′ · ζα′ , and that ζ−1
S′ · θ′ ◦ ι = θ,

where ζS′ is the character of S′(F ) corresponding to ζ as in Definition 4.6.5.
Composition of morphisms is defined in the obvious way. Note that every
morphism is an isomorphism and that ζ is determined by χ and χ′. �

While not needed for the purposes of this paper, the following result might be
worth recording.

Lemma 5.2.6. The map s 7→ (1, ̂(s), 1) is an isomorphism from Ŝ to the group
of automorphisms of (S, ̂, χ, θ). �
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Proof. It is enough to show that if (ι, g, ζ) is an automorphism of (S, ̂, χ, θ),
then ι = id and ζα = 1. From Ad(g) ◦ ̂ = ̂ ◦ ι̂ we see that g ∈ N(̂(Ŝ), Ĝ) and
this implies that ι is given by an element w ∈ Ω(S,G)(F ). Now ζα = χwα ·χ−1

α .
Since χ is minimal the character ζS restricts trivially to S(F )0+, so the equation
ζS · θ ◦ w = θ implies that w fixes θ|S(F )0+

. Lemma 3.6.5 then implies that w ∈
Ω(S,G0)(F ). The Ω(S,G0)(F )-invariance of (χα)α now implies that ζα = 1.
But this in turn leads to the equation θ ◦ w = θ, and the extra regularity of θ
now implies w = 1, i.e. ι = id. �

Proposition 5.2.7. There is a natural 1-1 correspondence between the Ĝ-conju-
gacy classes of regular supercuspidal parameters and the isomorphism classes
of regular supercuspidal L-packet data. �

The proof of this Proposition will use the following supplementary results.

Lemma 5.2.8. Let M ⊂ G be a tame twisted Levi. Let M̂ → Ĝ be the natural
inclusion, well-defined up to Ĝ-conjugacy. There exists an extension of M̂ → Ĝ
to a tame L-embedding LM → LG. �

Proof. Fix a Γ-invariant pinning (T̂ , B̂, {Xα̂}) of Ĝ. The unique standard Levi
subgroup of Ĝ dual to the Levi subgroup M × F̄ of G × F̄ is a dual group of
M , so we can take it as M̂ . The natural inclusion M̂ → Ĝ lies in the canonical
Ĝ-conjugacy class.

We have an action of Γ on Ĝ coming from the fact that Ĝ is the dual group of
G. We also have an action of Γ on M̂ , preserving the pinning of M̂ induced
by the fixed pinning of Ĝ, coming from viewing M̂ as the dual group of M .
The inclusion M̂ → Ĝ need not be equivariant for these actions, and in fact
the Γ-action on Ĝ need not even preserve M̂ . The restriction to T̂ of the Γ-
action on M̂ differs from the restriction to T̂ of the Γ-action on Ĝ by an element
wM ∈ Z1(ΓK/F ,Ω(T̂ , Ĝ)), whereK/F is a finite Galois extension, tame because
the actions of ΓF on Ĝ and M̂ are tame. We will find a homomorphism ξ :

WF /PF → N(T̂ , Ĝ) oWF /PF such that each ξ(w) preserves the pinning of M̂
and acts on T̂ via wM (σw) o σw, where σw ∈ Γ is the image of w. This ξ will
then give us the L-embedding

M̂ oWF → ĜoWF , mo w 7→ mξ(w).

For this, let nM (σ) ∈ N(T̂ , Ĝ) be the Tits lift [Spr81, 11.2.9] of wM (σ) relative to
the fixed pinning of Ĝ. For α̂ ∈ ∆∨M ⊂ ∆∨ we have Ad(nM (σ))σ(Xα̂) = Xα̂ by
[Spr81, 11.2.11]. The map σ 7→ nM (σ) o σ ∈ N(T̂ , Ĝ) o Γ is not necessarily a
homomorphism. We have by [LS87, Lemma 2.1.A] that

[nM (σ) o σ] · [nM (τ) o τ ] = t(σ, τ) · nM (στ) o στ,

where t(σ, τ) = ασ,τ (−1) and ασ,τ ∈ X∗(T̂ ) is the sum of all members of the set

{β ∈ R(T̂ , Ĝ)∨|β > 0, [wM (σ)σ]−1β < 0, [wM (σ)σwM (τ)τ ]−1β > 0}. (5.2.1)

We claim that t(σ, τ) ∈ Z(M̂)◦. Since X∗(Z(M̂)◦) is the annihilator in X∗(T̂ ) of
the root lattice Q(M̂) ⊂ X∗(T̂ ), it will be enough to show that ασ,τ annihilates
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Q(M̂). This is equivalent to showing that ασ,τ is fixed by Ω(T̂ , M̂), because for
any β̂ ∈ R(T̂ , M̂) we have

〈ασ,τ , β∨〉 = 0⇔ 〈ασ,τ , β̂〉 = −〈ασ,τ , β̂〉 = 〈sβ̂ασ,τ , β̂〉.

Now observe that any member β of (5.2.1) must be outside of R(T̂ , M̂)∨, be-
cause otherwise [wM (σ)σ]−1 would not make it negative. The action of Ω(T̂ , M̂)

on R(T̂ , Ĝ) preserves the set of positive roots in R(T̂ , Ĝ) rR(T̂ , M̂). It follows
that if u ∈ Ω(T̂ , M̂), then uβ > 0 and for the same reason [wM (σ)σ]−1uβ =

v[wM (σ)σ]−1β < 0, with v = [wM (σ)σ]−1u[wM (σ)σ] ∈ Ω(T̂ , M̂). This shows
that the set (5.2.1) is Ω(T̂ , M̂)-invariant, hence its sum ασ,τ is Ω(T̂ , M̂)-fixed.

We have thus proved t(σ, τ) ∈ Z(M̂)◦, i.e. t ∈ Z2(ΓK/F , Z(M̂)◦). But then
[Lan79, Lemma 4] implies that there is r ∈ C1(WK/F , Z(M̂)◦) whose differen-
tial is the inflation of t. This means that

ξ : w 7→ r(w)nM (σw) o σw

is a homomorphism WK/F → N(T̂ , Ĝ) o WF . Since r(w) ∈ Z(M̂)◦, it acts
trivially on the root spaces of M̂ and thus ξ(w) preserves the pinning of M̂ .

We claim that after inflating ξ toWF , its restriction to PF is trivial. SinceK/F is
tame, the image of PF inWK/F is equal toK×0+, so we must check that r(w) = 1

when w ∈ K×0+. This can be extracted from the proof of [Lan79, Lemma 4]. It
proceeds by embedding Z(M̂)◦ into an exact sequence

1→ Z(M̂)◦ → Ŝ1 → Ŝ2 → 1,

where S1 and S2 are tori defined over F and split over K and S1 is induced.
Then r(w) is expressed as d−1(w)c(σw)a−1σw(a), where c ∈ C1(ΓK/F , Ŝ1) is
chosen so that its co-boundary is t (it exists because S1 is induced and further-
more H2(Γ,C×) = H3(Γ,Z) = 0, the latter because Γ has strict cohomological
dimension 2) and d ∈ Z1(WK/F , Ŝ1) and a ∈ Ŝ1 are chosen so that the equa-
tion d(w) = c(σw)a−1σw(a) holds in Ŝ2 (they exist because H1(WK/F , Ŝ1) →
H1(WK/F , Ŝ2) is surjective, which follows from the injectivity of S2(F ) →
S1(F ) and the Langlands correspondence for tori).

For w ∈ K×0+ we have σw = 1 ∈ ΓK/F and therefore both c(σw) and a−1σw(a)

are trivial. To show that d is trivial on K×0+, we use Lemma 3.1.3 which implies
the injectivity of S2(F )/S2(F )0+ → S1(F )/S1(F )0+ and hence by [Yu09, Theo-
rem 7.10] the surjectivity of H1(WK/F /K

×
0+, Ŝ1)→ H1(WK/F /K

×
0+, Ŝ2). �

Let ϕ : WF → ĜoWF be a Langlands parameter such that ϕ(PF ) is contained
in a torus and Cent(ϕ(IF ), Ĝ)◦ is a torus. Let T̂ ⊂ M̂ ⊂ Ĝ be the maximal
torus and Levi subgroup from Lemma 5.2.2, normalized by Ad(ϕ(−)), and let
Ŝ be the Γ-module with underlying abelian group T̂ and Γ-action given by
Ad(ϕ(−)). By construction ϕ(PF ) ⊂ Z(M̂) ⊂ T̂ , so the Γ-module Ŝ is tame.
Since ϕ(IF ) preserves a Borel subgroup of M̂ containing T̂ , the action of IF on
R(Ŝ, M̂) preserves a positive chamber. We let ̂ : Ŝ → Ĝ be the tautological
embedding of the abelian group T̂ underlying Ŝ into Ĝ. Let S be the algebraic
torus over F dual to Ŝ. Write R(S,M) ⊂ R(S,G) ⊂ X∗(Ŝ) = X∗(S) for the
dual root systems to R(Ŝ, M̂) and R(Ŝ, Ĝ).
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Lemma 5.2.9. There exists χ-data for R(S,G) that is minimal and Ω(S,M)Γ-
invariant. �

Proof. We mimic some of the arguments of the Howe factorization algorithm
of §3.6 and begin by considering the filtration

Rr = {α ∈ R(S,G)|α̂(ϕ(Ir)) = 1}.

This is well-defined because ϕ(PF ) ⊂ Z(M̂) ⊂ T̂ . Let rd−1 > · · · > r0 > 0 be
the jumps of this filtration. Set in addition rd = depth(ϕ) and r−1 = 0. Thus
R0+ = R(S,M) and Rrd−1+ = R(S,G). Fix an additive character Λ : F → C×.
For notational convenience, we assume Λ is of depth zero, i.e. trivial on F0+

but not on F0. Given α ∈ R(S,G) rR(S,M), let rα be the unique ri, d > i ≥ 0,
such that α ∈ Rrα+ rRrα .

We define a character ζα : [F×α ]rα/[F
×
α ]rα+ → C× as follows. The composition

α̂ ◦ ϕ gives a homomorphism Irα → C× that is trivial on Irα+. We claim that
this homomorphism can be extended to WFα . Indeed, if we fix arbitrary tame
χ-data for R(S,G) we obtain a tame L-embedding Lj : Ŝ o WF → Ĝ o WF

containing the image of ϕ and hence a factorization ϕ = Lj ◦ ϕS with ϕS :

WF → Ŝ oWF having the property ϕS |PF = ϕ|PF , and then α̂ ◦ ϕS : WFα →
Ŝ o WFα → ŜWFα

→ C× is an extension of α̂ ◦ ϕ|PF to WFα . Thus α̂ ◦ ϕ
corresponds to a character ζα : [F×α ]rα/[F

×
α ]rα+ → C×, which of course does

not depend on the extension of α̂ ◦ ϕ to WFα . The equation

ζα(X + 1) = Λ(trFα/F (āαX)), X ∈ [Fα]rα ,

specifies an element āα ∈ [Fα]−rα/[Fα]−rα+. We claim that {(−rα, āα)} is a
set of Ω(S,M)Γ-invariant mod-a-data for R(S,G)rR(S,M). The Γ-invariance
of the filtration Rr and R0+ = R(S,M) implies the equations rτα = r−α =
rwα = rα for τ ∈ Γ and w ∈ Ω(S,M)Γ. We further need to show τ(āα) = āτα,
−āα = ā−α, and āwα = āα, for τ ∈ Γ and w ∈ Ω(S,M)Γ. This in turn translates
to ζτα = ζα ◦ τ−1, ζ−α = ζ−1

α and ζwα = ζα. Note that τ : Fα → Fτα is an
isomorphism of F -algebras and Fwα = Fα, so these formulas make sense. The
claimed properties of the characters ζα are seen as follows: Going from α to−α
is trivial, going from α to wα comes from the fact that w can be represented by
conjugation by an element of M̂ , which centralizes ϕ(PF ), and going from α to
τα comes from

τ(ϕ(w)) = τ(ϕS(w)) = ϕS(τ)ϕS(w)ϕS(τ)−1 = ϕS(τwτ−1) = ϕ(τwτ−1),

for w ∈ PF . From the Ω(S,M)Γ-invariant mod-a-data we obtain Ω(S,M)Γ-
invariant tame χ-data for R(S,G) r R(S,M) by (4.7.2). We augment this with
unramified χ-data for R(S,M), which suffices since R(S,M) has no ramified
symmetric roots, and which is automatically Ω(S,M)Γ-invariant. �

Proof of Proposition 5.2.7. Given a datum (S, ̂, χ, θ) we use the χ-data to extend
̂ to an L-embedding Lj : LS → LG as explained in [LS87, §2.6] and let ϕS :
WF → LS be the parameter for θ. Define ϕ = Lj ◦ ϕS .

Let us first check that the Ĝ-conjugacy class of ϕ depends only on the isomor-
phism class of the datum (S, ̂, χ, θ). Keeping this datum fixed, the parame-
ter ϕS is determined by θ up to Ŝ-conjugacy and the embedding Lj is deter-
mined by χ and ̂ also up to Ŝ-conjugacy, so the Ĝ-conjugacy class of ϕ does
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not depend on these choices. Now we vary the datum (S, ̂, χ, θ) within its
isomorphism class. It is enough to check the three basic cases of an isomor-
phism: (ι, 1, 1), (1, g, 1), and (1, 1, ζ). In the first case we have Lj ◦ Lι = Lj′ and
Lι ◦ ϕS′ = ϕS , hence Lj ◦ ϕS = Lj′ ◦ ϕS′ . In the second case we have S = S′

and Lj = Ad(g) ◦ Lj′. In the third case we have Lj′ = Lj · c−1, where c is the
1-cocycle of [LS87, Corollary 2.5.B], as well as θ′ = θ · ζS . The proof of [LS87,
Lemma 3.5.A] shows that c is the Langlands parameter for the character ζS , so
that ϕS′ = ϕS · c.

We now check that ϕ satisfies the conditions of Definition 5.2.3. Since S is
tamely ramified and the χ-data is at most tamely ramified, we have ϕ|PF =
̂ ◦ ϕS |PF , so ϕ(PF ) is contained in the image of ̂, which is a maximal torus
of Ĝ. Before we can discuss Cent(ϕ(IF ), Ĝ)◦ we need some preparation. Fix
a Γ-invariant pinning (T̂ , B̂, {Xα̂}α̂∈∆∨) of Ĝ and replace (S, ̂, χ, θ) by an iso-
morphic datum so that ̂(Ŝ) = T̂ .

Let M̂ = Cent(ϕ(PF ), Ĝ)◦. According to Lemma 5.2.2 this is a Levi subgroup of
Ĝ. It is normalized by the action of ϕ(WF ) and the resulting homomorphism
WF → Aut(M̂) → Out(M̂) extends to ΓF , because its target is finite. We
have arranged that T̂ ⊂ M̂ , so the fixed pinning of Ĝ induces the pinning
(T̂ , B̂∩M, {Xα̂}α̂∈∆∨M

) of M̂ . This pinning gives a splitting Out(M̂)→ Aut(M̂)

of the natural projection, so we obtain an action ΓF → Aut(M̂) preserving the
pinning. Note that the original action of ΓF on Ĝ need not preserve M̂ , so there
is no potential for confusion whenever we speak about “the” ΓF -action on M̂ .
The group M̂ endowed with this ΓF -action is the dual group of a quasi-split
F -group M . We now claim that under the identification R(Ŝ, Ĝ) = R∨(S,G)
the root system

R(Ŝ, M̂) = {α̂ ∈ R(Ŝ, Ĝ)|α̂(ϕ(PF )) = 1}

becomes identified with the coroot system of the subsystem R0+ of Definition
3.7.5. For any α̂ ∈ R(Ŝ, Ĝ) let α∨ ∈ R∨(S,G) be the corresponding cocharacter.
Letting E/F be the tame Galois extension splitting S, the parameter of the
character θ ◦NE/F ◦ α∨ is equal to the restriction to WE of α̂ ◦ ϕS . Since PF =

PE ⊂ WE , we see using [Yu09, Theorem 7.10] that R(Ŝ, M̂) is the subset of
R∨(S,G) consisting of those α∨ for which θ ◦ NE/F ◦ α∨ restricts trivially to
E×0+ and the claim is proved. This claim implies, in particular, that the twisted
Levi subgroup of G containing S and having R0+ as root system is an inner
form of the quasi-split group M , and thus M̂ is a dual group of that twisted
Levi subgroup.

Consider the embedding ̂ : Ŝ → M̂ . It is trivially WF -equivariant if we en-
dow both sides with the action of WF given by Ad(ϕ(−)). It is no longer WF -
equivariant if we endow M̂ with the action of WF via which M̂ becomes the
dual group of M , but this latter action differs from the previous action only
by inner automorphisms of M̂ , so the M̂ -conjugacy class of ̂ : Ŝ → M̂ is still
Γ-stable. As discussed in §5.1 this gives us the notion of admissible embed-
dings S →M . Tracking through the definitions we see that the subset R(S,M)
of X∗(S) arising from this notion is a subset of R(S,G) and the identification
R(Ŝ, Ĝ) = R∨(S,G) identifies R(Ŝ, M̂) with R∨(S,M).

By assumption on θ the action of IF on R(Ŝ, M̂) leaves a basis invariant. This
implies that all symmetric roots in R(Ŝ, M̂) are unramified and hence there is
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a canonical (up to Ŝ-conjugation) extension of the embedding ̂ : Ŝ → M̂ to
an L-embedding LjS,M : LS → LM , namely the one given by the construction
[LS87, §2.6] for unramified χ-data.

Composing the unramified L-embedding LjS,M : LS → LM with a tame L-
embedding LjM,G : LM → LG supplied by Lemma 5.2.8 we obtain an L-
embedding Lj1 : LS → LG, which extends ̂ : Ŝ → Ĝ. Then Lj1 = Lj · b,
for some b ∈ Z1(WF , Ŝ). Let θb : S(F ) → C× be the character corresponding
to b. By [Yu09, Theorem 7.10] and the fact that Lj1 and Lj agree on PF we see
that θb is trivial on S(F )0+. We claim that θb is Ω(S,M)Γ-invariant. If w ∈
Ω(S,M)Γ then [LS87, (2.6.2)] and the fact that Lj is produced from Ω(S,M)Γ-
invariant χ-data imply the existence of n ∈ N(T̂ , M̂) representing w such that
Lj ◦ w = Ad(n) ◦ Lj. At the same time Lj1 ◦ w = Ad(n′) ◦ Lj1 – we have
LjS,M ◦ w = Ad(n′) ◦ LjS,M , for some possibly different n′ ∈ N(T̂ , M̂) lifting
w, for the same reason as for Lj, namely the w-invariance of the unramified
χ-data, and we have LjM,G ◦ Ad(n′) = Ad(n′) ◦ LjM,G tautologically, because
LjM,G is a group homomorphism extending the identity M̂ → Ĝ. We conclude
that b and w ◦ b are cohomologous, hence θb = θb ◦ w.

We now have ϕ = Lj◦ϕS = Lj1◦b·ϕS and can proceed with the computation of
Cent(ϕ(IF ), Ĝ)◦. Clearly Cent(ϕ(IF ), Ĝ)◦ = Cent(ϕ(IF ), M̂)◦ = Cent(Lj1 ◦ b ·
ϕS(IF ), M̂)◦ = Cent(LjS,M ◦ b ·ϕS(IF ), M̂)◦. Since LjS,M ◦ b ·ϕS(PF ) ⊂ Z(M̂)

the action of LjS,M ◦ b · ϕS(IF ) on M̂ factors through the pro-cyclic quotient
IF /PF . Letting x ∈ IF be a pre-image of a generator of this quotient, we are
considering the automorphism LjS,M ◦ b · ϕS(x) of M̂ . It is semi-simple (in
fact of finite order) and by [Ste68, Theorem 7.5] it preserves a Borel pair of
M̂ . Conjugating within M̂ we may assume that it preserves the Borel pair
belonging to the fixed pinning of M̂ . But then it must be given by an element to
x ∈ T̂oIF . The connected centralizer in M̂ of this automorphism is a reductive
subgroup M̂ tox,◦ ⊂ M̂ with maximal torus T̂ x,◦. We recall the description
of its root system from [KS99, §1.3]. One divides the roots R(T̂ , M̂) in three
types, depending on their image in the relative (and possibly non-reduced)
root system R(T̂ x,◦, M̂). One says that α̂ ∈ R(T̂ , M̂) is of type R1/R2/R3,
if its image α̂res ∈ R(T̂ x,◦, M̂) is a relative root that: is neither divisible nor
multipliable/is multipliable/is divisible. For any α̂ ∈ R(T̂ , M̂) we denote by
Nα̂ the sum of all elements of the orbit of α̂ under the automorphism x. Then
α̂res is a root of M̂ tox,◦ if and only if it is either of type R1 or R2 and Nα̂(t) = 1
or if it is of type R3 and Nα̂(t) = −1.

Our goal is to show that neither of these cases occurs. For any α̂ ∈ R(T̂ , M̂)

the homomorphism Nα̂ : T̂ → C× is I-invariant and descends to a homo-
morphism T̂I → C×. Note here that we are using the Γ-action on T̂ inher-
ited from M̂ and not from Ĝ. In particular, LjS,M restricts to an isomorphism
Ŝ o I → T̂ o I . Consider the composition

IF
bϕS−→ Ŝ o I

LjS,M−→ T̂ o I → T̂I
Nα̂−→ C×. (5.2.2)

The restriction of this homomorphism to PF is trivial and the image of x ∈ IF
under this homomorphism is equal to the value Nα̂(t). We want to show that
this image is not equal to 1 when α̂ is of type R1 or R2 and is not equal to −1
when α̂ is of type R3.

85



First let us assume that α̂ is of type R1. Then Nα̂(t) 6= 1 is equivalent to the ho-
momorphism (5.2.2) being non-trivial. We shall interpret that homomorphism
in terms of the character θb ·θ. SinceM is quasi-split there exists by Lemma 3.2.2
an admissible embedding S →M defined over F . By assumption on θ the im-
age is a maximally unramified maximal torus and using Lemma 3.4.12 we may
choose the admissible embedding so that the associated point o ∈ Bred(M,F )
is the superspecial point associated to a Chevalley valuation. Let F ′/F be an
unramified extension over which S becomes a minimal Levi subgroup of M .
The point o is still special over F ′ and the root system of M◦o is the subsystem of
non-divisible roots in R(AS ,M). The bijection R(S,M) ↔ R(Ŝ, M̂) sending α̂
to α = α̂∨ restricts to a bijection R(AS ,M)↔ R(Ŝx,◦, M̂) that preserves types.
Thus α̂ corresponds to a root α ∈ R(S,M) whose restriction to AS is neither
divisible nor multipliable. This root is then also an element of R(S′,M◦o) and
the corresponding coroot is Nα∨ = Nα̂. The L-embedding LjS,M restricts to
an isomorphism Ŝ oWF ′ → T̂ oWF ′ and

WF ′
bϕS−→ Ŝ oWF ′

LjS,M−→ T̂ oWF ′ → T̂W ′F
Nα̂−→ C×

is the parameter of the character [θb ·θ]◦NF ′/F ◦[Nα∨]. The character [θb ·θ]S(F )0

has trivial stabilizer in Ω(S,M)Γ and thus reduces to a character of S′(kF ) in
regular position. According to Lemma 3.4.14 the composition [θb · θ] ◦NF ′/F ◦
[Nα∨] is a non-trivial character of k×F ′ , or, seen as a character of [F ′]×, has non-
trivial restriction to O×F ′ . This in turn is equivalent to the claim that its param-
eter restricts non-trivially to IF ′ = IF . But that restriction is exactly (5.2.2).

We now turn to the cases where α̂ is of type R2 or R3. These cases are linked
together – if α̂ is a root of type R2 and l is the smallest positive number such that
xlα̂ = α̂, then l is even and β̂ = α̂+xl/2α̂ is a root of type R3. Conversely, every
root of type R3 occurs in this way. In this situation, we have Nβ̂ = Nα̂. The
cases of α̂ and β̂ will be handled simultaneously if we can show (2Nα̂)(t) 6= 1.
But the bijection R(AS ,M) ↔ R(Ŝx,0, M̂) sends α̂ to a non-divisible relative
root α which then occurs in R(S′,M◦x). Its coroot is 2Nα∨ = 2Nα̂. The same
argument now shows that the homomorphism (5.2.2), where we replace Nα̂
by 2Nα̂, is non-trivial.

We have thus shown that C := Cent(ϕ(IF ), M̂)◦ = M̂ tox,◦ is a reductive group
with maximal torus T̂ x,◦ and an empty root system, so it equals T x,◦ and is
thus contained in T̂ .

It now remains to check the third property in Definition 5.2.3. Let n′ ∈ N(T̂ , M̂)

project to w ∈ Ω(S,M)Γ and centralize ϕ(IF ). Write n′ = s−1n, where s ∈ Ŝ
and n ∈ N(T̂ , M̂) satisfies Ad(n) ◦ Lj = Lj ◦ w. The latter equality together
with Ad(n)◦ϕ|IF = Ad(s)◦ϕ|IF implies w ◦ϕS |IF = Ad(s)◦ϕS |IF . By Lemma
3.1.8 this means that w stabilizes θ|S(F )0

. The regularity of θ implies w = 1.

We now give the inverse construction. Let ϕ : WF → Ĝ o WF be a regular
supercuspidal parameter. Let T̂ ⊂ M̂ ⊂ Ĝ be the maximal torus and Levi
subgroup from Lemma 5.2.2, normalized by Ad(ϕ(−)), and let Ŝ be the Γ-
module with underlying abelian group T̂ and Γ-action given by Ad(ϕ(−)). By
construction ϕ(PF ) ⊂ Z(M̂) ⊂ T̂ , so the Γ-module Ŝ is tame. Since ϕ(IF )

preserves a Borel subgroup of M̂ containing T̂ , the action of IF on R(Ŝ, M̂)

preserves a positive chamber. We let ̂ : Ŝ → Ĝ be the tautological embedding
of the abelian group T̂ underlying Ŝ into Ĝ.
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Lemma 5.2.9 allows us to fix Ω(S,M)Γ-invariant minimal χ-data for R(S,G).
From it we obtain a Ĝ-conjugacy class of L-embeddings Ŝ oWF → Ĝ oWF .
Fix Ljχ within this conjugacy class by demanding Ljχ|Ŝ = ̂. The image of Ljχ
contains the image of ϕ and we obtain the factorization

ϕ = Ljχ ◦ ϕS,χ,

for some Langlands parameter ϕS,χ : WF → LS. Let θ = θχ : S(F ) → C×

be the corresponding character. Since any L-embedding that is Ĝ-conjugate to
Ljχ and also restricts to ̂ must be conjugate to Ljχ by an element of T̂ , the
Ŝ-conjugacy class of ϕS,χ, and hence the character θχ, are independent of the
choice of Ljχ. They depend only on the choice of χ.

Lemma 5.2.10. The stabilizer of θ|S(F )0
in Ω(S,M)Γ is trivial. �

Proof. This is equivalent to [θ ◦w/θ]|S(F )0
6= 1 for all w ∈ Ω(S,M)Γ. By Lemma

3.1.8 this is equivalent to w ◦ ϕS 6= ϕS in H1(IF , Ŝ). Explicitly we need to
show that for any w ∈ Ω(S,M)Γ there does not exist sw ∈ Ŝ with w ◦ ϕS |IF =
Ad(sw)ϕS |IF . Assume this fails for some w and let sw be the corresponding
element. We have the equality

w ◦ ϕS |IF = Ad(sw) ◦ ϕS |IF .

Composing both sides of the displayed equation with Ljχ we obtain

Ljχ ◦ w ◦ ϕS |IF = Ad(sw)ϕ|IF .

We may now use [LS87, (2.6.2)] together with the w-invariance of χ-data to get
Lj ◦ w = Ad(n) ◦ Lj, where n ∈ N(T̂ , M̂) is a suitable lift of w. This leads to

Ad(n)ϕ|IF = Ad(sw)ϕ|IF ,

i.e. s−1
w n ∈ Cent(ϕ(IF ), M̂) contradicting part 3 of Definition 5.2.3. �

We now form (S, ̂, χ, θχ) and claim that its isomorphism class depends only
on the Ĝ-class of ϕ. Keeping ϕ fixed, recall from §4.6 that the χ-data can only
be changed to ζ ·χ and then according to [LS87, (2.6.3)] we have Ljζχ = Ljχ · c,
where c is the element of Z1(WF , Ŝ) defined in [LS87, Corollary 2.5.B]. Thus
ϕS,ζχ = ϕS ·c−1. As we already remarked, c is the Langlands parameter for the
character ζS . Thus we obtain the isomorphic object (S, ̂, ζ · χ, θχ · ζ−1

S ).

If we replace ϕ by ϕ′ = Ad(g) ◦ ϕ for some g ∈ Ĝ then T̂ ′ = Ad(g)T̂ , where
T̂ ′ is the maximal torus analogous to T̂ but corresponding to ϕ′, because T̂
can be recovered from ϕ as Cent(C, M̂), with M̂ = Cent(ϕ(PF ), Ĝ)◦ and C =

Cent(ϕ(IF ), M̂)◦. If we let Ŝ′ be the Γ-module with abelian group T̂ ′ and Γ-
action given by Ad(ϕ′(−)), then we see that Ad(g) : Ŝ → Ŝ′ is an isomorphism
of Γ-modules. It gives rise to an isomorphism ι : S′ → S of algebraic tori.
Choose minimal Ω(S, M̂)Γ-invariant χ-data on R(S,G) and transport it via ι
to χ-data χ′ on R(S′, G), which is minimal and Ω(S′, M̂)Γ-invariant. Use it to
obtain a character θχ′ : S′(F ) → C×. One then checks immediately that the
isomorphism ι identifies the characters θχ and θχ′ . The proof of Proposition
5.2.7 is now complete. �
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5.3 Construction and internal structure of L-packets

As in the previous subsection, we are assuming that the residual characteristic
of F is odd, is not a bad prime for G, and does not divide |π0(Z(G))|. We also
keep the assumption that the characteristic of F is zero due to our usage of
[Kal16].

Let ϕ : WF → LG be a regular supercuspidal parameter in the sense of Defini-
tion 5.2.3. Apply Proposition 5.2.7 to obtain a regular supercuspidal L-packet
datum (S, ̂, χ, θ), well-defined up to isomorphism. We will define a function
Θ : S(F )reg → C as follows. Choose a non-trivial character Λ : F → C×. For
any α ∈ R(S,G) we have the character Λ ◦ trFα/F : Fα → C×; let rΛ,α be its
depth. On the other hand, we have the character θ ◦ NFα/F ◦ α∨ : F×α → C×;
let rθ,α be its depth. By restriction we obtain a character

[Fα]rθ,α/[Fα]rθ,α+ → C×, X 7→ θ ◦NFα/F ◦ α
∨(X + 1).

Let āα ∈ [Fα](rΛ,α−rθ,α)/[Fα](rΛ,α−rθ,α)+ be the unique element satisfying

θ ◦NFα/F ◦ α
∨(X + 1) = Λ ◦ trFα/F (āαX).

It is immediate to check that {(rΛ,α − rθ,α, āα)} is a set of mod-a-data. Define

Θ(γ) := εL(X∗(T )C −X∗(S)C,Λ)∆abs
II [ā, χ](γ)θ(γ). (5.3.1)

Lemma 5.3.1. The function Θ is independent of the choice of Λ. Thus it de-
pends only (S, ̂, χ, θ). Any isomorphism (S, ̂, χ, θ) → (S′, ̂′, χ′, θ′) carries Θ
over to the corresponding function Θ′ on S′(F )reg. �

Proof. The character Λ can be replaced by Λ · c for some c ∈ F , where we recall
that [Λ·c](x) = Λ(cx). Then āα is replaced by c−1āα. Invoking [Kal15, Corollary
4.11], using that λFα/F±α([Λ · c] ◦ trF±α/F ) = κα(c)λFα/F±α(Λ ◦ trF±α/F ), and
appealing to Lemma 4.6.3, we see that (5.3.1) is unchanged.

We now discuss the isomorphisms (S, ̂, χ, θ) → (S′, ̂′, χ′, θ′). Again we can
treat the three basic isomorphism types (ι, 1, 1), (1, g, 1) and (1, 1, ζ) separately.
For the first two the statement is trivial. For the third, we have χ = χ′ · ζ and
θ = θ′ ·ζ−1

S by Definition 5.2.5 and the statement follows from Lemma 4.6.6. �

It is clear from Proposition 5.2.7 that the isomorphism classes of regular su-
percuspidal L-packet data will correspond to L-packets. We now introduce
another category, which we call the category of regular supercuspidal data,
whose isomorphism classes of object will correspond to the individual super-
cuspidal representations that are to be organized into L-packets.

Definition 5.3.2. A regular supercuspidal datum is a tuple (S, ̂, χ, θ, (G′, ξ, z), j),
where

1. (S, ̂, χ, θ) is a regular supercuspidal L-packet datum,

2. (G′, ξ, z) is a rigid inner twist of G in the sense of [Kal16, §5.1],

3. and j : S → G′ is an admissible embedding defined over F .

�
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Definition 5.3.3. A morphism of regular supercuspidal data

(S1, ̂1, χ1, θ1, (G
′
1, ξ1, z1), j1)→ (S2, ̂2, χ2, θ2, (G

′
2, ξ2, z2), j2)

is given by (ι, g, ζ, f), where (ι, g, ζ) is an isomorphism of the underlying reg-
ular supercuspidal L-packet data, f : (G′1, ξ1, z1) → (G′2, ξ2, z2) is an isomor-
phism of rigid inner twists, and j2 ◦ ι = f ◦ j1. �

There is an obvious forgetful functor from the category of regular supercus-
pidal data to the category of regular supercuspidal L-packet data. If we fix
a regular supercuspidal L-packet datum (S, ̂, χ, θ), the set of isomorphism
classes of regular supercuspidal data mapping to it is a torsor under H1(u →
W,Z(G)→ S). This torsor is given by the relation

x · (G′1, ξ1, z1, j1) = (G′2, ξ2, z2, j2)⇔ x = inv(j1, j2), (5.3.2)

see [Kal16, §5.1] for this statement and the notation involved.

We will now attach to each regular supercuspidal datum (S, ̂, χ, θ, (G′, ξ, z), j)
a regular supercuspidal representation ofG′(F ). For this we take our lead from
the construction of L-packets of real discrete series representations [Lan89].
Ideally we would like to take “the” regular supercuspidal representation of
G′(F ) whose Harish-Chandra character, evaluated at shallow regular elements
of S(F ), is given by the formula

e(G′)|DG′(γ
′)|− 1

2

∑
w∈Ω(jS(F ),G′(F ))

Θ(j−1(γ′w)), (5.3.3)

where Θ is the function (5.3.1). We don’t know yet quite enough about the
Harish-Chandra character of regular supercuspidal representations to know
whether this would specify a unique representation. However, we can achieve
the same result by the following construction, which, while less elegant, has
the virtue of describing explicitly the inducing datum of the representation.

Step 1: From θ we construct, for symmetric α ∈ R(S,G)rR(S,G0), mod-a-data
(āα)α by (4.10.1) and then χ-data (χ′α) by (4.7.2). We recall here the definitions:

θ(NFα/F (α∨(X + 1))) = Λ(trFα/F (āαX)), χ′α(2āα) = λFα/F±α(Λ ◦ trF±α/F ).

The mod-a-data depends on the choice of additive character Λ : F → C×, but
the resulting χ-data does not. For α ∈ R(S,G0) we set χ′α = χα, and remind
the reader that χα : F×α → {±1} is the unramified quadratic character, and that
all symmetric roots in R(S,G0) are unramified.

Step 2: Replace (S, ̂, χ, θ, (G′, ξ, z), j) by an isomorphic object in which the χ-
data is the one just constructed. More precisely, let ζα = χ′α · χ−1

α . Then (ζα)α
is a set of ζ-data in the sense of Definition 4.6.4. We replace the tuple A =
(S, ̂, χ, θ, (G′, ξ, z), j) by the isomorphic tuple B = (S, ̂, χ′, θ · ζ−1

S , (G′, ξ, z), j),
where ζS : S(F )→ C× is the character defined by (ζα) in Definition 4.6.5.

Step 3: Consider the maximal torus jS ⊂ G′ and the character on it given by
jθ′ := (θ · ζ−1

S ) ◦ j−1 · εf,ram · εram. Here εf,ram is the character of jS(F ) defined
in Definition 4.7.3, and εram is given by (4.3.3). The character jθ′ is regular
according to Facts 4.3.1 and 4.7.5, but may fail to be extra regular due to the
occurrence of εf,ram. We assign to the isomorphism class of the supercuspidal
datum A the representation π(jS,jθ′) of G′(F ). It is regular, but may fail to
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be extra regular. However, it will be extra regular at least when the point of
Bred([G′]0, F ) associated to jS is superspecial, by Lemma 3.4.10.

Note that, since ζS , εf,ram, and εram, are tamely ramified, the two characters θ
and θ ·ζ−1

S of S(F ), and the character jθ′ of jS(F ), all determine the same mod-
a-data (āα)α and hence the same χ-data (χα)α. Therefore the above construc-
tion is well-posed and the character of the representation π(jS,jθ′) evaluated
at shallow elements of S(F ) is given by (5.3.3). This follows from Corollary
4.10.1.

We define the compound L-packet Πϕ to be the following set of equivalence
classes of representations of rigid inner twists. Fix a regular supercuspidal
L-packet datum (S, ̂, χ, θ) corresponding to ϕ. For each regular supercuspi-
dal datum (S, ̂, χ, θ, (G′, ξ, z), j) let πj be the representation of G′(F ) just con-
structed. Then

Πϕ = {(G′, ξ, z, πj)}, (5.3.4)

where (S, ̂, χ, θ, (G′, ξ, z), j) runs over all regular supercuspidal data mapping
to the regular supercuspidal L-packet datum (S, ̂, χ, θ). By Lemma 3.4.12 there
exists at least one regular supercuspidal datum for which the point associated
to jS in Bred([G′]0, F ) is superspecial, which shows that Πϕ contains extra reg-
ular supercuspidal representations.

We now describe the internal structure of the compound L-packet Πϕ. Let
Sϕ = Cent(ϕ, Ĝ). We apologize for the double usage of the letter S, which
seems unavoidable given the standard notation.

Lemma 5.3.4. The embedding ̂ : Ŝ → Ĝ induces an isomorphism ŜΓ → Sϕ.
For any finite subgroup Z ⊂ Z(G) defined over F this isomorphism extends to
an isomorphism [̂̄S]+ → S+

ϕ . �

Proof. Let s ∈ Sϕ. Then s ∈ Cent(ϕ(PF ), Ĝ) = M̂ , and furthermore, s ∈
Cent(ϕ(IF ), Ĝ). Thus s normalizes Ĉ = Cent(ϕ(IF ), Ĝ)◦ and then also T̂ =

Cent(Ĉ, M̂). The projection of s ∈ N(T̂ , M̂) to Ω(Ŝ, M̂) is Γ-fixed, so by Defi-
nition 5.2.3 it must be trivial, i.e. s ∈ T̂ .

We have thus shown Sϕ ⊂ T̂ . Since ̂ maps Ŝ isomorphically to T̂ and we have
the equation Ljχ ◦ϕS,χ = ϕ, we conclude that ̂ maps ŜΓ isomorphically to Sϕ,
as claimed.

Via the canonical embedding Z(G) → S we can view Z as a subgroup of S
and form S̄ = S/Z. The isomorphism ̂ : Ŝ → T̂ extends uniquely to an
isomorphism ̂̄S → ̂̄T . But [̂̄S]+ is the preimage of ŜΓ in ̂̄S, while S+

ϕ is the

preimage of Sϕ in ̂̄G, thus by what was shown above also in ̂̄T . It follows that
the isomorphism ̂̄S → ̂̄T identifies [̂̄S]+ with S+

ϕ . �

Consider the composition H1(u → W,Z → S) → π0([̂̄S]+)D → π0(S+
ϕ )D,

where the first arrow is the isomorphism of [Kal18b, Proposition 5.3], and the
second arrow is the isomorphism obtained from the above Lemma. The con-
stituents of Πϕ are in canonical bijection with the set of isomorphism classes
of regular supercuspidal data that map to the isomorphism class of (S, ̂, χ, θ)
under the forgetful functor. We have already seen in (5.3.2) that this set is a

90



torsor under H1(u → W,Z → S). In this way, we obtain a canonical simply
transitive action of π0(S+

ϕ )D on Πϕ.

In order to obtain a bijection Πϕ → π0(S+
ϕ )D from this simply transitive action,

we need to fix a base point. Fix a Whittaker datum w for G. According to the
strong tempered L-packet conjecture there should exist a unique constituent
of Πϕ that is w-generic. At the moment we can prove this conjecture only in
the case of toral representations, see Lemma 6.2.2. The same argument should
go through without much modification once the character formula for regular
supercuspidal representations, which is currently being developed in the work
of Spice and others, is known. Granted this result, let jw be the admissible
embedding S → G so that πjw is the generic constituent. Then we obtain the
perfect pairing

〈−,−〉w : Πϕ × π0(S+
ϕ )→ C

by
〈(G′, ξ, z, πj), s〉w = 〈inv(jw, j), s〉, (5.3.5)

where on the right the pairing comes from the isomorphism H1(u → W,Z →
S) → π0(S+

ϕ )D. Then the map s 7→ 〈(G′, ξ, z, πj), s〉w is a character of π0(S+
ϕ ),

while the map (G′, ξ, z, πj) 7→ 〈(G′, ξ, z, πj),−〉w is a bijection identifying Πϕ

with π0(S+
ϕ )D.

If w′ is another Whittaker datum, then we have

〈(G′, ξ, z, πj), s〉w′ = 〈(G′, ξ, z, πj), s〉w · 〈inv(jw′ , jw), s〉. (5.3.6)

5.4 Comparison with the case of real groups

Continuing the theme of §4.11 we will now show that the construction of the
regular supercuspidal part of the local Langlands correspondence given in §5.2
and §5.3 is a direct generalization of Langlands’ construction [Lan83] of real
discrete series L-packets and Shelstad’s [She82], [She10], [She08b] parameteri-
zation of these.

In this subsection only, letG be a connected reductive group defined and quasi-
split over R and let ϕ : WR → LG be a discrete Langlands parameter. We
briefly recall the construction of the correspondence, following the exposition
in [Kal16, §5.6]. One chooses a Borel pair (T̂ , B̂) in Ĝ and modifies ϕ in its
conjugacy class so that ϕ(C×) ⊂ T̂ . Write ϕ(z) = zµz̄ν , with µ, ν ∈ X∗(T̂ )C,
µ − ν ∈ X∗(T̂ ). One shows that the image of µ in X∗(T̂ad)C is integral, i.e. be-
longs toX∗(T̂ad), and moreover regular [Lan83, Proof of Lemma 3.3]. One then
modifies ϕ again within its conjugacy class so that this image is B̂-dominant.
The parameter ϕ is now pinned down within its Ĝ-conjugacy class up to conju-
gation by T̂ . The action of WR on T̂ via Ad(ϕ(w)) factors through ΓR and gives
a twist Ŝ of the Γ-structure on T̂ . The real torus S dual to Ŝ comes equipped
with a stable class of embeddings S → G′ (note that the images of any two such
embeddings are conjugate under G(R), but the embeddings themselves need
not be) into any inner form G′ of G (this follows from [Kot82, Corollary 2.2] in
the case of the quasi-split group G and from [She79, Lemma 2.8] for its inner
forms G′). By construction there is a distinguished Weyl-chamber in X∗(S).
Using based χ-data [She08a, §9] for R(S,G) with respect to that chamber, we
obtain an L-embedding Lj : LS → LG whose image contains the image of ϕ.
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We write ϕ = Lj ◦ ϕS , for ϕS : WR → LS. The local Langlands correspon-
dence for S produces from ϕS a character θ : S(R) → C×. For any embedding
j : S → G we let πj be the unique discrete series representation of G(R) whose
character evaluates at a strongly regular element γ ∈ jS(R) to the function
(4.11.1), where we are to replace S and θ in this formula with jS and θ ◦ j−1.
The L-packet on any inner form G′ of G is defined to be the set {πj} where j
runs over the rational classes of embeddings j : S → G′ in the given stable
class.

Fixing a Whittaker datum w, there is a unique embedding jw : S → G such
that the corresponding representation πjw is w-generic [Kos78], [Vog78]. For a
canonical internal parameterization of the L-packets we use rigid inner twists.
Fix a finite subgroup Z ⊂ G, a rigid inner twist (G′, ξ, z) realized by Z, and an
admissible rational embedding j : S → G′. Given s ∈ S+

ϕ = [̂̄S]+, we define

〈(G′, ξ, z, πj , s〉w = 〈inv(jw, j), s〉,

where the pairing on the right is the one from [Kal16, Corollary 5.4].

This exposition makes the direct analogy with the constructions of §5.2 and
§5.3 almost obvious. In fact, the exposition here is already slightly different
from the one presented in [Kal16, §5.6] in that it uses L-embeddings and fac-
torization of parameters, where in [Kal16, §5.6] we kept more closely to the
original construction in [Lan83]. That the two presentations are equivalent is
explained in [She10, §7b]. With §4.11 in mind, the only point where the con-
struction of regular supercuspidal L-packets may seem to differ from that of
real discrete series L-packets is that in the real case one chooses a specific pa-
rameter within its Ĝ-conjugacy class based on a pinning of Ĝ and the notion
of dominance. This choice is also used to construct the L-embedding Lj using
based χ-data with respect to the same Weyl chamber that gives the notion of
dominance. But if we use the argument of §4.11 to rewrite the real discrete se-
ries character formula (4.11.1) as (4.10.2), then Lemma 5.3.1 tells us that we can
use arbitrary χ-data, at which point the B̂-dominance of µ becomes irrelevant
and we recognize the construction in the p-adic case as a direct generalization
of the construction in the real case.

6 TORAL L-PACKETS

In this section we will consider the special case of those regular supercuspidal
L-packets whose constituents are toral supercuspidal representations. These
are the representations arising from Yu-data of the form (S ⊂ G, 1, (φ0, 1)),
where φ0 : S(F )→ C× is a G-generic character of positive depth. These repre-
sentations were constructed by Adler in the paper [Adl98], which, as far as we
know, was the first construction of supercuspidal representations for general
reductive p-adic groups, and whose approach formed the basis of Yu’s more
general construction.

The class of toral supercuspidal representations is general enough to include
the epipelagic representations [RY14] (such representations always have depth
1/m for some natural number m) when p does not divide 2m [Kal15], and
the representations considered by Reeder [Ree08]. It is at the same time spe-
cial enough so that the construction of L-packets simplifies considerably. The
biggest advantage of this class of representations is that, from the current stand-
point, they are the only ones of the regular supercuspidal representations for
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which the full character formula is known for all members of theL-packet. This
will allow us to sharpen and extend our results – we will prove the existence
and uniqueness of a generic constituent in each toral L-packet, as well as the
stability and endoscopic transfer of these packets.

6.1 Construction and exhaustion

In this subsection we assume that the residual characteristic of F is odd, not
a bad prime for G, and not a divisor of |π0(Z(G))|. We further assume that
the characteristic of F is zero due to our use of [Kal16], but as we already
mentioned this assumption is likely unnecessary and can be avoided if one
uses [Kot] instead of [Kal16], at the expense of not treating all reductive groups.

Definition 6.1.1. A toral supercuspidal parameter of generic depth r > 0 is a dis-
crete Langlands parameter ϕ : WF → LG satisfying the following conditions.

1. Cent(ϕ(Ir), Ĝ) is a maximal torus and contains ϕ(PF );

2. ϕ(Ir+) is trivial.

�

Since Cent(ϕ(I), Ĝ) ⊂ Cent(ϕ(Ir), Ĝ), the toral supercuspidal parameters are
a special case of the strongly regular supercuspidal parameters of Definition
5.2.1 and hence their L-packets have already been constructed in §5.3. How-
ever, since the construction in this special case is considerably simpler, we shall
examine it in detail, with the hope that it will be more useful to the readers who
are only interested in this special case, and will also serve as an introduction to
the more general construction.

The first step is to give the corresponding subcategory of the category of regu-
lar supercuspidal L-packet data. We will call it the category of toral L-packet
data of generic depth r. A regular supercuspidal L-packet datum (S, ̂, χ, θ)
will belong to this subcategory precisely when θ is a G-generic character of
depth r.

Proposition 6.1.2. The construction of Proposition 5.2.7 restricts to a bijection
between the Ĝ-conjugacy classes of toral supercuspidal parameters of generic
depth r and the isomorphism classes of toral L-packet data of generic depth r.
�

Proof. We fix a Γ-stable pinning (T̂ , B̂, {Xα̂}) of Ĝ. Let ϕ : WF → LG be a toral
supercuspidal Langlands parameter of generic depth r. We conjugate ϕ so that
Cent(ϕ(Ir), Ĝ) = T̂ . The composition

WF
ϕ−→ N(T̂ , Ĝ) oWF → Ω(T̂ , Ĝ) oWF → Autalg(T̂ )

factors through a finite quotient of WF and endows T̂ with a new Γ-module
structure, which we will record by using the name Ŝ. The assumption that
ϕ(PF ) ⊂ T̂ ensures that PF acts trivially on Ŝ. The Γ-module Ŝ is the com-
plex dual torus to a torus S defined over F . Let ̂ : Ŝ → Ĝ be the embedding
coming from the equality Ŝ = T̂ of complex tori. The Ĝ-conjugacy class of the
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embedding ̂ is Γ-stable and we obtain a Γ-stable G-conjugacy class of embed-
dings S → G as in §5.1, which we will call admissible. Choose minimal tame
χ-data for R(S,G). Via the construction of [LS87, §2.6] it gives a Ĝ-conjugacy
class of L-embeddings LS → LG whose elements extend the Ĝ-conjugates of ̂.
We choose one particular L-embedding Ljχ within this conjugacy class whose
restriction to Ŝ is equal to ̂. By definition, the projections of Ljχ(1 o w) and
ϕ(w) in Ω(T̂ , Ĝ) oWF are equal for any w ∈ WF . This implies that the image
of ϕ is contained in the image of Ljχ, which in turn leads to a factorization

ϕ = Ljχ ◦ ϕS,χ,

for some Langlands parameter ϕS,χ : WF → LS. Let θχ : S(F ) → C× be
the corresponding character. Since any L-embedding that is Ĝ-conjugate to
Ljχ and also restricts to ̂ must be conjugate to Ljχ by an element of T̂ , the
Ŝ-conjugacy class of ϕS,χ, and hence the character θχ, are independent of the
choice of Ljχ. They depend only on the choice of χ.

We claim that θχ is generic of depth r. Let E/F be the splitting field of S. By
[Kal15, Lemma 3.2] we need to check that for each root α ∈ R(S,G) the charac-
ter E×r /E

×
r+ → C× given by θχ ◦NE/F ◦α∨ is non-trivial and that the stabilizer

of θχ ◦ NE/F |S(E)r in Ω(S,G) is trivial. For the first point, the parameter of
θχ ◦ NE/F ◦ α∨ is the homomorphism α̂ ◦ ϕS |WE

. By [Yu09, Theorem 7.10]
the character restricts non-trivially to E×r if and only if its parameter restricts
non-trivially to IrE = IrF . But the restriction of α̂ ◦ ϕS to IrF is equal to the re-
striction of α̂ ◦ϕ, by the tameness of χ-data, and the latter is non-trivial, due to
Cent(ϕ(Ir), Ĝ) = T̂ . The second point follows from the same reasoning – the
stabilizer in Ω(S,G) of θχ ◦NE/F |S(E)r is equal to the stabilizer of ϕ|Ir , which
is trivial by assumption.

The object (S, ̂, χ, θχ) we thus obtain belongs to the category of toral L-packet
data of generic depth r. The proof that its isomorphism class depends only on
the Ĝ-conjugacy class of ϕ is exactly the same as in Proposition 5.2.7.

We now give the converse construction. Given a toralL-packet datum (S, ̂, χ, θ)
of generic depth r we use the χ-data to extend ̂ to an L-embedding Lj : LS →
LG and let ϕS : WF → LS be the parameter for θ. Define ϕ = Lj ◦ ϕS . We
claim that ϕ satisfies the conditions of Definition 6.1.1. Since PF acts trivially
on Ŝ, we can regard ϕS |PF as a homomorphism PF → Ŝ. We use again [Kal15,
Lemma 3.2] and see that the genericity of θ implies that the restriction ϕS |Ir+ is
trivial; the centralizer of ϕS |Ir in Ω(Ŝ, Ĝ) is trivial; and for each α̂ ∈ R(Ŝ, Ĝ) the
composition α̂ ◦ ϕS |Ir is non-trivial. The tameness of the χ-data and of G im-
plies that we can replace ϕS with ϕ in these statements, from which we obtain
that the homomorphism ̂ ◦ϕ|PF is trivial on Ir+ and Cent(̂ ◦ϕ(Ir), Ĝ) = ̂(Ŝ).

Thus ϕ is a toral supercuspidal parameter of generic depth r. The proof that its
Ĝ-conjugacy class depends only on the isomorphism class of (S, ̂, χ, θ) is again
the same as for Proposition 5.2.7. �

We define the category of toral supercuspidal data of generic depth r as a sub-
category of the category of regular supercuspidal data in the same way: A
regular supercuspidal datum (S, ̂, χ, θ, (G1, ξ, z), j) belongs to the subcategory
precisely when θ is G-generic of depth r. For any such datum the representa-
tion associated to it in §5.3 is a toral representation of depth r. Indeed, it is by
construction the regular supercuspidal representation π(jS,jθ′) of G′(F ), where
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we recall that jθ′ := θ ◦ j−1 · εf,ram · εram. Since both εf,ram and εram are of depth
zero, jθ′ is still G-generic of depth r. In the Howe factorization algorithm of
§3.6 this is the second “trivial” case, i.e. in the notation of that subsection we
have d = 1, r1 = r0 > r−1 = 0, S = G0 ( G1 = G, so we obtain the twisted Levi
sequence S ⊂ G and the Howe factorization (1, θ, 1). The resulting Yu-datum
then reduces to an Adler datum.

We conclude that the compound L-packet Πϕ constructed in §5.3 consists of
toral supercuspidal representations of depth r and moreover every such repre-
sentation is contained in one of these L-packets.

The internal parameterization of Πϕ is as described in §5.3, but with the added
precision that we are now in the position to prove the existence and uniqueness
of a generic constituent. This will be done in the next subsection.

6.2 Characters and genericity

We keep the assumptions on F from the previous subsection: the residual char-
acteristic of F is odd, not a bad prime for G, and not a divisor of |π0(Z(G))|,
and furthermore the characteristic of F is zero. From now on this latter as-
sumption becomes more significant, as it is made in the various references we
cite (although we do expect that most of the results we cite remain valid in
sufficiently large positive characteristic).

In this and the following subsections we will use the character formula for toral
supercuspidal representations of §4.8. For this, fix a character Λ : F → C×
of depth zero. We will use the following short-hand notation: ε(TG − TJ) =
εL(X∗(TG)C −X∗(TJ)C,Λ), γj = j−1(γ), and jX∗ = dj(X∗).

Lemma 6.2.1. Let (S, ̂, χ, θ, (G′, ξ, z), j) be a toral supercuspidal datum of generic
depth r and let π be the corresponding representation of G′(F ). The character
of π at a regular semi-simple element γ′ = γ′<r · γ′≥r ∈ G′(F ) is given by

e(G′)

e(J ′)

εL(TG − TJ)

|DG′(γ′)|
1
2

∑
g∈J′(F )\G′(F )/jS(F )

γ′g<r∈jS(F )

∆abs
II [a, χ′](γ′gj<r )θ(γ′gj<r )ι̂j′,jgX∗(log(γ′≥r)),

where J ′ = Cent(γ′<r, G′)◦, and TG and TJ are the minimal Levi subgroups in
the quasi-split inner forms of G′ and J ′. �

Proof. This follows directly from Corollary 4.8.2. �

Let (T,B, {Xα}) be an F -pinning of G. Together with the character Λ, it deter-
mines a Whittaker datum w for G.

Lemma 6.2.2. Let (S, ̂, χ, θ) be a toralL-packet datum of generic depth r. There
exists a unique (up to G(F )-conjugacy) admissible rational embedding jw :
S → G such that the representation corresponding to (S, ̂, χ, θ, (G, id, 1), jw) is
w-generic. Moreover, the splitting invariant [LS87, §2.3] for the torus jwS ⊂ G
relative to (T,B, {Xα}) and the mod-a-data constructed in (4.7.3) is trivial. �

Proof. The statement about genericity is a result of DeBacker and Reeder, [DR10,
Proposition 4.10]. In that reference the statement is formulated only for the case

95



that S is unramified, but the same argument goes through in general. We limit
ourselves to a sketch:

Let j : S → G be a rational admissible embedding, let πj be the representation
ofG(F ) corresponding to the supercuspidal toral datum (S, ̂, χ, θ, (G, id, 1), j),
and let Θj be its character. According to the Harish-Chandra local character
expansion, for strongly regular semi-simple elements γ ∈ G(F ) that are suffi-
ciently close to the identity we have

Θj(γ) =
∑
O
c(O)µ̂O(log(γ)),

where the sum runs over the set of nilpotent orbits of the adjoint action ofG(F )
on g(F ), c(O) are complex constants, and µ̂O are the Fourier transforms of the
invariant integrals along these orbits.

Fix a G(F )-invariant non-degenerate symmetric bilinear form β on g(F ). De-
fine an element fw ∈ u−(F ), where U− is the unipotent radical of the Borel
subgroup of G that is T -opposite to B, and u− is its Lie-algebra, by fw =∑
α β(Xα, X−α)−1·X−α, where the sum runs over theB-simple roots of T . This

element has the property that the character of u(F ) given byX 7→ Λ(β(fw, X)),
when composed with exp, is equal to the generic character of U(F ) determined
by the splitting (T,B, {Xα}) and the character Λ. The main result of [MW87]
then states that the representation πj is w-generic if and only if the constant
c(Ad(G(F ))fw) is non-zero.

According to Lemma 6.2.1, if g = g≥r ∈ G(F ) is a strongly regular semi-simple
element, then

Θj(g) = |DG(g)|− 1
2 ι̂g,jX∗(log(g)) = |DG(jX∗)| 12 µ̂g,jX∗(log(g)).

Equating the last two displayed formulas and using a result of Shelstad [She89],
reinterpreted as [DR10, Proposition 4.2], we see that c(Ad(G(F ))fw) is non-
zero precisely when the G(F )-orbit of jX∗ meets the Kostant section fw +
Cent(ew, g), where ew =

∑
α β(Xα, X−α)Xα, and where we are interpreting

jX∗ ∈ g∗(F ) as an element of g(F ) via β. From this, the uniqueness of jw
follows.

We turn to the triviality of the splitting invariant. Let X ′α = β(Xα, X−α)Xα.
The main result of [Kot99] asserts that the splitting invariant of jwS vanishes,
if it is computed with respect to the pinning (T,B, {X ′α}) and the a-data aγ =
dγ(jwX

∗), for γ ∈ R(S,G). Now dγ(jwX
∗) = β(Hγ , jwX

∗) · β(Xγ , X−γ)−1.
The function α 7→ β(Xα, X−α) extends to a Ω(T,G) o Γ-equivariant function
and then [Kal13, Lemma 5.1] implies that the splitting invariant of jwS van-
ishes, if it is computed with respect to the splitting (T,B, {Xα}) and the a-data
β(Hγ , jwX

∗). But the a-data β(Hγ , jwX
∗) = 〈Hγ , X

∗〉 projects to the mod-a-
data of (4.7.3). �

6.3 Stability and transfer

In this subsection we assume that F has characteristic zero and sufficiently
large residual characteristic, so that the logarithm map is defined on G(F )0+.
It is shown in [DR09, App. B] that this is true provided p ≥ (2 + e)n, where e
is the ramification degree of F/Qp and n is the dimension of a faithful rational
representation of G.
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We continue with a toral supercuspidal parameter ϕ of generic depth r with
associated L-packet Πϕ. For any rigid inner twist (G′, ξ, x) and any s ∈ S+

ϕ

define the function

Θs
ϕ,w,x = e(G′)

∑
(G′,ξ,x,π)∈Πϕ

〈(G′, ξ, x, π), s〉w ·Θπ

on G′(F ). According to (5.3.6), when s = 1 this function does not depend on
the choice of w and we can denote it by SΘϕ,x = Θ1

ϕ,w,x.

Lemma 6.3.1. The value of Θs
ϕ,w,x at a regular semi-simple element γ′ = γ′<r ·

γ′≥r ∈ G′(F ) is given by

e(J ′)
ε(TG − TJ)

|DG′(γ′)|
∑
j

∆abs
II [a, χ′](γ′j<r)θ(γ

′j
<r)

∑
k

〈inv(jw, k), s〉ι̂j′,kX∗(log(γ′≥r)),

where J ′, TG, and TJ are as in Lemma 6.2.1, j runs over the set of J ′-stable
classes of embeddings S → J ′, whose composition with J ′ ⊂ G′ is admissible,
k runs over the set of J ′(F )-rational classes inside the stable class j, and jw :
S → G is the admissible embedding given by Lemma 6.2.2. �

Proof. Let (S, ̂, χ, θ) be a toral L-packet datum of generic depth r in the isomor-
phism class associated to ϕ by Proposition 6.1.2. According to Lemma 6.2.1, for
any admissible embedding j : S → G′ the value at γ′ of the character Θj of the
corresponding representation is given by

e(G′)

e(J ′)

ε(TG − TJ)

|DG′(γ′)|
∑
k

∆abs
II [a, χ′](γ′k<r)θ(γ

′k
<r)ι̂j′,kX∗(log(γ≥r)),

where k runs over the set of J ′(F )-conjugacy classes of embeddings S → J ′

that are G′(F )-conjugate to j. We have Θs
ϕ,w,x =

∑
j〈inv(jw, j), s〉Θj according

to (5.3.5), where the sum runs over the G′(F )-conjugacy classes of admissible
embeddings j : S → G′ defined over F . Putting both sums together and re-
indexing we see that Θs

ϕ,w,x(γ′) is equal to

e(J ′)
ε(TG − TJ)

|DG′(γ′)|
∑
j

∑
k

〈inv(jw, k), s〉∆abs
II [a, χ′](γ′k<r)θ(γ

′k
<r)ι̂j′,kX∗(log(γ′≥r)),

where now j runs over the set of J-stable conjugacy classes of G′-admissible
embeddings S → J ′ defined over F and k runs over the set of J ′(F )-conjugacy
classes of embeddings S → J ′ in the J ′-stable class of j. Since γ′<r is central in
J ′, this expression is equal to the one in the statement of the lemma. �

Before we begin the study of stability and endoscopic transfer, we make the
following convention. Let T be a maximal torus of G and γ ∈ T (F ) a strongly
regular semi-simple element with a normal r-approximation γ = γ<r · γ≥r. If
T ′ is a maximal torus in some inner form of G or in an endoscopic group of G
and f : T → T ′ is an admissible isomorphism, then f(γ) = f(γ<r) · f(γ≥r) is
a normal r-approximation. This is proved in [DS18, Lemma 5.2] for the case
of stable conjugacy, but the argument works without change for the case of
transfer to an endoscopic group. This fixes the approximations of all stable
conjugates and transfers of γ. It is well-defined, because the only admissible
automorphism of T carrying γ to itself is the identity.
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Theorem 6.3.2. The function SΘϕ,∗ is stable across inner forms. That is, for any
two rigid inner twist (G′1, ξ1, x1) and (G′2, ξ2, x2) and stably conjugate strongly
regular semi-simple elements γ′1 ∈ G′1(F ) and γ′2 ∈ G′2(F ) we have

SΘϕ,x1
(γ′1) = SΘϕ,x2

(γ′2).

�

Proof. It is enough to consider the case where one of the two rigid inner twists
is trivial. Thus let (G′, ξ, x) be a rigid inner twist of G, γ = γ<r · γ≥r a strongly
regular semi-simple element of G(F ) and γ′ = γ′<r · γ′≥r ∈ G′(F ) stably con-
jugate to γ. Let J = Cent(γ<r, G)◦ and J ′ = Cent(γ′<r, G′)◦. The admissible
isomorphism fγ,γ′ (recall notation from §5.1) provides an inner twist J → J ′

which carries γ>r to γ′>r. Moreover, for every J-stable class ofG-admissible ra-
tional embeddings j : S → J , j′ = fγ,γ′ ◦ j is a J ′-stable class of G′-admissible
rational embeddings S → J ′, and j ↔ j′ is a 1-1 correspondence, under which
we have j′ ◦ j−1(γ<r) = γ′<r. For each pair j ↔ j′ of corresponding stable
classes of embeddings, the result of Waldspurger [Wal06, Theoreme 1.5] and
Kottwitz’s computation of ε-factors [Kal15, Theorem 4.10] imply

e(J)
∑
k

ι̂j,kX∗(log(γ≥r)) = e(J ′)
∑
k′

ι̂j′,k′X∗(log(γ′≥r)). �

We will now prove the endoscopic character identities for toral L-packets. Let
e = (H, s, Lη) be an extended endoscopic triple for G. This means that (H, s, η̂)
is an endoscopic triple and Lη : LH → LG is an L-embedding extending
η̂ : Ĥ → Ĝ. While an extension of η̂ to Lη need not always exist, the argument
for the slightly more general case where Lη does not exist is the same, but the
notation is more cumbersome, so we leave it to the reader and refer to [Kal16,
(5.11)] for a formulation of these identities in this general case. We may further
assume that H splits over a tame extension and the 1-cocycle WF → Ĝ, given
by restricting Lη to WF and projecting to Ĝ, is tame. Without this assump-
tion, our problem would be vacuous, as a regular supercuspidal parameter, in
particular a toral parameter, would not factor through Lη.

For any rigid inner twist (G′, ξ, x) we have the normalized transfer factor ∆ =
∆w,x defined in [Kal18b, (5.10)]. This factor was decorated with a prime sym-
bol in loc. cit., because it is a normalization of the factor ∆′ of [KS, §5.1], which
itself is slightly different from the factor ∆ of [LS87]. Nonetheless, to aid read-
ability, we will drop the prime decoration here. As in [Kal15, §6.4], we denote
by ∆̊ the transfer factor ∆ with its part ∆IV removed.

Lemma 6.3.3. Let γH ∈ H(F ) and γ′ ∈ G′(F ) be strongly regular semi-simple
elements. For any sufficiently large natural number k we have

∆̊(γH<r · [γH≥r]p
2k

, γ′<r · [γ′≥r]p
2k

) = ∆̊(γH , γ′).

�

Proof. Since we have arranged that an admissible isomorphism carrying γH

to γ′ carries γH<r to γ′<r and γH≥r to γ′≥r, the notion of relatedness (see §5.1) is
unchanged.

We must compare the terms ∆I , ∆II , ∆III1 and ∆III2 of both sides. For each
root α of T ′ = Cent(γ′, G′) we have ord(α(γ′<r) − 1) < r (or α(γ′<r) = 1) and
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ord(α(γ′≥r) − 1) ≥ r. It follows that γ′<r · [γ′≥r]p
2k

is still a regular element
of T ′. Thus ∆I and ∆III1 don’t change. To treat the other two, we choose
tamely ramified χ-data. Then ∆III2 is a tamely ramified character of T ′(F )
and thus any power of γ′≥r belongs to its kernel. For ∆II , we apply Lemma
4.6.7 and see that the contributions of those roots α with α(γ′<r) 6= 1 to both
sides are the same. If α is a root with α(γ′<r) = 1, let y = α(γ′≥r) ∈ [F×α ]r. Then
the contribution of α to the left-hand side is χα(a−1

α (yp
2k − 1)). According to

[Hal93, Lemma 3.1] and the tameness of χα, this is equal to χα(a−1
α p2k(y − 1)),

which is equal to the product of the contribution of α to the right-hand side
with κα(p)2k = 1. �

Theorem 6.3.4. Let γ′ ∈ G′(F ) be a strongly regular semi-simple element with
a normal r-approximation γ = γ′<r · γ′≥r. Assume that ϕ = Lη ◦ ϕH for ϕH :

WF → LH . Then

Θs
ϕ,w,x(γ′) =

∑
γH∈H(F )/st

∆̊w,x(γH , γ′)
DH(γH)

DG′(γ′)
SΘϕH ,1(γH).

�

Proof. Let T ′ = Cent(γ′, G′). We follow the beginning of the proof of [Kal15,
Theorem 6.6]. In doing so, we will make active use of the descent lemmas es-
tablished in [Kal15, §6.3]. Rather than recalling their fairly technical statements,
we refer the reader to the cited exposition, which is self-contained.

Let Y be a set of representatives for the stable classes of preimages in H(F ) of
γ<r chosen so that the connected centralizer Hy = Cent(y,H)◦ is quasi-split
for each y ∈ Y . According to [Kal15, Lemma 6.4] we can write the right hand
side of the equality in the statement as

∑
y∈Y
|π0(Hy)(F )|−1

∑
z∈Hy(F )1/st

∆̊w,x(yz, γ′)
DH(yz)

DG′(γ′)
SΘϕH ,1(yz),

whereHy denotes the (possibly disconnected) centralizer of y inH , andHy(F )1

is the subset of Hy(F ) consisting of those elements z for which yz is strongly
regular semi-simple and has normal r-approximation with head y and tail z.
Applying Lemma 6.3.3, we can rewrite this as

∑
y∈Y
|π0(Hy)(F )|−1

∑
z∈Hy(F )1/st

∆̊w,x(yzp
2k

, γ′<r(γ
′
≥r)

p2k

)
DH(yz)

DG′(γ′)
SΘϕH ,1(yz). (6.3.1)

As before let J ′ = Cent(γ′<r, G′)◦. Recall the set Ξ(Hy, J
′) from [Kal15, §6.3].

It encodes the different inequivalent ways in which Hy can be realized as an
endoscopic group of J ′ via descent. There exists a unique ξ ∈ Ξ(Hy, J

′) for
which the element yzp

2k ∈ Hy(F ) is related to the element γ′<r(γ′≥r)
p2k

(for
every value of k). We apologize here for the double use of ξ, but the inner
twist ξ : G → G′ will not be used in this proof. Taking k large enough, we
can apply the Langlands-Shelstad descend theorem [LS90, Theorem 1.6] and
conclude that there is a unique normalization ∆̊desc,ξ

w,x of the transfer factor for
the group J ′ and its endoscopic group Hy , realized by descent according to ξ,
with the property

∆̊desc,ξ
w,x (yzp

2k

, γ′<r(γ
′
≥r)

p2k

) = ∆̊w,x(yzp
2k

, γ′<r(γ
′
≥r)

p2k

).

99



For any other ξ we take ∆̊desc,ξ
w,x to be an arbitrary normalization of the transfer

factor for J ′ and Hy and have

∆̊desc,ξ
w,x (yzp

2k

, γ′<r(γ
′
≥r)

p2k

) = 0.

This discussion allows us to rewrite (6.3.1) as∑
y∈Y
|π0(Hy)(F )|−1

∑
ξ

∑
z∈Hy(F )1/st

∆̊desc,ξ
w,x (yzp

2k

, γ′<r(γ
′
≥r)

p2k

)
DH(yz)

DG′(γ′)
SΘϕH ,1(yz),

(6.3.2)
where ξ runs over the set Ξ(Hy, J

′). The sum over z can be extended toHy(F )sr,
since for elements outside of Hy(F )1 the transfer factor will be zero. Further-
more, since y is central in Hy and γ′<r is central in J ′, we may apply [LS90,
Lemma 3.5.A] and obtain

∆̊desc,ξ
w,x (yzp

2k

, γ′<r(γ
′
≥r)

p2k

) = λJ′,ξ(γ
′
<r)∆̊

desc,ξ
w,x (zp

2k

, (γ′≥r)
p2k

),

where λJ′,ξ is the character of Z(J ′)(F ) denoted by λG in [LS90]. Increasing k
if necessary we have

∆̊desc,ξ
w,x (zp

2k

, (γ′≥r)
p2k

) = ∆̊j′

w,x(log(zp
2k

), log((γ′≥r)
p2k

)),

where on the right we have the transfer factor for the Lie-algebra of J ′ that is
compatibly normalized with the one on the left. Since the Lie-algebra transfer
factor is invariant under multiplication by F×,2, we can remove the p2k-power.
Plugging this into (6.3.2), replacing SΘϕH ,1 with the formula from Lemma
6.3.1, and rearranging terms, we arrive at

λJ′,ξ(γ
′
<r)

DG′(γ′)

∑
y∈Y
|π0(Hy)(F )|−1

∑
ξ

∑
jH

∆abs,H
II [aH , χH ](yjH )θH(yjH ) (6.3.3)

ε(TH − THy )
∑

Z∈hy(F )rs/st

∆̊j′

w,x(Z, log((γ′≥r)))
∑
kH

ι̂hy,kHX∗(Z).

Here jH and kH run as in Lemma 6.3.1 but with target H instead of G′, and we
have fixed a toral L-packet datum (SH , ̂H , χH , θH) for ϕH .

Fix a triple (y, ξ, jH) contributing to the upper line of (6.3.3). Via [Kal15, Lemma
6.5] this triple corresponds to a J ′-stable class of rationalG′-admissible embed-
dings j : S → J ′.

Fix a J ′(F )-invariant non-degenerate symmetric bilinear form β on the Lie-
algebra j′(F ) and use it to identify this Lie-algebra with its dual. The results of
Waldspurger [Wal97], [Wal06], and Ngô [Ngô10], imply that then∑

Z∈hy(F )rs/st

∆̊j′

w,x(Z, log((γ′≥r)))
∑
kH

ι̂hy,kHX∗(Z)

is equal to

γΛ(j′, β)γΛ(hy, β)−1
∑
k

∆̊j′

w,x(jHX
∗, kX∗)ι̂j′,kX∗(log(γ′≥r)),

where now k runs over the set of J ′(F )-conjugacy classes in the J ′-stable class
of j. According to [Kal15, Theorem 4.10, Lemma 4.8] we have

γΛ(j′, β)γΛ(hy, β)−1 = e(J ′)ε(THy − TJ)
∏

α∈R(jS,J ′−Hy)sym/Γ

κα(βα),
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where α runs over the Γ-orbits of symmetric roots of jS in J ′ that are outside
of Hy . Appealing to the correspondence (y, ξ, jH) ↔ j of [Kal15, Lemma 6.5]
we can rewrite (6.3.3) as

λJ′,ξ(γ
′
<r)

DG′(γ′)

∑
j

∆abs,H
II [aH , χH ](yjH )θH(yjH )e(J ′)ε(TH − TJ) (6.3.4)

∏
α∈R(jS,J ′−Hy)sym/Γ

κα(βα)
∑
k

∆̊j′

w,x(jHX
∗, kX∗)ι̂j′,kX∗(log(γ′≥r)).

Selecting a small z ∈ F× we undo the descent of the transfer factor by

λJ′,ξ(γ
′
<r)∆̊

j′

w,x(jHX
∗, kX∗)

= ∆̊w,x(y exp(z2jHX
∗), γ′<r exp(z2kX∗))

= ∆̊w,1(y exp(z2jHX
∗), γ<r exp(z2jwX

∗))〈inv(jw, k), s〉,

where γ<r = jwk
−1(γ′<r). Then (6.3.4) becomes

e(J ′)

DG′(γ′)

∑
j

∆abs,H
II [aH , χH ](yjH )θH(yjH )ε(TH − TJ)

∏
α∈R(jS,J ′−Hy)sym/Γ

κα(βα) (6.3.5)

∆̊w,1(y exp(z2jHX
∗), γ<r exp(z2jwX

∗))
∑
k

〈inv(jw, k), s〉ι̂j′,kX∗(log(γ′≥r)).

Comparing this with Lemma 6.3.1 we see that the theorem will be proved once
we prove that ∆̊w,1(y exp(z2jHX

∗), γ<r exp(z2jwX
∗)) is equal to

ε(TG − TH)
∆abs
II (γ′j<r)θ(γ

′j
<r)

∆abs,H
II (yjH )θH(yjH )

∏
α∈R(jS,J ′−Hy)sym/Γ

κα(βα),

where (S, ̂, χ, θ) is a toral L-packet datum corresponding to ϕ.

For this we examine the structure of ∆̊w,1. Its first argument belongs to the
maximal torus jHSH ⊂ H and its second argument belongs to the maximal
torus jwS ⊂ G. Modifying (SH , ̂H , χH , θH) within its isomorphism class, we
may assume that the isomorphism ̂−1 ◦ η̂ ◦ ̂H : ŜH → Ŝ is Γ-equivariant.
Using the dual of this isomorphism we identify SH and S and also obtain an
admissible isomorphism jHS → jwS that we use in the discussion of the trans-
fer factor. We select as χ-data for jwS the transport via jw of the χ-data from
the toral L-packet datum (S, ̂, χ, θ), and as a-data we select the one used in the
character formula of Lemma 6.2.1, namely the one from (4.7.3). The admissible
isomorphism jw ◦ j−1

H transports this to a-data and χ-data for SH . By modify-
ing the toral L-packet datum (SH , ̂H , χH , θH) within its isomorphism class we
may assume that the resulting χ-data is the transport via jH of the χ-data χH .

Recall that ∆̊ = ε(TG − TH)∆I∆II∆III2 , the term ∆III1 being trivial by our
choice of admissible isomorphism. According to Lemma 6.2.2 we have ∆I = 1.
By definition, ∆III2 is the value at γ<r of the character of jwS given by θ ◦
j−1
w /θH ◦ j−1

w . Taking z small enough and using j−1(γ′<r) = j−1
w (γ<r) = j−1

H (y)
we get ∆III2 = θ(j−1(γ<r))/θ

H(j−1
H (y)).

To handle the term ∆II we apply Lemma 4.6.7, which reduces the proof to the
claim that for small z we have∏

α∈R(jS,J ′−Hy)sym/Γ

κα(βα) =
∆abs,J
II (exp(z2jwX

∗))

∆
abs,Hy
II (z2jHX∗)

.
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Indeed, we have

lim
z→0

α(exp(z2jwX
∗))− 1

z2
= dα(X∗) = 〈Hα, X

∗〉β−1
α

and recalling that aα = 〈Hα, X
∗〉 we see

χα

(
α(exp(z2jwX

∗))− 1

aα

)
= κα(βα). �
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