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Abstract 

Background:  Microbes and their viruses are hidden engines driving Earth’s ecosystems from the oceans and soils to 
humans and bioreactors. Though gene marker approaches can now be complemented by genome-resolved studies 
of inter-(macrodiversity) and intra-(microdiversity) population variation, analytical tools to do so remain scattered or 
under-developed.

Results:  Here, we introduce MetaPop, an open-source bioinformatic pipeline that provides a single interface to 
analyze and visualize microbial and viral community metagenomes at both the macro- and microdiversity levels. 
Macrodiversity estimates include population abundances and α- and β-diversity. Microdiversity calculations include 
identification of single nucleotide polymorphisms, novel codon-constrained linkage of SNPs, nucleotide diversity (π 
and θ), and selective pressures (pN/pS and Tajima’s D) within and fixation indices (FST) between populations. Meta‑
Pop will also identify genes with distinct codon usage. Following rigorous validation, we applied MetaPop to the gut 
viromes of autistic children that underwent fecal microbiota transfers and their neurotypical peers. The macrodiversity 
results confirmed our prior findings for viral populations (microbial shotgun metagenomes were not available) that 
diversity did not significantly differ between autistic and neurotypical children. However, by also quantifying micro‑
diversity, MetaPop revealed lower average viral nucleotide diversity (π) in autistic children. Analysis of the percentage 
of genomes detected under positive selection was also lower among autistic children, suggesting that higher viral π 
in neurotypical children may be beneficial because it allows populations to better “bet hedge” in changing environ‑
ments. Further, comparisons of microdiversity pre- and post-FMT in autistic children revealed that the delivery FMT 
method (oral versus rectal) may influence viral activity and engraftment of microdiverse viral populations, with chil‑
dren who received their FMT rectally having higher microdiversity post-FMT. Overall, these results show that analyses 
at the macro level alone can miss important biological differences.

Conclusions:  These findings suggest that standardized population and genetic variation analyses will be invaluable 
for maximizing biological inference, and MetaPop provides a convenient tool package to explore the dual impact of 
macro- and microdiversity across microbial communities.
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Introduction
Microbiology has experienced a revolution as sequenc-
ing and computational advances have enabled the 
cultivation-independent study of microbial and viral 
communities across diverse ecosystems. These stud-
ies have revealed the importance of the “microbiome” 
and its viruses as critical drivers whose metabolisms 
and impacts alter nutrient, metabolite and energy flows 
that dictate human health and ecosystem outputs (e.g., 
[1–3]). Pragmatically, the sequence space exploration 
has helped rewrite foundational taxonomic rules even 
to the point of genomes alone being sufficient [4, 5]. 
Though early studies relied upon gene marker derived 
amplicons and could answer “who is there” questions 
(e.g., [6, 7]), sequencing and analytical advances have 
led to increasingly improved assemblies such that 
genome-resolved, population-level analyses now get 
beyond “who is there” to understand metabolism and 
even mechanism (e.g., [8–12]). This transformation 
has happened rapidly, with catalogs of tens to hun-
dreds of thousands of microbial and viral metagen-
ome-assembled genomes now emerging across diverse 
environments (e.g., [13–22]). Beyond such inter-pop-
ulation (macrodiversity) community questions, recent 
advances are now also providing a window into intra-
population (microdiversity) variation. These latter 
observations provide complementary information by 
establishing niche-defining gene sets, as well as how 
genetic drift and selection shape populations and com-
munities [20, 21, 23, 24].

A major challenge when assembling fragmented DNA 
from complex communities is assembling short-reads 
into biologically meaningful “genomes” that represent 
ecologically and evolutionarily relevant populations. At 
this point, however, there are several improved popula-
tion definitions that account for ecological and evolution-
ary theory [25] and have been extrapolated and assessed 
to varying degrees community-wide [26–29]. Many of the 
remaining criticisms, e.g., chimeric “franken-genomes,” 
are being increasingly addressed by the rapidly advancing 
capabilities enabled by long-read sequencing and hybrid 
assembly approaches (e.g., [30, 31]). Thus, research-
ers studying microbes and viruses in complex commu-
nities have or soon will have datasets that are ready for 
genome-resolved population-based studies where high-
fidelity assemblies and base calls can be expected.

Once assembled, several obstacles remain to establish 
intra-population biological inferences. First, population 

genetic methods rely on defined genotypes of indi-
viduals within a population with equal coverage across 
each base within a sequence. These are conditions not 
satisfied in metagenomes as their populations have 
unequal coverage and are assembled from many indi-
viduals within a population. To date, researchers have 
developed many methods to overcome these issues. The 
most common ones try to resolve each individual’s gen-
otype within the population by linking single nucleo-
tide polymorphisms (SNPs) into strain-level genotypes 
[32–43] or use strain proxies [44–46], but these are dif-
ficult to apply to or are insufficient for community-scale 
studies across bacteria and viruses. A second obstacle is 
that analyzing both macro- and microdiversity in these 
modern datasets has scaling and standardization issues, 
and user-friendly bioinformatic tools are not yet avail-
able. For the latter, while several bioinformatic tools 
have emerged, they require intensive data manipulation 
prior to use and few do more than one type of analy-
sis ([29, 39, 42, 44], see Table  1 in “Implementation”). 
This creates a research barrier for microbiologists that 
are light on computational skills, which could be allevi-
ated by a tool that provided a single interface to analyze 
and visualize macro- and microdiversity patterns in 
metagenomic data.

To fill this gap, we introduce the multi-functional 
bioinformatic pipeline MetaPop, written in python 
and R and bundled in a bioconda package, that 
analyzes and visualizes microbial and viral com-
munity metagenomic sequence data at both the 
inter-(macrodiversity) and intra-(microdiversity) pop-
ulation levels. MetaPop can be easily utilized by begin-
ner microbiologists with little training. In this sense, 
the pipeline complements existing bioinformatic pipe-
lines, such as Anvi’o [44] and metaSNV [42], which 
can require users to modify the code, train, consult 
detailed tutorials, and continually provide input while 
running the pipeline. MetaPop’s distinctive features 
include (1) it combines both macro- and microdiver-
sity analyses into a single easy-to-use pipeline, (2) all 
of MetaPop’s functions and parameters are called in 
a single command-line that processes and analyzes 
the input data from start to finish (with the option to 
run steps independently), and (3) it improves adap-
tive selection (pN/pS) results by determining if SNPs 
are linked at the codon level. MetaPop is fully docu-
mented and maintained by the developers at https://​
github.​com/​metaG​metap​op/​metap​op.

Keywords:  Metagenomes, Visualization, SNP profiling, Community ecology, Population genetics, Macrodiversity, 
Microdiversity, Phage, Microbes, Ecogenomics

https://github.com/metaGmetapop/metapop
https://github.com/metaGmetapop/metapop


Page 3 of 19Gregory et al. Microbiome           (2022) 10:49 	

Implementation
Technical overview of how MetaPop works: input, data 
processing, and output
MetaPop has three inputs: (1) a genome FASTA file, (2) 
a tab-delimited file of the number of reads or base pairs 
per metagenomic library, and (3) one BAM file per 
metagenomic library of read alignments (mappings) to 
the reference genomes. The reference genomes should 
be assembled microbial or viral contigs that represent 
populations. Currently, MetaPop only works for hap-
loid organisms and works best for bacteria, archaea, and 
dsDNA phages. MetaPop is best applied when each BAM 

file is derived using reads from a single metagenomic 
community—as defined by the user—rather than reads 
pooled from multiple communities, in order to prevent 
the formation of hybrid populations that could violate 
underlying assumptions of population genetic inferences. 
The definition of a single community will need to be 
defined by the user and the question that they are trying 
to answer. Commonly, single communities in the context 
of population genetics are defined as samples taken from 
two different locations or different time points from the 
same site. With these inputs, MetaPop analyzes the data 
in three steps (Fig. 1):

Table 1  Capabilities of MetaPop compared to existing complementary bioinformatic pipelines

MetaPop Anvi’o MIDAS metaSNV InStrain

Input files:

  QC’d reads No No Yes No No

  BAM file(s) Yes Yes No Yes Yes

  Genome fasta file Yes Yes No Yes Yes

  Gene file No No No Yes Yes

  Read/bp numbers Yes No No No No

Preprocessing:

  Sorts & indexes BAM files Yes Yes Yes No No

  Removes spuriously mapped reads from each genome Yes No Yes No Yes

  Removes genomes with low horizontal coverage in each BAM Yes Yes Yes Yes Yes

  Identifies genomes with high read depth coverage per BAM Yes Yes Yes Yes Yes

  Performs gene calls Yes Yes Yes No No

Macrodiversity:

  Calculates raw population abundances Yes Yes Yes Yes No

  Normalizes population abundances across samples Yes No No No No

  Calculates alpha-diversity Yes No No No No

  Calculates beta-diversity Yes No No No No

Microdiversity:

  Calls SNVs Yes Yes Yes Yes Yes

  Does consensus SNP calling Yes No No No Yes

  Identifies codon variants Yes Yes No No No

  Downsamples data prior to population genetics calculations Yes No Yes No No

  Calculates intra-population diversity Yes Yes Yes Yes Yes

  Calculates inter-population diversity Yes No No Yes Yes

  Calculates linkage disequilibrium No No No No Yes

Additional analyses:

  Contig annotation No Yes Yes No No

  Codon bias analyses Yes No (but does calculate 
codon usage)

No No No

  Dereplicates genomes No Yes No No No

  Contig binning No Yes No No No

  Pangenome analyses No Yes Yes No No

Outputs:

  Text data files Yes Yes Yes Yes Yes

  Visualizations Yes Yes No No Yes
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1.	 Pre-processing
2.	 Macrodiversity and codon bias analyses
3.	 Microdiversity analyses

To clearly and explicitly lay out the capabilities of Meta-
Pop compared to existing complementary bioinformatic 
pipelines [29, 39, 42, 44], we provide a summary (Table 1). 
With the exception of the filtered reads, which are in binary 
alignment format, data outputs are tab-delimited files and 
visual outputs vectorized images stored in PDFs. The final 
tab-delimited files include (i) percent alignment and read 
length for every read in each sample, (ii) percent of posi-
tions covered by reads and average depth of coverage for 
each genome, per BAM file, (iii) the raw and normalized 
genome abundances, calculated (iv) α- and (v) β-diversity 
values, (vi) genes with different codon biases, (vii) single 
nucleotide variant (SNV) calls and pileup files over SNV 
positions, (viii) called single nucleotide polymorphisms 
(SNPs), split into those which appear on genes and those 
which appear in intergenic regions, (x) linked SNP results, 
and (xi) intra- and (xii) inter-population genetic calcula-
tions. The visualization output include (i) overall sum-
maries of read filtering, (ii) summary plots showing BAM 
file genome coverage and depth statistics, (iii) a heat-
map of normalized genome abundances, (iv) scatterplots 
of α-diversity values, (v) ordination plots of β-diversity 
results, (vi) bar plots of codon position of detected SNPs, 
(vii) visualization of nucleotide diversity and codon bias 
per each gene for each genome, and identification of posi-
tively selected genes, and (viii) heatmaps of FST per genome 
across samples.

Step 1: Pre‑processing
Though user-customizable, MetaPop defaults to a 95% 
nucleotide identity (ID) cut-off, but can be changed by 
the user, to define population boundaries, guided by stud-
ies exploring sequence space boundaries between micro-
bial and dsDNA viral populations [5, 20, 21, 26–29, 47]. 
During pre-processing, input BAM files are first sorted 
and indexed and reads that map at < 95% ID to a refer-
ence genome or which are shorter than 30 base pairs are 
removed. Genomes that pass either a length and/or per-
centage coverage minimum after this initial filtering are 
considered present or “detected” in a given sample and 
move on to macrodiversity analyses [20, 21, 48]. If the 
user flags the genome fasta dataset as complete microbial 
genomes (-complete_bact), MetaPop will use a default 
detection cut-off of ≥ 20% genome length covered to 

consider the genome in further analyses [48, 49]. If the user 
flags the genome fasta dataset as viral (-viral) or fragmented 
microbial contigs (-frag_bact), MetaPop’s default detection 
cut-offs require at least ≥ 5-kbp genome length covered in 
genomes > 5 kbp and ≥ 70% length for genomes < 5 kbp 
[20, 21]. All length cut-offs, however, can be adjusted by 
the user. We recommend using the same %ID cut-off and 
horizontal coverage cut-off as those used to de-replicate 
your genomes into populations. However, if detection of 
extremely rare taxa is important, consider lowering the 
horizontal coverage cut-off.

Once a population is detected by these above criteria, 
MetaPop calculates its relative abundance based on mean 
nucleotide coverage across the genome (see the “Macrodi-
versity analyses” section for more details). Loci with cov-
erages below the 10th and above the 90th percentile are 
excluded from this assessment to prevent skewing of abun-
dances from fast-evolving regions, such as genomic islands, 
and spurious recruitment of reads to highly conserved 
regions, respectively [50]. Importantly, users can customize 
any of these cut-offs for percent identity to define popula-
tions, horizontal coverage of the genome to “detect,” and 
the quantiles for minimizing abundance data skew.

Step 2: Macrodiversity and codon bias analyses
Data processing and calculating alpha and beta diversity 
indices
Macrodiversity is the measure of population diversity 
within a community. While some diversity measurements 
rely strictly on the presence or absence of populations (such 
as richness and Jaccard distances), many rely on the relative 
abundances of populations between communities (such 
as Shannon’s H, Simpson’s, and Bray-Curtis distances). 
Importantly, metrics that rely on relative abundances have 
been shown to be more robust for metagenomic data 
because they are less susceptible to uneven sampling of 
rare taxa [51]. Thus, the raw abundances calculated dur-
ing the pre-processing step must be transformed in order 
to allow for differential abundance testing. MetaPop pro-
portionally normalizes per-sample abundances to those for 
the library with the highest number of either the number 
of reads or base pairs (selected by the user). For example, 
if library A has 1.5 million reads and library B has 2 million 
reads, all the raw population abundances in library A are 
multiplied by 1.33 to proportionally scale the abundances 
to the library with the highest number of reads. If more 
than one sequencing technology was used to create the 
different metagenomes and this resulted in vastly different 

Fig. 1  MetaPop pipeline overview. MetaPop requires three primary inputs (a genome fasta file, file with the number of reads or bps per library, 
and unsorted BAM files). The BAM files are sorted and indexed and preprocessed (here showing the default setting for dsDNA viruses). The output 
of preprocessing goes through the macrodiversity or microdiversity arms of the pipelines. Codon usage bias is calculated as well and can be 
calculated independent of the whole MetaPop pipeline

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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read lengths, we recommend using base pair counts for 
the normalization step. Normalized genome abundances 
for each metagenomic sample are used to calculate mac-
rodiversity measurements with the “vegan” R package. If 
the input consists of a single BAM file, α-diversity (within 
community) indices—richness, Chao1, ACE, Shannon’s 
H, Simpsons, inverse Simpsons, Fisher, and Pielou’s J—for 
that community are calculated. With multiple BAM input 
files, β-diversity (between community) indices—Jaccard, 
Bray-Curtis, and centered log-ratio-transformed Euclidean 
distances—between all communities are also calculated. 
Importantly, MetaPop also outputs the raw abundances, so 
that the user can normalize their own data.

Codon bias analyses
Microbial and viral populations often have distinct codon 
biases for translational optimization [52]. Genes with 
codon usages different from the rest of the genome often 
have been recently horizontally transferred [53], have dif-
ferent temporal regulations [54], or are highly expressed 
[55]. MetaPop predicts putative genes using Prodigal [56] 
for all genomes in the reference genome FASTA file and 
identifies the codon usage for each gene within a genome 
and then calculates the codon bias for each gene. The 
bias for each codon per amino acid across every gene in 
the genome is then averaged to create the average codon 
bias. Each gene’s codon usage is compared using Euclid-
ean distances to the average codon bias. Genes with 
Euclidean distances greater than 1.5 times the interquar-
tile range, the standard constant for discerning outliers 
(reviewed in [57]), of Euclidean distance for that genome 
are considered potential outliers and are marked as hav-
ing aberrant codon usage for their respective genome.

Step 3: Microdiversity analyses
Data transformation
Microdiversity is the measure of genetic diversity within 
a population. In natural communities, where popula-
tions are represented at different abundance levels, only 
genomes with enough data can be evaluated. Thus, by 
default, genomes with < 70% length of their genome cov-
ered and < 10× average read depth coverage are excluded 
from these analyses to ensure that there is enough cov-
erage to accurately call SNPs and to assess contig-level 
microdiversity. The 10× value was selected because prior 
work revealed that downsampling read depth to 10× did 
not statistically significantly impact downstream micro-
diversity calculations [23]. While deeper sequencing is 
now resulting in high coverage for many microbial and 
viral populations, it is also uncovering rare low-abun-
dance species that remain with low coverage [20, 21, 58]. 
Thus, in order to compare these low and high coverage 
species, downsampling remains important. Users can 

set this parameter if they want to be more stringent or 
relaxed in the number of populations that pass to the 
microdiversity analyses step. Prior to SNP calling, Meta-
Pop identifies SNVs within each population per BAM 
using the mpileup tool in samtools [59] and BCFtools 
[60] in order to obtain per-position variant information, 
followed by removal of low (PHRED < 20 by default) 
variant quality score calls. Importantly, decreasing or 
increasing the PHRED threshold for variant quality 
scores increases or decreases, respectively, the number of 
SNPs called and the downstream nucleotide diversity val-
ues. SNPs are identified using two methods, either a (1) 
global or (2) a local approach. For global SNPs calls, the 
base pair coverage for each SNV position per genome is 
pooled across all metagenomes and the consensus allele 
verified. Alternate alleles that make up ≥ 1% of the base 
pair coverage for that position [61] and represented by 
at least 4 reads are considered true SNPs [23]. For local 
SNP calls, the set of true positions identified in the global 
calls are reduced to the set of SNV positions identified in 
each BAM individually. SNV sites only observed in other 
BAM files are ignored.

Identified SNPs are cross-referenced with gene calls 
and assigned as either genic or non-genic. If genic, their 
position within each codon per gene is determined. Due 
to redundancy at the third position in codons that allows 
multiple codons to code for the same amino acid, most 
true SNPs should be at the 3rd position of the codon. 
MetaPop outputs all of the SNPs called and their codon 
positions if genic. MetaPop will issue a warning if there 
are more SNPs in the 1st and 2nd positions of a codon. 
Lastly, the global verified consensus allele per each SNP 
position is replaced as the consensus allele in each refer-
ence genome.

SNP linkages in codon variants and downsampling
SNPs are tested for local linkage at the codon level to 
identify codon variants by evaluating their co-presence 
within reads in each BAM file. Multiple programs try 
to link SNPs across the genome into strain haplotypes 
using the reads [39–41, 43]. However, given that shotgun 
sequencing read lengths are shorter than most gene and 
genome lengths, it makes it difficult to resolve genotype 
patterns that span across more than a single read length. 
Assessing linkage across small sequences that can be 
contained with a single read, nonetheless, provides the 
strongest evidence of linkage. MetaPop tests for linkage 
at the codon level due to its importance for studying pro-
tein evolution. The linkage of SNPs, for example, at posi-
tions 1 and 3 within a codon can code for a completely 
different amino acid than if each SNP independently 
arose. Further, codons are short enough to be contained 
with a single read, which allows us to accurately test the 
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linkage between or independence of SNPs shared within 
a codon. The resulting codon variants that code for dif-
ferent amino acids, most often those that have two SNPs 
or SNPs in the 1st or 2nd position of the codon, and 
their resulting impact on protein structure have recently 
become an active area of research in metagenomes [62]. 
Recent work, however, identified these codon variants by 
filtering for highly abundant codon variants already con-
tained within 20 reads [62]. To the best of our knowledge, 
MetaPop is the first program to try to statistically link 
SNPs at the nucleotide level into these codon variants.

In order for MetaPop to link the SNPs at the codon 
level, SNPs that localize in the same codon on the same 
gene are selected as candidates for linked SNP identifica-
tion. The original reads covering the positions of the can-
didates from their respective genomes are collected from 
each BAM file, and the codons relevant to the candidates 
are extracted from those reads. SNPs within the same 
codon are tested in pairs. If more than two SNPs occur 
within a codon, pairwise tests are performed between 
each combination of pairs. A contingency table of the 
frequencies of the extracted codons with both SNPs, the 
number of extracted codons with one SNP, the number 
of extracted codons with the other SNP, and those con-
taining no SNPs is produced. Fisher’s exact tests and phi 
coefficients are calculated. The linked SNP candidates are 
classified as either “linked” (Fisher’s p-value < 0.05, φ > 
0) meaning the SNPs occur together as a set dispropor-
tionately, “independent” (Fisher’s p-value < 0.05, φ < 0), 
meaning the presence of one of the candidates excludes 
some of all of the others in that set disproportionately, 
or as “ambiguous,” meaning that they occur together or 
separately at apparent random, or that there is insuf-
ficient data to classify them otherwise. In ambiguous 
cases, SNPs are treated as independent for downstream 
analyses.

SNP frequencies are subsampled down to 10× cover-
age proportionate to the frequency of different SNPs per 
site while maintaining SNP linkages. This stage normal-
izes the probability of a variant occurrence by chance 
across variant sites within a population genome. It also 
rarefies all the SNP frequencies across all genomes and 
samples allowing for differential SNP frequency testing. 
While the user can adjust the subsampling level, we rec-
ommend that you subsample down to the same average 
read depth cut-off.

Population genetic calculations: θ, π, FST, pN/pS, and Tajima’s 
D
The subsampled SNPs are then used to assess population-
level genetic diversity and explore protein and genome 
evolution. This will occur with both global and local SNP 
calls. If the population occurs in only one BAM file, only 

intra-population diversity (within-population microdi-
versity)—expected nucleotide diversity (θ; [63]) and the 
observed nucleotide diversity (π; [64])—are calculated. 
Both θ and π are calculated at the individual gene and 
whole-genome levels. Because we use a default minimum 
genome coverage of 70%, not every SNP position for a 
population will be covered within a BAM file. To correct 
for this, we use the following equation to estimate θ:

where N is the total number of SNP positions within a 
gene or genome, n is the number of SNPs covered within 
a metagenome, and |G| is the total gene or genome 
length. To estimate π, we modified the Schloissnig et al. 
[23] equation:

where N is the total number of SNP positions within a 
gene or genome, n is the number of SNPs covered within 
a metagenome, |G| is the total gene or genome length, 
xi,Bj is the number of nucleotide Bj seen at position i 
and ci the coverage at position i in the gene or genome. 
If the population occurs in more than one BAM, FST 
([65]; between population microdiversity) is calculated. 
Because FST requires comparing the nucleotide diversity 
per site across two metagenomes, we chose to keep the 
total genome length as the common denominator given 
that the SNP coverage may vary between both metagen-
omes. The implemented equation for FST is directly from 
[23].

To explore selective pressures on specific genes, Meta-
Pop uses two methods: pN/pS [23] and Tajima’s D [66]. 
The implemented equation pN/pS is directly from [23] 
except it factors in codon-constrained SNP linkages. 
Tajima’s D is calculated using the original equation [66], 
but using the π value calculated above, the number of 
SNP positions within a gene as the number of segregating 
sites, and the ceiling mean read depth for the number of 
sequences.

Results and discussion
Biological evaluation of MetaPop
In order to test MetaPop, we ran the pipeline on three 
previously published datasets, a synthetic dataset rep-
resenting mock bacterial communities and two biologi-
cal virome dataset with natural variation (i.e., beyond 
that in the mock community). The synthetic dataset is 
composed of 30 mock, bacterial metagenomic commu-
nities of different known-proportions of Staphylococcus 
aureus, Staphylococcus epidermidis, and Bacillus subtilis 

θ =
N

| G | −(N − n)

π =
1

|G| − (N − n)

|G|∑

i=1

∑

B1∈{ACTG}

∑

B2∈{ACTG}\B1

xi,B1

c1

xi,B2

c1 − 1
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strains ([34]; see Table  S1). The first biological virome 
dataset included 131 of the viromes deriving from the 
Tara Oceans expedition from the Global Oceans Virome 
2 (GOV2; [20]) dataset. This dataset was the first data-
set to assess microdiversity in metagenome-assembled 
viral genomes at a community-wide scale and provided 
the methodological backbone of MetaPop. The second 
biological virome dataset was composed of gut viromes 
from 12 autistic children that underwent fecal microbiota 
transfers and 6 neurotypical children ([67]; see Table S2). 
The default visualization outputs of MetaPop for the sec-
ond biological virome dataset can be seen in Fig. 2.

MetaPop reproduces macrodiversity patterns in silico mock 
communities
We first tested MetaPop’s default settings to accurately 
determine community composition and to calculate mac-
rodiversity values across the 30 mock bacterial metagen-
omic communities. The communities are of varying 
known proportions of three distinct strains of S. aureus, 
three distinct strains of S. epidermidis, and a single strain 
of B. subtilis [34] and have varying numbers of reads, 
from ~ 2 million reads (communities 1–10), ~ 3 million 
reads (communities 11–20), ~ 6 million reads (commu-
nities 21–30). This dataset is practical to test macrodi-
versity calculations in MetaPop because the community 
is composed of two dominant closely related bacterial 
species-level populations (S. aureus and S. epidermidis) 
that share > 80% ANI and a more distantly related, rare, 
species-level population (B. subtilis) (Fig. S1). This taxo-
nomic combination and different simulated sequencing 
depth enabled us to determine whether MetaPop could 
distinguish between closely related populations, and 
whether increased microdiversity within a population 
as well as sequencing depth impacted our ability to cor-
rectly assess macrodiversity.

Across the 30 communities, bacterial population rela-
tive abundances were almost identical to the simulated 
proportions with only a 0.98 and 1.08 mean fold change 
differences of the S. aureus and S. epidermidis spe-
cies, respectively, and a 0.26-fold change average differ-
ence of the B. subtilis which is simulated to represent a 
rare taxon across the communities (Fig.  S2A). This fold 
change difference is similar to or less than known quan-
titative biases, such as 10% divergence in alpha- and 
beta-diversity values seen in other metagenomic analy-
ses for viruses [68] and ~ 3–9% divergence the microbes 
if genome length is accounted for [49]. The number 
of strains within each population and the number of 
reads did not impact detection of different populations 
(Fig.  S2A). MetaPop estimates of α-diversity (Fig.  S2B; 
all α-diversity indices: Wilcoxon p > 0.05) and β-diversity 
(Bray-Curtis dissimilarity) did not significantly differ 
from the actual values (Fig. S2C; Mantel’s test p > 0.05). 
Thus, despite the minor fold change differences in com-
munity composition and difficulty in accurately detecting 
the abundances of rare taxa, MetaPop is generally able to 
accurately assess the community composition and mac-
rodiversity biological trends.

MetaPop’s codon usage bias analyses detect highly expressed 
and horizontally transferred genes in Staphylococcus aureus
MetaPop also looks for variation in codon biases among 
genes within each genome. Genes with different codon 
usage are often associated with horizontal gene trans-
fer, high expression, or different temporal regulation of 
expression [53–55]. To determine the biological valid-
ity of MetaPop’s codon’s usage analysis, we evaluated 
codon bias across all 7 strains in the mock community. 
We choose to focus our analyses on the genome of an 
ST5 methicillin-resistant strain of S. aureus (see the 
full list of codon bias outliers in Table  S3) because it is 
a well-studied human pathogen with known regions of 

(See figure on next page.)
Fig. 2  MetaPop Visualization Outputs from our autism biological virome dataset. Pre-processing visualizations include a bar plot showing how 
many reads were kept and removed following removal of reads below a 95% ID cut-off across all samples, b scatter and bar plot composites (1 
example shown) reported per sample showing how many genomes pass the horizontal and vertical coverage cut-offs, and (b—inset) donut plots 
summarizing the total number of genomes passing the different horizontal and vertical coverage cut-offs per sample. Macrodiversity visualizations 
include a heatmap summarizing the normalized abundances of covered genomes across the different samples (the max value on the color scale 
reported is the 75% quantile of all abundances to allow low abundance genomes to be better displayed; another heatmap not shown is also 
created showing a full range of abundances), b scatter plots per each alpha diversity index (4 examples shown) showing the alpha diversity value 
across all samples with horizontal lines showing the mean and median values, c ordination plots (PCA, PCoA, and NMDS) of all centered-log ratio 
transformed Euclidean distances, Bray-Curtis distances, and Jaccard distances, respectively (all distances are plotted using the 3 ordination methods 
by default). The color of each circle represents the species richness within each sample. The codon usage bias visualization is a circular bar plot per 
genome (1 example shown) showing the Euclidean distance of each gene from the average gene codon bias. Genes with outlier codon biases are 
displayed in red. Microdiversity visualizations include a Stacked bar plot (right) and standard bar plot (left) showing the distribution of SNPs across 
codon position and the total number of SNPs per sample. bFST heatmaps per genome (2 examples shown) showing the population differentiation 
per genome across all samples it has coverage within. c Genome plot composites for each genome in each sample where it has coverage (1 
example shown) with four different tracks from top to bottom showing a line graph of the depth coverage of the genome, a genome plot of the 
genome with coloration of genes showing pN/pS results, a scatter plot showing π and θ values, and, lastly, a scatter plot showing Tajima’s D values 
with the color background showing whether the value is indicative of selection
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Fig. 2  (See legend on previous page.)
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the genome that were horizontally transferred [69, 70] or 
highly expressed [69, 71, 72]. Importantly, MetaPop, in its 
default settings, is conservative because it compares each 
gene’s codon bias to the average codon bias across the 
whole genome and will, thus, underestimate the num-
ber of genes with different codon usage. However, these 
settings are adjustable by the user. Given this conserva-
tive approach, we could only validate how many genes 
with a detected difference in codon bias were either 
mobile elements or highly expressed genes. Across the S. 
aureus ST5 strain, the vast majority (71%; 104 out 149) of 
the genes detected to have outlier codon usage have no 
known function. Of the remaining 45 annotated genes 
MetaPop detected with outlier codon usages, 20% are 
genes on known mobile elements (so prone to HGT) or 
are thought to be horizontally transferred and 47% are 
known to be highly expressed (Fig.  S3). The identified 
known mobile elements include many toxin-antitoxin 
system genes [69, 70] and putatively transferred DltX 
and DltC proteins involved in wall teichoic acid, as well 
as poly(glycerol-phosphate) alpha-glucosyltransferase, 
a type of glycosyltransferase [73]. The highly expressed 
genes include ribosomal proteins [71], genes involved in 
transcription and translation such as elongation factor Tu 
[71, 74], chaperones [71, 75, 76], and all the phenol-sol-
uble modulins (PSMα1-4 and PSMβ; [72]). Thus, Meta-
Pop, in its default conservative settings, will not identify 
all horizontally transferred genes or highly expressed 
genes, but it provides an important first look at potential 
targets for further study.

MetaPop reproduces microdiversity patterns in the Global 
Oceans Virome 2 dataset
Using the GOV2 dataset, we next evaluated Meta-
Pop’s ability to assess microdiversity values and trends 
(Fig. S4). MetaPop calls SNPs using two methods, either a 
(1) global or (2) local approach. For global SNPs calls, the 
base pair coverage for each SNV position per genome is 
pooled across all metagenomes and the consensus allele 
verified. The original GOV2 paper explored microdiver-
sity in the form of average nucleotide diversity (π) per 
sample by randomly subsampling the π values of differ-
ent viral populations in each sample and averaging those 
values. We replicated these methods with the π values 
calculated using MetaPop where SNPs were called locally 
when they had a differential base with a PHRED score 
≥ 30 (see “Materials and methods”). As a result, we ran 
MetaPop using PHRED ≥ 30 and its default of ≥ 20 on 
the GOV2 dataset.

Importantly, MetaPop calculates π slightly differ-
ently than the method used in the original analyses of 
the GOV2 dataset. The original method used the exact 
equation derived from Schloissnig et al. 2013 [23] which 

divides the calculated nucleotide diversity by the total 
genome length to obtain π. Because of unequal coverage 
across genomes in each sample, SNP positions are often 
not covered so it is impossible to assess the diversity at 
that site. As a result, MetaPop subtracts the number of 
SNP positions not covered from the genome length prior 
to dividing the nucleotide diversity in order to calculate 
π. Thus, π values from MetaPop will be slightly higher 
than values using the Schloissnig et  al. 2013 [23] equa-
tion. As expected, MetaPop’s average π using the same 
SNP calling thresholds (PHRED ≥ 30 and local SNP calls) 
were slightly higher (median 1.33 fold-change) than the 
original GOV2 average π (Fig. S4A, left). Due to the dif-
ferences in random subsampling, there were also clear 
deviations between the original GOV2 average π val-
ues and the MetaPop derived values. Nonetheless, the 
original GOV2 average π and MetaPop’s average π still 
strongly correlated (Fig. S4A, right; linear regression: R2 
> 0.62), indicating that despite higher average π and slight 
fluctuations in average π derived from the random sub-
sampling process, the biological microdiversity patterns 
are still being captured due to a systematic adjustment 
consistent with calculations from fragmented genomes 
that derive from metagenomic datasets.

The SNP calling approach (global versus local) and 
PHRED score (i.e., a measure of the quality of the called 
nucleotide) can also impact downstream π values. Global 
SNP calling, for example, incorporates all SNP loci that 
were identified in any sample in the dataset into the π 
calculation for each sample (even if it was not called as 
an SNV for that exact sample), which will increase π. 
Using the GOV2 dataset, we see just that with PHRED 
≥ 30 global SNP derived average π having a median 
4.32-fold increase from the original GOV2 average π 
values calculated using PHRED ≥ 30 and local SNP 
calls (Fig.  S4B, right) and a median 3.19-fold increase 
over MetaPops’s average π using PHRED ≥ 30 and local 
SNP calls (Fig. S4E, right). Further, decreasing the mini-
mum PHRED score requirements allows more potential 
SNVs and thus SNPs to be called per sample and, thus, 
the average π values should be higher. As expected, we 
see that using a PHRED ≥ 20 global SNP call approach 
increases average π values by a median 5.88 fold-increase 
from the original GOV2 average π values calculated 
using PHRED ≥ 30 and local SNP calls (Fig.  S4C, left) 
and 1.32 fold change from MetaPop’s PHRED ≥ 30 global 
SNP approach (Fig. S4D, left). Importantly, regardless of 
SNP calling approach or PHRED score cut-off, the π cal-
culated using the original GOV2 approach or MetaPop’s 
approaches are all strongly correlated (Fig. S4A-E, right; 
linear regression: R2 > 0.48 to 0.68). Further, analyses of 
larger microdiversity trends across ecological zones in 
the ocean defined in the original GOV2 analyses were 
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also able to be replicated using both PHRED score cut-
offs testing and a global and local approach (Fig.  S4F). 
Taken together, MetaPop is able to accurately derive 
microdiversity values and biological trends.

MetaPop’s codon‑constrained linkage of SNPs improves 
detection of positively selected genes
Using the two biological datasets, we evaluated the 
impact of MetaPop’s novel codon-constrained SNP link-
ages on pN/pS selection analyses. The original pN/pS 
equation [23] calculates the number of non-synonymous 
and synonymous codons without first evaluating if SNPs 
within the same codon are linked. If the two codon-con-
strained SNPs are linked, with the exception of two codon 
variants for leucine, the presence of two SNPs within 
the same codon will always lead to a non-synonymous 
codon. Thus, without codon-constrained SNP linkages, 
we hypothesized that we may be underestimating the 
number of genes detected under positive selection using 
pN/pS. MetaPop tries to resolve this issue by linking 
SNPs at the read level (as many tools do), but also at the 

codon level (see the methods in “Step 3: Microdiversity 
analyses” section above). We tested our hypothesis on the 
GOV2 and autism biological datasets using MetaPop and 
a global SNP calling approach to maximize the number of 
codons with putatively linked SNPs per sample.

Of the total genes in the autism dataset, ~ 1.4% of 
genes (n = 248) with enough coverage to evaluate selec-
tion had ≥ 1 codon with putatively linked SNP in at least 
one sample (Fig.  3A, top—larger circle). Of this subset, 
16.97% contained at least one codon with potentially 
linked SNPs (Fig. 3A, top—smaller circle). The subset of 
genes containing a putatively linked codon had their pN/
pS ratios calculated using both with and without linking 
SNPs, and their results were compared. When SNPs were 
not linked, we observed that 21.7% of the genes (n = 54) 
displayed positive selection, and when linking SNPs, we 
observed that 26.9% of the genes (n = 63) displayed posi-
tive selection (Fig. 3A, bottom). There were minimal dif-
ferences using a PHRED ≥ 30 or ≥ 20, with PHRED ≥ 30 
detecting 25.4% (n = 258) genes under positive selection 
using the codon-constrained SNP linkages, compared 

Fig. 3  MetaPop’s codon-level SNP linkages increase the number of positively selected detected genes using pN/pS. (A–C, top) Pie charts displaying 
the predicted genes belonging to a contig which passed preprocessing coverage and depth cutoffs, genes with at least one SNP observed, and 
genes with at least one codon with putatively linked SNPs, and a pop-out pie chart showing the breakdown of genes with observed SNPs and 
those containing a codon with putatively linked SNPs. (A–C, bottom) Barplots comparing the percent of genes under selection when calculated 
after linking SNPs vs. not attempting to link SNPs. Data is shown for the autism biological virome dataset using A PHRED20 and B PHRED30 global 
SNP calls and on the Global Oceans’ biological virome dataset using C PHRED30 global SNP calls
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with 26.9% (n = 271) with PHRED ≥ 20 (Fig.  3B). In 
GOV2, we observed a similar pattern. In GOV2, 5% of 
genes (n = 229,058) with enough coverage to evalu-
ate selection had ≥ 1 codon with putatively linked SNP 
(Fig.  3C, top—larger circle). Of this subset, 20.1% con-
tained at least one codon with potentially linked SNPs 
(Fig.  3C, top—smaller circle). Similarly to the autism 
dataset, we saw that SNPs linkages increased the number 
genes detected under positive selection from 21.7% (n = 
50,094) to 24.56% (n = 56,467) (Fig. 3C, bottom). Thus, 
MetaPop’s codon-constrained SNP linkage shows that 
we are underestimating the number of positively selected 
genes that contain these putatively linked SNPs by an 
average of ~ 4%. Further, it shows that utilizing pN/pS to 
identify genes under selection without linking SNPs at 
the codon misses genes under positive selection.

Microdiversity: a case study in assessing intra‑population 
variation reveals gut viruses may play a role in dysbiosis 
of autistic children’s guts
To demonstrate the value of adding estimates of micro-
diversity to a researcher’s toolkit, we used MetaPop 
to re-analyze the gut viromes of autistic children that 
underwent fecal microbiota transfer (FMT) and their 
neurotypical peers. Eighty percent of autistic children 
suffer gastrointestinal problems, so understanding how 
the gut microbiota differs between autistic and neurotyp-
ical children may be important for treating this symptom 
of autism [77]. Previously, we found bacterial macrodi-
versity was lower in autistic children compared to their 
neurotypical peers, but that viral macrodiversity (Shan-
non’s H) was not significantly different (see Fig. 4A; Wil-
coxon’s test p = 0.89; [67]). Thus for this demonstration, 
we chose to specifically focus on the macro-α-diversity 
Shannon’s H (as a positive control for whether MetaPop 
could recover our past observations), and the microdi-
versity average π (to assess what biological inferences can 
be gained by such measures).

Here, MetaPop revealed that average viral microdi-
versity (π) is significantly lower in autistic children than 
within their neurotypical peers (Fig.  4B; Wilcoxon’s test 
p = 0.028), paralleling our previous bacterial macro-
diversity findings [67]. High average π can indicate two 
biological outcomes: (i) more viruses from different 
populations are actively infecting host bacteria result-
ing in population expansion and more mutations, or (ii) 
more viral populations naturally maintain higher levels of 
microdiveristy in their standing populations. Either way, 
having a higher level of microdiveristy for a viral popu-
lation can be an adaptive advantage because it better 
allows populations to “bet hedge” if their environment or 
hosts change [78]. We next looked to see if this increased 
microdiversity could be providing an adaptive advantage 

to neurotypical children by exploring the average num-
ber of genomes containing a gene found under positive 
selection using pN/pS. Indeed, neurotypical children had 
significantly more genomes with at least one gene under 
selection than the autistic children (Fig.  4C; Wilcoxon’s 
test p = 0.026). Thus, we hypothesize that increased aver-
age π is beneficial in the gut virome because it allows viral 
populations to better adapt to their changing environ-
ments and hosts. Increased diversity at either the macro- 
and microdiversity level has consistently been shown to 
be important for maintaining ecosystem functions and 
services (e.g., [78, 79]), with the loss of diversity result-
ing in a loss of ecosystem resilience. Thus, the loss of viral 
microdiversity in autistic children’s guts could potentially 
be indicative of a loss of the gut ecosystem’s resilience.

Next, given that the autistic children underwent FMT, 
we were also curious how FMT impacted their viral 
microdiversity. We compared the pre-FMT (week 0) to 
the post-FMT (week 10) gut viral microdiversity (see [67] 
for full information about FMT design). Of the 12 autis-
tic children with viromes available, 10 of the children 
responded positively to FMT treatment and 2 did not. 
Given the hypothesis that increased average π is benefi-
cial, we expected to see that all of the responders would 
have increased viral microdiversity. Instead, we saw an 
interesting pattern (Fig.  4D). Six of the children with 
virome data were given the FMT orally, with the other 
six were given the FMT rectally. Across the responders 
that received FMT orally, only 2 of the 5 children had 
increased viral microdiversity, and only an average 1.36-
fold increase at that. In contrast, 4 of the 5 children that 
received the FMT rectally responded with increased viral 
microdiversity, and they did so with a larger (11.58-fold) 
average increase. This suggests that rectal administration 
of the FMT may promote engraftment of more micro-
diverse viral populations, at least those surveyed in the 
feces, than the oral administration of FMT. This contrasts 
the findings at the clinical symptom level that found no 
significant difference in changes in children that received 
the oral or rectal FMT [67]. Taken together, though the 
study was pilot-scale and open-label, these microdiver-
sity results suggest that viral population structure is asso-
ciated with the autism disease phenotype and that the 
FMT delivery method may correlate to responder status. 
Again, however, a larger study is needed to better guide 
standard of care practices.

Computational evaluation of MetaPop
We next evaluated the processing time and computa-
tional resource consumption of MetaPop by running the 
synthetic mock bacterial and two biological datasets on 
the Ohio Supercomputer (OSC). To simulate different 
computational power, from a standard laptop to desktop 
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computer to a small-sized computer cluster, we ran 
MetaPop using 4, 6, and 14 cores, using 8, 16, and 64 GB 
of memory (RAM), respectively (see Fig. 5A). The much 
larger GOV2 dataset needed more cores and memory 
to run than the different settings tested, and was sup-
plied with 48 cores and 128GB of memory. Importantly, 
MetaPop’s code is parallelized, so increasing the number 
of supplied cores will increase the memory used because 
MetaPop will try to parallelize its steps as efficiently as 
possible given the computational resources supplied.

To assess both processing time and computational 
resource consumption, we first wanted to determine what 

steps in the MetaPop pipeline were rate-limiting. Across 
both the synthetic and biological datasets, the pre-pro-
cessing and the SNP calling portion of the microdiversity 
section took the most processing time (Fig.  5B). These 
two steps operate on the entirety of data supplied by the 
user, and must perform multiple operations on every 
read in each BAM file, and for every contig supplied. This 
means that they must process large volumes of data and 
consume commensurate computational resources. Fur-
ther, the resources consumed by these steps depend on 
the degree of parallelization, as each parallel process will 
operate on its own set of data, simultaneously. The latter 

Fig. 4  MetaPop’s microdiversity analyses reveal lower intra-population diversity in autistic children. Boxplots showing median and quartiles of 
A Shannon’s H, B average nucleotide diversity (π), and C the average number of genomes under selection in pre-FMT autistic and neurotypical 
children. The Wilcoxon’s test p-values above are the result from comparing pre-FMT autistic and neurotypical children values. D Connected dot plot 
showing the average π for the autistic children pre-FMT and post-FMT. The color filling the circle represents the pre- and post-FMT status and the 
outlier color of the circle represents the method in which the FMT was delivered (oral or rectal delivery). The colored squares next to the autistic 
child’s ID corresponds to whether the child responded or did not respond to the FMT treatment
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portions of the pipeline work on summaries produced 
by pre-processing and SNP calling steps and are, corre-
spondingly, faster because they do not have to operate 
on the entire input dataset, even though these later steps 
have substantially less parallelization.

With the knowledge of the rate-limiting steps, we then 
assessed the effect of BAM file size and the amount of 
computational power supplied on processing times. BAM 
files size is impacted by the number and length of refer-
ence genomes and the original number of reads. The syn-
thetic and biological datasets differ substantially in these 
values resulting in vastly different BAM file sizes and 
allowing us to test MetaPop across a range of BAM file 
sizes, with the average synthetic dataset’s BAM file size 
equal to 320 megabytes (MB), the average autistic biolog-
ical dataset’s BAM file size equal to 1 gigabyte (GB), and 
the average GOV2 biological dataset’s BAM file size equal 
to 6.7 GB. The processing time of the rate-limiting steps 
were nearly linear functions of BAM file size across the 
biological datasets (linear regression: R2 =0.985 (autism 

virome), R2 = 0.9564 (GOV2); Fig.  S5A&C). The syn-
thetic dataset contained some samples with many more 
genomes present than others, which resulted in runtimes 
dividing into two distinct groups. This demonstrates an 
additional effect of community complexity on MetaPop’s 
runtime. However, BAM file size was still linearly corre-
lated with runtime within each group (linear regression: 
R2 = 0.885 (synthetic group 1) and R2 = 0.841(synthetic 
group 2); Fig. S5B).

We were next curious about how many of the computa-
tional resources were consumed of the memory supplied. 
The maximum memory consumption for the synthetic 
dataset was 5.75GB on 4 cores, 7.42 GB on 6 cores, and 
10.82 GB on 14 cores. For the biological dataset, Meta-
Pop utilized 3.94 GB of RAM on 4 cores, 5.39 GB on 6 
cores, and 12.43 GB on 14 cores. Overall, these results 
show that MetaPop can be successfully run using low 
computational resources and will adjust the resources 
consumed based on the computational power supplied 
for datasets with average BAM sizes around 1GB, but will 

Fig. 5  Computational evaluation of MetaPop. A Schematogram showing the different computational power levels tested. B Line plots showing 
cumulative runtime of MetaPop on (left) the autism biological virome dataset, (center) the synthetic bacterial dataset with 4, 6, and 14 processors, 
and (right) the GOV2 biological virome dataset using 48 processors
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need more computational resources for large datasets 
like GOV2.

Limitations and future directions
While MetaPop provides the sort of ease-of-use and scal-
ability that we hope will open up microdiversity analyses 
to more researchers, our current implementation will 
benefit from future improvements. First, MetaPop was 
designed and optimized for single-contig genomes, so it 
does not work with binned-contig genomes and will treat 
each new contig as a different population. Nonetheless, 
it is possible to derive macro- and microdiversity calcu-
lations across binned contigs. The average read depth 
and nucleotide diversity per position for each contig per 
BAM file is output, so it is possible to derive the macrodi-
veristy abundance tables and microdiversity π values for 
binned contigs from MetaPop output. Second, MetaPop’s 
default settings are optimized for short-read datasets. As 
more hybrid sequencing and assembly efforts are used 
to explore microbial and viral communities (e.g., [30, 
31]), which capture more niche-defining hypervariable 
regions, adjustments for MetaPop’s abundance calcula-
tions and SNP calling will need to be done. Though not 
prohibitive, this will require benchmarking studies that 
assess the nuances of new sequencing technology (e.g., 
homopolymers for nanopore sequencing) to correct for 
per base pair sequencing errors against the background 
of real biological mutations, many of which are now 
emerging (e.g., [80]). Finally, MetaPop is benchmarked 
for studying community and population-level diver-
sity and selection, we have not optimized it for resolv-
ing strain-level genotypes. However, as other tools (e.g., 
InStrain; [29]) solve the problem of reconstructing strains 
from metagenomes, the resultant genotypes could be 
input to MetaPop.

Conclusions
MetaPop is a fast and scalable pipeline for the analyses 
of both macro- and microdiversity in metagenomic data. 
It combines both classical community ecology metrics 
with the full suite of population genetics parameters in 
a single integrated pipeline. While many of its functions 
are already available in existing pipelines [29, 39, 42, 44], 
MetaPop’s easy user interface (i.e., single-line command) 
and ability to be run on a standard laptop for smaller 
datasets make it a practical choice for non-bioinforma-
ticians and microbiology labs without access to large 
supercomputers. Further, MetaPop’s default visualiza-
tions enable fast and easy interpretation of the results.

Molecular biology and sequencing technology 
advances have advanced the microbiologist’s toolkit from 
16S rRNA gene analyses to metagenomics and changed 
questions we could ask from “who is there” to also add 

“what could they be doing” and “with whom might they 
interact”. Now, with further technological advances and 
by democratizing microdiversity analyses, we open a new 
window into the study of complex communities such 
that we can now ascertain “what populations have high 
microdiversity levels” and “which genes are under selec-
tion.” While studying microdiversity has been hard due 
to lack of data and ease of toolkit, we are entering an era 
where such data and toolkits are available such that our 
understanding of these new biological windows will pro-
vide new insights into how complex systems work. Meta-
Pop gives scientists an ideal toolkit to explore the dual 
impact of macro- and microdiversity across microbially 
impacted ecosystems.

Materials and methods
Preparing the mock and biological dataset input files 
for MetaPop
We chose three previously published datasets, a syn-
thetic dataset representing mock bacterial communi-
ties [34] and two biological virome datasets including 
131 viromes from the Global Oceans Virome 2 (GOV2) 
datasets [20] and gut viromes from autistic children 
that underwent FMT and their neurotypical peers [67], 
to evaluate MetaPop. The synthetic dataset was com-
posed of known proportions of three distinct strains of 
S. aureus (ST5, ST8, and ST30), three distinct strains of S. 
epidermidis (TAW60, CV28, 1290N), and a single strain 
of B. subtilis [34]. Because MetPop explores inter- and 
intra-population-level analyses, we selected one strain of 
S. aureus (ST5 strain ECT-R2; GenBank: NC_017343.1), 
one strain of S. epidermidis (TAW60: binned assembly 
from [81]), and one strain of B. subtilis (strain 168; Gen-
Bank: NC_000964.3) as the population-level genome 
representatives. For the GOV2 dataset, we used the Tara 
Oceans 131 viromes from GOV2 and did not process the 
Malaspina viromes. The 488,130 viral populations identi-
fied in [20] were used as the reference genomes. For the 
biological gut virome dataset which comprised 49 gut 
viromes, we used the gut viral database from the bioRxiv 
version of [20] as the population-level reference genomes. 
Reads from both the mock and biological datasets were 
non-deterministically read mapped with a maximum 
fragment length of 2000 to their respective reference 
genomes using bowtie2 [82]. The resulting BAM files, the 
reference genomes, and read counts for each metagen-
ome were used as input for MetaPop. MetaPop was run 
using the default settings if not otherwise noted.

Evaluating the processing time, computational resource 
consumption, and scalability of MetaPop
In order to computationally evaluate and benchmark 
MetaPop, we emulated the resource environment of 
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several likely computational platforms and attempted 
to process both the synthetic and biological datasets 
using these resources. The average BAM file size of 
the mock synthetic dataset BAM is 320 MB and has 
30 samples, and of the biological dataset BAM is 1013 
MB, with a total of 49 samples. The chosen computa-
tional scales reflect a fairly typical laptop computer, 
with 4 processing cores and 8 GB of RAM, a desk-
top computer with 6 cores and 16 GB or RAM, and a 
supercomputing environment using all 14 cores on one 
of the Ohio Super Owens (OSC; [84]) nodes and 64 GB 
of RAM.

The Owens nodes are each equipped with a Intel 
Xeon e5 2680 v4 Broadwell processor, which has 14 
cores, and each node shares identical RAM and data 
storage characteristics. This provides parity between 
the differing scales of the computing environment, ren-
dering maximum permissible memory and allocated 
cores the sole difference affecting runtime and memory 
usage. Finally, the OSC process manager terminates the 
execution of code which exceeds the supplied mem-
ory of any given job, meaning that exceeding specified 
RAM results in a failure of MetaPop to complete, just 
as it would in an environment actually limited by such 
resources. While the manager would also terminate a 
job which exceeded a specified runtime, we supplied 
each instance with excessive runtime so that this would 
not be a factor.

As it runs, MetaPop outputs timings for its five core 
components, namely preprocessing, SNP calling/refine-
ment, linked SNP read mining and linkage calculations, 
calculation of microdiversity, and calculation of mac-
rodiversity. In addition to the per-component timings, 
MetaPop outputs timings for each individual sample in 
sections of the code where each file is processed inde-
pendently from the others. In both cases, these outputs 
include a date and time of start and finish for each step, 
and provide accurate timing for both the overall runt-
imes of each processing phase and for the time needed 
to run individual samples through preprocessing and 
SNP calling. MetaPop’s overall runtime was calculated 
as a simple sum of the per-component runtimes.

In order to profile memory usage during the vari-
ous phases of MetaPop, we relied on computational 
resource logs produced by the Ohio Supercomputer. 
These files report a variety of computational resource 
consumption statistics associated with a particular 
task, which includes the peak memory footprint for any 
collection of processes contained within a single job on 
the supercomputer. This approach answers the most 
pertinent question for users: what is the minimum 
RAM that is required to run a dataset of a given scale 
through MetaPop with a particular number of cores.

Mock community macrodiversity validation
In order to assess MetaPop’s ability to resolve macro-
diversity, we compared MetaPop’s predicted relative 
abundances to the known relative abundances in the 30 
mock communities [34]. Importantly, some of the ref-
erence genomes for the mock communities were not 
closed genomes. Thus, in order to calculate the raw 
abundances, the mean coverage across all base pairs in 
all fragments within the reference gene were calculated, 
excluding coverages below the 10th and above the 90th 
percentile per base pair. These values were then scaled as 
described in the “Macrodiversity analyses” above to cre-
ate the normalized abundances. Prior to comparing the 
relative abundances, MetaPop’s calculated normalized 
abundances were converted into relative abundances by 
dividing each population’s normalized abundance in a 
community by the sum of all the population’s normalized 
abundances. The fold change difference between MetaP-
op’s calculated observed relative abundances and known 
relative abundances was then assessed using “foldchange” 
in the R package “gtools.” Next, the calculated macrodi-
versity α (Richness, Shannon’s H, and Peilou’s J) between 
the observed MetaPop values and the expected actual 
values across the 30 mock communities were compared 
using Wilcoxon tests in the R package “ggpubr.” β-(Bray-
Curtis dissimilarity) diversity calculated distances cal-
culated across all 30 communities then compared using 
a Mantel’s test in the R package “vegan.” Lastly, FastANI 
[83] using default settings was used to compare average 
nucleotide identity across the different strains and spe-
cies within the mock community.

Mock community codon bias analyses
We chose to evaluate MetaPop’s ability to pull out genes 
with different codon bias usage by examining the Staphy-
lococcus aureus strains in the 30 mock communities [34]. 
S. aureus are well studied to their clinical relevance and 
there is a great deal of knowledge about the different 
genes and elements that have been horizontally acquired 
within their genomes [69, 70] and, to some extent, genes 
with increased expression (Malachow et  al. 2011, [71, 
74]). In order to assess the codon bias usage outlier part 
of MetaPop, we manually curated a list of known hori-
zontally transferred and highly expressed genes and com-
pared it to the list of genes with different codon bias 
usage predicted by MetaPop. We then calculated what 
proportion of the predicted genes with different codon 
bias usage were known to be horizontally acquired or 
highly expressed.

Global Oceans Virome 2 microdiversity validation
In order to assess MetaPop’s ability to resolve microdiver-
sity values and patterns, we computed the microdiveristy 
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(average π) per sample in the 131 GOV2 samples based 
on MetaPop’s calculated nucleotide diversity (π) and 
compared it to the published microdiversity values [20]. 
To calculate microdiveristy for each sample, average π 
was calculated by randomly selecting the π values of 100 
viral populations and then averaging their values (sensu 
[20]). This was repeated 1000× and the average of all 
1000 subsamplings was used as the final average micro-
diversity value for each sample. The values were plotted 
using the line graph and scatter plot functions in Excel. 
The linear regressions were also run in Excel. The sample 
microdiversity values were then grouped by ecological 
zone as defined in [20] and, unlike the original analyses, 
the values were not subsampled from each ecological 
zone and then averaged in order to see the better spread 
of the values per zone. The ecological zone values were 
plotted and statistical differences assessed using the R 
package “ggboxplot.” GOV2 SNPs were originally locally 
called using a PHRED ≥ 30. We ran MetaPop using a 
PHRED ≥ 20 (MetaPop’s default) and ≥ 30 to filter the 
variants and then assessed SNP calls both globally (for 
PHRED ≥ 30 and ≥ 20) and locally (for PHRED ≥ 30). 
The fold change difference between MetaPop’s average π 
values and the original GOV average π values were then 
assessed using “foldchange” in the R package “gtools.”

Biological dataset microdiversity analyses
To compare macro- and microdiversity in the autism 
virome dataset [67], the predicted macrodiversity α 
(Shannon’s H) values, the microdiversity (average π), and 
the percentage of genomes under positive selection for all 
the autistic and neurotypical children prior to FMT treat-
ment were compared using Wilcoxon tests in the R pack-
age “ggpubr.” To calculate microdiveristy for each sample, 
average π was calculated by randomly selecting the π val-
ues of 10 viral populations and then averaging their val-
ues (sensu [20]). This was repeated 50× and the average of 
all 50 subsamplings was used as the final average micro-
diversity value for each sample. To calculate the percent-
age of genomes under positive selection per sample, viral 
populations with at least one gene detected under positive 
selection (pN/pS > 1) per sample were determined and 
pooled with the viral populations with enough coverage to 
analyze microdiversity. Similarly, to average π, the 10 viral 
populations per sample were randomly selected and then 
the percentage that were detected to be under positive 
selection assessed. This was repeated 50× and the average 
of all 50 subsamplings was used as the final average per-
centage of viral populations detected under positive selec-
tion for each sample. The pre- and post-FMT viromes of 
the autistic children were then plotted using the R pack-
age “ggplot2” and the fold change difference was assessed 
using “foldchange” in the R package “gtools.”
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Additional file 1: Figure S1. Heatmap showing % average nucleotide 
identities (ANI) similarities among the different strains and populations 
in the 30 mock communities. Figure S2. Validating MetaPop’s macrodi‑
versity and codon bias analyses. (A) Tornado plot showing the relative 
abundances of Staphylococcus aureus, Staphylococcus epidermidis, and 
Bacillus subtilis across the 30 mock communities in the actual synthesized 
community and as determined by MetaPop. Bar charts contained within 
the gray bar to the left of the tornado plot reveal the number strains per 
each bacterial species, with three being the highest number of strains per 
species. (B) Boxplots showing median and quartiles of different α-diversity 
indices (richness, Shannon’s H, and Peilou’s J) compared between the 
actual and MetaPop derived abundances. The Wilcoxon test p-values 
above are the result from comparing actual and MetaPop derived 
α-diversity indices. (C) Heatmaps of β-diversity Bray-Curtis dissimilarity 
distances calculated using the actual and MetaPop derived abundances. 
Figure S3. Genome map of genes with outlier codon usage in ST5 Staph-
ylococcus aureus ECT-R2. Figure S4. Validating MetaPops’s microdiversity 
analyses using the Global Oceans Virome 2 dataset. (A-E, right) Line plots 
sorted by the original average nucleotide diversity (π) values from [20] 
and (A-E, left) scatter plots comparing the average π for the Tara Oceans 
stations in the GOV2 dataset derived from the (A) original GOV2 values 
versus MetaPops’s PHRED≥30 local SNP calls, (B) original GOV2 values 
versus MetaPops’s PHRED≥30 global SNP calls, (C) original GOV2 values 
versus MetaPops’s PHRED≥20 global SNP calls, (D) MetaPops’s PHRED≥20 
global SNP calls versus MetaPops’s PHRED≥30 global SNP calls, and (E) 
MetaPops’s PHRED≥30 global SNP calls versus MetaPops’s PHRED≥30 
local SNP calls. The dashed line in the scatter plot represents the linear 
regression. (F, left to right) Bar plots showing the biological microdiver‑
isty trends across the ecological zones defined in [20] derived from the 
original GOV2 values, MetaPops’s PHRED≥20 global SNP calls, MetaPops’s 
PHRED≥30 global SNP calls, and PHRED≥30 local SNP calls. Figure S5. 
Scatterplots with Loess smoothing displaying runtime per sample for 
the rate-limiting part of MetaPop (i.e. pre-processing and the SNP calling 
section of microdiversity) as a factor of file size in megabytes on (left and 
right) the biological datasets and (center) the synthetic dataset.

Additional file 2: Table S1. Mock communities data actual and metapop 
derived abundances. Table S2. Biological virome dataset population 
abundances. Table S3. Full codon bias usage results for all genes in 
Staphylococcus aureus ECT-R2.

Acknowledgements
Pipeline design and discussion with Sergei Solonenko and Cesar J. Igna‑
cio Espinoza is gratefully acknowledged. For help with digging into the 
Staphylococcus literature, we would like to thank Rodrigo Bacigalupe and Amy 
Richards. Lastly, we would like to thank the Sullivan lab and Konstantinidis lab 
members for testing the pipeline and providing input during the develop‑
ment of MetaPop.

Authors’ contributions
A.C.G. and K.G. designed and coded the MetaPop pipeline. A.C.G., K.G., Z.Z., 
B.B., B.T., K.T.K, and M.B.S created the study design, analyzed the data, and 
wrote the manuscript. All authors approved the final manuscript.

Funding
Computational support was provided by an award from the Ohio Super‑
computer Center (OSC) to MBS. Funding was provided by the Gordon and 
Betty Moore Foundation (#3790 to MBS), the U.S. Department of Energy 
(#DE-SC0020173 to MBS), the US National Science Foundation (OCE#1536989, 
OCE#1829831, and ABI#1759874 to MBS, and ABI#1759831 to KTK), and a 
National Institutes of Health T32 training grant fellowship (AI112542 to ACG).

Availability of data and materials
MetaPop is available for download at https://​github.​com/​metaG​metap​op/​
metap​op. MetaPop can also be accessed and used as a GUI on iVirus on 

https://doi.org/10.1186/s40168-022-01231-0
https://doi.org/10.1186/s40168-022-01231-0
https://github.com/metaGmetapop/metapop
https://github.com/metaGmetapop/metapop


Page 18 of 19Gregory et al. Microbiome           (2022) 10:49 

Cyverse (https://​de.​cyver​se.​org/​apps/​agave/​MetaP​op-1.​0.0). The synthetic 
datasets used for this study are available at: http://​figsh​are.​com/​artic​les/​Bench​
marki​ng_​data_​for_​bacte​rial_​strain_​ident​ifica​tion/​16175​39. The 131 GOV2 
viromes used in this study can be downloaded from the European Nucleotide 
Archive (ENA) under the accession numbers found in Supplementary Table 3 
of Gregory et al. 2019. The virome datasets used for this study are available 
in iVirus at the following link: http://​mirro​rs.​iplan​tcoll​abora​tive.​org/​browse/​
iplant/​home/​shared/​iVirus/​ABOR. Support for the pipeline is available on the 
issue tab of the github page.
Project name: MetaPop
Project home page: https://​github.​com/​metaG​metap​op/​metap​op
Operating system(s): Unix or Linux system
Programming language: Python and R
Other requirements: Samtools, BCFTools, Prodigal
License: GNU GPL
Any restrictions to use by non-academics: None

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Microbiology, Ohio State University, Columbus, OH 43210, USA. 
2 Present Address: Department of Microbiology and Immunology, Rega Institute 
for Medical Research, VIB-KU Leuven Center for Microbiology, Leuven, Belgium. 
3 School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, 
USA. 4 Byrd Polar and Climate Research Center, Ohio State University, Columbus, 
OH 43210, USA. 5 School of Biosciences, University of Exeter, Exeter, UK. 6 School 
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, 
Georgia, USA. 7 Center of Microbiome Science, Ohio State University, Columbus, 
OH 43210, USA. 8 Department of Civil, Environmental and Geodetic Engineering, 
Ohio State University, Columbus, OH 43210, USA. 

Received: 14 November 2021   Accepted: 29 November 2021

References
	1.	 Falkowski PG, Fenchel T, Delong EF. The microbial engines that drive 

Earth’s biogeochemical cycles. Science. 2008;320(5879):1034–9.
	2.	 Kinross JM, Darzi AW, Nicholson JK. Gut microbiome-host interactions in 

health and disease. Genome Med. 2011;3(3):14.
	3.	 Knight R, Callewaert C, Marotz C, Hyde ER, Debelius JW, McDonald D, 

et al. The microbiome and human biology. Annu Rev Genomics Hum 
Genet. 2017;18:65–86.

	4.	 Parks DH, Chuvochina M, Chaumeil PA, Rinke C, Mussig AJ, Hugenholtz P. 
A complete domain-to-species taxonomy for Bacteria and Archaea. Nat 
Biotechnol. 2020;38(9):1079–86.

	5.	 Roux S, Adriaenssens EM, Dutilh BE, Koonin EV, Kropinski AM, Krupovic M, Kuhn 
JH, Lavigne R, Brister JR, Varsani A, Amid C. Minimum information about an 
uncultivated virus genome (MIUViG). Nature biotechnology. 2019;37(1):29-37.

	6.	 Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML, Pace NR. Rapid determina‑
tion of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl 
Acad Sci U S A. 1985;82(20):6955–9.

	7.	 Woese CR. There must be a prokaryote somewhere: microbiology’s 
search for itself. Microbiol Mol Biol Rev. 1994;58(1):1–9.

	8.	 Koh A, De Vadder F, Kovatcheva-Datchary P, Bäckhed F. From dietary fiber 
to host physiology: short-chain fatty acids as key bacterial metabolites. 
Cell. 2016;165(6):1332–45.

	9.	 Roager HM, Hansen LB, Bahl MI, Frandsen HL, Carvalho V, Gøbel RJ, et al. 
Colonic transit time is related to bacterial metabolism and mucosal 
turnover in the gut. Nat Microbiol. 2016;1(9):1–9.

	10.	 Woodcroft BJ, Singleton CM, Boyd JA, Evans PN, Emerson JB, Zayed AA, 
et al. Genome-centric view of carbon processing in thawing permafrost. 
Nature. 2018;560(7716):49–54.

	11.	 Solden LM, Naas AE, Roux S, Daly RA, Collins WB, Nicora CD, et al. Inter‑
species cross-feeding orchestrates carbon degradation in the rumen 
ecosystem. Nat Microbiol. 2018;3(11):1274–84.

	12.	 Martinez-Guryn K, Hubert N, Frazier K, Urlass S, Musch MW, Ojeda P, et al. 
Small intestine microbiota regulate host digestive and absorptive adap‑
tive responses to dietary lipids. Cell Host Microbe. 2018;23(4):458–69.

	13.	 Parks DH, Rinke C, Chuvochina M, Chaumeil PA, Woodcroft BJ, Evans 
PN, et al. Recovery of nearly 8,000 metagenome-assembled genomes 
substantially expands the tree of life. Nat Microbiol. 2017;2(11):1533–42.

	14.	 Delmont TO, Quince C, Shaiber A, Esen ÖC, Lee ST, Rappé MS, et al. Nitro‑
gen-fixing populations of Planctomycetes and Proteobacteria are abun‑
dant in surface ocean metagenomes. Nat Microbiol. 2018;3(7):804–13.

	15.	 Pasolli E, Asnicar F, Manara S, Zolfo M, Karcher N, Armanini F, et al. Exten‑
sive unexplored human microbiome diversity revealed by over 150,000 
genomes from metagenomes spanning age, geography, and lifestyle. 
Cell. 2019;176(3):649–62.

	16.	 Almeida A, Mitchell AL, Boland M, Forster SC, Gloor GB, Tarkowska A, 
et al. A new genomic blueprint of the human gut microbiota. Nature. 
2019;568(7753):499.

	17.	 Nayfach S, Shi ZJ, Seshadri R, Pollard KS, Kyrpides NC. New insights from 
uncultivated genomes of the global human gut microbiome. Nature. 
2019;568(7753):505–10.

	18.	 Emerson JB, Roux S, Brum JR, Bolduc B, Woodcroft BJ, Jang HB, et al. Host-
linked soil viral ecology along a permafrost thaw gradient. Nat Microbiol. 
2018;3(8):870–80.

	19.	 Shkoporov AN, Clooney AG, Sutton TD, Ryan FJ, Daly KM, Nolan JA, et al. 
The human gut virome is highly diverse, stable, and individual specific. 
Cell Host Microbe. 2019;26(4):527–41.

	20.	 Gregory AC, Zayed AA, Conceição-Neto N, Temperton B, Bolduc B, Alberti 
A, et al. Marine DNA viral macro-and microdiversity from pole to pole. 
Cell. 2019a;177(5):1109–23.

	21.	 Gregory AC, Zablocki O, Zayed AA, Howell A, Bolduc B, Sullivan MB. The 
gut virome database reveals age-dependent patterns of virome diversity 
in the human gut. Cell host & microbe. 2020;28(5):724-40.

	22.	 Camarillo-Guerrero LF, Almeida A, Rangel-Pineros G, Finn RD, Lawley 
TD. Massive expansion of human gut bacteriophage diversity. Cell. 
2021;184(4):1098–109.

	23.	 Schloissnig S, Arumugam M, Sunagawa S, Mitreva M, Tap J, Zhu A, Waller 
A, Mende DR, Kultima JR, Martin J, Kota K. Genomic variation landscape of 
the human gut microbiome. Nature. 2013;493(7430):45–50.

	24.	 García-García N, Tamames J, Linz AM, Pedrós-Alió C, Puente-Sánchez 
F. Microdiversity ensures the maintenance of functional microbial 
communities under changing environmental conditions. ISME J. 
2019;13(12):2969–83.

	25.	 Cordero OX, Polz MF. Explaining microbial genomic diversity in light of 
evolutionary ecology. Nat Rev Microbiol. 2014;12(4):263–73.

	26.	 Caro-Quintero A, Konstantinidis KT. Bacterial species may exist, metagen‑
omics reveal. Environ Microbiol. 2012;14(2):347–55.

	27.	 Gregory AC, Solonenko SA, Ignacio-Espinoza JC, LaButti K, Copeland A, 
Sudek S, et al. Genomic differentiation among wild cyanophages despite 
widespread horizontal gene transfer. BMC Genomics. 2016;17(1):1–3.

	28.	 Bobay LM, Ochman H. Biological species in the viral world. Proc Natl Acad 
Sci U S A. 2018;115(23):6040–5.

	29.	 Olm MR, Crits-Christoph A, Bouma-Gregson K, Firek BA, Morowitz MJ, Ban‑
field JF. inStrain profiles population microdiversity from metagenomic data 
and sensitively detects shared microbial strains. Nat Biotechnol. 2021:1–0.

	30.	 Warwick-Dugdale J, Solonenko N, Moore K, Chittick L, Gregory AC, Allen 
MJ, et al. Long-read viral metagenomics captures abundant and microdi‑
verse viral populations and their niche-defining genomic islands. PeerJ. 
2019;7:e6800.

	31.	 Moss EL, Maghini DG, Bhatt AS. Complete, closed bacterial genomes from 
microbiomes using nanopore sequencing. Nat Biotechnol. 2020:1–7.

	32.	 Ahn T-H, Chai J, Pan C. Sigma: strain-level inference of genomes from 
metagenomic analysis for biosurveillance. Bioinformatics. 2015;31:170–7.

	33.	 Hong C, Manimaran S, Shen Y, Perez-Rogers JF, Byrd AL, Castro-Nallar 
E, et al. PathoScope 2.0: a complete computational framework for 
strain identification in environmental or clinical sequencing samples. 
Microbiome. 2014;2:33.

https://de.cyverse.org/apps/agave/MetaPop-1.0.0
http://figshare.com/articles/Benchmarking_data_for_bacterial_strain_identification/1617539
http://figshare.com/articles/Benchmarking_data_for_bacterial_strain_identification/1617539
http://mirrors.iplantcollaborative.org/browse/iplant/home/shared/iVirus/ABOR
http://mirrors.iplantcollaborative.org/browse/iplant/home/shared/iVirus/ABOR
https://github.com/metaGmetapop/metapop


Page 19 of 19Gregory et al. Microbiome           (2022) 10:49 	

	34.	 Sankar A, Malone B, Bayliss SC, Pascoe B, Méric G, Hitchings MD, et al. 
Bayesian identification of bacterial strains from sequencing data. 
Microb Genom. 2016;2(8):e000075.

	35.	 Albanese D, Donati C. Strain profiling and epidemiology of bacterial 
species from metagenomic sequencing. Nat Commun. 2017;8:2260.

	36.	 Tamburini FB, Andermann TM, Tkachenko E, Senchyna F, Banaei N, 
Bhatt AS. Precision identification of diverse bloodstream pathogens in 
the gut microbiome. Nat Med. 2018;24(12):1809–14.

	37.	 Luo C, Knight R, Siljander H, Knip M, Xavier RJ, Gevers D. ConStrains 
identifies microbial strains in metagenomic datasets. Nat Biotechnol. 
2015;33:1045–52.

	38.	 Sahl JW, Schupp JM, Rasko DA, Colman RE, Foster JT, Keim P. Phyloge‑
netically typing bacterial strains from partial SNP genotypes observed 
from direct sequencing of clinical specimen metagenomic data. 
Genome Med. 2015;7:52.

	39.	 Nayfach S, Rodriguez-Mueller B, Garud N, Pollard KS. An integrated 
metagenomics pipeline for strain profiling reveals novel pat‑
terns of bacterial transmission and biogeography. Genome Res. 
2016;26(11):1612–25.

	40.	 Quince C, Delmont TO, Raguideau S, Alneberg J, Darling AE, Collins G, 
et al. DESMAN: a new tool for de novo extraction of strains from metage‑
nomes. Genome Biology. 2017;18(1):1–22.

	41.	 Fischer M, Strauch B, Renard BY. Abundance estimation and differential testing 
on strain level in metagenomics data. Bioinformatics. 2017;33(14):i124–32.

	42.	 Costea PI, Munch R, Coelho LP, Paoli L, Sunagawa S, Bork P. metaSNV: A tool 
for metagenomic strain level analysis. PLoS One. 2017;12(7):e0182392.

	43.	 Smillie CS, Sauk J, Gevers D, Friedman J, Sung J, Youngster I, et al. Strain tracking 
reveals the determinants of bacterial engraftment in the human gut following 
fecal microbiota transplantation. Cell Host Microbe. 2018;23(2):229–40.

	44.	 Eren AM, Esen ÖC, Quince C, Vineis JH, Morrison HG, Sogin ML, et al. 
Anvi’o: an advanced analysis and visualization platform for ‘omics data. 
PeerJ. 2015;3:e1319.

	45.	 Scholz M, Ward DV, Pasolli E, Tolio T, Zolfo M, Asnicar F, et al. Strain-
level microbial epidemiology and population genomics from shotgun 
metagenomics. Nat Methods. 2016;13(5):435–8.

	46.	 Greenblum S, Carr R, Borenstein E. Extensive strain-level copy-number 
variation across human gut microbiome species. Cell. 2015;160(4):583–94.

	47.	 Konstantinidis KT, Ramette A, Tiedje JM. The bacterial species 
definition in the genomic era. Philos Trans R Soc Lond B Biol Sci. 
2006;361(1475):1929–40.

	48.	 Couto N, Schuele L, Raangs EC, Machado MP, Mendes CI, Jesus TF, et al. 
Critical steps in clinical shotgun metagenomics for the concomitant 
detection and typing of microbial pathogens. Sci Rep. 2018;8(1):1–3.

	49.	 Nayfach S, Pollard KS. Toward accurate and quantitative comparative 
metagenomics. Cell. 2016;166(5):1103–16.

	50.	 Kunin V, Copeland A, Lapidus A, Mavromatis K, Hugenholtz P. A bioinformati‑
cian’s guide to metagenomics. Microbiol Mol Biol Rev. 2008;72(4):557–78.

	51.	 Haegeman B, Hamelin J, Moriarty J, Neal P, Dushoff J, Weitz JS. Robust 
estimation of microbial diversity in theory and in practice. ISME J. 
2013;7(6):1092–101.

	52.	 Ikemura T. Codon usage and tRNA content in unicellular and multicellular 
organisms. Mol Biol Evol. 1985;2(1):13–34.

	53.	 Lawrence JG, Ochman H. Molecular archaeology of the Escherichia coli 
genome. Proc Natl Acad Sci U S A. 1998a;95(16):9413–7.

	54.	 Shin YC, Bischof GF, Lauer WA, Desrosiers RC. Importance of codon usage 
for the temporal regulation of viral gene expression. Proc Natl Acad Sci U 
S A. 2015a;112(45):14030–5.

	55.	 Sharp PM, Li WH. The codon adaptation index-a measure of directional 
synonymous codon usage bias, and its potential applications. Nucleic 
Acids Res. 1987a;15(3):1281–95.

	56.	 Hyatt D, Chen GL, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: 
prokaryotic gene recognition and translation initiation site identification. 
BMC Bioinformatics. 2010;11(1):119.

	57.	 Whitley E, Ball J. Statistics review 1: presenting and summarising data. Crit 
Care. 2001;6(1):66.

	58.	 Knight R, Jansson J, Field D, Fierer N, Desai N, Fuhrman JA, et al. Unlocking 
the potential of metagenomics through replicated experimental design. 
Nat Biotechnol. 2012;30(6):513.

	59.	 Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The 
sequence alignment/map format and SAMtools. Bioinformatics. 
2009;25(16):2078–9.

	60.	 Danecek P, McCarthy SA. BCFtools/csq: haplotype-aware variant conse‑
quences. Bioinformatics. 2017;33(13):2037–9.

	61.	 1000 Genomes Project Consortium. A map of human genome variation 
from population-scale sequencing. Nature. 2010;467(7319):1061.

	62.	 Delmont TO, Kiefl E, Kilinc O, Esen OC, Uysal I, Rappe MS, et al. Single-
amino acid variants reveal evolutionary processes that shape the bioge‑
ography of a global SAR11 subclade. Elife. 2019;8:e46497.

	63.	 Watterson GA. On the number of segregating sites in genetical models 
without recombination. Theor Popul Biol. 1975;7(2):256–76.

	64.	 Nei M, Li WH. Mathematical model for studying genetic variation in terms of 
restriction endonucleases. Proc Natl Acad Sci U S A. 1979;76(10):5269–73.

	65.	 Wright S. The interpretation of population structure by F-statistics with 
special regard to systems of mating. Evolution. 1965;19(3):395–420.

	66.	 Tajima F. Statistical method for testing the neutral mutation hypothesis 
by DNA polymorphism. Genetics. 1989;123(3):585–95.

	67.	 Kang DW, Adams JB, Gregory AC, Borody T, Chittick L, Fasano A, et al. Micro‑
biota transfer therapy alters gut ecosystem and improves gastrointestinal 
and autism symptoms: an open-label study. Microbiome. 2017;5(1):10.

	68.	 Roux S, Emerson JB, Eloe-Fadrosh EA, Sullivan MB. Benchmarking viro‑
mics: an in silico evaluation of metagenome-enabled estimates of viral 
community composition and diversity. PeerJ. 2017;5:e3817.

	69.	 Malachowa N, DeLeo FR. Mobile genetic elements of Staphylococcus 
aureus. Cell Mol Life Sci. 2010;67(18):3057–71.

	70.	 Alibayov B, Baba-Moussa L, Sina H, Zdeňková K, Demnerová K. 
Staphylococcus aureus mobile genetic elements. Mol Biol Rep. 
2014;41(8):5005–18.

	71.	 Karlin S, Mrázek J, Campbell A, Kaiser D. Characterizations of 
highly expressed genes of four fast-growing bacteria. J Bacteriol. 
2001;183(17):5025–40.

	72.	 Peschel A, Otto M. Phenol-soluble modulins and staphylococcal infec‑
tion. Nat Rev Microbiol. 2013;11(10):667–73.

	73.	 Li X, Gerlach D, Du X, Larsen J, Stegger M, Kühner P, Peschel A, Xia G, 
Winstel V. An accessory wall teichoic acid glycosyltransferase protects 
Staphylococcus aureus from the lytic activity of Podoviridae. Scientific 
reports. 2015;5(1):17219. https://​doi.​org/​10.​1038/​srep1​7219.

	74.	 Soufo HJ, Reimold C, Linne U, Knust T, Gescher J, Graumann PL. Bacterial 
translation elongation factor EF-Tu interacts and colocalizes with actin-
like MreB protein. Proc Natl Acad Sci U S A. 2010;107(7):3163–8.

	75.	 Bae W, Xia B, Inouye M, Severinov K. Escherichia coli CspA-family RNA 
chaperones are transcription antiterminators. Proc Natl Acad Sci U S A. 
2000;97(14):7784–9.

	76.	 Duval BD, Mathew A, Satola SW, Shafer WM. Altered growth, pigmen‑
tation, and antimicrobial susceptibility properties of Staphylococcus 
aureus due to loss of the major cold shock gene cspB. Antimicrob Agents 
Chemother. 2010;54(6):2283–90.

	77.	 Hsiao EY. Gastrointestinal issues in autism spectrum disorder. Harv Rev 
Psychiatry. 2014;22(2):104–11.

	78.	 Hughes AR, Inouye BD, Johnson MT, Underwood N, Vellend M. Ecological 
consequences of genetic diversity. Ecol Lett. 2008;11(6):609–23.

	79.	 Tilman D, Isbell F, Cowles JM. Biodiversity and ecosystem functioning. 
Annu Rev Ecol Evol Syst. 2014;45:471–93.

	80.	 Amarasinghe SL, Su S, Dong X, Zappia L, Ritchie ME, Gouil Q. Opportuni‑
ties and challenges in long-read sequencing data analysis. Genome Biol. 
2020;21(1):1–6.

	81.	 Méric G, Miragaia M, de Been M, Yahara K, Pascoe B, Mageiros L, et al. 
Ecological overlap and horizontal gene transfer in Staphylococcus aureus 
and Staphylococcus epidermidis. Genome Biol Evol. 2015;7(5):1313–28.

	82.	 Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat 
Methods. 2012;9(4):357.

	83.	 Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High 
throughput ANI analysis of 90K prokaryotic genomes reveals clear spe‑
cies boundaries. Nat Commun. 2018;9(1):1–8.

	84.	 Ohio Supercomputer Center. Ohio Supercomputer Center. Columbus: 
Ohio Supercomputer Center; 1987. http://​osc.​edu/​ark:/​19495/​f5s1p​h73

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://doi.org/10.1038/srep17219
http://osc.edu/ark:/19495/f5s1ph73

	MetaPop: a pipeline for macro- and microdiversity analyses and visualization of microbial and viral metagenome-derived populations
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Introduction
	Implementation
	Technical overview of how MetaPop works: input, data processing, and output
	Step 1: Pre-processing
	Step 2: Macrodiversity and codon bias analyses
	Data processing and calculating alpha and beta diversity indices
	Codon bias analyses

	Step 3: Microdiversity analyses
	Data transformation
	SNP linkages in codon variants and downsampling
	Population genetic calculations: θ, π, FST, pNpS, and Tajima’s D


	Results and discussion
	Biological evaluation of MetaPop
	MetaPop reproduces macrodiversity patterns in silico mock communities
	MetaPop’s codon usage bias analyses detect highly expressed and horizontally transferred genes in Staphylococcus aureus
	MetaPop reproduces microdiversity patterns in the Global Oceans Virome 2 dataset
	MetaPop’s codon-constrained linkage of SNPs improves detection of positively selected genes
	Microdiversity: a case study in assessing intra-population variation reveals gut viruses may play a role in dysbiosis of autistic children’s guts

	Computational evaluation of MetaPop

	Limitations and future directions
	Conclusions
	Materials and methods
	Preparing the mock and biological dataset input files for MetaPop
	Evaluating the processing time, computational resource consumption, and scalability of MetaPop
	Mock community macrodiversity validation
	Mock community codon bias analyses
	Global Oceans Virome 2 microdiversity validation
	Biological dataset microdiversity analyses

	Acknowledgements
	References


